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Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that youmay better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com², and HTML versions of the book can be found at opentext.uleth.ca³.

These three texts are intended towork together andmake one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com⁴.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—level top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just—learned material helps address future problems.

• Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

²apexcalculus.com
³opentext.uleth.ca/calculus.html
⁴amazon.com
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• You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

• Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theoremmeans and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX – Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculuswould not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
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need. The source files can be found at github.com/APEXCalculus⁵.
You can learn more at www.vmi.edu/APEX⁶.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

• The underlying source code has been completely rewritten, to use the
PreTeXt⁷ language, instead of the original LATEX .

• Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is bothmore accessible andmore interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca⁸.

• The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

• In the html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com⁹ for more information.

• More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

⁵github.com/APEXCalculus
⁶www.vmi.edu/APEX
⁷pretextbook.org
⁸opentext.uleth.ca/calculus.html
⁹apexcalculus.com
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A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate × time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”
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Chapter 1

Limits

The foundation of “the calculus” is the limit. It is a tool to describe a particular
behavior of a function. This chapter begins our study of the limit by approximat-
ing its value graphically and numerically. After a formal definition of the limit,
properties are established that make “finding limits” tractable. Once the limit is
understood, then the problems of area and rates of change can be approached.

youtu.be/watch?v=37n0cZn6Lyc

Figure 1.0.1 Overview of Calculus
1.1 An Introduction To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

youtu.be/watch?v=rG3XVvFIZPY

Figure 1.1.1 The concept of a limit

Consider the function y = sin(x)
x . When x is near the value 1, what value (if

any) is y near?
While our question is not precisely formed (what constitutes “near the value

1”?), the answer does not seem difficult to find. One might think first to look
at a graph of this function to approximate the appropriate y values. Consider
Figure 1.1.3, where y = sin(x)

x is graphed. For values of x near 1, it seems that
y takes on values near 0.85. In fact, when x = 1, then y = sin(1)

1 ≈ 0.84, so it
makes sense that when x is “near” 1, y will be “near” 0.84.

−6 −4 −2 2 4 6

0.5

1

x

y

Figure 1.1.2 sin(x)/x

0.5 1 1.5

0.6

0.8

1

x

y

Figure 1.1.3 sin(x)/x near x = 1

Consider this same function again at a different value for x. When x is near
0, what value (if any) is y near? By considering Figure 1.1.4, one can see that it
seems that y takes on values near 1. But what happens when x = 0? We have

y → sin(0)
0

→ “ 0
0

”
.

3
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4 CHAPTER 1. LIMITS

The expression 0/0 has no value; it is indeterminate. Such an expression gives
no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

−1 −0.5 0.5 1

0.8

0.9

1

x

y

Figure 1.1.4 sin(x)/x near x = 0

Finding a limit entails understanding how a function behaves near a particu-
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f . The expression
“the limit of y as x approaches 1” describes a number, often referred to as L,
that y nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definition (that will come in the next section); this is a
pseudo-definition that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin(x)
x

≈ 0.84 and lim
x→0

sin(x)
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)

youtu.be/watch?v=__qzaSg4y1I

Figure 1.1.5 Investigating sin(x)/x

Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approxi-
mate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can
provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.

Consider again limx→1
sin(x)

x . To approximate this limit numerically, we can
create a table of x and f(x) values where x is “near” 1. This is done in Fig-
ure 1.1.6.

Notice that for values of x near 1, we have sin(x)/x near 0.841. The x = 1
row is included, but we stress the fact that when considering limits, we are not
concerned with the value of the function at that particular x value; we are only
concerned with the values of the function when x is near 1.

x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471
1.001 0.841170
1.01 0.838447
1.1 0.810189

Figure 1.1.6 Values of sin(x)/xwith x
near 1

Now approximate limx→0
sin(x)

x numerically. We already approximated the
value of this limit as 1 graphically in Figure 1.1.4. Figure 1.1.7 shows the value
of sin(x)/x for values of x near 0. Ten places after the decimal point are shown
to highlight how close to 1 the value of sin(x)/x gets as x takes on values very
near 0. We include the x = 0 row but again stress that we are not concerned
with the value of our function at x = 0, only on the behavior of the function
near 0.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.1.7 Values of sin(x)/xwith x
near 0

This numerical method gives confidence to say that 1 is a good approxima-
tion of limx→0

sin(x)
x ; that is,

lim
x→0

sin(x)
x

≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects of

the limit concept.

Example 1.1.8 Approximating the value of a limit.

Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6

6x2 − 19x+ 3
.

https://www.youtube.com/watch?v=__qzaSg4y1I
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Solution. To graphically approximate the limit, graph

y =
x2 − x− 6

6x2 − 19x+ 3

on a small interval that contains 3. To numerically approximate the limit,
create a table of values where the x values are near 3. This is done in
Figure 1.1.9 and Figure 1.1.10, respectively.

2.4 2.6 2.8 3 3.2 3.4 3.6

0.25

0.3

0.35

x

y

Figure 1.1.9 Graphically approxi-
mating a limit in Example 1.1.8

x x2−x−6
6x2−19x+3

2.9 0.29878

2.99 0.294569

2.999 0.294163

3 not defined
3.001 0.294073

3.01 0.293669

3.1 0.289773

Figure 1.1.10 Numerically approx-
imating a limit in Example 1.1.8

The graph shows that when x is near 3, the value of y is very near 0.3.
By considering values of x near 3, we see that y = 0.294 is a better
approximation. The graph and the table imply that

lim
x→3

x2 − x− 6

6x2 − 19x+ 3
≈ 0.294.

Video solution

youtu.be/watch?v=eHx3LmrQZXM

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be-
havior of a function. Sometimes a function may act “erratically” near certain x
values which is hard to discern numerically but very plain graphically (see Exam-
ple 1.1.22). Since graphing utilities are very accessible, it makes sense to make
proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.8, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 1.1.11 Approximating the value of a limit.

Graphically and numerically approximate the limit of f(x) as x ap-

https://www.youtube.com/watch?v=eHx3LmrQZXM
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proaches 0, where

f(x) =

{
x+ 1 x < 0

−x2 + 1 x > 0
.

Solution. Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function,
so it behaves differently on either side of 0. Figure 1.1.12 shows a graph
of f(x), and on either side of 0 it seems the y values approach 1. Note
that f(0) is not actually defined, as indicated in the graph with the open
circle.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

x

y

Figure 1.1.12 Graphically approxi-
mating a limit in Example 1.1.11

x f(x)

−0.1 0.9

−0.01 0.99

−0.001 0.999

0.001 0.999999

0.01 0.9999

0.1 0.99

Figure 1.1.13 Numerically approx-
imating a limit in Example 1.1.11

Figure 1.1.13 shows values of f(x) for values of x near 0. It is clear that
as x takes on values very near 0, f(x) takes on values very near 1. It
turns out that if we let x = 0 for either “piece” of f(x), 1 is returned;
this is significant and we’ll return to this idea later.
The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we
are probably very sure it equals 1.

Video solution

youtu.be/watch?v=7RAiKoLCpgU

1.1.1 Identifying When Limits Do Not Exist

youtu.be/watch?v=DSIaDa_ABxo

Figure 1.1.14 Video introduction for
Subsection 1.1.1

A function may not have a limit for all values of x. That is, we cannot write
that limx→c f(x) = L (where L is some real number) for all values of c, for
there may not be a number that f(x) is approaching. There are three common
ways in which a limit may fail to exist.

1. The function f(x)may approach different values on either side of c.

2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches c without approaching a spe-
cific value.

We’ll explore each of these in turn.

Example 1.1.15 Different Values Approached From Left and Right.

Explore why limx→1 f(x) does not exist, where

f(x) =

{
x2 − 2x+ 3 x ≤ 1

x x > 1
.

https://www.youtube.com/watch?v=7RAiKoLCpgU
https://www.youtube.com/watch?v=DSIaDa_ABxo
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Solution. A graph of f(x) around x = 1 and a table are given in Fig-
ures Figure 1.1.16 and Figure 1.1.17, respectively. It is clear that as x ap-
proaches 1, f(x) does not seem to approach a single number. Instead,
it seems as though f(x) approaches two different numbers. When con-
sidering values of x less than 1 (approaching 1 from the left), it seems
that f(x) is approaching 2; when considering values of x greater than
1 (approaching 1 from the right), it seems that f(x) is approaching 1.
Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x)
is approaching two different values as x approaches 1.

0.5 1 1.5 2

1

2

3

x

y

Figure 1.1.16 Observing no limit
as x → 1 in Example 1.1.15

x f(x)

0.9 2.01

0.99 2.0001

0.999 2.000001

1.001 1.001

1.01 1.01

1.1 1.1

Figure 1.1.17 Values of f(x) near
x = 1 in Example 1.1.15

Example 1.1.18 The Function Grows Without Bound.

Explore why limx→1
1

(x−1)2 does not exist.

Solution. A graph and table of f(x) = 1
(x−1)2 are given in Figure 1.1.19

and Figure 1.1.20, respectively. Both show that as x approaches 1, f(x)
grows larger and larger.

0.5 1 1.5 2

20

40

60

80

100

x

y

Figure 1.1.19 Observing no limit
as x → 1 in Example 1.1.18

x f(x)

0.9 100.
0.99 10000.
0.999 1.× 106

1.001 1.× 106

1.01 10000.
1.1 100.

Figure 1.1.20 Values of f(x) near
x = 1 in Example 1.1.18

We can deduce this on our own, without the aid of the graph and table.
If x is near 1, then (x− 1)2 is very small, and:

1

very small number
= very large number .

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1

(x− 1)2
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does not exist.

youtu.be/watch?v=NnV1A1KTbg0

Figure 1.1.21 Video presentation for
Examples 1.1.15–1.1.18

Example 1.1.22 The Function Oscillates.

Explore why limx→0 sin(1/x) does not exist.
Solution. Two graphs of f(x) = sin(1/x) are given in Figure 1.1.23. Fig-
ure 1.1.23(a) shows f(x) on the interval [−1, 1]; notice how f(x) seems
to oscillate near x = 0. One might think that despite the oscillation, as
x approaches 0, f(x) approaches 0. However, Figure 1.1.23(b) zooms
in on sin(1/x), on the interval [−0.1, 0.1]. Here the oscillation is even
more pronounced. Finally, in Figure 1.1.24, we see sin(1/x) evaluated
for values of x near 0. As x approaches 0, f(x) does not appear to ap-
proach any value.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

(a)

−0.1 −5 · 10−2 5 · 10−2 0.1

−1

−0.5

0.5

1

x

y

(b)

Figure 1.1.23 Observing that f(x) = sin(1/x) has no limit as x → 0 in
Example 1.1.22

x sin(1/x)
0.1 −0.544021

0.01 −0.506366

0.001 0.82688

0.0001 −0.305614

1.× 10−5 0.0357488

1.× 10−6 −0.349994

1.× 10−7 0.420548

Figure 1.1.24 Observing that f(x) =
sin(1/x) has no limit as x → 0 in Ex-
ample 1.1.22

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all
values between −1 and 1 infinitely many times! Because of this oscilla-
tion, limx→0 sin(1/x) does not exist.

Video solution

youtu.be/watch?v=gGvvFX5QyjE

1.1.2 Limits of Difference Quotients
We have approximated limits of functions as x approached a particular number.
We will consider another important kind of limit after explaining a few key ideas.

youtu.be/watch?v=2NJmd0Jrt4U

Figure 1.1.25 Video introduction to
Subsection 1.1.2

Let f(x) represent the position function, in feet, of some particle that is
moving in a straight line, where x is measured in seconds. Let’s say that when
x = 1, the particle is at position 10 ft., and when x = 5, the particle is at 20 ft.
Another way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the particle traveled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:

f(5)− f(1)

5− 1

ft
s

=
10 ft
4 s

= 2.5 ft/s .

This difference quotient can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essentially what we are doing:

https://www.youtube.com/watch?v=NnV1A1KTbg0
https://www.youtube.com/watch?v=gGvvFX5QyjE
https://www.youtube.com/watch?v=2NJmd0Jrt4U
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given two points on the graph of f , we are finding the slope of the secant line
through those two points. See Figure 1.1.26.

2 4 6

5

10

15

20

25

x

y

Figure 1.1.26 Interpreting a differ-
ence quotient as the slope of a secant
line

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,
consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient (excluding units) is now

f(1 + h)− f(1)

(1 + h)− 1
=

f(1 + h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.27. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

lim
h→0

f(1 + h)− f(1)

h
= ?

2 4 6

5

10

15

20

25

x

y

(a) h = 2

2 4 6

5

10

15

20

25

x

y

(b) h = 1

2 4 6

5

10

15

20

25

x

y

(c) h = 0.5

Figure 1.1.27 Secant lines of f(x) at x = 1 and x = 1 + h, for shrinking values
of h (i.e., h → 0)

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.28. The table gives us reason to assume the value of the limit is
about 8.5.

h f(1+h)−f(1)
h

−0.5 9.25

−0.1 8.65

−0.01 8.515

0.01 8.485

0.1 8.35

0.5 7.75

Figure 1.1.28 The difference quotient
evaluated at values of h near 0

youtu.be/watch?v=YplEX5ohJk0

Figure 1.1.29 Video examples for dif-
ference quotients: once with direct
computation, and then by simplifying
first

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. In the following exercises, we continue our
introduction and approximate the value of limits.

https://www.youtube.com/watch?v=YplEX5ohJk0
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1.1.3 Exercises

Terms and Concepts

1. In your own words, what does it mean to “find the limit of f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. (□ True □ False) The limit of f(x) as x approaches 5 is f(5).

4. Describe three situations where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quotient?

6. When x is near 0,
sinx
x

is near what value?

Problems

Exercise Group. Approximate the limit numerically and graphically.
7. lim

x→1

(
x2 + 2x+ 2

)
8. lim

x→1

(
x3 + 4x2 − 4x+ 2

)
9. lim

x→0

(
x−5

x2−4x

)
10. lim

x→−4

(
x2+2x−8
x2−x−20

)
11. lim

x→−3

(
x2+10x+21
x2+5x+6

)
12. lim

x→−4

(
x2−13x−32
x2+8x+16

)
13. lim

x→−1
f(x), where

f(x) =

{
x+ 1 if x ≤ −1

− (3x+ 4) if x > −1

14. lim
x→−2

f(x), where

f(x) =

{
x2 − 2x− 2 if x ≤ −2

2x+ 10 if x > −2

15. lim
x→0

f(x), where

f(x) =

{
cos(x) if x ≤ 0

x2 + 2x+ 1 if x > 0

16. lim
x→π

6

f(x), where f(x) =

{
sin(x) x ≤ π

6

cos(x) x > π
6

17. lim
x→0

|x|x 18. lim
x→0

e−e1/x

19. lim
x→−5

⌊
|x|
⌋
!, where |x| is the absolute value of

x, ⌊x⌋ is the floor of x (the greatest integer less
than or equal to x), and x! is x factorial.

20. lim
x→−1

⌊
|x|
⌋
!, where |x| is the absolute value of

x, ⌊x⌋ is the floor of x (the greatest integer less
than or equal to x), and x! is x factorial.

Exercise Group. Approximate the limit of the difference quotient, lim
h→0

f(a+h)−f(a)
h , using h = ±0.1,±0.01.

21. f(x) = 2− 7x, a = 3 22. f(x) = 9x+ 0.06, a = −1

23. f(x) = x2 + 3x− 7, a = 1 24. f(x) = 1
x+1 , a = 2

25. f(x) = 5x− 4x2 − 1, a = −3 26. f(x) = ln(x), a = 5

27. f(x) = sin(x), a = π 28. f(x) = cos(x), a = π



1.2. EPSILON-DELTA DEFINITION OF A LIMIT 11

1.2 Epsilon-Delta Definition of a Limit

This section introduces the formal definition of a limit. Many refer to this as “the
epsilon-delta” definition, referring to the letters ε and δ of the Greek alphabet.

Note: the common phrase “the
ε-δ definition” is read aloud as
“the epsilon delta definition.” The
hyphen between ϵ and δ is not a
minus sign.

youtu.be/watch?v=OGvDIXuWn0g

Figure 1.2.1 An informal definition of
the limit

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an x-value, c, we say that “the
limit of the function f , as x approaches c, is a value L” if:

Tends “y tends to L” as “x tends to c.”
Approaches “y approaches L” as “x approaches c.”

Near “y is near L” whenever “x is near c.”

The problem with these definitions is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respectively?

The definition we describe in this section comes from formalizing “Near”. A
quick restatement gets us closer to what we want:

Tolerance Levels
If x is within a certain tolerance level of c, then the corresponding
value y = f(x) is within a certain tolerance level of L.

The traditional notation for the x-tolerance is the lowercase Greek letter
delta, or δ, and the y-tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of “Tolerance Levels” nearly gets us to the actual definition:

Named Tolerance Levels
If x is within δ units of c, then the corresponding value of y is
within ε units of L.

We can write “x is within δ units of c” mathematically as

|x− c| < δ,

which is equivalent to
c− δ < x < c+ δ.

Letting the symbol “ =⇒ ” represent the word “implies,” we can rewrite
“Named Tolerance Levels” as

|x− c| < δ =⇒ |y − L| < ε

or
c− δ < x < c+ δ =⇒ L− ε < y < L+ ε.

The point is that δ and ε, being tolerances, can be any positive (but typically
small) values satisfying this implication. Finally, we have the formal definition of
the limit with the notation seen in the previous section.

Definition 1.2.2 The Limit of a Function f at a point.

Let I be an open interval containing c, and let f be a function defined
on I , except possibly at c. The statement that “the limit of f(x), as x
approaches c, is L” is denoted by

lim
x→c

f(x) = L,

and means that given any ε > 0, there exists δ > 0 such that for all x in

https://www.youtube.com/watch?v=OGvDIXuWn0g
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I , where x ̸= c, if |x− c| < δ, then |f(x)− L| < ε.

youtu.be/watch?v=npoSY-AFvOY

Figure 1.2.3Video presentation of De-
finition 1.2.2

Mathematicians often enjoy writing ideas without using any words. Here is
the wordless definition of the limit:

lim
x→c

f(x) = L

⇐⇒
∀ ε > 0, ∃ δ > 0 s.t. 0 < |x− c| < δ =⇒ |f(x)− L| < ε.

Note the order in which ε and δ are given. In the definition, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

An examplewill help us understand this definition. Note that the explanation
is long, but it will take one through all steps necessary to understand the ideas.

Example 1.2.4 Evaluating a limit using the definition.

Show that lim
x→4

√
x = 2.

Solution. Before we use the formal definition, let’s try some numerical
tolerances. What if the y tolerance is 0.5, or in other words ε = 0.5?
How close to 4 does x have to be so that y is within 0.5 units of 2? That
is, 1.5 < y < 2.5? In this case, we can proceed as follows:

1.5 < y < 2.5

1.5 <
√
x < 2.5 (Let y =

√
x)

1.52 < x < 2.52 (Square the inequality)
2.25 < x < 6.25

2.25− 4 < x− 4 < 6.25− 4 (Subtract 4 from both sides)
−1.75 < x− 4 < 2.25

So, what is the desired x tolerance? Remember, we want to find a δ
so that |x− 4| is smaller than δ. Since 1.75 < 2.25, then if we require
|x− 4| < 1.75, then we have

|x− 4| < 1.75

=⇒ −1.75 < x− 4 < 1.75 < 2.25

Therefore we can have δ ≤ 1.75. See Figure 1.2.5.

2 4 6

1

2

ε = 0.5

ε = 0.5

Choose ε > 0. Then …

x

y

(a)

2 4 6

1

2

ε = 0.5

ε = 0.5

width
1.75

width
2.25

…choose δ smaller
than each of these:

x

y

(b)

Figure 1.2.5 Illustrating the ε − δ process. With ε = 0.5, we pick any
δ < 1.75

https://www.youtube.com/watch?v=npoSY-AFvOY
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Given the y tolerance ε = 0.5, we have found an x tolerance, δ < 1.75,
such that whenever x is within δ units of 4, then y is within ε units of 2.
That’s what we were trying to find.
Let’s try another value of ε.
What if the y tolerance is 0.01, i.e. ε = 0.01? How close to 4 does x
have to be in order for y to be within 0.01 units of 2? (In other words for
1.99 < y < 2.01?) Again, we just square these values to get 1.992 <
x < 2.012, or

3.9601 < x < 4.0401

−0.0399 < x− 4 < 0.0401

What is the desired x tolerance? In this case we must have δ < 0.0399,
which is the minimum distance from 4 of the two bounds given above.
What we have so far: if ε = 0.5, then δ < 1.75 leads to f(x) being less
than ε from f(4) and if ε = 0.01, then δ < 0.0399 being less than ε
from f(4). A pattern is not easy to see, so we switch to general ε try to
determine an adequate δ symbolically. We start by assuming y =

√
x is

within ε units of 2:

|y − 2| < ε

−ε < y − 2 < ε

−ε <
√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2 + ε (Add 2)

(2− ε)2 < x < (2 + ε)2 (Square all)

4− 4ε+ ε2 < x < 4 + 4ε+ ε2 (Expand)

−4ε+ ε2 < x− 4 < 4ε+ ε2 (Subtract 4)

The “desired form” in the last step is “4 − something < x < 4 +
something.” Since we want this last interval to describe an x tolerance
around 4, we have that either δ < 4ε− ε2 or δ < 4ε+ ε2, whichever is
smaller:

δ < min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, we have 4ε − ε2 < 4ε + ε2, the minimum is δ ≤ 4ε − ε2.
That’s the formula: given an ε, set δ ≤ 4ε− ε2.
We can check this for our previous values. If ε = 0.5, the formula gives
δ < 4(0.5) − (0.5)2 = 1.75 and when ε = 0.01, the formula gives
δ < 4(0.01)− (0.01)2 = 0.0399.
So given any ε > 0, set δ < 4ε−ε2. Then if |x− 4| < δ (andx ̸= 4), then
|f(x)− 2| < ε, satisfying the definition of the limit. We have shown
formally (and finally!) that limx→4

√
x = 2.

Video solution

youtu.be/watch?v=qHWI0eha_rA

The previous example was a little long in that we sampled a few specific
cases of ε before handling the general case. Normally this is not done. The
previous example is also a bit unsatisfying in that

√
4 = 2; why work so hard

to prove something so obvious? Many ε-δ proofs are long and difficult to do.
In this section, we will focus on examples where the answer is, frankly, obvious,
because the non-obvious examples are even harder. In the next section we will
learn some theorems that allowus to evaluate limits analytically, that is, without
using the ε-δ definition.

https://www.youtube.com/watch?v=qHWI0eha_rA
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Example 1.2.6 Evaluating a limit using the definition.

Show that lim
x→2

x2 = 4.

Solution. Let’s do this example symbolically from the start. Let ε > 0
be given; wewant |y − 4| < ε, i.e.,

∣∣x2 − 4
∣∣ < ε. How dowe find δ such

that when |x− 2| < δ, we are guaranteed that
∣∣x2 − 4

∣∣ < ε?
This is a bit trickier than the previous example, but let’s start by noticing
that

∣∣x2 − 4
∣∣ = |x− 2| · |x+ 2|. Consider:∣∣x2 − 4
∣∣ < ε =⇒ |x− 2| · |x+ 2| < ε =⇒ |x− 2| < ε

|x+ 2|
.

Could we not set δ = ε
|x+2|?

We are close to an answer, but the catch is that δ must be a constant
value (so it can’t depend on x). There is a way to work around this, but
we do have to make an assumption. Remember that ε is supposed to
be a small number, which implies that δ will also be a small value. In
particular, we can (probably) assume that δ < 1. If this is true, then
|x− 2| < δ would imply that |x− 2| < 1, giving 1 < x < 3.
Now, back to the fraction ε

|x+2| . If 1 < x < 3, then 3 < x+ 2 < 5 (add
2 to all terms in the inequality). Taking reciprocals, we have

1

5
<

1

|x+ 2|
<

1

3
,

which implies
1

5
<

1

|x+ 2|
,

which implies
ε

5
<

ε

|x+ 2|
. (1.2.1)

This suggests that we set δ < ε
5 . To see why, let consider what follows

when we assume |x− 2| < δ:

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(Multiply by |x+ 2| )∣∣x2 − 4
∣∣ < |x+ 2| · ε

5
(Simplify left side)∣∣x2 − 4

∣∣ < |x+ 2| · ε

|x+ 2|
(Inequality (1.2.1), δ < 1)∣∣x2 − 4

∣∣ < ε

Wehave arrived at
∣∣x2 − 4

∣∣ < ε as desired. Note again, in order tomake
this happenweneeded δ to first be less than 1. That is a safe assumption;
we want ε to be arbitrarily small, forcing δ to also be small.
We have also picked δ to be smaller than “necessary.” We could get by
with a slightly larger δ, as shown in Figure 1.2.7. The outer lines show
the boundaries defined by our choice of ε. The inner lines show the
boundaries defined by setting δ = ε/5. Note how these dotted lines are
within the dashed lines. That is perfectly fine; by choosing x within the
dotted lines we are guaranteed that f(x) will be within ε of 4.

2

4

ε

ε
δ = ε/5

x

y

Figure 1.2.7 Choosing δ = ε/5 in Ex-
ample 1.2.6
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In summary, given ε > 0, set δ = ε/5. Then |x− 2| < δ implies∣∣x2 − 4
∣∣ < ε (i.e. |y − 4| < ε) as desired. This shows that limx→2 x

2 =
4. Figure 1.2.7 gives a visualization of this; by restricting x to values
within δ = ε/5 of 2, we see that f(x) is within ε of 4. Video solution

youtu.be/watch?v=QGqoq-xEXyk

Make note of the general pattern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by doing what is essentially some “scratch-work” first:

1. assume |f(x)− L| < ε, then perform some algebraic manipulations to
give an inequality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side
of the inequality becomes our δ. We can refer to this as the “scratch-work”
phase of our proof. Once we have δ, we can formally start the actual proof with
|x− c| < δ and use algebraic manipulations to conclude that |f(x)− L| < ε,
usually by using the same steps of our “scratch-work” in reverse order.

We highlight this process in the following example.

Example 1.2.8 Evaluating a limit using the definition.

Prove that lim
x→1

(x3 − 2x) = −1.

Solution. We start our scratch-work by considering |f(x)− (−1)| < ε:

|f(x)− (−1)| < ε∣∣x3 − 2x+ 1
∣∣ < ε (Now factor)∣∣(x− 1)(x2 + x− 1)
∣∣ < ε

|x− 1| < ε

|x2 + x− 1|
. (1.2.2)

We are at the phase of saying that |x− 1| < something, where
something = ε/

∣∣x2 + x− 1
∣∣. We want to turn that something into

δ.
Since x is approaching 1, we are safe to assume that x is between 0 and
2. So

0 < x < 2

0 < x2 < 4 (Squared each term.)

Since 0 < x < 2, we can add 0, x and 2, respectively, to each part of the
inequality and maintain the inequality.

0 < x2 + x < 6

−1 < x2 + x− 1 < 5 (Subtracted 1 from each part.)

In Inequality (1.2.2), we wanted |x− 1| < ε/
∣∣x2 + x− 1

∣∣. The above
shows that given any x in [0, 2], we know that

x2 + x− 1 < 5 which implies that

https://www.youtube.com/watch?v=QGqoq-xEXyk
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1

5
<

1

x2 + x− 1
which implies that

ε

5
<

ε

x2 + x− 1
. (1.2.3)

So we set δ < ϵ/5. This ends our scratch-work, and we begin the formal
proof (which also helps us understand why this was a good choice of δ).
Given ε, let δ < ε/5. We want to show that when |x− 1| < δ, then∣∣(x3 − 2x)− (−1)

∣∣ < ε. We start with |x− 1| < δ:

|x− 1| < δ

|x− 1| < ε

5

|x− 1| < ε

|x2 + x− 1|
(Inequality (1.2.3), x near 1)

|x− 1| ·
∣∣x2 + x− 1

∣∣ < ε∣∣x3 − 2x+ 1
∣∣ < ε∣∣(x3 − 2x)− (−1)
∣∣ < ε,

which is what we wanted to show. Thus limx→1(x
3 − 2x) = −1.

Video solution

youtu.be/watch?v=--_Rq2GX9IY

We illustrate evaluating limits once more.

Example 1.2.9 Evaluating a limit using the definition.

Prove that lim
x→0

ex = 1.

Solution. Symbolically, we want to take the inequality |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Here is our scratch-work:

|ex − 1| < ε

−ε < ex − 1 < ε (Definition of absolute value)
1− ε < ex < 1 + ε (Add 1)

ln(1− ε) < x < ln(1 + ε) (Take natural logs)

Making the safe assumption that ε < 1 ensures the last inequality is
valid (i.e., so that ln(1 − ε) is defined). We can then set δ to be the
minimum of |ln(1− ε)| and ln(1 + ε); i.e.,

δ = min{|ln(1− ε)| , ln(1 + ε)} = ln(1 + ε).

Recall ln 1 = 0 and lnx < 0
when 0 < x < 1. So ln(1 − ε)
is negative because 1 − ε < 1;
hence we consider its absolute
value:

|ln(1− ε)|
= − ln(1− ε)

= ln
(

1

1− ε

)
.

To determine which is smaller
between |ln(1− ε)| and
ln(1 + ε) amounts to determin-
ing which is smaller between
1

1−ε and 1 + ε. But

(1 + ε)/

(
1

1− ε

)
= (1 + ε)(1− ε)

= 1− ε2 < 1,

so (1+ε) < 1
1−ε . And therefore

ln(1 + ε) < |ln(1− ε)|.

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (Definition of absolute value)
− ln(1 + ε) < x < ln(1 + ε)

ln(1− ε) < x < ln(1 + ε) (since ln(1− ε) < − ln(1 + ε)).

The above line is true by our choice of δ and by the fact that since
|ln(1− ε)| > ln(1 + ε) and ln(1 − ε) < 0, we know ln(1 − ε) <
− ln(1 + ε).

1− ε < ex < 1 + ε (Exponentiate)

https://www.youtube.com/watch?v=--_Rq2GX9IY
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−ε < ex − 1 < ε (Subtract 1)

In summary, given ε > 0, let δ = ln(1 + ε). Then |x− 0| < δ implies
|ex − 1| < ε as desired. We have shown that limx→0 e

x = 1.

We note that we could actually show that limx→c e
x = ec for any con-

stant c. We do this by factoring out ec from both sides, leaving us to show
limx→c e

x−c = 1 instead. By using the substitution u = x − c, this reduces
to showing limu→0 e

u = 1 which we just did in the last example. As an added
benefit, this shows that in fact the function f(x) = ex is continuous at all values
of x, an important concept we will define in Section 1.5.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square
roots and exponentials. It is very difficult to prove, using the techniques given
above, that limx→0

sin(x)
x = 1, as we approximated in Section 1.1.

There is hope. Section 1.3 shows how one can evaluate complicated lim-
its using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of Section 1.3 are
employed.
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1.2.1 Exercises

Terms and Concepts

1. What is wrong with the following “definition” of a limit?
“The limit of f(x), as x approaches a, is K” means that given any δ > 0 there exists ε > 0 such that

whenever |f(x)−K| < ε, we have |x− a| < δ.

2. Which is given first in establishing a limit?
(□ x-tolerance □ y-tolerance)

3. (□ True □ False) εmust always be positive.
4. (□ True □ False) δ must always be positive.

Problems

Exercise Group. Prove the given limit using an ε-δ proof.
5. lim

x→4
(2x+ 5) = 13 6. lim

x→5
(3− x) = −2

7. lim
x→3

(
x2 − 3

)
= 6 8. lim

x→4

(
x2 + x− 5

)
= 15

9. lim
x→1

(
2x2 + 3x+ 1

)
= 6 10. lim

x→2

(
x3 − 1

)
= 7

11. lim
x→2

5 = 5 12. lim
x→0

(
e2x − 1

)
= 0

13. lim
x→1

1
x = 1 14. lim

x→0
sin(x) = 0
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1.3 Finding Limits Analytically

In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi-
mations were correct. Thus far, our method of finding a limit is

1. make a really good approximation either graphically or numerically, and

2. verify our approximation is correct using a ε-δ proof.

Recognizing that ε-δ proofs are cumbersome, this section gives a series of
theorems which allow us to find limits much more quickly and intuitively.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x)+
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit Properties.

Let b, c, L andK be real numbers, let n be a positive integer, and let f
and g be functions defined on an open interval I containing c with the
following limits:

lim
x→c

f(x) = L lim
x→c

g(x) = K.

The following limits hold.

Constants lim
x→c

b = b

Identity lim
x→c

x = c

Sums/Differences lim
x→c

(f(x)± g(x)) = L±K

Scalar Multiples lim
x→c

(b · f(x)) = bL

Products lim
x→c

(f(x) · g(x)) = LK

Quotients lim
x→c

(f(x)/g(x)) = L/K, whenK ̸= 0

Powers lim
x→c

f(x)n = Ln

Roots lim
x→c

n
√
f(x) = n

√
L

(If n is even then require f(x) ≥ 0 on I .)

Compositions Adjust the limit requirements to

lim
x→c

f(x) = L lim
x→L

g(x) = K g(L) = K.

Then lim
x→c

g(f(x)) = K.

youtu.be/watch?v=da2vdsxd2Fs

Figure 1.3.2 Video presentation of
Theorem 1.3.1 (three videos)

Many people like to remember
the Sum Property as stating that
“the limit of the sum is the sum
of the limits”, and the Product
Property as stating that the “limit
of a product is the product of the
limits.”

In practice, the Scalar Multi-
ple Property is often viewed as
telling us that we can “take con-
stants out of limits”:

lim
x→c

(b · f(x)) = b · lim
x→c

f(x).

We apply the theorem to an example.

Example 1.3.3 Using basic limit properties.

Let

lim
x→2

f(x) = 2 lim
x→2

g(x) = 3 p(x) = 3x2 − 5x+ 7.

https://www.youtube.com/watch?v=da2vdsxd2Fs
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Find the following limits:

(a) lim
x→2

(f(x) +

g(x))

(b) lim
x→2

(5f(x) +

g(x)2)

(c) lim
x→2

p(x)

Solution.

(a) Using the Sums/Differences property, we know that

lim
x→2

(f(x) + g(x)) = lim
x→2

f(x) + lim
x→2

g(x)

= 2 + 3 = 5.

(b) Using the Scalar Multiples, Sums/Differences, and Powers proper-
ties, we find that

lim
x→2

(5f(x) + g(x)2) = lim
x→2

(5f(x)) + lim
x→2

(g(x)2)

= 5 lim
x→2

f(x) +
(
lim
x→2

g(x)
)2

= 5 · 2 + 32 = 19.

(c) Here we combine the Powers, Scalar Multiples, Sums/Differences
and Constants properties. We show quite a few steps, but in gen-
eral these can be omitted:

lim
x→2

p(x) = lim
x→2

(
3x2 − 5x+ 7

)
= lim

x→2

(
3x2
)
− lim

x→2
(5x) + lim

x→2
7

= 3
(
lim
x→2

x
)2 − 5 lim

x→2
(x) + 7

= 3 · 22 − 5 · 2 + 7

= 9

Video solution

youtu.be/watch?v=8x42kGfu9ts

Part c of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 could have been found just by plugging 2 into the function.
This holds true for all polynomials, and also for rational functions (which are
quotients of polynomials), as stated in the following theorem.

Theorem 1.3.4 Limits of Polynomial and Rational Functions.

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x) = p(c)

q(c) , when q(c) ̸= 0.
youtu.be/watch?v=NGoUHZESPso

Figure 1.3.5 Video presentation of
Theorem 1.3.4 and Theorem 1.3.20

https://www.youtube.com/watch?v=8x42kGfu9ts
https://www.youtube.com/watch?v=NGoUHZESPso
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Example 1.3.6 Finding a limit of a rational function.

Using Theorem 1.3.4, find

lim
x→−1

3x2 − 5x+ 1

x4 − x2 + 3
.

Solution. Using Theorem 1.3.4, we can quickly state that

lim
x→−1

3x2 − 5x+ 1

x4 − x2 + 3
=

3(−1)2 − 5(−1) + 1

(−1)4 − (−1)2 + 3

=
9

3
= 3.

It was likely frustrating in Section 1.2 to do a lot of work with ε and δ to prove
that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function
in Example 1.3.6.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behavior is particularly “nice” in terms of limits. In Section 1.5, we will give a
formal name to these functions that behave “nicely.”

Theorem 1.3.7 Limits of Common Functions.

Let c be a real number in the domain of the given function and let n be
a positive integer. The following limits hold:

1. lim
x→c

sin(x) = sin(c)

2. lim
x→c

cos(x) = cos(c)

3. lim
x→c

tan(x) = tan(c)

4. lim
x→c

csc(x) = csc(c)

5. lim
x→c

sec(x) = sec(c)

6. lim
x→c

cot(x) = cot(c)

7. limx→c a
x = ac, if a > 0

8. lim
x→c

ln(x) = ln(c)

9. lim
x→c

n
√
x = n

√
c

(Item 9 follows from the Identity and Roots rules.)

Example 1.3.8 Evaluating limits analytically.

Evaluate the following limits.

(a) lim
x→π

cos(x)

(b) lim
x→3

(
sec2(x)− tan2(x)

)
(c) lim

x→π/2
(cos(x) sin(x))

(d) lim
x→1

eln(x)

(e) lim
x→0

sin(x)
x

Solution.
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(a) This is a straightforward application of Theorem 1.3.7:
lim
x→π

cos(x) = cos(π) = −1.

(b) We can approach this in at least two ways. First, by directly apply-
ing Theorem 1.3.7, we have:

lim
x→3

(
sec2(x)− tan2(x)

)
= sec2(3)− tan2(3).

Using the Pythagorean Theorem, this last expression is 1; there-
fore

lim
x→3

(
sec2(x)− tan2(x)

)
= 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(
sec2(x)− tan2(x)

)
= lim

x→3
1 = 1,

using the Constants rule. Either way, we find the limit is 1.

(c) Applying the Products rule and Theorem 1.3.7 gives

lim
x→π/2

cos(x) sin(x) = cos(π/2) sin(π/2) = 0 · 1 = 0.

(d) Again, we can approach this in two ways. First, we can use the
exponential/logarithmic identity that eln(x) = x and evaluate
lim
x→1

eln(x) = lim
x→1

x = 1.

We can also use the Compositions rule. Using Theorem 1.3.7, we
have lim

x→1
ln(x) = ln(1) = 0 and limx→0 e

x = e0 = 1, satisfying
the conditions of the Compositions rule. Applying this rule,

lim
x→1

eln(x) = elimx→1 ln(x) = eln(1) = e0 = 1.

Both approaches are valid, giving the same result.

(e) We encountered this limit in Section 1.1. Applying our theorems,
we attempt to find the limit as

lim
x→0

sin(x)
x

→ sin(0)
0

,

which is of the form 0
0 . This, of course, violates a condition of the

Quotients rule, as the limit of the denominator is not allowed to
be 0. Therefore, we are still unable to evaluate this limit with tools
we currently have at hand.

Based on what we’ve done so far, this section could have been titled “Using
Known Limits to Find Unknown Limits.” By knowing certain limits of functions,
we can find limits involving sums, products, powers, etc., of these functions. We
further the development of such comparative tools with the Squeeze Theorem,
a clever and intuitive way to find the value of some limits.

Before stating this theorem formally, suppose we have functions f , g, and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f andh have the same limit at c, and g is always “squeezed” between them,
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then g must have the same limit as well. That is what the Squeeze Theorem
states. This is illustrated in Figure 1.3.9.

c

L

g

f

h

x

y

Figure 1.3.9 An illustration of the
Squeeze Theorem

Theorem 1.3.10 Squeeze Theorem.

Let f , g and h be functions on an open interval I containing c such that
for all x in I ,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

youtu.be/watch?v=8Tv-GRQdAVA

Figure 1.3.11 Explaining the Squeeze
Theorem

It can take somework to figure out appropriate functions bywhich to “squeeze”
a given function. However, that is generally the only place where work is neces-
sary; the theorem makes the “evaluating the limit part” very simple.

The Squeeze Theorem can be used to show that limits of sin(x) can be done
by direct substitution, as the videos in Figure 1.3.12 illustrate.

youtu.be/watch?v=2pVHlrPee2w

Figure 1.3.12 Using the Squeeze The-
orem to take the limit of sin(x) at 0

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin(x)
x = 1.

Example 1.3.13 Using the Squeeze Theorem.

Use the Squeeze Theorem to show that

lim
x→0

sin(x)
x

= 1.

Solution. We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos(θ), sin(θ)) for some angle θ as shown in
Figure 1.3.14. Using similar triangles, we can extend the line from the
origin through the point to the point (1, tan(θ)), as shown. (Here we
are assuming that 0 ≤ θ ≤ π/2. Later we will show that we can also
consider θ ≤ 0.)

θ

(1, tan(θ))

(1, 0)

(cos(θ), sin(θ))

Figure 1.3.14 The unit circle and re-
lated triangles

Figure 1.3.14 shows three regions have been constructed in the first
quadrant, two triangles and a sector of a circle, which are also drawn
below. The area of the large triangle is 1

2 tan(θ); the area of the sector
is θ/2; the area of the triangle contained inside the sector is 1

2 sin(θ). It
is then clear from Figure 1.3.15 that

tan(θ)
2

≥ θ

2
≥ sin(θ)

2
.

(You may need to recall that the area of a sector of a circle is 1
2r

2θ with
θ measured in radians.)

θ

ta
n(
θ)

1

(a)

θ

1

ta
n(
θ)

(b)

θ

sin
(θ
)

1

ta
n(
θ)

(c)

Figure 1.3.15 Bounding the sector between two triangles

https://www.youtube.com/watch?v=8Tv-GRQdAVA
https://www.youtube.com/watch?v=2pVHlrPee2w
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Multiply all terms by 2
sin(θ) , giving

1

cos(θ)
≥ θ

sin(θ)
≥ 1.

Taking reciprocals reverses the inequalities, giving

cos(θ) ≤ sin(θ)
θ

≤ 1.

(These inequalities hold for all values of θ near 0, even negative values,
since cos(−θ) = cos(θ) and sin(−θ) = − sin(θ).)
Now take limits.

lim
θ→0

cos(θ) ≤ lim
θ→0

sin(θ)
θ

≤ lim
θ→0

1

cos(0) ≤ lim
θ→0

sin(θ)
θ

≤ 1

1 ≤ lim
θ→0

sin(θ)
θ

≤ 1

Clearly this means that lim
θ→0

sin(θ)
θ = 1.

Video solution

youtu.be/watch?v=pgjv3ojtXh4

With the limit lim
θ→0

sin(θ)
θ = 1 finally established, we can move on to other

limits involving trigonometric functions, as the video in Figure 1.3.16 demon-
strates.

youtu.be/watch?v=Wd464IIls5Y

Figure 1.3.16 Finding limits involving
trigonometric functions

Two notes about the Example 1.3.13 are worth mentioning. First, one might
be discouraged by this application, thinking “I would never have come up with
that on my own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin(x) are approaching 0, but the ratio of x and sin(x)
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functions y = x and y = sin(x)
are essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.17 Special Limits.

1. lim
x→0

sin(x)
x

= 1

2. lim
x→0

cos(x)− 1

x
= 0

3. lim
x→0

(1 + x)1/x = e

4. lim
x→0

ex − 1

x
= 1

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cos(x) goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos(x) is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

https://www.youtube.com/watch?v=pgjv3ojtXh4
https://www.youtube.com/watch?v=Wd464IIls5Y
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In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulting in a limit of 1.

The special limits stated in Theorem 1.3.17 are called indeterminate forms;
in this case they are of the form 0/0, except the third limit, which is of a differ-
ent form. You’ll learn techniques to find these limits exactly using calculus in
Section 4.6.

Our final theorem for this sectionwill bemotivated by the following example.

Example 1.3.18 Using algebra to evaluate a limit.

Evaluate the following limit:

lim
x→1

x2 − 1

x− 1
.

Solution. We begin by attempting to apply Theorem 1.3.4 and substi-
tuting 1 for x in the quotient. This gives:

lim
x→1

x2 − 1

x− 1
=

12 − 1

1− 1

which is of the form 0
0 , an indeterminate form. We cannot apply the

theorem.
By graphing the function, as in Figure 1.3.19, we see that the function
seems to be linear, implying that the limit should be easy to evaluate.
Recognize that the numerator of our quotient can be factored:

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
.

The function is not defined when x = 1, but for all other x,

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1

=
����(x− 1)(x+ 1)

����(x− 1)

= x+ 1, if x ̸= 1
0.5 1 1.5 2

1

2

3

x

y

Figure 1.3.19 Graphing f in Exam-
ple 1.3.18 to understand a limit

Clearly lim
x→1

(x+1) = 2. Recall that when considering limits, we are not
concernedwith the value of the function at 1, only the value the function
approaches as x approaches 1. Since (x2−1)/(x−1) and x+1 are the
same at all points except at x = 1, they both approach the same value
as x approaches 1. Therefore we can conclude that

lim
x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1)

= 2

The key to Example 1.3.18 is that the functions y = (x2 − 1)/(x − 1) and
y = x+1 are identical except atx = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.



26 CHAPTER 1. LIMITS

Theorem 1.3.20 Limits of Functions Equal At All But One Point.

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-
tional function of the form g(x)/f(x) and directly evaluating the limit lim

x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then
use algebra to factor this binomial out, cancel, then apply Theorem 1.3.20. We
demonstrate this once more.

Example 1.3.21 Evaluating a limit using Theorem 1.3.20.

Evaluate

lim
x→3

x3 − 2x2 − 5x+ 6

2x3 + 3x2 − 32x+ 15
.

Solution. We attempt to apply Theorem 1.3.4 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numer-
ator and denominator are each polynomials, we know that (x − 3) is
factor of each. Using whatever method is most comfortable to you, fac-
tor out (x− 3) from each (using polynomial division, synthetic division,
a computer algebra system, etc.). We find that

x3 − 2x2 − 5x+ 6

2x3 + 3x2 − 32x+ 15
=

(x− 3)
(
x2 + x− 2

)
(x− 3) (2x2 + 9x− 5)

.

We can cancel the (x−3) factors as long asx ̸= 3. Using Theorem1.3.20
we conclude:

lim
x→3

x3 − 2x2 − 5x+ 6

2x3 + 3x2 − 32x+ 15
= lim

x→3

(x− 3)
(
x2 + x− 2

)
(x− 3) (2x2 + 9x− 5)

= lim
x→3

x2 + x− 2

2x2 + 9x− 5

=
10

40

=
1

4
.

Video solution

youtu.be/watch?v=MSckoYqdKH4

Example 1.3.22 Evaluating a Limit with a Hole.

Evaluate
lim
x→9

√
x− 3

x− 9
.

Solution. We begin by trying to apply the Quotients limit rule, but the
denominator evaluates to zero. In fact, this limit is of the indeterminate
form 0/0. Wewill do some algebra to resolve the indeterminate form. In
this case, we multiply the numerator and denominator by the conjugate

https://www.youtube.com/watch?v=MSckoYqdKH4
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of the numerator.
√
x− 3

x− 9
=

√
x− 3

x− 9
· (

√
x+ 3)

(
√
x+ 3)

=
x− 9

(x− 9)(
√
x+ 3)

Wecan cancel the (x−9) factors as long asx ̸= 9. Using Theorem1.3.20
we conclude:

lim
x→9

√
x− 3

x− 9
= lim

x→9

x− 9

(x− 9) (
√
x+ 3)

= lim
x→9

1√
x+ 3

=
1

limx→9
√
x+ limx→9 3

=
1√

limx→9 x+ 3

=
1√
3 + 3

=
1

6
.

Video solution

youtu.be/watch?v=vOW92eipOu4

We end this section by revisiting a limit first seen in Section 1.1, a limit of a
difference quotient. Let f(x) = −1.5x2 + 11.5x; we approximated the limit
lim
h→0

f(1+h)−f(1)
h ≈ 8.5. We formally evaluate this limit in the following exam-

ple.

Example 1.3.23 Evaluating the limit of a difference quotient.

Let f(x) = −1.5x2 + 11.5x; find lim
h→0

f(1+h)−f(1)
h .

Solution. Since f is a polynomial, our first attempt should be to employ
Theorem 1.3.4 and substitute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a rational function hints that some algebra
will help. Consider the following steps:

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

−1.5(1 + h)2 + 11.5(1 + h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1 + 2h+ h2) + 11.5 + 11.5h− 10

h

= lim
h→0

−1.5h2 + 8.5h

h

= lim
h→0

h(−1.5h+ 8.5)

h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 1.3.20, as h ̸= 0)

= 8.5 (using Theorem 1.3.4)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.7; it states that many functions that

https://www.youtube.com/watch?v=vOW92eipOu4
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we use regularly behave in a very nice, predictable way. In Section 1.5 we give
a name to this nice behavior; we label such functions as continuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.
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1.3.1 Exercises

Terms and Concepts

1. Explain in your own words, without using ε-δ formality, why lim
x→c

b = b.

2. Explain in your own words, without using ε-δ formality, why lim
x→c

x = c.

3. What does the text mean when it says that certain functions’ “behavior is ‘nice’ in terms of limits”? What, in
particular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze Theorem.
5. You are given the following information:

lim
x→1

f(x) = 0 lim
x→1

g(x) = 0 lim
x→1

f(x)

g(x)
= 2

What can be said about the relative sizes of f(x) and g(x) as x approaches 1?

6. (□ True □ False) lim
x→1

lnx = 0.

Problems

Exercise Group. Use the following information to evaluate the given limit, when possible.

lim
x→9

f(x) = 6 lim
x→6

f(x) = 9 f(9) = 6

lim
x→9

g(x) = 3 lim
x→6

g(x) = 3 g(6) = 3

7. lim
x→9

(f(x) + g(x)) 8. lim
x→9

(
3f(x)
g(x)

)
9. lim

x→9

(
f(x)−2g(x)

g(x)

)
10. lim

x→6

(
f(x)

3−g(x)

)
11. lim

x→9
g(f(x)) 12. lim

x→6
f(g(x))

13. lim
x→6

g(f(f(x))) 14. lim
x→6

(
f(x)g(x)− f(x)2 + g(x)2

)
Exercise Group. Use the following information to evaluate the given limit, when possible. If it is not possible to
determine the limit, state why not.

lim
x→1

f(x) = 2 lim
x→10

f(x) = 1 f(1) = 1/5

lim
x→1

g(x) = 0 lim
x→10

g(x) = π g(10) = π

15. lim
x→1

(f(x)g(x)) 16. lim
x→10

cos(g(x))

17. lim
x→1

g(5f(x)) 18. lim
x→1

5g(x)

Exercise Group. Evaluate the given limit.
19. lim

x→6

(
x2 − 3x+ 5

)
20. lim

x→π

(
x−5
x−8

)4
21. lim

x→π
6

cos(x) sin(x) 22. lim
x→6

−(5x+2)
x+4

23. lim
x→0

ln(x) 24. lim
x→2

4x
3−2x

25. lim
x→π

3

csc(x) 26. lim
x→0

ln(4 + x)
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27. lim
x→π

x2−4x−2
2x2−2x+1

28. lim
x→π

2x−4
5x−5

29. lim
x→5

x2−11x+30
x2−14x+45 30. lim

x→0

x2−7x
x2+2x

31. lim
x→9

x2−x−72
x2−14x+45 32. lim

x→−8

x2+3x−40
x2+13x+40

33. lim
x→−6

x2+8x+12
x2+3x−18 34. lim

x→−4

x2+13x+36
x2+12x+32

Exercise Group. Use the Squeeze Theorem to evaluate the limit.
35. lim

x→0

(
x sin

(
1
x

))
36. lim

x→0

(
sin(x) cos

(
1
x2

))
37. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3 38. lim

x→3
f(x), where 6x− 9 ≤ f(x) ≤ x2

Exercise Group. The following exercises challenge your understanding of limits but can be evaluated using the
knowledge gained in Section 1.3.

39. lim
x→0

sin(8x)
x 40. lim

x→0

sin(9x)
8x

41. lim
x→0

ln(1+x)
x 42. lim

x→0

sin(x)
x , where x is measured in degrees, not

radians.

43. Let f(x) = 0 and g(x) = x
x .

(a) Explain why lim
x→2

f(x) = 0.

(b) Explain why lim
x→0

g(x) = 1.

(c) Explain why lim
x→2

g(f(x)) does not exist.

(d) Explain why the previous statement does not violate the Composition Rule of Theorem 1.3.1.
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1.4 One-Sided Limits

We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tedious method for evaluating them. Section 1.3 gave us tools
(whichwe call theorems) that allowus to compute limitswith greater ease. Chief
among the results were the facts that polynomials and rational, trigonometric,
exponential and logarithmic functions (and their sums, products, etc.) all be-
have “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we saw three ways in which limits of functions can fail to exist:

1. The function approaches different values from the left and right.

2. The function grows without bound.

3. The function oscillates.

In this sectionwe explore in depth the concepts behind Item1by introducing
the one-sided limit. We begin with formal definitions that are very similar to the
definition of the limit given in Section 1.2, but the notation is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.”

There is a slightly different definition for a left-hand limit, than for a right-
hand limit, but both have a lot in common with Definition 1.2.2.

Definition 1.4.1 One Sided Limits: Left- and Right-Hand Limits.

Left-Hand Limit
Let f be a function defined on (a, c) for some a < c and
let L be a real number. The statement that the limit of
f(x), as x approaches c from the left, is L, (alternatively,
that the left-hand limit of f at c is L) is denoted by

lim
x→c−

f(x) = L,

andmeans that for any ε > 0, there exists δ > 0 such that
for all x ∈ (a, c), if |x− c| < δ, then |f(x)− L| < ε.

Right-Hand Limit
Let f be a function defined on (c, b) for some b > c and let
L be a real number. The statement that the limit of f(x),
as x approaches c from the right, is L, (alternatively, that
the right-hand limit of f at c is L) is denoted by

lim
x→c+

f(x) = L,

andmeans that for any ε > 0, there exists δ > 0 such that
for all x ∈ (c, b), if |x− c| < δ, then |f(x)− L| < ε.

youtu.be/watch?v=VU8lUocFAfE

Figure 1.4.2Video presentation of De-
finition 1.4.1

Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of x “to the left of c,” i.e., where x < c. The admittedly imperfect notation
x → c− is used to imply that we look at values of x to the left of c. The notation
has nothing to do with positive or negative values of either x or c. It’s more like
you are adding very small negative values to c to get values for x. A similar state-
ment holds for evaluating right-hand limits; there we consider only values of x
to the right of c, i.e., x > c. We can use the theorems from previous sections to
help us evaluate these limits; we just restrict our view to one side of c.

https://www.youtube.com/watch?v=VU8lUocFAfE
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We practice evaluating left- and right-hand limits through a series of exam-
ples.

Example 1.4.3 Evaluating one-sided limits.

Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2
, as shown in Figure 1.4.4. Find each of

the following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0+

f(x)

(f) f(0)

(g) lim
x→2−

f(x)

(h) f(2)0.5 1 1.5 2

0.5

1

1.5

2

x

y

Figure 1.4.4 A graph of f in Exam-
ple 1.4.3

Solution. For these problems, the visual aid of the graph is likely more
effective in evaluating the limits than using f itself. Therefore we will
refer often to the graph.

(a) As x goes to 1 from the left, we see that f(x) is approaching the
value of 1.

Therefore lim
x→1−

f(x) = 1.

(b) As x goes to 1 from the right, we see that f(x) is approaching the
value of 2. Recall that it does not matter that there is an “open cir-
cle” there; we are evaluating a limit, not the value of the function.

Therefore lim
x→1+

f(x) = 2.

(c) The limit of f as x approaches 1 does not exist, as discussed in
Section 1.1. The function does not approach one particular value,
but two different values from the left and the right.

(d) Using the definition, and by looking at the graph, we see that
f(1) = 1.

(e) As x goes to 0 from the right, we see that f(x) is approaching
0. Therefore limx→0+ f(x) = 0. Note we cannot consider a left-
hand limit at 0 as f is not defined for values of x < 0.

(f) Using the definition and the graph, f(0) = 0.

(g) As x goes to 2 from the left, we see that f(x) is approaching the
value of 1.

Therefore lim
x→2−

f(x) = 1.

(h) The graph and the definition of the function show that f(2) is not
defined.

Video solution

youtu.be/watch?v=NdBPwaP4Xkk Note how the left- and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left- and right-hand limits are equal.

https://www.youtube.com/watch?v=NdBPwaP4Xkk
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Theorem 1.4.5 Limits and One-Sided Limits.

Let f be a function defined on an open interval I containing c, except
possibly at c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.3–1.4.10 is that the value of the func-
tionmay/may not be equal to the value(s) of its left/right-hand limits, evenwhen
these limits agree.

Example 1.4.6 Evaluating limits of a piecewise-defined function.

Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2
. Evaluate the following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0+

f(x)

(f) f(0)

(g) lim
x→2−

f(x)

(h) f(2)

Solution. In this example, we evaluate each expression using just the
definition of f , without using a graph as we did in the previous example.

(a) As x approaches 1 from the left, we consider a limit where all x-
values are less than 1. This means we use the “2 − x” piece of
the piecewise-defined function f . As the x-values near 1, 2 − x
approaches 1; that is, f(x) approaches 1.

Therefore lim
x→1−

f(x) = 1.

A concisemathematical presentationof the above argument could
be written as follows:

lim
x→1−

f(x) = lim
x→1−

(2− x) (f(x) = x− 2 for 0 < x < 1)

= 2− 1 = 1 ( properties of limits )

(b) As x approaches 1 from the right, we consider a limit where all x-
values are greater than 1. This means we use the “(x−2)2” piece
of f . As the x-values near 1, (x − 2)2 approaches 1; that is, we
see that again f(x) approaches 1.

Therefore lim
x→1+

f(x) = 1.
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Once again, we can present our work computationally as follows:

lim
x→1+

f(x) = lim
x→1+

(x− 2)2 (f(x) = (x− 2)2 for 1 < x < 2)

= (1− 2)2 = 1 ( properties of limits )

(c) The limit of f as x approaches 1 exists and is 1, as f approaches 1
from both the right and left.

Therefore lim
x→1

f(x) = 1.

(d) Neither piece of f is defined for the x-value of 1; in other words,
1 is not in the domain of f . Therefore f(1) is not defined.

(e) As x approaches 0 from the right, we consider a limit where all
x-values are greater than 0. This means we use the 2 − x piece
of f . As the x-values near 0, 2 − x approaches 2; that is, f(x)
approaches 2.

So lim
x→0+

f(x) = 2.

(f) f(0) is not defined as 0 is not in the domain of f .

(g) As x approaches 2 from the left, we consider a limit where all x-
values are less than 2. This means we use the (x− 2)2 piece of f .
As the x-values near 2, (x− 2)2 nears 0; that is, f(x) approaches
0.

So lim
x→2−

f(x) = 0.

(h) f(2) is not defined as 2 is not in the domain of f .

We can confirm our analytic result by consulting the graph of f shown
in Figure 1.4.7. Note the open circles on the graph at x = 0, 1 and 2,
where f is not defined.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

Figure 1.4.7 A graph of f from Exam-
ple 1.4.6

Video solution

youtu.be/watch?v=vE_7FG2h_LU

Example 1.4.8 Evaluating limits of a piecewise-defined function.

Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1
as shown in Figure 1.4.9.

Evaluate the following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

0.5 1 1.5 2

0.5

1

x

y

Figure 1.4.9 Graphing f in Exam-
ple 1.4.8

Solution. It is clear by looking at the graph that both the left- and right-
hand limits of f , as x approaches 1, are 0. Thus it is also clear that the
limit is 0; i.e., limx→1 f(x) = 0. It is also clearly stated that f(1) = 1.

Video solution

youtu.be/watch?v=HVFazve-Qxc

https://www.youtube.com/watch?v=vE_7FG2h_LU
https://www.youtube.com/watch?v=HVFazve-Qxc
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Example 1.4.10 Evaluating limits of a piecewise-defined function.

Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2
as shown in Figure 1.4.11. Evaluate the

following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
0.5 1 1.5 2
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y

Figure 1.4.11 Graphing f in Exam-
ple 1.4.10

Solution. It is clear from the definition of the function and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

Video solution

youtu.be/watch?v=Nn6JoJRK7nk

In Examples 1.4.3–1.4.10 we were asked to find both limx→1 f(x) and f(1).
Consider the following table:

lim
x→1

f(x) f(1)

Example 1.4.3 does not exist 1

Example 1.4.6 1 not defined
Example 1.4.8 0 1

Example 1.4.10 1 1

Only in Example 1.4.10 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in Section 1.5 entitled “Continuity.” In short, a continuous
function is one inwhichwhen a function approaches a value asx → c (i.e., when
limx→c f(x) = L), it actually attains that value at c. Such functions behave
nicely as they are very predictable.

https://www.youtube.com/watch?v=Nn6JoJRK7nk
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1.4.1 Exercises

Terms and Concepts

1. What are the three ways in which a limit may fail to exist?
2. (□ True □ False) If lim

x→1−
f(x) = 5, then lim

x→1
f(x) = 5.

3. (□ True □ False) If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5.

4. (□ True □ False) If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5.

Problems

Exercise Group. Evaluate each expression using the given graph of f .
5.

−1 1 2 3 4 5 6

2

4

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)

6.

−1 1 2 3 4 5 6

2

4

x

y

(a) lim
x→4−

f(x)

(b) lim
x→4+

f(x)

(c) lim
x→4

f(x)

(d) f(4)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)
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7.

−1 1 2 3 4

2

4

6

8

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→3−

f(x)

(f) lim
x→0+

f(x)

8.

−1 1 2 3

2

4

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

9.

−1 1 2 3 4 5 6

−1

1

2

3

x

y

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

10.

−4 −2 2 4 6

−6

−4

−2

2

4

x

y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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11.

−4 −2 2 4

−4

−2

2

4

x

y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)

12.

−4 −2 2 4

−4

−2

2

4

x

y

Let a be an integer with−3 ≤ a ≤ 3.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

Exercise Group. Evaluate the given limits of the piecewise defined function.

13. f(x) =

{
x− 1 if x ≤ 3

x2 − 3 if x > 3

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) f(3)

14. f(x) =

{
2x− 2x2 − 5 if x < 3

sin(x− 3) if x ≥ 3

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) f(3)
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15. f(x) =


x2 + 3x− 1 if x < 2

x3 + 1 if 2 ≤ x ≤ 5

x2 + 4x+ 81 if x > 5

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

(e) lim
x→5−

f(x)

(f) lim
x→5+

f(x)

(g) lim
x→5

f(x)

(h) f(5)

16. f(x) =

{
cos(x) x < π

sin(x) x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =

{
1− cos2(x) x < a

sin2(x) x ≥ a
where a is a real

number.

(a) lim
x→−

f(x)

(b) lim
x→+

f(x)

(c) lim
x→

f(x)

(d) f()

18. f(x) =


x+ 1 if x < −1

x− 1 if x = −1

x+ 2 if x > −1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

19. f(x) =


x2 − 2x− 7 if x < −1

x− 1 if x = −1

−
(
x2 + x+ 4

)
if x > −1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

20. f(x) =

{
a(x− b)2 + c x < b

a(x− b) + c x ≥ b

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =

{
|x|
x x ̸= 0

0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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1.5 Continuity

As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to

1, f(x) is close to 3. We have seen, though, that this is not necessarily a good
indicator of what f(1) actually is. This can be problematic; functions can tend
to one value but attain another. This section focuses on functions that do not
exhibit such behavior.

Definition 1.5.1 Continuous Function.

Let f be a function whose domain contains an open interval I .

1. f is continuous at a point c in I if lim
x→c

f(x) = f(c).

2. f is continuous on the open interval I if f is continuous at c for
all values of c in I . If f is continuous on (−∞,∞), we say f is
continuous everywhere (or everywhere continuous).

Note that in Definition 1.5.1, a function f can only be continuous at a point
c if c is in the domain of f .

youtu.be/watch?v=bKi6ReLchfw

Figure 1.5.2Video presentation of De-
finition 1.5.1

A useful way to establish whether or not a function f is continuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 1.5.3 Finding intervals of continuity.

Let f be defined as shown in Figure 1.5.4. Give the interval(s) on which
f is continuous.

1 2 3

0.5

1

1.5

x

y

Figure 1.5.4 A graph of f in Exam-
ple 1.5.3

Solution. We proceed by examining the three criteria for continuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We
know immediately that f cannot be continuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of
course, for c = 1.

We conclude that f is continuous at every point of the interval (0, 3)
except at x = 1. Therefore f is continuous on (0, 1) and (1, 3).

Our definition of continuity (cur-
rently) only applies to open in-
tervals. After Definition 1.5.7,
we’ll be able to say that f is con-
tinuous on [0, 1) and (1, 3].

Example 1.5.5 Finding intervals of continuity.

The floor function, f(x) = ⌊x⌋, returns the largest integer smaller than,
or equal to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of
f in Figure 1.5.6 demonstrates why this is often called a “step function.”
Give the intervals on which f is continuous.−2 −1 1 2 3

−2

−1

1

2

x

y

Figure 1.5.6 A graph of the step func-
tion in Example 1.5.5

Solution. We examine the three criteria for continuity.

1. The limits lim
x→c

f(x) do not exist at the jumps from one “step” to
the next, which occur at all integer values of c. Therefore the limits

https://www.youtube.com/watch?v=bKi6ReLchfw
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exist for all c except when c is an integer.

2. The function is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of c where the limit exist,
since each step consists of just a line.

We conclude that f is continuous everywhere except at integer values
of c. So the intervals on which f is continuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

We could also say that f is continuous on all intervals of the form (n, n+
1) where n is an integer.

Our definition of continuity on an interval specifies the interval is an open inter-
val. We can extend the definition of continuity to closed intervals of the form
[a, b] by considering the appropriate one-sided limits at the endpoints.

In this text, when we use the
term “closed interval”, we mean
an interval of the form [a, b], where
a and b are real numbers. One
may be surprised to learn that
intervals of the form [a,∞), (−∞, b]
and even (−∞,∞) are all also
considered closed in advanced cal-
culus. While themathematics sup-
portedby this definitionof closed
is fascinating and important, it
is beyond the scope of our pur-
poses here.

Some results, such as The Ex-
treme Value Theorem, are valid
for intervals of the form [a, b], but
not for intervals such as [a,∞).
The latter interval is closed, but
not bounded.

A set of real numbers is bounded
if there is a number that is greater
than every element in the set (an
upper bound), and anumber that
is less than every element in the
set (a lower bound). When we
do calculus in higher dimensions,
we can no longer talk about in-
tervals, butwe can still talk about
sets being closed and bounded.
See Section 14.5 for details.

Definition 1.5.7 Continuity on Closed Intervals.

Let f be defined on the closed interval [a, b] for some real numbers a <
b.
We say f is continuous on the closed interval [a, b] if:

1. f is continuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about continuity on half-
open intervals such as [a, b) or (a, b] if necessary.

If the domain of f includes values less than a, we say that Item 2 in Defini-
tion 1.5.7 indicates that f is continuous from the right at a. But if f is undefined
for x < a, we can say that f is continuous at a without ambiguity.

Similarly, Item 3 indcates that f is continuous from the left at b, and if f is
not defined for x > b, we can simply say that f is continuous at b.

For example, it makes sense to say that the function f(x) =
√
1− x2 is

continuous at 1 and−1, while the floor function in Example 1.5.5 is continuous
from the left at 1 and−1, but is not continuous at these points.

Using this new definition, we can adjust our answer in Example 1.5.3 by stat-
ing that f is continuous on [0, 1) and (1, 3], as mentioned in that example. We
can also revisit Example 1.5.5 and state that the floor function is continuous on
the following half-open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

youtu.be/watch?v=8z07z3yeChY

Figure 1.5.8 Two continuity examples

This can tempt us to conclude that f is continuous everywhere; after all, if
f is continuous on [0, 1) and [1, 2), isn’t f also continuous on [0, 2)? Of course,
the answer is no, and the graph of the floor function immediately confirms this.

Continuous functions are important as they behave in a predictable fashion:
functions attain the value they approach. Because continuity is so important,
most of the functions you have likely seen in the past are continuous on their
domains. This is demonstrated in the following example where we examine the
intervals of continuity of a variety of common functions.

https://www.youtube.com/watch?v=8z07z3yeChY
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Example 1.5.9 Determining intervals on which a function is continu-
ous.

For each of the following functions, give the domain of the function and
the interval(s) on which it is continuous.

1. f(x) = 1/x

2. f(x) = sin(x)

3. f(x) =
√
x

4. f(x) =
√

1− x2

5. f(x) = |x|

Solution. We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0)∪ (0,∞). As it is a rational
function, we apply Theorem 1.3.4 to recognize that f is continu-
ous on all of its domain.

2. The domain of f(x) = sin(x) is all real numbers, or (−∞,∞). Ap-
plying Theorem 1.3.7 shows that sin(x) is continuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 1.3.7

shows that f(x) =
√
x is continuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theo-

rems 1.3.1 and 1.3.7 shows that f is continuous on all of its do-
main, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the ab-
solute value function as

f(x) =

{
−x x < 0

x x ≥ 0
.

Each “piece” of this piecewise defined function is continuous on all
of its domain, giving that f is continuous on (−∞, 0) and [0,∞).
We cannot assume this implies that f is continuous on (−∞,∞);
we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transitions from one “piece” of its definition to the other.
It is easy to verify that this is indeed true, hence we conclude that
f(x) = |x| is continuous everywhere.

Video solution

youtu.be/watch?v=by3ioPN6KRM

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 1.3.1 and 1.3.4 apply to continuity as well.
Further, now knowing the definition of continuity we can re-read Theorem 1.3.7
as giving a list of functions that are continuous on their domains. The following
theorem states how continuous functions can be combined to form other con-
tinuous functions, followed by a theorem which formally lists functions that we
know are continuous on their domains.

Theorem 1.5.10 Properties of Continuous Functions.

Let f and g be continuous functions on an interval I , let c be a real num-
ber and let n be a positive integer. The following functions are continu-

https://www.youtube.com/watch?v=by3ioPN6KRM
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ous on I .

Sums/Difference f ± g

Constant Multiple c · f
Product f · g
Quotient f/g (as long as g ̸= 0 on I)
Power fn

Root n
√
f (If n is even then require f(x) ≥ 0 on I .)

Compositions Adjust the definitions of f and g to: Let f be
continuous on I , where the range of f on I is
J , and let g be continuous on J . Then g ◦ f ,
i.e., g(f(x)), is continuous on I .

youtu.be/watch?v=GTiNiZT5ukg

Figure 1.5.11 Video presentation of
Theorem 1.5.10

We have defined what it means
for a function to be continuous
on an interval, butmany functions,
such as f(x) = tan(x), have do-
mains that are the unionofmore
than one interval.

If the domain of a function is
a union of intervals, saying that
a function is continuous on its do-
main means that the function is
continuous on each of those in-
tervals. But be careful to note
that the converse is not true. As
we learned in Example 1.5.5, a
function can be continuous on a
collectionof intervals, but not on
their union.

Theorem 1.5.12 Continuous Functions.

Let n be a positive integer. The following functions are continuous on
their domains.

1. f(x) = sin(x)

2. f(x) = tan(x)

3. f(x) = sec(x)

4. f(x) = ln(x)

5. f(x) = ax (a > 0)

6. f(x) = cos(x)

7. f(x) = cot(x)

8. f(x) = csc(x)

9. f(x) = n
√
x, where n is a

positive integer.

As the video example in Figure 1.5.13 illustrates, the above theorems allow
us to quickly construct new continuous functions from old ones.

youtu.be/watch?v=ewUiuE9bQlo

Figure 1.5.13 Continuity of composi-
tions

We apply these theorems in the following Example.

Example 1.5.14 Determining intervals on which a function is continu-
ous.

State the interval(s) on which each of the following functions is continu-
ous.

1. f(x) =
√
x− 1 +

√
5− x

2. f(x) = x sin(x)

3. f(x) = tan(x)

4. f(x) =
√
ln(x)

Solution. We examine each in turn, applying Theorems 1.5.10 and
1.5.12 as appropriate.

1 2 3 4 5

1

2

3

x

y

Figure 1.5.15 A graph of f(x) =√
x− 1 +

√
5− x

1. The square root terms are continuous on the intervals [1,∞) and
(−∞, 5], respectively. As f is continuous only where each term
is continuous, f is continuous on [1, 5], the intersection of these
two intervals. A graph of f is given in Figure 1.5.15.

2. The functions y = x and y = sin(x) are each continuous every-
where, hence their product is, too.

https://www.youtube.com/watch?v=GTiNiZT5ukg
https://www.youtube.com/watch?v=ewUiuE9bQlo
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3. Theorem 1.5.12 states that f(x) = tan(x) is continuous on its
domain. Its domain includes all real numbers except oddmultiples
of π/2. Thus the intervals on which f(x) = tan(x) is continuous
are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π

2

)
, . . . , .

4. Here, f(x) is the composition g(h(x)), where g(x) =
√
x and

h(x) = ln(x). The domain of g is [0,∞), while the range of h
is (−∞,∞). If we restrict the domain to [1,∞), then the output
from h(x) = ln(x) is restricted to [0,∞), on which g(x) =

√
x is

defined. Thus the domain of f(x) =
√
ln(x) is [1,∞).

Video solution

youtu.be/watch?v=6Lm-0eBi-5E

Classification of discontinuities. We now know what it means for a function
to be continuous, so of course we can easily say what it means for a function
to be discontinuous; namely, not continuous. However, to better understand
continuity, it is worth our time to discuss the different ways in which a function
can fail to be discontinuous. By definition, a function f is continuous at a point
a in its domain if lim

x→a
f(x) = f(a). If this equality fails to hold, then f is not

continuous. We note, however, that there are a number of different things that
can go wrong with this equality.

youtu.be/watch?v=TevrD3qci0Q

Figure 1.5.16 Discussing classification
of discontinuities

1. lim
x→a

f(x) = L exists, but L ̸= f(a), or f(a) is undefined. Such a discon-
tinuity is called a removable discontinuity .
A removable discontinuity can be pictured as a “hole” in the graph of f .
The term “removable” refers to the fact that by simply redefining f(a) to
equalL (that is, changing the value of f at a single point), we can create a
new function that is continuous at x = a, and agrees with f at all x ̸= a.

2. lim
x→a+

f(x) = L and lim
x→a−

f(x) = M exist, but L ̸= M . In this case

the left and right hand limits both exist, but since they are not equal, the
limit of f as x → a does not exist. Such a discontinuity is called a jump
discontinuity.
The phrase “jump discontinuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value x = a.

3. The function f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and negative) as x approaches a. Such
a discontinuity is called an infinite discontinuity.
Infinite discontinuities are most easily understood in terms of infinite lim-
its, which are discussed in Section 1.6.

https://www.youtube.com/watch?v=6Lm-0eBi-5E
https://www.youtube.com/watch?v=TevrD3qci0Q
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(a) The graph of a func-
tion with a removable
discontinuity at x = 2
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(b) The graph of a func-
tion with a jump discon-
tinuity at x = 2
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(c) The graph of a func-
tion with an infinite dis-
continuity at x = 2

Figure 1.5.17 Illustrating three common types of discontinuity

Consequences of continuity. A common way of thinking of a continuous func-
tion is that “its graph can be sketched without lifting your pencil.” That is, its
graph forms a “continuous” curve, without holes, breaks or jumps. This pseudo-
definition glosses over some of the finer points of continuity. There are some
very strange continuous functions that one would be hard pressed to actually
sketch by hand.

However, this intuitive notion of continuity does help us understand another
important concept as follows. Suppose f is defined on [1, 2], and f(1) = −10
and f(2) = 5. If f is continuous on [1, 2] (i.e., its graph can be sketched as a con-
tinuous curve from (1,−10) to (2, 5)) then we know intuitively that somewhere
on the interval [1, 2] f must be equal to −9, and −8, and −7,−6, . . . , 0, 1/2,
etc. In short, f takes on all intermediate values between−10 and 5. It may take
on more values; f may actually equal 6 at some time, for instance, but we are
guaranteed all values between−10 and 5.

1 1.5 2 2.5

−15

−10

−5

5

10

x

y

Figure 1.5.18 Illustration of the Inter-
mediate Value Theorem: the output
3 is in between−10 and 5, and there-
fore any continuous function on [1, 2]
with f(1) = −10 and f(2) = 5 will
achieve the output 3 somewhere in
[1, 2]

While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.5.19 Intermediate Value Theorem.

Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there
is at least one value c in (a, b) such that f(c) = y.

youtu.be/watch?v=Fx7Qu9tZlN4

Figure 1.5.20 Video presentation of
Theorem 1.5.19

One important application of the Intermediate Value Theorem is root find-
ing. Given a function f , we are often interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
tions can be found through successive applications of this theorem. Suppose
through direct computation we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such
a value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b], with f(a) < 0 and f(b) > 0 and consider f(d).
There are three possibilities:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b]— we
have halved the size of our interval, hence are closer to a good approxima-
tion of the root.

https://www.youtube.com/watch?v=Fx7Qu9tZlN4
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3. f(d) > 0: Then we know there is a root of f on the interval [a, d] —
again,we have halved the size of our interval, hence are closer to a good
approximation of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.5.21 Using the Bisection Method.

Approximate the root of f(x) = x − cos(x), accurate to three places
after the decimal.
Solution. Consider the graph of f(x) = x − cos(x), shown in Fig-
ure 1.5.22. It is clear that the graph crosses the x-axis somewhere near
x = 0.8. To start the Bisection Method, pick an interval that contains
0.8. We choose [0.7, 0.9]. Note that all we care about are signs of f(x),
not their actual value, so this is all we display.

0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

x

y

Figure 1.5.22 Graphing a root of
f(x) = x− cos(x)

Iteration 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So
replace 0.9 with 0.8 and repeat.

Iteration 2: f(0.7) < 0, f(0.8) > 0, and at the midpoint,
0.75, we have f(0.75) > 0. So replace 0.8
with 0.75 and repeat. Note thatwedon’t need
to continue to check the endpoints, just the
midpoint. Thus we put the rest of the itera-
tions in Table 1.5.23.

Table 1.5.23 Iterations of the Bisection Method of Root Finding

Iteration # Interval Midpoint Sign

1 [0.7, 0.9] f(0.8) > 0

2 [0.7, 0.8] f(0.75) > 0

3 [0.7, 0.75] f(0.725) < 0

4 [0.725, 0.75] f(0.7375) < 0

5 [0.7375, 0.75] f(0.7438) >

6 [0.7375, 0.7438] f(0.7407) > 0

7 [0.7375, 0.7407] f(0.7391) > 0

8 [0.7375, 0.7391] f(0.7383) < 0

9 [0.7383, 0.7391] f(0.7387) < 0

10 [0.7387, 0.7391] f(0.7389) < 0

11 [0.7389, 0.7391] f(0.7390) < 0

12 [0.7390, 0.7391]

Notice that in the 12th iteration we have the endpoints of the interval
each starting with 0.739. Thus we have narrowed the zero down to an
accuracy of the first three places after the decimal. Using a computer,
we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where f
is 0. The Theorem 1.5.19 states that the actual zero is still within this
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interval. While we do not know its exact value, we know it starts with
0.739.
This type of exercise is rarely done by hand. Rather, it is simple to pro-
gram a computer to run such an algorithm and stop when the endpoints
differ by a preset small amount. One of the authors did write such a pro-
gram and found the zero of f to be 0.7390851332, accurate to 10 places
after the decimal. While it took a few minutes to write the program, it
took less than a thousandth of a second for the program to run the nec-
essary 35 iterations. In less than 8 hundredths of a second, the zero was
calculated to 100 decimal places (with less than 200 iterations).

Video solution

youtu.be/watch?v=BH6kUpIgcfg

It is a simplematter to extend theBisectionMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new function g where g(x) = f(x) − 1.
Then use the Bisection Method to solve g(x) = 0.

Similarly, given two functions f and g, we can use the Bisection Method
to solve f(x) = g(x). Once again, create a new function h where h(x) =
f(x)− g(x) and solve h(x) = 0.

In Section 4.1 another equation solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathematics, though, so we will wait before introducing it.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

https://www.youtube.com/watch?v=BH6kUpIgcfg
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1.5.1 Exercises

Terms and Concepts

1. In your own words, describe what it means for a function to be continuous.
2. In your own words, describe what the Intermediate Value Theorem states.
3. What is a “root” of a function?
4. Given functions f and g on an interval I , how can the Bisection Method be used to find a value cwhere f(c) =

g(c)?

5. (□ True □ False) If f is defined on an open interval containing c, and lim
x→c

f(x) exists, then f is continuous
at c.

6. (□ True □ False) If f is defined on an open interval containing c, and f is continuous at c, then lim
x→c

f(x)

exists.
7. (□ True □ False) If f is defined on an open interval containing c, and f is continuous at c, then

lim
x→c+

f(x) = f(c).

8. (□ True □ False) If f is continuous on [a, b], then lim
x→a−

f(x) = f(a).

9. (□ True □ False) If f is continuous on [0, 1) and [1, 2), then f is continuous on [0, 2).

10. (□ True □ False) The sum of continuous functions is also continuous.

Problems

Exercise Group. Use the graph to determine if the function is continuous at the given point.
11. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)

12. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)
13. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)

14. Is f in the graph below continuous at 0?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)
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15. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)

16. Is f in the graph below continuous at 4?

−4 −2 2 4

−4

−2

2

4

6

x

y

(□ Yes. □ No.)
17. Is f in the graph below continuous at−2, 0, and

2?

−4 −2 2 4

−4

−2

2

4

x

y

At−2: (□ Yes. □ No.)
At 0: (□ Yes. □ No.)
At 2: (□ Yes. □ No.)

18. Is f in the graph below continuous at 3π
2 ?

−π
2

π
2

π 3π
2

2π

1

2

x

y

(□ Yes. □ No.)

Exercise Group. Determine if f is continuous at the indicated values.

19. f(x) =

{
1 x = 0
sin(x)

x x ̸= 0

(a) Is f is continuous at 0?
(□ Yes. □ No.)

(b) Is f is continuous at π?
(□ Yes. □ No.)

20. f(x) =

{
x3 − x2 if x < 1

x− 2 if x ≥ 1

(a) Is f is continuous at 0?
(□ Yes. □ No.)

(b) Is f is continuous at 1?
(□ Yes. □ No.)
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21. f(x) =


x2 + 5x+ 4

x2 + 3x+ 2
if x ̸= −1

3 if x = −1

(a) Is f is continuous at−1?

(□ Yes. □ No.)

(b) Is f is continuous at 10?
(□ Yes. □ No.)

22. f(x) =


x2 − 64

x2 − 11x+ 24
if x ̸= 8

5 if x = 8

(a) Is f is continuous at 0?
(□ Yes. □ No.)

(b) Is f is continuous at 8?
(□ Yes. □ No.)

Exercise Group. Give the intervals on which the function is continuous.
23. f(x) = x2 − 6x+ 2 24. f(x) =

√
x2 − 4

25. f(x) =
√
4− x2 26. f(x) =

√
3− x+

√
x+ 3

27. f(t) =
√
4t2 − 12 28. g(t) = 1√

49−t2

29. g(t) = 1
8+5t2

30. f(x) = πx

31. g(s) = log2(s) 32. h(t) = cos(t)

33. f(k) =
√
3− ek 34. f(x) = sin

(
ex + x4

)
Exercise Group. Test your understanding of the Intermediate Value Theorem.

35. Let f be continuous on [1, 5] where f(1) = −2 and f(5) = −10. Does a value 1 < c < 5 exist such that
f(c) = −9? Why/why not?

36. Let g be continuous on [−3, 7] where g(0) = 0 and g(2) = 25. Does a value −3 < c < 7 exist such that
g(c) = 15? Why/why not?

37. Let f be continuous on [−1, 1] where f(−1) = −10 and f(1) = 10. Does a value −1 < c < 1 exist such
that f(c) = 11? Why/why not?

38. Let h be a function on [−1, 1] where h(−1) = −10 and h(1) = 10. Does a value −1 < c < 1 exist such
that h(c) = 0? Why/why not?

Exercise Group. Use the Bisection Method to approximate, accurate to two decimal places, the value of the root of
the given function in the given interval.

39. f(x) = x2 + 2x− 4 on the interval [1, 1.5]

40. f(x) = sin(x)− 1
2 on the interval [0.5, 0.55]

41. f(x) = ex − 2 on the interval [0.65, 0.7]

42. f(x) = cos(x)− sin(x) on the interval [0.7, 0.8]
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1.6 Limits Involving Infinity

In Definition 1.2.2 we stated that in the equation limx→c f(x) = L, both c and
L were numbers. In this section we relax that definition a bit by considering
situations when it makes sense to let c and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x2, as shown in Figure 1.6.1.
Note how, as x approaches 0, f(x) grows very, very large—in fact, it grows with-
out bound. It seems appropriate, and descriptive, to state that

lim
x→0

1

x2
= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could
represent this concept with notation such as

lim
x→∞

1

x2
= 0.
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Figure 1.6.1 Graphing f(x) = 1/x2

for values of x near 0

We explore both types of use of∞ in turn.

Definition 1.6.2 Limit of Infinity,∞.

Let I be an open interval containing c, and let f be a function defined
on I , except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

if given any N > 0, there exists δ > 0 such that for all x in I ,
where x ̸= c, if |x− c| < δ, then f(x) > N .

• The limit of f(x), as x approaches c, is negative infinity, denoted
by

lim
x→c

f(x) = −∞,

if given any N < 0, there exists δ > 0 such that for all x in I ,
where x ̸= c, if |x− c| < δ, then f(x) < N .

youtu.be/watch?v=UVhqWmKqHtw

Figure 1.6.3Video presentation of De-
finition 1.6.2

The first definition is similar to the ε-δ definition in Definition 1.2.2 from
Section 1.2. In that definition, given any (small) value ε, if we let x get close
enough to c (within δ units of c) then f(x) is guaranteed to be within ε of L.
Here, given any (large) valueN , if we let x get close enough to c (within δ units
of c), then f(x) will be at least as large as N . In other words, if we get close
enough to c, then we can make f(x) as large as we want.

It is important to note that by saying limx→c f(x) = ∞ we are implicitly
stating that the limit of f(x), as x approaches c, does not exist. A limit only
exists when f(x) approaches an actual numeric value. We use the concept of
limits that approach infinity because it is helpful and descriptive. It is one specific
way in which a limit can fail to exist.

We define one-sided limits that approach infinity in a similar way.

Definition 1.6.4 One-Sided Limits of Infinity.

• Let f be a function defined on (a, c) for some a < c. We say the
limit of f(x), as x approaches c from the left, is infinity, or, the

https://www.youtube.com/watch?v=UVhqWmKqHtw
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left-hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

if given anyN > 0, there exists δ > 0 such that for all a < x < c,
if |x− c| < δ, then f(x) > N .

• Let f be a function defined on (c, b) for some b > c. We say the
limit of f(x), as x approaches c from the right, is infinity, or, the
right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

if given anyN > 0, there exists δ > 0 such that for all c < x < b,
if |x− c| < δ, then f(x) > N .

• The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 1.6.2.

Example 1.6.5 Evaluating limits involving infinity.

Find lim
x→1

1
(x−1)2 as shown in Figure 1.6.6.
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Figure 1.6.6Observing infinite limit as
x → 1 in Example 1.6.5

Solution. In Example 1.1.18 of Section 1.1, by inspecting values of x
close to 1 we concluded that this limit does not exist. That is, it cannot
equal any real number. But the limit could be infinite. And in fact, we
see that the function does appear to be growing larger and larger, as
f(0.99) = 104, f(0.999) = 106, f(0.9999) = 108. A similar thing
happens on the other side of 1. From the graph and the numeric infor-
mation, we could state limx→1 1/(x − 1)2 = ∞. We can prove this by
using Definition 1.6.2
In general, let a “large” valueN be given. Let δ = 1/

√
N . If x is within

δ of 1, i.e., if |x− 1| < 1/
√
N , then:

|x− 1| < 1√
N

(x− 1)2 <
1

N
1

(x− 1)2
> N ,

which is what we wanted to show. So we may say limx→1 1/(x− 1)2 =
∞.

Video solution

youtu.be/watch?v=S3dUAUQiKFQ

Example 1.6.7 Evaluating limits involving infinity.

Find lim
x→0

1
x , as shown in Figure 1.6.8.
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Figure 1.6.8 Evaluating lim
x→0

1
x

Solution. It is easy to see that the function grows without bound near 0,
but it does so in different ways on different sides of 0. Since its behavior
is not consistent, we cannot say that limx→0

1
x = ∞. Instead, wewill say

limx→0
1
x does not exist. However, we can make a statement about one-

sided limits. We can state that limx→0+
1
x = ∞ and limx→0−

1
x = −∞.

Video solution

youtu.be/watch?v=JP1k74FZE1I

https://www.youtube.com/watch?v=S3dUAUQiKFQ
https://www.youtube.com/watch?v=JP1k74FZE1I
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1.6.1 Vertical asymptotes
The graphs in the two previous examples demonstrate that if a function f has a
limit (or, left- or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a vertical line near x = c. This observation leads to a definition.

Definition 1.6.9 Vertical Asymptote.

Let I be an interval that either contains c or has c as an endpoint, and
let f be a function defined on I , except possibly at c.
If the limit of f(x) as x approaches c from either the left or right (or
both) is∞ or−∞, then the line x = c is a vertical asymptote of f . youtu.be/watch?v=qIrLL7jbEZw

Figure 1.6.10 Video presentation of
Definition 1.6.9Example 1.6.11 Finding vertical asymptotes.

Find the vertical asymptotes of f(x) = 3x
x2−4 .

Solution. Vertical asymptotes occur where the function grows without
bound; this can occur at values of cwhere the denominator is 0. When x
is near c, the denominator is small, which in turn can make the function
take on large values. In the case of the given function, the denominator
is 0 at x = ±2. Substituting in values of x close to 2 and −2 seems to
indicate that the function tends toward∞ or −∞ at those points. We
can graphically confirm this by looking at Figure 1.6.12. Thus the vertical
asymptotes are at x = ±2.

−6 −4 −2 2 4 6

−10

10

x

y

Figure 1.6.12 Graphing f(x) = 3x
x2−4

Video solution

youtu.be/watch?v=h-1BCF_lsHI
When a rational function has a vertical asymptote at x = c, we can conclude

that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a vertical asymptote there. For
instance, f(x) = (x2 − 1)/(x− 1) does not have a vertical asymptote at x = 1,
as shown in Figure 1.6.13. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Canceling the common term, we get that f(x) = x+ 1 for x ̸= 1. So there
is clearly no asymptote; rather, a hole exists in the graph at x = 1.
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Figure 1.6.13 Graphically showing
that f(x) = x2−1

x−1 does not have an
asymptote at x = 1

The above example may seem a little contrived. Another example demon-
strating this important concept is f(x) = (sin(x))/x. We have considered this
function several times in the previous sections. We found that limx→0

sin(x)
x = 1;

i.e., there is no vertical asymptote. No simple algebraic cancellation makes this
fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

1.6.2 Indeterminate Forms

We have seen how the limits limx→0
sin(x)

x and limx→1
x2−1
x−1 each return the

indeterminate form 0/0 when we blindly plug in x = 0 and x = 1, respectively.
However, 0/0 is not a valid arithmetical expression. It gives no indication that
the respective limits are 1 and 2.

https://www.youtube.com/watch?v=qIrLL7jbEZw
https://www.youtube.com/watch?v=h-1BCF_lsHI
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With a little cleverness, one can come up with 0/0 expressions which have
a limit of∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0while the denominator is also shrinking to 0. The
respective rates at which they do this are very important and determine the ac-
tual value of the limit.

An indeterminate form indicates that one needs to do more work in order
to compute the limit. That work may be algebraic (such as factoring and cancel-
ing), it may involve using trigonometric identities or logarithm rules, or it may
require a tool such as the Squeeze Theorem. In Section 4.6 we will learn yet
another technique called L’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of directly sub-
stituting c into the expression, and each, in and of itself, has no meaning. The
expression∞−∞ does not really mean “subtract infinity from infinity.” Rather,
it means “One quantity is subtracted from the other, but both are growing with-
out bound.” What is the result? It is possible to get every value between −∞
and∞.

Note that 1/0 and∞/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be∞,−∞, or simply not exist if the
left- and right-hand limits do not match.

1.6.3 Limits at Infinity and Horizontal Asymptotes
At the beginning of this section we briefly considered what happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the function
to the “far right” of the graph. Wemake this notionmore explicit in the following
definition.

youtu.be/watch?v=7PwKJHgic7U

Figure 1.6.14 Video presentation of
Definition 1.6.15

Definition 1.6.15 Limits at Infinity and Horizontal Asymptotes.

Let L be a real number.

1. Let f be a function defined on (a,∞) for some number a. The
limit of f at infinity is L, denoted limx→∞ f(x) = L, if for every
ϵ > 0 there existsM > a such that if x > M , then |f(x)− L| <
ϵ.

2. Let f be a function defined on (−∞, b) for some number b. The
limit of f at negative infinity is L, denoted limx→−∞ f(x) = L,
if for every ϵ > 0 there existsM < b such that if x < M , then
|f(x)− L| < ϵ.

3. If limx→∞ f(x) = L or limx→−∞ f(x) = L, we say the line y =
L is a horizontal asymptote of f .

We can also define limits such as limx→∞ f(x) = ∞ by combining this defi-
nition with Definition 1.6.2.

https://www.youtube.com/watch?v=7PwKJHgic7U
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Example 1.6.16 Approximating horizontal asymptotes.

Approximate the horizontal asymptote(s) of f(x) = x2

x2+4 .
Solution. We will approximate the horizontal asymptotes by approxi-
mating the limits limx→−∞

x2

x2+4 and limx→∞
x2

x2+4 . (A rational function
can have at most one horizontal asymptote. So we could get away with
only taking x → ∞).
Figure 1.6.17(a) shows a sketch of f , and the table in Figure 1.6.17(b)
gives values of f(x) for large magnitude values of x. It seems reason-
able to conclude from both of these sources that f has a horizontal as-
ymptote at y = 1.

−20 −10 10 20
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0.4

0.6

0.8
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x

y

(a)

x f(x)

10 0.9615

100 0.9996

10000 0.999996

−10 0.9615

−100 0.9996

−10000 0.999996

(b)

Figure 1.6.17 Using a graph and a table to approximate a horizontal as-
ymptote in Example 1.6.16
Later, we will show how to determine this analytically.

The video in Figure 1.6.18 showshow toprove the result fromExample 1.6.16
using the limit definition.

youtu.be/watch?v=kYmfeq-qKiI

Figure 1.6.18 Using an ε-δ proof with
Definition 1.6.15 in Example 1.6.16

Horizontal asymptotes can take on a variety of forms. Figure 1.6.19(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.6.19(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymp-

totes; one at y = 1 and the other at y = −1.
Figure 1.6.19(c) shows that f(x) = sin(x)/x has even more interesting be-

havior than at just x = 0; as x approaches ±∞, f(x) approaches 0, but oscil-
lates as it does this.
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Figure 1.6.19 Considering different types of horizontal asymptotes
We can analytically evaluate limits at infinity for rational functions once we

understand limx→∞
1
x . As x gets larger and larger, 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε.
Thus we have limx→∞ 1/x = 0.

https://www.youtube.com/watch?v=kYmfeq-qKiI
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It is now not much of a jump to conclude the following:

lim
x→∞

1

xn
= 0 lim

x→−∞

1

xn
= 0.

youtu.be/watch?v=v5SrtUsdMeU

Figure 1.6.20 Basic examples involv-
ing limits at infinity

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1

4x3 − 2x2 + 9
.

A good way of approaching this is to divide through the numerator and de-
nominator by x3 (hence multiplying by 1), which is the largest power of x to
appear in the denominator. Doing this, we get

lim
x→∞

x3 + 2x+ 1

4x3 − 2x2 + 9
= lim

x→∞

1/x3

1/x3
· x3 + 2x+ 1

4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1 + 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well
as the fact about limits of 1/xn, we see that the limit becomes

1 + 0 + 0

4− 0 + 0
=

1

4
.

This procedure works for any rational function. In fact, it gives us the follow-
ing theorem.

Theorem 1.6.21 Limits of Rational Functions at Infinity.

Let f(x) be a rational function of the following form:

f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0
,

wherem,n are positive integers and where any of the coefficients may
be 0 except for an and bm. Then:

1. If n = m, then

lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm
.

2. If n < m, then

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then limx→∞ f(x) and limx→−∞ f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situation like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave
us with the limit an/bm. If n < m, then after dividing through by xm, all the
terms in the numerator will approach 0 in the limit, leaving us with 0/bm or 0.

https://www.youtube.com/watch?v=v5SrtUsdMeU
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If n > m, and we try dividing through by xm, we end up with the denominator
tending to bm while the numerator tends to∞.

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to anx

n, and likewise all the terms in the denominator are small
compared to bmxm. If n = m, looking only at these two important terms, we
have (anxn)/(bmxm). This reduces to an/bm. If n < m, the function behaves
like an/(bmxm−n), which tends toward 0. If n > m, the function behaves like
anx

n−m/bm, which will tend to either∞ or−∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

Example 1.6.22 Finding a limit of a rational function.

Confirm analytically that y = 1 is the horizontal asymptote of f(x) =
x2

x2+4 , as approximated in Example 1.6.16.
Solution. Before using Theorem 1.6.21, let’s use the technique of evalu-
ating limits at infinity of rational functions that led to that theorem. The
largest power of x in f is 2, so divide the numerator and denominator
of f by x2, then take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1

1 + 4/x2

=
1

1 + 0

= 1.

We can also use Theorem 1.6.21 directly; in this case n = m so the limit
is the ratio of the leading coefficients of the numerator and denominator,
i.e., 1/1 = 1.

Video solution

youtu.be/watch?v=cmZ39j1YI-o

Example 1.6.23 Finding limits of rational functions.

Use Theorem 1.6.21 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1

x3 + 1

2. lim
x→∞

x2 + 2x− 1

1− x− 3x2

3. lim
x→∞

x2 − 1

3− x

Solution.

1. The highest power of x is in the denominator. Therefore, the limit
is 0; see Figure 1.6.24(a).

2. The highest power of x is x2, which occurs in both the numerator
and denominator. The limit is therefore the ratio of the coeffi-
cients of x2, which is−1/3. See Figure 1.6.24(b).

3. The highest power of x is in the numerator so the limit will be∞
or−∞. To see which, consider only the dominant terms from the
numerator and denominator, which are x2 and −x. The expres-
sion in the limit will behave like x2/(−x) = −x for large values of
x. Therefore, the limit is−∞. See Figure 1.6.24(c).

https://www.youtube.com/watch?v=cmZ39j1YI-o
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Figure 1.6.24 Visualizing the functions in Example 1.6.23

With care, we can quickly evaluate limits at infinity for a large number of
functions by considering the long run behavior using “dominant terms” of f(x).
For instance, consider again limx→±∞

x√
x2+1

, graphed in Figure 1.6.19(b). The

dominant terms are x in the numerator and
√
x2 in the denominator. When x

is very large, x2 + 1 ≈ x2. Thus√
x2 + 1 ≈

√
x2 = |x| x√

x2 + 1
≈ x

|x|
.

This expression is 1 when x is positive and −1 when x is negative. Hence
we get asymptotes of y = 1 and y = −1, respectively. We will show this more
formally in the next example.

Example 1.6.25 Finding a limit using dominant terms.

Confirm analytically that y = 1 and y = −1 are the horizontal asymp-
tote of limx→±∞

x√
x2+1

, as graphed in Figure 1.6.19(b).

Solution. The dominating term of f in the denominator is
√
x2 = |x|

so divide the numerator and denominator of f by
√
x2, then take limits.

lim
x→∞

x√
x2 + 1

= lim
x→∞

x√
x2 + 1

·
1√
x2

1√
x2

= lim
x→∞

x
|x|√
x2+1
x2

= lim
x→∞

1√
1 + 1

x2

for x > 0

=
1√
1 + 0

= 1.

As x → −∞, the only thing that changes is the value of x
|x| . For x < 0,

we have x
|x| = −1, making limx→−∞

x√
x2+1

= −1. Therefore, the
horizontal asymptotes are y = 1 and y = −1.

The video in Figure 1.6.26 provides another example similar to Example 1.6.25.youtu.be/watch?v=vD1-zrRZQTI

Figure 1.6.26 Limits at infinity with a
radical function

https://www.youtube.com/watch?v=vD1-zrRZQTI
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1.6.4 Exercises

Terms and Concepts

1. (□ True □ False) If lim
x→5

f(x) = ∞, then we are implicitly stating that the limit exists.

2. (□ True □ False) If lim
x→5

f(x) = 5, then we are implicitly stating that the limit exists.

3. (□ True □ False) If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞.

4. (□ True □ False) If lim
x→5

f(x) = ∞, then f has a vertical asymptote at x = 5.

5. (□ True □ False) ∞/0 is not an indeterminate form.

6. List five indeterminate forms.
7. Construct a function with a vertical asymptote at x = 5 and a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is or is not continuous at x = 7.

Problems

Exercise Group. Evaluate the given limits using the graph of the function.
9. f(x) = 1

(x+2)5
has the graph:

−4 −3 −2 −1 1

−40

−20

20

40

x

y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

10. f(x) = 1
(x−1)(x−2)2

has the graph:

−1 1 2 3

−40

−20

20

40

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) lim
x→2−

f(x)

(e) lim
x→2+

f(x)

(f) lim
x→2

f(x)
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11. f(x) = 3
e−x+1 has the graph:

−10 −5 5 10

−1

1

2

3

4

x

y

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

12. f(x) = x3 sin(4πx) has the graph:

−10 −5 5 10

−1,000

−500

500

1,000

x

y

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

13. f(x) = sin(4x) has the graph:

−10 −5 5 10

−1

−0.5

0.5

1

x

y

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

14. f(x) = 2.4x − 9 has the graph:

−10 −5 5 10

−20

−10

10

20

x

y

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

Exercise Group. Numerically approximate the limits.

15. f(x) = x2−x−20
x2−3x−40

(a) lim
x→8−

f(x)

(b) lim
x→8+

f(x)

(c) lim
x→8

f(x)

16. f(x) = x2−4x−5
x3+26x2+225x+648

(a) lim
x→−9−

f(x)

(b) lim
x→−9+

f(x)

(c) lim
x→−9

f(x)
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17. f(x) = x2+13x+40
x3+7x2−24x−180

(a) lim
x→−6−

f(x)

(b) lim
x→−6+

f(x)

(c) lim
x→−6

f(x)

18. f(x) = x2−x−20
x2+3x−4

(a) lim
x→−4−

f(x)

(b) lim
x→−4+

f(x)

(c) lim
x→−4

f(x)

Exercise Group. Identify the horizontal and vertical asymptotes, if any, of the given function.

19. f(x) = 2x2+x−15
x2−7x−18 20. f(x) = 5x2+x−4

−2x2−20x−18

21. f(x) = 4x2−12x+8
6x3−36x2+48x 22. f(x) = 2x2−12x+16

−6x−18

23. f(x) = x2−10x+24
3x−18 24. f(x) = 4x2−44x+96

−x2−4x−8

Exercise Group. Evaluate the given limit.

25. lim
x→∞

x3−4x2−x+2
3x−3 26. lim

x→∞
x3+9x2+7x−6

3x+8

27. lim
x→∞

x3+3x2−4x+9
3x2−3 28. lim

x→∞
x3−5x2+5x+3

3x2+8
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Chapter Summary. In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed anot-so-easymethodof proving the valueof a limit (ε-δ proofs),

• explored when limits do not exist,

• defined continuity and explored properties of continuous functions, and

• considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to be
no exception. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quantity by a smaller and smaller number and see
what value the quotient approaches. In other words, we will want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.



Chapter 2

Derivatives

Chapter 1 introduced the most fundamental of calculus topics: the limit. This
chapter introduces the second most fundamental of calculus topics: the deriva-
tive. Limits describewhere a function is going; derivatives describe how fast the
function is going.

2.1 Instantaneous Rates of Change: The Derivative

2.1.1 Introduction

youtu.be/watch?v=jRW9d25E_ls

Figure 2.1.1 Video introduction to
Section 2.1

A common amusement park ride lifts riders to a height then allows them
to freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, t seconds after freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground when f(t) = 0 so at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose

the designers of the ride decide to begin slowing the riders’ fall after 2 seconds
(corresponding to a height of f(2) = 86 ft). How fast will the riders be traveling
at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, we do know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30mph.) We looked at this concept in Section 1.1 when we introduced the
difference quotient. We have

change in distance
change in time

=
“rise”
“run”

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some time period containing t = 2. If wemake the time in-
terval small, we will get a good approximation. (This fact is commonly used. For
instance, high speed cameras are used to track fast moving objects. Distances
are measured over a fixed number of frames to generate an accurate approxi-
mation of the velocity.)

63

https://www.youtube.com/watch?v=jRW9d25E_ls
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Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)

3− 2
=

6− 86

1
= −80ft/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)

2.5− 2
=

50− 86

0.5
= −72ft/s.

Units in Calculations. In the above
calculations, we left off the units
until the endof the problem. You
should always be sure that you
label your answer with the cor-
rect units. For example, if g(x)
gave you the cost (in $) of pro-
ducing x widgets, the units on
thedifferencequotientwould be
$/widget.

We can do this for smaller and smaller intervals of time. For instance, over
a time span of one tenth of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)

2.1− 2
=

79.44− 86

0.1
= −65.6ft/s.

Over a time span of one hundredth of a second, on [2, 2.01], the average
velocity is

f(2.01)− f(2)

2.01− 2
=

85.3584− 86

0.01
= −64.16ft/s.

Whatwe are really computing is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are computing

f(2 + h)− f(2)

h

where h is small.
We really want to use h = 0, but this, of course, returns the familiar “0/0”

indeterminate form. So we employ a limit, as we did in Section 1.1.
We can approximate the value of this limit numerically with small values of

h as seen in Figure 2.1.2. It looks as though the velocity is approaching−64 ft
s .

h Average Velocity ( fts )
1 −80

0.5 −72

0.1 −65.6

0.01 −64.16

0.001 −64.016

Figure 2.1.2 Approximating the in-
stantaneous velocity with average ve-
locities over a small time period h

Computing the limit directly gives

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

−16(2 + h)2 + 150− (−16(2)2 + 150)

h

= lim
h→0

−16(4 + 4h+ h2) + 150− 86

h

= lim
h→0

−64− 64h− 16h2 + 64

h

= lim
h→0

−64h− 16h2

h

= lim
h→0

(−64− 16h)

= −64.

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2 + h, f(2 + h)). In Figures 2.1.3–2.1.5, the secant line corresponding to
h = 1 is shown in three contexts. Figure 2.1.3 shows a “zoomed out” version
of f with its secant line. In Figure 2.1.4, we zoom in around the points of inter-
section between f and the secant line. Notice how well this secant line approx-
imates f between those two points — it is a common practice to approximate
functions with straight lines.
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Figure 2.1.3 The function f(t) and its
secant line corresponding to t = 2
and t = 3
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Figure 2.1.4 The function f(t) and a
secant line corresponding to t = 2
and t = 3, zoomed in near t = 2
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Figure 2.1.5 The function f(t) with
the same secant line, zoomed in fur-
ther
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Figure 2.1.6 The function f(t)with its
tangent line at t = 2

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In Figure 2.1.5 and
Figure 2.1.6, we zoom in around the point (2, 86). We see the secant line, which
approximates f well, but not as well the tangent line shown in Figure 2.1.6.

We have just introduced a number of important concepts that we will flesh
out more within this section. First, we formally define two of them.

Definition 2.1.7 Derivative at a Point.

Let f be a continuous function on an open interval I and let c be in I .
The derivative of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)

h
,

provided the limit exists. If the limit exists, we say that f is differentiable
at c; if the limit does not exist, then f is not differentiable at c. If f is
differentiable at every point in I , then f is differentiable on I .

youtu.be/watch?v=JXFMh21PMx4

Figure 2.1.8Video presentation of De-
finition 2.1.7

Definition 2.1.9 Tangent Line.

Let f be continuous on an open interval I and differentiable at c, for
some c in I . The line with equation ℓ(x) = f ′(c)(x − c) + f(c) is the
tangent line to the graph of f at c; that is, it is the line through (c, f(c))
whose slope is the derivative of f at c.

Some examples will help us understand these definitions.

https://www.youtube.com/watch?v=JXFMh21PMx4
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Example 2.1.10 Finding derivatives and tangent lines.

Let f(x) = 3x2 + 5x− 7. Find:

(a) f ′(1)

(b) The equation of the tangent
line to the graph of f at x =
1.

(c) f ′(3)

(d) The equation of the tangent
line to the graph f at x = 3.

Solution.

(a) We compute this directly using Definition 2.1.7.

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h)2 + 5(1 + h)− 7− (3(1)2 + 5(1)− 7)

h

= lim
h→0

3(1 + 2h+ h2) + 5 + 5h− 7− 1

h

= lim
h→0

3 + 6h+ 3h2 + 5 + 5h− 8

h

= lim
h→0

3h2 + 11h

h

= lim
h→0

(3h+ 11)

= 11.

(b) The tangent line at x = 1 has slope f ′(1) and goes through the
point (1, f(1)) = (1, 1). Thus the tangent line has equation, in
point-slope form, y = 11(x− 1) + 1. In slope-intercept form we
have y = 11x− 10.

(c) Again, using the definition,

f ′(3) = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

3(3 + h)2 + 5(3 + h)− 7− (3(3)2 + 5(3)− 7)

h

= lim
h→0

3(9 + 6h+ h2) + 15 + 3h− 7− 35

h

= lim
h→0

27 + 18h+ 3h2 + 15 + 3h− 42

h

= lim
h→0

3h2 + 23h

h

= lim
h→0

3h+ 23

= 23.

(d) The tangent line at x = 3 has slope 23 and goes through the
point (3, f(3)) = (3, 35). Thus the tangent line has equation
y = 23(x− 3) + 35 = 23x− 34.

A graph of f is given in Figure 2.1.11 alongwith the tangent lines atx = 1
and x = 3.
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y

Figure 2.1.11A graph of f(x) = 3x2+
5x − 7 and its tangent lines at x = 1
and x = 3

Video solution

youtu.be/watch?v=4OMc0gJWcb0

https://www.youtube.com/watch?v=4OMc0gJWcb0
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In Definition 2.1.7, we assumed that the function is continuous, but this is
actually not necessary. One can in fact prove that a functionhas to be continuous
at any point where it is differentiable. Or, in other words, a function cannot
be differentiable at a point of discontinuity. This is explained in the video in
Figure 2.1.12.

youtu.be/watch?v=Ev9hJVbDO1k

Figure 2.1.12 Showing that every dif-
ferentiable function is continuous

Another important line that can be created using information from the de-
rivative is the normal line. It is perpendicular to the tangent line, hence its slope
is the negative-reciprocal of the tangent line’s slope.

Definition 2.1.13 Normal Line.

Let f be continuous on an open interval I and differentiable at c, for
some c in I . The normal line to the graph of f at c is the line with equa-
tion

n(x) =
−1

f ′(c)
(x− c) + f(c),

when f ′(c) ̸= 0. (When f ′(c) = 0, the normal line is the vertical line
through (c, f(c)); that is, x = c.)

Example 2.1.14 Finding equations of normal lines.

Let f(x) = 3x2 + 5x − 7, as in Example 2.1.10. Find the equations of
the normal lines to the graph of f at x = 1 and x = 3.
Solution. In Example 2.1.10, we found that f ′(1) = 11. Hence at x = 1,
the normal line will have slope −1/11. An equation for the normal line
is

n(x) =
−1

11
(x− 1) + 1.

The normal line is plotted with y = f(x) in Figure 2.1.15. Note how
the line looks perpendicular to f . (A key word here is “looks.” Mathe-
matically, we say that the normal line is perpendicular to f at x = 1 as
the slope of the normal line is the negative-reciprocal of the slope of the
tangent line. However, normal lines may not always look perpendicular.

1 2 3 4

1

2

3
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y

Figure 2.1.15Agraph of f(x) = 3x2+
5x − 7, along with its normal line at
x = 1

The aspect ratio of the picture of the graph plays a big role in this. When
using graphing software, there is usually an option called Zoom Square
that keeps the aspect ratio 1 : 1
We also found that f ′(3) = 23, so the normal line to the graph of f at
x = 3 will have slope−1/23. An equation for the normal line is

n(x) =
−1

23
(x− 3) + 35.

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not-
so-difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f , the best linear approximation
to f is its tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit froma tangent line approximation
is a line; it is rather simple to recognize that the tangent line to a line is the line
itself. We look at this in the following example.

https://www.youtube.com/watch?v=Ev9hJVbDO1k
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Example 2.1.16 Finding the derivative of a linear function.

Consider f(x) = 3x + 5. Find the equation of the tangent line to f at
x = 1 and x = 7.
Solution. We find the slope of the tangent line by using Definition 2.1.7.

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h) + 5− (3 + 5)

h

= lim
h→0

3h

h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous
rate of change of f(x) = 3x + 5 is 3. This is not surprising; lines are
characterized by being the only functions with a constant rate of change.
That rate of change is called the slope of the line. Since their rates of
change are constant, their instantaneous rates of change are always the
same; they are all the slope.
So given a line f(x) = ax + b, the derivative at any point x will be a;
that is, f ′(x) = a.
It is now easy to see that the tangent line to the graph of f at x = 1 is
just f , with the same being true at x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. While we will eventually be able
to find derivatives of many common functions, the algebra and limit calculations
on some functions are complex. Until we develop further techniques, the best
we may be able to do is approximate the tangent line. We demonstrate this in
the next example.

Example 2.1.17 Numerical approximation of the tangent line.

Approximate the equation of the tangent line to the graph of f(x) =
sin(x) at x = 0.
Solution. In order to find the equation of the tangent line, we need
a slope and a point. The point is given to us: (0, sin(0)) = (0, 0). To
compute the slope, we need the derivative. This is where we will make
an approximation. Recall that

f ′(0) ≈ sin(0 + h)− sin(0)
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1.
Thus

f ′(0) ≈ sin(0.1)− sin(0)
0.1

≈ 0.9983.

Thus our approximation of the equation of the tangent line is y =
0.9983(x− 0) + 0 = 0.9983x; it is graphed in Figure 2.1.18. The graph
seems to imply the approximation is rather good.
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Figure 2.1.18 f(x) = sin(x) graphed
with an approximation to its tangent
line at x = 0

Recall from Section 1.3 that limx→0
sin(x)

x = 1, meaning for values of x near
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0, sin(x) ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin(x)” is near 1 at x = 0. In fact, since
we approximated the value of the slope to be 0.9983, wemight guess the actual
value is 1. We’ll come back to this later.

Consider again Example 2.1.10. To find the derivative of f at x = 1, we
needed to evaluate a limit. To find the derivative of f at x = 3, we needed to
again evaluate a limit. We have this process:

input specific
number c

−→ do something
to f and c

−→ return
number f ′(c)

This process describes a function; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input
variable x

−→ do something
to f and x

−→ return
function f ′(x)

The output is the derivative function, f ′(x). The f ′(x) function will take a
number c as input and return the derivative of f at c. This calls for a definition.

Definition 2.1.19 Derivative Function.

Let f be a differentiable function on an open interval I . The function

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

is the derivative of f .
Let y = f(x). The following notations all represent the derivative of f :

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
(f) =

d

dx
(y).

youtu.be/watch?v=yPzNYlzA0Js

Figure 2.1.20 Video presentation of
Definition 2.1.19

Important: The notation dy
dx is one symbol; it is not the fraction “dy/dx”. The

notation, while somewhat confusing at first, was chosen with care. A fraction-
looking symbol was chosen because the derivative has many fraction-like prop-
erties. Among other places, we see these properties atworkwhenwe talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

youtu.be/watch?v=TJhJiA_w4mQ

Figure 2.1.21 Explaining derivative
notation

Examples will help us understand this definition.

Example 2.1.22 Finding the derivative of a function.

Let f(x) = 3x2 + 5x− 7 as in Example 2.1.10. Find f ′(x).
Solution. We apply Definition 2.1.19.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)

h

= lim
h→0

3h2 + 6xh+ 5h

h

https://www.youtube.com/watch?v=yPzNYlzA0Js
https://www.youtube.com/watch?v=TJhJiA_w4mQ
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= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) =
23. Note our new computation of f ′(x) affirms these facts.

Example 2.1.23 Finding the derivative of a function.

Let f(x) = 1
x+1 . Find f

′(x).
Solution. We apply Definition 2.1.19.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h+1 − 1

x+1

h

Now find common denominator then subtract; pull 1/h out front to fa-
cilitate reading.

= lim
h→0

1

h
·
(

x+ 1

(x+ 1)(x+ h+ 1)
− x+ h+ 1

(x+ 1)(x+ h+ 1)

)
Now simplify algebraically.

= lim
h→0

1

h
·
(
x+ 1− (x+ h+ 1)

(x+ 1)(x+ h+ 1)

)
= lim

h→0

1

h
·
(

−h

(x+ 1)(x+ h+ 1)

)
Finally, apply the limit.

= lim
h→0

−1

(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

So f ′(x) = −1
(x+1)2 . To practice using our notation, we could also state

d

dx

(
1

x+ 1

)
=

−1

(x+ 1)2
.

Video solution

youtu.be/watch?v=JKHbXYanjDs

Example 2.1.24 Finding the derivative of a function.

Find the derivative of f(x) = sin(x).
Solution (a). Before applying Definition 2.1.19, note that once this is
found, we can find the actual tangent line to f(x) = sin(x) at x = 0,

https://www.youtube.com/watch?v=JKHbXYanjDs


2.1. INSTANTANEOUS RATES OF CHANGE: THE DERIVATIVE 71

whereas we settled for an approximation in Example 2.1.17.

f ′(x) = lim
h→0

sin(x+ h)− sin(x)
h

Derivative definition

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)
h

Angle addition identity

= lim
h→0

sin(x)(cos(h)− 1) + cos(x) sin(h)
h

Regrouped and factored

= lim
h→0

(
sin(x)(cos(h)− 1)

h
+
cos(x) sin(h)

h

)
Split into two fractions

= lim
h→0

sin(x) · lim
h→0

cos(h)− 1

h

+ lim
h→0

cos(x) · lim
h→0

sin(h)
h

Product/sum limit rules

= sin(x) · 0 + cos(x) · 1 Applied Theorem 1.3.17
= cos(x). (Are you surprised?)

We have found that when f(x) = sin(x), f ′(x) = cos(x). This should
be somewhat amazing; the result of a tedious limit process on the sine
function is a nice function. Then again, perhaps this is not entirely sur-
prising. The sine function is periodic — it repeats itself on regular inter-
vals. Therefore its rate of change also repeats itself on the same regular
intervals. We should have known the derivative would be periodic; we
now know exactly which periodic function it is.
Thinking back to Example 2.1.17, we can find the slope of the tangent
line to f(x) = sin(x) at x = 0 using our derivative. We approximated
the slope as 0.9983; we now know the slope is exactly cos(0) = 1.
Using similar techniques, we can show that the derivative of cos(x) is
− sin(x). See if you can show this yourself; if you get stuck, you can
check out the video in Figure 2.1.25.

youtu.be/watch?v=-1lOFzhDJAo

Figure 2.1.25 Finding the derivative of
cos(x)

Video solution

youtu.be/watch?v=vsnDopbWHXQ

Example 2.1.26 Finding the derivative of a piecewise defined function.

Find the derivative of the absolute value function,

f(x) = |x| =

{
−x x < 0

x x ≥ 0
.

See Figure 2.1.27.
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Figure 2.1.27 The absolute value func-
tion f(x) = |x|. Notice how the
slope of the lines (and hence the tan-
gent lines) abruptly changes at x = 0.

Solution. We need to evaluate limh→0
f(x+h)−f(x)

h . As f is piecewise-
defined, weneed to consider separately the limitswhenx < 0 andwhen
x > 0.
When x < 0:

d

dx
(−x) = lim

h→0

−(x+ h)− (−x)

h

= lim
h→0

−h

h

= lim
h→0

−1

= −1.

https://www.youtube.com/watch?v=-1lOFzhDJAo
https://www.youtube.com/watch?v=vsnDopbWHXQ
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When x > 0, a similar computation shows that d
dx (x) = 1.

We need to also find the derivative at x = 0. By the definition of the
derivative at a point, we have

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
.

Since x = 0 is the point where our function’s definition switches from
one piece to the other, we need to consider left and right-hand limits.
Consider the following, where we compute the left and right hand limits
side by side.

lim
h→0−

f(0 + h)− f(0)

h

= lim
h→0−

−h− 0

h

= lim
h→0−

−1

= −1

lim
h→0+

f(0 + h)− f(0)

h

= lim
h→0+

h− 0

h

= lim
h→0+

1

= 1

The last lines of each column tell the story: the left and right hand lim-
its are not equal. Therefore the limit does not exist at 0, and f is not
differentiable at 0. So we have

f ′(x) =

{
−1 x < 0

1 x > 0
.

At x = 0, f ′(x) does not exist; there is a jump discontinuity at 0; see
Figure 2.1.28. So f(x) = |x| is differentiable everywhere except at 0.
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Figure 2.1.28 A graph of the deriva-
tive of f(x) = |x| The point of non-differentiability came where the piecewise defined func-

tion switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 2.1.29 Finding the derivative of a piecewise defined function.

Find the derivative of f(x), where

f(x) =

{
sin(x) x ≤ π/2

1 x > π/2
.

See Figure 2.1.30.
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Figure 2.1.30 A graph of f(x) as de-
fined in Example 2.1.29

Solution. Using Example 2.1.24, we know that when x < π/2, f ′(x) =
cos(x). It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1− 1

h
= lim

h→0
0 = 0.

So far we have

f ′(x) =

{
cos(x) x < π/2

0 x > π/2
.

We still need to find f ′(π/2). Notice at x = π/2 that both pieces of f ′

are 0, meaning we can state that f ′(π/2) = 0.
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Beingmore rigorous, we can again evaluate the difference quotient limit
at x = π/2, utilizing again left- and right-hand limits. We will begin with
the left-hand limit:

lim
h→0−

f(π/2 + h)− f(π/2)

h

= lim
h→0−

sin(π/2 + h)− sin(π/2)
h

= lim
h→0−

sin(π2 ) cos(h) + sin(h) cos(π2 )− sin(π2 )
h

= lim
h→0−

1 · cos(h) + sin(h) · 0− 1

h

= lim
h→0−

cos(h)− 1

h
· lim
h→0−

sin(h)
h

= 1 · 0
= 0.

Notice we used Limits of Common Functions to finally evaluate the limit.
Now we will find the right-hand limit:

lim
h→0+

f(π/2 + h)− f(π/2)

h

= lim
h→0+

1− 1

h

= lim
h→0+

0

h

= 0.

Since both the left and right hand limits are 0 at x = π/2, the limit exists
and f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =

{
cos(x) x ≤ π/2

0 x > π/2
.

See Figure 2.1.31 for a graph of this derivative function.
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Figure 2.1.31 A graph of f ′(x) in Ex-
ample 2.1.29.

For onemore example involving piecewise-defined functions, we turn to the
video in Figure 2.1.32.

youtu.be/watch?v=q1ZAqRsgVPk

Figure 2.1.32 Determining when a
piecewise-defined function is differ-
entiable

Recall we pseudo-defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo-definition for
differentiability as well: it is a continuous function that does not have any “sharp
corners” or a vertical tangent line. One such sharp corner is shown in Figure 2.1.27.
Even though the function f in Example 2.1.29 is piecewise-defined, the transi-
tion is “smooth” hence it is differentiable. Note how in the graph of f in Fig-
ure 2.1.30 it is difficult to tell when f switches from one piece to the other;
there is no “corner.”

2.1.2 Differentiability on Closed Intervals
When we defined the derivative at a point in Definition 2.1.7, we specified that
the interval I over which a function f was defined needed to be an open inter-
val. Open intervals are required so that we can take a limit at any point c in I ,

https://www.youtube.com/watch?v=q1ZAqRsgVPk
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meaning we want to approach c from both the left and right.
Recall we also required open intervals in Definition 1.5.1 when we defined

what it meant for a function to be continuous. Later, we used one-sided limits to
extend continuity to closed intervals. We now extend differentiability to closed
intervals by again considering one-sided limits.

Our motivation is three-fold. First, we consider “common sense.” In Exam-
ple 2.1.22 we found that when f(x) = 3x2 + 5x− 7, f ′(x) = 6x+ 5, and this
derivative is defined for all real numbers, hence f is differentiable everywhere.
It seems appropriate to also conclude that f is differentiable on closed intervals,
like [0, 1], as well. After all, f ′(x) is defined at both x = 0 and x = 1.

Secondly, consider f(x) =
√
x. The domain of f is [0,∞). Is f differentiable

on its domain — specifically, is f differentiable at 0? (We’ll consider this in the
next example.)

Finally, in later sections, having the derivative defined on closed intervals will
prove useful. One such place is Section 7.4 where the derivative plays a role in
measuring the length of a curve.

After a formal definition of differentiability on a closed interval, we explore
the concept in an example.

Definition 2.1.33 Differentiability on a Closed Interval.

Let f be continuous on [a, b] and differentiable on (a, b). If the one-sided
limits

lim
h→0+

f(a+ h)− f(a)

h
lim

h→0−

f(b+ h)− f(b)

h

exist, then we say f is differentiable on [a, b].

For all the functions f in this text, we can determine differentiability on [a, b]
by considering the limits limx→a+ f ′(x) and limx→b− f ′(x). This is often easier
to evaluate than the limit of the difference quotient.

Example 2.1.34 Differentiability at an endpoint.

Consider f(x) =
√
x = x1/2 and g(x) =

√
x3 = x3/2. The domain of

each function is [0,∞). It can be shown that each is differentiable on
(0,∞); determine the differentiability of each at x = 0.
Solution. We start by considering f and take the right-hand limit of the
difference quotient:

lim
h→0+

f(a+ h)− f(a)

h
= lim

h→0+

√
0 + h−

√
0

h

= lim
h→0+

√
h

h

= lim
h→0+

1

h1/2
= ∞.

The one-sided limit of the difference quotient does not exist at x = 0
for f ; therefore f is differentiable on (0,∞) and not differentiable on
[0,∞).
We state (without proof) that f ′(x) = 1/

(
2
√
x
)
. Note that

limx→0+ f ′(x) = ∞; this limit was easier to evaluate than the limit
of the difference quotient, though it required us to already know the
derivative of f .
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Now consider g:

lim
h→0+

g(a+ h)− g(a)

h
= lim

h→0+

√
(0 + h)3 −

√
0

h

= lim
h→0+

h3/2

h

= lim
h→0+

h1/2 = 0.

As the one-sided limit exists at x = 0, we conclude g is differentiable on
its domain of [0,∞).
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Figure 2.1.35A graph of y = x1/2 and
y = x3/2 in Example 2.1.34

We state (without proof) that g ′(x) = 3
√
x/2. Note that

limx→0+ g ′(x) = 0; again, this limit is easier to evaluate than the limit
of the difference quotient.
The two functions are graphed in Figure 2.1.35. Note how f(x) =

√
x

seems to “go vertical” as x approaches 0, implying the slopes of its tan-
gent lines are growing toward infinity. Also note how the slopes of the
tangent lines to g(x) =

√
x3 approach 0 as x approaches 0.

Most calculus textbooks omit this topic and simply avoid specific caseswhere
it could be applied. We choose in this text to not make use of the topic unless
it is “needed.” Many theorems in later sections require a function f to be differ-
entiable on an open interval I; we could remove the word “open” and just use
“. . . on an interval I ,” but choose to not do so in keeping with the current math-
ematical tradition. Our first use of differentiability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivativemean?”
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2.1.3 Exercises

Terms and Concepts

1. (□ True □ False) Let f be a position function. The average rate of change on [a, b] is the slope of the line
through the points (a, f(a)) and (b, f(b)).

2. (□ True □ False) The definition of the derivative of a function at a point involves taking a limit.
3. In your ownwords, explain the difference between the average rate of change and instantaneous rate of change.
4. In your own words, explain the difference between Definitions 2.1.7 and Definition 2.1.19.
5. Let y = f(x). Give three different notations equivalent to “f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems

Exercise Group. Use the definition of the derivative to compute the derivative of the given function.
7. f(x) = 6 8. f(x) = 2x

9. f(t) = 4− 3t 10. g(x) = x2

11. h(x) = x3 12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x 14. r(s) = 1

s−2

Exercise Group. A function and an x-value are given. (Note: these functions are the same as those given in Exer-
cises 7–14.) Give the equations of the tangent line and the normal line at that x-value.

15. f(x) = 6 at x = −2 16. f(x) = 2x at x = 3

17. f(x) = 4− 3x at x = 7 18. g(x) = x2 at x = 2

19. h(x) = x3 at x = 4 20. f(x) = 3x2 − x+ 4 at x = −1

21. r(x) = 1
x at x = −2 22. r(x) = 1

x−2 at x = 3

Exercise Group. A function f and an x-value a are given. Approximate the equation of the tangent line to the graph
of f at x = a by numerically approximating f ′(a), using h = 0.1.

23. f(x) = x2 − 2x+ 5 and a = −2 24. f(x) = − 10
x+8 and a = −9

25. f(x) = ex and a = −4 26. f(x) = cos(x) and a = 0

27. The graph of f(x) = x2 − 1 is shown.
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(a) Use the graph to approximate the slope of the tangent line to f at (−1, 0), (0,−1), and (2, 3).
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(b) Using the definition of the derivative, find f ′(x).

(c) Use the derivative to find the slope of the tangent line at the points (−1, 0), (0,−1) and (2, 3).

28. The graph of f(x) = 1
x+1 is shown.
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(a) Use the graph to approximate the slope of the tangent line to f at (0, 1) and (1, 0.5).

(b) Using the definition of the derivative, find f ′(x).

(c) Use the derivative to find the slope of the tangent line at the points (0, 1) and (1, 0.5).

Exercise Group. A graph of a function f(x) is given. Using the graph, sketch f ′(x).
29.
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Exercise Group. Use the graph of the function to answer the following questions.

(a) Where is g(x) > 0?

(b) Where is g(x) < 0?

(c) Where is g(x) = 0?

(d) Where is g′(x) < 0?

(e) Where is g′(x) > 0?

(f) Where is g′(x) = 0?

33.
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Exercise Group. A function f(x) is given, along with its domain and derivative. Determine if f(x) is differentiable
on its domain.

35. f(x) =
√
x5(1− x), domain is [0, 1], f ′(x) = (5−6x)x3/2

2
√
1−x

(□ yes □ no)

36. f(x) = cos (
√
x) , domain is [0,∞), f ′(x) = − sin(

√
x)

2
√
x

(□ yes □ no)
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2.2 Interpretations of the Derivative

Section 2.1 defined the derivative of a function and gave examples of how to
compute it using its definition (i.e., using limits). The section also started with a
briefmotivation for this definition, that is, finding the instantaneous velocity of a
falling object given its position function. Section 2.3 will give us more accessible
tools for computing the derivative; tools that are easier to use than repeated
use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do I compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em-
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

2.2.1 Interpretation of the Derivative as Instantaneous Rate of
Change

Section 2.1 started with an example of using the position of an object (in this
case, a falling amusement park rider) to find the object’s velocity. This type of
example is often used when introducing the derivative because we tend to read-
ily recognize that velocity is the instantaneous rate of change in position. In
general, if f is a function of x, then f ′(x) measures the instantaneous rate of
change of f with respect to x. Put another way, the derivative answers “When
x changes, at what rate does f change?” Thinking back to the amusement park
ride, we asked “When time changed, at what rate did the height change?” and
found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads
“60mph.” Five minutes later, you wonder how far you have traveled. Certainly,
lots of things could have happened in those 5minutes; you could have intention-
ally sped up significantly, you might have come to a complete stop, you might
have slowed to 20mph as you passed through construction. But suppose that
you know, as the driver, none of these things happened. You know you main-
tained a fairly consistent speed over those 5 minutes. What is a good approxi-
mation of the distance traveled?

One could argue the only good approximation, given the information pro-
vided, would be based on “distance = rate × time.” In this case, we assume a
constant rate of 60mph with a time of 5minutes or 5/60 of an hour. Hence we
would approximate the distance traveled as 5miles.

Referring back to the falling amusement park ride, knowing that at t =
2 the velocity was −64 ft/s, we could reasonably approximate that 1 second
later the riders’ height would have dropped by about 64 feet. Knowing that
the riders were accelerating as they fell would inform us that this is an under-
approximation. If all we knew was that f(2) = 86 and f ′(2) = −64, we’d know
that we’d have to stop the riders quickly otherwise they would hit the ground.

In both of these cases, we are using the instantaneous rate of change to
predict future values of the output.

2.2.2 Units of the Derivative
It is useful to recognize the units of the derivative function. If y is a function of x,
i.e., y = f(x) for some function f , and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly written as “ft/s.” In
general, if y is measured in units P and x is measured in unitsQ, then y′ will be
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measured in units “P perQ”, or “P/Q.” Here we see the fraction-like behavior
of the derivative in the notation: the units of dy

dxare
units of y
units of x .

Example 2.2.1 The meaning of the derivative: World Population.

Let P (t) represent the world population tminutes after 12:00 a.m., Jan-
uary 1, 2012. It is fairly accurate to say that P (0) = 7,028,734,178
(www.prb.org). It is also fairly accurate to state that P ′(0) = 156; that is,
atmidnight on January 1, 2012, the population of theworldwas growing
by about 156 people per minute (note the units). Twenty days later (or
28,800minutes later) we could reasonably assume the population grew
by about 28,800 · 156 = 4,492,800 people.

Example 2.2.2 The meaning of the derivative: Manufacturing.

The term widget is an economic term for a generic unit of manufactur-
ing output. Suppose a company produces widgets and knows that the
market supports a price of $10 per widget. Let P (n) give the profit, in
dollars, earned by manufacturing and selling n widgets. The company
likely cannot make a (positive) profit making just one widget; the start-
up costs will likely exceed $10. Mathematically, we would write this as
P (1) < 0.
What do P (1000) = 500 and P ′(1000) = 0.25 mean? Approximate
P (1100).
Solution. The equation P (1000) = 500 means that selling 1000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning
that when we are selling 1000 widgets, the profit is increasing at rate of
$0.25 per widget (the units are “dollars per widget.”) Since we have no
other information to use, our best approximation for P (1100) is:

P (1100) ≈ P (1000) + P ′(1000)× 100

= $500 + (100 widgets ) · $0.25/widget
= $525.

We approximate that selling 1100 widgets returns a profit of $525.

The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60mph” example at the begin-
ning of this section. Five minutes after looking at the speedometer, our best
approximation for distance traveled assumed the rate of change was constant.
In Examples 2.2.1 and Example 2.2.2 wemade similar approximations. We were
given rate of change information which we used to approximate total change.
Notationally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximation is best when h is “small.” “Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

2.2.3 The Derivative and Motion
One of the most fundamental applications of the derivative is the study of mo-
tion. Let s(t) be a position function, where t is time and s(t) is distance. For

https://www.prb.org
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instance, s could measure the height of a projectile or the distance an object
has traveled.

Convention with s. Using s(t)
to represent position is a fairly
common mathematical conven-
tion. It is also common to use s
to represent arc length.

Let s(t) measure the distance traveled, in feet, of an object after t seconds
of travel. Then s′(t) has units “feet per second,” and s′(t)measures the instan-
taneous rate of distance change with respect to time— it measures velocity.

Now consider v(t), a velocity function. That is, at time t, v(t) gives the ve-
locity of an object. The derivative of v, v′(t), gives the instantaneous rate of
velocity change with respect to time — acceleration. (We often think of accel-
eration in terms of cars: a car may “go from 0 to 60 in 4.8 seconds.” This is an
average acceleration, a measurement of how quickly the velocity changed.) If
velocity is measured in feet per second, and time is measured in seconds, then
the units of acceleration (i.e., the units of v′(t)) are “feet per second per sec-
ond,” or (ft/s)/s. We often shorten this to “feet per second squared,” or ft

s2 , but
this tends to obscure the meaning of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32ft/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleration of 32 ft/s
s means that the velocity changes by 32ft/s

each second. For instance, let v(t)measure the velocity of a ball thrown straight
up into the air, where v has units ft/s and t is measured in seconds. The ball will
have a positive velocity while traveling upwards and a negative velocity while
falling down. The acceleration is thus−32ft/s2. If v(1) = 20ft/s, then 1 second
later, the velocitywill have decreased by 32ft/s; that is, v(2) = −12ft/s. We can
continue: v(3) = −44ft/s. Working backward, we can also figure that v(0) =
52ft/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 2.2.3 The Derivative and Motion.

1. Let s(t) be the position function of an object. Then s′(t) = v(t) is
the velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v′(t) = a(t) is
the acceleration function of the object.

2.2.4 Interpretation of the Derivative as the Slope of the Tangent
Line

Wenow consider the second interpretation of the derivative given in this section.
This interpretation is not independent from the first by any means; many of the
same concepts will be stressed, just from a slightly different perspective.

Given a function y = f(x), the difference quotient f(c+h)−f(c)
h gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the secant line that goes through two points on
the graph of f : (c, f(c)) and (c + h, f(c + h)). As h shrinks to 0, these two
points come close together; in the limit we find f ′(c), the slope of a special line
called the tangent line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by computing f ′(c). We can get an idea of how f
is behaving by looking at the slopes of its tangent lines. We explore this idea in
the following example.
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Example 2.2.4 Understanding the derivative: the rate of change.

Consider f(x) = x2 as shown in Figure 2.2.5. It is clear that at x = 3
the function is growing faster than at x = 1, as it is steeper at x = 3.
How much faster is it growing at 3 compared to 1?
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Figure 2.2.5 A graph of f(x) = x2

Solution. We can answer this exactly (and quickly) after Section 2.3,
where we learn to quickly compute derivatives. For now, we will answer
graphically, by considering the slopes of the respective tangent lines.
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Figure 2.2.6 A graph of f(x) = x2

and tangent lines at x = 1 and x = 3

With practice, one can fairly effectively sketch tangent lines to a curve at
a particular point. In Figure 2.2.6, we have sketched the tangent lines to
f at x = 1 and x = 3, along with a grid to help us measure the slopes
of these lines. At x = 1, the slope is 2; at x = 3, the slope is 6. Thus we
can say not only is f growing faster at x = 3 than at x = 1, it is growing
three times as fast.

Example 2.2.7 Understanding the graph of the derivative.

Consider the graph of f(x) and its derivative, f ′(x), in Figure 2.2.8. Use
these graphs to find the slopes of the tangent lines to the graph of f at
x = 1, x = 2, and x = 3.
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Figure 2.2.8 Graphs of f and f ′ in Ex-
ample 2.2.7

Solution. To find the appropriate slopes of tangent lines to the graph
of f , we need to look at the corresponding values of f ′.

• The slope of the tangent line to f at x = 1 is f ′(1); this looks to
be about−1.

• The slope of the tangent line to f at x = 2 is f ′(2); this looks to
be about 4.

• The slope of the tangent line to f at x = 3 is f ′(3); this looks to
be about 3.

Using these slopes, tangent line segments to f are sketched in Fig-
ure 2.2.9. Included on the graph of f ′ in this figure are points where
x = 1, x = 2 and x = 3 to help better visualize the y value of f ′ at
those points.
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Figure 2.2.9 Graphs of f and f ′ in Ex-
ample 2.2.7

Example 2.2.10 Approximation with the derivative.

Consider again the graph of f(x) and its derivative f ′(x) in Exam-
ple 2.2.7. Use the tangent line to f at x = 3 to approximate the value
of f(3.1).
Solution. Figure 2.2.11 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near x = 3, the tangent line makes
an excellent approximation of f . Since lines are easy to deal with, often
it works well to approximate a function with its tangent line. (This is
especially true when you don’t actually know much about the function
at hand, as we don’t in this example.)
While the tangent line to f was drawn in Example 2.2.7, it was not
explicitly computed. Recall that the tangent line to f at x = c is
y = f ′(c)(x − c) + f(c). While f is not explicitly given, by the graph
it looks like f(3) = 4. Recalling that f ′(3) = 3, we can compute the
tangent line to be approximately y = 3(x− 3) + 4. It is often useful to
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leave the tangent line in point-slope form.
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Figure 2.2.11 Zooming in on f and its
tangent line at x = 3 for the func-
tion given in Examples 2.2.7 and Ex-
ample 2.2.10

To use the tangent line to approximate f(3.1), we simply evaluate y at
3.1 instead of f .

f(3.1) ≈ y(3.1)

= 3(3.1− 3) + 4

= 0.1 · 3 + 4

= 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 2.2.10, f(x) = −x3 + 7x2 − 12x + 4. We can evalu-
ate f(3.1) = 4.279. Had we known f all along, certainly we could have just
made this computation. In reality, we often only know two things:

1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the location of an object and its instan-
taneous velocity at a particular point in time. We do not have a “function f”
for the location, just an observation. This is enough to create an approximating
function for f .

This last example has a direct connection to our approximation method ex-
plained above after Example 2.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some valuex = c, then computing the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x− c)+f(c). In Example 2.2.10, we used
the tangent line to approximate a value of f . Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c+ h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c) ((c+ h)− c) + f(c)

= f ′(c) · h+ f(c).

This is the exact same approximation method used above! Not only does
it make intuitive sense, as explained above, it makes analytical sense, as this
approximationmethod is simply using a tangent line to approximate a function’s
value.

The importanceof understanding thederivative cannot beunderstated. When
f is a function of x, f ′(x)measures the instantaneous rate of change of f with
respect to x and gives the slope of the tangent line to f at x.
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2.2.5 Exercises

Terms and Concepts

1. What is the instantaneous rate of change of position called?
2. Given a function y = f(x), in your own words describe how to find the units of f ′(x).

3. What functions have a constant rate of change?

Problems

4. Given f(4) = 18 and f ′(4) = 2, approximate f(5).

5. Given P (100) = −19 and P ′(100) = −7, approximate P (110).

6. Given z(60) = 106 and z′(60) = 3, approximate z(55).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods described in this section, which approximation is likely
to be most accurate? (□ f(10.1) □ f(11) □ f(20))

8. Given f(8) = 43 and f(9) = 41, approximate f ′(8).

9. GivenH(5) = 12 andH(8) = 33, approximateH ′(5).

10. Let V (x)measure the volume, in decibels, measured inside a restaurant with x customers. What are the units
of V ′(x)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a straight line t seconds after starting. What are the
units of v′(t)?

12. The heightH , in feet, of a river is recorded t hours after midnight, April 1. What are the units ofH ′(t)?

13. P is the profit, in thousands of dollars, of producing and selling c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P (0)?

14. T is the temperature in degrees Fahrenheit, h hours after midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T (8) likely greater than or less than 0? Why?

Exercise Group. Graphs of functions f and g are given. Identify which function is the derivative of the other.
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15.
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• f is the derivative of g.

• g is the derivative of f .

16.
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• f is the derivative of g.

• g is the derivative of f .
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• f is the derivative of g.

• g is the derivative of f .
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• f is the derivative of g.

• g is the derivative of f .
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2.3 Basic Differentiation Rules

The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx+ b. What is y′? With-
out limits, recognize that linear functions are characterized by being functions
with a constant rate of change (the slope). The derivative, y′, gives the instanta-
neous rate of change; with a linear function, this is constant,m. Thus y′ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = ax2 + bx+ c. Using the definition of the derivative, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)

h

= lim
h→0

ax2 + 2ahx+ ah2 + bx+ bh+ c− ax2 − bx− c)

h

= lim
h→0

ah2 + 2ahx+ bh

h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y′ = 12x+ 11.
In this section (and in some sections to follow) we will learn some of what

mathematicians have already discovered about the derivatives of certain func-
tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 2.3.1 Derivatives of Common Functions.

Constant Rule d
dx (c) = 0, where c is a constant.

Power Rule d
dx (x

n) = nxn−1, where n is an integer, n >
0.

Other common
functions

d
dx (sin(x)) = cos(x)
d
dx (cos(x)) = − sin(x)
d
dx (e

x) = ex

d
dx (ln(x)) =

1
x , for x > 0.

youtu.be/watch?v=wPJ8-zKc1n0

Figure 2.3.2Video explanation of The-
orem 2.3.1

This theorem starts by stating an intuitive fact: constant functions have zero
rate of change as they are constant. Therefore their derivative is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivatives of Power Functions (of the form y = xn) are very
straightforward: multiply by the power, then subtract 1 from the power. We see
something incredible about the function y = ex: it is its own derivative. We
also see a new connection between the sine and cosine functions.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x.
What is f ′(x)? According to the Power Rule,

f ′(x) =
d

dx
(x) =

d

dx

(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?”
Since f is x, we are asking “At what rate does x change with respect to x?”

https://www.youtube.com/watch?v=wPJ8-zKc1n0


2.3. BASIC DIFFERENTIATION RULES 87

The answer is: 1. They change at the same rate. We can also interpret the
derivative as the slope of the tangent line to the function at a point (c, f(c)).
Since f(x) = x is a linear function with constant slope 1, we can say that the
derivative of f(x) = x is f ′(x) = 1.

Theorem 2.3.1 states that the natural exponential function has a remarkable
propery: it is equal to its own derivative! The video in Figure 2.3.3 explains why
this is the case.

youtu.be/watch?v=ipKTEdQFBjw

Figure 2.3.3 Determining the deriva-
tive of f(x) = ex

Let’s practice using this theorem.

Example 2.3.4 Using common derivative rules to find, and use, deriva-
tives.

Let f(x) = x3.

1. Find f ′(x).

2. Find the equation of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f , f ′ and the tangent line from Item 2 on the same axis.

Solution.

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equation of the line tangent to the graph of f at x =
−1, we need a point and the slope. The point is (−1, f(−1)) =
(−1,−1). The slope is f ′(−1) = 3. Thus the tangent line has
equation y = 3(x− (−1)) + (−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 since−1.1 is
close to−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual value: (−1.1)3 = −1.331.

4. See Figure 2.3.5.
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Figure 2.3.5 A graph of f(x) = x3,
along with its derivative f ′(x) = 3x2

and its tangent line at x = −1

Video solution

youtu.be/watch?v=lyAEJSmSr-A

Theorem 2.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = x3, but it
does not tell how to compute the derivative of y = 2x3, y = x3 + sin(x) nor
y = x3 sin(x). The following theorem helps with the first two of these examples
(the third is answered in the next section).

Theorem 2.3.6 Properties of the Derivative.

Let f and g be differentiable on an open interval I and let c be a real
number. Then:

Sum/Difference Rule
d

dx
(f(x)± g(x)) =

d

dx
(f(x))± d

dx
(g(x))

= f ′(x)± g′(x)

https://www.youtube.com/watch?v=ipKTEdQFBjw
https://www.youtube.com/watch?v=lyAEJSmSr-A
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Constant Multiple
Rule d

dx
(c · f(x)) = c · d

dx
(f(x))

= c · f ′(x).

youtu.be/watch?v=Hr0sQcVhQ9A

Figure 2.3.7 Video presentation of
Theorem 2.3.6

While we will be mainly focused on using these rules, it can also be interest-
ing to see where they come from. Fortunately, it is not too difficult to establish
these rules using the definition of the derivative. The video in Figure 2.3.8 shows
why the sum rule is true.

youtu.be/watch?v=nVVpyilxZTw

Figure 2.3.8 Proving the sum rule

Theorem 2.3.6 allows us to find the derivatives of a wide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 2.1.22 that we found, using the limit definition,
the derivative of f(x) = 3x2 + 5x− 7. We can now find its derivative without
expressly using limits:

d

dx

(
3x2 + 5x− 7

)
= 3

d

dx

(
x2
)
+ 5

d

dx
(x)− d

dx
(7)

= 3 · 2x+ 5 · 1− 0

= 6x+ 5.

We were a bit pedantic here, showing every step. Normally we would do
all the arithmetic and steps in our head and readily find d

dx

(
3x2 + 5x+ 7

)
=

6x+ 5.

Example 2.3.9 Using the tangent line to approximate a function value.

Let f(x) = sin(x) + 2x + 1. Approximate f(3) using an appropriate
tangent line.
Solution. This problem is intentionally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximation
are we seeking? What does “appropriate” mean?
In the “real world,” people solving problems deal with these issues all
time. One must make a judgment using whatever seems reasonable. In
this example, the actual answer is f(3) = sin(3) + 7, where the real
problem spot is sin(3). What is sin(3)?
Since 3 is close toπ, we can assume sin(3) ≈ sin(π) = 0. Thus one guess
is f(3) ≈ 7. Can we do better? Let’s use a tangent line as instructed and
examine the results; it seems best to find the tangent line at x = π.
Using Theorem 2.3.1 we find f ′(x) = cos(x) + 2. The slope of the
tangent line is thus f ′(π) = cos(π)+2 = 1. Also, f(π) = 2π+1 ≈ 7.28.
So the tangent line to the graph of f at x = π is y = 1(x−π)+2π+1 =
x + π + 1 ≈ x + 4.14. Evaluated at x = 3, our tangent line gives
y = 3 + 4.14 = 7.14. Using the tangent line, our final approximation is
that f(3) ≈ 7.14.
Using a calculator, we get an answer accurate to four places after the
decimal: f(3) = 7.1411. Our initial guess was 7; our tangent line ap-
proximation was more accurate, at 7.14.
The point is not “Here’s a cool way to do some math without a calcula-
tor.” Sure, that might be handy sometime, but your phone could prob-
ably give you the answer. Rather, the point is to say that tangent lines
are a good way of approximating, and many scientists, engineers and

https://www.youtube.com/watch?v=Hr0sQcVhQ9A
https://www.youtube.com/watch?v=nVVpyilxZTw
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mathematicians often face problems too hard to solve directly. So they
approximate.
The graphs in Figure 2.3.10 shows the graph of the function f(x) along
with the tangent line constructed at x = π. The graph in Figure 2.3.10
shows the same tangent line and function. Once zoomed in, you can
barely distinguish the tangent line from the function. This indicates that
the tangent line is a good a approximation of the function so long as we
are near the point of tangency.
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Figure 2.3.10 A graph of f(x) =
sin(x) + 2x+1 along with its tan-
gent line approximation at x = π
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Figure 2.3.11 A graph of f(x) =
sin(x) + 2x+1 along with its tan-
gent line approximation at x = π,
zoomed in

Video solution

youtu.be/watch?v=a0hsWtT74jM

2.3.1 Higher Order Derivatives

Note: The second derivative no-
tation could be written as

d2y

dx2
=

d2y

(dx)2
=

d2

(dx)2
(
y
)
.

That is, we take the deriva-
tive of y twice (hence d2), both
times with respect to x (hence
(dx)2 = dx2).

The derivative of a function f is itself a function, therefore we can take its
derivative. The following definition gives a name to this concept and introduces
its notation.

Definition 2.3.12 Higher Order Derivatives.

Let y = f(x) be a differentiable function on I . The following are defined,
provided the corresponding limits exist.

1. The second derivative of f is:

f ′′(x) =
d

dx
(f ′(x)) =

d

dx

(
dy

dx

)
=

d2y

dx2
= y′′.

2. The third derivative of f is:

f ′′′(x) =
d

dx
(f ′′(x)) =

d

dx

(
d2y

dx2

)
=

d3y

dx3
= y′′′.

3. The nth derivative of f is:

f (n)(x) =
d

dx

(
f (n−1)(x)

)
=

d

dx

(
dn−1y

dxn−1

)
=

dny

dxn
= y(n).

Higher Order Derivative Caveat.
Definition2.3.12 comeswith the
caveat “Where the correspond-
ing limits exist.” With f differen-
tiable on I , it is possible that f ′

is not differentiable on all of I ,
and so on.

youtu.be/watch?v=usabSpUh65w

Figure 2.3.13 Video explanation of
Definition 2.3.12

In general, whenfinding the fourth derivative andon, we resort to the f (4)(x)
notation, not f ′′′′(x); after a while, too many ticks is confusing.

Let’s practice using this new concept.

https://www.youtube.com/watch?v=a0hsWtT74jM
https://www.youtube.com/watch?v=usabSpUh65w
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Example 2.3.14 Finding higher order derivatives.

Find the first four derivatives of the following functions:

1. f(x) = 4x2 2. f(x) = sin(x) 3. f(x) = 5ex

Solution.

1. Using the Power and Constant Multiple Rules, we have: f ′(x) =
8x. Continuing on, we have

f ′′(x) =
d

dx
(8x) = 8 f ′′′(x) = 0 f (4)(x) = 0.

Notice how all successive derivatives will also be 0.

2. We employ Theorem 2.3.1 repeatedly.

f ′(x) = cos(x) f ′′′(x) = − cos(x)
f ′′(x) = − sin(x) f (4)(x) = sin(x)

Note howwehave come right back to f(x) again. (Can you quickly
figure what f (23)(x) is?)

3. Employing Theorem 2.3.1 and the Constant Multiple Rule, we can
see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

Video solution

youtu.be/watch?v=nF2-IrvHmqc

2.3.2 Interpreting Higher Order Derivatives
What do higher order derivativesmean? What is the practical interpretation?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function f is the rate of change of the
rate of change of f .

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 2.2.3, f ′ describes the rate of position change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement park riders free-falling with posi-
tion function f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t ft/s and
f ′′(t) = −32 (ft/s)/s. We may recognize this latter constant; it is the accelera-
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” written as “ft/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f .” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”

https://www.youtube.com/watch?v=nF2-IrvHmqc
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Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of seriesmakes extensive use of higher order derivatives.
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2.3.3 Exercises

Terms and Concepts

1. What is the name of the rule which states that d
dx (x

n) = nxn−1, where n > 0 is an integer?

2. What is d
dx (ln(x))?

3. Give an example of a function f(x) where f ′(x) = f(x).

4. Give an example of a function f(x) where f ′(x) = 0.

5. The derivative rules introduced in Section 2.3 explain how to compute the derivative of which of the following
functions?

•
3

x2

• 3x2 − x+ 17

• ex
2

• sin(x) cos(x)

•
√
x

• 5 ln(x)

6. Explain in your own words how to find the third derivative of a function f(x).

7. Give an example of a function where f ′(x) ̸= 0 and f ′′(x) = 0.

8. Explain in your own words what the second derivative “means”.
9. If f(x) describes a position function, then f ′(x) describes what kind of function? What kind of function is

f ′′(x)?

10. Let f(x) be a function measured in pounds (lb), where x is measured in feet (ft). What are the units of f ′′(x)?

Problems

Exercise Group. Compute the derivative of the given function.
11. f(x) = −

(
7x2 + 8x+ 7

)
12. g(x) = 14x2 − 16x3 + 5x+ 2

13. m(t) = 9t−
(
4t5 + 1

4 t
3
)
− 6 14. f(θ) = − (3 sin(θ) + 19 cos(θ))

15. f(r) = 3er 16. g(t) = 7t3 − 5 cos(t)− 2 sin(t)
17. f(x) = 6 ln(x) + 9x 18. p(s) = 1

4s
4 + 1

3s
3 + 1

2s
2 + s+ 1

19. h(t) = − (et + sin(t) + cos(t)) 20. f(x) = ln
(
3x8
)

21. f(t) = ln(6) + e6 + sin
(
π
2

)
22. g(t) = (4 + 3t)

2

23. g(x) = (2x+ 4)
3 24. f(x) = (3 + x)

3

25. f(x) = (7 + 2x)
2

26. A property of logarithms is that loga(x) =
logb(x)
logb(a)

, for all bases a, b > 0, ̸= 1.

(a) Rewrite this identity when b = e, i.e., using loge(x) = ln(x), with a = 10.

(b) Use part (a) to find the derivative of y = log10(x).

(c) Find the derivative of y = loga(x) for any a > 0, ̸= 1.

Exercise Group. Compute the first four derivatives of the given function.
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27. f(x) = x9 28. g(x) = 8 cos(x)

29. h(t) = −
(
4t2 + 3t+ et

)
30. p(θ) = θ2 + θ8

31. f(θ) = − (sin(θ) + cos(θ)) 32. f(x) = 692

Exercise Group. Find the equations of the tangent and normal lines to the graph of the function at the given point.
33. f(x) = x3 + 8x at x = 2 34. f(t) = et − 2 at t = 0

35. g(x) = ln(x) at x = 1 36. f(x) = 4 sin(x) at x = π/6

37. f(x) = −2 cos(x) at x = π/6 38. f(x) = 9− 9x at x = −9
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2.4 The Product and Quotient Rules

Section 2.3 showed that, in some ways, derivatives behave nicely. The Constant
Multiple Rule and Sum/Difference Rule established that the derivative of f(x) =
5x2 + sin(x) was not complicated. We neglected computing the derivative of
things like g(x) = 5x2 sin(x) andh(x) = 5x2

sin(x) on purpose; their derivatives are
not as straightforward. (If you had to guess what their respective derivatives are,
youwould probably guess wrong.) For these, we need the Product andQuotient
Rules, respectively, which are defined in this section. We begin with the Product
Rule.

youtu.be/watch?v=1X3PTrkMsJ8

Figure 2.4.1 Video introduction to
Section 2.4

Theorem 2.4.2 Product Rule.

Let f and g be differentiable functions on an open interval I . Then fg
is a differentiable function on I , and

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x).

Warning 2.4.3 d
dx (f(x)g(x)) ̸= f ′(x)g′(x)! While this would be simpler than

the Product Rule, it is wrong.
We practice using this new rule in an example, followed by an example that

demonstrates why this theorem is true.

Example 2.4.4 Using the Product Rule.

Use the Product Rule to compute the derivative of y = 5x2 sin(x). Eval-
uate the derivative at x = π/2.
Solution. To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin(x). We easily compute/recall that f ′(x) = 10x and
g′(x) = cos(x). Employing the rule, we have

d

dx

(
5x2 sin(x)

)
=

d

dx

(
5x2
)
sin(x) + 5x2 d

dx
(sin(x))

= 10x sin(x) + 5x2 cos(x).

At x = π/2, we have

y′(π/2) = 10 · π
2
sin
(π
2

)
+ 5

(π
2

)2
cos
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π,
in Figure 2.4.5. While this does not prove that the Product Rule is the
correct way to handle derivatives of products, it helps validate its truth.

π
2

π

5

10

15

20

x

y

Figure 2.4.5Agraphof y = 5x2 sin(x)
and its tangent line at x = π/2

Video solution

youtu.be/watch?v=37efDywkDyE

We now investigate why the Product Rule is true.

Proof of Product Rule.

youtu.be/watch?v=i791Y97O5hI

Figure 2.4.6 Video proof of product
rule

We can use the definition of the derivative to prove Theorem 2.4.2.
By the limit definition, we have

d

dx
(f(x)g(x)) = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
.

We nowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of − f(x)g(x + h) + f(x)g(x + h), then do some
regrouping as shown.Adding 0 in some clever form is

a common mathematical proof
technique.

https://www.youtube.com/watch?v=1X3PTrkMsJ8
https://www.youtube.com/watch?v=37efDywkDyE
https://www.youtube.com/watch?v=i791Y97O5hI
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d

dx
(f(x)g(x)) = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

(regroup)

= lim
h→0

[f(x+ h)g(x+ h)− f(x)g(x+ h)] + [f(x)g(x+ h)− f(x)g(x)]

h

(split fraction)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)

h
+ lim

h→0

f(x)g(x+ h)− f(x)g(x)

h

(factor)

= lim
h→0

(
f(x+ h)− f(x)

h
g(x+ h)

)
+ lim

h→0

(
f(x)

g(x+ h)− g(x)

h

)
(apply limit properties)

= lim
h→0

f(x+ h)− f(x)

h
· lim
h→0

g(x+ h) + f(x) · lim
h→0

g(x+ h)− g(x)

h

(apply limits)
= f ′(x)g(x) + f(x)g′(x)

(by definition of the derivative).

We have proven the product rule as desired. (In the last step, we also relied on
the fact that since g is differentiable, it is also continuous, which guarantees that
limh→0 g(x+ h) = g(x).) ■

It is often true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.7 Exploring alternate derivative methods.

Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y′ two ways: first, by
expanding the given product and then taking the derivative, and second,
by applying the Product Rule. Verify that both methods give the same
answer.
Solution. We first expand the expression for y; a little algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y′:

y′ = 8x3 + 9x2 − 12x.

Instead, let’s apply the Product Rule to the original factored form:

y′ =
d

dx

(
x2 + 3x+ 1

)
(2x2 − 3x+ 1) + (x2 + 3x+ 1)

d

dx

(
2x2 − 3x+ 1

)
= (2x+ 3)(2x2 − 3x+ 1) + (x2 + 3x+ 1)(4x− 3)

=
(
4x3 − 7x+ 3

)
+
(
4x3 + 9x2 − 5x− 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivative of the product is
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the product of the derivatives.” Thus we are tempted to say that y′ =
(2x+ 3)(4x− 3) = 8x2 + 6x− 9. Obviously this is not correct.

Video solution

youtu.be/watch?v=-plvLFQ21Ig

Example 2.4.8 Using the Product Rule with a product of three func-
tions.

Let y = x3 ln(x) cos(x). Find y′.
Solution. We have a product of three functions while the Product Rule
only specifies how to handle a product of two functions. Our method
of handling this problem is to simply group the latter two functions to-
gether, and consider y = x3 · [ln(x) cos(x)]. Following the Product Rule,
we have

y ′ =
d

dx

(
x3
)
ln(x) cos(x) + (x3)

d

dx
(ln(x) cos(x))

To evaluate d
dx (ln(x) cos(x)), we apply the Product Rule again:

y ′ = 3x2 [ln(x) cos(x)] + (x3)

[
1

x
cos(x) + ln(x)(− sin(x))

]
= 3x2 ln(x) cos(x) + x3 1

x
cos(x) + x3 ln(x)(− sin(x)).

Recognize the pattern in our answer above: when applying the Product
Rule to a product of three functions, there are three terms added to-
gether in the final derivative. Each term contains only one derivative of
one of the original functions, and each function’s derivative shows up in
only one term. It is straightforward to extend this pattern to finding the
derivative of a product of four or more functions.
Ultimately though, we would simplify our final computation to:

y ′ = 3x2 ln(x) cos(x) + x2 cos(x) +−x3 ln(x) sin(x)

If you check this answer with a cas, it may factor and give the answer:

y ′ = −x2 [x ln(x) sin(x) + cos(x) + 3 ln(x) cos(x)]

Video solution

youtu.be/watch?v=PYK64WB4JUg

Now that we have the hang of the product rule pattern, it’s not much more
difficult to move on to products of four or more functions, as the video in Fig-
ure 2.4.9 demonstrates.

youtu.be/watch?v=QdQ14efmlMg

Figure 2.4.9 Taking the derivative of a
product of four functions

We consider one more example before discussing another derivative rule.

Example 2.4.10 Using the Product Rule.

Find the derivatives of the following functions.

1. f(x) = x ln(x)

2. g(x) = x ln(x)− x

Solution. Recalling that the derivative of ln(x) is 1/x, we use the Prod-
uct Rule to find our answers.

https://www.youtube.com/watch?v=-plvLFQ21Ig
https://www.youtube.com/watch?v=PYK64WB4JUg
https://www.youtube.com/watch?v=QdQ14efmlMg
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1. Applying the Product Rule:

d

dx
(x ln(x)) = 1 · ln(x) + x · 1/x

= ln(x) + 1.

2. Using the result from above, we compute

d

dx
(x ln(x)− x) = ln(x) + 1− 1

= ln(x).

This seems significant; if the natural log function ln(x) is an important
function (it is), it seems worthwhile to know a function whose derivative
is ln(x). We have found one. (We leave it to the reader to find another;
a correct answer will be very similar to this one.)

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 2.4.11 Quotient Rule.

Let f and g be differentiable functions defined on an open interval I ,
where g(x) ̸= 0 on I . Then f/g is differentiable on I , and

d

dx

(
f(x)

g(x)

)
=

g(x)f ′(x)− f(x)g′(x)

g(x)2
.

youtu.be/watch?v=IlsA8342GvQ

Figure 2.4.12 Video presentation of
Theorem 2.4.11

The Quotient Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fraction’s numerator
and denominator as “HI” and “LO”, respectively. Then

d

dx

(
HI
LO

)
=

LO · dHI− HI · dLO
LOLO

,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivatives of the numerator and denominator, respectively.

Let’s practice using the Quotient Rule.

Example 2.4.13 Using the Quotient Rule.

Let f(x) = 5x2

sin(x) . Find f
′(x).

Solution. Directly applying the Quotient Rule gives:

d

dx

(
5x2

sin(x)

)
=
sin(x) · d

dx

(
5x2
)
− 5x2 · d

dx (sin(x))
sin2(x)

=
10x sin(x)− 5x2 cos(x)

sin2(x)
.

Video solution

youtu.be/watch?v=Hr4bt6yFwPg

TheQuotient Rule allows us to fill in holes in our understanding of derivatives
of the common trigonometric functions. We start with finding the derivative of
the tangent function.

https://www.youtube.com/watch?v=IlsA8342GvQ
https://www.youtube.com/watch?v=Hr4bt6yFwPg
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Example 2.4.14 Using the Quotient Rule to find d
dx (tan(x)).

Find the derivative of y = tan(x).
Solution. At first, one might feel unequipped to answer this question.
But recall that tan(x) = sin(x)/ cos(x), so we can apply the Quotient
Rule.

d

dx
(tan(x)) =

d

dx

(
sin(x)
cos(x)

)
=
cos(x) d

dx (sin(x))− sin(x) d
dx (cos(x))

cos2(x)

=
cos(x) cos(x)− sin(x)(− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
= sec2(x).

This is a beautiful result. To confirm its truth, we can find the equation of
the tangent line to y = tan(x) at x = π/4. The slope is sec2(π/4) = 2;
y = tan(x), along with its tangent line, is graphed in Figure 2.4.15.−π

2 −π
4

π
4

π
2

−10

−5

5

10

x

y

Figure 2.4.15 A graph of y = tan(x)
along with its tangent line at x = π/4

Video solution

youtu.be/watch?v=wslbADxDg4c

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sin(x) in Exam-
ple 2.1.24 and stated the derivative of the cosine function in Theorem 2.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 2.3.1 and the Quotient Rule.

Theorem 2.4.16 Derivatives of Trigonometric Functions.

1.
d

dx
(sin(x)) = cos(x)

2.
d

dx
(cos(x)) = − sin(x)

3.
d

dx
(tan(x)) = sec2(x)

4.
d

dx
(cot(x)) = − csc2(x)

5.
d

dx
(sec(x)) = sec(x) tan(x)

6.
d

dx
(csc(x)) = − csc(x) cot(x)

To remember the above, it may be helpful to keep in mind that the deriv-
atives of the trigonometric functions that start with “c” have a minus sign in
them.

Example 2.4.17 Exploring alternate derivative methods.

In Example 2.4.13 the derivative of f(x) = 5x2

sin(x) was found using the
Quotient Rule. Rewriting f as f(x) = 5x2 csc(x), find f ′ using Theo-
rem 2.4.16 and verify the two answers are the same.

Solution. We found in Example 2.4.13 that f ′(x) = 10x sin(x)−5x2 cos(x)
sin2(x) .

We now find f ′ using the Product Rule, considering f as f(x) =

https://www.youtube.com/watch?v=wslbADxDg4c
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5x2 csc(x).

f ′(x) =
d

dx

(
5x2 csc(x)

)
= 5x2 d

dx
(csc(x)) +

d

dx

(
5x2
)
csc(x)

= 5x2 (− csc(x) cot(x)) + 10x csc(x) (now rewrite trig functions)

= 5x2 · −1

sin(x)
· cos(x)
sin(x)

+
10x

sin(x)

=
−5x2 cos(x)
sin2(x)

+
10x

sin(x)
(get common denominator)

=
10x sin(x)− 5x2 cos(x)

sin2(x)
.

Finding f ′ using either method returned the same result. At first, the
answers looked different, but some algebra verified they are the same.
In general, there is not one final form that we seek; the immediate result
from the Product Rule is fine. Work to “simplify” your results into a form
that is most readable and useful to you.

The Quotient Rule gives other useful results, as shown in the next example.

Example 2.4.18 Using the Quotient Rule to expand the Power Rule.

Find the derivatives of the following functions.

1. f(x) =
1

x

2. f(x) =
1

xn
, where n > 0 is an integer.

Solution. We employ the Quotient Rule.

1.

f ′(x) =
x · 0− 1 · 1

x2

= − 1

x2

2.

f ′(x) =
xn · 0− 1 · nxn−1

(xn)2

= −nxn−1

x2n

= − n

xn+1
.

Video solution

youtu.be/watch?v=jPqqK-ObPm4

The derivative of y = 1
xn turned out to be rather nice. It gets better. Con-

sider:

d

dx

(
1

xn

)
=

d

dx

(
x−n

)
(apply result from Example 2.4.18)

https://www.youtube.com/watch?v=jPqqK-ObPm4
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= − n

xn+1
(rewrite algebraically)

= −nx−(n+1)

= −nx−n−1 .

This is reminiscent of the Power Rule: multiply by the power, then subtract
1 from the power. We now add to our previous Power Rule, which had the re-
striction of n > 0.

Theorem 2.4.19 Power Rule with Integer Exponents.

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend-
ing on how the function is treated. One of the beautiful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivative. We demonstrate this concept in an example.

Example 2.4.20 Exploring alternate derivative methods.

Let f(x) = x2−3x+1
x . Find f ′(x) in each of the following ways:

1. By applying the Quotient Rule,

2. by viewing f as f(x) =
(
x2 − 3x+ 1

)
· x−1 and applying the

Product Rule and Power Rule with Integer Exponents, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.
Solution.

1. Applying the Quotient Rule gives:

f ′(x) =
x · d

dx

(
x2 − 3x+ 1

)
−
(
x2 − 3x+ 1

)
d
dx (x)

x2

=
x · (2x− 3)−

(
x2 − 3x+ 1

)
· 1

x2

=
x2 − 1

x2

= 1− 1

x2
.

2. By rewriting f , we can apply the Product Rule and Power Rulewith
Integer Exponents as follows:

f ′(x) =
(
x2 − 3x+ 1

) d

dx

(
x−1

)
+

d

dx

(
x2 − 3x+ 1

)
x−1

=
(
x2 − 3x+ 1

)
· (−1)x−2 + (2x− 3) · x−1

= −x2 − 3x+ 1

x2
+

2x− 3

x
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= −x2 − 3x+ 1

x2
+

2x2 − 3x

x2

=
x2 − 1

x2
= 1− 1

x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x− 3 +
x−1. Now apply the Power Rule with Integer Exponents.

f ′(x) = 1− 1

x2
,

the same result as before.

Video solution

youtu.be/watch?v=ESYjxNMNvh8

Example 2.4.20 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1

x2

x · (2x− 3)−
(
x2 − 3x+ 1

)
· 1

x2(
x2 − 3x+ 1

)
· (−1)x−2 + (2x− 3) · x−1.

They are equal; they are all correct; only the first is “simple.” Work to make
answers simple.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo-
rize the derivatives of a certain set of functions, such as “the derivative of sin(x)
is cos(x).” The Sum/Difference Rule, Constant Multiple Rule, Power Rule with
Integer Exponents, Product Rule and Quotient Rule show us how to find the de-
rivatives of certain combinations of these functions. The next section shows how
to find the derivatives when we compose these functions together.

https://www.youtube.com/watch?v=ESYjxNMNvh8
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2.4.1 Exercises

Terms and Concepts

1. (□ True □ False) The Product Rule states that d
dx

(
x2 sin(x)

)
= 2x cos(x).

2. (□ True □ False) The Quotient Rule states that d
dx

(
x2

sin(x)

)
= cos(x)

2x .

3. (□ True □ False) The derivatives of the trigonometric functions that start with “c” have minus signs in
them.

4. What derivative rule is used to extend the Power Rule to include negative integer exponents?
5. (□ True □ False) Regardless of the function, there is always exactly one right way of computing its deriv-

ative.
6. In your own words, explain what it means to make your answers “clear.”

Problems

Exercise Group.

(a) Use the Product Rule to differentiate the function.

(b) Manipulate the function algebraically and differentiate without using the Product Rule.

(c) Show that the two derivatives are equivalent.

7. f(x) = x
(
x2 + 3x

)
8. f(x) = 2x2 · 5x3

9. f(s) = (2s− 1) (s+ 4) 10. f(x) =
(
x2 + 5

) (
3− x3

)
Exercise Group.

(a) Use the Quotient Rule to differentiate the function.

(b) Manipulate the function algebraically and differentiate without using the Quotient Rule.

(c) Show that the two derivatives are equivalent.

11. f(x) = x2+3
x 12. f(x) = x3−2x2

2x2

13. f(x) = 3
4s3 14. f(x) = t2−1

t+1

Exercise Group. Compute the derivative of the given function.
15. k(y) = y sin(y) 16. k(t) = t3 cos(t)
17. p(q) = eq ln(q) 18. f(y) = 1

y6 (csc(y)− 5)

19. f(t) = t+8
t−4 20. g(q) = q3

sin(q)−8q2

21. h(y) = csc(y)− ey 22. h(t) = tan(t) ln(t)
23. j(q) = 7q2 − 6q − 6 24. k(y) = y6+9y5

y+9

25. k(r) =
(
5r2 + 7r + 3

)
er 26. p(z) = z9+z5

ez

27. p(x) =
(
8x3 − 22x2 + 5x

)
3x−25

8x3−22x2+5x
28. f(r) = r5(tan(r) + er)

29. g(z) = csc(z)
cos(z)+2 30. g(θ) = θ4 sec(θ) + sec(θ)

θ4

31. h(r) = cot(r)
r + r

tan(r)
32. j(z) = e3(cos(π/6)− 1)

33. j(x) = 7x5ex − sin(x) cos(x) 34. k(r) = r2 sin(r)−7
r2 cos(r)−9



2.4. THE PRODUCT AND QUOTIENT RULES 103

35. p(z) = z4 ln(z) cos(z) 36. p(x) = 9x cos(x) tan(x)

Exercise Group. Find the equations of the tangent and normal lines to the graph of g at the indicated point.
37. g(x) = ex

(
x2 − 7

)
at (0,−7) 38. g(x) = x cos(x) at

(
5π
3 , 5π

6

)
39. g(x) = x2

x−(−4) at (−5,−25) 40. g(x) = sin(x)−2x
x−8 at (0, 0)

Exercise Group. Find the x-values where the graph of the function has a horizontal tangent line.
41. f(x) = x2 − 17x− 29 42. f(x) = x sin(x) on [−1, 1]

43. f(x) = 2x
−3x+3 44. f(x) = 3x2

x−2

Exercise Group. Find the requested higher order derivative.
45. f ′′(x), where f(x) = x sin(x) 46. f (4)(x), where f(x) = x sin(x)
47. f ′′(x), where f(x) = csc(x) 48. f (9)(x), where

f(x) =
(
x3 − 4x− 3

) (
x2 − 9x− 2

)
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2.5 The Chain Rule

Wehave covered almost all of the derivative rules that deal with combinations of
two (or more) functions. The operations of addition, subtraction, multiplication
(including by a constant) and division led to the Sum/Difference Rule, the Con-
stant Multiple Rule, the Power Rule with Integer Exponents, the Product Rule
and the Quotient Rule. To complete the list of differentiation rules, we look at
the last way two (or more) functions can be combined: the process of composi-
tion (i.e. one function “inside” another).youtu.be/watch?v=k7wX-kxd7Kw

Figure 2.5.1 Video introduction to
Section 2.5

One example of a composition of functions is f(x) = cos(x2). We currently
do not know how to compute this derivative. If forced to guess, onemight guess
f ′(x) = − sin(2x), where we recognize− sin(x) as the derivative of cos(x) and
2x as the derivative of x2. However, this is not the case; f ′(x) ̸= − sin(2x). One
way to see this is to examine the graph of y = cos

(
x2
)
in Figure 2.5.2 and its

tangent line at x = π/2. Clearly the slope of the tangent line there is nonzero,
but−2 sin(2 · π/2) = 0. So it can’t be correct to say that y′ = − sin(2x).

0.5 1 1.5 2 2.5 3 3.5

−1

1

x

y

Figure 2.5.2 A graph of y = cos(x2)
and a tangent line at π/2

In Example 2.5.9 we’ll see the correct way to compute the derivative of
sin
(
x2
)
, which employs the new rule this section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func-
tions. Wewrite (f ◦g)(x) or f(g(x)), read as “f of g of x,” to denote composing
f with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Be-
fore giving the corresponding differentiation rule, we note that the rule extends
to multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 2.5.3 Exploring similar derivatives.

Find the derivatives of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and
F3(x) = (1 − x)4. (We’ll see later why we are using subscripts for dif-
ferent functions and an uppercase F .)
Solution. In order to use the rules we already have, we must first ex-
pand each function as

F1(x) = 1− 2x+ x2

F2(x) = 1− 3x+ 3x2 − x3

F3(x) = 1− 4x+ 6x2 − 4x3 + x4

It is not hard to see that:

F ′
1(x) = −2 + 2x

F ′
2(x) = −3 + 6x− 3x2

F ′
3(x) = −4 + 12x− 12x2 + 4x3

An interesting fact is that these can be rewritten as:

F ′
1(x) = −2(1− x)

F ′
2(x) = −3(1− x)2

F ′
3(x) = −4(1− x)3

A pattern might jump out at you; note how the we end up multiplying
by the old power and the new power is reduced by 1. We also always
multiply by (−1).
Recognize that each of these functions is a composition, letting g(x) =
1− x:

F1(x) = f1(g(x)), where f1(x) = x2,

https://www.youtube.com/watch?v=k7wX-kxd7Kw
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F2(x) = f2(g(x)), where f2(x) = x3,

F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example after giving the formal statements of
the Chain Rule; for now, we are just illustrating a pattern.

When composing functions, we
need to make sure that the new
function is actually defined. For
instance, consider f(x) =

√
x

and g(x) = −x2 − 1. The do-
main of f excludes all negative
numbers, but the range of g is
only negative numbers. There-
fore the composition f(g(x)) =√
−x2 − 1 is not defined for any

x, andhence is not differentiable.
The statement of Theorem2.5.4

takes care to ensure this problem
does not arise, but our focus is
moreon thederivative result than
on thedomain/range conditions.

Theorem 2.5.4 The Chain Rule.

Let g be a differentiable function on an interval I , let the range of g be
a subset of the interval J , and let f be a differentiable function on J .
Then y = f(g(x)) is a differentiable function on I , and

y′ = f ′(g(x)) · g′(x).

youtu.be/watch?v=1_Lp-ONIMuc

Figure 2.5.5 Video presentation of
Theorem 2.5.4

Here is the Chain Rule in words:

The derivative of the outside function, evaluated at the inside func-
tion, multiplied by the derivative of the inside function.

To help understand the Chain Rule, we return to Example 2.5.3.

Example 2.5.6 Using the Chain Rule.

Use the Chain Rule to find the derivatives of the functions F1(x), F2(x),
and F3(x), as given in Example 2.5.3.
Solution. Example 2.5.3 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confu-
sion, we ignore most of the subscripts here.

F1(x) = (1− x)2 We found that

y = (1− x)2 = f(g(x)),

where f(x) = x2 and g(x) = 1 − x. To find
y′, we apply the The Chain Rule. We need to
note that f ′(x) = 2x and g′(x) = −1.
Part of the The Chain Rule uses f ′(g(x)). This
means substitute g(x) for x in the equation
for f ′(x). That is, f ′(x) = 2(1− x). Finishing
out the The Chain Rule we have

y′ = f ′(g(x)) · g′(x)
= 2(1− x) · (−1)

= −2(1− x)

= 2x− 2.

https://www.youtube.com/watch?v=1_Lp-ONIMuc
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F2(x) = (1− x)3 Let y = (1−x)3 = f(g(x)), where f(x) = x3

and g(x) = (1 − x). We have f ′(x) = 3x2,
so f ′(g(x)) = 3(1− x)2. The The Chain Rule
then states

y′ = f ′(g(x)) · g′(x)
= 3(1− x)2 · (−1)

= −3(1− x)2.

F3(x) = (1− x)4 Finally, when y = (1−x)4, wehave f(x) = x4

and g(x) = (1 − x). Thus f ′(x) = 4x3 and
f ′(g(x)) = 4(1− x)3. Thus

y′ = f ′(g(x)) · g′(x)
= 4(1− x)3 · (−1)

= −4(1− x)3.

Example 2.5.6 demonstrated a particular pattern: when f(x) = xn, then
y′ = n · (g(x))n−1 · g′(x). This is called the Generalized Power Rule.

Theorem 2.5.7 Generalized Power Rule.

Let g(x) be a differentiable function and let n ̸= 0 be an integer. Then

d

dx
(g(x)n) = n · (g(x))n−1 · g′(x).

This allows us to quickly find the derivative of functions like y = (3x2−5x+
7+ sin(x))20. While it may look intimidating, the Generalized Power Rule states
that

y′ = 20(3x2 − 5x+ 7 + sin(x))19 · (6x− 5 + cos(x)).

Treat the derivative-taking process step-by-step. In the example just given,
first multiply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

We now consider more examples that employ the The Chain Rule.

Example 2.5.8 Using the Chain Rule.

Find the derivatives of the following functions:

1. y = sin(2x). 2. y = ln(4x3 −
2x2).

3. y = e−x2

.

Solution.

1. Consider y = sin(2x). Recognize that this is a composition of
functions, where f(x) = sin(x) and g(x) = 2x. Thus

y′ = f ′(g(x)) · g′(x)

= cos(2x) · d

dx
(2x)
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= cos(2x) · 2
= 2 cos(2x).

2. Recognize that y = ln
(
4x3 − 2x2

)
is the composition of f(x) =

ln(x) and g(x) = 4x3 − 2x2. Also, recall that

d

dx
(ln(x)) =

1

x
.

This leads us to:

y′ =
1

4x3 − 2x2
· d

dx

(
4x3 − 2x2

)
=

1

4x3 − 2x2
·
(
12x2 − 4x

)
=

12x2 − 4x

4x3 − 2x2

=
4x(3x− 1)

2x(2x2 − x)

=
2(3x− 1)

2x2 − x
.

Note that ln
(
4x3 − 2x2

)
= ln

(
4x2(x− 1/2)

)
was only defined

for x > 1/2, so the result of y′ = 2(3x−1)
2x2−x is only valid for x > 1/2

as well.

3. Recognize that y = e−x2

is the composition of f(x) = ex and
g(x) = −x2. Remembering that f ′(x) = ex, we have

y′ = e−x2

· d

dx

(
−x2

)
= e−x2

· (−2x)

= −2xe−x2

.

Video solution

youtu.be/watch?v=yW1BbOeDFcM

Example 2.5.9 Using the Chain Rule to find a tangent line.

Let f(x) = cos(x2). Find the equation of the line tangent to the graph
of f at x = 1.
Solution. The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the The Chain Rule.
f ′(x) = − sin(x2) · (2x) = −2x sin(x2). Evaluated at x = 1, we have
f ′(1) = −2 sin(1) ≈ −1.68. Thus the equation of the tangent line is
approximated by

y ≈ −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.10. −3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

y

Figure 2.5.10 f(x) = cos(x2)
sketched alongwith its tangent line at
x = 1

The The Chain Rule is used often in taking derivatives. Because of this, one
can become familiar with the basic process and learn patterns that facilitate find-

https://www.youtube.com/watch?v=yW1BbOeDFcM
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ing derivatives quickly. For instance,

d

dx
(ln(anything)) =

1

anything
· d

dx
(anything) =

d
dx (anything)
anything

.

A concrete example of this is

d

dx

(
ln(3x15 − cos(x) + ex)

)
=

45x14 + sin(x) + ex

3x15 − cos(x) + ex
.

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the numer-
ator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In gen-
eral, instead of writing “anything”, we use u as a generic function of x. We then
say

d

dx
(ln(u)) =

u′

u
.

The following is a short list of how the The Chain Rule can be quickly applied
to familiar functions.

1. d
dx (u

n) = n · un−1 · u′.

2. d
dx (e

u) = eu · u′.

3. d
dx (sin(u)) = cos(u) · u′.

4. d
dx (cos(u)) = − sin(u) · u′.

5. d
dx (tan(u)) = sec2(u) · u′.

Of course, the The Chain Rule can be applied in conjunction with any of the
other rules we have already learned. We practice this next.

Example 2.5.11 Using the Product, Quotient and Chain Rules.

Find the derivatives of the following functions.

1. f(x) = x5 sin(2x3). 2. f(x) =
5x3

e−x2 .

Solution.

1. We must use the Product Rule and The Chain Rule. Do not think
that you must be able to “see” the whole answer immediately;
rather, just proceed step-by-step.

f ′(x) = x5 · d

dx

(
sin
(
2x3
))

+ sin
(
2x3
)
· d

dx

(
x5
)

= x5

(
cos
(
2x3
)
· d

dx

(
2x3
))

+ 5x4
(
sin
(
2x3
))

= x5
(
6x2 cos

(
2x3
) )

+ 5x4
(
sin
(
2x3
) )

= 6x7 cos
(
2x3
)
+ 5x4 sin

(
2x3
)
.

2. Wemust employ the Quotient Rule along with the The Chain Rule.
Again, proceed step-by-step.

f ′(x) =
e−x2 · d

dx

(
5x3
)
− 5x3 · d

dx

(
e−x2

)
(
e−x2

)2



2.5. THE CHAIN RULE 109

=
e−x2 · 15x2 − 5x3 · e−x2 · d

dx

(
−x2

)(
e−x2

)2
=

e−x2 (
15x2

)
− 5x3

(
(−2x)e−x2

)
(
e−x2

)2
=

e−x2 (
10x4 + 15x2

)
e−2x2

= ex
2 (

10x4 + 15x2
)
.

Video solution

youtu.be/watch?v=2QJLR-Y-Ht8

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
Rule and The Chain Rule together, just consider the first part of the Product Rule
at first: f(x)g′(x). Just rewrite f(x), then find g′(x). Then move on to the
f ′(x)g(x) part. Don’t attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

We can also employ the The Chain Rule itself several times, as shown in the
next example.

Example 2.5.12 Using the Chain Rule multiple times.

Find the derivative of y = tan5(6x3 − 7x).
Solution. Recognize that we have the g(x) = tan

(
6x3 − 7x

)
function

“inside” the f(x) = x5 function; that is, we have y =
(
tan
(
6x3 − 7x

))5.
We begin using the Generalized Power Rule; in this first step, we do not
fully compute the derivative. Rather, we are approaching this step-by-
step.

y′ = 5
(
tan
(
6x3 − 7x

))4 · g′(x).
We now find g′(x). We again need the The Chain Rule;

g′(x) = sec2
(
6x3 − 7x

)
· d

dx

(
6x3 − 7x

)
.

= sec2
(
6x3 − 7x

)
·
(
18x2 − 7

)
.

Combine this with what we found above to give

y′ = 5
(
tan
(
6x3 − 7x

))4 · sec2(6x3 − 7x
)
·
(
18x2 − 7

)
=
(
90x2 − 35

)
sec2

(
6x3 − 7x

)
tan4

(
6x3 − 7x

)
.

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many ver-
tical asymptotes and 6x3 − 7x grows so very fast. The important thing
to learn from this is that the derivative can be found. In fact, it is not
“hard”; one can take several simple steps and should be careful to keep
track of how to apply each of these steps.

Video solution

youtu.be/watch?v=JeLuSDqqFPA

It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

https://www.youtube.com/watch?v=2QJLR-Y-Ht8
https://www.youtube.com/watch?v=JeLuSDqqFPA
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Example 2.5.13 Using the Product, Quotient and Chain Rules.

Find the derivative of f(x) = x cos(x−2)−sin2(e4x)
ln(x2+5x4) .

Solution. This function likely has no practical use outside of demonstrat-
ing derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the The Chain Rule
three times.

f ′(x)

=

(
ln
(
x2 + 5x4

)
·
[(

x ·
(
− sin

(
x−2

))
·
(
−2x−3

)
+ 1 · cos

(
x−2

) )
− 2 sin

(
e4x
)
· cos

(
e4x
)
·
(
4e4x

) ]
−
(
x cos

(
x−2

)
− sin2

(
e4x
))

· 2x+ 20x3

x2 + 5x4

)
/(
ln
(
x2 + 5x4

))2 .
The reader is highly encouraged to look at each term and recognize why
it is there. (i.e., the Quotient Rule is used; in the numerator, identify
the “LOdHI” term, etc.) This example demonstrates that derivatives can
be computed systematically, no matter how arbitrarily complicated the
function is.

The The Chain Rule also has theoretic value. That is, it can be used to find the
derivatives of functions that we have not yet learned as we do in the following
example.

Example 2.5.14 The Chain Rule and exponential functions.

Use the Chain Rule to find the derivative of y = 2x.
Solution. We only know how to find the derivative of one exponential
function, y = ex. We can accomplish our goal by rewriting 2 in termsof e.
Recalling that ex and ln(x) are inverse functions, we can write 2 = eln 2

and so
y = 2x =

(
eln 2
)x

= ex(ln(2)),

using the “power to a power” property of exponents.
The function is now the composition y = f(g(x)), with f(x) = ex and
g(x) = x(ln(2)). Since f ′(x) = ex and g′(x) = ln(2), the The Chain
Rule gives

y′ = ex(ln(2)) · ln 2.

Recall that the ex(ln(2)) term on the right hand side is just 2x, our original
function. Thus, the derivative contains the original function itself. We
have

y′ = y · ln(2) = 2x · ln(2).

We can extend this process to use any basea, wherea > 0 anda ̸= 1. All
we need to do is replace each “2” in our work with “a.” The Chain Rule,
coupled with the derivative rule of ex, allows us to find the derivatives
of all exponential functions.

The comment at the end of previous example is important and is restated
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formally as a theorem.

Theorem 2.5.15 Derivatives of Exponential Functions.

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differentiable for all real
numbers (i.e., differentiable everywhere) and

f ′(x) = ln(a) · ax.

youtu.be/watch?v=LnmwxZ5w30w

Figure 2.5.16 Derivatives of exponen-
tial and general power functions

Alternate Chain Rule Notation. It is instructive to understand what the The
Chain Rule “looks like” using “ dydx” notation instead of y

′ notation. Suppose that
y = f(u) is a function of u, where u = g(x) is a function of x, as stated in
Theorem 2.5.4. Then, through the composition f ◦ g, we can think of y as a
function of x, as y = f(g(x)). Thus the derivative of y with respect to xmakes
sense; we can talk about dy

dx . This leads to an interesting progression of notation:

y′ = f ′(g(x)) · g′(x)
dy

dx
= y′(u) · u′(x) since y = f(u) and u = g(x)

dy

dx
=

dy

du
· du
dx

(using “fractional notation” for the derivative)

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy

dx
=

dy

dx
.

It is important to realize thatwe are not canceling these terms; the derivative
notation of dy

du is one symbol. It is equally important to realize that this notation
was chosen precisely because of this behavior. It makes applying the The Chain
Rule easy with multiple variables. For instance,

dy

dt
=

dy

d⃝
· d⃝
d△

· d△
dt
.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the The Chain Rule is to con-

sider a set of gears, as shown in Figure 2.5.17. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolution is twice as fast as
the rate at which the x gear makes a revolution.

https://www.youtube.com/watch?v=LnmwxZ5w30w
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Using the terminology of calculus, the
rate of u-change, with respect to x, is
du
dx = 2.
Likewise, every revolution of u causes
3 revolutions of y: dy

du = 3. How does
y change with respect to x? For each
revolution of x, y revolves 6 times;
that is,

dy

dx
=

dy

du
· du
dx

= 2 · 3 = 6.

We can then extend the The Chain
Rule with more variables by adding
more gears to the picture.

x

u

dy

du
= 3

du

dx
= 2

dy

dx
= 6

y

Figure 2.5.17 A series of gears to
demonstrate the Chain Rule. Note
how dy

dx = dy
du · du

dx

It is difficult to overstate the importance of the The Chain Rule. So often the
functions that we deal with are compositions of two or more functions, requir-
ing us to use this rule to compute derivatives. It is also often used in real life
when actual functions are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the The Chain Rule, we can

find dy
dx .
In Section 2.6, we use the The Chain Rule to justify another differentiation

technique. There are many curves that we can draw in the plane that fail the
“vertical line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. We may still be interested in finding slopes of tangent lines to the circle
at various points. Section 2.6 shows how we can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.
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2.5.1 Exercises

Terms and Concepts

1. (□ True □ False) The Chain Rule describes how to evaluate the derivative of a composition of functions.

2. (□ True □ False) The Generalized Power Rule states that d
dx (g(x)

n) = n (g(x))
n−1 .

3. (□ True □ False) d
dx

(
ln
(
x2
))

= 1
x2 .

4. (□ True □ False) d
dx (3

x) ≈ 1.1 · 3x.

5. (□ True □ False) dx
dy = dx

dt · dt
dy .

6. (□ True □ False) Taking the derivative of f(x) = x2 sin(5x) requires the use of both the Product and
Chain Rules.

Problems

Exercise Group. Compute the derivative of the given function.

7. f(x) =
(
4x3 − x

)10 8. f(t) = (3t− 2)5

9. g(θ) = (sin(θ) + cos(θ))3 10. h(t) = e3t
2+t−1

11. j(x) =
(
ln(x)− x4

)4 12. j(q) = 2q
5+4q

13. k(y) =
(
y + 1

y

)5 14. p(t) = cos(5t)

15. p(q) = tan(2q) 16. f(θ) = cot
(
θ2 + 3

)
17. g(t) = sin

(
t6 + 1

t3

)
18. g(q) = cos5(7q)

19. h(y) = cos3
(
y2 + 3y − 3

)
20. j(t) = ln(cos(t))

21. j(q) = ln
(
q8
)

22. k(y) = 3 ln(y)

23. p(t) = 6t 24. p(z) = 2csc(z)

25. f(x) = 810 26. g(t) = 4t

9t

27. h(w) = 6w+5
5w+6 28. h(y) = 7y+8

5y

29. j(r) = 5r
2
−r

6r2
30. k(w) = w3 cot(5w)

31. p(x) =
(
x2 + 4x

)6 (
7x4 + x

)3 32. m(r) = sin(8− 4r) cos
(
6r + r2

)
33. m(w) = cos(4w − 5) sin(9 + 7w) 34. f(x) = e8x

2

sin
(
1
x

)
35. g(r) = cos(6r+4)

(3r+1)3 36. h(z) = (3z+5)2

sin(9z)

Exercise Group. Find the equations of tangent and normal lines to the graph of the function at the given point. Note:
the functions here are the same as in Exercises 7–10.

37. f(x) =
(
4x3 − x

)10 at x = 0 38. f(x) = (3x− 2)5 at x = 1

39. g(x) = (sin(x) + cos(x))3 at x = π/2. 40. h(x) = e3x
2+x−1 at x = −1

41. Compute d
dx (ln(kx)) two ways. First by using the Chain Rule. Second, by using the logarithm rule ln(ab) =

ln(a) + ln(b) and then taking the derivative.

42. Compute d
dx

(
ln
(
xk
))
two ways. First by using the Chain Rule. Second, by using the logarithm rule ln(ap) =

p ln(a) (for positive a) and then taking the derivative.
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2.6 Implicit Differentiation

In the previous sections we learned to find the derivative, dy
dx , or y

′, when y is
given explicitly as a function of x. That is, if we know y = f(x) for some function
f , we can find y′. For example, given y = 3x2 − 7, we can easily find y′ = 6x.
(Here we explicitly state how y depends on x. Knowing x, we can directly find
y.)

youtu.be/watch?v=E0mQbLG3Pjo

Figure 2.6.1 Video introduction to
Section 2.6

Sometimes the relationship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relationship between x and y; if we know x, we could figure out y. Can we still
find y′? In this case, sure; we solve for y to get y = x2− 4 (hence we now know
y explicitly) and then differentiate to get y′ = 2x.

Sometimes the implicit relationship between x and y is complicated. Sup-
pose we are given sin(y) + y3 = 6 − x3. A graph of this implicit relationship
is given in Figure 2.6.2. In this case there is absolutely no way to solve for y in
terms of elementary functions. The surprising thing is, however, that we can
still find y′ via a process known as implicit differentiation.

−3 −2 −1 1 2 3

−2

2

x

y

Figure 2.6.2 A graph of the implicit re-
lationship sin(y) + y3 = 6− x3

2.6.1 The method of implicit differentiation
Implicit differentiation is a technique based on the The Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be functions of x. Then

d

dx
(f(g(x))) = f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d

dx
(f(y)) = f ′(y) · y′, or

d

dx
(f(y)) = f ′(y) · dy

dx
. (2.6.1)

These equations look strange; the key concept to learn here is that we can
find y′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.3 Using Implicit Differentiation.

Find y′ given that sin(y) + y3 = 6− x3.
Solution. We start by taking the derivative of both sides (thus maintain-
ing the equality.) We have:

d

dx

(
sin(y) + y3

)
=

d

dx

(
6− x3

)
.

The right hand side is easy; it returns−3x2.
The left hand side requires more consideration. We take the derivative
term-by-term. Using the technique derived from Equation (2.6.1) above,
we can see that

d

dx
(sin(y)) = cos(y) · y′.

We apply the same process to the y3 term.

d

dx

(
y3
)
=

d

d(y)3
(=)3(y)2 · y′.

https://www.youtube.com/watch?v=E0mQbLG3Pjo
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Putting this together with the right hand side, we have

cos(y)y′ + 3y2y′ = −3x2.

Now solve for y′. It’s important to treat y′ as an algebraically indepen-
dent variable from y and x.

cos(y)y′ + 3y2y′ = −3x2(
cos(y) + 3y2

)
y′ = −3x2

y′ =
−3x2

cos(y) + 3y2

This equation for y′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Video solution

youtu.be/watch?v=0baXlbhup0o

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com-
puting the corresponding y value. With an implicit function, one often has to
find x and y values at the same time that satisfy the equation. It is much eas-
ier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point
(

3
√
6, 0
)
lies on the graph of

the implicit function sin(y) + y3 = 6 − x3. Plugging in 0 for y, we see the left
hand side is 0. Setting x = 3

√
6, we see the right hand side is also 0; the equation

is satisfied. The following example finds the equation of the tangent line to this
function at this point.

Example 2.6.4 Using implicit differentiation to find a tangent line.

Find the equation of the line tangent to the curve of the implicitly de-
fined function sin(y) + y3 = 6− x3 at the point

(
3
√
6, 0
)
.

Solution. In Example 2.6.3 we found that

y′ =
−3x2

cos(y) + 3y2
.

We find the slope of the tangent line at the point
(

3
√
6, 0
)
by substituting

3
√
6 for x and 0 for y. Thus at the point

(
3
√
6, 0
)
, we have the slope as

y′ =
−3
(

3
√
6
)2

cos(0) + 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equation of the tangent line to the implicitly defined func-
tion sin(y) + y3 = 6− x3 at the point

(
3
√
6, 0
)
is

y = −3
3
√
36
(
x− 3

√
6
)
+ 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.6.5. −3 −2 −1 1 2 3

−2

2

x

y

Figure 2.6.5 The function sin(y) +
y3 = 6 − x3 and its tangent line at
the point ( 3

√
6, 0)

Video solution

youtu.be/watch?v=qYrcm4ObwOM

This suggests a general method for implicit differentiation. For the steps be-
low assume y is a function of x.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply

https://www.youtube.com/watch?v=0baXlbhup0o
https://www.youtube.com/watch?v=qYrcm4ObwOM
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except that, because of the Theorem 2.5.4, we need tomultiply each term
by y′.

2. Get all the y′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y′; solve for y′ by dividing.

(Practical Note: when working by hand, it may be beneficial to use the sym-
bol dydx instead of y

′, as the latter can be easily confused for y or y1.)

Example 2.6.6 Using Implicit Differentiation.

Given the implicitly defined function y3 + x2y4 = 1 + 2x, find y′.
Solution. We will take the implicit derivatives term by term. The deriv-
ative of y3 is 3y2y′.
The second term, x2y4, is a little tricky. It requires the Product Rule
as it is the product of two functions of x: x2 and y4. Its derivative is
x2(4y3y′)+2xy4. The first part of this expression requires a y′ because
we are taking the derivative of a y term. The second part does not re-
quire it because we are taking the derivative of x2.
The derivative of the right hand side is easily found to be 2. In all, we
get:

3y2y′ + 4x2y3y′ + 2xy4 = 2.

Move terms around so that the left side consists only of the y′ terms and
the right side consists of all the other terms:

3y2y′ + 4x2y3y′ = 2− 2xy4.

Factor out y′ from the left side and solve to get

y′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equation of a tangent
line to this function at a point. It is easy to confirm that the point (0, 1)
lies on the graph of this function. At this point, y′ = 2/3. So the equa-
tion of the tangent line is y = 2/3(x − 0) + 1. The function and its
tangent line are graphed in Figure 2.6.7.

2 4 6 8 10

−10

−8

−6

−4

−2

2

x

y

Figure 2.6.7 A graph of the implicitly
defined function y3 + x2y4 = 1+2x
alongwith its tangent line at the point
(0, 1)

Notice how our curve looks much different than for functions we have
seen. For one, it fails the vertical line test, and so the complete curve is
not truly representing y as a function of x. But when we indicate we are
interested in the derivative at (0, 1), we are indicating that we want the
function defined by the small portion of the curve that passes through
(0, 1), and that small portion does pass the vertical line test. Such func-
tions are important in many areas of mathematics, so developing tools
to deal with them is also important.

Video solution

youtu.be/watch?v=O5OqJ7a_Ovo

Example 2.6.8 Using Implicit Differentiation.

Given the implicitly defined function sin
(
x2y2

)
+ y3 = x+ y, find y′.

Solution. Differentiating term by term, we find the most difficulty in

https://www.youtube.com/watch?v=O5OqJ7a_Ovo
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the first term. It requires both the The Chain Rule and Product Rule.

d

dx

(
sin
(
x2y2

))
= cos

(
x2y2

)
· d

dx

(
x2y2

)
= cos

(
x2y2

)
·
(
x2(2yy′) + 2xy2

)
= 2

(
x2yy′ + xy2

)
cos
(
x2y2

)
.

We leave the derivatives of the other terms to the reader. After taking
the derivatives of both sides, we have

2
(
x2yy′ + xy2

)
cos
(
x2y2

)
+ 3y2y′ = 1 + y′.

We now have to be careful to properly solve for y′, particularly because
of the product on the left. It is best to multiply out the product. Doing
this, we get

2x2y cos
(
x2y2

)
y′ + 2xy2 cos

(
x2y2

)
+ 3y2y′ = 1 + y′.

From here we can safely move around terms to get the following:

2x2y cos
(
x2y2

)
y′ + 3y2y′ − y′ = 1− 2xy2 cos

(
x2y2

)
.

Then we can solve for y′ to get

y′ =
1− 2xy2 cos

(
x2y2

)
2x2y cos(x2y2) + 3y2 − 1

.

A graph of this implicit function is given in Figure 2.6.9.

−1 1

−1

1

x

y

Figure 2.6.9 A graph of the implicitly
defined curve sin

(
x2y2

)
+y3 = x+y

It is easy to verify that the points (0, 0), (0, 1) and (0,−1) all lie on the
graph. We can find the slopes of the tangent lines at each of these points
using our formula for y′.

• At (0, 0), the slope is−1.

• At (0, 1), the slope is 1/2.

• At (0,−1), the slope is also 1/2.

The tangent lines have been added to the graph of the function in Fig-
ure 2.6.10.

−1 1

−1

1

x

y

Figure 2.6.10 A graph of the implicitly
defined curve sin

(
x2y2

)
+y3 = x+y

and certain tangent lines

Video solution

youtu.be/watch?v=BMn-BU6VTQU

Quite a few “famous” curves have equations that are given implicitly. We can
use implicit differentiation to find the slope at various points on those curves.
We investigate two such curves in the next examples.

Example 2.6.11 Finding slopes of tangent lines to a circle.

Find the slope of the tangent line to the circle x2 + y2 = 1 at the point(
1/2,

√
3/2
)
.

Solution. Taking derivatives, we get 2x+2yy′ = 0. Solving for y′ gives:

y′ =
−x

y
.

This is a clever formula. Recall that the slope of the line through the ori-
gin and the point (x, y) on the circle will be y/x. We have found that
the slope of the tangent line to the circle at that point is the opposite

https://www.youtube.com/watch?v=BMn-BU6VTQU
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reciprocal of y/x, namely,−x/y. Hence these two lines are always per-
pendicular.
At the point

(
1/2,

√
3/2
)
, we have the tangent line’s slope as

y′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at
(
1/2,

√
3/2
)
is given in Fig-

ure 2.6.12, along with a thin dashed line from the origin that is perpen-
dicular to the tangent line. (It turns out that all normal lines to a circle
pass through the center of the circle.)−1 −0.5 0.5 1

−1

−0.5

0.5

1
(
1/2,

√
3/2
)

x

y

Figure 2.6.12 The unit circle with its
tangent line at (1/2,

√
3/2)

This section has shown how to find the derivatives of implicitly defined func-
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu-
lar” differentiation.

One hole in our current understanding of derivatives is this: what is the de-
rivative of the square root function? That is,

d

dx

(√
x
)
=

d

dx

(
x1/2

)
= ?

We allude to a possible solution, as we can write the square root function as
a power function with a rational (or, fractional) power. We are then tempted to
apply the Power Rule with Integer Exponents and obtain

d

dx

(
x1/2

)
=

1

2
x−1/2 =

1

2
√
x
.

The trouble with this is that the Power Rule with Integer Exponents was ini-
tially defined only for positive integer powers, n > 0. While we did not justify
this at the time, generally the Power Rule with Integer Exponents is proved us-
ing something called the Binomial Theorem, which deals only with positive in-
tegers. The Quotient Rule allowed us to extend the Power Rule with Integer Ex-
ponents to negative integer powers. Implicit Differentiation allows us to extend
the Power Rule with Integer Exponents to rational powers, as shown below.

Let y = xm/n, where m and n are integers with no common factors (so
m = 2 and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this
explicit function implicitly as yn = xm. Now apply implicit differentiation.

y = xm/n

yn = xm

d

dx
(yn) =

d

dx
(xm)

n · yn−1 · y′ = m · xm−1

y′ =
m

n

xm−1

yn−1
(now substitute xm/n for y)

=
m

n

xm−1

(xm/n)n−1
(apply lots of algebra)

=
m

n
x(m−n)/n

=
m

n
xm/n−1.

The above derivation is the key to the proof extending the Power Rule with
Integer Exponents to rational powers. Using limits, we can extend this once
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more to include all powers, including irrational (even transcendental!) powers,
giving the following theorem.

Theorem 2.6.13 Power Rule for Differentiation.

Let f(x) = xn, where n ̸= 0 is a real number. Then f is differentiable
on its domain, except possibly at x = 0, and f ′(x) = n · xn−1.

This theorem allows us to say the derivative of xπ is πxπ−1.
We now apply this final version of the Power Rule for Differentiation in the

next example, the second investigation of a “famous” curve.

Example 2.6.14 Using the Power Rule.

Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).
Solution. This is a particularly interesting curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling
around inside of a larger circle, as shown in Figure 2.6.15. −20 −10 10 20

−20

−10

10

20

x

y

Figure 2.6.15 An astroid, traced out
by a point on the smaller circle as it
rolls inside the larger circle

To find the slope of the astroid at the point (8, 8), we take the derivative
implicitly.

2

3
x−1/3 +

2

3
y−1/3y′ = 0

2

3
y−1/3y′ = −2

3
x−1/3

y′ = −x−1/3

y−1/3

y′ = −y1/3

x1/3
= − 3

√
y

x
.

Plugging in x = 8 and y = 8, we get a slope of−1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.16.

−20 −10 10 20

−20

−10

10

20

(8, 8)

x

y

Figure 2.6.16 An astroid with a tan-
gent line

2.6.2 Implicit Differentiation and the Second Derivative
We can use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find dy

dx , then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.17 Finding the second derivative.

Given x2 + y2 = 1, find d2y
dx2 = y′′.

Solution. We found that y′ = dy
dx = −x/y in Example 2.6.11. To find

y′′, we apply implicit differentiation to y′.

y′′ =
d

dx
(y′)

=
d

dx

(
−x

y

)
(Now use the Quotient Rule.)

= −y · 1− x(y′)

y2
replace y′ with − x/y:
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= −y − x(−x/y)

y2

= −y + x2/y

y2
.

While this is not a particularly simple expression, it is usable. We can see
that y′′ > 0when y < 0 and y′′ < 0when y > 0. In Section 3.4, we will
see how this relates to the shape of the graph.
Also, if we remember that we are only considering points on the curve
x2 + y2 = 1, then we know that x2 = 1− y2. So we can replace the x2

in the expression for y′′ to get

y′′ = −
y +

(
1− y2

)
/y

y2
= − 1

y3

which is a simpler expression. Recognizing when simplifications like this
are possible is not always easy.

Video solution

youtu.be/watch?v=V6piqsjn2mk

2.6.3 Logarithmic Differentiation
Consider the function y = xx; it is graphed in Figure 2.6.18. It is well-defined
for x > 0 and we might be interested in finding equations of lines tangent and
normal to its graph. How do we take its derivative?

In calculus the expression 00 is
also consideredwell-defined and
equal to 1. This is easily confused
with a limit of the form 00, which
is indeterminate. We skirt the is-
sue here.

0.5 1 1.5 2

1

2

3

4

x

y

Figure 2.6.18 A plot of y = xx

The function is not a power function: it has a “power” of x, not a constant.
It is not an exponential function either: it has a “base” of x, not a constant.

A differentiation technique known as logarithmic differentiation becomes
useful here. The basic principle is this: take the natural log of both sides of an
equation y = f(x), then use implicit differentiation to find y′. We demonstrate
this in the following example.

Example 2.6.19 Using Logarithmic Differentiation.

Given y = xx, use logarithmic differentiation to find y′.
Solution. As suggested above, we start by taking the natural log of both
sides then applying implicit differentiation.

y = xx

ln(y) = ln(xx) (apply logarithm rule)
ln(y) = x ln(x) (now use implicit differentiation)

d

dx
(ln(y)) =

d

dx
(x ln(x))

y′

y
= ln(x) + x · 1

x

y′

y
= ln(x) + 1

y′ = y (ln(x) + 1) (substitute y = xx)
y′ = xx (ln(x) + 1) .

To “test” our answer, let’s use it to find the equation of the tangent line
at x = 1.5. The point on the graph our tangent line must pass through
is
(
1.5, 1.51.5

)
≈ (1.5, 1.837). Using the equation for y′, we find the

https://www.youtube.com/watch?v=V6piqsjn2mk
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slope as

y′ = 1.51.5 (ln(1.5) + 1) ≈ 1.837(1.405) ≈ 2.582.

Thus the equation of the tangent line is (approximately) y ≈ 2.582(x−
1.5) + 1.837. Figure 2.6.20 graphs y = xx along with this tangent line.

0.5 1 1.5 2

1

2

3

4

(
1.5, 1.51.5

)

x

y

Figure 2.6.20 A graph of y = xx and
its tangent line at x = 1.5

Video solution

youtu.be/watch?v=6eL6WBlmItk

We would not have been able to compute the derivative of the function in
Example 2.6.19 without logarithmic differentiation. But the method is also use-
ful in cases where the product and quotient rules could be used, but logarithmic
differentiation is simpler. The video in Figure 2.6.21 provides such an example.

youtu.be/watch?v=3Cv2EgjH9ZE

Figure 2.6.21 Using logarithmic differ-
entiation

Implicit differentiation proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of functions. In particular, it extended the
Power Rule for Differentiation to rational exponents, which we then extended
to all real numbers. In Section 2.7, implicit differentiation will be used to find
the derivatives of inverse functions, such as y = sin−1(x).

https://www.youtube.com/watch?v=6eL6WBlmItk
https://www.youtube.com/watch?v=3Cv2EgjH9ZE
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2.6.4 Exercises

Terms and Concepts

1. In your own words, explain the difference between implicit functions and explicit functions.
2. Implicit differentiation is based on what other differentiation rule?

3. (□ True □ False) Implicit differentiation can be used to find the derivative of y =
√
x.

4. (□ True □ False) Implicit differentiation can be used to find the derivative of y = x3/4.

Problems

Exercise Group. Compute the derivative of the given function.
5. j(w) =

√
w − 1√

w 6. k(y) = 6
√
y + y(

5
6 )

7. p(t) =
√
9 + t2 8. m(w) =

√
w tan(w)

9. m(y) = y1.2 10. f(r) = rπ + r3.8 + π3.8

11. g(w) = w+(−8)√
w

12. h(x) = 6
√
x(cos(x) + ex)

Exercise Group. Find dy
dx using implicit differentiation.

13. x4 + y2 + y = 7 14. x2/5 + y2/5 = 1

15. cos(x) + sin(y) = 1 16.
x

y
= 10

17.
y

x
= 10 18. x2ex + 2y = 5

19. x2 tan(y) = 50 20.
(
3x2 + 2y3

)4
= 2

21.
(
y2 + 2y − x

)2
= 200 22. x2+y

x+y2 = 17

23. sin(x)+y
cos(y)+x = 1 24. ln

(
x2 + y2

)
= e

25. ln
(
x2 + xy + y2

)
= 1

26. Show that dy
dx is the same for each of the following implicitly defined functions.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

Exercise Group. Find the equation of the tangent line to the graph of the implicitly defined function at the indicated
points. As a visual aid, the function is graphed.
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27. On the curve x2/5 + y2/5 = 1.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

(0.1, 0.281)

x

y

(a) At (1, 0).

(b) At (0.1, 0.2811) (which does not exactly
lie on the curve, but is very close).

28. On the curve x4 + y4 = 1.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

(
√
0.6,

√
0.8)

x

y

(a) At (1, 0).

(b) At
(√

0.6,
√
0.8
)
.

29. On the curve (x2 + y2 − 4)3 = 108y2.

−4 −2 2 4

−4

−2

2

4

(2,− 4
√
108)

x

y

(a) At (0, 4).

(b) At
(
2,− 4

√
108
)
.

30. On the curve (x2 + y2 + x)2 = x2 + y2.

−2.5 −2 −1.5 −1 −0.5 0.5

−1

1

(
− 3

4 ,
3
√
3

4

)

x

y

(a) At (0, 1).

(b) At
(
− 3

4 ,
3
√
3

4

)
.
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31. On the curve (x− 2)2 + (y − 3)2 = 9.

2 4 6

2

4

6

(
4+3

√
3

2 , 1.5
)

(
3.5, 6+3

√
3

2

)

x

y

(a) At
(

7
2 ,

6+3
√
3

2

)
.

(b) At
(

4+3
√
3

2 , 3
2

)
.

32. On the curve x2 + y3 + 2xy = 0.

−2 −1 1 2

−2

−1

1

2

(−1, 1)

(
−1, −1−

√
5

2

)

(
−1, −1+

√
5

2

)
x

y

(a) At (−1, 1).

(b) At
(
−1, 1

2 (−1 +
√
5)
)
.

(c) At
(
−1, 1

2 (−1−
√
5)
)
.

Exercise Group. An implicitly defined function is given. Find d2y
dx2 . Note: these are the same functions used in

Exercises 13 through 16.
33. x4 + y2 + y = 7 34. x2/5 + y2/5 = 1

35. cos(x) + sin(y) = 1 36.
x

y
= 10

Exercise Group. Use logarithmic differentiation to find dy
dx , then find the equation of the tangent line at the indicated

x-value.
37. y = (1 + x)1/x at x = 1 38. y = (2x)x

2

at x = 1

39. y =
xx

x+ 1
at x = 1 40. y = xsin(x)+2 at x = π/2

41. y =
x+ 1

x+ 2
at x = 1 42. y =

(x+ 1)(x+ 2)

(x+ 3)(x+ 4)
at x = 0
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2.7 Derivatives of Inverse Functions

youtu.be/watch?v=rBIBiDXbWf8

Figure 2.7.1 Video introduction to
Section 2.7

Recall that a function y = f(x) is said to be one-to-one if it passes the
horizontal line test; that is, for two different x values x1 and x2, we do not have
f(x1) = f(x2). In some cases the domain of f must be restricted so that it
is one-to-one. For instance, consider f(x) = x2. Clearly, f(−1) = f(1), so
f is not one-to-one on its regular domain, but by restricting f to (0,∞), f is
one-to-one.

Now recall that one-to-one functions have inverses. That is, if f is one-to-
one, it has an inverse function, denoted by f−1, such that if f(a) = b, then
f−1(b) = a. The domain of f−1 is the range of f , and vice-versa. For ease of
notation, we set g = f−1 and treat g as a function of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)

)
= x. This gives us a convenient way

to check if two functions are inverses of each other: compose them and if the
result is x (on the appropriate domains), then they are inverses. youtu.be/watch?v=1g9gAQC301Q

Figure 2.7.2 Properties of inverse
functions

When the point (a, b) lies on the graph of f , the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflection of f across the
line y = x. In Figure 2.7.3 we see a function graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relationship, whatever we know about f can quickly be transferred
into knowledge about g.

−1 1 2

−1

1

2

(−0.5, 0.375)

(0.375,−0.5)

(1, 1.5)

(1.5, 1)

x

y

Figure 2.7.3 A function f along with
its inverse f−1. (Note how it does not
matter which function we refer to as
f ; the other is f−1.)

For example, consider Figure 2.7.4 where the tangent line to f at the point
(1, 1.5) is drawn. That line has slope 3. Through reflection across y = x, we can
see that the tangent line to g at the point (1.5, 1) has slope 1/3. Their slopes
are reciprocals. This should make sense since reflecting a line (such as a tangent
line) across the line y = x switches the x and y values. Also consider the point
(0, 0.5) on the graph of f , where the tangent line is horizontal. At the point
(0.5, 0) on g, the tangent line is vertical.

More generally, consider the tangent line to f at the point (a, b). That line
has slope f ′(a). Through reflection across y = x, we can extend our above
observation to say that the tangent line to g at the point (b, a) should have slope
1/f ′(a). This then tells us that g′(b) = 1/f ′(a).

−1 1

−1

1

(−0.5, 0.375)

(0.375,−0.5)

(1, 1.5)

(1.5, 1)

x

y

Figure 2.7.4 Corresponding tangent
lines drawn to f and f−1

The information from these two graphs is summarized in Table 2.7.5 below:

Table 2.7.5

Information about f Information about g = f−1

(1, 1.5) lies on f (1.5, 1) lies on g
Slope of tangent line to

f at x = 1 is 3
Slope of tangent line to
g at x = 1.5 is 1/3

f ′(1) = 3 g′(1.5) = 1/3

We have discovered a relationship between f ′ and g′ in a mostly graphical
way. We can realize this relationship analytically as well. Let y = g(x), where
again g = f−1. We want to find y′. Since y = g(x), we know that f(y) = x.
Using the The Chain Rule and Implicit Differentiation, take the derivative of both
sides of this last equality.

d

dx
(f(y)) =

d

dx
(x)

f ′(y) · y′ = 1

y′ =
1

f ′(y)

https://www.youtube.com/watch?v=rBIBiDXbWf8
https://www.youtube.com/watch?v=1g9gAQC301Q
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y′ =
1

f ′(g(x))
.

This leads us to the following theorem.

Theorem 2.7.6 Derivatives of Inverse Functions.

Let f be differentiable and one-to-one on an open interval I , where
f ′(x) ̸= 0 for all x in I , let J be the range of f on I , let g be the inverse
function of f , and let f(a) = b for some a in I . Then g is a differentiable
function on J , and in particular,

1.
(
f−1

)′
(b) = g′(b) =

1

f ′(a)
2.
(
f−1

)′
(x) = g′(x) =

1

f ′(g(x))

youtu.be/watch?v=dOtVBJd75h8

Figure 2.7.7 Video presentation of
Theorem 2.7.6

The results of Theorem2.7.6 are not trivial; the notationmay seemconfusing
at first. Careful consideration, along with examples, should earn understanding.

In the next example we apply Theorem 2.7.6 to the arcsine function.
A word of caution is required here. The function sin(x) is clearly not one-

to-one. How can we say that arcsin(x) is the inverse of sin(x)? To make sense
of this, we employ a technique known as restriction of domain: instead of con-
sidering the entire domain of the sine function, we consider a portion of it, on
which the function is one-to-one, as explained in Figure 2.7.8.

youtu.be/watch?v=lCNZPbfiono

Figure 2.7.8 Restricting the domain of
sin(x)

Example 2.7.9 Finding the derivative of an inverse trigonometric func-
tion.

Let y = arcsin(x) = sin−1(x). Find y′ using Theorem 2.7.6.

Video solution

youtu.be/watch?v=xBZqkvQRSG4

Solution. Adopting our previously defined notation, let g(x) =
arcsin(x) and f(x) = sin(x). Thus f ′(x) = cos(x). Applying the theo-
rem, we have

g′(x) =
1

f ′(g(x))

=
1

cos(arcsin(x))
.

This last expression is not immediately illuminating. Drawing a figure
will help, as shown in Figure 2.7.10. Recall that the sine function can
be viewed as taking in an angle and returning a ratio of sides of a right
triangle, specifically, the ratio “opposite over hypotenuse.” This means
that the arcsine function takes as input a ratio of sides and returns an
angle. The equation y = arcsin(x) can be rewritten as y = arcsin(x/1);
that is, consider a right triangle where the hypotenuse has length 1 and
the side opposite of the angle with measure y has length x. This means
the final side has length

√
1− x2, using the Pythagorean Theorem.

√
1− x2

1
x

y

Figure 2.7.10 A right triangle de-
fined by y = sin−1(x/1) with the
length of the third leg found using the
Pythagorean Theorem

Therefore

cos
(
sin−1(x)

)
= cos(y)

=

√
1− x2

1

=
√
1− x2,

resulting in
d

dx
(arcsin(x)) =

1√
1− x2

.

https://www.youtube.com/watch?v=dOtVBJd75h8
https://www.youtube.com/watch?v=lCNZPbfiono
https://www.youtube.com/watch?v=xBZqkvQRSG4
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Remember that the input x of the arcsine function is a ratio of a side of a
right triangle to its hypotenuse; the absolute value of this ratio will never be
greater than 1. Therefore the inside of the square root will never be negative.

In order tomake y = sin(x)one-to-one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin(x) is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the derivative of
the arcsine function is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach vertical lines with undefined slopes.

−π
2 −π

4
π
4

π
2

−1

1

y
=
sin
(x
)

(
π
3 ,

√
3
2

)

x

y

−2 −1 1 2

−π
2

−π
4

π
4

π
2

y
=
sin

−1 (
x)

(√
3
2 , π

3

)
x

y

Figure 2.7.11 Graphs of sin(x) and sin−1(x) along with corresponding tangent
lines

In Figure 2.7.11 we see f(x) = sin(x) and f−1(x) = sin−1(x) graphed on
their respective domains. The line tangent to sin(x) at the point

(
π/3,

√
3/2
)

has slope cos(π)/3 = 1/2. The slope of the corresponding point on sin−1(x),
the point

(√
3/2, π/3

)
, is

1√
1−

(√
3/2
)2 =

1√
1− 3/4

=
1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a function and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederivatives of all the inverse trigono-
metric functions. In Table 2.7.12 we show the restrictions of the domains of the
standard trigonometric functions that allow them to be invertible.
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Table 2.7.12 Domains and ranges of the trigonometric and inverse trigonomet-
ric functions

Function Domain Range
sin(x) [−π/2, π/2] [−1, 1]

sin−1(x) [−1, 1] [−π/2, π/2]

cos(x) [0, π] [−1, 1]

cos−1(x) [−1, 1] [0, π]

tan(x) (−π/2, π/2) (−∞,∞)

tan−1(x) (−∞,∞) (−π/2, π/2)

csc(x) [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞)

csc−1(x) (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec(x) [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞)

sec−1(x) (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot(x) (0, π) (−∞,∞)

cot−1(x) (−∞,∞) (0, π)

Theorem 2.7.13 Derivatives of Inverse Trigonometric Functions.

The inverse trigonometric functions are differentiable on all open sets
contained in their domains (as listed in Table 2.7.12) and their derivatives
are as follows:

1.
d

dx

(
sin−1(x)

)
=

1√
1− x2

2.
d

dx

(
cos−1(x)

)
= − 1√

1− x2

3.
d

dx

(
tan−1(x)

)
=

1

1 + x2

4.
d

dx

(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

5.
d

dx

(
sec−1(x)

)
=

1

|x|
√
x2 − 1

6.
d

dx

(
cot−1(x)

)
= − 1

1 + x2

Note how each derivative is the negative of the derivative of its “co” function.
Because of this, derivatives of sin−1(x), tan−1(x), and sec−1(x) are used almost
exclusively throughout this text.

youtu.be/watch?v=yO-BT5vEZ9A

Figure 2.7.14 Computing the deriva-
tive of arctan(x)

In Section 2.3, we stated without proof or explanation that d
dx (ln(x)) =

1
x .

We can justify that now using Theorem 2.7.6, as shown in the example.

Example 2.7.15 Finding the derivative of y = ln(x).

Use Theorem 2.7.6 to compute d
dx (ln(x)).

Solution. View y = ln(x) as the inverse of y = ex. Therefore, using
our standard notation, let f(x) = ex and g(x) = ln(x). We wish to find

https://www.youtube.com/watch?v=yO-BT5vEZ9A
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g′(x). Theorem 2.7.6 gives:

g′(x) =
1

f ′(g(x))

=
1

eln(x)

=
1

x
.

In this chapter we have defined the derivative, given rules to facilitate its
computation, and given the derivatives of a number of standard functions. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.16 Glossary of Derivatives of Elementary Functions.

Let f and g be differentiable functions, and let a, c and n be real numbers, a > 0, n ̸= 0.

1.
d

dx
(c) = 0

2.
d

dx
(x) = 1

3.
d

dx
(xn) = nxn−1

4.
d

dx
(f(x)± g(x)) = f ′(x)± g′(x)

5.
d

dx
(c · f(x)) = c · f ′(x)

6.
d

dx
(f(x) · g(x)) = f ′(x) ·g(x)+f(x) ·g′(x)

7.
d

dx
(f(g(x))) = f ′(g(x)) · g′(x)

8.
d

dx

(
f(x)

g(x)

)
=

f ′(x) · g(x)− f(x) · g′(x)
(g(x))2

9.
d

dx
(ex) = ex

10.
d

dx
(ln(x)) =

1

x

11.
d

dx
(ax) = ln(a) · ax

12.
d

dx
(loga x) =

1

ln(a)
· 1
x

13.
d

dx
(sin(x)) = cos(x)

14.
d

dx
(cos(x)) = − sin(x)

15.
d

dx
(tan(x)) = sec2(x)

16.
d

dx
(csc(x)) = − csc(x) cot(x)

17.
d

dx
(sec(x)) = sec(x) tan(x)

18.
d

dx
(cot(x)) = − csc2(x)

19.
d

dx

(
sin−1(x)

)
=

1√
1− x2

20.
d

dx

(
cos−1(x)

)
= − 1√

1− x2

21.
d

dx

(
tan−1(x)

)
=

1

1 + x2

22.
d

dx

(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

23.
d

dx

(
sec−1(x)

)
=

1

|x|
√
x2 − 1

24.
d

dx

(
cot−1(x)

)
= − 1

1 + x2
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2.7.1 Exercises

Terms and Concepts

1. (□ True □ False) Every function has an inverse.
2. In your own words explain what it means for a function to be “one-to-one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what can be said about y = f−1(x)?

Problems

Exercise Group. Verify that the given functions are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and g(x) =
√
x− 2− 3, x ≥ 2

7. f(x) = 3
x−5 , x ̸= 5 and g(x) = 3+5x

x , x ̸= 0

8. f(x) = x+1
x−1 , x ̸= 1 and g(x) = f(x)

Exercise Group. An invertible function f(x) is given along with a point that lies on its graph. Using Theorem 2.7.6,
evaluate

(
f−1

)′
(x) at the indicated value.

9. The point (9, 65) is on the graph of f(x) = 7x+ 2. Find
(
f−1

)′
(65).

10. The point (−6, 51) is on the graph of f(x) = x2 − 2x+ 3, x ≥ 1. Find
(
f−1

)′
(51).

11. The point
(

π
24 ,

√
3
2

)
is on the graph of f(x) = cos(4x), 0 ≤ x ≤ π

4 . Find
(
f−1

)′ (√
3
2

)
.

12. The point (3, 576) is on the graph of f(x) = x3 − 27x2 + 267x− 9. Find
(
f−1

)′
(576).

13. The point
(
2, 1

5

)
is on the graph of f(x) = 1

1+x2 , x ≥ 0. Find
(
f−1

)′ ( 1
5

)
.

14. The point (0, 3) is on the graph of f(x) = 3e4x. Find
(
f−1

)′
(3).

Exercise Group. Compute the derivative of the given function.
15. h(w) = cos−1(4w) 16. h(x) = csc−1(7x)

17. j(r) = tan−1(2r) 18. k(w) = w cos−1(w)

19. p(x) = tan(x) cos−1(x) 20. f(t) = ln(t)et

21. m(z) = tan−1(z)
sin−1(z)

22. f(x) = tan( 4
√
x)

23. g(q) = csc
(

1
q3

)
24. g(z) = sin

(
sin−1(z)

)
Exercise Group. Compute the derivative of the given function in two ways:

(a) By simplifying first, then taking the derivative, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1(x)) 26. f(x) = tan−1(tan(x))

27. f(x) = sin(cos−1(x)) 28. f(x) = sin(2 sin−1(x))

Exercise Group. Find the equation of the line tangent to the graph of f at the indicated x value.
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29. f(x) = sin−1(x) at x = −
√
3

2 30. f(x) = cos−1(2x) at x =
√
3
4





Chapter 3

The Graphical Behavior of Func-
tions

Our study of limits led to continuous functions, a certain class of functions that
behave in a particularly nice way. Limits then gave us an even nicer class of
functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor-
mation that continuous and differentiable functions provide.

3.1 Extreme Values

Given any quantity described by a function, we are often interested in the largest
and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 3.1.1 Extreme Values.

Let f be defined on an interval I containing c.

1. f(c) is theminimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I .

2. f(c) is themaximum (also, absolutemaximum) of f on I if f(c) ≥
f(x) for all x in I .

Themaximum andminimum values are the extreme values, or extrema,
of f on I .

Note: The extreme values of a
function are “y” values, values
the function attains, not the in-
put values. However we often
say there is an extreme value at
certain input values. For exam-
ple, “sin(x) has a maximum at
π/2, and themaximumof sin(x)
is 1.”

youtu.be/watch?v=srE7xUmQtCQ

Figure 3.1.2Video presentation of De-
finition 3.1.1

Consider Figure 3.1.3. The function displayed in Figure 3.1.3(a) has a max-
imum, but no minimum, as the interval over which the function is defined is
open. In Figure 3.1.3(b), the function has a minimum, but no maximum; there
is a discontinuity in the “natural” place for the maximum to occur. Finally, the
function shown in Figure 3.1.3(c)has both amaximumand aminimum; note that
the function is continuous and the interval on which it is defined is closed.

133

https://www.youtube.com/watch?v=srE7xUmQtCQ
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−2 −1 1 2

2

4

x

y

(a)

−2 −1 1 2

2

4

x

y

(b)

−2 −1 1 2

2

4

x

y

(c)

Figure 3.1.3 Graphs of functions with and without extreme values
It is possible for discontinuous functions defined on an open interval to have

both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al-
ways have a maximum and minimum value.

Theorem 3.1.4 The Extreme Value Theorem.

Let f be a continuous function defined on a closed interval I = [a, b].
Then f has both a maximum and minimum value on I .

youtu.be/watch?v=GIcjxu8dTnY

Figure 3.1.5 Video presentation of
Theorem 3.1.4

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. After the example, we will draw on lessons
learned to form a more general and powerful method for finding extreme val-
ues.

Example 3.1.6 Approximating extreme values.

Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 3.1.7.
Approximate the extreme values of f .−2 2 4

−20

20

(−1,−11)

(0, 0)

(3,−27)

(5, 25)

x

y

Figure 3.1.7 A graph of f(x) = 2x3−
9x2 as in Example 3.1.6

Solution. The graph is drawn in such a way to draw attention to certain
points. It certainly seems that the smallest y-value is −27, found when
x = 3. It also seems that the largest y-value is 25, found at the endpoint
of I , x = 5. We use the word seems, for by the graph alone we cannot
be sure the smallest value is not less than −27. Since the problem asks
for an approximation, we approximate the extreme values to be 25 and
−27.

Notice how the minimum value came at “the bottom of a hill,” and the maxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the location of an extreme value for some interval is important, leading us to
a definition of a relative maximum. In short, a “relative max” is a y-value that’s
the largest y-value “nearby.”

youtu.be/watch?v=nBZTnxn0vqQ

Figure 3.1.8Video presentation of De-
finition 3.1.9

Definition 3.1.9 Relative Minimum and Relative Maximum.

Let f be defined on an interval I containing c.

1. If there is a δ > 0 such that f(c) ≤ f(x) for all x in I where
|x− c| < δ, then f(c) is a relative minimum of f . We also say
that f has a relative minimum at (c, f(c)).

2. If there is a δ > 0 such that f(c) ≥ f(x) for all x in I where
|x− c| < δ, then f(c) is a relative maximum of f . We also say
that f has a relative maximum at (c, f(c)).

https://www.youtube.com/watch?v=GIcjxu8dTnY
https://www.youtube.com/watch?v=nBZTnxn0vqQ
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The relative maximum and minimum values comprise the relative ex-
trema of f .

AlternativeVocabulary. The terms
localminimum and localmaximum
are often used as synonyms for
relativeminimum and relativemax-
imum.

As itmakes intuitive sense that
an absolute maximum is also a
relativemaximum, Definition3.1.9
allows a relativemaximum to oc-
cur at an interval’s endpoint.

We briefly practice using these definitions.

Example 3.1.10 Approximating relative extrema.

Consider f(x) = (3x4 − 4x3 − 12x2 + 5)/5, as shown in Figure 3.1.11.
Approximate the relative extrema of f . At each of these points, evaluate
f ′.

−2 −1 1 2 3

−6

−4

−2
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Figure 3.1.11 A graph of f(x) =
(3x4 − 4x3 − 12x2 + 5)/5 as in Ex-
ample 3.1.10

Solution. We still do not have the tools to exactly find the relative ex-
trema, but the graph does allow us to make reasonable approximations.
It seems f has relative minima at x = −1 and x = 2, with values of
f(−1) = 0 and f(2) = −5.4. It also seems that f has a relative maxi-
mum at the point (0, 1).
We approximate the relative minima to be 0 and−5.4; we approximate
the relative maximum to be 1.
It is straightforward to evaluate f ′(x) = 1

5

(
12x3 − 12x2 − 24x

)
at x =

0, 1 and 2. In each case, f ′(x) = 0.

Example 3.1.12 Approximating relative extrema.

Approximate the relative extrema of f(x) = (x − 1)2/3 + 2, shown in
Figure 3.1.13. At each of these points, evaluate f ′.
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Figure 3.1.13 A graph of f(x) = (x−
1)2/3 + 2 as in Example 3.1.12

Solution. The figure implies that f does not have any relative maxima,
but has a relative minimum at (1, 2). In fact, the graph suggests that not
only is this point a relative minimum, y = f(1) = 2 is the minimum
value of the function.
We compute f ′(x) = 2

3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading
to a definition and a theorem.

Definition 3.1.14 Critical Numbers and Critical Points.

Let f be defined at c. The value c is a critical number (or critical value)
of f if f ′(c) = 0 or f ′(c) is not defined.
If c is a critical number of f , then the point (c, f(c)) is a critical point of
f .

In this text we use “critical num-
ber” and “critical value” interchange-
ably. Other textbooks reserve the
term critical value for the func-
tion value f(c), when c is a criti-
cal number.

Theorem 3.1.15 Relative Extrema and Critical Points.

Let a function f be defined on an open interval I containing c, and let
f have a relative extremum at the point (c, f(c)). Then c is a critical
number of f .

youtu.be/watch?v=WsBGpi006X0

Figure 3.1.16 Video presentation of
Definition 3.1.14 and Theorem 3.1.15

Be careful to understand that this theorem states “Relative extrema on open
intervals occur at critical points.” It does not say “All critical numbers produce
relative extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straightforward to determine that x = 0 is a critical number of f . However, f
has no relative extrema, as illustrated in Figure 3.1.17.

https://www.youtube.com/watch?v=WsBGpi006X0
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−1 −0.5 0.5 1
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Figure 3.1.17 A graph of f(x) = x3

which has a critical value ofx = 0, but
no relative extrema

Theorem3.1.4 states that a continuous functionon a closed intervalwill have
both an absolute maximum and an absolute minimum. Common sense tells us
“extrema occur either at the endpoints or somewhere in between.” It is easy
to check for extrema at endpoints, but there are infinitely many points to check
that are “in between.” Theorem 3.1.15 tells us we need only check at the critical
points that are in between the endpoints. We combine these concepts to offer
a strategy for finding extrema.

Key Idea 3.1.18 Finding Extrema on a Closed Interval.

Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the critical numbers of f in [a, b].

3. Evaluate f at each critical number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We practice these ideas in the next examples.

Example 3.1.19 Finding extreme values.

Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed
in Figure 3.1.20.
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Figure 3.1.20 A graph of f(x) =
2x3 + 3x2 − 12x on [0, 3] as in Exam-
ple 3.1.19

Solution. We follow the steps outlined in Key Idea 3.1.18. We first
evaluate f at the endpoints:

f(0) = 0 f(3) = 45.

Next, we find the critical values of f on [0, 3]. f ′(x) = 6x2 +6x− 12 =
6(x+2)(x−1); therefore the critical values of f are x = −2 and x = 1.
Since x = −2 does not lie in the interval [0, 3], we ignore it. Evaluating
f at the only critical number in our interval gives: f(1) = −7.
Figure 3.1.21 gives f evaluated at the “important” x values in [0, 3]. We
can easily see the maximum and minimum values of f : the maximum
value is 45 and the minimum value is−7.

x f(x)

0 0

1 −7

3 45

Figure 3.1.21 Finding the extreme val-
ues of f(x) = 2x3 + 3x2 − 12x in
Example 3.1.19

Video solution

youtu.be/watch?v=LyhHlreZvhc

Note that all this was done without the aid of a graph; this work followed an
analytic algorithm and did not depend on any visualization. Figure 3.1.20 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We practice again.

Example 3.1.22 Finding extreme values.

Find the maximum and minimum values of f on [−4, 2], where

f(x) =

{
(x− 1)2 x ≤ 0

x+ 1 x > 0
.

Solution. Here f is piecewise-defined, but we can still apply Key
Idea 3.1.18 as it is continuous on [−4, 2] (one should check to verify that

https://www.youtube.com/watch?v=LyhHlreZvhc
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lim
x→0

f(x) = f(0)).
Evaluating f at the endpoints gives:

f(−4) = 25 f(2) = 3.

We now find the critical numbers of f . We have to define f ′ in a piece-
wise manner; it is

f ′(x) =

{
2(x− 1) x < 0

1 x > 0
.

Note thatwhile f is defined for all of [−4, 2], f ′ is not, as the derivative of
f does not exist when x = 0. (From the left, the derivative approaches
−2; from the right the derivative is 1.) Thus one critical number of f is
x = 0.
We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0,
f ′(x) is also never 0, so we find no critical values from setting f ′(x) = 0.
So we have three important x-values to consider: x = −4, 2 and 0. Eval-
uating f at each gives, respectively, 25, 3 and 1, shown in Figure 3.1.23.
Thus the absolute minimum of f is 1, the absolute maximum of f is 25.
Our answer is confirmed by the graph of f in Figure 3.1.24.

x f(x)

−4 25

0 1

2 3

Figure 3.1.23 Finding the extreme
values of a piecewise-defined
function in Example 3.1.22
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Figure 3.1.24 A graph of f(x) on
[−4, 2] as in Example 3.1.22

Video solution

youtu.be/watch?v=zn--ShSSMqk

Example 3.1.25 Finding extreme values.

Find the extrema of f(x) = cos
(
x2
)
on [−2, 2].

Solution. We again use Key Idea 3.1.18. Evaluating f at the endpoints
of the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536. We now find
the critical values of f .
Applying the The Chain Rule, we find f ′(x) = −2x sin

(
x2
)
. Set f ′(x) =

0 and solve for x to find the critical values of f .
We have f ′(x) = 0 when x = 0 and when sin

(
x2
)
. In general,

sin(t) = 0 when t = . . . − 2π,−π, 0, π, . . . Thus sin
(
x2
)
= 0 when

x2 = 0, π, 2π, . . . (x2 is always nonnegative so we ignore −π, etc.) So
sin
(
x2
)
= 0 when x = 0,±

√
π,±

√
2π, . . .. The only values to fall in

the given interval of [−2, 2] are 0 and±
√
π, where

√
π ≈ 1.77.

We again construct a table of important values in Figure 3.1.26. In this
example we have five values to consider: x = 0,±2,±

√
π. From the

table it is clear that themaximumvalue of f on [−2, 2] is 1; theminimum

https://www.youtube.com/watch?v=zn--ShSSMqk
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value is−1. The graph in Figure 3.1.27 confirms our results.

x f(x)

−2 −0.65

−
√
π −1

0 1√
π −1

2 −0.65

Figure 3.1.26 Finding the extrema
of f(x) = cos

(
x2
)
in Exam-

ple 3.1.25
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Figure 3.1.27 A graph of f(x) =
cos
(
x2
)
on [−2, 2] as in Exam-

ple 3.1.25

Video solution

youtu.be/watch?v=sT_3kVSsbz4

We consider one more example.

Example 3.1.28 Finding extreme values.

Find the extreme values of f(x) =
√
1− x2.

Solution. A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1− x2 ≥ 0; thus the domain
of f is [−1, 1]. Evaluating f at either endpoint returns 0.
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Figure 3.1.29 A graph of f(x) =√
1− x2 on [−1, 1] as in Exam-

ple 3.1.28

x f(x)

−1 0

0 1

1 0

Figure 3.1.30 Finding the extrema
of the half-circle in Example 3.1.28

Using the The Chain Rule, we find f ′(x) = −x
/√

1− x2. The critical
points of f are found when f ′(x) = 0 or when f ′ is undefined. It is
straightforward to find that f ′(x) = 0 when x = 0, and f ′ is undefined
when x = ±1, the endpoints of the interval (which are in the domain of
f .) The table of important values is given in Figure 3.1.30. Themaximum
value is 1, and the minimum value is 0.

Circle Revisited. We implicitly found
the derivative of x2 + y2 = 1,
the unit circle, in Section 2.6 Ex-
ample 2.6.11 as dy

dx = −x/y. In
Example 3.1.28, half of the unit
circle is given as y = f(x) =√
1− x2.
We found f ′(x) = −x

/√
1− x2.

Recognize that the denominator
of this fraction is y; that is, we
again found f ′(x) = dy

dx = −x/y.

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In Section 3.2, we further our study of the information we can
glean from “nice” functions with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

https://www.youtube.com/watch?v=sT_3kVSsbz4
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3.1.1 Exercises

Terms and Concepts

1. Describe what an “extreme value” of a function is in your own words.
2. Sketch the graph of a function f on (−1, 1) that has both a maximum and minimum value.

3. Describe the difference between absolute and relative maxima in your own words.
4. Sketch the graph of a function f where f has a relative maximum at x = 1 and f ′(1) is undefined.

5. (□ True □ False) If c is a critical value of a function f , then f has either a relative maximum or relative
minimum at x = c.

6. Fill in the blanks: The critical points of a function f are found where f ′(x) is equal to or where f ′(x)
is .

Problems

Exercise Group. Identify each of the marked points as being an absolute maximum or minimum, a relative maximum
or minimum, or none of the above.

7.

1 2 3 4 5 6

−2

2

A

D

B

C
E

F

G

x

y
8.

1 2 3 4 5

−2

−1

1

2

A

B

C

D

E

x

y

Exercise Group. Evaluate f ′(x) at the points indicated in the graph.

9. f(x) = 2
x2+1

−4 −2 2 4

1

2
(0, 2)

x

y
10. f(x) = x2

√
6− x2

−3 −2 −1 1 2 3

2

4

6

(0, 0)

(2, 4
√
2)

x

y
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11. f(x) = sin(x)

1 2 3 4 5 6

−1

1
(π/2, 1)

(3π/2,−1)

x

y
12. f(x) = x2

√
4− x

−2 −1 1 2 3 4

2

4

6

8

10

(0, 0)

(
16
5 , 512

25
√
5

)

(4, 0) x

y

13. f(x) = 1 + (x−2)
2
3

x

2 4 6 8 10

2

4

6

(2, 1)

(
6, 1 +

3√2
3

)

x

y

14. f(x) = 3
√
x4 − 2x2 + 1

−2 −1 1 2

1

2

3

(1, 0)(−1, 0) x

y

15. f(x) =

{
x2, x ≤ 0

x5, x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)

x

y

16. f(x) =

{
x2, x ≤ 0

x, x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)

x

y

Exercise Group. Find the extreme values of the function on the given interval.
17. f(x) = x2 + 2x− 1 on [−5, 1] 18. f(x) = x3 +

(
3
2

)
x2 − 18x− 6 on [0, 3]

19. f(x) = 4 cos(x) on
[
3π
4 , 7π

6

]
20. f(x) = x6

√
4− x2 on [−2, 2]

21. f(x) = x+ 2
x on [1, 4] 22. f(x) = x2

x2+7 on [−2, 2]

23. f(x) = ex cos(x) on [0, π] 24. f(x) = ex sin(x) on [0, π]
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25. f(x) = ln(x)
x2 on [1, 7] 26. f(x) = x(

3
4 ) − x3 on [0, 2]
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3.2 The Mean Value Theorem

We motivate this section with the following question: Suppose you leave your
house and drive to your friend’s house in a city 100miles away, completing the
trip in two hours. At any point during the trip do you necessarily have to be going
50miles per hour?

In answering this question, it is clear that the average speed for the entire
trip is 50mph (i.e. 100miles in 2 hours), but the question is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50mph? The answer, under some very reasonable assump-
tions, is “yes.”

youtu.be/watch?v=GvdxKh6RpT0

Figure 3.2.1 Video introduction to
Section 3.2

Let’s now see why this situation is in a calculus text by translating it into
mathematical symbols.

First assume that the function y = f(t) gives the distance (in miles) traveled
from your home at time t (in hours) where 0 ≤ t ≤ 2. In particular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line connecting the starting
and ending points (0, f(0)) and (2, f(2)) is therefore

∆f

∆t
=

f(2)− f(0)

2− 0

=
100− 0

2
= 50mph.

The slope at any point on the graph itself is given by the derivative f ′(t). So,
since the answer to the question above is “yes,” this means that at some time
during the trip, the derivative takes on the value of 50mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some time 0 ≤ c ≤ 2.
How about more generally? Given any function y = f(x) and a range a ≤

x ≤ b does the value of the derivative at some point between a and b have to
match the slope of the secant line connecting the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equation f ′(c) = f(b)−f(a)

b−a have to hold for some
a < c < b?

Let’s look at two functions in an example.

Example 3.2.2 Comparing average and instantaneous rates of change.

Consider functions

f1(x) =
1

x2
f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.2.3. Both functions have a
value of 1 at a and b. Therefore the slope of the secant line connecting
the end points is 0 in each case. But if you look at the plots of each, you
can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1]
such that

f ′(c) =
f(1)− f(−1)

1− (−1)
= 0.

https://www.youtube.com/watch?v=GvdxKh6RpT0
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(a) A graph of f1(x) = 1/x2
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2

3

x

y

(b) A graph of f2(x) = |x|

Figure 3.2.3 Graphs of two “misbehaving” functions

Sowhatwent “wrong”? Itmay not be surprising to find that the discontinuity
of f1 and the corner of f2 play a role. If our functions had been continuous and
differentiable, would we have been able to find that special value c? This is our
motivation for the following theorem.

Theorem 3.2.4 The Mean Value Theorem of Differentiation.

Let y = f(x) be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the functions in Example 3.2.2 fail are indeed that
f1 has a discontinuity on the interval [−1, 1] and f2 is not differentiable at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.5 Rolle’s Theorem.

Let f be continuous on [a, b] and differentiable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

youtu.be/watch?v=E05H1f8TByI

Figure 3.2.6 Video presentation of
Theorem 3.2.5

Consider Figure 3.2.7 where the graph of a function f is given, where f(a) =
f(b). It should make intuitive sense that if f is differentiable (and hence, con-
tinuous) that there would be a value c in (a, b) where f ′(c) = 0; that is, there
would be a relative maximum or minimum of f in (a, b). Rolle’s Theorem guar-
antees at least one; there may be more.
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Figure 3.2.7 A graph of f(x) = x3 −
5x2 + 3x + 5, where f(a) = f(b).
Note the existence of c, where a <
c < b, where f ′(c) = 0.

Rolle’s Theorem is presented here as a stepping stone toward the Mean
Value Theorem, but it’s a useful result in its own right. It often turns up as a
tool in mathematical problem solving. The video in Figure 3.2.8 illustrates one
such use of Rolle’s Theorem.

youtu.be/watch?v=le-5zsb6O7o

Figure 3.2.8 Using Rolle’s Theorem to
show a polynomial has at most one
real root

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

https://www.youtube.com/watch?v=E05H1f8TByI
https://www.youtube.com/watch?v=le-5zsb6O7o
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Proof of Rolle’s Theorem. Let f be differentiable on (a, b) where f(a) = f(b).
We consider two cases.

Case. Consider the case when f is constant on [a, b]; that is, f(x) = f(a) =
f(b) for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least
one value c in (a, b) where f ′(c) = 0.

Case. Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at
the endpoints or at a critical value in (a, b). Since f(a) = f(b) and f is not
constant, it is clear that the maximum and minimum cannot both be found at
the endpoints. Assume, without loss of generality, that the maximum of f is
not found at the endpoints. Therefore there is a c in (a, b) such that f(c) is the
maximum value of f . By Theorem 3.1.15, cmust be a critical number of f ; since
f is differentiable, we have that f ′(c) = 0, completing the proof of the theorem.

■
We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem.

youtu.be/watch?v=1b9af8q5JMg

Figure 3.2.9 Video proof of the Mean
Value Theorem

Define the function

g(x) = f(x)− f(b)− f(a)

b− a
x.

We know g is differentiable on (a, b) and continuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)− g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c in (a, b) such
that g′(c) = 0. But note that

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
;

hence
f ′(c) =

f(b)− f(a)

b− a
,

which is what we sought to prove. ■
Going back to the very beginning of the section, we see that the only assump-

tionwewould need about our distance function f(t) is that it be continuous and
differentiable for t from 0 to 2 hours (both reasonable assumptions). By the The-
orem 3.2.4, we are guaranteed a time during the trip where our instantaneous
speed is 50mph. This fact is used in practice. Some law enforcement agencies
monitor traffic speeds while in aircraft. They do not measure speed with radar,
but rather by timing individual cars as they pass over lines painted on the high-
way whose distances apart are known. The officer is able to measure the aver-
age speed of a car between the painted lines; if that average speed is greater
than the posted speed limit, the officer is assured that the driver exceeded the
speed limit at some time.

Note that the Theorem 3.2.4 is an existence theorem. It states that a special
value c exists, but it does not give any indication about how to find it. It turns
out that when we need the Theorem 3.2.4, existence is all we need.

Example 3.2.10 Using the Mean Value Theorem.

Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that satisfies
the Theorem 3.2.4.

https://www.youtube.com/watch?v=1b9af8q5JMg
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Solution. The average rate of change of f on [−3, 3] is:

f(3)− f(−3)

3− (−3)
=

47− (−37)

6

=
84

6
= 14.

We want to find c such that f ′(c) = 14. We find f ′(x) = 3x2 + 5. We
set this equal to 14 and solve for x.

f ′(x) = 14

3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found two values c in [−3, 3] where the instantaneous rate of
change is equal to the average rate of change; the Theorem3.2.4 guaran-
teed at least one. In Figure 3.2.11, f is graphed with a line representing
the average rate of change; the lines tangent to f at x = ±

√
3 are also

given. Note how these lines are parallel (i.e., have the same slope) to
the secant line. −3 −2 −1 1 2 3

−40

−20

20

40

x

y

Figure 3.2.11 Demonstrating the
Mean Value Theorem in Exam-
ple 3.2.10

Video solution

youtu.be/watch?v=ON7WYLJY2tE

While the Theorem 3.2.4 has practical use (for instance, the speed monitor-
ing application mentioned before), it is mostly used to advance other theory.
We will use it in the next section to relate the shape of a graph to its derivative.

Before ending this section, wegive two important consequences of theMean
Value Theorem. Each of these consequences has important applications tomath-
ematical theory, and can be easily understood in the context of the position and
velocity of objects in motion.

First, we recall that the derivative of any constant function is zero. Is the
converse true? That is, are constant functions the only ones whose derivative is
zero? The Mean Value Theorem says yes. This officially establishes our intuition
about objects in (or, actually, not in) motion: if the velocity of an object is 0, then
the object’s position is unchanged; it is constant. Second, if two functions f and
g have the same derivative, what does this tell us about f and g? The Mean
Value Theorem implies that these functions must only differ by a constant; that
is, f(x) = g(x) + C, for some constant C.

This has an application to motion that is not intuitive to some. Suppose two
objects start moving while 5 ft apart, and always move with the same velocity.
Then the two objects will always be 5 ft apart. (If two pennies are dropped from
the 30th and 31st stories of a tall building at the same time, they will always be
1 story apart as they fall.)

Theorem 3.2.12 Consequences of the Mean Value Theorem.

Let f , g, and h be differentiable (and therefore continuous) functions on
an in terval I .

1. If f ′(x) = 0 for all x in the interval I , then f is a constant function
on I .

2. If g′(x) = g′(x) for all x in I , then there is a constant C such that

https://www.youtube.com/watch?v=ON7WYLJY2tE
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g(x) = h(x) + C for all x in I .

Proof.

1. Choose any two points a and b in the interval I . By the Mean Value Theo-
rem, we must have

f ′(c) =
f(b)− f(a)

b− a

for some c between a and b. But f ′(c) = 0, so f(b) − f(a) = 0, or
f(a) = f(b). Since a and b were any two points, this tells us that f must
have the same value at every point; that is, f must be constant.

2. Suppose g′(x) = h′(x) for each point x in I , and consider the function
f(x) = g(x)− h(x). By the difference rule for derivatives, we have

f ′(x) = g′(x)− h′(x) = 0,

since g′(x) = h′(x).

By the previous result, this means that f(x) is a constant function. That is,
f(x) = C for each x in I , giving us g(x)−h(x) = C, or g(x) = h(x)+C.

■

youtu.be/watch?v=PVMLAKYehgs

Figure 3.2.13 Showing that a function
with zero derivative is constant

Using this result, we can establish another result which will be useful when
we study antiderivatives: if two functions have the same derivative, then they
differ by a constant.

youtu.be/watch?v=BzvxKeZMNtE

Figure 3.2.14 Showing that two func-
tions with the equal derivatives differ
by a constant We end this sectionwith onemore proof involving theMean Value Theorem;

this time, establishing a property of the sine function.

youtu.be/watch?v=CGBTZtM9mFY

Figure 3.2.15 Demonstrating a prop-
erty of the sine function

https://www.youtube.com/watch?v=PVMLAKYehgs
https://www.youtube.com/watch?v=BzvxKeZMNtE
https://www.youtube.com/watch?v=CGBTZtM9mFY


3.2. THE MEAN VALUE THEOREM 147

3.2.1 Exercises

Terms and Concepts

1. Explain in your own words what the Mean Value Theorem states.
2. Explain in your own words what Rolle’s Theorem states.

Problems

Exercise Group. A function f(x) and interval [a, b] are given. Check if Rolle’s Theorem can be applied to f on [a, b];
if so, find c in (a, b) such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1] 4. f(x) = 6x on [−1, 1]

5. f(x) = x2 + x− 6 on [−3, 2] 6. f(x) = x2 + x− 2 on [−3, 2]

7. f(x) = x2 + x on [−2, 2] 8. f(x) = sin(x) on [π/6, 5π/6]
9. f(x) = cos(x) on [0, π] 10. f(x) = 1

x2−2x+1 on [0, 2]

Exercise Group. A function f(x) and interval [a, b] are given. Check if The Mean Value Theorem of Differentiation
can be applied to f on [a, b]; if so, find c in (a, b) guaranteed by the Mean Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2] 12. f(x) = 5x2 − 6x+ 8 on [0, 5]

13. f(x) =
√
9− x2 on [0, 3] 14. f(x) =

√
25− x on [0, 9]

15. f(x) = x2−9
x2−1 on [0, 2] 16. f(x) = ln(x) on [1, 5]

17. f(x) = tan(x) on [−π/4, π/4] 18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2]

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2] 20. f(x) = sin−1(x) on [−1, 1]
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3.3 Increasing and Decreasing Functions

Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these termsmathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

1 2 3

1

2

3

4

5

x

y

Figure 3.3.1 A graph of a function f
used to illustrate the concepts of in-
creasing and decreasing

Definition 3.3.2 Increasing and Decreasing Functions.

Let f be a function defined on an interval I .

1. f is increasing on I if for every a < b in I , f(a) < f(b).

2. f is decreasing on I if for every a < b in I , f(a) > f(b).

Caution: the definition we give
in Definition 3.3.2 is not the one
youwill find in formalmathemat-
ics textbooks. Such texts define
a function to be increasing on I
if, for every a < b in I , f(a) ≤
f(b). (Notice how equality is al-
lowed.) The condition f(a) <
f(b) is then referred to as strictly
increasing. Similar definitions are
made for decreasing and strictly
decreasing.

While this definition has cer-
tain technical advantages in a proof-
based course, it is also concep-
tually counterintuitive for many
students. For example, with this
definition a constant functionwould
be both increasing and decreas-
ing!

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

youtu.be/watch?v=NtV0R-JxrmM

Figure 3.3.3Video presentation of De-
finition 3.3.2

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, wemight want to knowwhen the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increas-
ing, differentiable function on an open interval I , such as the one shown in Fig-
ure 3.3.4, and let a < b be given in I . The secant line on the graph of f from
x = a to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a).

But note, since b > a and f is increasing, f(b) > f(a). And these facts
imply b− a > 0 and f(b)− f(a) > 0. Therefore:

f(b)− f(a)

b− a
> 0

=⇒ slope of the secant line > 0

=⇒ Average rate of change of f
on [a, b] is > 0.

0.5 1 1.5 2

−0.5

0.5

1

1.5

2

a b

(a, f(a))

(b, f(b))

x

y

Figure 3.3.4 Examining the secant line of an increasing function
We have shownmathematically whatmay have already been obvious: when

f is increasing, its secant lines will have a positive slope. Now recall that the
Mean Value Theorem guarantees that there is a number c, where a < c < b,
such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I , we strongly imply that f ′(x) > 0 on
I . A similar statement can be made for decreasing functions.

https://www.youtube.com/watch?v=NtV0R-JxrmM
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Our above logic can be summarized as “If f is increasing, then f ′ is probably
positive.” Theorem 3.3.5 below turns this around by stating “If f ′ is positive,
then f is increasing.” This leads us to a method for finding when functions are
increasing and decreasing.

Theorem 3.3.5 Test For Increasing/Decreasing Functions.

Let f be a continuous function on [a, b] and differentiable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

The conclusions of Item 1 and Item 2 also hold if f ′(c) = 0 for a finite
number of nonadjacent values of c in I .

youtu.be/watch?v=SjF3vslBqOA

Figure 3.3.6 Video presentation of
Theorem 3.3.5

Let f bedifferentiable on an interval I and leta and bbe in I where f ′(a) > 0
and f ′(b) < 0. If f ′ is continuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value c between a and bwhere f ′(c) = 0. (It
turns out that this is still true even if f ′ is not continuous on [a, b].) This leads us
to the following method for finding intervals on which a function is increasing or
decreasing.

Key Idea 3.3.7 Finding Intervals onWhich f is Increasing or Decreasing.

Let f be a continuous functionon an interval I . To find intervals onwhich
f is increasing and decreasing:

1. If not stated, find the domain of f , D. Begin a number line that
only includesD.

2. Find the critical values of f . That is, find all c in the domain of
f where f ′(c) = 0 or f ′ is not defined. (Note: Any values of c
not in the domain of f where f ′(c) is undefined should already
be marked on your number line from Step 1).

3. Use the critical values to divideD into subintervals.

4. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

Note that although Theorem3.3.5 allows us to use determine that a func-
tion is increasing or decreasing on a closed interval, it is conventional to
state the intervals of increase and decrease as open intervals. Wewill fol-
low this convention in the examples that follow, but it is also acceptable
to answer using closed intervals.
In particular, one should note the following:

• If f ′(x) > 0 on (a, b) and on (b, c), with f ′(b) = 0, then we
should say that f is increasing on (a, c) (or on [a, c]) — the zero of
the derivative should be included.

• If f ′(x) > 0 on (a, b) and on (b, c), but f(b) is undefined (or f is
discontinuous at b), then we should not include the point b in our

https://www.youtube.com/watch?v=SjF3vslBqOA
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interval. Instead, we say that f is increasing on (a, b) and (b, c), or
on [a, b) and (b, c].

We demonstrate using this process in the following example.

Example 3.3.8 Finding intervals of increasing/decreasing.

Let f(x) = x3 + x2 − x + 1. Find intervals on which f is increasing or
decreasing.
Solution. Since an interval was not specified for us to consider, using
Key Idea 3.3.7, the domain of f is R or (−∞,∞). Next, we find the
critical values of f . We have f ′(x) = 3x2 + 2x− 1 = (3x− 1)(x+ 1),
so f ′(x) = 0 when x = −1 and when x = 1/3. f ′ is never undefined.
We thus break the domain (in this case the (−∞,∞)) into three subin-
tervals based on the two critical values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.3.9.

−1 1/3

Figure 3.3.9 Number line for f in Ex-
ample 3.3.8

We now pick a value p in each subinterval and find the sign of f ′(p). All
we care about is the sign, so we do not actually have to fully compute
f ′(p); pick “nice” values that make this simple.

Subinterval 1:
(−∞,−1)

We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2+2(−2)−
1 = 7 > 0. We conclude that f is increasing
on (−∞,−1).
Note we can arrive at the same conclusion
without computation. For instance, we could
choose p = −100. The first term in f ′(−100),
i.e., 3(−100)2 is clearly positive and very large.
The other terms are small in comparison, so
we know f ′(−100) > 0. All we need is the
sign.

Subinterval 2:
(−1, 1/3)

We pick p = 0 since that value seems easy to
deal with. f ′(0) = −1 < 0. We conclude f is
decreasing on (−1, 1/3).

Subinterval 3:
(1/3,∞)

Pick an arbitrarily large value for p > 1/3 and
note that f ′(p) = 3p2 + 2p − 1 > 0. We
conclude that f is increasing on (1/3,∞).

Figure 3.3.10 summarizes our work.

−1 1/3

f ′ > 0
f incr

f ′ < 0
f decr

f ′ > 0
f incr

Figure 3.3.10 Completed number line
for f in Example 3.3.8

We can verify our calculations by considering Figure 3.3.11, where f is
graphed. The graph also presents f ′; note how f ′ > 0when f is increas-
ing and f ′ < 0 when f is decreasing.

−2 −1 1 2

5

10

1/3

f(x)
f ′(x)

x

y

Figure 3.3.11A graph of f(x) in Exam-
ple 3.3.8, showing where f is increas-
ing and decreasing

Video solution

youtu.be/watch?v=DW6qcgE1TZ0

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding critical values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increasing/
decreasing traits just fine. That is true. However, the technique prescribed here

https://www.youtube.com/watch?v=DW6qcgE1TZ0
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helps reinforce the relationship between increasing/decreasing and the sign of
f ′. Once mastery of this concept (and several others) is obtained, one finds that
either (a) just the critical points are computed and the graph shows all else that
is desired, or (b) a graph is never produced, because determining increasing/
decreasing using f ′ is straightforward and the graph is unnecessary. So our sec-
ond reason why the above work is worthwhile is this: once mastery of a subject
is gained, one has options for finding needed information. We are working to
develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice-versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = c, after which it de-
creases. A quick sketch helps confirm that f(c)must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.12 First Derivative Test.

Let f be continuous on an interval I , and differentiable on I , except pos-
sibly at c, where c is a critical number in I .

1. If the sign of f ′ switches from positive to negative at c, then f(c)
is a relative maximum of f .

2. If the sign of f ′ switches from negative to positive at c, then f(c)
is a relative minimum of f .

3. If f ′ is positive (or, negative) before and after c, then f(c) is not a
relative extrema of f .

youtu.be/watch?v=_HjE4urOM4Y

Figure 3.3.13 Video presentation of
Theorem 3.3.12

Remark 3.3.14 Importance of Continuity. The continuity of f when using the
first derivative test is very important. Without continuity, almost anything can
happen at a critical number. For example, we can construct a piecewise function
where the sign of f ′ switches to positive to negative at c and f(c) is not a local
maximum. This is shown in Figure 3.3.15.

−1 1 2 3

−2

2

4

x

y

Figure 3.3.15 A discontinuous func-
tion where f ′ changes sign at 1, but
f(1) is not a local maximum

Example 3.3.16 Using the First Derivative Test.

Find the intervals on which f is increasing and decreasing, and use the
First Derivative Test to determine the relative extrema of f , where

f(x) =
x2 + 3

x− 1
.

https://www.youtube.com/watch?v=_HjE4urOM4Y
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Solution. We start by noting the domain of f : (−∞, 1) ∪ (1,∞).
Since f is not defined at x = 1 (it has a vertical asymptote), the increas-
ing/decreasing nature of f could switch at this value. Weknow that f ′(1)
will be undefined since f is discontinuous at 1. We do not formally con-
sider x = 1 to be a critical value of f , but we will use 1 to subdivide the
real number line.
Using the Quotient Rule, we find

f ′(x) =
x2 − 2x− 3

(x− 1)2
.

Weneed to find the critical values of f ; wewant to knowwhen f ′(x) = 0
and when f ′ is not defined. That latter is straightforward: when the
denominator of f ′(x) is 0, f ′ is undefined. That occurs when x = 1,
which we’ve already recognized as an important value, but not a critical
number.
f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2 −
2x− 3 = (x− 3)(x+ 1) = 0; i.e., when x = −1, 3.
We have found that f has two critical numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide
the real number line into four subintervals:

(−∞,−1), (−1, 1), (1, 3), and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to
determine whether f is increasing or decreasing on that interval. Again,
we do well to avoid complicated computations; notice that the denomi-
nator of f ′ is always positive so we can ignore it during our work.

Interval 1:
(−∞,−1)

Choosing a very small number (i.e., a nega-
tive number with a largemagnitude) p returns
p2−2p−3 in the numerator of f ′; that will be
positive. Hence f is increasing on (−∞,−1).

Interval 2: (−1, 1) Choosing 0 seems simple: f ′(0) = −3 < 0.
We conclude f is decreasing on (−1, 1).

Interval 3: (1, 3) Choosing 2 seems simple: f ′(2) = −3 < 0.
Again, f is decreasing.

Interval 4: (3,∞) Choosing an very large number p from this
subinterval will give a positive numerator and
(of course) a positive denominator. So f is in-
creasing on (3,∞).

In summary, f is increasing on the intervals (−∞,−1) and (3,∞) and
is decreasing on the intervals (−1, 1) and (1, 3). Since at x = −1, the
sign of f ′ switched from positive to negative, Theorem 3.3.12 states that
f(−1) is a relativemaximumof f . At x = 3, the sign of f ′ switched from
negative to positive, meaning f(3) is a relative minimum. At x = 1, f
is not defined, so there is no relative extremum at x = 1. As previously
stated, x = 1 is a vertical asymptote of f .

5−1 1 3

f ′ > 0
f incr

f ′ < 0
f decr

f ′ < 0
f decr

f ′ > 0
f incr

rel
max VA

rel
min

Figure 3.3.17 Number line for f in Ex-
ample 3.3.16

This is summarized in the number line shown in Figure 3.3.17. Also, Fig-
ure 3.3.18 shows a graph of f , confirming our calculations. This figure
also shows f ′, again demonstrating that f is increasing when f ′ > 0 and
decreasing when f ′ < 0.
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f(x)
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Figure 3.3.18 A graph of f(x) in Ex-
ample 3.3.16, showing where f is in-
creasing and decreasing

Video solution

youtu.be/watch?v=94iCiIX07R0

https://www.youtube.com/watch?v=94iCiIX07R0
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One is often tempted to think that functions always alternate “increasing, de-
creasing, increasing, decreasing,…” around critical values. Our previous example
demonstrated that this is not always the case. While x = 1 was not technically
a critical value, it was an important value we needed to consider. We found that
f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.19 Using the First Derivative Test.

Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and de-
creasing and identify the relative extrema.
Solution. The domain of f is R (you can take the odd root of both
positive and negative nubmers). Next, we take the first derivative. Since
we know we want to solve f ′(x) = 0, we will do some algebra after
taking the derivative.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8

3
x

5
3 − 8

3
x− 1

3

=
8

3
x− 1

3

(
x

6
3 − 1

)
=

8

3
x− 1

3

(
x2 − 1

)
=

8

3
x− 1

3 (x− 1)(x+ 1).

This derivation of f ′ shows that f ′(x) = 0 when x = ±1 and f ′is not
defined when x = 0. Thus we have three critical values, breaking the
number line into four subintervals as shown in Figure 3.3.20.

Interval 1: (∞,−1) We choose p = −2; we can easily verify that
f ′(−2) < 0. So f is decreasing on (−∞,−1).

Interval 2: (−1, 0) Choose p = −1/2. Once more we prac-
tice finding the sign of f ′(p) without com-
puting an actual value. We have f ′(p) =
(8/3)p−1/3(p−1)(p+1); find the sign of each
of the three terms at the chosen value of p.

f ′(p) =
8

3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negative × negative × positive”
giving a positive number; f is increasing on
(−1, 0).

Interval 3: (0, 1) We do a similar sign analysis as before, using
p in (0, 1).

f ′(p) =
8

3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

−1 0 1

f ′ < 0
f decr

f ′ > 0
f incr

f ′ < 0
f decr

f ′ > 0
f incr

rel
min

rel
max

rel
min

Figure 3.3.20 Number line for f in Ex-
ample 3.3.19

Wehave two positive factors and one negative
factor; f ′(p) < 0 and so f is decreasing on
(0, 1).
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Interval 4: (1,∞) Similar work to that done for the other three
intervals shows that f ′(x) > 0 on (1,∞), so
f is increasing on this interval.

We conclude by stating that f is increasing on the intervals (−1, 0) and
(1,∞) and decreasing on the intervals (−∞,−1) and (0, 1). The sign
of f ′ changes from negative to positive around x = −1 and x = 1,
meaning by Theorem 3.3.12 that f(−1) and f(1) are relative minima of
f . As the sign of f ′ changes frompositive to negative atx = 0, we have a
relative maximum at f(0). Figure 3.3.21 shows a graph of f , confirming
our result. We also graph f ′, highlighting once more that f is increasing
when f ′ > 0 and is decreasing when f ′ < 0.

−3 −2 −1 1 2 3
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10f(x)

f ′(x)
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Figure 3.3.21 A graph of f(x) in Ex-
ample 3.3.19, showing where f is in-
creasing and decreasing

Video solution

youtu.be/watch?v=T4RxcQnNotc

We have seen how the first derivative of a function helps determine when
the graph of a function is going “up” or “down.” In the next section, we will see
how the second derivative helps determine how the graph of a function curves.

https://www.youtube.com/watch?v=T4RxcQnNotc
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3.3.1 Exercises

Terms and Concepts

1. In your own words describe what it means for a function to be increasing.
2. What does a decreasing function “look like”?
3. Sketch a graph of a function on [0, 2] that is increasing, where it is increasing “quickly” near x = 0 and increasing

“slowly” near x = 2.
4. Give an example of a function describing a situation where it is “bad” to be increasing and “good” to be decreas-

ing.
5. (□ True □ False) Functions always switch from increasing to decreasing, or decreasing to increasing, at

critical points.

6. A function f has derivative f ′(x) = (sinx+ 2)ex
2+1, where f ′(x) > 1 for all x. Is f increasing, decreasing, or

can we not tell from the given information? Why or why not?

Problems

Exercise Group. A function f(x) is given. Graph f and f ′ on the same axes (using technology is permitted) and verify
Theorem 3.3.5.

7. f(x) = 2x+ 3 8. f(x) = x2 − 3x+ 5

9. f(x) = cos(x) 10. f(x) = tan(x)
11. f(x) = x3 − 5x2 + 7x− 1 12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4 14. f(x) = 1
x2+1

Exercise Group. A function f(x) is given.

(a) Give the domain of f .

(b) Find the critical numbers of f .

(c) Find the intervals on which f is increasing.

(d) Find the intervals on which f is decreasing.

(e) Use the First Derivative Test to determine which critical points are a relative maximum.

(f) Use the First Derivative Test to determine which critical points are a relative minimum.

15. f(x) = x2 + 4x 16. f(x) = x3 + 2x2 + 9

17. f(x) = 7x3 − 17x2 − 35x+ 1 18. f(x) = x3 − 9x2 + 27x− 27

19. f(x) = 1
x2−10x+34 20. f(x) = x2−1

x2−36

21. f(x) = x
x2+12x+35 22. f(x) = (x−(−5))

2
3

x

23. f(x) = sin(x) cos(x) on (−π, π) 24. f(x) = x6 + 192x
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3.4 Concavity and the Second Derivative

youtu.be/watch?v=0uCjI5J4ew4

Figure 3.4.1 Video introduction to
Section 3.4

Our study of “nice” functions continues. The previous section showed how
the first derivative of a function, f ′, can relay important information about f .
We now apply the same technique to f ′ itself, and learn what this tells us about
f .

The key to studying f ′ is to consider its derivative, namely f ′′, which is the
second derivative of f . When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′is
decreasing. f ′ has relative maxima and minima where f ′′ = 0 or is undefined.

This section explores how knowing information about f ′′ gives information
about f .

3.4.1 Concavity
We begin with a definition, then explore its meaning.

Definition 3.4.2 Concave Up and Concave Down.

Let f be continuous on an interval I . The graph of f is concave up on I
if for any a < b in I ,

f

(
a+ b

2

)
<

f(a) + f(b)

2
. (3.4.1)

The graph of f is concave down on I if for any a < b in I ,

f

(
a+ b

2

)
>

f(a) + f(b)

2
. (3.4.2)

Geometrically, the condition in Equation (3.4.1) states that a graph is concave
up if the midpoint of the secant line from (a, f(a)) to (b, f(b)) (and hence, the
secant line itself) is above the graph y = f(x). Similarly, Equation (3.4.2) states
that the secant line lies below the graph.

In order for equality to hold instead of Equation (3.4.1) or Equation (3.4.2),
the function would have to be of the form f(x) = mx + c, in which case the
graph is a straight line. Straight lines are considered to have no concavity.
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(a) A graph that is concave up. No-
tice how the secant line lies above the
graph.
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(b) A graph that is concave down. No-
tice how the secant line lies below the
graph.

Figure 3.4.3 Illustrating the nature of concave up and concave down

Loose Language. Weoften state
that “f is concave up” instead of
“the graphof f is concaveup” for
simplicity.

https://www.youtube.com/watch?v=0uCjI5J4ew4
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Consider a function f such that f is continuous on [a, b] and differentiable
on (a, b). Note that a+b

2 is the midpoint of the interval [a, b]. By the The Mean
Value Theorem of Differentiation, there must be a point c1 in

[
a, a+b

2

]
such that

f ′(c1) =
f
(
a+b
2

)
− f(a)

a+b
2 − a

=
2

b− a

(
f

(
a+ b

2

)
− f(a)

)
.

Similarly, there must be a point c2 in
[
a+b
2 , b

]
such that

f ′(c2) =
f(b)− f

(
a+b
2

)
b− a+b

2

=
2

b− a

(
f(b)− f

(
a+ b

2

))
.

But then we have

f ′(c2)− f ′(c1) =
2

b− a

(
f(b)− f

(
a+ b

2

)
− f

(
a+ b

2

)
+ f(a)

)
=

4

b− a

(
f(a) + f(b)

2
− f

(
a+ b

2

))
.

Now, let us suppose that f ′(x) is an increasing function on (a, b). In that
case, f ′(c2)− f ′(c1) > 0, and since b− a > 0, this implies that

f(a) + f(b)

2
− f

(
a+ b

2

)
> 0,

which, by Definition 3.4.2 means that the graph of f is concave up.
Similarly, if f ′(x) is a decreasing function on (a, b), then the graph of f will

be concave down. Using Theorem 3.3.5, we arrive at the following theorem.

Theorem 3.4.4

Let f be a continuous function on [a, b] and differentiable on (a, b).

1. If f ′′(c) > 0 for all c in (a, b), then f is concave up on [a, b].

2. If f ′′(c) < 0 for all c in (a, b), then f is concave down on [a, b].

3. If f ′′(c) = 0 for all c in (a, b), then f is linear on [a, b].

Aswith Theorem3.3.5, Theorem3.4.4
lets us conclude that the graph
of a function is concave up (or
down) on a closed interval, assum-
ing that the function is continu-
ous on that interval. Again, we
follow the convention thatwhen
a problem asks us to give the in-
tervals onwhich the graph is con-
cave up or down, we give open
intervals, even if a closed inter-
val is technically correct.

If a functionhas the same con-
cavity on adjacent intervals (a, b)
and (b, c), and the function is con-
tinuous at b, we should combine
the intervals, and state the result
as (a, c). However, if b is a point
of discontinuity, wemust omit it
from our intervals.

The graph of a function f is concave upwhen f ′is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.5, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a lesser (large negative) value of f ′. On the right,
the tangent line is steep, upward, corresponding to a greater (large positive)
value of f ′.

−3 −2 −1 1 2 3
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Figure 3.4.5 A function f with a con-
cave up graph. Notice how the slopes
of the tangent lines, when looking
from left to right, are increasing. (The
slope values pictured are −12,−6, 6
and 12).

If a function is decreasing and concave up, then its rate of decrease is slowing;
it is “leveling off.” You can see this in the left side of Figure 3.4.5. If the function is
increasing and concave up, then the rate of increase is increasing. The function
is increasing at a faster and faster rate. You can see this in the right side of
Figure 3.4.5.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function f is concave downwhen f ′is decreasing. Thatmeans
as one looks at a concave down graph from left to right, the slopes of the tangent
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lines will be decreasing. Consider Figure 3.4.6, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a greater (large positive) value of f ′. On
the right, the tangent line is steep, downward, corresponding to a lesser (large
negative) value of f ′.
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Figure 3.4.6 A function f with a con-
cave down graph. Notice how the
slopes of the tangent lines, when
looking from left to right, are decreas-
ing.

If a function is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

ConcavityDepravity. Amnemonic
for remembering what concave
up/downmeans is: “Concave up
is like a cup; concave down is like
a frown.” It is admittedly terri-
ble, but it works.

Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section to find intervals on which a graph is concave up or down. That
is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.7 Test for Concavity.

Let f be twice differentiable on an interval I . The graph of f is concave
up if f ′′ > 0 on I , and is concave down if f ′′ < 0 on I .

(a) f ′ > 0, f in-
creasing; f ′′ <
0, f is concave
down

(b) f ′ < 0, f de-
creasing; f ′′ <
0, f is concave
down

(c) f ′ < 0, f de-
creasing; f ′′ >
0, f is concave
up

(d) f ′ > 0, f in-
creasing; f ′′ >
0, f is concave
up

Figure 3.4.8 Demonstrating the four ways that concavity interacts with increas-
ing/decreasing, alongwith the relationshipswith the first and second derivatives

Geometric Concavity. Geomet-
rically speaking, a function is con-
cave up if its graph lies above its
tangent lines and below secant
line segments. A function is con-
cave down if its graph lies below
its tangent lines and above secant
line segments.

If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 3.4.9 Point of Inflection.

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.10 shows a graph of a function with inflection points labeled.

1 2 3 4
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15
f ′′ > 0,

f is
concave

up

f ′′ > 0,
f is
concave
up

f ′′ < 0,
f is

concave
down

x

y

Figure 3.4.10 A graph of a function
with its inflection points marked. The
intervals where concave up/down are
also indicated.

If the concavity of f changes at a point (c, f(c)), then f ′is changing from
increasing to decreasing (or, decreasing to increasing) at x = c. That means
that the sign of f ′′is changing from positive to negative (or, negative to positive)
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at x = c. A sign changemay occur when f ′′ = 0 or f ′′ is undefined. This leads
to the following theorem.

Theorem 3.4.11 Points of Inflection.

If (c, f(c)) is a point of inflection on the graph of f , then either f ′′(c) = 0
or f ′′ is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.12 Finding intervals of concave up/down, inflection
points.

Let f(x) = x3− 3x+1. Find the inflection points of f and the intervals
on which it is concave up/down.
Solution. We start by finding f ′(x) = 3x2− 3 and f ′′(x) = 6x. To find
the inflection points, we use Theorem 3.4.11 and find where f ′′(x) = 0
or where f ′′is undefined. We find f ′′is always defined, and is 0 only
when x = 0. So the point (0, f(0)) = (0, 1) is the only possible point of
inflection.
This possible inflection point divides the real line into two intervals,
(−∞, 0) and (0,∞). We use a process similar to the one used in the
previous section to determine increasing/decreasing. Pick any c < 0;
f ′′(c) < 0 so f is concave down on (−∞, 0). Pick any c > 0; f ′′(c) > 0
so f is concave up on (0,∞). Since the concavity changes at x = 0, the
point (0, 1) is an inflection point.
The number line in Figure 3.4.13 illustrates the process of determining
concavity; Figure 3.4.14 shows a graph of f and f ′′, confirming our re-
sults. Notice how f is concave down precisely when f ′′(x) < 0 and
concave up when f ′′(x) > 0.

f ′′ < 0
f is concave down

f ′′ > 0
f is concave up

0

Figure 3.4.13 A number line deter-
mining the concavity of f in Exam-
ple 3.4.12
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f ′′(x)
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Figure 3.4.14 A graph of f(x) used in
Example 3.4.12

Video solution

youtu.be/watch?v=n8TRVD_8sY0

Example 3.4.15 Finding intervals of concave up/down, inflection
points.

Let f(x) = x/(x2 − 1). Find the inflection points of f and the intervals
on which it is concave up/down.
Solution. We need to find f ′and f ′′. Using the Quotient Rule and sim-
plifying, we find

f ′(x) =
−(1 + x2)

(x2 − 1)2
f ′′(x) =

2x(x2 + 3)

(x2 − 1)3
.

To find the possible points of inflection, we seek to findwhere f ′′(x) = 0
and where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving
2x(x2 + 3) = 0; we find x = 0. We find that f ′′is not defined when
x = ±1, for then the denominator of f ′′is 0. We also note that f itself is
not defined at x = ±1, having a domain of (−∞,−1)∪(−1, 1)∪(1,∞).
Since the domain of f is the union of three intervals, it makes sense that
the concavity of f could switch across intervals. We technically cannot
say that f has a point of inflection at x = ±1 as they are not part of the
domain, but we must still consider these x-values to be important and

https://www.youtube.com/watch?v=n8TRVD_8sY0


160 CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS

will include them in our number line.
The important x-values at which concavity might switch are x = −1,
x = 0 and x = 1, which split the number line into four intervals as
shown in Figure 3.4.16. We determine the concavity on each. Keep in
mind that all we are concerned with is the sign of f ′′on the interval.

Interval 1:
(−∞,−1)

Select a number c in this interval with a large
magnitude (for instance, c = −100). The de-
nominator of f ′′(x)will be positive. In the nu-
merator, the

(
c2 + 3

)
factor will be positive

and the 2c factorwill be negative. Thus the nu-
merator is negative and f ′′(c) is negative. We
conclude f is concave down on (−∞,−1).

Interval 2: (−1, 0) For any number c in this interval, the factor
2c in the numerator will be negative, the fac-
tor
(
c2 + 3

)
in the numerator will be positive,

and the factor
(
c2 − 1

)3 in the denominator
will be negative. Thus f ′′(c) > 0 and f is con-
cave up on this interval.

Interval 3: (0, 1) Any number c in this interval will be posi-
tive and “small.” Thus the numerator is pos-
itive while the denominator is negative. Thus
f ′′(c) < 0 and f is concave down on this in-
terval.

Interval 4: (1,∞) Choose a large value for c. It is evident that
f ′′(c) > 0, so we conclude that f is concave
up on (1,∞).

−1 10

f ′′ < 0
f conc
down

f ′′ > 0
f conc
up

f ′′ < 0
f conc
down

f ′′ > 0
f conc
up

Figure 3.4.16 Number line for f in Ex-
ample 3.4.15

We conclude that f is concave up on (−1, 0) and (1,∞) and concave
down on (−∞,−1) and (0, 1). There is only one point of inflection,
(0, 0), as f is not defined at x = ±1. Our work is confirmed by the graph
of f in Figure 3.4.17. Notice how f is concave upwhenever f ′′is positive,
and concave downwhen f ′′is negative. The inflection in f occurs where
f ′′ changes sign.
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Figure 3.4.17 A graph of f(x) and
f ′′(x) in Example 3.4.15

Video solution

youtu.be/watch?v=eC6QLbsuRVs

Recall that relative maxima and minima of f are found at critical points of
f ; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relative maxima and minima of f ′are found when f ′′(x) = 0 or when f ′′is
undefined; note that these are the inflection points of f .

What does a “relative maximum of f ′”mean? The derivative measures the
rate of change of f ; maximizing f ′ means finding where f is increasing themost
— where f has the steepest tangent line. A similar statement can be made for
minimizing f ′; it corresponds to where f has the steepest negatively-sloped tan-
gent line.

We utilize this concept in the next example.

Example 3.4.18 Understanding inflection points.

The sales of a certain product over a three-year span are modeled by
S(t) = t4−8t2+20, where t is the time in years, shown in Figure 3.4.19.
Over the first two years, sales are decreasing. Find the point at which
sales are decreasing at their greatest rate.
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S(t)
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y

Figure 3.4.19 A graph of S(t) in Ex-
ample 3.4.18, modeling the sale of a
product over time

https://www.youtube.com/watch?v=eC6QLbsuRVs


3.4. CONCAVITY AND THE SECOND DERIVATIVE 161

Solution. Wewant tomaximize the rate of decrease, which is to say, we
want to find where S′ has a minimum. To do this, we find where S′′ is
0 and S′′ changes from negative to positive. We find S′(t) = 4t3 − 16t
and S′′(t) = 12t2 − 16. Setting S′′(t) = 0 and solving, we get t =√
4/3 ≈ 1.16 (we ignore the negative solution for t since it does not lie

in the domain of our function S).
Since S′′(1) = −4 < 0 and S′′(2) = 32 > 0, we can say S′(

√
4/3) is

a local minimum of S′. This is both the inflection point and the point of
maximum decrease. This is the point at which things first start looking
up for the company. After the inflection point, sales are still decreasing,
but not decreasing quite as quickly as they had been.
A graph ofS(t) andS′(t) is given in Figure 3.4.20. WhenS′(t) < 0, sales
are decreasing; note how at t ≈ 1.16, S′(t) is minimized. That is, sales
are decreasing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2),
S is decreasing but concave up, so the decline in sales is “leveling off.”
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Figure 3.4.20 A graph of S(t) in Exam-
ple 3.4.18, along with S′(t)

Not every critical point corresponds to a relative extrema; f(x) = x3 has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f ′′(x) = 0we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.4.21.
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Figure 3.4.21 A graph of f(x) = x4.
Clearly f is always concave up, de-
spite the fact that f ′′(x) = 0 when
x = 0. In this example, the possible
point of inflection (0, 0) is not a point
of inflection.

3.4.2 The Second Derivative Test
The first derivative of a function gave us a test to find if a critical value corre-
sponded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function f is concave up, then that critical value
must correspond to a relative minimum of f , etc. See Figure 3.4.22 for a visual-
ization of this.
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Figure 3.4.22 Demonstrating the fact
that relative maxima occur when the
graph is concave down and relative
minima occur when the graph is con-
cave up

Theorem 3.4.23 The Second Derivative Test.

Let c be a critical value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

youtu.be/watch?v=4hWldEUoG2U

Figure 3.4.24 Video presentation of
Theorem 3.4.23

The Second Derivative Test relates to the First Derivative Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a critical point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negative
to positive at c. This means the function goes from decreasing to increasing,
indicating a local minimum at c.

Example 3.4.25 Using the Second Derivative Test.

Let f(x) = 100/x + x. Find the critical points of f and use the The
Second Derivative Test to label them as relative maxima or minima.
Solution. We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3. We
set f ′(x) = 0 and solve for x to find the critical values (note that f ′ is

https://www.youtube.com/watch?v=4hWldEUoG2U


162 CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS

not defined at x = 0, but neither is f so this is not a critical value.) We
find the critical values are x = ±10. We now evaluate the second deriv-
ative at these critical numbers. Evaluating f ′′(10) = 0.1 > 0, so there
is a local minimum at x = 10. Evaluating f ′′(−10) = −0.1 < 0, deter-
mining a relative maximum at x = −10. These results are confirmed in
Figure 3.4.26.

−20 −10 10 20

−40

−20
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f ′′(10) > 0

f ′′(−10) < 0

x

y

Figure 3.4.26 A graph of f(x) in Ex-
ample 3.4.25. The second deriva-
tive is evaluated at each critical point.
When the graph is concave up, the
critical point represents a local min-
imum; when the graph is concave
down, the critical point represents a
local maximum.

Video solution

youtu.be/watch?v=_DhmPXRZfi8

Use Wisely. The second deriva-
tive test can only be used on a
function that is twice differentiable
at c. For functions that are not
twice differentiable at c, youwill
need to use the First Derivative
Test. If you’ve already determined
the sign diagram for f ′, the First
Derivative Test is usually easier
to apply, and it applies in cases
when First Derivative Test does
not.

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter 1
we saw how limits explained asymptotic behavior. In the next section we com-
bine all of this information to produce accurate sketches of functions.

https://www.youtube.com/watch?v=_DhmPXRZfi8
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3.4.3 Exercises

Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1) and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:

• increasing, concave up on (0, 1),

• increasing, concave down on (1, 2),

• decreasing, concave down on (2, 3), and

• increasing, concave down on (3, 4).

3. Is is possible for a function to be increasing and concave down on (0,∞)with a horizontal asymptote of y = 1?
If so, give a sketch of such a function.

4. Is is possible for a function to be increasing and concave up on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

Problems

Exercise Group. A function f(x) is given. Graph f and f ′′ on the same axes (using technology is permitted) and
verify Theorem 3.4.7.

5. f(x) = −7x+ 3 6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8 8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5 10. f(x) = sin(x)
11. f(x) = tan(x) 12. f(x) =

1

x2 + 1

13. f(x) = 1
x 14. f(x) = 1

x2

Exercise Group. A function f(x) is given.

(a) Find the possible points of inflection of f .

(b) Find the intervals on which the graph of f is concave up.

(c) Find the intervals on which the graph of f is concave down.

15. f(x) = x2 − 4x+ 4 16. f(x) = −x2 + 4x− 1

17. f(x) = x3 − 8x− 7 18. f(x) = 8x3 + 6x2 + 9x− 5

19. f(x) = x4

4 + 16x3

3 − 72x− 6 20. f(x) = 2x4 − 40x3 + 296x2 − 960x+ 7

21. f(x) = x4 + 8x3 + 24x2 + 32x+ 16 22. f(x) = sec(x) on (−3π/2, 3π/2)

23. f(x) = 1
x2+1 24. f(x) = 1

x2−7x+10

25. f(x) = sin(x) + cos(x) on (−π, π) 26. f(x) = x2ex

27. f(x) = x2 ln(x) 28. f(x) = e−x2

Exercise Group. A function f(x) is given. Find the critical points of f and use the Second Derivative Test, when
possible, to determine the relative extrema. (Note: these are the same functions as in Exercise Group 15–28.)

29. f(x) = x2 + 14x+ 49 30. f(x) = −x2 − 5x+ 3

31. f(x) = x3 − 4x− 4 32. f(x) = −x3 + 8x2 − 25x− 3

33. f(x) = x4

4 + 64x− 9 34. f(x) = 2x4 − 8x3 − 16x2 + 96x+ 9
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35. f(x) = x4 − 12x3 + 54x2 − 108x+ 81 36. f(x) = sec(x) on (−3π/2, 3π/2)

37. f(x) = 1
x2+18x+83 38. f(x) = 1

x2−49

39. f(x) = sin(x) + cos(x) on (−π, π) 40. f(x) = x2ex

41. f(x) = x2 ln(x) 42. f(x) = e−x2

Exercise Group. A function f(x) is given. Find the x values where f ′(x) has a relative maximum or minimum. (Note:
these are the same functions as in Exercise Group 15–28.)

43. f(x) = x2 − 8x+ 16 44. f(x) = −x2 + 6x+ 4

45. f(x) = x3 − 9x− 2 46. f(x) = −9x3 − 8x2 − 7x− 1

47. f(x) = x4

4 + 14x3

3 + 7 48. f(x) = 3x4 − 24x3 + 66x2 − 72x− 6

49. f(x) = x4 + 4x3 + 6x2 + 4x+ 1 50. f(x) = sec(x) on (−3π/2, 3π/2)

51. f(x) = 1
x2−2x+4 52. f(x) = 1

x2−13x+36

53. f(x) = sin(x) + cos(x) on (−π, π) 54. f(x) = x2ex

55. f(x) = x2 ln(x) 56. f(x) = e−x2
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3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a function based
on its first and second derivatives. While we have been treating the properties
of a function separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the function
without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand-held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not particularly fast— itwill require
time (but it is not hard). So again: why bother?

We are attempting to understand the behavior of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behavior we care about is
explained by f ′and f ′′. Understanding the interactions between the graph of f
and f ′and f ′′is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands how an engine works after looking only
at pictures. It is true that the basic ideaswill be conveyed, but “hands-on” access
increases understanding.

Key Idea 3.5.1 summarizes what we have learned so far that is applicable to
sketching graphs of functions and gives a framework for putting that information
together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching.

To produce an accurate sketch a given function f , consider the following
steps.

1. Find the domain of f . Generally, we assume that the domain is the
entire real line then find restrictions, such aswhere a denominator
is 0 or where negatives appear under the radical.

2. Find the critical values of f .

3. Find the possible points of inflection of f .

4. Find the location of any vertical asymptotes of f (usually done in
conjunction with Item 1).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the
end behavior of the function.

6. Create a number line that includes all critical points, possible
points of inflection, and locations of vertical asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each critical point and possible point of inflection.
Plot these points on a set of axes. Connect these points with
curves exhibiting the proper concavity. Sketch asymptotes and x
and y intercepts where applicable.
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Example 3.5.2 Curve sketching.

Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.
Solution. We follow the steps outlined in Key Idea 3.5.1.

1. The domain of f is the entire real line; there are no values x for
which f(x) is not defined.

2. Find the critical values of f . We compute f ′(x) = 9x2 − 20x+ 7.
Use the Quadratic Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)

=
1

9

(
10±

√
37
)

x ≈ 0.435, 1.787.

3. Find the possible points of inflection of f . Compute f ′′(x) =
18x− 20. We have

f ′′(x) = 0

18x− 20 = 0

x = 10/9

≈ 1.111.

4. There are no vertical asymptotes.

5. We determine the end behavior using limits as x approaches±∞.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a num-

ber line, as shown in Figure 3.5.3. Wemark each subinterval as in-
creasing or decreasing, concave up or down, using the techniques
used in Sections 3.3–3.4.

7. Evaluate f at each critical number and possible inflection point.

f(0.435) ≈ 6.400 f(1.111) ≈ 4.547 f(1.787) ≈ 2.695

We plot the appropriate points on axes as shown in Figure 3.5.4(a)
and connect the points with straight lines (to show increasing/
decreasig behavior). In Figure 3.5.4(b) we adjust these lines to
demonstrate the proper concavity. In Figure 3.5.4(c) we show a
graph of f drawn with a computer program, verifying the accu-
racy of our sketch.

1
9

(
10 −

√
37
)

≈ 0.435

10
9 ≈
1.111

1
9

(
10 +

√
37
)

≈ 1.787

f ′ > 0,
f incr

f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ > 0,
f c. up

Figure 3.5.3 Number line for f in Example 3.5.2



3.5. CURVE SKETCHING 167

−1 1 2 3

−5

5

10

x

y

(a)

−1 1 2 3

−5

5

10

x

y

(b)

−1 1 2 3

−5

5

10

x

y

(c)

Figure 3.5.4 Sketching f in Example 3.5.2

Video solution

youtu.be/watch?v=41XMvSHgl-Y

Example 3.5.5 Curve sketching.

Sketch f(x) =
x2 − x− 2

x2 − x− 6
.

Solution. We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and
look for restrictions. We find that at x = −2 and x = 3, f(x) is
not defined. So the domain of f isD = {x | x ̸= −2, 3}.

2. To find the critical values of f , we first find f ′(x). Using the Quo-
tient Rule, we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4

(x− 3)2(x+ 2)2
.

We get f ′(x) = 0 when x = 1/2, and f ′ is undefined when x =
−2, 3. Since f ′is undefined only when f is also undefined, these
are not critical values. The only critical value is x = 1/2.

3. To find the possible points of inflection, we find f ′′(x), again em-
ploying the Quotient Rule:

f ′′(x) =
24x2 − 24x+ 56

(x− 3)3(x+ 2)3
.

Wefind that f ′′(x) is never 0 (setting the numerator equal to 0 and
solving for x, we find the only roots to this quadratic are not real
numbers) and f ′′is undefined when x = −2, 3. Thus concavity
will possibly only change at x = −2 and x = 3 (which are not in
the domain of f , so these won’t be inflection points).

4. The vertical asymptotes of f are at x = −2 and x = 3, the places
where f is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and

lim
x→∞

f(x) = 1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number
line as shown in Figure 3.5.6. We mark in each interval whether
f is increasing or decreasing, concave up or down. We see that f
has a relativemaximum at x = 1/2; concavity changes only at the
vertical asymptotes.

https://www.youtube.com/watch?v=41XMvSHgl-Y
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7. Evaluate f at each critical number.

f(0) = 1/3 f(1/2) = 9/25

In Figure 3.5.7(a), we plot the points from the number line on a set
of axes and connect the points with straight lines to get a general
idea of what the function looks like (these lines effectively only
convey increasing/decreasing information). In Figure 3.5.7(b), we
adjust the graph with the appropriate concavity. We also show f
crossing the x-axis at x = −1 and x = 2 and crossing the y-axis
at y = 1/3. Finally, Figure 3.5.7(c) shows a computer generated
graph of f , which verifies the accuracy of our sketch.

−2 1
2

3

f ′ > 0,
f incr

f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ < 0,
f c. down

f ′ < 0,
f incr

f ′′ < 0,
f c. down

Figure 3.5.6 Number line for f in Example 3.5.5
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Figure 3.5.7 Sketching f in Example 3.5.5

Video solution

youtu.be/watch?v=t3VI2oTmOiA

Example 3.5.8 Curve sketching.

Sketch f(x) =
5(x− 2)(x+ 1)

x2 + 2x+ 4
.

Solution. We again follow Key Idea 3.5.1.

1. We assume that the domain of f is all real numbers and consider
restrictions. The only restrictions could come when the denom-
inator is 0, but this never occurs because the denominator is a
quadratic polynomial with no real roots. Therefore the domain of
f is all real numbers, R.

2. We find the critical values of f by setting f ′(x) = 0 and solving
for x. We find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2

0 =
15x(x+ 4)

(x2 + 2x+ 4)2

x = −4, 0.

Since the denominator of f ′ is just the square of the denominator
of f , there are no values of x for which f ′ is undefined.

https://www.youtube.com/watch?v=t3VI2oTmOiA
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3. We find the possible points of inflection by solving f ′′(x) = 0 for
x (again, there are no values of x for which f ′′ is undefined.) We
find

f ′′(x) = −30x3 + 180x2 − 240

(x2 + 2x+ 4)3
.

The cubic in the numerator does not factor very “nicely.” We in-
stead approximate the roots (using a cas) at x = −5.759, x =
−1.305 and x = 1.064.

4. There are no vertical asymptotes as the denominator never equals
zero.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) =

lim
x→∞

f(x) = 5.

6. We place the critical points and possible points on a number line
as shown in Figure 3.5.9 and mark each interval as increasing/
decreasing, concave up/down appropriately.

7. Evaluate f at each critical number, possible inflection point.

f(−5.759) ≈ 7.200 f(−4) = 7.5

f(−1.305) ≈ 1.630 f(0) = 2.5

f(1.064) ≈ −1.331

In Figure 3.5.10(a) we plot the significant points from the num-
ber line as well as the x- and y-intercepts, and connect the points
with straight lines to get a general impression about the graph
(this graph only includes increasing/decreasing information). In
Figure 3.5.10(b), we add concavity, drawing the function so that
it is smooth (since f is differentiable everywhere, there should be
no kinks or corners). Figure 3.5.10(c) shows a computer generated
graph of f , affirming our results.

−5.579 −4 −1.305 0 1.064

f ′ > 0,
f incr

f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ < 0,
f c. down

Figure 3.5.9 Number line for f in Example Example 3.5.8
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Figure 3.5.10 Sketching f in Example 3.5.8

To get some more practice with curve sketching, we include a few more
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video examples to illustrate the process. (The last of these could be considered
“archival footage”: it was from a first run at using our new lightboard.)

youtu.be/watch?v=S3j-vuUZPjE

Figure 3.5.11 Sketching the polyno-
mial f(x) = x2(5− x)3

youtu.be/watch?v=fdnoec_9Yw4

Figure 3.5.12 Sketching the graph of
the trigonometric function f(x) =
sin(2x)− 2 sin(x)

youtu.be/watch?v=JR31YX5N3M8

Figure 3.5.13 Sketching the graph of
f(x) = x4/3 − 4x1/3

In each of our examples, we found a few significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smarter”
than we are. Rather, it is largely because computers are much faster at comput-
ing than we are. In general, computers graph functions much like most students
dowhen first learning to draw graphs: they plot equally spaced points, then con-
nect the dots using lines. By using lots of points, the connecting lines are short
and the graph looks smooth.

This does a fine job of graphing inmost cases (in fact, this is themethod used
formany graphs in this text). However, in regionswhere the graph is very “curvy,”
this can generate noticeable sharp edges on the graph unless a large number of
points are used. High quality computer algebra systems, such as Mathematica
and Sage, use special algorithms to plot lots of points only where the graph is
“curvy.”

In Figure 3.5.14, two graph of y = sin(x) is given, generated by Sage and
Mathematica. The small points represent each of the places where each cas
sampled the function. Notice how at the “bends” of sin(x), lots of points are
used; where sin(x) is relatively straight, fewer points are used. (In the Math-
ematica plot, many points are also used at the endpoints to ensure the “end
behavior” is accurate.)

1 2 3 4 5 6

1.0

0.5

0.5

1.0

(a) Sage output (b)Mathematica output

Figure 3.5.14 CAS plots of y = sin(x) illustrating the sample points

How does Sage know where the graph is “curvy”? Calculus. When we study
curvature in a later chapter, we will see how the first and second derivatives of a
function work together to provide a measurement of “curviness.” Sage employs
algorithms to determine regions of “high curvature” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behavior of the
function at a fewkey places.” In Example 3.5.8, wewere able to accurately sketch
a complicated graph using only five points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond
curve sketching. The next chapter explores some of these applications, demon-
strating just a few kinds of problems that can be solved with a basic knowledge
of differentiation.

https://www.youtube.com/watch?v=S3j-vuUZPjE
https://www.youtube.com/watch?v=fdnoec_9Yw4
https://www.youtube.com/watch?v=JR31YX5N3M8
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3.5.1 Exercises

Terms and Concepts

1. Why is sketching curves by hand beneficial even though technology is ubiquitous?
2. What does “ubiquitous” mean?
3. T/F: When sketching graphs of functions, it is useful to find the critical points. (□ True □ False)
4. T/F: When sketching graphs of functions, it is useful to find the possible points of inflection. (□ True □ False)
5. T/F: When sketching graphs of functions, it is useful to find the horizontal and vertical asymptotes. (□ True

□ False)

Problems

Exercise Group. In the following exercises, practice using Key Idea 3.5.1 by applying the principles to the given
functions with familiar graphs.

6. Use Key Idea 3.5.1 to sketch a graph of f(x) = 2x+ 4

7. Use Key Idea 3.5.1 to sketch a graph of f(x) = −x2 + 1

8. Use Key Idea 3.5.1 to sketch a graph of f(x) = sin(x)

9. Use Key Idea 3.5.1 to sketch a graph of f(x) = ex

10. Use Key Idea 3.5.1 to sketch a graph of f(x) =
1

x

11. Use Key Idea 3.5.1 to sketch a graph of f(x) =
1

x2

Exercise Group. In the following exercises, sketch a graph of the given function using Key Idea 3.5.1. Show all work;
check your answer with technology.

12. Use Key Idea 3.5.1 to sketch a graph of f(x) = x3 − 2x2 + 4x+ 1

13. Use Key Idea 3.5.1 to sketch a graph of f(x) = −x3 + 5x2 − 3x+ 2

14. Use Key Idea 3.5.1 to sketch a graph of f(x) = x3 + 3x2 + 3x+ 1

15. Use Key Idea 3.5.1 to sketch a graph of f(x) = x3 − x2 − x+ 1

16. Use Key Idea 3.5.1 to sketch a graph of f(x) = (x− 2) ln(x− 2)

17. Use Key Idea 3.5.1 to sketch a graph of f(x) = (x− 2)2 ln(x− 2)

18. Use Key Idea 3.5.1 to sketch a graph of f(x) =
x2 − 4

x2

19. Use Key Idea 3.5.1 to sketch a graph of f(x) =
x2 − 4x+ 3

x2 − 6x+ 8

20. Use Key Idea 3.5.1 to sketch a graph of f(x) =
x2 − 2x+ 1

x2 − 6x+ 8

21. Use Key Idea 3.5.1 to sketch a graph of f(x) = x
√
x+ 1

22. Use Key Idea 3.5.1 to sketch a graph of f(x) = x2ex

23. Use Key Idea 3.5.1 to sketch a graph of f(x) = sin(x) cos(x) on [−π, π]

24. Use Key Idea 3.5.1 to sketch a graph of f(x) = (x− 3)2/3 + 2

25. Use Key Idea 3.5.1 to sketch a graph of f(x) =
(x− 1)2/3

x
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Exercise Group. In the following exercises, a function with the parameters a and b are given. Describe the critical
points and possible points of inflection of f in terms of a and b.

26. f(x) =
a

x2 + b2

(a) Find the critical points of f .

(b) Find the inflection points of f .

27. f(x) = sin(ax+ b)

(a) Find the critical points of f .

(b) Find the inflection points of f .

28. f(x) = (x− a)(x− b)

(a) Find the critical points of f .

(b) Find the inflection points of f .

29. Given x2 + y2 = 1, use implicit differentiation to find dy
dx and

d2y
dx2 . Use this information to justify the sketch

of the unit circle.



Chapter 4

Applications of the Derivative

In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method

Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x5 + x + 1 = 0 or cos(x) = x cannot be solved by
algebraicmethods in terms of familiar functions. Fortunately, there aremethods
that can give us approximate solutions to equations like these. These methods
can usually give an approximation correct to as many decimal places as we like.
In Section 1.5 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph
at (x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then re-
peat the process — draw the tangent line to the graph at (x1, f(x1)) and see
where it meets the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the
process again to get x3, x4, etc. This sequence of points will often converge
rather quickly to a root of f .
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Figure 4.1.1 Demonstrating the geometric concept behind Newton’s Method
We can use this geometric process to create an algebraic process. Let’s look

at howwe foundx1. We startedwith the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equation of the line is

y = f ′(x0)(x− x0) + f(x0).
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This line crosses the x-axis when y = 0, and the x-value where it crosses is
what we called x1. So let y = 0 and replace x with x1, giving the equation:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)

f ′(x0)
.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)

f ′(x1)
.

In general, given an approximation xn, we can find the next approximation,
xn+1 as follows:

xn+1 = xn − f(xn)

f ′(xn)
.

We summarize this process as follows.

Key Idea 4.1.2 Newton’s Method.

Let f be a differentiable function on an interval I with a root in I . To
approximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an initial approximation of the root. (This is
often done by looking at a graph of f .)

2. Create successive approximations iteratively; given an approxima-
tion xn, compute the next approximation xn+1 as

xn+1 = xn − f(xn)

f ′(xn)
.

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Newton’s Method is not Infalli-
ble. The sequenceof approximate
valuesmaynot converge, or itmay
converge so slowly that one is “tricked”
into thinking a certain approxima-
tion is better than it actually is.
These issues will be discussed at
the end of the section.

Let’s practice Newton’s Method with a concrete example.

Example 4.1.3 Using Newton’s Method.

Approximate the real root of x3 − x2 − 1 = 0, accurate to the first
three places after the decimal, using Newton’s Method and an initial
approximation of x0 = 1.
Solution. To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the
Newton’s Method algorithm, outlined in Key Idea 4.1.2.
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x1 = 1− f(1)

f ′(1)

= 1− 13 − 12 − 1

3 · 12 − 2 · 1
= 2

x2 = 2− f(2)

f ′(2)

= 2− 23 − 22 − 1

3 · 22 − 2 · 2
= 1.625

x3 = 1.625− f(1.625)

f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1

3 · 1.6252 − 2 · 1.625
≈ 1.48579

x4 = 1.48579− f(1.48579)

f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)

f ′(1.46596)

≈ 1.46557

We performed five iterations of Newton’s Method to find a root accu-
rate to the first three places after the decimal; our final approximation
is 1.465. The exact value of the root, to six decimal places, is 1.465571; It
turns out that our x5 is accurate to more than just three decimal places.
A graph of f(x) is given in Figure 4.1.4. We can see from the graph
that our initial approximation of x0 = 1 was not particularly accurate; a
closer guess would have been x0 = 1.5. Our choice was based on ease
of initial calculation, and shows that Newton’s Method can be robust
enough that we do not have to make a very accurate initial approxima-
tion.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−1.5

−1

−0.5

0.5

x

y

Figure 4.1.4 A graph of f(x) = x3 −
x2 − 1 in Example 4.1.3

We can automate this process on a calculator that has an ANS key that returns
the result of the previous calculation. Start by pressing 1 and then Enter. (We
have just entered our initial guess, x0 = 1.) Now compute

ANS − f( ANS )

f ′( ANS )

by entering the following and repeatedly press the Enter key.

ANS-(ANS^3-ANS^2-1)/(3*ANS^2-2*ANS)

Each time we press the Enter key, we are finding the successive approxima-
tions, x1, x2, …, and each one is getting closer to the root. In fact, once we get
past around x7 or so, the approximations don’t appear to be changing. They
actually are changing, but the change is far enough to the right of the decimal
point that it doesn’t show up on the calculator’s display. When this happens, we
can be pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many itera-
tions can be computed very quickly.

Example 4.1.5 Using Newton’s Method to find where functions inter-
sect.

Use Newton’s Method to approximate a solution to cos(x) = x, accu-
rate to five places after the decimal.
Solution. Newton’sMethod provides amethod of solving f(x) = 0; it is
not (directly) amethod for solving equations like f(x) = g(x). However,
this is not a problem; we can rewrite the latter equation as f(x)−g(x) =
0 and then use Newton’s Method.
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So we rewrite cos(x) = x as cos(x) − x = 0. Written this way, we are
finding a root of f(x) = cos(x)−x. We compute f ′(x) = − sin(x)− 1.
Next we need a starting value, x0. Consider Figure 4.1.6, where f(x) =
cos(x) − x is graphed. It seems that x0 = 0.75 is pretty close to the
root, so we will use that as our x0. (The figure also shows the graphs of
y = cos(x) and y = x. Note how they intersect at the same x value as
when f(x) = 0.)−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

Figure 4.1.6 A graph of f(x) =
cos(x) − x used to find an initial ap-
proximation of its root

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75

− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388

− sin(0.7391111388)− 1

≈ 0.7390851334.

We can continue this way, but it is really best to automate this process.
On a calculator with an ANS key, we would start by entering 0.75, then
Enter, inputting our initial approximation. We then enter:

ANS - (cos(ANS)-ANS)/(-sin(ANS)-1)

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

x3 = 0.7390851332

x4 = 0.7390851332.

Our approximations x2 and x3 did not differ for at least the first five
places after the decimal, so we could have stopped. However, using our
calculator in the manner described is easy, so finding x4 was not hard.
It is interesting to see how we found an approximation, accurate to as
many decimal places as our calculator displays, in just four iterations.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computation in this problem.

x = 0.75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < 0.0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The previ-
ous approximation is stored in the variable oldx. We continue looping until the
difference between two successive approximations, abs(x-oldx), is less than
some small tolerance, in this case, 0.0000000001.

Convergence of Newton’s Method. What should one use for the initial guess,
x0? Generally, the closer to the actual root the initial guess is, the better. How-
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ever, some initial guesses should be avoided. For instance, consider Example 4.1.3
where we sought the root to f(x) = x3 − x2 − 1. Choosing x0 = 0would have
been a particularly poor choice. Consider Figure 4.1.7, where f(x) is graphed
along with its tangent line at x = 0. Since f ′(0) = 0, the tangent line is horizon-
tal and does not intersect the x-axis. Graphically, we see that Newton’s Method
fails.

−0.5 0.5 1 1.5
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−0.5

0.5
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Figure 4.1.7 A graph of f(x) = x3 −
x2−1, showing why an initial approx-
imation of x0 = 0 with Newton’s
Method fails

We can also see analytically that it fails. Since

x1 = 0− f(0)

f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

Adjusting the initial approximation x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.8.
It is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Fig-
ure 4.1.8(a) shows graphically the calculation of x1; notice how it is farther from
the root than x0. Figure 4.1.8(b) and Figure 4.1.8(c) show the calculation of x2

and x3, which are even farther away; our successive approximations are getting
worse. (It turns out that in this particular example, each successive approxima-
tion is twice as far from the true answer as the previous approximation.)
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(c)

Figure 4.1.8 Newton’s Method fails to find a root of f(x) = x1/3, regardless of
the choice of x0.

There is no “fix” to this problem; Newton’s Method simply will not work
and another method must be used. (In this case the particular reason Newton’s
Method fails is that the tangent line is vertical at the root).

While Newton’s Method does not always work, it does work “most of the
time,” and it is generally very fast. Once the approximations get close to the root,
Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro-
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.
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4.1.1 Exercises

Terms and Concepts

1. (□ True □ False) Given a function f(x), Newton’s Method produces an exact solution to f(x) = 0.

2. (□ True □ False) In order to get a solution to f(x) = 0 accurate to d places after the decimal, at least
d+ 1 iterations of Newton’s Method must be used.

Problems

Exercise Group. The roots of the function f(x) are known or are easily found. Use five iterations of Newton’sMethod
with the given initial approximation to approximate the root. Compare it to the known value of the root.

3. f(x) = cos(x), x0 = 1.5 4. f(x) = sin(x), x0 = 1

5. f(x) = x2 + x− 2, x0 = 0 6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln(x), x0 = 2 8. f(x) = x3 − x2 + x− 1, x0 = 2

Exercise Group. Use Newton’s Method to approximate all roots of the given function accurate to three places after
the decimal. If an interval is given, find only the roots that lie within that interval. Use technology to obtain good
initial approximations.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos(x) + (x− 1) sin(x) on (−3, 3)

Exercise Group. Use Newton’s Method to approximate when the given functions are equal, accurate to 3 places after
the decimal. Use technology to obtain good initial approximations.

13. f(x) = x2, g(x) = cos(x)

14. f(x) = x2 − 1, g(x) = sin(x)

15. f(x) = ex
2

, g(x) = cos(x)

16. f(x) = x, g(x) = tan(x) on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) = x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) = −17x4 + 130x3 − 301x2 + 156x + 156 when
x0 = 1?
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4.2 Related Rates

youtu.be/watch?v=TKqYEDaAidQ

Figure 4.2.1 Video introduction to
Section 4.2

When two quantities are related by an equation, knowing the value of one
quantity can determine the value of the other. For instance, the circumference
and radius of a circle are related byC = 2πr; knowing thatC is 6π in determines
the radius must be 3 in.

But what if both variables are changing with time? If we know how two
variables are related and we know how one of them changes with time, can we
find how the other variable changes with time?

The topic of related rates allows us to answer this question: knowing the
rate at which one quantity is changing can determine the rate at which another
changes.

Remark 4.2.2 This section relies heavily on implicit differentiation, so referring
back to Section 2.6 may help.

We demonstrate the concepts of related rates through examples.

Example 4.2.3 Understanding related rates.

The radius of a circle is growing at a rate of 5 in
h . At what rate is the

circumference growing?
Solution (a). The circumference and radius of a circle are related by
C = 2πr. We are given information about how the length of r changes
with respect to time; that is, we are told dr

dt is 5
in
h . We want to know

how the length ofC changes with respect to time, i.e., we want to know
dC
dt .
Implicitly differentiate both sides of C = 2πr with respect to t:

C = 2πr

d

dt
(C) =

d

dt
(2πr)

dC

dt
= 2π

dr

dt
.

As we know dr
dt is 5

in
h , we know

dC

dt
= 2π5 = 10π ≈ 31.4 in/hr .

This problemwas relatively straightforward, owing to the linear relation-
ship between radius and circumference. The video in Figure 4.2.4 ex-
plores what would happen if we had instead been asked for the rate at
which the area is changing.

youtu.be/watch?v=RDPxSmxqUBs

Figure 4.2.4 Trying to find the rate at
which area is changing for the circle in
Example 4.2.3

Video solution

youtu.be/watch?v=Qg3GStrQ8pY

In related rates problems, we will be presented with an application prob-
lem that involves two or more variables and one or more rate. It is the job of
the reader to construct the appropriate model that can be used to answer the
posed question. Key Idea 4.2.5 outlines the basic steps for solving a related rates
problem.

Key Idea 4.2.5 Related Rates.

1. Read the problem carefully and identify the quantities that are
changing with time. (There may be many quantities that change
with time, try to identify which variables are important to your
goal and only focus on these quantities.)

https://www.youtube.com/watch?v=TKqYEDaAidQ
https://www.youtube.com/watch?v=RDPxSmxqUBs
https://www.youtube.com/watch?v=Qg3GStrQ8pY
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2. Draw a diagram (if applicable) and assign mathematical variables
to each quantity that is changing with time. (If you are given a par-
ticular value of a quantity that is also changing with time, do not
include these values on your diagram. We will call these “instan-
taneous values” of the variable.)

3. Relate the important variables using a mathematical model.
(Typical models are known formulas for area, perimeter, the
Pythagorean Theorem or Trigonometric Ratios.) It may be neces-
sary to use more than one technique (such as similar triangles) to
reduce your model down to one that only involves the variables
of interest.

4. Implicitly differentiate both sides of the equation found in Step 3
with respect to t.

5. Substitute in the known values of rates and known instantaneous
values of the variables.

6. Solve for the unknown rate.

7. Write a full sentence conclusion.

Consider another, similar example.

Example 4.2.6 Finding related rates.

Water streams out of a faucet at a rate of 2 in3
s onto a flat surface at a

constant rate, forming a circular puddle that is 1/8 in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Solution.

1. We can answer this question two ways: using “common sense” or
related rates. The common sense method states that the volume
of the puddle is growing by 2 in3

s , where

volume of puddle = area of circle× depth.

Since the depth is constant at 1/8 in, the area must be growing
by 16 in2

s since 16 · 1
8 = 2. This approach reveals the underlying

related rates principle.
Now let’s solve the problem using Key Idea 4.2.5. Based on the
problem description, the quantities that change with time are the
volume of water (the volume of the puddle), the area of the circu-
lar puddle and the radius of the circle. We don’t need a diagram
for this problem. The important variables for this part of the prob-
lem are the volume and area.
Let V and A represent the Volume and Area of the puddle. We
know V = A × 1

8 . Take the derivative of both sides with respect
to t, employing implicit differentiation.

V =
1

8
A
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d

dt
(V ) =

d

dt

(
1

8
A

)
dV

dt
=

1

8

dA

dt

We know the change in volume, dV
dt = 2, so we substitute this

value into our related rates equation: 2 = 1
8
dA
dt , and hence

dA
dt =

16. Thus the area is growing by 16 in2
s .

2. We already identified the quantities that are changing in Part 1.
The variables of interest in this problem are the radius and the
volume. We need an equation that relates the volume of the circle
to the radius. Since the puddle is a right circular cylinder, we will
use a known volume formula, V = πr2h where V is the volume
of the puddle (in in3, r is the radius (in inches) and h is the height
(i.e. depth) of the puddle in inches. (Notice that this formula is
equivalent toV = area×depth.) We know that the height (depth)
is a constant 1/8 inch. Since this quantity does not change in the
problem, we can safely substitute this value now.

Implicitly derive both sides of V = πr2 1
8 with respect to t:

V =
1

8
πr2

d

dt

(
V
)
=

d

dt

(
1

8
πr2
)

dV

dt
=

1

8
2πr

dr

dt
dV

dt
=

1

4
πr

dr

dt

We know that dV
dt is 2

in3
s . So we have:

2 =
1

4
πr

dr

dt

Solving for dr
dt , we have

dr

dt
=

8

πr
.

Note how our answer is not a number, but rather a function of r.
In other words, the rate at which the radius is growing depends on
how big the circle already is. If the circle is very large, adding 2 in3

s
of water will not make the circle much bigger at all. If the circle is
dime-sized, adding the same amount of water will make a radical
change in the radius of the circle.

In some ways, our problem was (intentionally) ill-posed. We need
to specify a current (instantaneous) value of the radius in order to
know a rate of change. When the puddle has a radius of 10 in, the
radius is growing at a rate of

dr

dt
=

8

10π
=

4

5π
≈ 0.25 in/s .

Video solution

youtu.be/watch?v=8ctKxMoFWkU

https://www.youtube.com/watch?v=8ctKxMoFWkU
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Example 4.2.7 Studying related rates.

Radar guns measure the rate of distance change between the gun and
the object it is measuring. For instance, a reading of “55mph” means
the object is moving away from the gun at a rate of 55 miles per hour,
whereas a measurement of “−25mph” would mean that the object is
approaching the gun at a rate of 25miles per hour.
If the radar gun is moving (say, attached to a police car) then radar read-
outs are only immediately understandable if the gun and the object are
moving along the same line. If a police officer is traveling 60mph and
gets a readout of 15mph, he knows that the car ahead of him is moving
away at a rate of 15 miles an hour, meaning the car is traveling 75mph.
(This straight-line principle is one reason officers park on the side of the
highway and try to shoot straight back down the road. It gives the most
accurate reading.)
Suppose an officer is driving due north at 30mph and sees a car moving
due east, as shown in Figure 4.2.8. Using his radar gun, he measures
a reading of 20mph. By using landmarks, he believes both he and the
other car are about 1/2mile from the intersection of their two roads.

B = 1/2

C

A
=

1/
2

N

E

Officer

Car

Figure 4.2.8 A sketch of a police car
(at bottom) attempting to measure
the speed of a car (at right) in Exam-
ple 4.2.7

If the speed limit on the other road is 55mph, is the other driver speed-
ing?
Solution. The important quantities that are changing are: the distance
of the officer to the intersection, the distance of the car to the intersec-
tion, and the distance of the officer to the car. (There are other quanti-
ties that are changing as well such as the angles and area of the triangle,
but these are not important to this problem.)
Using the diagram in Figure 4.2.8, let’s label what we know about the sit-
uation. As both the police officer and other driver are 1/2mile from the
intersection, we haveA = 1/2,B = 1/2, and through the Pythagorean
Theorem,C = 1/

√
2 ≈ 0.707. These values are “instantaneous” values

for our variables, so we won’t use them until the end of the problem.
Instead, we will use the variables A,B, and C.
We need an equation that relates A, B, and C. The Pythagorean The-
orem is a good choice: A2 + B2 = C2. Differentiate both sides with
respect to t:

A2 +B2 = C2

d

dt

(
A2 +B2

)
=

d

dt

(
C2
)

2A
dA

dt
+ 2B

dB

dt
= 2C

dC

dt

We know the police officer is traveling at 30mph; that is, dA
dt = −30.

The reason this rate of change is negative is thatA is getting smaller; the
distance between the officer and the intersection is shrinking. The radar
measurement is dC

dt = 20. We want to find dB
dt .

We have values for everything except dB
dt . Solving for this we have:

dB

dt
=

C dC
dt −AdA

dt

B
.

Now we substitue in our known rates and instantaneous values of our
variables:

dB

dt
≈ 0.707(20)− 0.5(−30)

(0.5)
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= 58.28mph .

The other driver appears to be speeding slightly. Video solution

youtu.be/watch?v=8fFao8XCQC0

Practicality. Example 4.2.7 is both
interesting and impractical. It high-
lights the difficulty in using radar
in a nonlinear fashion, and explains
why “in real life” the police offi-
cer would follow the other dri-
ver to determine their speed, and
not pull out pencil and paper.

Theprinciples here are impor-
tant, though. Many automated
vehicles make judgments about
other moving objects based on
perceiveddistances, radar-likemea-
surements and the concepts of
related rates.

Example 4.2.9 Studying related rates.

A camera is placed on a tripod 10 ft from the side of a road. The camera
is to turn to track a car that is to drive by at 100mph for a promotional
video. The video’s planners want to knowwhat kind of motor the tripod
should be equipped with in order to properly track the car as it passes
by. Figure 4.2.10 shows the proposed setup.

θ

10ft

x

100mph

Figure 4.2.10 Tracking a speeding car
(at left) with a rotating camera

How fast must the camera be able to turn to track the car?
Solution. The quantities that changing are x and θ as drawn on Fig-
ure 4.2.10. (The hypotenuse of the triangle is also changing, but this
isn’t important to the problem). We seek information about how fast
the camera is to turn; therefore, we need an equation that will relate an
angle θ to the position of the camera and the speed and position of the
car.
Figure 4.2.10 suggests we use a trigonometric equation. Letting x repre-
sent the distance the car is from the point on the road directly in front
of the camera, we have

tan(θ) =
x

10
. (4.2.1)

Now take the derivative of both sides of Equation (4.2.1) using implicit
differentiation:

tan(θ) =
x

10
d

dt
(tan(θ)) =

d

dt

( x

10

)
sec2(θ)

dθ

dt
=

1

10

dx

dt

Now we solve for dθ
dt :

dθ

dt
=
cos2(θ)

10

dx

dt
(4.2.2)

As the car is moving at 100mph, we have that dx
dt is−100mph (as in the

last example, since x is getting smaller as the car travels, dxdt is negative).
We need to convert the measurements so they use the same units (we
chose ft); rewrite−100mph in terms of fts :

dx

dt
= −100

mi
hr

= −100
mi
hr

· 5280 ft
mi

· 1

3600

hr
s

= −146.6 ft/s .

We want to know the fastest the camera has to turn. Common sense
tells us this is when the car is directly in front of the camera (i.e., when
θ = 0). Our mathematics bears this out. In Equation (4.2.2) we see this
is when cos2(θ) is largest; this is when cos(θ) = 1, or when θ = 0. We
also know that we should get an answer that is in rad

s . Since cos(θ) is
a “dimensionless” measure, it won’t contribute to the units. However,

https://www.youtube.com/watch?v=8fFao8XCQC0
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radians are also dimensionless. This means we can write (or erase) the
word “radian” without any unit consequences. (The same is not true of
degrees — always convert degress to radians).
With dx

dt approximately−146.7 ft
s , we have

dθ

dt
≈ − 1

10 ft
146.67 ft/s

= −14.667 radians/s

We find that dθ
dt is negative; this matches our diagram in Figure 4.2.10

for θ is getting smaller as the car approaches the camera.
What is the practical meaning of−14.667 rad

s ? Recall that 1 circular rev-
olution goes through 2π radians, thus 14.667 rad

s means 14.667/(2π) ≈
2.33 revolutions per second. The negative sign indicates the camera is
rotating in a clockwise fashion.

Video solution

youtu.be/watch?v=B85LlGHgVQo

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’sMethod uses the derivative to approximate roots of functions; this sec-
tion stresses the “rate of change” aspect of the derivative to find a relationship
between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.

https://www.youtube.com/watch?v=B85LlGHgVQo
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4.2.1 Exercises

Terms and Concepts

1. (□ True □ False) Implicit differentiation is often used when solving “related rates” type problems.
2. (□ True □ False) A study of related rates is part of the standard police officer training.

Problems

3. Water flows onto a flat surface at a rate of 4 cm3

s forming a circular puddle 8mm deep. How fast is the radius
growing when the radius is:

(a) 2 cm

(b) 20 cm

(c) 200 cm

4. A spherical balloon is inflated with air flowing at a rate of 5 cm3

s . How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm

(b) 10 cm

(c) 100 cm
5. Consider the traffic situation introduced in Example 4.2.7. How fast is the “other car” traveling if the officer and

the other car are each 3
4 mile from the intersection, the other car is traveling due west, the officer is traveling

north at 55mph, and the radar reading is−75mph?
6. Consider the traffic situation introduced in Example 4.2.7. Calculate how fast the “other car” is traveling in each

of the following situations.

(a) The officer is traveling due north at 50mph and is 3
4 mile from the intersection, while the other car is 1

mile from the intersection traveling west and the radar reading is−85mph?

(b) The officer is traveling due north at 50mph and is 1 mile from the intersection, while the other car is 3
4

mile from the intersection traveling west and the radar reading is−85mph?
7. An F-22 aircraft is flying at 530mph with an elevation of 6600ft on a straight-line path that will take it directly

over an anti-aircraft gun.

θ

x

6600 ft

How fast (in radians per second) must the gun be able to turn to accurately track the aircraft when the plane
is:

(a) 1mile away?

(b) 1/5mile away?

(c) Directly overhead?
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8. An F-22 aircraft is flying at 500 mi/h with an elevation of 100ft on a straight-line path that will take it directly
over an anti-aircraft gun as in Exercise 4.2.7 (note the lower elevation here).

How fast must the gun be able to turn to accurately track the aircraft when the plane is:

(a) 1800 ft away?

(b) 350 ft away?

(c) Directly overhead?
9. A 24 ft ladder is leaning against a house while the base is pulled away at a constant rate of 1 ft/s.

24
ft 1 ft/s

At what rate is the top of the ladder sliding down the side of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?
10. A boat is being pulled into a dock at a constant rate of 30 ft/min by a winch located 10 ft above the deck of the

boat.

10ft

At what rate is the boat approaching the dock when the boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the boat is less than 10 feet long?

11. An inverted cylindrical cone, 28 ft deep and 25 ft across at the top, is being filled with water at a rate of 12 ft3

s .
At what rate is the water rising in the tank when the depth of the water is:

(a) 1 foot?

(b) 10 feet?

(c) 22 feet?

(d) How long will the tank take to fill when starting at empty?
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12. A rope, attached to a weight, goes up through a pulley at the ceiling and back down to a worker. The man holds
the rope at the same height as the connection point between rope and weight.

3
0
ft

2 ft/s

Suppose the man stands directly next to the weight (i.e., a total rope length of 60 feet) and begins to walk
away at a rate of 2 ft/s. How fast is the weight rising when the man has walked:

(a) 10 feet?

(b) 40 feet?

(c) How far must the man walk to raise the weight all the way to the pulley?
13. Consider the situation described in Exercise 4.2.12. Suppose the man starts 40 ft from the weight and begins to

walk away at a rate of 2 ft
s .

(a) How long is the rope?

(b) How fast is the weight rising after the man has walked 10 feet?

(c) How fast is the weight rising after the man has walked 30 feet?

(d) How far must the man walk to raise the weight all the way to the pulley?
14. A hot air balloon lifts off from ground rising vertically. From 90 feet away, a 6 ft tall woman tracks the path of

the balloon. When her sightline with the balloon makes a 45◦ angle with the horizontal, she notes the angle is
increasing at about 3◦ per minute.

(a) What is the elevation of the balloon?

(b) How fast is it rising?
15. A company that produces landscaping materials is dumping sand into a conical pile. The sand is being poured

at a rate of 5 ft3

s . The physical properties of the sand, in conjunction with gravity, ensure that the cone’s height
is roughly 4

7 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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4.3 Optimization

youtu.be/watch?v=nlLf3CcgblI

Figure 4.3.1 A simple optimization
problem

In Section 3.1 we learned about extreme values — the largest and smallest
values a function attains on an interval. Wemotivated our interest in such values
by discussing how it made sense to want to know the highest/lowest values of
a stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.2 Optimization: perimeter and area.

Aman has 100 feet of fencing, a large yard, and a small dog. He wants to
create a rectangular enclosure for his dog with the fencing that provides
the maximal area. What dimensions provide the maximal area?
Solution. One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context
that proves this answer is correct.
It helps to make a sketch of the situation. Our enclosure is sketched
twice in Figure 4.3.3, either with treetop grass and nice fence boards or
as a simple rectangle. Either way, drawing a rectangle forces us to realize
that we need to know the dimensions of this rectangle so we can create
an area function — after all, we are trying to maximize the area.

x

y

x

y

Figure 4.3.3 A sketch of the enclosure in Example 4.3.2.
We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with two variables; we
need to reduce this down to a single variable. We knowmore about the
situation: the man has 100 feet of fencing. By knowing the perimeter of
the rectangle must be 100, we can create another equation:

Perimeter = 100 = 2x+ 2y.

We now have two equations and two unknowns. In the latter equation,
we solve for y:

y = 50− x.

Now substitute this expression for y in the area equation:

Area = A(x) = x(50− x).

Notewe nowhave an equation of one variable; we can truly call the Area
a function of x.

https://www.youtube.com/watch?v=nlLf3CcgblI
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This function only makes sense when 0 ≤ x ≤ 50, otherwise we get
negative values of area. So we find the extreme values of A(x) on the
interval [0, 50] using Key Idea 3.1.18.
To find the critical points, we take the derivative ofA(x) and set it equal
to 0, then solve for x.

A(x) = x(50− x)

= 50x− x2

A′(x) = 50− 2x

We solve 50 − 2x = 0 to find x = 25; this is the only critical point. We
evaluateA(x) at the endpoints of our interval and at this critical point to
find the extreme values; in this case, all we care about is the maximum.
Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625ft2. This is the
maximum. Since we earlier found y = 50 − x, we find that y is also
25. Thus the dimensions of the rectangular enclosure with perimeter of
100 ft. with maximum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi-variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

Key Idea 4.3.4 Solving Optimization Problems.

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We’ll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able functionusing substitutions derived from theother equations
(we’ll call these constraint equations).

4. Identify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. Identify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.4 in a variety of examples.
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Example 4.3.5 Optimization: perimeter and area.

Here is another classic calculus problem: Awoman has a 100 feet of fenc-
ing, a small dog, and a large yard that contains a stream (that is mostly
straight). Shewants to create a rectangular enclosurewithmaximal area
that uses the stream as one side. (Apparently her dogwon’t swim away.)
What dimensions provide the maximal area?
Solution. We will follow the steps outlined by Key Idea 4.3.4.

1. We are maximizing area. A sketch of the region will help; Fig-
ure 4.3.6 gives two sketches of the proposed enclosed area. A
key feature of the sketches is to acknowledge that one side is not
fenced.

x

y

x

y

Figure 4.3.6 A sketch of the enclosure in Example 4.3.5

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equation. This defines area as a function
of two variables, so we need another equation to reduce it to one
variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

The perimeter is our constraint equation. Note how this is a dif-
ferent equation for perimeter than in Example 4.3.2, since one of
the sides does not need to be fenced.

3. We now reduce the fundamental equation to a single variable us-
ing our constraint equation. In the perimeter equation, solve for
y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2)

= 50x− 1

2
x2.

Area is now defined as a function of one variable.

4. We want the area to be non-negative. SinceA(x) = x(50−x/2),
we want x ≥ 0 and 50 − x/2 ≥ 0. The latter inequality implies
that x ≤ 100, so 0 ≤ x ≤ 100.

5. We now find the extreme values. At the endpoints, the minimum
is found, giving an area of 0.
Find the critical points. We haveA′(x) = 50−x; setting this equal
to 0 and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.
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6. We earlier set y = 50−x/2; thus y = 25. Thus our rectangle will
have two sides of length 25 and one side of length 50, with a total
area of 1250 ft2.

Video solution

youtu.be/watch?v=wIs5N5HOCrcKeep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a systemof equations. These equations
allow us to write a certain quantity as a function of one variable, which we then
optimize.

Example 4.3.7 Optimization: minimizing cost.

A power line needs to be run from a power station located on the beach
to an offshore facility. Figure 4.3.8 shows the distances between the
power station to the facility.
It costs $50/ ft to run a power line along the land, and $130/ ft to run
a power line under water. How much of the power line should be run
along the land to minimize the overall cost? What is the minimal cost?

5000 ft

1000 ft

Figure 4.3.8 Running a power line
from the power station to an offshore
facility with minimal cost in Exam-
ple 4.3.7

Solution. Wewill follow the strategy of Key Idea 4.3.4 implicitly, without
specifically numbering steps.
There are two immediate solutions that we could consider, each of
which we will reject through “common sense.” First, we could minimize
the distance by directly connecting the two locations with a straight line.
However, this requires that all the wire be laid underwater, the most
costly option. Second, we could minimize the underwater length by run-
ning a wire all 5000 ft along the beach, directly across from the offshore
facility. This has the undesired effect of having the longest distance of
all, probably ensuring a non-minimal cost.
The optimal solution likely has the line being run along the ground for
a while, then underwater, as the figure implies. We need to label our
unknown distances — the distance run along the ground and the dis-
tance run underwater. Recognizing that the underwater distance can
be measured as the hypotenuse of a right triangle, we choose to label
the distances as shown in Figure 4.3.9.

5000− x x

1000 ft√ x
2 + 100

0
2

Figure 4.3.9 Labeling unknown dis-
tances in Example 4.3.7

By choosing x as we did (instead of letting x be the distance along the
land), we make the expression under the square root simple. We now
create the cost function.

Cost = land cost + water cost
$50× land distance+ $130× water distance

50(5000− x) + 130
√

x2 + 10002.

So we have c(x) = 50(5000−x)+130
√
x2 + 10002. This function only

makes sense on the interval [0, 5000]. While we are fairly certain the
endpoints will not give a minimal cost, we still evaluate c(x) at each to
verify.

c(0) = 380,000 c(5000) ≈ 662,873.

(Notice that if x = 0, the line is run the full 5000 ft along land and a full
1000 ft under water. If x = 5000, the line is run the maximum distance
underwater.)

https://www.youtube.com/watch?v=wIs5N5HOCrc
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We now find the critical values of c(x). We compute c′(x) as

c′(x) = −50 +
130x√

x2 + 10002
.

Recognize that this is never undefined. Setting c′(x) = 0 and solving for
x, we have:

−50 +
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)

1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000

120
=

1250

3
≈ 416.67.

Evaluating c(x) at x = 416.67 gives a minimal cost of about $370,000.
The distance the power line is laid along land is 5000−416.67 = 4583.33
ft., and the underwater distance is

√
416.672 + 10002 ≈ 1083 ft.

Video solution

youtu.be/watch?v=qDK9rqloKRs

In the exercises you will see a variety of situations that require you to com-
bine problem-solving skills with calculus. Focus on the process; learn how to
form equations from situations that can bemanipulated into what you need. Es-
chew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

Before youbegin the exercises, here is onemore example, presented in video
form in Figure 4.3.10.

youtu.be/watch?v=XJYDMZe8JUk

Figure 4.3.10Optimizing construction
of a box with no top

Section 4.4 introduces our final application of the derivative: differentials.
Given y = f(x), they offer a method of approximating the change in y after x
changes by a small amount.

https://www.youtube.com/watch?v=qDK9rqloKRs
https://www.youtube.com/watch?v=XJYDMZe8JUk
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4.3.1 Exercises

Terms and Concepts

1. (□ True □ False) An “optimization problem” is essentially an “extreme values” problem in a “story prob-
lem” setting.

2. (□ True □ False) This section teaches one to find the extreme values of a function that has more than one
variable.

Problems

3. Find the maximum product of two numbers (not necessarily integers) that have a sum of 150.
4. Find the minimum sum of two positive numbers whose product is 560.
5. Find the maximum sum of two positive numbers whose product is 580.
6. Find the maximum sum of two numbers, each of which is less than or equal to 290, whose product is 400.
7. Find the maximal area of a right triangle with hypotenuse of length 2.
8. A rancher has 900 feet of fencing in which to construct adjacent, equally sized rectangular pens. What dimen-

sions should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355 cm3 of liquid. What dimensions should the cylinder
have to minimize the material needed to produce the can? Based on your dimensions, determine whether or
not the standard can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of 206 in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restaurant industry that holds about 206 in3with a diameter

of 6 3
16 in and height of 7 in. Does it seem these dimensions where chosen with minimization in mind?

11. A standard soda can is roughly cylindrical and holds 355 cm3 of liquid. A real-world soda can has material on
the top and bottom that is thicker than the material around the side. Assume that the top/bottom material
is twice as thick as the material around the side. What dimensions should the cylinder have to minimize the
material needed to produce the can? Based on your dimensions and the assumption about material thickness,
determine whether or not the standard can is produced to minimize the material costs.

12. The United States Postal Service charges more for boxes whose combined length and girth exceeds 108 inches.
(The “length” of a package is the length of its longest side; the girth is the perimeter of the cross section, i.e.,
2w + 2h).

What is the maximum volume of a package with a square cross section (w = h) that does not exceed the
108 inch standard?

13. The strength S of a wooden beam is directly proportional to its cross sectional width w and the square of its
height h. that is, S = kwh2 for some constant k.
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12 h

w

Given a circular log with diameter of 18 inches, what sized beam can be cut from the log with maximum
strength?

14. A power line is to be run to an offshore facility in the manner described in Example 4.3.7. The offshore facility
is 6miles at sea and 4miles along the shoreline from the power plant. It costs $35,000 per mile to lay a power
line underground and $70,000 to run the line underwater.

How much of the power line should be run underground? What is the minimum overall cost?
15. A power line is to be run to an offshore facility in the manner described in Example 4.3.7. The offshore facility

is 6miles at sea and 2miles along the shoreline from the power plant. It costs $45,000 per mile to lay a power
line underground and $75,000 to run the line underwater.

How much of the power line should be run underground? What is the minimum overall cost?
16. A woman throws a stick into a lake for her dog to fetch; the stick is 35 feet down the shore line and 13 feet into

the water from there. The dog may jump directly into the water and swim, or run along the shore line to get
closer to the stick before swimming. The dog runs about 19 ft

s and swims about 2
ft
s .

How far along the shore should the dog run tominimize the time it takes to get to the stick? (Hint: the figure
from Example 4.3.7 can be useful.)

17. A woman throws a stick into a lake for her dog to fetch; the stick is 25 feet down the shore line and 16 feet into
the water from there. The dog may jump directly into the water and swim, or run along the shore line to get
closer to the stick before swimming. The dog runs about 22 ft

s and swims about 1.7
ft
s .

How far along the shore should the dog run tominimize the time it takes to get to the stick? (Google “calculus
dog” to learn more about a dog’s ability to minimize times.)

18. What are the dimensions of the rectangle with largest area that can be drawn inside the unit circle?
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4.4 Differentials

youtu.be/watch?v=YmODT2PolKY

Figure 4.4.1 Video introduction to
Section 4.4

In Section 2.2 we explored the meaning and use of the derivative. This sec-
tion starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f . At x = c, the tangent line to the graph of f has
equation

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximations of f(x) for values
of x near c.

For instance, we can approximate sin(1.1) using the tangent line to the graph
of f(x) = sin(x) at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866,

and f ′(π/3) = cos(π/3) = 1/2. Thus the tangent line to f(x) = sin(x) at
x = π/3 is:

ℓ(x) =
1

2
(x− π/3) + 0.866.

0.5

1

π
3

√
3
2

(π/3,
√
3/3)

x

y

(a)

0.87

0.88

0.89

π
3

1.1

√
3
2 (

π/3,
√
3/3

)

ℓ(1.1) ≈ sin(1.1) sin(1.1)

x

y

(b)

Figure 4.4.2 Graphing f(x) = sin(x) and its tangent line at x = π/3 in order to
estimate sin(1.1)

In Figure 4.4.2(a), we see a graph of f(x) = sin(x) graphed along with its
tangent line at x = π/3. The small rectangle shows the region that is displayed
in Figure 4.4.2(b). In this figure, we see how we are approximating sin(1.1)with
the tangent line, evaluated at 1.1. Together, the two figures show how close
these values are.

Using this line to approximate sin(1.1), we have:

ℓ(1.1) =
1

2
(1.1− π/3) + 0.866

=
1

2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximation this is.)

youtu.be/watch?v=mQRelmurD-w

Figure 4.4.3 Approximating the value
of sin(1.1)

We now generalize this concept. Given f(x) and an x-value c, the tangent
line is y = ℓ(x), where ℓ(x) = f ′(c)(x−c)+f(c). Clearly, f(c) = ℓ(c). Let∆x
be a small number, representing a small change in the x-value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a function approximates well the values of that func-
tion near x = c. This tangent line approximation is used frequently enough in
applications that we give it a name.

https://www.youtube.com/watch?v=YmODT2PolKY
https://www.youtube.com/watch?v=mQRelmurD-w
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Definition 4.4.4

The function ℓ(x) is often referred to as the linearization, or linear ap-
proximation of f at c. It is the linear function that best approximates
the value of f(x) when x is close to c.

As the x-value changes from c to c+∆x, the y-value of f changes from f(c)
to f(c+∆x). We call this change of y-value∆y. That is:

∆y = f(c+∆x)− f(c).

Replacing f(c+∆x) with its tangent line approximation, we have

∆y ≈ ℓ(c+∆x)− f(c)

= f ′(c)
(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x. (4.4.1)

This final equation is important; it becomes the basis of Definition 4.4.5 and
Key Idea 4.4.7. In short, it says that when the x-value changes from c to c+∆x,
the y value of a function f changes by about f ′(c)∆x.

We introduce two new variables, dx and dy in the context of a formal defin-
ition.

Definition 4.4.5 Differentials of x and y.

Let y = f(x) be differentiable. The differential of x, denoted dx, is
any nonzero real number (usually taken to be a small number). The
differential of y, denoted dy, is

dy = f ′(x)dx.

youtu.be/watch?v=y9lTgdHD8wI

Figure 4.4.6Video presentation of De-
finition 4.4.5

We can solve for f ′(x) in the above equation: f ′(x) = dy/dx. This states
that the derivative of f with respect to x is the differential of y divided by the
differential of x; this is not the alternate notation for the derivative, dy

dx . This
latter notationwas chosen because of the fraction-like qualities of the derivative,
but again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place.

Differentials and linearization. The
relationship between the differ-
ential and the linearization given
in Definition 4.4.4 is as follows:

ℓ(x) = f(c) + dy,

if we take dy to be evaluated at
x = c.

It is often useful to think of
dy is the linear change in f , while
∆y represents the true change
in f .

Key Idea 4.4.7 Differential Notation.

Let y = f(x) be a differentiable function.

1. Let∆x represent a small, nonzero change in x value.

2. Let dx represent a small, nonzero change in x value (i.e., ∆x =
dx).

3. Let∆y be the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. Let dy = f ′(x)dx which, by Equation (4.4.1), is an approximation
of the change in y-value as x changes by∆x; dy ≈ ∆y.

When students first encounter differentials, they are often left wondering
why dy and ∆y are different, while dx and ∆x are the same. The video in Fig-
ure 4.4.8 attempts to offer an explanation.

youtu.be/watch?v=XxpcZw702nA

Figure 4.4.8Why is it that dx = ∆x?

https://www.youtube.com/watch?v=y9lTgdHD8wI
https://www.youtube.com/watch?v=XxpcZw702nA
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What is the value of differentials? Like many mathematical concepts, differ-
entials provide both practical and theoretical benefits. We explore both here.

Example 4.4.9 Finding and using differentials.

Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).
Solution. The x-value is changing from x = 3 to x = 3.1; therefore,
we see that dx = 0.1. If we know how much the y-value changes from
f(3) to f(3.1) (i.e., if we know∆y), we will know exactly what f(3.1) is
(since we already know f(3)). We can approximate∆y with dy.

∆y ≈ dy

= f ′(3)dx

= 2 · 3 · 0.1 = 0.6.

We expect the y-value to change by about 0.6, so we approximate
f(3.1) ≈ 9.6.
We leave it to the reader to verify this, but the preceding discussion links
the differential to the tangent line of f(x) at x = 3. One can verify that
the tangent line, evaluated at x = 3.1, also gives y = 9.6.

Video solution

youtu.be/watch?v=KCDezzvfDKA

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximation is really good!)

So why bother?
In “most” real life situations, we do not know the function that describes

a particular behavior. Instead, we can only take measurements of how things
change — measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
tial Equations courses.

PID controllers. Another place
differentials are used is in a PID
controller, which stands for “Pro-
portional Integral Derivative”. A
PID controller uses concepts of
both derivative and integral cal-
culus to very accurately control
a process (such as maintaining a
stable temperature on anespresso
machine).

We use differentials once more to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques
can sometimes be used to easily compute something that looks rather hard.

Example 4.4.10 Using differentials to approximate a function value.

Approximate
√
4.5.

Solution. We expect
√
4.5 ≈ 2, yet we can do better. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so

f ′(4) = 1/4.
We approximate the difference between f(4.5) and f(4) using differen-
tials, with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy

= f ′(4) · dx
= 1/4 · 1/2

https://www.youtube.com/watch?v=KCDezzvfDKA
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= 1/8

= 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we
approximate

√
4.5 ≈ 2.125.

Video solution

youtu.be/watch?v=nFaq1O_wWso

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as∫

f(x) dx

quite often. While we don’t discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practice finding differentials in general.

Example 4.4.11 Finding differentials.

In each of the following, find the differential dy.

1. y = sin(x) 2. y =
ex
(
x2 + 2

) 3. y =√
x2 + 3x− 1

Solution.

1. y = sin(x): As f(x) = sin(x), f ′(x) = cos(x). Thus

dy = cos(x)dx.

2. y = ex
(
x2 + 2

)
: Let f(x) = ex

(
x2 + 2

)
. We need f ′(x), requir-

ing the Theorem 2.4.2.

We have f ′(x) = ex
(
x2 + 2

)
+ 2xex, so

dy =
(
ex
(
x2 + 2

)
+ 2xex

)
dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x),

requiring the Theorem 2.5.4.

We have f ′(x) = 1
2

(
x2 + 3x− 1

)− 1
2 (2x + 3) = 2x+3

2
√
x2+3x−1

.
Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f ; we just multiply f ′(x) by dx. It is important to remember that
we are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method
of making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x+∆x (where∆x is the
error, which we hope is small). This measurement of xmay be used to compute
some other value; we can think of this latter value as f(x) for some function f .
As the true length is x+∆x, one really should have computed f(x+∆x). The
difference between f(x) and f(x+∆x) is the propagated error.

https://www.youtube.com/watch?v=nFaq1O_wWso
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How close are f(x) and f(x+∆x)? This is a difference in “y” values:

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differentials.

Example 4.4.12 Using differentials to approximate propagated error.

A steel ball bearing is to be manufactured with a diameter of 2 cm.
The manufacturing process has a tolerance of ±0.1mm in the diameter.
Given that the density of steel is about 7.85 g

cm3 , estimate the propa-
gated error in the mass of the ball bearing.
Solution. The mass of a ball bearing is found using the equation “mass
= volume × density.” In this situation the mass function is a product of
the radius of the ball bearing, hence it ism = 7.85 4

3πr
3. The differential

of the mass is
dm = 31.4πr2dr.

The radius is to be 1 cm; the manufacturing tolerance in the radius is
±0.05mm, or±0.005cm. The propagated error is approximately:

∆m ≈ dm

= 31.4π(1)2(±0.005)

= ±0.493g

Is this error significant? It certainly depends on the application, but
we can get an idea by computing the relative error. The ratio between
amount of error to the total mass is

dm

m
= ± 0.493

7.85 4
3π

= ±0.493

32.88
= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball
was supposed to be 10 cm, the same manufacturing tolerance would
give a propagated error in mass of ±12.33g, which corresponds to a
percent error of ±0.188%. While the amount of error is much greater
(12.33 > 0.493), the percent error is much lower.

Video solution

youtu.be/watch?v=0_tSaBZZR1s

https://www.youtube.com/watch?v=0_tSaBZZR1s
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4.4.1 Exercises

Terms and Concepts

1. (□ True □ False) Given a differentiable function y = f(x), we are generally free to choose a value for dx,
which then determines the value of dy.

2. (□ True □ False) The symbols “dx” and “∆x” represent the same concept.
3. (□ True □ False) The symbols “dy” and “∆y” represent the same concept.
4. (□ True □ False) Differentials are important in the study of integration.
5. How are differentials and tangent lines related?
6. (□ True □ False) In real life, differentials are used to approximate function values when the function itself

is not known.

Problems

Exercise Group. Use differentials to approximate the given value by hand.
7. 2.072 8. 2.952

9. 4.43 10. 4.73

11.
√
25.5 12.

√
34.6

13. 3
√
124 14. 3

√
216.6

15. sin(3) 16. e0.1

Exercise Group. Compute the differential dy.
17. y = x2 − 5x− 6 18. y = x5 + x9

19. y =
1

4x6
20. y = (6x+ sin(x))2

21. y = x7 + e8x 22. y =
8

x5

23. y =
9x

tan(x) + 2

24. y = ln(9x)

25. y = ex sin(x) 26. y = cos(sin(x))

27. y =
x− 4

x+ 5

28. y = 5x ln(x)

29. y = x tan−1(x)− 0.5 ln
(
1 + x2

)
30. y = ln(sin(x))

31. A set of plastic spheres are to be made with a diameter of 4 cm. If the manufacturing process is accurate to
2mm, what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by d(t) = 16t2. The depth of a hole is to be approximated
by dropping a rock and listening for it to hit the bottom. What is the propagated error if the time measurement
is accurate to 4/10 of a second and the measured time is:

(a) 4 seconds?

(b) 6 seconds?
33. What is the propagated error in the measurement of the cross sectional area of a circular log if the diameter is

measured at 20′′, accurate to 1/8′′?

34. A wall is to be painted that is 8′ high and is measured to be 13′, 2′′ long. Find the propagated error in the
measurement of the wall’s surface area if the measurement is accurate to 1/− 2′′.
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ExerciseGroup. The following exercises explore some issues related to surveying inwhich distances are approximated
using other measured distances and measured angles. (Hint: Convert all angles to radians before computing.)

35. The length L of a long wall is to be
approximated. The angle θ, as shown in the
diagram (not to scale), is measured at a
distance of 25 feet from the wall, and found to
be 85.2◦, accurate to 1◦. Assume that the
triangle formed is a right triangle.

l =?

θ

25′

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?

36. The length L of a long wall is to be
approximated. The angle θ, as shown in the
diagram (not to scale), is measured at a
distance of 100 feet from the wall, and found to
be 71.5◦, accurate to 1◦. Assume that the
triangle formed is a right triangle.

l =?

θ

100′

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?
37. The length L of a long wall is to be calculated by

measuring the angle θ shown in the diagram
(not to scale) at a distance of 50 feet from the
wall. Assume the formed triangle is an isosceles
triangle. The measured angle is 143◦, accurate
to 1◦.

l =?θ 50′

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercise 4.4.35–4.4.37
are essentially the same. Which setup gives the
most accurate result?

• Right triangle at 25 feet

• Right triangle at 100 feet

• Isosceles triangle at 50 feet
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39. Consider the setup in Exercise 4.4.37. This time,
assume the angle measurement of 143◦ is exact
but the measured 50′ from the wall is accurate
to 6′′.

l =?θ 50′

What is the approximate percent error?
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4.5 Taylor Polynomials

youtu.be/watch?v=SYJ2uGJCQdY

Figure 4.5.1 Video introduction to
Section 4.5

Consider a function y = f(x) and a point
(
c, f(c)

)
. The derivative, f ′(c),

gives the instantaneous rate of change of f at x = c. Of all lines that pass
through the point

(
c, f(c)

)
, the line that best approximates f at this point is the

tangent line; that is, the line whose slope (rate of change) is f ′(c).
In Figure 4.5.2, we see a function y = f(x) graphed. The table in Figure 4.5.3

shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at x = 0 is
p1(x) = 1(x− 0)+ 2 = x+2. The tangent line is also given in the figure. Note
that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f well.

y = f(x)

y = p1(x)

−4 −2 2 4

−5

5

x

y

Figure 4.5.2 A graph of f(x) and its
tangent line at 0

f(0) = 2 f ′′′(0) = −1

f ′(0) = 1 f (4)(0) = −12

f ′′(0) = 2 f (5)(0) = −19

Figure 4.5.3 Derivatives of f evalu-
ated at 0

One shortcoming of this approximation is that the tangent line only matches
the slope of f ; it does not, for instance, match the concavity of f . We can find a
polynomial, p2(x), that doesmatch the concavity near 0withoutmuch difficulty,
though. The table in Figure 4.5.3 gives the following information:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properties.
That is, we need

p2(0) = 2 p′2(0) = 1 p′′2(0) = 2.

Let’s start with a general quadratic function

p(x) = a0 + a1x+ a2x
2.

We find the following:

p2(x) = a0 + a1x+ a2x
2 p2(0) = a0

p2
′(x) = a1 + 2a2x p2

′(0) = a1

p2
′′(x) = 2a2 p2

′′(0) = 2a2.

To get the desired properties above, we must have

a0 = f(0) = 2, a1 = f ′(0) = 1, 2a2 = f ′′(0) = 2,

so a0 = 2, a1 = 1, and a2 = 2/2 = 1, giving us the polynomial

p2(x) = 2 + x+ x2.

We can repeat this approximation process by creating polynomials of higher
degree thatmatchmore of the derivatives of f atx = 0. In general, a polynomial
of degree n can be created to match the first n derivatives of f . Figure 4.5.4

https://www.youtube.com/watch?v=SYJ2uGJCQdY
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shows p4(x) = −x4/2 − x3/6 + x2 + x + 2, whose first four derivatives at 0
match those of f .

y = f(x)

y = p2(x)

y = p4(x)

−4 −2 2 4

−5

5

x

y

Figure 4.5.4 Plotting f , p2 and p4

How do we ensure that the derivatives of our polynomial match those of f?
We simply begin with a polynomial of the desired degree, compute its deriva-
tives, and compare them to those of f ! Recall that each term in a polynomial
consists of a power of x, and a coefficient, like so: anxn. Our goal is to deter-
mine the value for each coefficient an so that the derivatives of our polynomial
match those of our function f . If we take k derivatives of the term anx

n, with
k ≤ n, we obtain

dk

dxk
(anx

n) = n(n− 1) · · · (n− k + 1)anx
n−k.

For k < n, the expression above vanishes when we set x = 0. However, for
n = k, we obtain the constant value

dk

dxk
(akx

k) = k · (k − 1) · · · 2 · 1ak. (4.5.1)

Consider a polynomial

pn(x) = a0 + a1x+ · · ·+ akx
k + · · ·+ anx

n

of degree n. If we take k derivatives, all of the terms involving powers of x less
than k disappear, and when we set x = 0, all of the terms involving powers
of x larger than k disappear, leaving us with the single constant given in Equa-
tion (4.5.1).

Recalling the notation k! = 1 ·2 ·3 · · · k for the product of the first k integers,
we have shown that

p(k)n (0) = k!ak.

If we want the derivatives of pn to agree with some unknown function f when
x = 0, then we must have

ak =
f (k)(0)

k!
.

The notation k! is read as “k fac-
torial”. By convention, we also
define 0! = 1, mostly because
it makes our formulas look a lot
nicer.

youtu.be/watch?v=v8mPY7fu1e0

Figure 4.5.5 Determining the coeffi-
cients of a Taylor polynomial

As we use more and more derivatives, our polynomial approximation to f
gets better and better. In this example, the interval on which the approximation
is “good” gets bigger and bigger. Figure 4.5.6 shows p13(x); we can visually af-
firm that this polynomial approximates f very well on [−2, 3]. (The polynomial
p13(x) is not particularly “nice”. It is

p13(x) =
16901x13

6227020800
+

13x12

1209600
− 1321x11

39916800
− 779x10

1814400
− 359x9

362880

+
x8

240
+

139x7

5040
+

11x6

360
− 19x5

120
− x4

2
− x3

6
+ x2 + x+ 2.

y = f(x)

p13(x)

−4 −2 2 4

−5

5

x

y

Figure 4.5.6 Plotting f and p13

Thepolynomialswehave created are examples of Taylor polynomials, named
after the British mathematician Brook Taylor who made important discoveries
about such functions. In the discussion above, we concentrated on evaluating
the derivatives of f at 0; however, there is nothing special about this point. Just
as we can consider the linear approximation of a function near any point, so too
can we determine a polynomial approximation about any value c in the domain
of f . The only catch is that our polynomial will then be given in terms of powers
of x− c, rather than powers of x, as we see in the following definition.

https://www.youtube.com/watch?v=v8mPY7fu1e0
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Definition 4.5.7 Taylor Polynomial, Maclaurin Polynomial.

Let f be a function whose first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2

+
f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n.

2. A special case of the Taylor polynomial is the Maclaurin polyno-
mial, where c = 0. That is, theMaclaurin polynomial of degree n
of f is

pn(x) = f(0)+f ′(0)x+
f ′′(0)

2!
x2+

f ′′′(0)

3!
x3+· · ·+ f (n)(0)

n!
xn.

Historical note: Colin Maclau-
rinwas a Scottishmathematician,
born in 1698. He liveduntil 1746,
andmade a number of contribu-
tions to the development ofmath-
ematics andphysics. His election
as professor of mathematics at
theUniversity of Aberdeen at the
age of 19 made him the world’s
youngest professor, a record he
held until 2008! He was also a
staunch foe of the Jacobite Re-
bellion, and was instrumental in
the defenceof Edinburgh against
the army of Bonnie Prince Char-
lie. (Formoredetails, seeWikipedia¹.)

youtu.be/watch?v=J-5vVJIGQp4

Figure 4.5.8Video presentation of De-
finition 4.5.7

We will practice creating Taylor and Maclaurin polynomials in the following
examples.

Example 4.5.9 Finding and using Maclaurin polynomials.

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

Solution.

1. We start with creating a table of the derivatives of ex evaluated at
x = 0. In this particular case, this is relatively simple, as shown in
Figure 4.5.10.

f(x) = ex f(0) = 1

f ′(x) = ex f ′(0) = 1

f ′′(x) = ex f ′′(0) = 1
...

...
f (n)(x) = ex f (n)(0) = 1

Figure 4.5.10 The derivatives of
f(x) = ex evaluated at x = 0

By the definition of the Maclaurin polynomial, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn

= 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + · · ·+ 1

n!
xn.

2. Using our answer from part 1, we have

ex ≈ p5(x) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1).
It is very straightforward to evaluate p5(1):

p5(1) = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
=

163

60
≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 4.5.11. To 5 deci-
mal places, the actual value of e is 2.71828. So this approximation
agrees to two decimal places.

y = f(x)
y = p5(x)

−3 −2 −1 1 2

5

10

x

y

Figure 4.5.11 A plot of f(x) = ex and
its 5th degree Maclaurin polynomial
p5(x)

Video solution

youtu.be/watch?v=ENf-Z2pLrJg

https://en.wikipedia.org/wiki/Colin_Maclaurin
https://www.youtube.com/watch?v=J-5vVJIGQp4
https://www.youtube.com/watch?v=ENf-Z2pLrJg
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Example 4.5.12 Finding and using Taylor polynomials.

1. Find the nth Taylor polynomial of y = ln(x) at x = 1.

2. Use p6(x) to approximate the value of ln(1.5).

3. Use p6(x) to approximate the value of ln(2).

Solution.

1. We begin by creating a table of derivatives of ln(x) evaluated at
x = 1. While this is not as straightforward as it was in the pre-
vious example, a pattern does emerge (for n ≥ 1), as shown in
Figure 4.5.13. Notice in the table below that each time we take a
derivative (starting at the second derivative), we apply the power
rule and “bring down” the exponent to multiply by the previous
coefficent. So the 6 in the 4th derivative is actually 1 · 2 · 3 = 3!.

f(x) = ln(x) f(1) = 0

f ′(x) = 1
x f ′(1) = 1

f ′′(x) = − 1
x2 f ′′(1) = −1

f ′′′(x) = 2
x3 f ′′′(1) = 2

f (4)(x) = − 6
x4 f (4)(1) = −6

...
...

f (n)(x) = f (n)(1) =
(−1)n+1(n−1)!

xn (−1)n+1(n− 1)!

Figure 4.5.13 Derivatives of ln(x)
evaluated at x = 1

Notice that the coefficients alternate in sign starting at n = 1.
Using Definition 4.5.7, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + . . .

. . .
f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n

= 0 +
0!

1!
(x− 1)− 1!

2!
(x− 1)2 + . . .

. . .
2!

3!
(x− 1)3 + · · ·+ (−1)n+1 · (n− 1)!

n!
(x− 1)n

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − . . .

. . .
1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x − 1) terms turn out to be
“nice.”

2. We can compute p6(x) using our work above:

p6(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3

− 1

4
(x− 1)4 +

1

5
(x− 1)5 − 1

6
(x− 1)6.

Since p6(x) approximates ln(x) well near x = 1, we approximate
ln(1.5) ≈ p6(1.5):

p6(1.5) = (1.5− 1)− 1

2
(1.5− 1)2 +

1

3
(1.5− 1)3 + . . .

· · · − 1

4
(1.5− 1)4 +

1

5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259

640
≈ 0.404688.

This is a good approximation as a calculator shows that ln(1.5) ≈
0.4055. Figure 4.5.14 below plots y = ln(x) with y = p6(x). We
can see that ln(1.5) ≈ p6(1.5).
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3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1

2
(2− 1)2 +

1

3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1

5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6

=
37

60
≈ 0.616667.

This approximation is not terribly impressive: a hand held calcu-
lator shows that ln(2) ≈ 0.693147. The graph in Figure 4.5.14
shows that p6(x) provides less accurate approximations of ln(x)
as x gets close to 0 or 2. Surprisingly enough, even the 20th de-
gree Taylor polynomial fails to approximate ln(x) for x > 2 very
well, as shown in Figure 4.5.15. We’ll soon discuss why this is.

y = ln(x)

y = p6(x)

−0.5 0.5 1 1.5 2 2.5 3

−4

−2

2

x

y

Figure 4.5.14 A plot of y = ln(x)
and its 6th degree Taylor polyno-
mial at x = 1

0.5 1 1.5 2 2.5 3

−6

−4

−2

2 y = ln(x)

y = p20(x)

x

y

Figure 4.5.15 A plot of y = ln(x)
and its 20th degree Taylor polyno-
mial at x = 1

Video solution

youtu.be/watch?v=6BeNQe0hl3k

As always in calculus, angles are
measured in radians, so the 2 in
cos(2) is an angle of 2 radians.

Taylor polynomials are used to approximate functions f(x) in mainly two
situations:

1. When f(x) is known, but perhaps “hard” to compute directly. For in-
stance, we can define the cosine of an angle as either the ratio of sides
of a right triangle (“adjacent over hypotenuse”) or using the definition in
terms of the unit circle. However, neither of these provides a convenient
way of computing cos(2). A Taylor polynomial of sufficiently high degree
can provide a reasonable method of computing such values using only op-
erations usually hard-wired into a computer (+,−, × and÷).

2. When f(x) is not known, but information about its derivatives is known.
This occurs more often than one might think, especially in the study of
differential equations.

In both situations, a critical piece of information to have is “How good is my
approximation?” If we use a Taylor polynomial to compute cos(2), how do we
know how accurate the approximation is?

Even though Taylor polynomials
could be used in calculators and
computers to calculate values of
trigonometric functions, in prac-
tice they generally aren’t. Other
more efficient and accuratemeth-
ods have been developed, such
as the CORDIC algorithm. How-
ever, understanding how Taylor
polynomials could be used is im-
portant to developing an under-
standing of various approximat-
ing techniques.

Although much of the content presented in Calculus concerns the search for
exact answers to problems such as integration and differentiation, many practi-
cal applications of calculus involve attempts to find approximations; for example,
using Newton’s Method to approximate the zeros of a function, or numerical in-
tegration to approximate the value of an integral that cannot be solved exactly.
Whenever an approximation is used, one naturally wishes to know how good

https://www.youtube.com/watch?v=6BeNQe0hl3k
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the approximation is. In other words, we look for a bound on the error intro-
duced by working with an approximation. The following theorem gives bounds
on the error introduced in using a Taylor (and hence Maclaurin) polynomial to
approximate a function.

Theorem 4.5.16 Taylor’s Theorem.

1. Let f be a functionwhose (n+1)th derivative exists on an interval
I and let c be in I . Then, for each x in I , there exists zx between
x and c such that

f(x) = f(c)+f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+· · ·+f (n)(c)

n!
(x−c)n+Rn(x),

whereRn(x) =
f (n+1)(zx)

(n+ 1)!
(x− c)(n+1).

2. |Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣, where z is in I .

One way of quantifying the ex-
tent towhich one functionapprox-
imates another is using the or-
der to which they agree. We say
that two functions f and g agree
to order n at c if n is the largest
integer for which

lim
x→c

f(x)− g(x)

(x− c)n
= 0.

Taylor’s Theorem tells us that a
function and its degree n Taylor
polynomial agree to ordern. Roughly
speaking, this means that their
difference goes to zero faster than
the nth power of x − c as x ap-
proaches c.

youtu.be/watch?v=2IHECY8dFN0

Figure 4.5.17 Video presentation of
Theorem 4.5.16

The first part of Taylor’s Theorem states that f(x) = pn(x)+Rn(x), where
pn(x) is the nth order Taylor polynomial andRn(x) is the remainder, or error, in
the Taylor approximation. The second part gives bounds on how big that error
can be. If the (n + 1)th derivative is large on I , the error may be large; if x
is far from c, the error may also be large. However, the (n + 1)! term in the
denominator tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of
ln(1.5) and ln(2)made in Example 4.5.12.

Example 4.5.18 Finding error bounds of a Taylor polynomial.

Use Theorem 4.5.16 to find error bounds when approximating ln(1.5)
and ln(2) with p6(x), the Taylor polynomial of degree 6 of f(x) = ln(x)
at x = 1, as calculated in Example 4.5.12.
Solution.

1. We start with the approximation of ln(1.5) with p6(1.5). The
theorem references an open interval I that contains both x and
c. The smaller the interval we use the better; it will give us a
more accurate (and smaller!) approximation of the error. We let
I = (0.9, 1.6), as this interval contains both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situation, this is

asking “How big can the 7th derivative of y = ln(x) be on the
interval (0.9, 1.6)?” The seventh derivative is y = −6!/x7. The
largest absolute value it attains on I is about 1506. (There are
no critical numbers of f (7) in the interval so we evaluate the end-
points: f (7)(0.9) ≈ 1506 and f (7)(1.6) ≈ 27.) In particular, we
are evaluating at x = 1.5, so we let x = 1.5. Thus we can bound
the error as:

|R6(1.5)| ≤
max

∣∣f (7)(z)
∣∣

7!

∣∣(1.5− 1)7
∣∣

≤ 1506

5040
· 1

27

≈ 0.0023.

https://www.youtube.com/watch?v=2IHECY8dFN0
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We computed p6(1.5) = 0.404688; using a calculator, we find
ln(1.5) ≈ 0.405465, so the actual error is about 0.000778, which
is less than our bound of 0.0023. This affirms Taylor’s Theorem;
the theorem states that our approximationwould be within about
2 thousandths of the actual value, whereas the approximationwas
actually closer. Taylor’s Theoremonly gives an upper bound on the
error.

2. We again find an interval I that contains both c = 1 and x = 2;
we choose I = (0.9, 2.1). The maximum value of the seventh
derivative of f on this interval is again about 1506 (as the largest
values come near x = 0.9). Thus

|R6(2)| ≤
max

∣∣f (7)(z)
∣∣

7!

∣∣(2− 1)7
∣∣

≤ 1506

5040
· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree
6 Taylor polynomial at x = 1 will bring us within 0.3 of the cor-
rect answer. As p6(2) ≈ 0.61667, our error estimate guarantees
that the actual value of ln(2) is somewhere between 0.31667 and
0.91667. These bounds are not particularly useful. In reality, our
approximation was only off by about 0.07. However, we are ap-
proximating ostensibly because we do not know the real answer.
In order to be assured that we have a good approximation, we
would have to resort to using a polynomial of higher degree.

Video solution

youtu.be/watch?v=TBV4-X7HoHk

We practice again. This time, we use Taylor’s theorem to find n that guaran-
tees our approximation is within a certain amount.

Example 4.5.19 Finding sufficiently accurate Taylor polynomials.

Find n such that the nth Taylor polynomial of f(x) = cos(x) at x =
0 approximates cos(2) to within 0.001 of the actual answer. What is
pn(2)?
Solution. Following Taylor’s theorem,weneedbounds on the size of the
derivatives of f(x) = cos(x). In the case of this trigonometric function,
this is easy. All derivatives of cosine are± sin(x) or± cos(x). In all cases,
these functions are never greater than 1 in absolute value. We want
the error to be less than 0.001. To find the appropriate n, consider the
following inequalities:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣∣(2− 0)(n+1)
∣∣∣ ≤ 0.001

1

(n+ 1)!
· 2(n+1) ≤ 0.001.

We find an n that satisfies this last inequality with trial-and-error. When

n = 8, we have
28+1

(8 + 1)!
≈ 0.0014; when n = 9, we have

29+1

(9 + 1)!
≈

0.000282 < 0.001. Thus we want to approximate cos(2) with p9(2).

https://www.youtube.com/watch?v=TBV4-X7HoHk
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We now set out to compute p9(x). We again need a table of the deriv-
atives of f(x) = cos(x) evaluated at x = 0. A table of these values is
given in Figure 4.5.20.

f(x) = cos(x) f(0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0

f (8)(x) = cos(x) f (8)(0) = 1

f (9)(x) = − sin(x) f (9)(0) = 0

Figure 4.5.20 A table of the deriva-
tives of f(x) = cos(x) evaluated at
x = 0

Notice how the derivatives, evaluated at x = 0, follow a certain pattern.
All the odd powers of x in the Taylor polynomial will disappear as their
coefficient is 0. While our error bounds state that we need p9(x), our
work shows that this will be the same as p8(x).
Since we are forming our polynomial at x = 0, we are creating aMaclau-
rin polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (8)(0)

8!
x8

= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8.

We finally approximate cos(2):

cos(2) ≈ p8(2) = −131

315
≈ −0.41587.

Our error bound guarantee that this approximation is within 0.001 of the
correct answer. Technology shows us that our approximation is actually
within about 0.0003 of the correct answer.
Figure 4.5.21 shows a graph of y = p8(x) and y = cos(x). Note how
well the two functions agree on about (−π, π).

y = cos(x)

y = p8(x)

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

x

y

Figure 4.5.21 A graph of f(x) =
cos(x) and its degree 8 Maclaurin
polynomial

Video solution

youtu.be/watch?v=zg1W9miUCB4

Example 4.5.22 Finding and using Taylor polynomials.

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at

x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximating
√
3 with p4(3).

Solution.

1. We begin by evaluating the derivatives of f at x = 4. This is done
in Figure 4.5.23.

f(x) =
√
x f(4) = 2

f ′(x) =
1

2
√
x

f ′(4) =
1

4

f ′′(x) =
−1

4x3/2
f ′′(4) =

−1

32

f ′′′(x) =
3

8x5/2
f ′′′(4) =

3

256

f (4)(x) =
−15

16x7/2
f (4)(4) =

−15

2048

Figure 4.5.23 A table of the deriva-
tives of f(x) =

√
x evaluated at x =

4

These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2 +
1

4
(x− 4) +

−1/32

2!
(x− 4)2 + . . .

. . .
3/256

3!
(x− 4)3 +

−15/2048

4!
(x− 4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) =

1.73212.

3. To find a bound on the error, we need an open interval that con-
tains x = 3 and x = 4. We set I = (2.9, 4.1). The largest value
the fifth derivative of f(x) =

√
x takes on this interval is near

x = 2.9, at about 0.0273. (We often graph the (n + 1)th deriva-
tive to find its extrema. In this case is f (5)(x) = 105/(32x9/2) is

https://www.youtube.com/watch?v=zg1W9miUCB4
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always decreasing, so the maximum occurs at 2.9.) Thus

|R4(3)| ≤
0.0273

5!

∣∣(3− 4)5
∣∣ ≈ 0.00023.

This shows our approximation is accurate to at least the first 2
places after the decimal. (It turns out that our approximation
is actually accurate to 4 places after the decimal.) A graph of
f(x) =

√
x and p4(x) is given in Figure 4.5.24. Note how the

two functions are nearly indistinguishable on (2, 7).

y =
√
x

y = p4(x)

2 4 6 8 10

1

2

3

x

y

Figure 4.5.24 A graph of f(x) =
√
x

and its degree 4 Taylor polynomial at
x = 4

Our final example gives a brief introduction to using Taylor polynomials to
solve differential equations.

Example 4.5.25 Approximating an unknown function.

A function y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y′ = y2

(This second fact says that amazingly, the derivative of the function is
actually the function squared!)
Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).
Solution. One might initially think that not enough information is given
to find p3(x). However, note how the second fact above actually lets us
know what y′(0) is:

y′ = y2 ⇒ y′(0) = y2(0).

Since y(0) = 1, we conclude that y′(0) = 1.
Now we find information about y′′. Starting with y′ = y2, take deriva-
tives of both sides, with respect to x. That means we must use implicit
differentiation.

y′ = y2

d

dx

(
y′
)
=

d

dx

(
y2
)

y′′ = 2y · y′.

Now evaluate both sides at x = 0:

y′′(0) = 2y(0) · y′(0)
y′′(0) = 2.

We repeat this once more to find y′′′(0). We again use implicit differen-
tiation; this time the Product Rule is also required.

d

dx

(
y′′
)
=

d

dx

(
2yy′

)
y′′′ = 2y′ · y′ + 2y · y′′.

Now evaluate both sides at x = 0:

y′′′(0) = 2y′(0)2 + 2y(0)y′′(0)
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y′′′(0) = 2 + 4 = 6.

In summary, we have:

y(0) = 1 y′(0) = 1 y′′(0) = 2 y′′′(0) = 6.

We can now form p3(x):

p3(x) = 1 + x+
2

2!
x2 +

6

3!
x3

= 1 + x+ x2 + x3.

It turns out that the differential equation we started with, y′ = y2,
where y(0) = 1, can be solved without too much difficulty:

y =
1

1− x
.

Figure 4.5.26 shows this function plotted with p3(x). Note how similar
they are near x = 0.

−1 −0.5 0.5 1

1

2

3
y =

1

1− x y = p3(x)

x

y

Figure 4.5.26A graph of y = −1/(x−
1) and y = p3(x) from Exam-
ple 4.5.25

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solutions to differential equations. This topic is
often broached in introductory Differential Equations courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximation is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

We first learned of the derivative in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivative by studying how it relates to the graph of a function
(leading to ideas of increasing/decreasing and concavity).
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4.5.1 Exercises

Terms and Concepts

1. What is the difference between a Taylor polynomial and a Maclaurin polynomial?
2. True or False? In general, pn(x) approximates f(x) better and better as n gets larger. (□ True □ False)

3. For some function f(x), the Maclaurin polynomial of degree 4 is p4(x) = 6 + 3x− 4x2 + 5x3 − 7x4. What is
p2(x)?

4. For some function f(x), the Maclaurin polynomial of degree 4 is p4(x) = 6 + 3x− 4x2 + 5x3 − 7x4. What is
f ′′′(0)?

Problems

Exercise Group. In the following exercises, find the Maclaurin polynomial of degree n for the given function.
5. Find the Maclaurin polynomial of degree n = 3

for f(x) = e−x.
6. Find the Maclaurin polynomial of degree n = 8

for f(x) = sin(x).
7. Find the Maclaurin polynomial of degree n = 5

for f(x) = x · ex.
8. Find the Maclaurin polynomial of degree n = 6

for f(x) = tan(x).
9. Find the Maclaurin polynomial of degree n = 4

for f(x) = e2x.
10. Find the Maclaurin polynomial of degree n = 4

for f(x) =
1

1− x
.

11. Find the Maclaurin polynomial of degree n = 4

for f(x) =
1

1 + x
.

12. Find the Maclaurin polynomial of degree n = 7

for f(x) =
1

1 + x
.

Exercise Group. In the following exercises, find the Taylor polynomial of degree n, at x = c, for the given function.
13. Find the Taylor polynomial for f(x) =

√
x of

degree n = 4, at c = 1.
14. Find the degree n = 4 Taylor polynomial for

f(x) = ln(x+ 1), at c = 1.
15. Find the degree n = 6 Taylor polynomial for

f(x) = cos(x), at c = π/4.
16. Find the degree n = 5 Taylor poplynomial for

f(x) = sin(x), at c = π/6.
17. Find the degree n = 5 Taylor poplynomial for

f(x) = 1
x , at c = 2.

18. Find the degree n = 8 Taylor poplynomial for

f(x) =
1

x2
, at c = 1.

19. Find the degree n = 3 Taylor poplynomial for

f(x) =
1

x2 + 1
, at c = −1.

20. Find the degree n = 2 Taylor polynomial for
f(x) = x2 cos(x), at c = π.

Exercise Group. In the following exercises, approximate the function value with the indicated Taylor polynomial and
give approximate bounds on the error.

21. Approximate sin(0.1) with the Maclaurin
polynomial of degree 3.

22. Approximate cos(1) with the Maclaurin
polynomial of degree 4.

23. Approximate
√
10 with the Taylor polynomial of

degree 2 centered at x = 9.
24. Approximate ln(1.5) with the Taylor polynomial

of degree 3 centered at x = 1.

Exercise Group. The following exercises ask for an n to be found such that pn(x) approximates f(x)within a certain
bound of accuracy.

25. Find n such that the Maclaurin polynomial of
degree n of f(x) = ex approximates e within
0.0001 of the actual value.

26. Find n such that the Taylor polynomial of
degree n of f(x) =

√
x, centered at x = 4,

approximates
√
3 within 0.0001 of the actual

value.
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27. Find n such that the Maclaurin polynomial of
degree n of f(x) = cos(x) approximates
cos(π/3) within 0.0001 of the actual value.

28. Find n such that the Maclaurin polynomial of
degree n of f(x) = sin(x) approximates cos(π)
within 0.0001 of the actual value.

Exercise Group. In the following exercises, find the nth term of the indicated Taylor polynomial.
29. Find a formula for the nth term of the

Maclaurin polynomial for f(x) = ex.
30. Find a formula for the nth term of the

Maclaurin polynomial for f(x) = cos(x).
31. Find a formula for the nth term of the

Maclaurin polynomial for f(x) = sinx.
32. Find a formula for the nth term of the

Maclaurin polynomial for f(x) =
1

1− x
.

33. Find a formula for the nth term of the
Maclaurin polynomial for f(x) =

1

1 + x
.

34. Find a formula for the nth term of the Taylor
polynomial for f(x) = ln(x) centered at x = 1.

Exercise Group. In the following exercises, approximate the solution to the given differential equation with a degree
4 Maclaurin polynomial.

35. y′ = y, y(0) = 1 36. y′ = 5y, y(0) = 3

37. y′ =
2

y
, y(0) = 1
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4.6 L’Hospital’s Rule

While this chapter is devoted to learning techniques of integration, this section
is not about integration. Rather, it is concerned with a technique of evaluating
certain limits that will be useful in the following section, where integration is
once more discussed.

Our treatment of limits exposed us to the notion of “0/0”, an indeterminate
form. If lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0, wedonot conclude that lim

x→c
f(x)/g(x)

is 0/0; rather, we use 0/0 as notation to describe the fact that both the numer-
ator and denominator approach 0. The expression 0/0 has no numeric value;
other work must be done to evaluate the limit.

Other indeterminate forms exist; they are:∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be. youtu.be/watch?v=_tRdRiWmFhM

Figure 4.6.1 Video introduction to
Section 4.6

This section introduces l’Hospital’s Rule, a method of resolving limits that
produce the indeterminate forms 0/0 and∞/∞. We’ll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

4.6.1 L’Hospital’s Rule with indeterminate forms 0/0 and∞/∞

Theorem 4.6.2 L’Hospital’s Rule, Part 1.

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differentiable
functions on an open interval I containing c, and g′(x) ̸= 0 on I except
possibly at c. If

lim
x→c

f ′(x)

g′(x)
= L,

then
lim
x→c

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. The result applies to one-sided
limits as well.

To use Theorem 4.6.2 in prac-
tice, notice that there are two con-
ditions we need to check. First,
the original limit needs to be of
the “0/0” form. Second, the new
limit (involving the derivatives of
f and g) must exist (or be infi-
nite).

In some cases, the new limit
will also be 0/0, in which case
we can apply l’Hospital’s rule again.
The rule can be applied repeat-
edly (taking additional derivatives),
as long aswe reach a stepwhere
the limit exists.We demonstrate the use of l’Hospital’s Rule in the following examples; we

will often use “LHR” as an abbreviation of “l’Hospital’s Rule.”

Example 4.6.3 Using l’Hospital’s Rule.

Evaluate the following limits, using l’Hospital’s Rule as needed.

1. lim
x→0

sin(x)
x

2. lim
x→1

√
x+ 3− 2

1− x

3. lim
x→0

x2

1− cos(x)

4. lim
x→2

x2 + x− 6

x2 − 3x+ 2

Solution.

https://www.youtube.com/watch?v=_tRdRiWmFhM
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1. We proved this limit is 1 in Example 1.3.13 using the Squeeze The-
orem. Here we use l’Hospital’s Rule to show its power.

lim
x→0

sin(x)
x

by LHR
= lim

x→0

cos(x)
1

= 1.

2.

lim
x→1

√
x+ 3− 2

1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3.

lim
x→0

x2

1− cos(x)
by LHR
= lim

x→0

2x

sin(x)
.

This latter limit also evaluates to the 0/0 indeterminate form. To
evaluate it, we apply l’Hospital’s Rule again.

lim
x→0

2x

sin(x)
by LHR
=

2

cos(x)
= 2.

Thus lim
x→0

x2

1−cos(x) = 2.

4. We already know how to evaluate this limit; first factor the numer-
ator and denominator. We then have:

lim
x→2

x2 + x− 6

x2 − 3x+ 2
= lim

x→2

(x− 2)(x+ 3)

(x− 2)(x− 1)
= lim

x→2

x+ 3

x− 1
= 5.

We now show how to solve this using l’Hospital’s Rule.

lim
x→2

x2 + x− 6

x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1

2x− 3
= 5.

Video solution

youtu.be/watch?v=Y2O3RD9tt34

Note that at each step where l’Hospital’s Rule was applied, it was needed:
the initial limit returned the indeterminate form of “0/0.” If the initial limit re-
turns, for example, 1/2, then l’Hospital’s Rule does not apply.

The following theorem extends our initial version of l’Hospital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem 4.6.4 L’Hospital’s Rule, Part 2.

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are
differentiable on an open interval I containing a. If

lim
x→a

f ′(x)

g′(x)
= L,

then
lim
x→a

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. The result applies to one-
sided limits as well.

2. Let f and g be differentiable functions on the open interval (a,∞)
for some value a, where g′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

https://www.youtube.com/watch?v=Y2O3RD9tt34
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returns either 0/0 or∞/∞. If

lim
x→∞

f ′(x)

g′(x)
= L,

then
lim

x→∞

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. A similar statement can
be made for limits where x approaches−∞.

Example 4.6.5 Using l’Hospital’s Rule with limits involving∞.

Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2

4x2 + 5x− 1000
2. lim

x→∞

ex

x3
.

Solution.

1. We can evaluate this limit already using Theorem 1.6.21; the an-
swer is 3/4. We apply l’Hospital’s Rule to demonstrate its applica-
bility.

lim
x→∞

3x2 − 100x+ 2

4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100

8x+ 5

by LHR
= lim

x→∞

6

8
=

3

4
.

2.

lim
x→∞

ex

x3

by LHR
= lim

x→∞

ex

3x2

by LHR
= lim

x→∞

ex

6x

by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x ap-
proaches∞, the expression ex/x3 grows without bound. We can
infer from this that ex grows “faster” than x3; as x gets large, ex is
far larger than x3. (This has important implications in computing
when considering efficiency of algorithms.)

Video solution

youtu.be/watch?v=1WIItaObKQk

4.6.2 Indeterminate Forms 0 · ∞ and∞−∞
L’Hospital’s Rule can only be applied to ratios of functions. When faced with an
indeterminate form such as 0 · ∞ or∞−∞, we can sometimes apply algebra
to rewrite the limit so that l’Hospital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 4.6.6 Applying l’Hospital’s Rule to other indeterminate forms.

Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln(x)

4. lim
x→∞

x2 − ex

Solution.

https://www.youtube.com/watch?v=1WIItaObKQk
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1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeter-

minate form 0 · ∞. We rewrite the expression x · e1/x as e1/x

1/x
;

now, as x → 0+, we get the indeterminate form∞/∞ to which
l’Hospital’s Rule can be applied.

lim
x→0+

x·e1/x = lim
x→0+

e1/x

1/x

by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

Interpretation: e1/x grows “faster” than x shrinks to zero, mean-
ing their product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates
to 0 ·0which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit initially evaluates to the indeterminate form∞−∞. By
applying a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln(x) = lim
x→∞

ln
(
x+ 1

x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to
which we can apply l’Hospital’s Rule.

lim
x→∞

x+ 1

x

by LHR
=

1

1
= 1.

Since x → ∞ implies
x+ 1

x
→ 1, it follows that

x → ∞ implies ln
(
x+ 1

x

)
→ ln(1) = 0.

Thus

lim
x→∞

ln(x+ 1)− ln(x) = lim
x→∞

ln
(
x+ 1

x

)
= 0.

Interpretation: since this limit evaluates to 0, it means that for
large x, there is essentially no difference between ln(x + 1) and
ln(x); their difference is essentially 0.

4. The limit lim
x→∞

x2−ex initially returns the indeterminate form∞−
∞. We can rewrite the expression by factoring out x2; x2 − ex =

x2

(
1− ex

x2

)
. We need to evaluate how ex/x2 behaves as x →

∞:
lim

x→∞

ex

x2

by LHR
= lim

x→∞

ex

2x

by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞· (−∞), which is not
an indeterminate form; rather,∞ · (−∞) evaluates to −∞. We
conclude that lim

x→∞
x2−ex = −∞. Interpretation: asx gets large,

the difference between x2 and ex grows very large.

Video solution

youtu.be/watch?v=wJzKupOv8cg

https://www.youtube.com/watch?v=wJzKupOv8cg
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4.6.3 Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it often helps to
employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 4.6.7 Evaluating Limits Involving Indeterminate Forms 00, 1∞
and∞0.

If lim
x→c

ln
(
f(x)

)
= L, then

lim
x→c

f(x) = lim
x→c

eln(f(x)) = eL.

Example 4.6.8 Using l’Hospital’s Rule with indeterminate forms involv-
ing exponents.

Evaluate the following limits.

1. lim
x→∞

(
1 +

1

x

)x
2. lim

x→0+
xx

Solution.

1. This is equivalent to a special limit given in Theorem 1.3.17;
these limits have important applications within mathematics and
finance. Note that the exponent approaches ∞ while the base
approaches 1, leading to the indeterminate form 1∞. Let f(x) =
(1 + 1/x)x; the problem asks to evaluate lim

x→∞
f(x). Let’s first

evaluate lim
x→∞

ln
(
f(x)

)
.

lim
x→∞

ln
(
f(x)

)
= lim

x→∞
ln
(
1 +

1

x

)x

= lim
x→∞

x ln
(
1 +

1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1/x

This produces the indeterminate form 0/0, sowe apply l’Hospital’s
Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1

1 + 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)

)
= 1. We return to the original limit and apply

Key Idea 4.6.7.

lim
x→∞

(
1 +

1

x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.
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2. This limit leads to the indeterminate form 00. Let f(x) = xx and
consider first lim

x→0+
ln
(
f(x)

)
.

lim
x→0+

ln
(
f(x)

)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln(x)

= lim
x→0+

ln(x)
1/x

.

This produces the indeterminate form −∞/∞ so we apply
l’Hospital’s Rule.

= lim
x→0+

1/x

−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)

)
= 0. We return to the original limit and apply

Key Idea 4.6.7.

lim
x→0+

xx = lim
x→0+

f(x) = lim
x→0+

eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Fig-
ure 4.6.9.

f(x) = xx

0.5 1 1.5 2

1

2

3

4

x

y

Figure 4.6.9 A graph of f(x) = xx

supporting the fact that as x → 0+,
f(x) → 1

Video solution

youtu.be/watch?v=wHCd7Wsxzug

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0

f(x) dx. Improper integra-

tion considers integrals where one, or both, of the bounds are “infinity.” Such
integrals have many uses and applications, in addition to generating ideas that
are enlightening.

https://www.youtube.com/watch?v=wHCd7Wsxzug
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4.6.4 Exercises

Terms and Concepts

1. List the different indeterminate forms described in this section.
2. T/F: l’Hospital’s Rule provides a faster method of computing derivatives. (□ True □ False)

3. l’Hospital’s Rule states that
d

dx

[
f(x)

g(x)

]
=

f ′(x)

g′(x)
. (□ True □ False)

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: The Quotient Rule is applied to
f(x)

g(x)
when taking ; l’Hospital’s Rule is applied when taking

certain .
6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a function f(x) such that lim
x→1

f(x) returns “00”.

8. Create a function f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems

Exercise Group. Evaluate the given limit using l’Hospital’s rule.

9. lim
x→1

x2+x−2
x−1

10.
lim
x→2

x2 + x− 6

x2 − 7x+ 10
11.

lim
x→π

sin(x)
x− π

12.
lim

x→π/4

sin(x)− cos(x)
cos(2x)

13.
lim
x→0

sin(5x)
x

14.
lim
x→0

sin(2x)
x+ 2

15.
lim
x→0

sin(2x)
sin(3x)

16.
lim
x→0

sin(ax)
sin(bx)

17.
lim

x→0+

ex − 1

x2

18.
lim

x→0+

ex − x− 1

x2

19.
lim

x→0+

x− sin(x)
x3 − x2

20.
lim

x→∞

x4

ex

21.
lim

x→∞

√
x

ex

22.
lim

x→∞

ex

x2

23.
lim

x→∞

ex√
x

24.
lim

x→∞

ex

2x

25.
lim

x→∞

ex

3x

26.
lim
x→3

x3 − 5x2 + 3x+ 9

x3 − 7x2 + 15x− 9
27.

lim
x→−2

x3 + 4x2 + 4x

x3 + 7x2 + 16x+ 12

28.
lim

x→∞

ln(x)
x

29.

lim
x→∞

ln
(
x2
)

x

30.

lim
x→∞

ln2(x)
x
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31.
lim

x→0+
x · ln(x)

32.
lim

x→0+

√
x · ln(x)

33.
lim

x→0+
x · e 1

x

34.
lim

x→∞
x3 − x2

35.
lim

x→∞

√
x− ln(x)

36.
lim

x→−∞
x · ex

37.
lim

x→0+

1

x2
· e

−1
x

38.
lim

x→0+
(1 + x)

1
x

39.
lim

x→0+
(2x)x

40.
lim

x→0+
(
2

x
)x

41.
lim

x→0+
(sin(x))x

Hint: use the Squeeze Theorem.

42.
lim

x→1−
(1− x)1−x

43.
lim

x→∞
(x)

1
x

44.
lim

x→∞
(
1

x
)x

45.
lim

x→1+
(ln(x))1−x

46.
lim

x→∞
(1 + x)

1
x

47.
lim

x→∞
(1 + x2)

1
x

48.
lim

x→π/2
tan(x)cos(x)

49.
lim

x→π/2
tan(x)sin(2x)

50.
lim

x→1+

1

ln(x)
− 1

x− 1

51.
lim

x→3+

5

x2 − 9
− x

x− 3

52.
lim

x→∞
xtan

(
1

x

)
53.

lim
x→∞

ln3(x)
x

54.
lim
x→1

x2 + x− 2

ln(x)
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We first learned of the derivative in the context of instantaneous rates of change
and slopes of tangent lines. We furthered our understanding of the power of the
derivative by studying how it relates to the graph of a function (leading to ideas
of increasing/decreasing and concavity). This chapter has put the derivative to
yet more uses:

• Equation solving (Newton’s Method),

• Related Rates (furthering our use of the derivative to find instantaneous
rates of change),

• Optimization (applied extreme values), and

• Differentials (useful for various approximations and for something called
integration).

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f , can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applica-
tions.





Chapter 5

Integration

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F (x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration

youtu.be/watch?v=z1XH1JTUKTU

Figure 5.1.1 Video introduction to
Section 5.1

Given a function y = f(x), a differential equation is an equation that incor-
porates y, x, and the derivatives of y. For instance, a simple differential equation
is:

y′ = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that y′ = 2x?

Can you find another?
And yet another?
Hopefully you were able to come up with at least one solution: y = x2.

“Finding another”may have seemed impossible until one realizes that a function
like y = x2 +1 also has a derivative of 2x. Once that discovery is made, finding
“yet another” is not difficult; the function y = x2 + 123,456,789 also has a
derivative of 2x. The differential equation y′ = 2x has many solutions. This
leads us to some definitions.

Definition 5.1.2 Antiderivatives and Indefinite Integrals.

Let a function f(x) be given. An antiderivative of f(x) is a functionF (x)
such that F ′(x) = f(x).
The set of all antiderivatives of f(x) is the indefinite integral of f , de-
noted by ∫

f(x) dx.

youtu.be/watch?v=BRAjDVVn4H4

Figure 5.1.3Video presentation of De-
finition 5.1.2

Make a note about our definition: we refer to an antiderivative of f , as op-
posed to the antiderivative of f , since there is always an infinite number of them.
We often use upper-case letters to denote antiderivatives.

225

https://www.youtube.com/watch?v=z1XH1JTUKTU
https://www.youtube.com/watch?v=BRAjDVVn4H4
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When f is continuous, knowing one antiderivative of f allows us to find in-
finitely more, simply by adding a constant. Not only does this give usmore anti-
derivatives, it gives us all of them.

Theorem 5.1.4 Antiderivative Forms.

Let F (x) and G(x) be antiderivatives of a continuous function f(x) on
an interval I . Then there exists a constant C such that, on I ,

G(x) = F (x) + C.

Given a continuous function f defined on an interval I and one of its anti-
derivatives F , we know all antiderivatives of f on I have the form F (x)+C for
some constant C. Using Definition 5.1.2, we can say that∫

f(x) dx = F (x) + C.

Note that we are abusing notation somewhat: when we write F (x) +C on
the right-hand side, we really mean the set of all such functions, for each real
number value of C. Let’s analyze this indefinite integral notation.

∫Integral symbol

f(x)

Integrand function

· dx

Differential of x

= F (x)

Any antiderivative of f

+ C

Constant of integration

Figure 5.1.5 Antiderivative notation
Figure 5.1.5 shows the typical notation of the indefinite integral. The integra-

tion symbol,
∫
, is in reality an “elongated S,” representing “take the sum.” We

will later see how sums and antiderivatives are related.
The function we want to find an antiderivative of is called the integrand. It

contains the differential of the variable we are integratingwith respect to. The
∫

symbol and the differential dx are not “bookends” with a function sandwiched
in between; rather, the symbol

∫
means “find all antiderivatives ofwhat follows,”

and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Anotherway of looking at the notation is that it tells us that f(x) dx is the dif-
ferential ofF (x): dF (x) = f(x) dx, confirming thatF ′(x) = f(x), as required
of an antiderivative. The integral symbol can then be viewed as an instruction
to “undo” the differential and recover the antiderivative F (x).

Another important aspect of the dx is that it tells us which variable we’re
taking the antiderivative with respect to, much like how d

dx would mean to take
the derivative with respect to x, while d

dt would be the derivative with respect
to t.

Let’s practice using this notation.

Example 5.1.6 Evaluating indefinite integrals.

Evaluate
∫
sin(x) dx.

Solution. We are asked to find all functions F (x) such that F ′(x) =
sin(x). Some thought will lead us to one solution: F (x) = − cos(x),
because d

dx (− cos(x)) = sin(x).
The indefinite integral of sin(x) is thus− cos(x), plus a constant of inte-
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gration. So: ∫
sin(x) dx = − cos(x) + C.

Video solution

youtu.be/watch?v=W-FUL0ApGL8A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The
integral ∫

sin(x) dx

presents us with a differential, dy = sin(x) dx. It is asking: “What is y?” We
found lots of solutions, all of the form y = − cos(x) + C.

Letting dy = sin(x) dx, rewrite∫
sin(x) dx as

∫
dy.

This is asking: “What functions have a differential of the form dy?” The an-
swer is “Functions of the form y+C, whereC is a constant.” What is y? Wehave
lots of choices, all differing by a constant; the simplest choice is y = − cos(x).

Understanding all of this is more important later as we try to find antideriv-
atives of more complicated functions. In this section, we will simply explore
the rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 5.1.7 Evaluating indefinite integrals.

Evaluate
∫ (

3x2 + 4x+ 5
)
dx.

Solution. We seek a function F (x) whose derivative is 3x2 + 4x + 5.
When taking derivatives, we can consider functions term-by-term, sowe
can likely do that here.
What functions have a derivative of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.
What functions have a derivative of 4x? Here the x term is raised to the
first power, so we likely seek a quadratic. Some thought should lead us
to 2x2 + C2, where C2 is a constant.
Finally, what functions have a derivative of 5? Functions of the form
5x+ C3, where C3 is a constant.
Our answer appears to be∫ (

3x2 + 4x+ 5
)
dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integration; combine them
as one constant, giving the final answer of∫ (

3x2 + 4x+ 5
)
dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivative of x3 +2x2 +5x+C
and see we indeed get 3x2 + 4x+ 5.

Video solution

youtu.be/watch?v=3DFPqGHX7Yw

https://www.youtube.com/watch?v=W-FUL0ApGL8
https://www.youtube.com/watch?v=3DFPqGHX7Yw
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This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

d

dx

(∫
f(x) dx

)
= f(x).

Differentiation “undoes” the work done by antidifferentiation.
Theorem 2.7.16 gave a list of the derivatives of common functions we had

learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.

Theorem 5.1.8 Derivatives and Antiderivatives.

Here are the Common Differentiation Rules and their Common Indefinite Integral Rule
counterparts.

d

dx
(cf(x)) = c · f ′(x)

∫
c · f(x) dx = c ·

∫
f(x) dx

d

dx
(f(x)± g(x)) = f ′(x)± g′(x)

∫ (
f(x)± g(x)

)
dx =

∫
f(x) dx±

∫
g(x) dx

d

dx
(C) = 0

∫
0 dx = C

d

dx
(x) = 1

∫
1 dx =

∫
dx = x+ C

d

dx
(xn) = n · xn−1

∫
xn dx =

1

n+ 1
xn+1 + C (n ̸= −1)

d

dx
(sin(x)) = cos(x)

∫
cos(x) dx = sin(x) + C

d

dx
(cos(x)) = − sin(x)

∫
sin(x) dx = − cos(x) + C

d

dx
(tan(x)) = sec2(x)

∫
sec2(x) dx = tan(x) + C

d

dx
(csc(x)) = − csc(x) cot(x)

∫
csc(x) cot(x) dx = − csc(x) + C

d

dx
(sec(x)) = sec(x) tan(x)

∫
sec(x) tan(x) dx = sec(x) + C

d

dx
(cot(x)) = − csc2(x)

∫
csc2(x) dx = − cot(x) + C

d

dx
(ex) = ex

∫
ex dx = ex + C

d

dx
(ax) = ln(a) · ax

∫
ax dx =

1

ln(a)
· ax + C

d

dx
(ln(x)) =

1

x
, x > 0

∫
1

x
dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.8.

• ∫
c · f(x) dx = c ·

∫
f(x) dx
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This is the Constant Multiple Rule: we can temporarily ignore constants
when finding antiderivatives, just as we did when computing derivatives
(i.e., d

dx

(
3x2
)
is just as easy to compute as d

dx

(
x2
)
). An example:∫

5 cos(x) dx = 5 ·
∫
cos(x) dx = 5 · (sin(x) + C) = 5 sin(x) + C.

In the last step we can consider the constant as also being multiplied by 5,
but “5 times a constant” is still a constant, so we just write “C”.

• ∫ (
f(x)± g(x)

)
dx =

∫
f(x) dx±

∫
g(x) dx

This is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Exam-
ple 5.1.7. So:∫

(3x2 + 4x+ 5) dx =

∫
3x2 dx+

∫
4x dx+

∫
5 dx

= 3

∫
x2 dx+ 4

∫
x dx+

∫
5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

• ∫
xn dx =

1

n+ 1
xn+1 + C (n ̸= −1)

This is the Power Rule of indefinite integration. There are two important
things to keep in mind:

1. Notice the restriction that n ̸= −1. This is important:
∫

1
x dx ̸=

“ 10x
0 + C”; rather, see the last rule from the list.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the anti-
derivative, do the opposite things in the opposite order: first add 1
to the power, then second divide by the power.

• ∫
1

x
dx = ln |x|+ C

Note that this rule uses the absolute value of x. The exercises will work
the reader through why this is the case; for now, know the absolute value
is important and cannot be ignored.
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Initial Value Problems. In Section 2.3 we saw that the derivative of a position
function gave a velocity function, and the derivative of a velocity function de-
scribes acceleration. We can now go “the other way:” the antiderivative of an
acceleration function gives a velocity function, etc.. While there is just one de-
rivative of a given function, there are infinitely many antiderivatives. Therefore
we cannot ask “What is the velocity of an object whose acceleration is−32 ft

s2 ?”,
since there is more than one answer.

youtu.be/watch?v=Oo6OHiiGbOc

Figure 5.1.9 Introducing initial value
problems

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 5.1.10 Solving initial value problems.

The acceleration due to gravity of a falling object is−32 ft
s2 . At time t = 3,

a falling object had a velocity of−10 ft
s . Find the equation of the object’s

velocity.
Solution. We want to know a velocity function, v(t). We know two
things:

• The acceleration, i.e., v′(t) = −32, and

• the velocity at a specific time, i.e., v(3) = −10.

Using the first piece of information, we know that v(t) is an antideriv-
ative of v′(t) = −32. So we begin by finding the indefinite integral of
−32: ∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C

v(3) = −10

−32(3) + C = −10

C = 86

Thus v(t) = −32t + 86. We can use this equation to understand the
motion of the object: when t = 0, the object had a velocity of v(0) =
86 fts . Since the velocity is positive, the object was moving upward.
When did the object begin moving down? Immediately after v(t) = 0:

−32t+ 86 = 0 =⇒ t =
43

16
≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of
the object knowing just its acceleration and its velocity at a single point
in time.

Video solution

youtu.be/watch?v=3K_gWY4lmOs

Example 5.1.11 Solving initial value problems.

Find f(t), given that f ′′(t) = cos(t), f ′(0) = 3 and f(0) = 5.
Solution. We start by finding f ′(t), which is an antiderivative of f ′′(t):∫

f ′′(t) dt =

∫
cos(t) dt

https://www.youtube.com/watch?v=Oo6OHiiGbOc
https://www.youtube.com/watch?v=3K_gWY4lmOs
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= sin(t) + C

= f ′(t).

So f ′(t) = sin(t) + C for the correct value of C. We are given that
f ′(0) = 3, so:

sin(0) + C = 3

C = 3.

Using the initial value, we have found f ′(t) = sin(t) + 3. We now find
f(t) by integrating again. We will use a different integration constant
since we have already defined C to equal 3 above.

f(t) =

∫
f ′(t) dt =

∫
(sin(t) + 3) dt = − cos(t) + 3t+D.

We are given that f(0) = 5, so

− cos(0) + 3(0) +D = 5

−1 + C = 5

C = 6

Thus f(t) = − cos(t) + 3t+ 6.

Video solution

youtu.be/watch?v=MB1dLY4lOew

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, wewill see how areas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the name of the theorem
that describes it: The Fundamental Theorem of Calculus.

https://www.youtube.com/watch?v=MB1dLY4lOew
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5.1.1 Exercises

Terms and Concepts

1. Define the term “antiderivative” in your own words.
2. Is it more accurate to refer to “the” antiderivative of f(x) or “an” antiderivative of f(x)?

3. Use your own words to define the indefinite integral of f(x).

4. Fill in the blanks: “Inverse operations do the things in the order.”

5. What is an “initial value problem”?

6. The derivative of a position function is a/an function.

7. An antiderivative of an acceleration function is a/an function.

8. If F (x) is an antiderivative of f(x), andG(x) is an antiderivative of g(x), give an antiderivative of f(x) + g(x).

Problems

Exercise Group. Evaluate the indefinite integral. Don’t forget your constant of integration!
9.

∫
8x7 dx 10.

∫
x9 dx

11.
∫ (

5x2 + 3
)
dx 12.

∫
dt

13.
∫
1 ds 14.

∫
1
5t9 dt

15.
∫

6
t7 dt 16.

∫
1√
x
dx

17.
∫
sec(θ) tan(θ) dθ 18.

∫
sin(θ) dθ

19.
∫
(sec(x) tan(x)− csc(x) cot(x)) dx 20.

∫
2eθ dθ

21.
∫
3t dt 22.

∫
4t

3 dt

23.
∫
(5t+ 6)

2
dt 24.

∫ (
t4 − 1

) (
t5 − 8t

)
dt

25.
∫
x6x2 dx 26.

∫
1.41421e dx

27.
∫
r dx

28. Consider the two integrals,
∫

sn ds and
∫

sn dn.

(a) What is the difference between these two indefinite integrals?

(b) Evaluate
∫

sn ds.

(c) Evaluate
∫

sn dn.

29. This problem investigates why Theorem 5.1.8 states that
∫

1

x
dx = ln |x|+ C.

(a) What is the domain of y = ln(x)?

(b) Find d
dx (ln(x)).

(c) What is the domain of y = ln(−x)?

(d) Find d
dx (ln(−x)).

(e) You should find that 1/x has two types of antiderivatives, depending on whether x > 0 or x < 0. In one

expression, give a formula for
∫

1

x
dx that takes these different domains into account, and explain your

answer.
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Exercise Group. Find the function determined by the given initial value problem.
30. f ′(x) = sin(x) and f(0) = −8

31. f ′(x) = 2ex and f(0) = 10

32. f ′(x) = 3x3 − 2x2 and f(2) = 5

33. f ′(x) = sec(x) tan(x) and f
(
π
3

)
= −8

34. f ′(x) = 5x and f(2) = 7

35. f ′′(x) = 5 and f ′(0) = 4, f(0) = 9

36. f ′′(x) = 3x and f ′(1) = −10, f(1) = −5

37. f ′′(x) = 7ex and f ′(0) = 4, f(0) = 5

38. f ′′(θ) = cos(θ) and f ′ (0) = 2, f (0) = 9

39. f ′′(x) = 29x4 + 6x + cos(x) and f ′(0) = −3, f(0) = −1

40. f ′′(x) = 0 and f ′(−5) = 3, f(−5) = 8
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5.2 The Definite Integral

youtu.be/watch?v=__Xh37Qw4UE

Figure 5.2.1 Video introduction to
Section 5.2

We start with an easy problem. An object travels in a straight line at a con-
stant velocity of 5 ft

s for 10 seconds. How far away from its starting point is the
object?

We approach this problem with the familiar “Distance = Rate × Time”
equation. In this case, the distance traveled is 5 ft

s × 10 s= 50 feet.
It is interesting to note that this solution of 50 feet can be represented graph-

ically. Consider Figure 5.2.2, where the constant velocity of 5 ft
s is graphed on

the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

2 4 6 8 10

5

t (s)

v
(ft
/s
)

Figure 5.2.2 The area under a con-
stant velocity function corresponds to
distance traveled

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5 ft

s for 10 seconds,
then instantly reverses course at a rate of 2 ft

s for 4 seconds. (Since the object is
traveling in the opposite direction when reversing course, we say the velocity is
a constant −2 ft

s .) How far away from the starting point is the object — what is
its displacement?

Here we use “Distance = Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10 + (−2) · 4 = 42 ft.

Hence the object is 42 feet from its starting location.
We can again depict this situation graphically. In Figure 5.2.3 we have the

velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis-
placement of the object is

“Area above the t-axis−Area below the t-axis,”

which is easy to calculate as 50− 8 = 42 feet.

2 4 6 8 10 12 14

−2

5

t (s)

v
(ft
/s
)

Figure 5.2.3 The total displacement is
the area above the t-axis minus the
area below the t-axis

Now consider a more difficult problem.

Example 5.2.4 Finding position using velocity.

The velocity of an object moving straight up/down under the accelera-
tion of gravity is given as v(t) = −32t + 48, where time t is given in
seconds and velocity is in ft

s . When t = 0, the object had a height of 0 ft.

1. What was the initial velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at time t = 2?

Solution. It is straightforward to find the initial velocity; at time t = 0,

v(0) = −32 · 0 + 48

= 48

The initial velocity was 48 ft
s .

To answer questions about the height of the object, we need to find the
object’s position function s(t). This is an initial value problem, which we
studied in the previous section. We are told the initial height is 0, i.e.,
s(0) = 0. We know s′(t) = v(t) = −32t + 48. To find s, we find the
indefinite integral of v(t):

s(t) =

∫
v(t) dt

https://www.youtube.com/watch?v=__Xh37Qw4UE
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=

∫
(−32t+ 48) dt

= −16t2 + 48t+ C.

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maxi-
mum of s. Recalling our work finding extreme values, we find the critical
points of s by setting its derivative (the velocity function) equal to 0 and
solving for t:

0 = −32t+ 48

t = 48/32

= 1.5 s .

(Notice how we ended up just finding when the velocity was 0ft/s!) The
first derivative test shows this is a maximum, so the maximum height of
the object is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36 ft .

The height at time t = 2 is now straightforward to compute:

s(2) = −16(2)2 + 48(2)

= 32.

The height is 32 ft after 2 seconds.
While we have answered all three questions (using derivatives and anti-
derivatives), let’s look at them again graphically, using the concepts of
area that we explored earlier.
Figure 5.2.5 shows a graph of v(t) on axes from t = 0 to t = 3. It is
again straightforward to find v(0). How can we use the graph to find the
maximum height of the object? −0.5 0.5 1 1.5 2 2.5 3

−40

−20

20

40

t (s)

v
(ft
/s
)

Figure 5.2.5 A graph of v(t) = −32t+
48; the shaded areas help determine
displacement

Recall how in our previous work that the displacement of the object (in
this case, its height) was found as the area under the velocity curve, as
shaded in the figure. Moreover, the area between the curve and the
t-axis that is below the t-axis counted as “negative” area. That is, it rep-
resents the object coming back toward its starting position. So to find
the maximum distance from the starting point — the maximum height
— we find the area under the velocity line that is above the t-axis, i.e.,
from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1

2
Base × Height

=
1

2
× 1.5 s × 48 ft/s

= 36 ft

which matches our previous calculation of the maximum height.
Finally, to find the height of the object at time t = 2 we calculate the
total “signed area” (where some area is negative) under the velocity
function from t = 0 to t = 2. This signed area is equal to s(2), the
displacement (i.e., signed distance) from the starting position at t = 0
to the position at time t = 2. That is,
Displacement = Area above the t-axis− Area below t-axis.
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The regions are triangles, and we find

Displacement =
1

2
(1.5s)(48 ft/s )− 1

2
(0.5s)(16 ft/s )

= 32 ft .

This also matches our previous calculation of the height at t = 2.
Notice howwe answered each question in this example in twoways. Our
first method was to manipulate equations using our understanding of
antiderivatives and derivatives. Our second method was geometric: we
answered questions looking at a graph and finding the areas of certain
regions of this graph.

Video solution

youtu.be/watch?v=MUx3n9511e8

The above example does not prove a relationship between area under a ve-
locity function and displacement, but it does imply a relationship exists. Sec-
tion 5.4 will fully establish fact that the area under a velocity function is dis-
placement.

Given a graph of a function y = f(x), we will find that there is great use
in computing the area between the curve y = f(x) and the x-axis. Because of
this, we need to define some terms.

Definition 5.2.6 The Definite Integral, Total Signed Area.

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under y = f(x) and above the x-axis on [a, b]) − (area above
y = f(x) and under the x-axis on [a, b]).
The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a

f(x) dx,

where a and b are the bounds of integration.

youtu.be/watch?v=1kJUMKdjumQ

Figure 5.2.7Video presentation of De-
finition 5.2.6

By our definition, the definite integral gives the “signed area under f .” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which related to an-
tiderivatives. We have now defined the definite integral, which relates to areas
under a function. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f .

We practice using this notation.

Example 5.2.8 Evaluating definite integrals.

Consider the function f given in Figure 5.2.9.1 2 3 4 5

−1

−0.5

0.5

1

x

y

Figure 5.2.9 A graph of f(x) in Exam-
ple 5.2.8

Find:

https://www.youtube.com/watch?v=MUx3n9511e8
https://www.youtube.com/watch?v=1kJUMKdjumQ


5.2. THE DEFINITE INTEGRAL 237

1.
∫ 3

0

f(x) dx

2.
∫ 5

3

f(x) dx

3.
∫ 5

0

f(x) dx

4.
∫ 3

0

5f(x) dx

5.
∫ 1

1

f(x) dx

Solution.

1.
∫ 3

0
f(x) dx is the area under f on the interval [0, 3]. This region is

a triangle, so the area is
∫ 3

0
f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5

3
f(x) dx represents the area of the triangle found under the x-

axis on [3, 5]. The area is 1
2 (2)(1) = 1; since it is found under the

x-axis, this is “negative area.” Therefore
∫ 5

3
f(x) dx = −1.

3.
∫ 5

0
f(x) dx is the total signed area under f on [0, 5]. This is 1.5 +

(−1) = 0.5.

4.
∫ 3

0
5f(x) dx is the area under 5f on [0, 3]. This is sketched

in Figure 5.2.10. Again, the region is a triangle, with height 5
times that of the height of the original triangle. Thus the area is∫ 3

0
5f(x) dx = 1

2 (15)(1) = 7.5.

5.
∫ 1

1
f(x) dx is the area under f on the “interval” [1, 1]. This de-

scribes a line segment, not a region; it has no width. Therefore
the area is 0. 1 2 3 4 5

−4

−2

2

4

x

y

Figure 5.2.10 A graph of 5f in Exam-
ple 5.2.8. (Yes, it looks just like the
graph of f in Figure 5.2.9, just with a
different y-scale.)

Video solution

youtu.be/watch?v=jrjjVT1j9uw

This example illustrates some of the properties of the definite integral, given
here.

Theorem 5.2.11 Properties of the Definite Integral.

Let f and g be defined on a closed interval I that contains the values a,
b and c, and let k be a constant. The following hold:

1.
∫ a

a

f(x) dx = 0

2.
∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

3.
∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

5.
∫ b

a

k · f(x) dx = k ·
∫ b

a

f(x) dx

youtu.be/watch?v=sK5vZ_QrkNk

Figure 5.2.12 Video presentation of
Theorem 5.2.11

https://www.youtube.com/watch?v=jrjjVT1j9uw
https://www.youtube.com/watch?v=sK5vZ_QrkNk
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We give a brief justification of Theorem 5.2.11 here.

1. As demonstrated in Example 5.2.8, there is no “area
under the curve”when the region has nowidth; hence
this definite integral is 0.

2. This states that total area is the sum of the areas of
subregions. It is easily considered when we let a <
b < c. We can break the interval [a, c] into two subin-
tervals, [a, b] and [b, c]. The total area over [a, c] is the
area over [a, b] plus the area over [b, c]. It is important
to note that this still holds true even if a < b < c is
not true. We discuss this in the next point.

3. This property can be viewed a merely a convention to
make other properties work well. (Later we will see
how this property has a justification all its own, not
necessarily in support of other properties.) Suppose
b < a < c. The discussion from the previous point
clearly justifies∫ a

b

f(x) dx+

∫ c

a

f(x) dx =

∫ c

b

f(x) dx. (5.2.1)

However, we still claim that, as originally stated,∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx. (5.2.2)

How do Equations (5.2.1) and (5.2.2) relate? Start
with Equation (5.2.1):∫ a

b

f(x) dx+

∫ c

a

f(x) dx =

∫ c

b

f(x) dx∫ c

a

f(x) dx = −
∫ a

b

f(x) dx+

∫ c

b

f(x) dx

Property (3) justifies changing the sign and switching

the bounds of integration on the−
∫ a

b

f(x) dx term;

when this is done, Equations (5.2.1) and (5.2.2) are
equivalent. The conclusion is this: by adopting the
convention of Property (3), Property (2) holds no mat-
ter the order of a, b and c. Again, in the next section
we will see another justification for this property.

4,5. Eachof thesemaybenon-intuitive. Property (5) states
that when one scales a function by, for instance, 7, the
area of the enclosed region also is scaled by a factor
of 7. Both Properties (4) and (5) can be proved using
geometry. The details are not complicated but are not
discussed here.
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Example 5.2.13 Evaluating definite integrals using Theorem 5.2.11.

Consider the graph of a function f(x) shown in Figure 5.2.14. a b c

x

y

Figure 5.2.14 A graph of a function in
Example 5.2.13

Answer the following:

1. Which value is greater:
∫ b

a

f(x) dx or
∫ c

b

f(x) dx?

2. Is
∫ c

a

f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a

f(x) dx or
∫ b

c

f(x) dx?

Solution.

1.
∫ b

a
f(x) dx has a positive value (since the area is above the x-axis)

whereas
∫ c

b
f(x) dx has a negative value. Hence

∫ b

a
f(x) dx is big-

ger.

2.
∫ c

a
f(x) dx is the total signed area under f between x = a and

x = c. Since the region below the x-axis looks to be larger than
the region above, we conclude that the definite integral has a
value less than 0.

3. Note how the second integral has the bounds “reversed.” There-
fore

∫ b

c
f(x) dx = −

∫ c

b
f(x) dx represents a positive number,

greater than the area described by the first definite integral.
Hence

∫ b

c
f(x) dx is greater.

The area definition of the definite integral allows us to use geometry to com-
pute the definite integral of some simple functions.

Example 5.2.15 Evaluating definite integrals using geometry.

Evaluate the following definite integrals:

1.

∫ 5

−2

(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

Solution.

1. It is useful to sketch the function in the integrand, as shown in Fig-
ure 5.2.16. We see we need to compute the areas of two regions,
which we have labeledR1 andR2. Both are triangles, so the area
computation is straightforward:

R1 :
1

2
(4)(8) = 16 R2 :

1

2
(3)6 = 9.

Region R1 lies under the x-axis, hence it is counted as negative
area (we can think of the triangle’s height as being “−8”), so∫ 5

−2

(2x− 4) dx = −16 + 9 = −7.

2. Recognize that the integrand of this definite integral describes a
half circle, as sketched in Figure 5.2.17, with radius 3. Thus the
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area is: ∫ 3

−3

√
9− x2 dx =

1

2
πr2 =

9

2
π.

(−2,−8)

(5, 6)

R1

R2

−2 2 4

−10

−5

5

10

x

y

Figure 5.2.16 f(x) = 2x− 4

−3 3

5

x

y

Figure 5.2.17 f(x) =
√
9− x2

Video solution

youtu.be/watch?v=AuGASVXd3qA

Example 5.2.18 Understanding motion given velocity.

Consider the graph of a velocity function of an objectmoving in a straight
line, given in Figure 5.2.19, where the numbers in the given regions gives
the area of that region. Assume that the definite integral of a velocity
function gives displacement. Find themaximum speed of the object and
its maximum displacement from its starting position.

11 11

38

−5

5

10

15

a b c

t (s)

v
(ft
/s
)

Figure 5.2.19 A graph of a velocity in
Example 5.2.18 Solution. Since the graph gives velocity, finding the maximum speed is

simple: it looks to be 15ft/s.
At time t = 0, the displacement is 0; the object is at its starting position.
At time t = a, the object has moved backward 11 feet. Between times
t = a and t = b, the object moves forward 38 feet, bringing it into a
position 27 feet forward of its starting position. From t = b to t = c the
object is moving backwards again, hence its maximum displacement is
27 feet from its starting position.

Video solution

youtu.be/watch?v=2zJzbg0hNXE

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.20, where a region below y = x2 is shaded.
What is its area? The function y = x2 is relatively simple, yet the shape it defines
has an area that is not simple to find geometrically.

1 2 3

2

4

6

8

10

x

y

Figure 5.2.20What is the area below
y = x2 on [0, 3]? The region is not a
usual geometric shape.

In Section 5.3 we will explore how to find the areas of such regions.

https://www.youtube.com/watch?v=AuGASVXd3qA
https://www.youtube.com/watch?v=2zJzbg0hNXE
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5.2.1 Exercises

Terms and Concepts

1. What is “total signed area”?
2. What is “displacement”?

3. What is
∫ 3

3

sin(x) dx?

4. Give a single definite integral that has the same value as

I =

∫ 1

0

(2x+ 3) dx+

∫ 2

1

(2x+ 3) dx.

Problems

Exercise Group. A graph of a function f(x) is given. Using the geometry of the graph, evaluate the definite integrals.
5.

1 2 3 4

−4

−2

2

4

y = −2x+ 4

x

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) d

6.

1 2 3 4 5

−2

−1

1

2

y = f(x)

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx
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7.

1 2 3 4

1

2

3

4

y = f(x)

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

1 2 3 4

−1

1

2

3

y = x− 1

x

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

1 2 3 4

1

2

3

f(x) =
√
4− (x− 2)2

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx

10.

f(x) = 3

2 4 6 8 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a

f(x) dx, where 0 ≤ a ≤ b ≤ 10

Exercise Group. A graph of a function f(x) is given; the numbers inside the shaded regions give the area of that
region. Evaluate the definite integrals using this area information.
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11.

y = f(x)

59

11 21

1 2 3

−100

−50

50

x

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

f(x) = sin(πx/2)
4/π

4/π

1 2 3 4

−1

1

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

−4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

f(x) = x2

1/3 7/3

1 2

1

2

3

4

x

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

Exercise Group. A graph is given of the velocity function of an object moving in a straight line. Answer the questions
based on the graph.
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15.

1 2 3

−1

1

2

3

t (s)

y (ft/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum
displacement?

(c) What is the object’s total displacement
on [0, 3]?

16.

1 2 3 4 5

1

2

3

4

t (s)

y (ft/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum
displacement?

(c) What is the object’s total displacement
on [0, 5]?

17. An object is thrown straight up with a velocity, in ft/s, given by v(t) = −32t+ 64, where t is in seconds, from a
height of 48 feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find when the displacement is−48ft.)
18. An object is thrown straight up with a velocity, in ft/s, given by v(t) = −32t+ 96, where t is in seconds, from a

height of 64 feet.

(a) What is the object’s initial velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its initial height?

(d) What is the maximum height the object reaches?

Exercise Group. The values of several definite integrals are given as follows:∫ 2

0

f(x) dx = 5

∫ 3

0

f(x) dx = 7

∫ 2

0

g(x) dx = −3

∫ 3

2

g(x) dx = 5

Use these values and properties of definite integrals to evaluate the indicated definite integral.

19.
∫ 2

0

(
f(x) + g(x)

)
dx 20.

∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx 22. Find a formula for a in terms of b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0.

Exercise Group. The values of several definite integrals are given as follows:∫ 3

0

s(t) dt = 10

∫ 5

3

s(t) dt = 8

∫ 5

3

r(t) dt = −1

∫ 5

0

r(t) dt = 11
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Use these values and properties of definite integrals to evaluate the indicated definite integral.

23.
∫ 3

0

(
s(t) + r(t)

)
dt 24.

∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt 26. Find a formula for a in terms of b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0.



246 CHAPTER 5. INTEGRATION

5.3 Riemann Sums

youtu.be/watch?v=-4hZaGBw6EI

Figure 5.3.1 Video introduction to
Section 5.3

In the previous sectionwe defined the definite integral of a function on [a, b]
to be the signed area between the curve and thex-axis. Some areaswere simple
to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.2, which is the area under y = 4x−x2

on [0, 4]. What is the signed area of this region — i.e., what is
∫ 4

0
(4x− x2) dx?

1 2 3 4

1

2

3

4

x

y

Figure 5.3.2 A graph of f(x) = 4x −
x2. What is the area of the shaded
region?

We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over-approximation; we are including area in the rectangle
that is not under the parabola.

y = 4x− x2

1 2 3 4

1

2

3

4

x

y

Figure 5.3.3 Approximating area un-
der a curve with one rectangle

We have an approximation of the area, using one rectangle. How can we
refine our approximation tomake it better? The key to this section is this answer:
use more rectangles.

Let’s use four rectangles with an equal width of 1. This partitions the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval wewill
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Left Hand Rule, the Right Hand Rule, and theMidpoint Rule. The Left Hand
Rule says to evaluate the function at the left-hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.4, the rectangle drawn on the
interval [2, 3] has height determined by the Left Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

RHR MPR LHR other

1 2 3 4

1

2

3

4

x

y

Figure 5.3.4 Approximating
∫ 4

0
(4x −

x2) dx using rectangles. The heights
of the rectangles are determined us-
ing different rules.

The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

TheMidpoint Rule says that on each subinterval, evaluate the function at the
midpoint and make the rectangle that height. The rectangle drawn on [1, 2]was
made using theMidpoint Rule, with a height of f(1.5). That rectangle is labeled
“MPR.”

These are the three most common rules for determining the heights of ap-
proximating rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4

0
(4x − x2) dx using

these rules.

Example 5.3.5 Using the Left Hand, Right Hand and Midpoint Rules.

Approximate the value of
∫ 4

0
(4x− x2) dx using the Left Hand Rule, the

Right Hand Rule, and the Midpoint Rule, using 4 equally spaced subin-
tervals.
Solution. We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.6(a) we see 4 rectangles drawn on f(x) = 4x − x2 using
the Left Hand Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) =
0. We add up the areas of each rectangle (height× width) for our Left

https://www.youtube.com/watch?v=-4hZaGBw6EI
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Hand Rule approximation:

f(0) · 1 + f(1) · 1 + f(2) · 1 + f(3) · 1
=0 + 3 + 4 + 3 = 10.

Figure 5.3.6(b) shows 4 rectangles drawn under f using the Right Hand
Rule; note how the [3, 4] subinterval has a rectangle of height 0.
In this example, these rectangles seem to be the mirror image of those
found in Figure 5.3.6(a). This is because of the symmetry of our shaded
region. Our approximation gives the same answer as before, though cal-
culated a different way:

f(1) · 1 + f(2) · 1 + f(3) · 1 + f(4) · 1
= 3 + 4 + 3 + 0 = 10.

Figure 5.3.6(c) shows 4 rectangles drawn under f using the Midpoint
Rule.
This gives an approximation of

∫ 4

0
(4x− x2) dx as:

f(0.5) · 1 + f(1.5) · 1 + f(2.5) · 1 + f(3.5) · 1
= 1.75 + 3.75 + 3.75 + 1.75 = 11.

Our three methods provide two approximations of
∫ 4

0
(4x − x2) dx: 10

and 11.

0

3

4

3

1 2 3 4

1

2

3

4

x

y

(a) using the Left Hand
Rule

3

4

3

0

1 2 3 4

1

2

3

4

x

y

(b) using the Right
Hand Rule

1.75

3.75 3.75

1.75

1 2 3 4

1

2

3

4

x

y

(c) using the Midpoint
Rule

Figure 5.3.6 Approximating
∫ 4

0
(4x− x2) dx in Example 5.3.5

Video solution

youtu.be/watch?v=qn8Q1i8s5Ng

5.3.1 Summation Notation
It is hard to tell at this moment which is a better approximation: 10 or 11? We
can continue to refineour approximationbyusingmore rectangles. The notation
can become unwieldy, though, as we add up longer and longer lists of numbers.
We introduce summation notation to ameliorate this problem.

youtu.be/watch?v=d0gSFClfRdY

Figure 5.3.7 Explaining summation
notation

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
writing

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summation notation and write
∑9

i=1 ai. The upper case sigma, Sigma
represents the term “sum”. The index (counter) of summation in this example
is i; any symbol can be used. By convention, the index takes on only the integer
values between (and including) the lower and upper bounds. To the right of Σ,
the expression ai is called the summand. It tells us what we are summing. This

https://www.youtube.com/watch?v=qn8Q1i8s5Ng
https://www.youtube.com/watch?v=d0gSFClfRdY
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is summarized in Equation (5.3.1).

upper bound︷︸︸︷
9∑

i = 1︸ ︷︷ ︸
i-index of summation

ai︸︷︷︸
summand

(5.3.1)

Let’s practice using this notation.

Example 5.3.8 Using summation notation.

Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where
i ≥ 1. So a1 = 1, a2 = 3, a3 = 5, etc. (The output is the positive odd
integers). Evaluate the following summations:

1.
6∑

i=1

ai

2.
7∑

i=3

(3ai − 4)

3.
4∑

i=1

(ai)
2

Solution.

1.

6∑
i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1 + 3 + 5 + 7 + 9 + 11

= 36.

2. Note the starting value is different than 1:

7∑
i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11 + 17 + 23 + 29 + 35

= 115.

3.

4∑
i=1

(ai)
2 = (a1)

2 + (a2)
2 + (a3)

2 + (a4)
2

= 12 + 32 + 52 + 72

= 84.

Video solution

youtu.be/watch?v=GKaRI_a96-Q

It might seem odd to stress a new, concise way of writing summations only
to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without

https://www.youtube.com/watch?v=GKaRI_a96-Q
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writing individual terms. Examples will follow.

Theorem 5.3.9 Properties of Summations.

1.
n∑

i=1

c = c · n, where c is a

constant.

2.
n∑

i=m

(ai ± bi) =

n∑
i=m

ai ±

n∑
i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +

n∑
i=j+1

ai =

n∑
i=m

ai

5.
n∑

i=1

i =
n(n+ 1)

2

6.
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

7.
n∑

i=1

i3 =

(
n(n+ 1)

2

)2

youtu.be/watch?v=w8jWl2KjOvQ

Figure 5.3.10 Video presentation of
Theorem 5.3.9

Example 5.3.11 Evaluating summations using Theorem 5.3.9.

Revisit Example 5.3.8 and, using Theorem 5.3.9, evaluate

6∑
i=1

ai =

6∑
i=1

(2i− 1).

Solution.

6∑
i=1

(2i− 1) =

6∑
i=1

2i−
6∑

i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6 + 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without writing out all six terms. When
dealing with small sizes of n, it may be faster to write the terms out
by hand. However, Theorem 5.3.9 is incredibly important when dealing
with large sums as we’ll soon see.

5.3.2 Riemann Sums

Consider again
∫ 4

0
(4x − x2) dx. We will approximate this definite integral us-

ing 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.13.
Before doing so, it will pay to do some careful preparation. 0 1 2 3 4

x0 x4 x8 x12 x16

Figure 5.3.12 Dividing [0, 4] into 16
equally spaced subintervals

Figure 5.3.12 shows a number line of [0, 4] divided, or partitioned, into 16
equally spaced subintervals. We denote 0 as x0; we have marked the values of
x4, x8, x12 and x16. We could mark them all, but the figure would get crowded.
While it is easy to figure that x9 = 2.25, in general, we want a method of deter-
mining the value of xi without consulting the figure. Consider:

https://www.youtube.com/watch?v=w8jWl2KjOvQ
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xi = x0 + i∆x

starting
value

number of subintervals
between x0 and xi

subinterval
size

So x9 = x0 + 9(4/16) = 2.25.
If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x31 as

x31 = x0 + 31(4/100) = 1.24.

(That was far faster than creating a sketch first.)
Given any subdivision of [0, 4], the first subinterval is [x0, x1]; the second is

[x1, x2]; the ith subinterval is [xi−1, xi].
Whenusing the LeftHandRule, the height of the ith rectanglewill be f(xi−1).
When using the Right Hand Rule, the height of the ith rectanglewill be f(xi).

Whenusing theMidpoint Rule, the height of the ith rectanglewill be f
(
xi−1 + xi

2

)
.

Thus approximating
∫ 4

0
(4x−x2) dxwith 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

Left Hand Rule 16∑
i=1

f(xi−1)∆x

Right Hand Rule 16∑
i=1

f(xi)∆x

Midpoint Rule 16∑
i=1

f

(
xi−1 + xi

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us practice using the Right Hand Rule and the summation formulas introduced
in Theorem 5.3.9.

Example 5.3.13 Approximating definite integrals using sums.

Approximate
∫ 4

0
(4x−x2) dx using the Right Hand Rule and summation

formulas with 16 and 1000 equally spaced intervals.
Solution. Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite inte-
gral as

16∑
i=1

f(xi)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0 + i∆x, we have

xi = 0 + i∆x = i∆x.

Using the summation formulas, consider:∫ 4

0

(4x− x2) dx ≈
16∑
i=1

f(xi)∆x
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=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)

16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3.2)

= (4∆x2)
16 · 17

2
−∆x3 16(17)(33)

6

= 4 · 0.252 · 136− 0.253 · 1496
= 10.625

We were able to sum up the areas of 16 rectangles with very little
computation. In Figure 5.3.14 the function and the 16 rectangles are
graphed. While some rectangles over-approximate the area, other
under-approximate the area (by about the same amount). Thus our ap-
proximate area of 10.625 is likely a fairly good approximation.
Notice Equation (5.3.2); by replacing 16 by 1,000 (and appropriately
changing the value of ∆x), we can use that equation to sum up 1000
rectangles!

1 2 3 4

1

2

3

4

x

y

Figure 5.3.14 Approximating
∫ 4

0
(4x−

x2) dx with the Right Hand Rule and
16 evenly spaced subintervals

We do so here, skipping from the original summand to the equivalent of
Equation (5.3.2) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0

(4x− x2) dx ≈
1000∑
i=1

f(xi)∆x

= (4∆x2)

1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3 1000(1001)(2001)

6
= 10.666656

Using many, many rectangles, we have a likely good approximation of∫ 4

0
(4x− x2)∆x. That is,∫ 4

0

(4x− x2) dx ≈ 10.666656.

Video solution

youtu.be/watch?v=urkFFBmu9uQ

Before the above example, we statedwhat the summations for the LeftHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rec-
tangle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.

https://www.youtube.com/watch?v=urkFFBmu9uQ
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One could partition an interval [a, b] with subintervals that do not have the
same size. We refer to the length of the ith subinterval as∆xi. Also, one could
determine each rectangle’s height by evaluating f at any point ci in the ith subin-
terval. Thus the height of the ith subinterval would be f(ci), and the area of the
ith rectangle would be f(ci)∆xi. These ideas are formally defined below.

Definition 5.3.15 Partition.

A partition ∆x of a closed interval [a, b] is a set of numbers x0, x1, . . .
xn where

a = x0 < x1 < . . . < xn−1 < xn = b.

The length of the ith subinterval, [xi−1, xi], is∆xi = xi −xi−1. If [a, b]
is partitioned into subintervals of equal length, we let∆x represent the
length of each subinterval.
The size of the partition, denoted ∥∆x∥, is the length of the largest
subinterval of the partition.

youtu.be/watch?v=2iw1Mh4iJ0I

Figure 5.3.16 Video presentation of
Definition 5.3.15

Summations of rectangles with area f(ci)∆xi are named after mathemati-
cian Georg Friedrich Bernhard Riemann, as given in the following definition.

Definition 5.3.17 Riemann Sum.

Let f be defined on a closed interval [a, b], let∆x be a partition of [a, b]
as given in Definition 5.3.15, and let ci denote any value in the ith subin-
terval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

youtu.be/watch?v=1ZxKyf4JSS4

Figure 5.3.18 Video presentation of
Definition 5.3.17

Figure 5.3.19 shows the approximating rectangles of a Riemann sumof
∫ 4

0
(4x−

x2) dx. While the rectangles in this example do not approximatewell the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a particular rule.

1 2 3 4

1

2

3

4

x

y

Figure 5.3.19 An example of a gen-
eral Riemann sum to approximate∫ 4

0
(4x− x2) dx

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of constructionmakes computations easier. Be-
fore working another example, let’s summarize some of what we have learned
in a convenient way.

Key Idea 5.3.20 Riemann Sum Concepts.

Consider
∫ b

a

f(x) dx ≈
n∑

i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a

n
.

2. The ith term of an equally spaced partition is xi = a+i∆x. (Thus
x0 = a and xn = b.)

3. The Left Hand Rule summation is:
n∑

i=1

f(xi−1)∆x.

https://www.youtube.com/watch?v=2iw1Mh4iJ0I
https://www.youtube.com/watch?v=1ZxKyf4JSS4
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4. The Right Hand Rule summation is:
n∑

i=1

f(xi)∆x.

5. The Midpoint Rule summation is:
n∑

i=1

f

(
xi−1 + xi

2

)
∆x.

Let’s do another example.

Example 5.3.21 Approximating definite integrals with sums.

Approximate
∫ 3

−2
(5x + 2) dx using the Midpoint Rule and 10 equally

spaced intervals.
Solution. Following Key Idea 5.3.20, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i) = i/2− 2.

Aswe are using theMidpoint Rule, wewill also needxi−1 and
xi−1 + xi

2
.

Since xi = i/2− 2,xi−1 = (i− 1)/2− 2 = i/2− 5/2. This gives

xi−1 + xi

2
=

(i/2− 5/2) + (i/2− 2)

2
=

i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using sum-
mation formulas.∫ 3

−2

(5x+ 2) dx ≈
10∑
i=1

f

(
xi−1 + xi

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x

10∑
i=1

[(
5

2

)
i− 37

4

]

= ∆x

(
5

2

10∑
i=1

(i)−
10∑
i=1

(
37

4

))

=
1

2

(
5

2
· 10(11)

2
− 10 · 37

4

)
=

45

2
= 22.5

−2 −1 1 2 3

10

17

−8

x

y

Figure 5.3.22 Approximating∫ 3

−2
(5x + 2) dx using the Mid-

point Rule and 10 evenly spaced
subintervals in Example 5.3.21

Note the graph of f(x) = 5x + 2 in Figure 5.3.22. The regions whose
area is computed by the definite integral are triangles, meaning we can
find the exact answer without summation techniques. We find that the
exact answer is indeed 22.5. One of the strengths of theMidpoint Rule is
that often each rectangle includes area that should not be counted, but
misses other area that should. When the partition size is small, these
two amounts are about equal and these errors almost “cancel each other
out.” In this example, since our function is a line, these errors are exactly
equal and they do cancel each other out, giving us the exact answer.
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Note too that when the function is negative, the rectangles have a “neg-
ative” height. When we compute the area of the rectangle, we use
f(ci)∆x; when f is negative, the area is counted as negative.

Video solution

youtu.be/watch?v=O6S1f6-D8Ls

Notice in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculations until the very end.
Mathematicians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, where we do not specify a value of n until the very
end.

Example 5.3.23 Approximating definite integrals with a formula, using
sums.

Revisit
∫ 4

0
(4x−x2) dx yet again. Approximate this definite integral using

the Right Hand Rule with n equally spaced subintervals.
Solution. Using Key Idea 5.3.20, we know∆x = 4−0

n = 4/n. We also
find xi = 0 + i∆x = 4i/n.
We construct the Right Hand Rule Riemann sum as follows. Be sure to
follow each step carefully. If you get stuck, and do not understand how
one line proceeds to the next, you may skip to the result and consider
how this result is used. You should comeback, though, andwork through
each step for full understanding.∫ 4

0

(4x− x2) dx ≈
n∑

i=1

f(xi)∆x

=

n∑
i=1

f

(
4i

n

)
∆x

=

n∑
i=1

[
4
4i

n
−
(
4i

n

)2
]
∆x

=

n∑
i=1

(
16∆x

n

)
i−

n∑
i=1

(
16∆x

n2

)
i2

=

(
16∆x

n

) n∑
i=1

i−
(
16∆x

n2

) n∑
i=1

i2

=

(
16∆x

n

)
· n(n+ 1)

2
−
(
16∆x

n2

)
n(n+ 1)(2n+ 1)

6

=
32(n+ 1)

n
− 32(n+ 1)(2n+ 1)

3n2
( recall∆x = 4/n)

=
32

3

(
1− 1

n2

)
(after simplifying)

The result is an amazing, easy to use formula. To approximate the def-
inite integral with 10 equally spaced subintervals and the Right Hand
Rule, set n = 10 and compute∫ 4

0

(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subinter-
vals; with n = 4, the formula gives 10, our answer as before.

https://www.youtube.com/watch?v=O6S1f6-D8Ls
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It is now easy to approximate the integral with 1,000,000 subintervals!
Hand-held calculators will round off the answer a bit prematurely giving
an answer of 10.66666667. (The actual answer is 10.666666666656.)
We now take an important leap. Up to this point, our mathematics has
been limited to geometry and algebra (finding areas and manipulating
expressions). Now we apply calculus. For any finite n, we know that∫ 4

0

(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high-level mathematics tell us that as n gets
large, the approximation gets better. In fact, if we take the limit as n →
∞, we get the exact area described by

∫ 4

0
(4x− x2) dx. That is,∫ 4

0

(4x− x2) dx = lim
n→∞

32

3

(
1− 1

n2

)
=

32

3
(1− 0)

=
32

3
= 10.6

This is a fantastic result. By considering n equally-spaced subintervals,
we obtained a formula for an approximation of the definite integral that
involved our variable n. As n grows large — without bound — the error
shrinks to zero and we obtain the exact area.

Video solution

youtu.be/watch?v=LjMZOVNdRxQ

This section startedwith a fundamental calculus technique: make an approxi-
mation, refine the approximation tomake it better, then use limits in the refining
process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 5.3.24 Approximating definite integrals with a formula, using
sums.

Find a formula that approximates
∫ 5

−1
x3 dx using the Right Hand Rule

and n equally spaced subintervals, then take the limit as n → ∞ to find
the exact area.
Solution. Following Key Idea 5.3.20, we have∆x = 5−(−1)

n = 6/n. We
have xi = (−1)+i∆x, which is the right endpoint of the ith subinterval.
The Riemann sum corresponding to the Right Hand Rule is (followed by
simplifications):∫ 5

−1

x3 dx ≈
n∑

i=1

f(xi)∆x

=

n∑
i=1

f(−1 + i∆x)∆x

=

n∑
i=1

(−1 + i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

https://www.youtube.com/watch?v=LjMZOVNdRxQ
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=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summation)

= ∆x4
n∑

i=1

i3 − 3∆x3
n∑

i=1

i2 + 3∆x2
n∑

i=1

i−
n∑

i=1

∆x

= ∆x4

(
n(n+ 1)

2

)2

− 3∆x3n(n+ 1)(2n+ 1)

6
+ 3∆x2n(n+ 1)

2
− n∆x

(use∆x = 6/n)

=
1296

n4
· n

2(n+ 1)2

4
− 3

216

n3
· n(n+ 1)(2n+ 1)

6
+ 3

36

n2

n(n+ 1)

2
− 6

(now do a sizable amount of algebra to simplify)

= 156 +
378

n
+

216

n2

Once again, we have found a compact formula for approximating the
definite integral with n equally spaced subintervals and the Right Hand
Rule. Using 10 subintervals, we have an approximation of 195.96 (these
rectangles are shown in Figure 5.3.25). Using n = 100 gives an approxi-
mation of 159.802.

−1 1 2 3 4 5

20

40

60

80

100

120

x

y

Figure 5.3.25 Approximating∫ 5

−1
x3 dx using the Right Hand

Rule and 10 evenly spaced subinter-
vals

Now find the exact answer using a limit:∫ 5

−1

x3 dx = lim
n→∞

(
156 +

378

n
+

216

n2

)
= 156.

Video solution

youtu.be/watch?v=yvWSszI0Xvc

5.3.3 Limits of Riemann Sums
Wehave used limits to evaluate given definite integrals. Will this alwayswork? It
can be shown, given not-very-restrictive conditions, that yes, it will always work
— this is the content of Theorem 5.3.26 below.

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi)∆x

can be rewritten as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summation as a function of n.

An n value is given (where n is a positive integer), and the sum of areas of n
equally spaced rectangles is returned, using the Left Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b

a
f(x) dx, let:

• SL(n) =

n∑
i=1

f(xi−1)∆x, the sum of equally spaced rectangles formed

using the Left Hand Rule,

• SR(n) =

n∑
i=1

f(xi)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

https://www.youtube.com/watch?v=yvWSszI0Xvc
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• SM (n) =

n∑
i=1

f

(
xi−1 + xi

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definition of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any
ε > 0, there existsN > 0 such that

|SL(n)−K| < ε when n ≥ N .

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b

a
f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be de-
termined following a specific rule, but could be f(ci), where ci is any point in
the ith subinterval, as discussed before Riemann Sums were defined in Defini-
tion 5.3.17.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 5.3.15, let∆xi denote the length
of the ith subinterval in a partition of [a, b] and let ∥∆x∥ represent the length
of the largest subinterval in the partition: that is, ∥∆x∥ is the largest of all the
∆xi. If ∥∆x∥ is small, then [a, b] must be partitioned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ∥∆x∥ goes
to zero” implies that the number n of subintervals in the partition is growing to
infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but getting small, and the height of each rectangle is
not necessarily determined by a particular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.26 Definite Integrals and the Limit of Riemann Sums.

Let f be continuous on the closed interval [a, b] and let SL(n), SR(n),
SM (n),∆x,∆xi and ci be defined as before. Then:

1.

lim
n→∞

SL(n) = lim
n→∞

SR(n)

= lim
n→∞

SM (n)

= lim
n→∞

n∑
i=1

f(ci)∆x

2. lim
n→∞

n∑
i=1

f(ci)∆x =

∫ b

a

f(x) dx

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =

∫ b

a

f(x) dx

youtu.be/watch?v=A-WLvclVMC0

Figure 5.3.27 Video presentation of
Theorem 5.3.26

Oneof the things Theorem5.3.26
tells us is that if f is continuous
on [a, b], then the definite inte-
gral

∫ b

a
f(x) dx is guaranteed to

exist.
Knowing that every continu-

ous function can be integrated
is useful, since most of the func-
tions we work with are continu-
ous. However, it turns out that a
function can be integrated even
if it has a finite number of dis-
continuities, as long as these are
removable or jumpdiscontinuities.

We summarize what we have learned over the past few sections here.

• Knowing the “area under the curve” can be useful. One common example:
the area under a velocity curve is displacement.

https://www.youtube.com/watch?v=A-WLvclVMC0
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• We have defined the definite integral,
∫ b

a
f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the Left Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivatives through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next sectionwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connection between
the indefinite integral and the definite integral.



5.3. RIEMANN SUMS 259

5.3.4 Exercises

Terms and Concepts

1. A fundamental calculus technique is to use to refine approximations to get an exact answer.

2. What is the upper bound in the summation
14∑
i=2

(35i+ 217)?

3. This section approximates definite integrals using what geometric shape?
4. (□ True □ False) A sum using the Right Hand Rule is an example of a Riemann Sum.

Problems

Exercise Group. Write out each term of the summation and compute the sum.

5.
5∑

i=3

i2 6.
3∑

i=−2

(5i+ 2)

7.
2∑

i=−2

sin
(
πi
2

)
8.

8∑
i=1

5

9.
6∑

i=1

1
i 10.

8∑
i=1

(−1)
i
i

11.
3∑

i=1

(
1
i −

1
i+1

)
12.

6∑
i=0

(−1)
i cos(πi)

Exercise Group. Write the sum in summation notation.
13. 5 + 10 + 15 + 20 14. −2 + (−1) + 2 + 7 + 14 + 23 + 34

15. 1
5 + 2

6 + 3
7 + 4

8 + 5
9

16. e− e2 + e3 − e4 + e5

Exercise Group. Evaluate the summation using Theorem 5.3.9.

17.
8∑

i=1

5 18.
28∑
i=1

i

19.
12∑
i=1

(
3i2 − 2i

)
20.

12∑
i=1

(
6i3 + 4

)
21.

8∑
i=1

(
4i3 − 10i2 + 3i+ 7

)
22.

9∑
i=1

(
i3 − 4i2 + i− 3

)
23. 1 + 2 + 3 + · · ·+ 94 + 95 24. 1 + 4 + 9 + · · ·+ 484 + 529

Exercise Group. Theorem 5.3.9 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai, so
n∑

i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai. Use this fact, along

with other parts of Theorem 5.3.9, to evaluate the summation.

25.
20∑

i=11

i 26.
29∑

i=17

i3

27.
15∑
i=8

6 28.
13∑
i=8

3i3

Exercise Group. In the following exercises, a definite integral
∫ b

a

f(x) dx is given.

(a) Graph f(x) on [a, b].
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(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a

f(x) dx by summing the areas of the rectangles.

29.
∫ 3

−3

x2 dx, with 6 rectangles using the Left

Hand Rule.

30.
∫ 2

0

(5− x2) dx, with 4 rectangles using the

Midpoint Rule.

31.
∫ π

0

sin(x) dx, with 6 rectangles using the Right

Hand Rule.
32.

∫ 3

0

2x dx, with 5 rectangles using the Left Hand

Rule.

33.
∫ 2

1

ln(x) dx, with 3 rectangles using the

Midpoint Rule.

34.
∫ 9

1

1

x
dx, with 4 rectangles using the Right

Hand Rule.

Exercise Group. A definite integral is given below. As demonstrated in Examples 5.3.23 and 5.3.24, do the following:

(a) Find a formula to approximate the definite integral using n subintervals and the provided rule.

(b) Evaluate the formula using n = 10, 100, and 1000.

(c) Find the limit of the formula, as n → ∞, to find the exact value of the definite integral.

35.
∫ 1

0

x3 dx, using the Left Hand Rule. 36.
∫ 2

−1

2x2 dx, using the Left Hand Rule.

37.
∫ 1

−2

(3x+ 2) dx, using the Midpoint Rule. 38.
∫ 6

2

(
4x2 + 1

)
dx, using the Left Hand Rule.

39.
∫ 10

−10

(3− x) dx, using the Left Hand Rule. 40.
∫ 1

0

(
x3 − x2

)
dx, using the Right Hand Rule.
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5.4 The Fundamental Theorem of Calculus

youtu.be/watch?v=8d3R9MSwKuk

Figure 5.4.1 Video introduction to
Section 5.4

Let f(t) be a continuous function defined on [a, b]. The definite integral∫ b

a
f(x) dx is the “area under f” on [a, b]. We can turn this concept into a func-

tion by letting the upper (or lower) bound vary.
Let F (x) =

∫ x

a
f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.2. We can study this function using our knowledge of the definite
integral. For instance, F (a) = 0 since

∫ a

a
f(t) dt = 0.

a x b

t

y

Figure 5.4.2 The area of the shaded region is F (x) =
∫ x

a
f(t) dt

Example 5.4.3 Exploring the “Area so far” function.

Consider f(t) = 2t pictured in Figure Figure 5.4.4 and its associated
“area so far” function, F (x) =

∫ x

1
2t dt. Using the graph of f and geom-

etry, find an explicit formula for F .

−2

2

4

6

8

1 x

t

y

Figure 5.4.4 The area of the shaded
region is F (x) =

∫ x

1
2t dt

Solution. We can see from Figure 5.4.5 that for x ≥ 1, the area under
the curve can be found by subtracting the area of two triangles. The
larger triangle will have a base of x and a height of f(x) = 2x, while the
smaller triangle will have a base of 1 and a height of 2. Therefore, the
area under the curve forx ≥ 1 is given byA(x) = 1

2 (x)(2x)−
1
2 (1)(2) =

x2 − 1.

2
1

x

2x

−2

2

4

6

8

1 x

t

y

Figure 5.4.5 The area of the shaded
region is F (x) =

∫ x

1
2t dt

Note that this same formula holds for x < 1. If x < 1, then F (x) =∫ x

1
2t dt = −

∫ 1

x
2t dt. The areas to the left of x = 1 will have oppo-

site signs (since they areas are accumulated before x = 1). For exam-
ple, when x = 0, F (0) = −

∫ 1

0
2t dt = − 1

2 (1)(2) = −1. This is the
same value we get from evaluating x2 − 1 for x = 0. Also notice that
F (−1) =

∫ −1

1
2t dt = −

∫ 1

−1
2t dt. This integral is clearly 0 since the

areas over [−1, 0] and [0, 1] will sum to zero. Again, this is the same
answer obtained by evaluating x2 − 1 for x = −1.
Therefore, we can reasonably say that F (x) = x2 − 1. A plot of both
f(x) = 2x and F (x) = x2 − 1 are given in Figure Figure 5.4.6. You
should notice a familiar relationship between these two functions. This
relationship is formally stated in Theorem 5.4.7.

https://www.youtube.com/watch?v=8d3R9MSwKuk
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−1 1 2 3

−2

2

4

6

8
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y

Figure 5.4.6 Graphs of f(x) = 2x and F (x) = x2 − 1

Video solution

youtu.be/watch?v=zVyMghQRLcI

5.4.1 Fundamental Theorem of Calculus, Parts 1 and 2
As Example 5.4.3 hinted, we can apply calculus ideas to F (x); in particular, we
can compute its derivative. In Example 5.4.3, F (x) = x2 − 1, so F ′(x) = 2x =
f(x). While this may seem like an innocuous thing to do, it has far-reaching
implications, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.7 The Fundamental Theorem of Calculus, Part 1.

Let f be continuous on [a, b] and let F (x) =
∫ x

a
f(t) dt. Then F is con-

tinuous on [a, b], differentiable on (a, b), and

F ′(x) = f(x).

In other words:
d

dx

(∫ x

a

f(t) dt

)
= f(x).

youtu.be/watch?v=TE3kZRIso-Q

Figure 5.4.8 Video presentation of
Theorem 5.4.7

Initially this seems simple, as demonstrated in the following example.

Example 5.4.9 Using the Fundamental Theorem of Calculus, Part 1.

Let F (x) =

∫ x

−5

(t2 + sin(t)) dt. What is F ′(x)?

Solution. Using the Fundamental Theorem of Calculus, we have
F ′(x) = x2+sin(x). That is, the derivative of the “area so far” function,
is simply the integrand replacing x with t.
This simple example reveals something incredible: F (x) is an antideriv-
ative of x2 + sin(x)! Therefore, F (x) = 1

3x
3 − cos(x) + C for

some value of C. (We can find C, but generally we do not care. We
know that F (−5) = 0, which allows us to compute C. In this case,
C = cos(−5) + 125

3 .)

Video solution

youtu.be/watch?v=7tHmgPcUZG4

What we have done in Example 5.4.9 was more than finding a complicated
way of computing an antiderivative. Consider a function f defined on an open
interval containing a, b and c. Suppose we want to compute

∫ b

a
f(t) dt. First, let

F (x) =

∫ x

c

f(t) dt. (5.4.1)

https://www.youtube.com/watch?v=zVyMghQRLcI
https://www.youtube.com/watch?v=TE3kZRIso-Q
https://www.youtube.com/watch?v=7tHmgPcUZG4
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Using the properties of the definite integral found in Theorem 5.2.11, we know∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

= −
∫ a

c

f(t) dt+

∫ b

c

f(t) dt

Using Equation (5.4.1), let x = a in the first integral and x = b in the second
integral so that

∫ a

c
f(t) dt = F (a) and

∫ b

c
f(t) dt = F (b). Therefore:∫ b

a

f(t) dt = −F (a) + F (b)

= F (b)− F (a).

We now see how indefinite integrals and definite integrals are related: we
can evaluate a definite integral using antiderivatives! In fact, this is exactly what
we noticed in Example 5.4.3. The “area so far” function was indeed an anti-
derivative of the integrand. This is the second part of the Fundamental Theorem
of Calculus.

Theorem 5.4.10 Fundamental Theorem of Calculus, Part 2.

Let f be continuous on [a, b] and let F be any antiderivative of f . Then∫ b

a

f(x) dx = F (b)− F (a).
youtu.be/watch?v=jU_WUPjamFQ

Figure 5.4.11 Video presentation of
Theorem 5.4.10

As its name suggests, the Fundamental Theorem of Calculus is an important
result. In fact, it’s sufficiently important that it’s worth taking a moment to un-
derstand why it’s true. A proof is given in Figure 5.4.12.

youtu.be/watch?v=8doi_Al_lmg

Figure 5.4.12 Proving the Fundamen-
tal Theorem of Calculus

Example 5.4.13 Using the Fundamental Theorem of Calculus, Part 2.

We spent a great deal of time in the previous section studying
∫ 4

0
(4x−

x2) dx. Using the Fundamental Theorem of Calculus, evaluate this defi-
nite integral.
Solution. We need an antiderivative of f(x) = 4x− x2. All antideriva-
tives of f have the form F (x) = 2x2 − 1

3x
3 + C; for simplicity, choose

C = 0.
The Fundamental Theorem of Calculus states∫ 4

0

(4x− x2) dx = F (4)− F (0)

=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous section,
just with much less work.

Notation: A special notation is often used in the process of evaluating defi-
nite integrals using the Fundamental Theorem of Calculus. Instead of explicitly

writing F (b) − F (a), the notation F (x)
∣∣∣b
a
is used. Thus the solution to Exam-

https://www.youtube.com/watch?v=jU_WUPjamFQ
https://www.youtube.com/watch?v=8doi_Al_lmg
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ple 5.4.13 would be written as:∫ 4

0

(4x− x2) dx =

(
2x2 − 1

3
x3

)∣∣∣∣4
0

=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.

The ConstantC: Any antiderivativeF (x) can be chosen when using the Fun-
damental Theorem of Calculus to evaluate a definite integral, meaning any value
ofC can be picked. The constant always cancels out of the expressionwhen eval-
uating F (b) − F (a), so it does not matter what value is picked. This being the
case, we might as well let C = 0.

Example 5.4.14 Using the Fundamental Theorem of Calculus, Part 2.

Evaluate the following definite integrals.

1.
∫ 2

−2

x3 dx

2.
∫ π

0

sin(x) dx

3.
∫ 5

0

et dt

4.
∫ 9

4

√
u du

5.
∫ 5

1

2 dx

Solution.

1. ∫ 2

−2

x3 dx =
1

4
x4

∣∣∣∣2
−2

=

(
1

4
24
)
−
(
1

4
(−2)4

)
= 0.

2. ∫ π

0

sin(x) dx = − cos(x)
∣∣∣π
0

= − cos(π)−
(
− cos(0)

)
= 1 + 1 = 2.

(This is interesting; it says that the area under one “hump” of a
sine curve is 2.)

3. ∫ 5

0

et dt = et
∣∣∣5
0

= e5 − e0

= e5 − 1 ≈ 147.41.

4. ∫ 9

4

√
u du =

∫ 9

4

u
1
2 du
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=
2

3
u

3
2

∣∣∣9
4

=
2

3

(
9

3
2 − 4

3
2

)
=

2

3

(
27− 8

)
=

38

3
.

5. ∫ 5

1

2 dx = 2x
∣∣∣5
1

= 2(5)− 2

= 2(5− 1) = 8.

This integral is interesting; the integrand is a constant function,
hencewe are finding the area of a rectanglewithwidth (5−1) = 4
and height 2. Notice how the evaluationof the definite integral led
to 2(4) = 8. In general, if c is a constant, then

∫ b

a
c dx = c(b− a).

Video solution

youtu.be/watch?v=YxQyFln5UIQ

5.4.2 Understanding Motion with the Fundamental Theorem of
Calculus

We established, starting with Key Idea 2.2.3, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac-
celeration function. Now consider definite integrals of velocity and acceleration

functions. Specifically, if v(t) is a velocity function, what does
∫ b

a

v(t) dtmean?

The Fundamental Theorem of Calculus states that∫ b

a

v(t) dt = V (b)− V (a),

where V (t) is any antiderivative of v(t). Since v(t) is a velocity function, V (t)
must be a position function, and V (b)−V (a)measures a change in position, or
displacement.

Example 5.4.15 Finding displacement and distance.

A ball is thrown straight up with velocity given by v(t) = −32t + 20ft/
s, where t is measured in seconds. Find, and interpret,

∫ 1

0
v(t) dt and∫ 1

0
|v(t)| dt.

Solution. Using the Fundamental Theorem of Calculus, we have∫ 1

0

v(t) dt =

∫ 1

0

(−32t+ 20) dt

=
(
−16t2 + 20t

) ∣∣∣1
0

= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t+
20, the height of the ball, 1 second later, will be 4 feet above the initial
height.

https://www.youtube.com/watch?v=YxQyFln5UIQ
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Note that the ball has traveled much farther. It has gone up to its peak
and is falling down, but the difference between its height at t = 0 and
t = 1 is 4ft.
If we wish to find the total distance traveled, we must evaluate∫ 1

0
|v(t)| dt (noting that negative velocities will reduce the diplacement,

but we want distance, not displacement). In this case, we know that the
velocity changes sign once when v(t) = 0,so t = 20/32 = 5/8 seconds.
The velocity is positive over [0, 5/8] and negative over [5/8, 1]. There-
fore ∫ 1

0

|v(t)| dt =
∫ 5/8

0

v(t) dt+

∫ 1

5/8

−v(t) dt

=

∫ 5/8

0

(−32t+ 20) dt−
∫ 1

5/8

(−32t+ 20) dt

=
(
−16t2 + 20t

) ∣∣∣5/8
0

−
(
−16t2 + 20t

) ∣∣∣1
0

=
25

4
−
(
−9

4

)
= 9.

So the total distance traveled over [0, 1] is
∫ 1

0
|−32t+ 20| dt = 9 feet .

As we can see in Figure 5.4.16, the positive area between v(t) and the
t-axis, A1 = 25/4, while the negative area, A2 = −9/4. When we add
these two areas, we get the displacement of 4 ft. But when we add the
absolute value of both of these areas (as in Figure 5.4.17), we get the
total distance of 9 ft.

A1

A2

−10

10

20

5/8 1

t

y

Figure 5.4.16 The area between
v(t) and the t-axis can be used to
represent displacement

A1
A3

−10

10

20

5/8 1

t

y

Figure 5.4.17 The area between
|v(t)| and the t-axis can be used
to represent distance

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. That is,
the speed an object is the absolute value of its velocity. This is what we saw
in Example 5.4.15 when we evaluated

∫ 1

0
|v(t)| dt. So integrating a speed func-

tion gives total change of position, without the possibility of “negative position
change.” Hence the integral of a speed function gives distance traveled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,



5.4. THE FUNDAMENTAL THEOREM OF CALCULUS 267

then ∫ 3

0

a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

5.4.3 The Fundamental Theorem of Calculus and the Chain Rule
Part 1 of the Fundamental Theorem of Calculus (FTC) states that given

F (x) =

∫ x

a

f(t) dt,

we have F ′(x) = f(x). Using other notation,

d

dx
(F (x)) =

d

dx

(∫ x

a

f(t) dt

)
= f(x).

While we have just practiced evaluating definite integrals, sometimes finding
antiderivatives is impossible and we need to rely on other techniques to approx-
imate the value of a definite integral. Functions written as F (x) =

∫ x

a
f(t) dt

are useful in such situations.
It may be of further use to compose such a function with another. As an

example, we may compose F (x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a

f(t) dt.

What is the derivative of such a function? The Chain Rule can be employed
to state

d

dx

(
F
(
g(x)

))
= F ′(g(x))g′(x) = f

(
g(x)

)
g′(x).

youtu.be/watch?v=fywjn8-evpE

Figure 5.4.18 Video presentation of
Subsection 5.4.3 and Example 5.4.19

An example will help us understand this.

Example 5.4.19 The FTC, Part 1, and the Chain Rule.

Find the derivative of F (x) =

∫ x2

2

ln(t) dt.

Solution. We can view F (x) as being the function G(x) =
∫ x

2
ln(t) dt

composed with g(x) = x2; that is, F (x) = G
(
g(x)

)
. The Fundamental

Theorem of Calculus states thatG′(x) = ln(x). The Chain Rule gives us

F ′(x) = G′(g(x))g′(x)
= ln(g(x))g′(x)

= ln(x2)2x

= 2x ln(x2)

Normally, the steps definingG(x) and g(x) are skipped.

Let’s practice this once more.

Example 5.4.20 The FTC, Part 1, and the Chain Rule.

Find the derivative of F (x) =

∫ 5

cos(x)
t3 dt.

https://www.youtube.com/watch?v=fywjn8-evpE
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Solution. Note that F (x) = −
∫ cos(x)

5

t3 dt. Viewed this way, the

derivative of F is straightforward:

F ′(x) = − cos3(x) (− sin(x))
= cos3(x) sin(x).

Video solution

youtu.be/watch?v=nGS4ENM8arI

5.4.4 Area Between Curves

youtu.be/watch?v=UufnFHBnv88

Figure 5.4.21 Video introduction to
Subsection 5.4.4

Consider continuous functions f(x) and g(x)definedon [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.4.22. What is the area of the
shaded region bounded by the two curves over [a, b]?

f(x)

g(x)

a b

x

y

(a)

f(x)

g(x)

a b

x

y

(b)

Figure 5.4.22 Finding the area bounded by two functions on an interval by sub-
tracting the area under g from the area under f

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathematical notation, the area is∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Properties of the definite integral allow us to simplify this expression to∫ b

a

(
f(x)− g(x)

)
dx.

Theorem 5.4.23 Area Between Curves.

Let f(x) and g(x) be continuous functions defined on [a, b] where
f(x) ≥ g(x) for all x in [a, b]. The area of the region bounded by the
curves y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.4.24 Finding area between curves.

Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.
Solution. It will help to sketch these two functions, as done in Fig-

https://www.youtube.com/watch?v=nGS4ENM8arI
https://www.youtube.com/watch?v=UufnFHBnv88


5.4. THE FUNDAMENTAL THEOREM OF CALCULUS 269

ure 5.4.25.

y = x2 + x− 5

y = 3x− 2

−2 −1 1 2 3 4

5

10

15

x

y

Figure 5.4.25 Sketching the region en-
closed by y = x2 + x − 5 and y =
3x− 2 in Example 5.4.24

The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = −1 and x = 3. To check, set
x2 + x− 5 = 3x− 2 and solve for x:

x2 + x− 5 = 3x− 2

(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0

(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 5.4.23, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1

(−x2 + 2x+ 3) dx

=

(
−1

3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1

3
(27) + 9 + 9−

(
1

3
+ 1− 3

)
= 10

2

3
= 10.6

Video solution

youtu.be/watch?v=su2CXdpYPdo

Oneof the thingswehave to be careful aboutwhenfinding the area between
curves is that the curves might cross, so that the distinction between “upper
curve” and “lower curve” can change. The video example in Figure 5.4.26 illus-
trates this phenomenon.

youtu.be/watch?v=Bgji1b7Wdr4

Figure 5.4.26 Finding the area be-
tween curves that intersect multiple
times

5.4.5 The Mean Value Theorem and Average Value

1 2 3 4

x

y

Figure 5.4.27 A graph of a function
f to introduce the Mean Value Theo-
rem

Consider the graph of a function f in Figure 5.4.27 and the area defined by∫ 4

1
f(x) dx. Three rectangles are drawn in Figure 5.4.28; in Figure 5.4.28(a), the

height of the rectangle is greater than f on [1, 4], hence the area of this rectangle
is is greater than

∫ 4

1
f(x) dx.

In Figure 5.4.28(b), the height of the rectangle is smaller than f on [1, 4],
hence the area of this rectangle is less than

∫ 4

1
f(x) dx.

Finally, in Figure 5.4.28(c) the height of the rectangle is such that the area of
the rectangle is exactly that of

∫ 4

1
f(x) dx. Since rectangles that are “too big”,

as in (a), and rectangles that are “too little,” as in (b), give areas greater/lesser
than

∫ 4

1
f(x) dx, it makes sense that there is a rectangle, whose top intersects

f(x) somewhere on [1, 4], whose area is exactly that of the definite integral.

https://www.youtube.com/watch?v=su2CXdpYPdo
https://www.youtube.com/watch?v=Bgji1b7Wdr4
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1 2 3 4

x

y

(a)

1 2 3 4

x

y

(b)

1 2 3 4

x

y

(c)

Figure 5.4.28 Differently sized rectangles give upper and lower bounds on∫ 4

1
f(x) dx; the last rectangle matches the area exactly

We state this idea formally in a theorem.

Theorem 5.4.29 The Mean Value Theorem of Integration.

Let f be continuous on [a, b]. There exists a value c in [a, b] such that∫ b

a

f(x) dx = f(c)(b− a).

youtu.be/watch?v=KD90CwK0PJk

Figure 5.4.30 Video presentation of
Theorem 5.4.29

This is an existential statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.29 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 3.2.4; we leave it to the reader to see how.

The Theorem 5.4.29 simply says
that there is a rectanglewith height
f(c) andwidth b−a, the area of
which is the same as the area be-
tween f and thex-axis over[a, b].
Furthermore, we know that cwill
be in the interval [a, b].

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.31 Using the Mean Value Theorem.

Consider
∫ π

0
sin(x) dx. Find a value c guaranteed by the Mean Value

Theorem.
Solution. We first need to evaluate

∫ π

0
sin(x) dx. (This was previously

done in Example 5.4.14.)∫ π

0

sin(x) dx = − cos(x)
∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin(c) = 2.

π sin(c) = 2 ⇒ sin(c) = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

1 2

1

c π

sin(0.69)

x

y

Figure 5.4.32 A graph of y = sin(x)
on [0, π] and the rectangle guaran-
teed by the Mean Value Theorem

In Figure 5.4.32 sin(x) is sketched along with a rectangle with height
sin(0.69). The area of the rectangle is the same as the area under sin(x)
on [0, π].

We now turn our attention to a related topic —average value. Let f be a
functionon [a, b]with c such that f(c)(b−a) =

∫ b

a
f(x) dx. Consider

∫ b

a

(
f(x)−

f(c)
)
dx: ∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a

f(x)−
∫ b

a

f(c) dx

= f(c)(b− a)− f(c)(b− a)

= 0.

When f(x) is shifted by −f(c), the amount of area under f above the x-
axis on [a, b] is the same as the amount of area below the x-axis above f ; see

https://www.youtube.com/watch?v=KD90CwK0PJk
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Figure 5.4.33 for an illustration of this. In this sense, we can say that f(c) is the
average value of f on [a, b].

y = f(x)

a bc

f(c)

x

y

y = f(x)− f(c)

a bc

f(c)

x

y

Figure 5.4.33 On the left, a graph of y = f(x) and the rectangle guaranteed by
the Mean Value Theorem. On the right, y = f(x) is shifted down by f(c); the
resulting “area under the curve” is 0

The value f(c) is the average value in another sense. First, recognize that
the Mean Value Theorem can be rewritten as

f(c) =
1

b− a

∫ b

a

f(x) dx,

for some value of c in [a, b]. Replacing the integral with the limit of a Riemann
sum (as in Theorem 5.3.26):

f(c) =
1

b− a

∫ b

a

f(x) dx

=
1

b− a
lim

n→∞

n∑
i=1

f(ci)∆x Using Theorem 5.3.26

=
1

b− a
lim

n→∞

n∑
i=1

f(ci)
b− a

n
∆x =

b− a

n

= lim
n→∞

n∑
i=1

f(ci)
1

n
Cancelling the common factor of b− a.

Examining this last line closely, the expression
∑n

i=1 f(ci)
1
n represents adding

up n sample values of f(x)and then dividing by n. This is exactly what we do
when we calculate the average of a set of n numbers. Now when we consider
taking the limit as n goes to∞, lim

n→∞

∑n
i=1 f(ci)

1
n , we are adding up all of the

function’s output values over [a, b] and dividing by the “number of numbers”. In
a sense, we are adding up an infinite number of output values and then dividing
by the number of terms we summed (which is again infinite).

This leads us to a definition.

Definition 5.4.34 The Average Value of f on [a, b].

Let f be continuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. i.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a

f(x) dx.
youtu.be/watch?v=Gz9r9zF5asU

Figure 5.4.35 Video presentation of
Definition 5.4.34

An application of this definition is given in the following example.

https://www.youtube.com/watch?v=Gz9r9zF5asU
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Example 5.4.36 Finding the average value of a function.

An object moves back and forth along a straight line with a velocity given
by v(t) = (t− 1)2 on [0, 3], where t is measured in seconds and v(t) is
measured in ft/s.
What is the average velocity of the object?
Solution. By our definition, the average velocity is:

1

3− 0

∫ 3

0

(t− 1)2 dt =
1

3

∫ 3

0

(
t2 − 2t+ 1

)
dt

=
1

3

(
1

3
t3 − t2 + t

)∣∣∣∣3
0

=
1

3

[(
1

3
(3)3 − (3)2 + (3)

)
−
(
1

3
(0)3 − (0)2 + (0)

)]
= 1 ft/s .

We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.36? We calculate
this by integrating its velocity function:

∫ 3

0
(t − 1)2 dt = 3 ft. Its final position

was 3 feet from its initial position after 3 seconds: its average velocity was 1 ft/s.
This section has laid the groundwork for a lot of great mathematics to follow.

The most important lesson is this: definite integrals can be evaluated using anti-
derivatives. Since Section 5.3 established that definite integrals are the limit of
Riemann sums, we can later create Riemann sums to approximate values other
than “area under the curve,” convert the sums to definite integrals, then eval-
uate these using the Theorem 5.4.10. This will allow us to compute the work
done by a variable force, the volume of certain solids, the arc length of curves,
and more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. Chapter 6 is devoted to techniques
of finding antiderivatives so that a wide variety of definite integrals can be eval-
uated. Before that, Section 5.5 explores techniques of approximating the value
of definite integrals beyond using the Left Hand, Right Hand andMidpoint Rules.
These techniques are invaluable when antiderivatives cannot be computed, or
when the actual function f is unknown and all we know is the value of f at
certain x-values.
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5.4.6 Exercises

Terms and Concepts

1. How are definite and indefinite integrals related?
2. What constant of integration is most commonly used when evaluating definite integrals?

3. (□ True □ False) If f is a continuous function, then F (x) =

∫ x

a

f(t) dt is also a continuous function.

4. The definite integral can be used to find “the area under a curve.” Give two other uses for definite integrals.

Problems

Exercise Group. Evaluate the definite integral.

5.
∫ 4

2

(
3x2 − 2x− 2

)
dx 6.

∫ 2

0

(x− 5)
2
dx

7.
∫ 2

−2

(
x5 − x3

)
dx 8.

∫ π
2

0

sin(x) dx

9.
∫ π

3

π
4

sec(x) tan(x) dx 10.
∫ e7

1

1

x
dx

11.
∫ 1

−3

8x dx 12.
∫ −1

−2

(
1 + 4x3

)
dx

13.
∫ π

0

(3 sin(x)− 9 cos(x)) dx 14.
∫ 2

1

ex dx

15.
∫ 25

1

√
t dt 16.

∫ 16

4

1√
t
dt

17.
∫ 81

1

4
√
x dx 18.

∫ 6

1

1

x
dx

19.
∫ 7

1

1

x2
dx 20.

∫ 3

1

1

x6
dx

21.
∫ 1

0

x dx 22.
∫ 1

0

x2 dx

23.
∫ 1

0

x3 dx 24.
∫ 1

0

x89 dx

25.
∫ 7

−7

dx 26.
∫ −5

−9

4 dx

27.
∫ 5

−5

0 dx 28.
∫ π

2

π
6

csc(x) cot(x) dx

29.

(a) Explain why
∫ 1

−1

xn dx = 0 when n is a positive, odd integer.

(b) Explain why
∫ 1

−1

xn dx = 2

∫ 1

0

xn dx when n is a positive, even integer.

30. Explain why
∫ a+2π

a

sin t dt = 0 for all values of a.
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Exercise Group. Find all values c such that
∫ b

a
f(x) dx = f(c)(b− a), as guaranteed by the Theorem 5.4.29.

31.
∫
x2 dx 32.

∫
x2 dx

33.
∫
ex dx 34.

∫ √
x dx

Exercise Group. Find the average value of the function on the given interval.
35. f(x) = sin(x) on

[
π
2 , π

]
36. y = cos(x) on [0, π]

37. y = x on [0, 7] 38. y = x2 on [0, 8]
39. y = x3 on [0, 9] 40. y =

1

t
on [1, e]

Exercise Group. A velocity function is given for an object moving along a straight line. Find the displacement of the
object over the given time interval.

41. v(t) = −32t+ 28 ft
s on [0, 4] 42. v(t) = −32t+ 200 ft

s on [0, 9]

43. v(t) = 7 ft
s on [0, 4] 44. v(t) = 8t mph on [−2, 3]

45. v(t) = cos(t) ft
s on

[
0, 3π

2

]
46. v(t) = 5

√
t fts on [0, 32]

Exercise Group. An acceleration function of an object moving along a straight line is given. Find the change of the
object’s velocity over the given time interval.

47. a(t) = −32 ft
s2 on [0, 8] 48. a(t) = 11 ft

s2 on [0, 9]

49. a(t) = t ft
s2 on [0, 1] 50. a(t) = sin(t) ft

s2 on
[
π
2 ,

3π
2

]
Exercise Group. Sketch the given relations and find the area of the enclosed region.

51. y = 2x, y = 5x, and x = 3 52. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1

53. y = x2 − 2x+ 5, y = 5x− 5 54. y = 2x2 + 2x− 5, y = x2 + 3x+ 7,

Exercise Group. Find F ′(x).

55. F (x) =

∫ x3−2x

8

1

t
dt 56. F (x) =

∫ −9

x3

t3 dt

57. F (x) =

∫ x4

x

(t− 1) dt 58. F (x) =

∫ ln(x)

sin(x)
et dt

59. F (x) =

∫ x4

5

(sin
(
3t2
)
) dt 60. F (x) =

∫ √
x

cos(x)
(
√
t4 + 5t2) dt
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5.5 Numerical Integration

The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on computing an-
tiderivatives. Despite the power of this theorem, there are still situations where
wemust approximate the value of the definite integral instead of finding its exact
value. The first situation we explore is where we cannot compute the antideriv-
ative of the integrand. The second case is when we actually do not know the
function in the integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomial,
nth root, rational, exponential, logarithmic and trigonometric functions. We can
compute the derivative of any elementary function, but there are many elemen-
tary functions of which we cannot compute an antiderivative. For example, the
following functions do not have antiderivatives thatwe can expresswith elemen-
tary functions:

ex
2

, sin(x3), sin(x)
x .

The simplest way to refer to the antiderivatives of e−x2

is to simply write∫
e−x2

dx.
This section outlines three common methods of approximating the value of

definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite
integrals:∫ 1

0
e−x2

dx,
∫ π

2

−π
4
sin(x3) dx,

∫ 4π

0.5
sin(x)

x dx,

as pictured in Figure 5.5.1.

y = e−x2

−0.2 0.2 0.4 0.6 0.8 1

0.5

1

x

y

(a)

y = sin(x3)

−1 −0.5 0.5 1 1.5

−0.5

0.5

1

x

y

(b)

y =
sin(x)
x

5 10 15

0.5

1

x

y

(c)

Figure 5.5.1Graphically representing three definite integrals that cannot be eval-
uated using antiderivatives

5.5.1 The Left and Right Hand Rule Methods
In Section 5.3 we addressed the problem of evaluating definite integrals by ap-
proximating the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

interval [a, b]. We wish to approximate
∫ b

a

f(x) dx. We partition [a, b] into n

equally spaced subintervals, each of length∆x =
b− a

n
. The endpoints of these

subintervals are labeled as

x0 = a, x1 = a+∆x, x2 = a+ 2∆x, . . . , xi = a+ i∆x, . . . , xn = b.
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Key Idea 5.3.20 states that to use the Left Hand Rule we use the summation
n∑

i=1

f(xi−1)∆x and to use the Right Hand Rule we use
n∑

i=1

f(xi)∆x. We review

the use of these rules in the context of examples.

Example 5.5.2 Approximating definite integrals with rectangles.

Approximate
∫ 1

0

e−x2

dx using the Left and Right Hand Rules with 5

equally spaced subintervals.
Solution. We begin by partitioning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, and x5 = 1.

Using the Left Hand Rule, we have:
n∑

i=1

f(xi−1)∆x =
(
f(x0) + f(x1) + f(x2) + f(x3) + f(x4)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈ (1 + 0.9608 + 0.8521 + 0.6977 + 0.5273)(0.2)

≈ 0.8076.

Using the Right Hand Rule, we have:
n∑

i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈ (0.9608 + 0.8521 + 0.6977 + 0.5273 + 0.3678)(0.2)

≈ 0.6812.

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

(a) Using the Left Hand Rule

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

(b) Using the Right Hand Rule

Figure 5.5.3 Approximating
∫ 1

0
e−x2

dx in Example 5.5.2

Figure 5.5.3 shows the rectangles used in each method to approximate
the definite integral. These graphs show that in this particular case, the
Left Hand Rule is an over approximation and the Right Hand Rule is an
under approximation. To get a better approximation, we could usemore
rectangles, as we did in Section 5.3. We could also average the Left and
Right Hand Rule results together, giving

0.8076 + 0.6812

2
= 0.7444.
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The actual answer, accurate to 4 places after the decimal, is 0.7468,
showing our average is a good approximation.

Example 5.5.4 Approximating definite integrals with rectangles.

Approximate
∫ π

2

−π
4

sin(x3) dx using the Left and Right Hand Rules with

10 equally spaced subintervals.
Solution. We begin by finding∆x:

b− a

n
=

π/2− (−π/4)

10
=

3π

40
≈ 0.2356.

It is useful to write out the endpoints of the subintervals in a table; in
Figure 5.5.5, we give the exact values of the endpoints, their decimal ap-
proximations, and decimal approximations of sin(x3) evaluated at these
points.

xi Exact Approx. sin(x3
i )

x0 −π/4 −0.7854 −0.4657

x1 −7π/40 −0.5498 −0.1654

x2 −π/10 −0.3142 −0.0310

x3 −π/40 −0.0785 −0.0005

x4 π/20 0.1571 0.0039

x5 π/8 0.3927 0.0605

x6 π/5 0.6283 0.2455

x7 11π/40 0.8639 0.6011

x8 7π/20 1.0996 0.9710

x9 17π/40 1.3352 0.6899

x10 π/2 1.5708 −0.6700

Figure 5.5.5 Values used to ap-
proximate

∫ π
2

−π
4
sin(x3) dx in Exam-

ple 5.5.4

Once this table is created, it is straightforward to approximate the defi-
nite integral using the Left and Right Hand Rules. (Note: the table itself
is easy to create, especially with a standard spreadsheet program on a
computer. The last two columns are all that are needed.) The Left Hand
Rule sums the first 10 values of sin(x3

i ) and multiplies the sum by ∆x;
the Right Hand Rule sums the last 10 values of sin(x3

i ) and multiplies by
∆x. Therefore we have:

Left Hand Rule:
∫ π

2

−π
4

sin(x3) dx ≈ (1.9093)(0.2356) ≈ 0.4498.

Right Hand Rule:
∫ π

2

−π
4

sin(x3) dx ≈ (1.705)(0.2356) ≈ 0.4017.

Average of the Left and Right Hand Rules: 0.4258.

y = sin(x3)

−1 −0.5 0.5 1 1.5
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y = sin(x3)
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Figure 5.5.6 Approximating
∫ π

2

−π
4
sin(x3) dx in Example 5.5.4

The actual answer, accurate to 4 places after the decimal, is 0.4609. Our
approximationswere once again fairly good. The rectangles used in each
approximation are shown in Figure 5.5.6(a). It is clear from the graphs
that using more rectangles (and hence, narrower rectangles) should re-
sult in a more accurate approximation.
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5.5.2 The Trapezoidal Rule

In Example 5.5.2 we approximated the value of
∫ 1

0

e−x2

dxwith 5 rectangles of

equal width. Figure 5.5.3 shows the rectangles used in the Left and Right Hand
Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximations will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.7, we show the region under f(x) = e−x2

on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a better
approximation of

∫ 1

0
e−x2

dx. (In fact, these trapezoids seem to give a great
approximation of the area!)

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

Figure 5.5.7 Approximating∫ 1

0
e−x2

dx using 5 trapezoids of
equal widths

The formula for the area of a trapezoid is given in Figure 5.5.8. We approxi-
mate

∫ 1

0
e−x2

dx with these trapezoids in the following example.a
b

h

Area = a+b
2 h

Figure 5.5.8 The area of a trapezoid

Example 5.5.9 Approximating definite integrals using trapezoids.

Use 5 trapezoids of equal width to approximate
∫ 1

0

e−x2

dx.

Solution. To compute the areas of the 5 trapezoids in Figure 5.5.7, it
will again be useful to create a table of values as shown in Figure 5.5.10.

xi e−x2
i

0 1

0.2 0.9608

0.4 0.8521

0.6 0.6977

0.8 0.5273

1 0.3679

Figure 5.5.10A table of values of e−x2

The leftmost trapezoid has legs of length 1 and 0.9607 and a height of
0.2. Thus, by our formula, the area of the leftmost trapezoid is:

1 + 0.9608

2
(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.9607 and 0.8521
and a height of 0.2. Thus its area is:

0.9608 + 0.8521

2
(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1 + 0.9608

2
(0.2) +

0.9608 + 0.8521

2
(0.2) +

0.8521 + 0.6977

2
(0.2)+

0.6977 + 0.5273

2
(0.2) +

0.5273 + 0.3679

2
(0.2) = 0.7444.

We approximate
∫ 1

0
e−x2

dx ≈ 0.7444.

There are many things to observe in this example. Note how each term in
the final summationwasmultiplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summation as:

1

2
(0.2)

[
(1 + 0.9608) + (0.9608 + 0.8521) + (0.8521 + 0.6977)

+ (0.6977 + 0.5273) + (0.5273 + 0.3679)
]
.

Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2

2

[
1 + 2(0.9608 + 0.8521 + 0.6977 + 0.5273) + 0.3679

]
.
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This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x) dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f . Using n equally spaced subintervals with endpoints x0,

x1, . . ., xn, we again have∆x =
b− a

n
. Thus:

∫ b

a

f(x) dx ≈
n∑

i=1

f(xi−1) + f(xi)

2
∆x

=
∆x

2

n∑
i=1

(
f(xi−1) + f(xi)

)
=

∆x

2

[
f(x0) +

(
2

n−1∑
i=1

f(xi)

)
+ f(xn)

]
.

Example 5.5.11 Using the Trapezoidal Rule.

Revisit Example 5.5.4 and approximate
∫ π

2

−π
4

sin(x3) dx using the Trape-

zoidal Rule and 10 equally spaced subintervals.
Solution. We refer back to Figure 5.5.5 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

−π
4

sin(x3) dx

≈ 0.236

2

[
− 0.4657 + 2

(
− 0.1654 + (−0.031) + . . .+ 0.68999

)
+ (−0.67)

]
= 0.4258.

The actual answer, accurate to 4 decimal places is 0.4609. So the Trape-
zoidal Rule with 10 subintervals is an under-approximation by about
0.0351.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of xi and f(xi) values. Once this is completed,
approximating the definite integral is not difficult. Again, using technology is
wise. Spreadsheets can make quick work of these computations and make us-
ing lots of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effectively
renders the Left and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximation is needed, one is gener-
ally better off using the Trapezoidal Rule instead of either the Left or Right Hand
Rule. However, there are two other methods that are also generally more accu-
rate than the Left or Right Hand Rule.

5.5.3 The Midpoint Rule
Another method that can bemore accurate than the Trapezoidal Rule is theMid-
point Rule:

SM (n) =

n∑
i=1

f

(
xi−1 + xi

2

)
∆x
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=

n∑
i=1

f (xi)∆x

where xi is the midpoint of each subinterval,

xi = a+∆x

(
i− 1

2

)
Example 5.5.12 Using the Midpoint Rule.

Use the Midpoint Rule with n = 5 to approximate
∫ 1

0

e−x2

dx.

Solution. We cannot use the table in Figure 5.5.10 that we used for the
Trapezoidal, Right and Left Hand Rules when using the Midpoint Rule.
The Trapezoidal rule averages the outputs of the function to obtain a
more accurate estimate of the definite integral. The Midpoint Rule av-
erages the inputs of each subinterval to create a rectangle with height
f
(

xi−1+xi

2

)
. Generally f

(
xi−1+xi

2

)
̸= f(xi−1)+f(xi)

2 .
So we will create a new table of values as shown in Figure 5.5.13. We
have ∆x = (1 − 0)/5 = 0.2. The midpoint of the first subinteval is at
0 + 0.2(1/2) = 0.1 and each successive midpoint is 0.2 from the last.

xi e−x2
i

0.1 0.9900

0.3 0.9139

0.5 0.7788

0.7 0.6126

0.9 0.4449

Figure 5.5.13A table of values of e−x2

So we have∫ 1

0

e−x2

dx ≈ 0.2(0.99 + 0.9139 + 0.7788 + 0.6126 + 0.4449)

≈ 0.7480

We approximate
∫ 1

0

e−x2

dx ≈ 0.7480.

Example 5.5.14 Using the Midpoint Rule.

Revisit Example 5.5.11 and approximate
∫ π

2

−π
4

sin(x3) dx using the Mid-

point Rule and 10 equally spaced subintervals.
Solution. Again, a table will be useful. Recall that ∆x = 3π/40 ≈
0.2356. Themidpoint of the first subinterval isx1 = a+∆x/2 = −π/4+
3π/40(1/2) = −17π/80 (notice that x1 is half of a subinterval width to
the right of a). Each successive midpoint is ∆x = 3π/40 = 6π/80 to
the right of the last. So we have:

xi Exact Approx. sin(x3
i )

x1 −17π/80 −0.6676 −0.2932

x2 −11π/80 −0.4320 −0.0805

x3 −5π/80 −0.1963 −0.0076

x4 1π/80 −0.0393 0.0001

x5 7π/80 0.2749 0.0208

x6 13π/80 0.5105 0.1327

x7 19π/80 0.7461 0.4035

x8 25π/80 0.9817 0.8112

x9 31π/80 1.2174 0.9729

x10 37π/80 1.4530 0.0740

Figure 5.5.15 Values used to ap-
proximate

∫ π
2

−π
4
sin(x3) dx in Exam-

ple 5.5.14

Thus we have:∫ π
2

−π
4

sin(x3) dx

≈ 0.2356
[
− 0.2932 + (−0.0805) + (−0.0076) + · · ·+ 0.9729 + 0.0740

]
= 0.2356 · 2.0339
≈ 0.4792.

The actual answer, accurate to 4 decimal places is 0.4609. So the
Midpoint Rule with 10 subintervals is an overrapproximation by about
0.0183. Notice that this error is about half of the error in using the Trape-
zoidal Rule.
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In many cases, the Midpoint Rule will more accurate than the Trapezoidal
Rule. You may wonder though, how can we improve on the Trapezoidal and
Midpoint Rules, apart from using more and more subintervals? The answer is
clear once we look back and consider what we have really done so far. The
Left Hand Rule, Right Hand Rule and Midpoint Rules are not really about using
rectangles to approximate area. Instead, they approximate a function f with
constant functions on small subintervals and then compute the definite integral
of these constant functions. The Trapezoidal Rule is really approximating a func-
tion f with a linear function on a small subinterval, then computing the definite
integral of this linear function. In all of these cases the definite integrals are easy
to compute in geometric terms.

So we have a progression: we start by approximating f with a constant func-
tion and then with a linear function. What is next? A quadratic function. By
approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp-
son’s Rule, named after Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

5.5.4 Simpson’s Rule
Given one point, we can create a constant function that goes through that point.
Given two points, we can create a linear function that goes through those points.
Given three points, we can create a quadratic function that goes through those
three points (given that no two have the same x-value).

Consider three points (x0, y0), (x1, y1) and (x2, y2)whosex-values are equally
spaced and x0 < x1 < x2. Let f be the quadratic function that goes through
these three points. It is not hard to show that∫ x2

x0

f(x) dx =
x2 − x0

6

(
y0 + 4y1 + y2

)
. (5.5.1) While it’s not hard to show the

results of Equation (5.5.1), it’s also
not exactly easy. This videomight
help: youtu.be/uc4xJsi99bk

Consider Figure 5.5.16. A function f goes through the 3 points shown and
the parabola g that also goes through those points is graphedwith a dashed line.
Using our equation from above, we know exactly that∫ 3

1

g(x) dx =
3− 1

6

(
3 + 4(1) + 2

)
= 3.

Since g is a good approximation for f on [1, 3], we can state that∫ 3

1

f(x) dx ≈ 3.

1 2 3

1

2

3

x

y

Figure 5.5.16 A graph of a function f
and a parabola that approximates it
well on [1, 3]

Notice how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a

f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width ∆x =
(b− a)/n. We approximate f with n/2 parabolic curves, using Equation (5.5.1)
to compute the area under these parabolas. Adding up these areas gives the
formula:∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0)+4f(x1)+2f(x2)+4f(x3)+. . .+2f(xn−2)+4f(xn−1)+f(xn)

]
.

Note how the coefficients of the terms in the summation have the pattern 1,
4, 2, 4, 2, 4, . . ., 2, 4, 1.

https://www.youtube.com/embed/uc4xJsi99bk
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Figure 5.5.17 illustrates how the area calculated by Simpson’s Rule approxi-
mates

∫ 5

0
f(x) dx for the function f(x) = sin(πx). In this case, 8 subintervals

were used, resulting in 4 quadratic curves (dashed lines) being fitted to each
pair of subintervals. The actual answer (accurate to 4 decimal places) is about
10.6366, while Simpson’s rule gives 10.7294. Of coursemore subintervals would
result in better accuracy. However 8 intervals were chosen specifically so that
you could see how the parabolas compare to the original function. With larger
values of n, it becomes difficult to distinguish the function and its quadratic ap-
proximations on each subinterval.

y = sin(πx) + 2

−1 1 2 3 4 5

1

2

3

x

y

Figure 5.5.17 An illustration of Simp-
son’s rule on f(x) = sin(πx)+2 over
[0, 5] using 8 subintervals, resulting in
4 quadratic approximations

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.18 Using Simpson’s Rule.

Approximate
∫ 1

0

e−x2

dx using Simpson’s Rule and 4 equally spaced

subintervals.
Solution. We begin by making a table of values as we have in the past,
as shown in Figure 5.5.19(a).

xi e−x2
i

0 1

0.25 0.939

0.5 0.779

0.75 0.570

1 0.368

(a)

y = e−x2

0.25 0.5 0.75 1

0.5

1

x

y

(b)

Figure 5.5.19 A table of values to approximate
∫ 1

0
e−x2

dx, along with a
graph of the function
Simpson’s Rule states that∫ 1

0

e−x2

dx ≈ 0.25

3

[
1+4(0.939)+2(0.779)+4(0.570)+0.368

]
= 0.74683.

Recall in Example 5.5.2 we stated that the correct answer, accurate to
4 places after the decimal, was 0.7468. Our approximation with Simp-
son’s Rule, with 4 subintervals, is better than our approximation with
the Trapezoidal Rule using 5!
Figure 5.5.19(b) shows f(x) = e−x2

along with its approximating
parabolas, demonstrating how good our approximation is. The approxi-
mating curves are nearly indistinguishable from the actual function.

Example 5.5.20 Using Simpson’s Rule.

Approximate
∫ π

2

−π
4

sin(x3) dx using Simpson’s Rule and 10 equally

spaced intervals.
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Solution. Figure 5.5.21 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x =
(π/2 + π/4)/10 ≈ 0.236.

xi sin(x3
i )

−0.7854 −0.4657

−0.5498 −0.1654

−0.3142 −0.0310

−0.0785 −0.0005

0.1571 0.0039

0.3927 0.0605

0.6283 0.2455

0.8639 0.6011

1.0996 0.9710

1.3352 0.6899

1.5708 −0.6700

Figure 5.5.21 Values used to ap-
proximate

∫ π
2

−π
4
sin(x3) dx in Exam-

ple 5.5.20

Simpson’s Rule states that∫ π
2

−π
4

sin(x3) dx ≈ 0.2356

3

[
(−0.4657) + 4(−0.1654) + 2(−0.0310) + . . .

. . .+ 2(0.9710) + 4(0.6899) + (−0.6700)
]

≈ 0.4701

y = sin(x3)

−1 −0.5 0.5 1 1.5

−0.5

0.5

1

x

y

Figure 5.5.22 Approximating∫ π
2

−π
4
sin(x3) dx in Example 5.5.20

with Simpson’s Rule and 10 equally
spaced intervals

Recall that the actual value, accurate to 3 decimal places, is 0.4609. Our
approximation is within one 1/100th of the correct value. The graph in
Figure 5.5.22 shows how closely the parabolas match the shape of the
graph.

5.5.5 Summary and Error Analysis
We summarize the key concepts of this section thus far in the following Key Idea.

Key Idea 5.5.23 Numerical Integration.

Let f be a continuous function on [a, b], let n be a positive integer, and

let∆x =
b− a

n
.

Set x0 = a, x1 = a+∆x, . . ., xi = a+ i∆x, xn = b.

Consider
∫ b

a

f(x) dx.

Left Hand Rule:
∫ b

a

f(x) dx ≈ ∆x
[
f(x0) + f(x1) + . . .+ f(xn−1)

]
.

Right Hand Rule:
∫ b

a

f(x) dx ≈ ∆x
[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Trapezoidal Rule:
∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + . . .+

2f(xn−1) + f(xn)
]
.

Midpoint Rule:
∫ b

a

f(x) dx ≈
n∑

i=1

f

(
xi−1 + xi

2

)
∆x.

Simpson’s Rule:
∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + . . . +

4f(xn−1) + f(xn)
]
for n even.

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several questions in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximating?

3. If there is value to approximating, how are we supposed to know if the
approximation is any good?

These are good questions, and their answers are educational. In the exam-
ples, the right answer was never computed. Rather, an approximation accurate
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to a certain number of places after the decimal was given. In Example 5.5.2, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximations were computed using numerical integration but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximation still has its place.
How are we to tell if the approximation is any good?

“Trial and error” provides one way. Using technology, make an approxima-
tion with, say, 10, 100, and 200 subintervals. This likely will not take much time
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximationwill be. For instance, the formulamight state that the approxima-
tion is within 0.1 of the correct answer. If the approximation is 1.58, then one
knows that the correct answer is between 1.48 and 1.68. By using lots of subin-
tervals, one can get an approximation as accurate as one likes. Theorem 5.5.24
states what these bounds are.

Theorem 5.5.24 Error Bounds in the Trapezoidal Rule and Simpson’s
Rule.

1. Let ET and EMbe the error in approximating
∫ b

a

f(x) dx using

the Trapezoidal and Midpoint Rules respectively, with n subinter-
vals. If f has a continuous second derivative on [a, b] andK is any
upper bound of |f ′′(x)| on [a, b], then

ET ≤ (b− a)3

12n2
K.

and

EM ≤ (b− a)3

24n2
K.

2. LetES be the error in approximating
∫ b

a

f(x) dx using Simpson’s

Rule with n subintervals.. If f has a continuous 4th derivative on
[a, b] andK is any upper bound of

∣∣f (4)(x)
∣∣ on [a, b], then

ES ≤ (b− a)5

180n4
K.

There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
itively.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The maximum error in the Midpoint Rule is half of the maximum error in
the Trapezoidal Rule. (Usually the errors in these two rules have opposite
signs as well, that is one will be an under approximation and the other will
be an over approximation).

4. The error in Simpson’s Rule has a term relating to the 4th derivative of f .
Consider a cubic polynomial: its 4th derivative is 0. Therefore, the error in
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approximating the definite integral of a cubic polynomial with Simpson’s
Rule is 0— Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.9 and 5.5.18 and compute the error bounds using
Theorem 5.5.24 in the following example.

Example 5.5.25 Computing error bounds.

Find the error bounds when approximating
∫ 1

0

e−x2

dx using the Trape-

zoidal and Midpoint Rules and 5 subintervals, and using Simpson’s Rule
with 4 subintervals.
Solution. Trapezoidal and Midpoints Rules with n = 5:
We start by computing the 2nd derivative of f(x) = e−x2

:

f ′′(x) = e−x2

(4x2 − 2).

Figure 5.5.26 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest
value of f ′′, in absolute value, is 2.

y = e−x2

(4x2 − 2)

0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0.5

x

y

Figure 5.5.26 Graphing f ′′(x) in Ex-
ample 5.5.25 to help establish error
bounds

Thus we letK = 2 and apply the error formula from Theorem 5.5.24.

ET ≤ (1− 0)3

12 · 52
· 2 = 0.006.

Since the maximum error in the Midpoint rule is half the error in the
Trapezoidal Rule, we can say: EM ≤ 0.003
Our error estimation formula states that our approximation of 0.7444
found in Example 5.5.9 is within 0.0067 of the correct answer. Hence we
know that the actual value iswithin [0.7444−0.0067, 0.7444+0.0067] =
[0.7377, 0.7511]. So:

0.7377 ≤
∫ 1

0

e−x2

dx ≤ 0.7511

But we can do better than this with the Midpoint Rule since its er-
ror is at most half of the error of the Trapezoidal Rule. Our error es-
timate formula state that our approximate of 0.7480 found in Exam-
ple 5.5.12 is within 0.0034 of the correct answer. Hence Hence we know
that the actual value is within [0.7480 − 0.0034, 0.7480 + 0.0033] =
[0.7447, 0.7513].
We had earlier stated the actual answer, correct to 4 decimal places, to
be 0.7468, affirming the validity of Theorem 5.5.24.
Simpson’s Rule with n = 4:
We start by computing the 4th derivative of f(x) = e−x2

:

f (4)(x) = e−x2

(16x4 − 48x2 + 12).

Figure 5.5.27 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest
value of f (4), in absolute value, is 12. Thus we letK = 12 and apply the
error formula from Theorem 5.5.24.

Es =≤ (1− 0)5

180 · 44
· 12 = 0.00026.

y = e−x2

(16x4 − 48x2 + 12)

0.2 0.4 0.6 0.8 1

−5

5

10

x

y

Figure 5.5.27 Graphing f (4)(x) in Ex-
ample 5.5.25 to help establish error
bounds

Our error estimation formula states that our approximation of 0.74683
found in Example 5.5.18 is within 0.00026 of the correct answer,
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hence we know that the correct answer is in the interval [0.74683 −
0.00026, 0.74683 + 0.00026] = [0.74657, 0.74709]. So:

0.74657 ≤
∫ 1

0

e−x2

dx ≤ 0.74709.

Once again we affirm the validity of Theorem 5.5.24 since the answer to
4 decimal places is actually 0.7468.

At the beginning of this section we mentioned two main situations where
numerical integration was desirable. We have considered the case where an
antiderivative of the integrand cannot be computed. We now investigate the
situation where the integrand is not known. This is, in fact, the most widely
used application of Numerical Integration methods. “Most of the time” we ob-
serve behavior but do not know “the” function that describes it. We instead
collect data about the behavior and make approximations based on this data.
We demonstrate this in an example.

Example 5.5.28 Approximating distance traveled.

One of the authors drove his daughter home from school while she
recorded their speed every 30 seconds. The data is given in Figure 5.5.29.
Approximate the distance they traveled.

Time Speed
(min) (mph)
0 0

1 25

2 22

3 19

4 39

5 0

6 43

7 59

8 54

9 51

10 43

11 35

12 40

13 43

14 30

15 0

16 0

17 28

18 40

19 42

20 40

21 39

22 40

23 23

24 0

Figure 5.5.29 Speed data collected
at 30 second intervals for Exam-
ple 5.5.28

Solution. Recall that by integrating a speed function we get distance
traveled. We have information about v(t); we will use Simpson’s Rule to

approximate
∫ b

a

v(t) dt.

Themost difficult aspect of this problem is converting the given data into
the form we need it to be in. The speed is measured in miles per hour,
whereas the time is measured in minutes.
We need to compute ∆x = (b − a)/n. With 25 data points collected,
there are n = 24 subintervals. What are a and b? Since we start at time
t = 0, we have a = 0. The final recorded time was t = 12 minutes,
which is 1/5 of an hour. Thus we have

∆x =
b− a

n
=

1/5− 0

24
=

1

120
;
∆x

3
=

1

360
.

Thus the distance traveled is approximately:∫ 0.2

0

v(t) dt ≈ 1

360

[
f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)

]
=

1

360

[
0 + 4 · 25 + 2 · 22 + · · ·+ 2 · 40 + 4 · 23 + 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the
reader wants to know, the author’s odometer recorded the distance as
about 6.05 miles.)
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5.5.6 Exercises

Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximating antiderivatives. (□ True □ False)
2. What are the two basic situations where approximating the value of a definite integral is necessary?
3. Why are the Left and Right Hand Rules rarely used?
4. Simpson’s Rule is based on approximating portions of a function with what type of function?

Problems

Exercise Group. In the following exercises, approximate the definite integral with the Trapezoidal Rule and Simpson’s
Rule, with n = 4. Then find the exact value.

5. For the integral
∫ 1

−1
x2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

6. For the integral
∫ 10

0
5x dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.
7. For the integral

∫ π

0
sin(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

8. For the integral
∫ 4

0

√
x dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

9. For the integral
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

10. For the integral
∫ 1

0
x4 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

11. For the integral
∫ 2π

0
cos(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

12. For the integral
∫ 3

−3

√
9− x2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

Exercise Group. In the following exercises, approximate the definite integral with the Trapezoidal Rule and Simpson’s
Rule, with n = 6.

13. For the integral
∫ 1

0
cos
(
x2
)
dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

14. For the integral
∫ 1

−1
ex

2

dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

15. For the integral
∫ 5

0

√
x2 + 1 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

16. For the integral
∫ π

0
x sin(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.
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17. For the integral
∫ π/2

0

√
cos(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

18. For the integral
∫ 4

1
ln(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

19. For the integral
∫ 1

−1
1

sin(x)+2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

20. For the integral
∫ 6

0
1

sin(x)+2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

Exercise Group. In the following exercises, find n such that the error in approximating the given definite integral is
less than 0.0001 when using the Trapezoidal Rule and Simpson’s Rule.

21. For the integral
∫ π

0
sin(x) dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

22. For the integral
∫ 4

1
1√
x
dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.
23. For the integral

∫ π

0
cos
(
x2
)
dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

24. For the integral
∫ 5

0
x4 dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

Exercise Group. In the following exercises, a region is given. Find the area of the region using Simpson’s Rule:

(a) where the measurements are in centimeters, taken in 1 cm increments, and

(b) where the measurements are in hundreds of feet, taken in 100 ft increments.

25.

4.
7

6.
3

6
.9

6
.6

5.
1

26.

3.
6

3.
6

4.
5 6.
6

5.
6



5.6. SUBSTITUTION 289

5.6 Substitution

youtu.be/watch?v=mElhuqXsPhQ

Figure 5.6.1 Video introduction to
Section 5.6

We motivate this section with an example. Let f(x) = (x2 +3x− 5)10. We
can compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3)

= (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x + 30)(x2 + 3x − 5)9 dx? We have the

answer in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starting with
f(x) as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not-so-complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the
integrand is (x2 + 3x− 5)9. We wish to make this simpler; we do so through a
substitution. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

We have established u as a function of x, so now consider the differential of
u:

du = (2x+ 3)dx.

Keep in mind that (2x+ 3) and dx are multiplied; the dx is not “just sitting
there.”

Return to the original integral and do some substitutions through algebra:∫
(20x+ 30)(x2 + 3x− 5)9 dx =

∫
10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x− 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F (x) and g(x) be differentiable functions and consider the de-
rivative of their composition:

d

dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

https://www.youtube.com/watch?v=mElhuqXsPhQ
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Thus ∫
F ′(g(x))g′(x) dx = F (g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x)
and replacing it with a variable. By setting u = g(x), we can rewrite the deriva-
tive as

d

dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F (u) + C = F (g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 5.6.2 Integration by Substitution.

LetF and g be differentiable functions, where the range of g is an interval
I contained in the domain of F . Then∫

F ′(g(x))g′(x) dx = F (g(x)) + C.

If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F (u) + C = F (g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step

∫
F ′(u) du = F (u) + C looks easy, as the antiderivative of the deriva-

tive of F is just F , plus a constant. The “work” involved is making the proper
substitution. There is not a step-by-step process that one can memorize; rather,
experience will be one’s guide. To gain experience, we now embark on many
examples.

Example 5.6.3 Integrating by substitution.

Evaluate
∫

x sin(x2 + 5) dx.

Solution. Knowing that substitution is related to the Chain Rule, we
choose to letu be the “inside” function of sin(x2+5). (This is not always
a good choice, but it is often the best place to start.)
Let u = x2+5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x
does not physically have to be next to dx for there to be an x dx term.)
We can divide both sides of the du expression by 2:

du = 2x dx ⇒ 1

2
du = x dx.

We can now substitute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

)x dx︸︷︷︸
1
2du

=

∫
1

2
sin(u) du

= −1

2
cos(u) + C (now replace u with x2 + 5)
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= −1

2
cos(x2 + 5) + C.

Thus
∫
x sin(x2+5) dx = − 1

2 cos(x
2+5)+C. We can check our work

by evaluating the derivative of the right hand side.

Example 5.6.4 Integrating by substitution.

Evaluate
∫
cos(5x) dx.

Solution. Again let u replace the “inside” function. Letting u = 5x,
we have du = 5 dx. Since our integrand does not have a 5 dx term, we
can divide the previous equation by 5 to obtain 1

5du = dx. We can now
substitute. ∫

cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5du

=

∫
1

5
cos(u) du

=
1

5
sin(u) + C

=
1

5
sin(5x) + C.

We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 5.6.5 Substitution With A Linear Function.

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Letting

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1

a
F (ax+ b) + C.

Thus
∫
sin(7x − 4) dx = − 1

7 cos(7x − 4) + C. Our next example can use
Key Idea 5.6.5, but we will only employ it after going through all of the steps.

Example 5.6.6 Integrating by substituting a linear function.

Evaluate
∫

7

−3x+ 1
dx.

Solution. View the integrand as the composition of functions f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding
of substitution, we let u = −3x + 1, the inside function. Thus du =
−3 dx. The integrand lacks a−3; hence divide the previous equation by
−3 to obtain −du/3 = dx. We can now evaluate the integral through
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substitution. ∫
7

−3x+ 1
dx =

∫
7

u

du

−3

=
−7

3

∫
du

u

=
−7

3
ln |u|+ C

= −7

3
ln |−3x+ 1|+ C.

Using Key Idea 5.6.5 is faster, recognizing that u is linear and a = −3.
One may want to continue writing out all the steps until they are com-
fortable with this particular shortcut.

youtu.be/watch?v=-6CFSvtMCDU

Figure 5.6.7 Video presentation of Ex-
amples 5.6.3–5.6.6

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 5.6.8 Integrating by substitution.

Evaluate
∫
sin(x) cos(x) dx.

Solution. There is not a composition of functions here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given
an integral to evaluate, it is often beneficial to think “If I let u be this,
then dumust be that …” and see if this helps simplify the integral at all.
In this example, let’s set u = sin(x). Then du = cos(x) dx, which we
have as part of the integrand! The substitution becomes very straight-
forward: ∫

sin(x) cos(x) dx =

∫
u du

=
1

2
u2 + C

=
1

2
sin2(x) + C.

One would do well to ask “What would happen if we let u = cos(x)?”
The result is just as easy to find, yet looks very different. The challenge
to the reader is to evaluate the integral letting u = cos(x) and discover
why the answer is the same, yet looks different.

Video solution

youtu.be/watch?v=UdGVU8H5w3M

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 5.6.9 Integrating by substitution.

Evaluate
∫

x
√
x+ 3 dx.

Solution. Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitution.

https://www.youtube.com/watch?v=-6CFSvtMCDU
https://www.youtube.com/watch?v=UdGVU8H5w3M
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But at this stage, we have:∫
x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We
need to convert the x to an expression involving just u.
Since we set u = x+ 3, we can also state that u− 3 = x. Thus we can
replace x in the integrand with u − 3. It will also be helpful to rewrite√
u as u 1

2 . ∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2

)
du

=
2

5
u

5
2 − 2u

3
2 + C

=
2

5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this particular case, some
algebra will be needed to make one’s answer match the integrand in the
original problem.

Example 5.6.10 Integrating by substitution.

Evaluate
∫

1

x ln(x)
dx.

Solution. This is another example where there does not seem to be
an obvious composition of functions. The line of thinking used in Exam-
ple 5.6.9 is useful here: choose something for u and consider what this
implies dumust be. If u can be chosen such that du also appears in the
integrand, then we have chosen well.
Choosing u = 1/x makes du = −1/x2 dx; that does not seem helpful.
However, setting u = ln(x) makes du = 1/x dx, which is part of the
integrand. Thus: ∫

1

x ln(x)
dx =

∫
1

ln(x)︸ ︷︷ ︸
u

1

x
dx︸ ︷︷ ︸

du

=

∫
1

u
du

= ln |u|+ C

= ln |ln(x)|+ C.

The final answer is interesting; the natural log of the natural log. Take
the derivative to confirm this answer is indeed correct.

youtu.be/watch?v=Qzj4UJX_69c

Figure 5.6.11 Video presentation of
Examples 5.6.9–5.6.10

5.6.1 Integrals Involving Trigonometric Functions
Section 6.2 delves deeper into integrals of a variety of trigonometric functions;
here we use substitution to establish a foundation that we will build upon.

https://www.youtube.com/watch?v=Qzj4UJX_69c
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The next three examples will help fill in somemissing pieces of our antideriv-
ative knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 5.6.12 Integrating by substitution: the antiderivative of
tan(x).

Evaluate
∫
tan(x) dx.

Solution. The previous paragraph established that we did not know the
antiderivatives of tangent, hence wemust assume that we have learned
something in this section that can help us evaluate this indefinite inte-
gral.
Rewrite tan(x) as sin(x)/ cos(x). While the presence of a composition
of functions may not be immediately obvious, recognize that cos(x) is
“inside” the 1/x function. Therefore, we see if setting u = cos(x) re-
turns usable results. We have that du = − sin(x) dx, hence −du =
sin(x) dx. We can integrate:∫

tan(x) dx =

∫
sin(x)
cos(x)

dx

=

∫
1

cos(x)︸ ︷︷ ︸
u

sin(x) dx︸ ︷︷ ︸
−du

=

∫
−1

u
du

= − ln |u|+ C

= − ln |cos(x)|+ C.

Some texts prefer to bring the −1 inside the logarithm as a power of
cos(x), as in:

− ln |cos(x)|+ C = ln
∣∣(cos(x))−1

∣∣+ C

= ln
∣∣∣∣ 1

cos(x)

∣∣∣∣+ C

= ln |sec(x)|+ C.

Thus the result they give is
∫
tan(x) dx = ln |sec(x)| + C. These two

answers are equivalent.

Video solution

youtu.be/watch?v=sJryXwwdqM4

Example 5.6.13 Integrating by substitution: the antiderivative of
sec(x).

Evaluate
∫
sec(x) dx.

Solution. This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case,
we write “1” as

1 =
sec(x) + tan(x)
sec(x) + tan(x)

.

This may seem like it came out of left field, but it works beautifully. Con-

https://www.youtube.com/watch?v=sJryXwwdqM4
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sider: ∫
sec(x) dx =

∫
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx

=

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx.

Now let u = sec(x) + tan(x); this means du = (sec(x) tan(x) +
sec2(x)) dx, which is our numerator. Thus:

=

∫
du

u

= ln |u|+ C

= ln |sec(x) + tan(x)|+ C.

Video solution

youtu.be/watch?v=ivQ5GFSvEGg

We can use similar techniques to those used in Examples 5.6.12 and 5.6.13
to find antiderivatives of cot(x) and csc(x) (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 5.6.14 Antiderivatives of Trigonometric Functions.

1.
∫
sin(x) dx = − cos(x) + C,

2.
∫
cos(x) dx = sin(x) + C,

3.
∫
tan(x) dx = − ln |cos(x)|+ C,

4.
∫
csc(x) dx = − ln |csc(x) + cot(x)|+ C,

5.
∫
sec(x) dx = ln |sec(x) + tan(x)|+ C,

6.
∫
cot(x) dx = ln |sin(x)|+ C,

We explore one more common trigonometric integral.

Example 5.6.15 Integration by substitution: powers of cos(x) and
sin(x).

Evaluate
∫
cos2(x) dx.

Solution. We have a composition of functions as cos2(x) =
(
cos(x)

)2.
However, setting u = cos(x)means du = − sin(x) dx, which we do not
have in the integral. Another technique is needed. The power reduction identities

can be found in List B.3.5 in Ap-
pendix B.

The process we’ll employ is to use a Power Reducing formula for cos2(x),
which states

cos2(x) =
1 + cos(2x)

2
.

The right hand side of this equation is not difficult to integrate. We have:∫
cos2(x) dx =

∫
1 + cos(2x)

2
dx

=

∫ (
1

2
+

1

2
cos(2x)

)
dx

=
1

2
x+

1

2

sin(2x)
2

+ C

https://www.youtube.com/watch?v=ivQ5GFSvEGg
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=
1

2
x+

sin(2x)
4

+ C,

where we used Key Idea 5.6.5 for the antiderivative of cos(2x).
We’ll make significant use of this power-reducing technique in future
sections.

youtu.be/watch?v=XB_PG1Z_n1M

Figure 5.6.16 Video presentation
of Example 5.6.15 and two other
trigonometric examples

5.6.2 Simplifying the Integrand
It is common to be reluctant to manipulate the integrand of an integral; at first,
our grasp of integration is tenuous and onemay think that working with the inte-
grandwill improperly change the results. Integration by substitutionworks using
a different logic: as long as equality is maintained, the integrand can be manipu-
lated so that its form is easier to deal with. The next two examples demonstrate
common ways in which using algebra first makes the integration easier to per-
form.

Example 5.6.17 Integration by substitution: simplifying first.

Evaluate
∫

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx.

Solution. Onemay try to start by settingu equal to either the numerator
or denominator; in each instance, the result is not workable.
When dealing with rational functions (i.e., quotients made up of poly-
nomial functions), it is an almost universal rule that everything works
better when the degree of the numerator is less than the degree of the
denominator. Hence we use polynomial division.
We skip the specifics of the steps, but note that when x2 + 2x + 1 is
divided into x3 + 4x2 + 8x+ 5, it goes in x+ 2 times with a remainder
of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
= x+ 2 +

3x+ 3

x2 + 2x+ 1
.

Integrating x + 2 is simple. The fraction can be integrated by setting
u = x2 + 2x + 1, giving du = (2x + 2) dx. This is very similar to
the numerator. Note that du/2 = (x + 1) dx and then consider the
following:∫

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2 +

3x+ 3

x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1

2
x2 + 2x+ C1 +

∫
3

u

du

2

=
1

2
x2 + 2x+ C1 +

3

2
ln |u|+ C2

=
1

2
x2 + 2x+

3

2
ln
∣∣x2 + 2x+ 1

∣∣+ C.

In some ways, we “lucked out” in that after dividing, substitution was
able to be done. In later sections we’ll develop techniques for handling
rational functions where substitution is not directly feasible.

Video solution

youtu.be/watch?v=kuHKfsyaOAI

https://www.youtube.com/watch?v=XB_PG1Z_n1M
https://www.youtube.com/watch?v=kuHKfsyaOAI
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Example 5.6.18 Integration by alternate methods.

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, substitution.

Solution. We already know how to integrate this particular example.
Rewrite

√
x as x 1

2 and simplify the fraction:

x2 + 2x+ 3

x1/2
= x

3
2 + 2x

1
2 + 3x− 1

2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x− 1

2

)
dx

=
2

5
x

5
2 +

4

3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be
solved using substitution as its implementation is rather clever.
Let u =

√
x = x

1
2 ; therefore

du =
1

2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =

∫
(x2 +2x+3) · 2 du. What are we

to do with the other x terms? Since u = x
1
2 , u2 = x, etc. We can then

replace x2 and x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2

5
u5 +

4

3
u3 + 6u+ C

=
2

5
x

5
2 +

4

3
x

3
2 + 6x

1
2 + C,

which is obviously the same answerweobtained before. In this situation,
substitution is arguablymorework than our othermethod. The fantastic
thing is that it works. It demonstrates how flexible integration is.

5.6.3 Substitution and Inverse Trigonometric Functions
When studying derivatives of inverse functions, we learned that

d

dx

(
tan−1(x)

)
=

1

1 + x2
.

Applying the Chain Rule to this is not difficult; for instance,

d

dx

(
tan−1(5x)

)
=

5

1 + 25x2
.

We now explore how Substitution can be used to “undo” certain derivatives
that are the result of the Chain Rule applied to Inverse Trigonometric functions.
We begin with an example.
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Example 5.6.19 Integratingby substitution: inverse trigonometric func-
tions.

Evaluate
∫

1

25 + x2
dx.

Solution. The integrand looks similar to the derivative of the arctangent
function. Note:

1

25 + x2
=

1

25
(
1 + x2

25

)
=

1

25(1 +
(
x
5

)2
)

=
1

25

1

1 +
(
x
5

)2 .
Thus ∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx.

This can be integrated using Substitution. Set u = x/5, hence du =
dx/5 or dx = 5 du. Thus∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx

=
1

5

∫
1

1 + u2
du

=
1

5
tan−1(u) + C

=
1

5
tan−1

(x
5

)
+ C

Video solution

youtu.be/watch?v=skYWHK8feRs Example 5.6.19 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 5.6.20 Integrals Involving Inverse Trigonometric Functions.

Let a > 0.

1.
∫

1

a2 + x2
dx =

1

a
tan−1

(x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
(x
a

)
+ C

3.
∫

1

x
√
x2 − a2

dx =
1

a
sec−1

(
|x|
a

)
+ C

Let’s practice using Theorem 5.6.20.

https://www.youtube.com/watch?v=skYWHK8feRs
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Example 5.6.21 Integratingby substitution: inverse trigonometric func-
tions.

Evaluate the given indefinite integrals:

1.
∫

1

9 + x2
dx 2.

∫
1√

5− x2
dx 3.

∫
1

x
√
x2 − 1

100

dx

Solution. Each can be answered using a straightforward application of
Theorem 5.6.20.

1.
∫

1

9 + x2
dx =

1

3
tan−1

(x
3

)
+ C, as a = 3.

2.
∫

1√
5− x2

= sin−1

(
x√
5

)
+ C, as a =

√
5.

3.
∫

1

x
√
x2 − 1

100

dx = 10 sec−1(10x) + C, as a = 1
10 .

Most applications of Theorem 5.6.20 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

Example 5.6.22 Integrating by substitution: completing the square.

Evaluate
∫

1

x2 − 4x+ 13
dx.

Solution. Initially, this integral seems to have nothing in common with
the integrals in Theorem 5.6.20. As it lacks a square root, it almost cer-
tainly is not related to arcsine or arcsecant. It is, however, related to the
arctangent function.
We see this by completing the square in the denominator. We give a
brief reminder of the process here.
Start with a quadraticwith a leading coefficient of 1. It will have the form
of x2+ bx+ c. Take 1/2 of b, square it, and add/subtract it back into the
expression. i.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b

2

)2

+ c− b2

4

In our example, we take half of −4 and square it, getting 4. We add/
subtract it into the denominator as follows:

1

x2 − 4x+ 13
=

1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4 + 13

=
1

(x− 2)2 + 9

We can now integrate this using the arctangent rule. Technically, we
need to substitute first with u = x−2, but we can employ Key Idea 5.6.5
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instead. Thus we have∫
1

x2 − 4x+ 13
dx =

∫
1

(x− 2)2 + 9
dx

=
1

3
tan−1

(
x− 2

3

)
+ C.

Video solution

youtu.be/watch?v=wSrXvtTvUjI

Example 5.6.23 Integrals requiring multiple methods.

Evaluate
∫

4− x√
16− x2

dx.

Solution. This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral into two terms:∫

4− x√
16− x2

dx =

∫
4√

16− x2
dx−

∫
x√

16− x2
dx.

We handle each separately. The first integral is handled using a straight-
forward application of Theorem 5.6.20:∫

4√
16− x2

dx = 4 sin−1
(x
4

)
+ C.

The second integral is handled by substitution, with u = 16 − x2.∫
x√

16− x2
dx: Set u = 16−x2, so du = −2x dx and x dx = −du/2.

We have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1

2

∫
1√
u
du

= −
√
u+ C

= −
√
16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1
(x
4

)
+
√
16− x2 + C.

As with all definite integrals, you can check your work by differentiation.

Video solution

youtu.be/watch?v=tEPUnupFCfs

5.6.4 Substitution and Definite Integration

youtu.be/watch?v=JGD5OtxoKoI

Figure 5.6.24 Video introduction to
Subsection 5.6.4

This section has focused on evaluating indefinite integrals as we are learning
a new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

1. Start with a definite integral
∫ b

a

f(x) dx that requires substitution.

2. Ignore the bounds; use substitution to evaluate
∫

f(x) dx and find an

antiderivative F (x).

https://www.youtube.com/watch?v=wSrXvtTvUjI
https://www.youtube.com/watch?v=tEPUnupFCfs
https://www.youtube.com/watch?v=JGD5OtxoKoI
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3. Evaluate F (x) at the bounds; that is, evaluate F (x)
∣∣∣b
a
= F (b)− F (a).

This workflow works fine, but substitution offers an alternative that is pow-
erful and amazing (and a little time saving).

At its heart, (using the notation of Theorem 5.6.2) substitution converts in-
tegrals of the form

∫
F ′(g(x))g′(x) dx into an integral of the form

∫
F ′(u) du

with the substitution ofu = g(x). The following theorem states how the bounds
of a definite integral can be changed as the substitution is performed.

Theorem 5.6.25 Substitution with Definite Integrals.

LetF and g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F and u = g(x). Then∫ b

a

F ′(g(x))g′(x) dx =

∫ g(b)

g(a)

F ′(u) du.

In effect, Theorem 5.6.25 states that once you convert to integrating with
respect to u, you do not need to switch back to evaluating with respect to x. A
few examples will help one understand.

Example 5.6.26 Definite integrals and substitution: changing the
bounds.

Evaluate
∫ 2

0

cos(3x− 1) dx using Theorem 5.6.25.

Solution. Observing the composition of functions, letu = 3x−1, hence
du = 3 dx. As 3 dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.
By setting u = 3x − 1, we are implicitly stating that g(x) = 3x − 1.
Theorem 5.6.25 states that the new lower bound is g(0) = −1; the new
upper bound is g(2) = 5. We now evaluate the definite integral:∫ 2

0

cos(3x− 1) dx =

∫ 5

−1

cos(u)
du

3

=
1

3
sin(u)

∣∣∣5
−1

=
1

3

(
sin(5)− sin(−1)

)
≈ −0.039.

Notice how once we converted the integral to be in terms of u, we never
went back to using x.
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y = cos(3x− 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

y = 1
3 cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

(b)

Figure 5.6.27 Graphing the areas defined by the definite integrals of Ex-
ample 5.6.26
The graphs in Figure 5.6.27 tell more of the story. In Figure 5.6.27(a)
the area defined by the original integrand is shaded, whereas in Fig-
ure 5.6.27(b) the area defined by the new integrand is shaded. In
this particular situation, the areas look very similar; the new region is
“shorter” but “wider,” giving the same area.

Example 5.6.28 Definite integrals and substitution: changing the
bounds.

Evaluate
∫ π/2

0

sin(x) cos(x) dx using Theorem 5.6.25.

Solution. Wesaw the corresponding indefinite integral in Example 5.6.8.
In that example we set u = sin(x) but stated that we could have let
u = cos(x). For variety, we do the latter here.
Let u = g(x) = cos(x), giving du = − sin(x) dx and hence sin(x) dx =
−du. The new upper bound is g(π/2) = 0; the new lower bound is
g(0) = 1. Note how the lower bound is actually larger than the upper
bound now. We have∫ π/2

0

sin(x) cos(x) dx =

∫ 0

1

−u du (switch bounds and change sign)

=

∫ 1

0

u du

=
1

2
u2
∣∣∣1
0
= 1/2.

In Figure 5.6.29 we have again graphed the two regions defined by our
definite integrals. Unlike the previous example, they bear no resem-
blance to each other. However, Theorem 5.6.25 guarantees that they
have the same area.
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y = sin(x) cos(x)

−0.5

0.5

1

π
2

x

y

(a)

y = u

1

−0.5

0.5

1

π
2

u

y

(b)

Figure 5.6.29 Graphing the areas defined by the definite integrals of Ex-
ample 5.6.28

Video solution

youtu.be/watch?v=U3B47kxjidk

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundationonwhichmost
other integration techniques are based.

https://www.youtube.com/watch?v=U3B47kxjidk
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5.6.5 Exercises

Terms and Concepts

1. Substitution “undoes” what derivative rule?
2. (□ True □ False) One can use algebra to rewrite the integrand of an integral to make it easier to evaluate.

Problems

Exercise Group. Evaluate the indefinite integral to develop an understanding of Substitution.

3.
∫

4x3
(
x4 + 8

)7
dx 4.

∫
(2x+ 9)

(
x2 + 9x+ 1

)9
dx

5.
∫

x
(
x2 − 7

)4
dx 6.

∫
(21− 36x)

(
7x− 6x2 + 5

)9
dx

7.
∫

1

4x+ 6
dx 8.

∫
1√

5x+ 3
dx

9.
∫

x√
x+ 1

dx 10.
∫

x4 + 3x√
x

dx

11.
∫

e
√
x

√
x
dx 12.

∫
x6

√
x7 + 7

dx

13.
∫ 1

x2 + 9

x3
dx 14.

∫
ln(x)
x

dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving trigonometric functions.

15.
∫
sin3(x) cos(x) dx 16.

∫
cos4(x) sin(x) dx

17.
∫
sin(1− 6x) dx 18.

∫
sec2(7− 5x) dx

19.
∫
sec(7x) dx 20.

∫
tan8(x) sec2(x) dx

21.
∫

x8 cos
(
x9
)
dx 22.

∫
tan2(x)dx

23.
∫
cot(x) dx

Do not just refer to Theorem 5.6.14 for the
answer; justify it through Substitution.

24.
∫
csc(x) dx

Do not just refer to Theorem 5.6.14 for the
answer; justify it through Substitution.

Exercise Group. Use Substitution to evaluate the indefinite integral involving exponential functions.

25.
∫

e4x−5 dx 26.
∫

ex
5

x4 dx

27.
∫

ex
2+2x+1(x+ 1) dx 28.

∫
ex + 3

ex
dx

29.
∫

ex

ex + 7
dx 30.

∫
ex + e−x

e4x
dx

31.
∫

99x dx 32.
∫

28x dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving logarithmic functions.
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33.
∫
ln(x)
x

dx 34.
∫

(ln(x))4

x
dx

35.
∫ ln

(
x5
)

x
dx 36.

∫
1

x ln(x6)
dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving rational functions.

37.
∫

x2 + 3x− 8

x
dx 38.

∫
x3 + x2 + x+ 1

x
dx

39.
∫

x3 − 2

x+ 1
dx 40.

∫
x2 + 9x− 9

x+ 8
dx

41.
∫

4x− 8x2 − 2

x− 6
dx 42.

∫
x2 − 4x

x3 − 6x2 + 9
dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving inverse trigonometric functions.

43.
∫

6

x2 + 6
dx 44.

∫
5√

25− x2
dx

45.
∫

7√
10− x2

dx 46.
∫

9

x
√
x2 − 49

dx

47.
∫

6x√
x6 − 64x4

dx 48.
∫

x√
1− x4

dx

49.
∫

1

x2 + 18x+ 96
dx 50.

∫
3√

−x2 + 16x− 28
dx

51.
∫

6√
−x2 + 12x− 27

dx 52.
∫

8

x2 − 8x+ 80
dx

Exercise Group. Evaluate the indefinite integral.

53.
∫

x4

(x5 − 2)
2 dx 54.

∫ (
5x5 − 4x3

) (
5x6 − 6x4 + 6

)5
dx

55.
∫

x√
6 + 6x2

dx 56.
∫

x7 sec2
(
x8 + 3

)
dx

57.
∫
sin(x)

√
cos(x) dx 58.

∫
sin(9x+ 5) dx

59.
∫

1

x− 8
dx 60.

∫
2

x+ 5
dx

61.
∫

4x3 − 13x2 + 10x+ 11

x2 − 4x+ 5
dx 62.

∫
2x− 2

x2 − 2x− 3
dx

63.
∫

2(2x− 9)

x2 − 9x+ 3
dx 64.

∫
−x3 + 6x2 + 25x+ 39

x2 + 3x+ 4
dx

65.
∫

x

x4 + 49
dx 66.

∫
8

64x2 + 1
dx

67.
∫

1

x
√
81x2 − 1

dx 68.
∫

1√
4− 25x2

dx

69.
∫

5x− 38

x2 − 12x+ 117
dx 70.

∫
3x− 2

x2 − 8x+ 52
dx

71.
∫

x2 + 14x+ 18

x2 − 4x+ 9
dx 72.

∫
x3

x2 + 36
dx

73.
∫

x3 − 9x− 53

x2 + 6x+ 19
dx 74.

∫
sin(x)

cos2(x) + 1
dx
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75.
∫

cos(x)
sin2(x) + 1

dx 76.
∫

sin(x)
1− cos2(x)

dx

77.
∫

5x+ 40√
x2 + 16x+ 56

dx 78.
∫

x+ 6√
x2 + 12x+ 34

dx

Exercise Group. Evaluate the definite integral.

79.
∫ −1

−4

1

x− 4
dx 80.

∫ 38

3

x
√
x− 2 dx

81.
∫ π

−π
2

cos2(x) sin(x) dx 82.
∫ 1

0

2x
(
1− x2

)7
dx

83.
∫ −3

−7

(x+ 5) ex
2+10x+25 dx 84.

∫ 1

−1

1

1 + x2
dx

85.
∫ −8

−10

1

x2 + 18x+ 82
dx 86.

∫ −
√
3

−2

1√
4− x2

dx
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5.7 Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to
mathematics, physics, and engineering. Among many other applications, they
are used to describe the formation of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many, many connections between them and the stan-
dard trigonometric functions. Figure 5.7.2 demonstrates one such connection.
Just as cosine and sine are used to define points on the circle defined by x2 +
y2 = 1, the functions hyperbolic cosine and hyperbolic sine are used to define
points on the hyperbola x2 − y2 = 1.

youtu.be/watch?v=-6y0xCwCy4s

Figure 5.7.1 Video introduction to
Section 5.7

(cos(θ),sin(θ))

θ

2

x2 + y2 = 1

−1 −0.5 0.5 1

−1

1

x

y

(a)

(cosh(θ),sinh(θ))

θ

2

x2 − y2 = 1

−2 2

−2

2

x

y

(b)

Figure 5.7.2Using trigonometric functions to define points on a circle and hyper-
bolic functions to define points on a hyperbola. The area of the shaded regions
are included in them.

5.7.1 The Hyperbolic Functions and their Properties
We begin with their definition.

Definition 5.7.3 Hyperbolic Functions.

1. cosh(x) =
ex + e−x

2

2. sinh(x) =
ex − e−x

2

3. tanh(x) =
sinh(x)
cosh(x)

4. sech(x) =
1

cosh(x)

5. csch(x) =
1

sinh(x)

6. coth(x) =
cosh(x)
sinh(x) Pronunciation Note:

“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,”

and
“tanh” rhymes with “ranch.”

These hyperbolic functions are graphed in Figure 5.7.4 and Figure 5.7.6.
In the graph of cosh(x) in Figure 5.7.4(a), the graphs of ex/2 and e−x/2 are

included with dashed lines. In the graph of sinh(x) in Figure 5.7.4(b), the graphs
of ex/2 and −e−x/2 are included with dashed lines. As x gets “large,” cosh(x)
and sinh(x) each act like ex/2; when x is a large negative number, cosh(x) acts
like e−x/2 whereas sinh(x) acts like−e−x/2.

https://www.youtube.com/watch?v=-6y0xCwCy4s
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f(x) = cosh(x)

ex/2 e−x/2

−3 −2 −1 1 2 3

−10

−5

5

10

x

y

(a)

f(x) = sinh(x)

ex/2 −e−x/2

−3 −2 −1 1 2 3

−10

−5

5

10

x

y

(b)

Figure 5.7.4 Graphs of sinh(x) and cosh(x)

youtu.be/watch?v=0YP4mVrroVk

Figure 5.7.5 Video presentation of
graphs and basic properties of hyper-
bolic functions

In Figure Figure 5.7.6, notice thedomains of tanh(x) and sech(x) are (−∞,∞),
whereas both coth(x) and csch(x) have vertical asymptotes at x = 0. Also note
the ranges of these functions, especially tanh(x): as x → ∞, both sinh(x) and
cosh(x) approach e−x/2, hence tanh(x) approaches 1.

tanh(x)

coth(x)

−3 −2 −1 1 2 3

−2

2

x

y

(a)

sech(x) csch(x)

−3 −2 −1 1 2 3

−2

2

x

y

(b)

Figure 5.7.6 Graphs of tanh(x), coth(x), csch(x) and cosh(x)

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun-
terparts.

Example 5.7.7 Exploring properties of hyperbolic functions.

Use Definition 5.7.3 to rewrite the following expressions.

1. cosh2(x)− sinh2(x)

2. tanh2(x) + sech2(x)

3. 2 cosh(x) sinh(x)

4.
d

dx

(
cosh(x)

)

5.
d

dx

(
sinh(x)

)
6.

d

dx

(
tanh(x)

)

Solution.

1. By Definition 5.7.3

cosh2(x)− sinh2(x) =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

https://www.youtube.com/watch?v=0YP4mVrroVk
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=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4

4
= 1.

So cosh2(x)− sinh2(x) = 1.

2. Again, use Definition 5.7.3

tanh2(x) + sech2(x) =
sinh2(x)
cosh2(x)

+
1

cosh2(x)

=
sinh2(x) + 1

cosh2(x)
Now use identity from Part 1

=
cosh2(x)
cosh2(x)

= 1.

So tanh2(x) + sech2(x) = 1.

3. Again, use Definition 5.7.3

2 cosh(x) sinh(x) = 2

(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh(x) sinh(x) = sinh(2x).

4. Again, use Definition 5.7.3

d

dx

(
cosh(x)

)
=

d

dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh(x)

So d
dx

(
cosh(x)

)
= sinh(x).

5. Apply derivatives to Definition 5.7.3:

d

dx

(
sinh(x)

)
=

d

dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh(x).

So d
dx

(
sinh(x)

)
= cosh(x).

6. Apply derivatives to Definition 5.7.3:

d

dx

(
tanh(x)

)
=

d

dx

(
sinh(x)
cosh(x)

)
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=
cosh(x) cosh(x)− sinh(x) sinh(x)

cosh2(x)

=
1

cosh2(x)
= sech2(x).

So d
dx

(
tanh(x)

)
= sech2(x).

Video solution

youtu.be/watch?v=VunyFD8keVg

The following Key Idea summarizes many of the important identities relat-
ing to hyperbolic functions. Each can be verified by referring back to Defini-
tion 5.7.3.

Key Idea 5.7.8 Useful Hyperbolic Function Properties.

List 5.7.9 Basic Identities

1. cosh2(x)− sinh2(x) = 1

2. tanh2(x) + sech2(x) = 1

3. coth2(x)− csch2(x) = 1

4. cosh(2x) = cosh2(x) + sinh2(x)

5. sinh(2x) = 2 sinh(x) cosh(x)

6. cosh2(x) =
cosh(2x) + 1

2

7. sinh2(x) =
cosh(2x)− 1

2

List 5.7.10 Derivatives

1.
d

dx

(
cosh(x)

)
= sinh(x)

2.
d

dx

(
sinh(x)

)
= cosh(x)

3.
d

dx

(
tanh(x)

)
= sech2(x)

4.
d

dx

(
sech(x)

)
= − sech(x) tanh(x)

5.
d

dx

(
csch(x)

)
= − csch(x) coth(x)

6.
d

dx

(
coth(x)

)
= − csch2(x)

https://www.youtube.com/watch?v=VunyFD8keVg


5.7. HYPERBOLIC FUNCTIONS 311

List 5.7.11 Integrals

1.
∫
cosh(x) dx = sinh(x) + C

2.
∫
sinh(x) dx = cosh(x) + C

3.
∫
tanh(x) dx = ln(cosh(x)) + C

4.
∫
coth(x) dx = ln |sinh(x) |+ C

We practice using Key Idea 5.7.8.

Example 5.7.12 Derivatives and integrals of hyperbolic functions.

Evaluate the following derivatives and integrals.

1.
d

dx

(
cosh(2x)

)
2.
∫
sech2(7t− 3) dt

3.
∫ ln(2)

0

cosh(x) dx

Solution.

1. Using the Chain Rule directly, we have d
dx

(
cosh(2x)

)
=

2 sinh(2x). Just to demonstrate that it works, let’s also use the
Basic Identity found in Key Idea 5.7.8: cosh(2x) = cosh2(x) +
sinh2(x).

d

dx

(
cosh(2x)

)
=

d

dx

(
cosh2(x) + sinh2(x)

)
= 2 cosh(x) sinh(x) + 2 sinh(x) cosh(x)
= 4 cosh(x) sinh(x).

Using another Basic Identity, we can see that 4 cosh(x) sinh(x) =
2 sinh(2x). We get the same answer either way.

2. We employ substitution, with u = 7t− 3 and du = 7dt. Applying
Key Ideas 5.6.5 and 5.7.8 we have:∫

sech2(7t− 3) dt =
1

7
tanh(7t− 3) + C.

3. ∫ ln(2)

0

cosh(x) dx = sinh(x)
∣∣∣ln(2)
0

= sinh(ln(2))− sinh(0)
= sinh(ln(2)).
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We can simplify this last expression as sinh(x) is based on expo-
nentials:

sinh(ln(2)) =
eln(2) − e− ln(2)

2

=
2− 1/2

2

=
3

4
.

Video solution

youtu.be/watch?v=MwYZHh9UaRo

5.7.2 Inverse Hyperbolic Functions
Just as the inverse trigonometric functions are useful in certain applications, the
inverse hyperbolic functions are useful with others. Figure 5.7.15(a) shows re-
striction on the domain of cosh(x) to make the function one-to-one and the re-
sulting domain and range of its inverse function. Since sinh(x) is already one-to-
one, no domain restriction is needed as shown in Figure 5.7.15(b). Since sech(x)
is not one to one, it also needs a restricted domain in order to be invertible. Fig-
ure 5.7.15(d) shows the graph of sech−1(x). You should carefully compare the
graph of this function to the graph given in Figure 5.7.6(b) to see how this inverse
was constructed. The rest of the hyperbolic functions area already one-to-one
and need no domain restrictions. Their graphs are also shown in Figure 5.7.15.

Because the hyperbolic functions are defined in terms of exponential func-
tions, their inverses can be expressed in terms of logarithms as shown in Key
Idea 5.7.16. It is often more convenient to refer to sinh−1(x) than to ln

(
x +√

x2 + 1
)
, especially when one is working on theory and does not need to com-

pute actual values. On the other hand, when computations are needed, technol-
ogy is often helpful but many hand-held calculators lack a convenient sinh−1(x)
button. (Often it can be accessed under a menu system, but not conveniently.)
In such a situation, the logarithmic representation is useful. The reader is not
encouraged to memorize these, but rather know they exist and know how to
use them when needed.

youtu.be/watch?v=znJxWgMJPw8

Figure 5.7.13 Finding the inverse of
f(x) = sinh(x)

Table 5.7.14 Domains and ranges of the hyperbolic and inverse hyperbolic functions

Function Domain Range Function Domain Range
cosh(x) [0,∞) [1,∞) cosh−1(x) [1,∞) [0,∞)

sinh(x) (−∞,∞) (−∞,∞) sinh−1(x) (−∞,∞) (−∞,∞)

tanh(x) (−∞,∞) (−1, 1) tanh−1(x) (−1, 1) (−∞,∞)

sech(x) [0,∞) (0, 1] sech−1(x) (0, 1] [0,∞)

csch(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞) csch−1(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)

coth(x) (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞) coth−1(x) (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

https://www.youtube.com/watch?v=MwYZHh9UaRo
https://www.youtube.com/watch?v=znJxWgMJPw8
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y = cosh−1(x)

y = cosh(x)

2 4 6 8 10

2

4

6

8
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x

y

(a)

y = sinh(x)

y = sinh−1(x)

−10 −5 5 10

−10

−5

5

10

x

y

(b)

y = coth−1(x)

y = tanh−1(x)

−3 −2 −1 1 2 3

−2

2

x

y

(c)

y = sech−1(x)

y = csch−1(x)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

(d)

Figure 5.7.15 Graphs of the hyperbolic functions (with restricted domains) and
their inverses

Key Idea 5.7.16 Logarithmic definitions of Inverse Hyperbolic Func-
tions.

1. cosh−1(x) = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1(x) =
1

2
ln
(
1 + x

1− x

)
; |x| < 1

3. sech−1(x) = ln

(
1 +

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1(x) = ln
(
x+

√
x2 + 1

)
5. coth−1(x) =

1

2
ln
(
x+ 1

x− 1

)
; |x| > 1

6. csch−1(x) = ln

(
1

x
+

√
1 + x2

|x|

)
; x ̸= 0

The following Key Ideas give the derivatives and integrals relating to the in-
verse hyperbolic functions. In Key Idea 5.7.18, both the inverse hyperbolic and
logarithmic function representations of the antiderivative are given, based on
Key Idea 5.7.16. Again, these latter functions are often more useful than the
former. Note how inverse hyperbolic functions can be used to solve integrals
we used Trigonometric Substitution to solve in Section 6.3.
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Key Idea 5.7.17 Derivatives Involving Inverse Hyperbolic Functions.

1.
d

dx

(
cosh−1(x)

)
=

1√
x2 − 1

;

x > 1

2.
d

dx

(
sinh−1(x)

)
=

1√
x2 + 1

3.
d

dx

(
tanh−1(x)

)
=

1

1− x2
;

|x| < 1

4.
d

dx

(
sech−1(x)

)
=

−1

x
√
1− x2

;

0 < x < 1

5.
d

dx

(
csch−1(x)

)
=

−1

|x|
√
1 + x2

;

x ̸= 0

6.
d

dx

(
coth−1(x)

)
=

1

1− x2
;

|x| > 1

Key Idea 5.7.18 Integrals Involving Inverse Hyperbolic Functions.

Assume a > 0.

1. ∫
1√

x2 − a2
dx = ln

∣∣∣x+
√
x2 − a2

∣∣∣+ C

(for 0 < x < a) = cosh−1
(x
a

)
+ C

2. ∫
1√

x2 + a2
dx = ln

∣∣∣x+
√
x2 + a2

∣∣∣+ C

= sinh−1
(x
a

)
+ C

3. ∫
1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

=

{
1
a tanh

−1
(
x
a

)
+ C x2 < a2

1
a coth

−1
(
x
a

)
+ C a2 < x2

4. ∫
1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

(for 0 < x < a) = −1

a
sech−1

(x
a

)
+ C
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5. ∫
1

x
√
x2 + a2

dx =
1

a
ln
∣∣∣∣ x

a+
√
a2 + x2

∣∣∣∣+ C

= −1

a
csch−1

∣∣∣x
a

∣∣∣+ C

Hyperbolic functions can be used as an alternative to trigonometric substi-
tution, as illustrated in Figure 5.7.19.

youtu.be/watch?v=xYG0fnGDakI

Figure 5.7.19 Using a hyperbolic sub-
stitution to evaluate an integral

We practice using the derivative and integral formulas in the following exam-
ple.

Example 5.7.20 Derivatives and integrals involving inverse hyperbolic
functions.

Evaluate the following.

1.
d

dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1

x2 − 1
dx 3.

∫
1√

9x2 + 10
dx

Solution.

1. Applying Key Idea 5.7.17 with the Chain Rule gives:

d

dx

[
cosh−1

(
3x− 2

5

)]
=

1√(
3x−2

5

)2 − 1
· 3
5
.

2. Multiplying the numerator and denominator by (−1) gives:∫
1

x2 − 1
dx =

∫
−1

1− x2
dx. The second integral can be solved

with a direct application of item #3 from Key Idea 5.7.18, with
a = 1. Thus∫

1

x2 − 1
dx = −

∫
1

1− x2
dx

=


− tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1

2
ln
∣∣∣∣x+ 1

x− 1

∣∣∣∣+ C

=
1

2
ln
∣∣∣∣x− 1

x+ 1

∣∣∣∣+ C. (5.7.1)

We should note that this exact problem was solved at the begin-
ning of Section 6.4. In that example the answer was given as
1
2 ln |x− 1| − 1

2 ln |x+ 1|+C. Note that this is equivalent to the
answer given in Equation (5.7.1), as ln(a/b) = ln(a)− ln(b).

3. This requires a substitution, then item #2 of Key Idea 5.7.18 can
be applied. Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1

3

∫
1√

u2 + 10
du.

https://www.youtube.com/watch?v=xYG0fnGDakI
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Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1

3
sinh−1

(
3x√
10

)
+ C

=
1

3
ln
∣∣∣3x+

√
9x2 + 10

∣∣∣+ C.

Video solution

youtu.be/watch?v=vlW6Og4hk-w

This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be mem-
orized, but rather as a reference for future problem solving. Key Idea 5.7.18
contains perhaps the most useful information. Know the integration forms it
helps evaluate and understand how to use the inverse hyperbolic answer and
the logarithmic answer.

The next section takes a brief break from demonstrating new integration
techniques. It instead demonstrates a technique of evaluating limits that return
indeterminate forms. This technique will be useful in Section 6.5, where limits
will arise in the evaluation of certain definite integrals.

https://www.youtube.com/watch?v=vlW6Og4hk-w
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5.7.3 Exercises

Terms and Concepts

1. In Key Idea 5.7.8, the equation
∫
tanh(x) dx = ln(cosh(x))+C is given. Why is “ln |cosh(x)|” not used— i.e.,

why are absolute values not necessary?

2. The hyperbolic functions are used to define points on the right hand portion of the hyperbola x2 − y2 = 1, as
shown in Figure 5.7.2. How can we use the hyperbolic functions to define points on the left hand portion of the
hyperbola?

Problems

Exercise Group. In the following exercises, verify the given identity using Definition 5.7.3, as done in Example 5.7.7.

3. Verify the identity coth2(x)− csch2(x) = 1 using the definitions of the hyperbolic functions.

4. Verify the identity cosh(2x) = cosh2(x) + sinh2(x) using the definitions of the hyperbolic functions.

5. Verify the identity cosh2(x) =
cosh(2x) + 1

2
using the definitions of the hyperbolic functions.

6. Verify the identity sinh2(x) =
cosh(2x)− 1

2
using the definitions of the hyperbolic functions.

7. Verify the identity
d

dx
[sech(x)] = − sech(x) tanh(x) using the definitions of the hyperbolic functions.

8. Verify the identity
d

dx
[coth(x)] = − csch2(x) using the definitions of the hyperbolic functions.

9. Verify the identity
∫
tanh(x) dx = ln(cosh(x)) + C using the definitions of the hyperbolic functions.

10. Verify the identity
∫
coth(x) dx = ln |sinh(x)|+ C using the definitions of the hyperbolic functions.

Exercise Group. In the following exercises, find the derivative of the given function.
11. Find the derivative of f(x) = sinh(2x). 12. Find the derivative of f(x) = cosh2 x.
13. Find the derivative of f(x) = tanh(x2). 14. Find the derivative of f(x) = ln(sinh(x)).
15. Find the derivative of f(x) = sinh(x) cosh(x). 16. Find the derivative of

f(x) = x sinh(x)− cosh(x).

17. Find the derivative of f(x) = sech−1(x2). 18. Find the derivative of f(x) = sinh−1(3x).

19. Find the derivative of f(x) = cosh−1(2x2). 20. Find the derivative of f(x) = tanh−1(x+ 5).

21. Find the derivative of f(x) = tanh−1(cos(x)). 22. Find the derivative of f(x) = cosh−1(sec(x)).

Exercise Group. In the following exercises, find the equation of the line tangent to the function at the given x-value.
23. Find the equation of the tangent line to

y = f(x) at x = 0, where f(x) = sinh(x).
y =

24. Find the equation of the tangent line to
y = f(x) at x = ln(2), where f(x) = cosh(x).

y =

25. Find the equation of the tangent line to
y = f(x) at x = − ln(3), where
f(x) = tanh(x).

y =

26. Find the equation of the tangent line to
y = f(x) at x = ln(3), where f(x) = sech2(x).

y =

27. Find the equation of the tangent line to
y = f(x) at x = 0, where f(x) = sinh−1(x).

y =

28. Find the equation of the tangent line to
y = f(x) at x =

√
2, where f(x) = cosh−1(x).

y =
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Exercise Group. In the following exercises, evaluate the given indefinite integral.

29. Evaluate the indefinite integral
∫
tanh(2x) dx.

30. Evaluate the indefinite integral∫
cosh(3x− 7) dx.

31. Evaluate the indefinite integral∫
sinh(x) cosh(x) dx.

32. Evaluate the indefinite integral
∫

x cosh(x) dx.

33. Evaluate the indefinite integral
∫

x sinh(x) dx. 34. Evaluate the indefinite integral
∫

1√
x2 + 1

dx.

35. Evaluate the indefinite integral
∫

1√
x2 − 9

dx. 36. Evaluate the indefinite integral
∫

1

9− x2
dx.

37. Evaluate the indefinite integral
∫

2x√
x4 − 4

dx. 38. Evaluate the indefinite integral
∫ √

x√
1 + x3

dx.

39. Evaluate the indefinite integral
∫

1

x4 − 16
dx. 40. Evaluate the indefinite integral

∫
1

x2 + x
dx.

41. Evaluate the indefinite integral
∫

ex

e2x + 1
dx. 42. Evaluate the indefinite integral

∫
sinh−1(x) dx.

43. Evaluate the indefinite integral∫
tanh−1(x) dx.

44. Evaluate the indefinite integral
∫
sech(x) dx.

(Hint: mutiply by cosh(x)
cosh(x) ; set u = sinh(x).)

Exercise Group. In the following exercises, evaluate the given definite integral.

45. Evaluate the definite integral
∫ 1

−1

sinh(x) dx.
46. Evaluate the definite integral∫ ln(2)

− ln(2)
cosh(x) dx.

47. Evaluate the definite integral
∫ 1

0

sech2(x) dx. 48. Evaluate the definite integral
∫ 2

0

1√
x2 + 1

dx.
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We started this chapter learning about antiderivatives and indefinite integrals.
We then seemed to change focus by looking at areas between the graph of a
function and the x-axis. We defined these areas as the definite integral of the
function, using a notation very similar to the notation of the indefinite integral.
The Fundamental Theorem of Calculus tied these two seemingly separate con-
cepts together: we can find areas under a curve, i.e., we can evaluate a definite
integral, using antiderivatives.

We ended the chapter by noting that antiderivatives are sometimes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximations of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applications of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integration, analogous to learning
rules like the Product, Quotient and Chain Rules of differentiation.
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1008 APPENDIX A. ANSWERS TO SELECTED EXERCISES

I · Math 1565: Accelerated Calculus I
1 · Limits
1.1 · An Introduction To Limits
1.1 · Exercises

Terms and Concepts

1.1.2. an indeterminate form
1.1.3. False
1.1.6. 1

Problems

1.1.7. 5 1.1.8. 3
1.1.9. DNE 1.1.10. 2

3

1.1.11. −4 1.1.12. DNE or∞
1.1.13. DNE 1.1.14. 6
1.1.15. 1 1.1.16. DNE
1.1.17. 1 1.1.18. DNE
1.1.19. DNE 1.1.20. 1

1.1.21. −7 1.1.22. 9
1.1.23. 5 1.1.24. −0.111111
1.1.25. 29 1.1.26. 0.2
1.1.27. −1 1.1.28. 0

1.2 · Epsilon-Delta Definition of a Limit
1.2 · Exercises

Terms and Concepts

1.2.2. y-tolerance
1.2.3. True
1.2.4. True

1.3 · Finding Limits Analytically
1.3 · Exercises

Terms and Concepts

1.3.6. True
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Problems

1.3.7. 9 1.3.8. 6
1.3.9. 0 1.3.10. DNE
1.3.11. 3 1.3.12. not possible to know
1.3.13. 3 1.3.14. −45

1.3.15. 0 1.3.16. cos(3.14159)
1.3.17. π 1.3.18. 1

1.3.19. 23
1.3.20.

(
π−5
π−8

)4
1.3.21.

√
3
4

1.3.22. − 16
5

1.3.23. DNE 1.3.24. 256
1.3.25. 2

√
3

3
1.3.26. ln(4)

1.3.27. π2−4π−2
2π2−2π+1

1.3.28. 2π−4
5π−5

1.3.29. 1
4 1.3.30. − 7

2

1.3.31. 17
4 1.3.32. 13

3

1.3.33. 4
9 1.3.34. 5

4

1.3.35. 0 1.3.36. 0
1.3.37. 1 1.3.38. 9

1.3.39. 8 1.3.40. 9
8

1.3.41. 1 1.3.42. π
180

1.4 · One-Sided Limits
1.4 · Exercises

Terms and Concepts

1.4.2. False
1.4.3. False
1.4.4. True

Problems

1.4.5.

(a) 2

(b) 2

(c) 2

(d) 1

(e) DNE

(f) 4

1.4.6.

(a) 0

(b) 4

(c) DNE

(d) 4

(e) DNE

(f) 1
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1.4.7.

(a) DNE or∞

(b) DNE or∞

(c) DNE or∞

(d) DNE

(e) 5

(f) 4

1.4.8.

(a) 2

(b) 3

(c) DNE

(d) 4

1.4.9.

(a) 1

(b) 1

(c) 1

(d) 1

1.4.10.

(a) −5

(b) 1

(c) DNE

(d) 3

1.4.11.

(a) 2

(b) 2

(c) 2

(d) 0

(e) 2

(f) 2

(g) 2

(h) DNE

1.4.12.

(a) a− 1

(b) a

(c) DNE

(d) a

1.4.13.

(a) 2

(b) 6

(c) DNE

(d) 2

1.4.14.

(a) −17

(b) 0

(c) DNE

(d) 0

1.4.15.

(a) 9

(b) 9

(c) 9

(d) 9

(e) 126

(f) 126

(g) 126

(h) 126

1.4.16.

(a) −1

(b) 0

(c) DNE

(d) 0
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1.4.17.

(a) 1− cos2(a)

(b) sin2(a)

(c) 1− cos2(a) or sin2(a)

(d) sin2(a)

1.4.18.

(a) 0

(b) 1

(c) DNE

(d) −2

1.4.19.

(a) −4

(b) −4

(c) −4

(d) −2

1.4.20.

(a) c

(b) c

(c) c

(d) c

1.4.21.

(a) −1

(b) 1

(c) DNE

(d) 0

1.5 · Continuity
1.5 · Exercises

Terms and Concepts

1.5.5. False
1.5.6. True
1.5.7. True
1.5.8. False
1.5.9. False
1.5.10. True

Problems

1.5.11. No. 1.5.12. No.
1.5.13. No. 1.5.14. Yes.
1.5.15. Yes. 1.5.16. Yes.
1.5.17. (a). No.
(b). Yes.
(c). No.

1.5.18. Yes.

1.5.19.

(a) Yes.

(b) Yes.

1.5.20.

(a) Yes.

(b) No.



1012 APPENDIX A. ANSWERS TO SELECTED EXERCISES

1.5.21.

(a) Yes.

(b) Yes.

1.5.22.

(a) Yes.

(b) No.

1.5.23. (−∞,∞) 1.5.24. (−∞,−2] , [2,∞)

1.5.25. [−2, 2] 1.5.26. [−3, 3]

1.5.27. (−∞,−1.73205] , [1.73205,∞) 1.5.28. (−7, 7)

1.5.29. (−∞,∞) 1.5.30. (−∞,∞)

1.5.31. (0,∞) 1.5.32. (−∞,∞)

1.5.33. (−∞, 1.09861] 1.5.34. (−∞,∞)

1.5.39. 1.23633
1.5.40. 0.523633
1.5.41. 0.693164
1.5.42. 0.785547

1.6 · Limits Involving Infinity
1.6 · Exercises

Terms and Concepts

1.6.1. False
1.6.2. True
1.6.3. False
1.6.4. True
1.6.5. True

Problems

1.6.9.

(a) −∞

(b) ∞

1.6.10.

(a) −∞

(b) ∞

(c) DNE

(d) ∞

(e) ∞

(f) ∞
1.6.11.

(a) 0

(b) 3

(c) 1.5

(d) 1.5

1.6.12.

(a) DNE

(b) DNE

(c) 0

(d) 0
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1.6.13.

(a) DNE

(b) DNE

1.6.14.

(a) −9

(b) ∞

1.6.15.

(a) −∞

(b) ∞

(c) DNE

1.6.16.

(a) −∞

(b) −∞

(c) −∞
1.6.17.

(a) ∞

(b) ∞

(c) ∞

1.6.18.

(a) 1.8

(b) 1.8

(c) 1.8

1.6.19. y = 2, x = −2, x = 9 1.6.20. y = 5
−2 , x = −9

1.6.21. y = 0, x = 0, x = 4 1.6.22. x = −3

1.6.23. NONE 1.6.24. y = 4
−1

1.6.25. ∞ 1.6.26. ∞
1.6.27. ∞ 1.6.28. ∞

2 · Derivatives
2.1 · Instantaneous Rates of Change: The Derivative
2.1 · Exercises

Terms and Concepts

2.1.1. True
2.1.2. True

Problems

2.1.7. 0 2.1.8. 2
2.1.9. −3 2.1.10. 2x
2.1.11. 3x2 2.1.12. 6x− 1

2.1.13. −1
x2 2.1.14. −1

(s−2)2

2.1.15. (a). y = 6

(b). x = −2

2.1.16. (a). y − 2x = 0

(b). 0.5x+ y = 7.5

2.1.17. (a). 3x+ y = 4

(b). y − 0.333333x = −19.3333

2.1.18. (a). y − 4x = −4

(b). 0.25x+ y = 4.5

2.1.19. (a). y − 48x = −128

(b). 0.0208333x+ y = 64.0833

2.1.20. (a). 7x+ y = 1

(b). y − 0.142857x = 8.14286

2.1.21. (a). 0.25x+ y = −1

(b). y − 4x = 7.5

2.1.22. (a). x+ y = 4

(b). y − x = −2
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2.1.23. 5.9x+ y = 1.2 2.1.24. y − 11.1111x = 110

2.1.25. y − 0.0192627x = 0.0953664 2.1.26. 0.04996x+ y = 1

2.1.27.

(a) −2, 0, 4

(b) 2x

(c) −2, 0, 4

2.1.28.

(a) −1,−0.25

(b) −1
(x+1)2

(c) −1,−0.25

2.1.33. (a). (−2, 0) ∪ (2,∞)

(b). (−∞,−2) ∪ (0, 2)

(c). {−2, 0, 2}
(d). (−1, 1)

(e). (−∞,−1) ∪ (1,∞)

(f). {−1, 1}

2.1.34. (a). (−2, 2)

(b). (−∞,−2) ∪ (2,∞)

(c). {−2, 2}
(d). (−1, 0) ∪ (1,∞)

(e). (−∞,−1) ∪ (0, 1)

(f). {−1, 0, 1}

2.1.35. no
2.1.36. yes

2.2 · Interpretations of the Derivative
2.2 · Exercises

Terms and Concepts

2.2.1. velocity
2.2.3. linear functions

Problems

2.2.4. 20
2.2.5. −89

2.2.6. 91
2.2.7. f(10.1)
2.2.8. −2

2.2.9. 7
2.2.10. decibels per customer
2.2.11. foot per second squared
2.2.12. foot per hour

2.2.15. Choice 1 2.2.16. Choice 2
2.2.17. Choice 2 2.2.18. Choice 2

2.3 · Basic Differentiation Rules
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2.3 · Exercises

Terms and Concepts

2.3.1. the power rule

2.3.2. 1
x

2.3.3. ex

2.3.4. 10
2.3.5. Choice 1, Choice 2, Choice 5, Choice 6
2.3.7. 17x− 205

2.3.9. (a). a velocity function
(b). an acceleration function
2.3.10. pound per foot squared

Problems

2.3.11. − (14x+ 8) 2.3.12. 28x− 48x2 + 5

2.3.13. 9−
(
20t4 + 3

4 t
2
)

2.3.14. 19 sin(θ)− 3 cos(θ)

2.3.15. 3er 2.3.16. 21t2 + 5 sin(t)− 2 cos(t)

2.3.17. 6
x + 9 2.3.18. s3 + s2 + s+ 1

2.3.19. sin(t)− (et + cos(t)) 2.3.20. 8
x

2.3.21. 0 2.3.22. 18t+ 24

2.3.23. 24x2 + 96x+ 96 2.3.24. 3x2 + 18x+ 27
2.3.25. 8x+ 28

2.3.27. (a). 9x8

(b). 9 · 8x7

(c). 9 · 8 · 7x6

(d). 9 · 8 · 7 · 6x5

2.3.28. (a). −8 sin(x)
(b). − (8 cos(x))
(c). 8 sin(x)
(d). 8 cos(x)

2.3.29. (a). − (4 · 2t+ 3 + et)

(b). − (8 + et)

(c). −et

(d). −et

2.3.30. (a). 2θ + 8θ7

(b). 2 + 8 · 7θ6

(c). 8 · 7 · 6θ5

(d). 8 · 7 · 6 · 5θ4

2.3.31. (a). − (cos(θ)− sin(θ))
(b). sin(θ) + cos(θ)
(c). cos(θ)− sin(θ)
(d). − (sin(θ) + cos(θ))

2.3.32. (a). 0

(b). 0

(c). 0

(d). 0

2.3.33. (a). y = 20(x− 2) + 24

(b). y = − 1
20 (x− 2) + 24

2.3.34. (a). y = e0 ln(e) (t− 0) + e0 − 2

(b). y = −1
e0 ln(e) (t− 0) + e0 − 2

2.3.35. (a). y = x− 1

(b). y = − (x− 1)
2.3.36. (a). y = 4

√
3

2

(
x− π

6

)
+ 4·1

2

(b). y = −
(

1
4
2
√
3

3

) (
x− π

6

)
+ 4·1

2

2.3.37. (a). y = 2·1
2

(
x− π

6

)
+ −2

√
3

2

(b). y = −
(
1
2 · 2

) (
x− π

6

)
+ −2

√
3

2

2.3.38. (a). 9− 9x

(b). y = −1
−9 (x− (−9)) + 90
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2.4 · The Product and Quotient Rules
2.4 · Exercises

Terms and Concepts

2.4.1. False
2.4.2. False
2.4.3. True
2.4.4. the quotient rule
2.4.5. False

Problems

2.4.15. sin(y) + y cos(y) 2.4.16. 3t2 cos(t)− t3 sin(t)

2.4.17. eq ln(q) + eq 1
q 2.4.18. −

(
6y5

(y6)2
(csc(y)− 5) + 1

y6 csc(y) cot(y)
)

2.4.19. t−4−(t+8)

(t−4)2 2.4.20. 3q2(sin(q)−8q2)−q3(cos(q)−8·2q)
(sin(q)−8q2)2

2.4.21. − (csc(y) cot(y) + ey) 2.4.22. sec2(t) ln(t) + 1
t tan(t)

2.4.23. 7 · 2q − 6 2.4.24. 5y4

2.4.25.
(
5r2 + 17r + 10

)
er 2.4.26. 9z8−z9−z5+5z4

ez

2.4.27. 3 2.4.28. 5r4(tan(r) + er) + r5
(
sec2(r) + er

)
2.4.29. csc(z) sin(z)−csc(z) cot(z)(cos(z)+2)

(cos(z)+2)2
2.4.30.
4θ3 sec(θ)+ θ4 sec(θ) tan(θ)+ sec(θ) tan(θ)θ4−4θ3 sec(θ)

(θ4)2

2.4.31. tan(r)−r sec2(r)
tan2(r) − csc2(r)r+cot(r)

r2
2.4.32. 0

2.4.33.
7 · 5x4ex + 7x5ex − (cos(x) cos(x)− sin(x) sin(x))

2.4.34.
(2r sin(r)+r2 cos(r))(r2 cos(r)−9)−(r2 sin(r)−7)(2r cos(r)−r2 sin(r))

(r2 cos(r)−9)2

2.4.35.
(
4z3 ln(z) + z4 1

z

)
cos(z)− z4 ln(z) sin(z) 2.4.36.

(9 cos(x)− 9x sin(x)) tan(x) + 9x cos(x) sec2(x)

2.4.37. (a). y = − (7x+ 7)

(b). y =
(
1
7

)
x− 7

2.4.38. (a). y = 5.0345
(
x− 5π

3

)
+ 5π

6

(b). y = 5π
6 −

(
12837432
64630031

) (
x− 5π

3

)
2.4.39. (a). y = − (15(x+ 5) + 25)

(b). y =
(

1
15

)
(x+ 5)− 25

2.4.40. (a). y =
(
1
8

)
x

(b). y = −8x

2.4.41. 17
2

2.4.42. 0

2.4.43. NONE 2.4.44. 0, 4

2.4.45. 2 cos(x)− x sin(x) 2.4.46. −4 cos(x) + x sin(x)
2.4.47. csc(x) cot(x) cot(x) + csc2(x) csc(x) 2.4.48. 0

2.5 · The Chain Rule
2.5 · Exercises
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Terms and Concepts

2.5.1. True
2.5.2. False
2.5.3. False
2.5.4. True
2.5.5. True
2.5.6. True

Problems

2.5.7. 10
(
4x3 − x

)9 (
12x2 − 1

)
2.5.8. 15(3t− 2)

4

2.5.9. 3(sin(θ) + cos(θ))2 (cos(θ)− sin(θ)) 2.5.10. (6t+ 1) e3t
2+t−1

2.5.11. 4
(
ln(x)− x4

)3 ( 1
x − 4x3

)
2.5.12. 0.693147 · 2q5+4q

(
5q4 + 4

)
2.5.13. 5

(
y + 1

y

)4 (
1− 1

y2

) 2.5.14. −5 sin(5t)

2.5.15. 2 sec2(2q) 2.5.16. − csc2
(
θ2 + 3

)
· 2θ

2.5.17.
(
6t5 − 3t2

(t3)2

)
cos
(
t6 + 1

t3

) 2.5.18. −5 cos4(7q) · 7 sin(7q)

2.5.19.
−3 cos2

(
y2 + 3y − 3

)
(2y + 3) sin

(
y2 + 3y − 3

) 2.5.20. − 1
cos(t) sin(t)

2.5.21. 1
q8 · 8q7 2.5.22. 3 1

y

2.5.23. 1.79176 · 6t 2.5.24. −0.693147 · 2csc(z) csc(z) cot(z)
2.5.25. 0 2.5.26. 1.38629·4t·9t−4t·2.19722·9t

(9t)2

2.5.27. 1.79176·6w(5w+6)−(6w+5)·1.60944·5w

(5w+6)2
2.5.28. 1.94591·7y·5y−(7y+8)·1.60944·5y

(5y)2

2.5.29.
(
1.60944·5r

2
·2r−1

)
·6r

2
−
(
5r

2
−r
)
·1.79176·6r

2
·2r

(6r2)
2

2.5.30. 3w2 cot(5w)− w3 · 5 csc2(5w)

2.5.31. 6
(
x2 + 4x

)5
(2x+ 4)

(
7x4 + x

)3
+(

x2 + 4x
)6 · 3(7x4 + x

)2 (
7 · 4x3 + 1

) 2.5.32.
−
(
4 cos(8− 4r) cos

(
6r + r2

)
+ (6 + 2r) sin

(
6r + r2

)
sin(8− 4r)

)
2.5.33. 7 cos(9 + 7w) cos(4w − 5)−
4 sin(4w − 5) sin(9 + 7w)

2.5.34. e8x
2 · 8 · 2x sin

(
1
x

)
− e8x

2 1
x2 cos

(
1
x

)
2.5.35. − 6 sin(6r+4)(3r+1)3+3·3(3r+1)2 cos(6r+4)

((3r+1)3)
2 2.5.36. 3·2(3z+5) sin(9z)−(3z+5)2·9 cos(9z)

sin2(9z)

2.5.37. (a). y = 0

(b). x = 0

2.5.38. (a). y = 15(x− 1) + 1

(b). y = −1
15 (x− 1) + 1

2.5.39. (a). y = −3
(
x− π

2

)
+ 1

(b). y = 1
3

(
x− π

2

)
+ 1

2.5.40. (a). y = −5e(x+ 1) + e

(b). y = 1
5e (x+ 1) + e

2.5.41. 1
x

2.5.42. k
x

2.6 · Implicit Differentiation
2.6 · Exercises
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Terms and Concepts

2.6.2. the chain rule
2.6.3. True
2.6.4. True

Problems

2.6.5. 1
2
√
w
+

1
2
√

w

(
√
w)

2
2.6.6. 1

6
1

( 6
√
y)

5 +
(
5
6

)
1

y0.166667

2.6.7. 1
2
√
9+t2

· 2t 2.6.8. 1
2
√
w
tan(w) + sec2(w)

√
w

2.6.9. 1.2y0.2 2.6.10. πrπ−1 + 3.8r2.8

2.6.11.
√
w−(w−8) 1

2
√

w

(
√
w)

2
2.6.12. 1

6
1

( 6
√
x)

5 (cos(x) + ex) + (ex − sin(x)) 6
√
x

2.6.13. −4x3

2y+1 2.6.14. −y0.6

x0.6

2.6.15. sin(x) sec(y) 2.6.16. y
x

2.6.17. y
x 2.6.18. −(exx(x+2)·2−y)

ln(2)

2.6.19. −2 sin(y) cos(y)
x

2.6.20. − x
y2

2.6.21. 1
2y+2 2.6.22. y−x2−2xy2

x−y2−2x2y

2.6.23. 1−cos(x)
sin(y)+1

2.6.24. −x
y

2.6.25. −(2x+y)
2y+x

2.6.27.

(a) y = 0

(b) y = −1.859(x− 0.1) + 0.2811

2.6.28.

(a) x = 1

(b) y = −3
√
3

8

(
x−

√
0.6
)
+
√
0.8

2.6.29.

(a) y = 4

(b) y = 3

108
1
4
(x− 2)− 108

1
4

2.6.30.

(a) y = −x+ 1

(b) y = 3
√
3

4

2.6.31.

(a) y = −1√
3

(
x− 7

2

)
+ 6+3

√
3

2

(b) y =
√
3(x−(4+3

√
3))

2 + 3
2

2.6.32.

(a) y = 1

(b) y = −2√
5
(x+ 1) + 1

2

(
−1 +

√
5
)

(c) y = 2√
5
(x+ 1) + 1

2

(
−1−

√
5
)

2.6.33.
−
(
(2y+1)·12x2−4x3

2(−(4x3))
2y+1

)
(2y+1)2

2.6.34.
−
(

x0.6·3
5 y−0.4 −y0.6

x0.6 − y0.6·3
5 x−0.4

)
x1.2

2.6.35. sin2(x) sec2(y) tan(y) + cos(x) sec(y) 2.6.36. 0

2.6.37. (a). (1 + x)
1
x

(
1

x(x+1) −
ln(1+x)

x2

)
(b). y = (1− 2 ln(2)) (x− 1) + 2

2.6.38. (a). (2x)
x2

(2x ln(2x) + x)

(b). y = (2 + 4 ln(2)) (x− 1) + 2
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2.6.39. (a). xx

x+1

(
ln(x) + 1− 1

x+1

)
(b). y = 1

4 (x− 1) + 1
2

2.6.40. (a). xsin(x)+2
(
cos(x) ln(x) + sin(x)+2

x

)
(b). y = 3π2

4

(
x− π

2

)
+
(
π
2

)3
2.6.41. (a). x+1

x+2

(
1

x+1 − 1
x+2

)
(b). y = 1

9 (x− 1) + 2
3

2.6.42. (a). (x+1)(x+2)
(x+3)(x+4)

(
1

x+1 + 1
x+2 − 1

x+3 − 1
x+4

)
(b). y = 11

72x+ 1
6

2.7 · Derivatives of Inverse Functions
2.7 · Exercises

Terms and Concepts

2.7.1. False

Problems

2.7.9. 1
7

2.7.10. − 1
14

2.7.11. −0.5

2.7.12. 1
132

2.7.13. − 25
4

2.7.14. 1
12

2.7.15. − 1√
1−(4w)2

· 4 2.7.16. − 1

|7x|
√

(7x)2−1
· 7

2.7.17. 1
1+(2r)2

· 2 2.7.18. cos−1(w)− w 1√
1−w2

2.7.19. (sec(x))2 cos−1(x)− 1√
1−x2

tan(x) 2.7.20. et

t + ln(t) et

2.7.21.
1

1+z2
sin−1(z)− 1√

1−z2
tan−1(z)

(sin−1(z))
2

2.7.22. (sec( 4
√
x))

2 1
4

1

( 4
√
x)

3

2.7.23. csc
(

1
q3

)
cot
(

1
q3

)
3q2

(q3)2
2.7.24. 1

2.7.29. y = 2
(
x− −

√
3

2

)
+
(
−π

3

)
2.7.30. y = −4

(
x−

√
3
4

)
+ π

6

3 · The Graphical Behavior of Functions
3.1 · Extreme Values
3.1 · Exercises

Terms and Concepts

3.1.2. Answers will vary.
3.1.4. Answers will vary.
3.1.5. False
3.1.6. (a). 0

(b). undefined
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Problems

3.1.7. (a). B
(b). NONE
(c). B,G
(d). C, F

3.1.8. (a). C
(b). A
(c). C
(d). A, E

3.1.9. 0 3.1.10. (a). 0

(b). 0

3.1.11. (a). 0

(b). 0

3.1.12. (a). 0

(b). 0

(c). DNE
3.1.13. (a). DNE
(b). 0

3.1.14. (a). DNE
(b). DNE

3.1.15. 0 3.1.16. DNE

3.1.17. (a). 14

(b). −2

3.1.18. (a). −6

(b). −28

3.1.19. (a). −2.82843

(b). −4

3.1.20. (a). 30.4664

(b). 0

3.1.21. (a). 9
2

(b). 2.82843

3.1.22. (a). 4
11

(b). 0

3.1.23. (a). e
π
4√
2

(b). −eπ
3.1.24. (a). e

3π
4√
2

(b). 0

3.1.25. (a). 1
2e

(b). 0

3.1.26. (a). 0.47247

(b). −6.31821

3.2 · The Mean Value Theorem
3.2 · Exercises

Problems

3.2.3. (−1, 1) 3.2.4. does not apply

3.2.5. − 1
2 3.2.6. − 1

2

3.2.7. does not apply 3.2.8. π
2

3.2.9. does not apply 3.2.10. does not apply

3.2.11. 0 3.2.12. 5
2

3.2.13. 3
√
2
2

3.2.14. 19
4

3.2.15. does not apply 3.2.16. 4
ln(5)

3.2.17. − sec−1
(

2√
π

)
, sec−1

(
2√
π

)
3.2.18. − 2

3

3.2.19. 5 + 7
√
7
6 , 5− 7

√
7
6 3.2.20.

√
π2−4
π , −

√
π2−4
π

3.3 · Increasing and Decreasing Functions
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3.3 · Exercises

Terms and Concepts

3.3.3. Answers will vary; graphs should be steeper near x = 0 than near x = 2.
3.3.5. False

Problems

3.3.15. (a). (−∞,∞)

(b). −2

(c). [−2,∞)

(d). (−∞,−2]

(e). NONE
(f). −2

3.3.16. (a). (−∞,∞)

(b). − 4
3 , 0

(c). (−∞,−1.33333] , [0,∞)

(d). [−1.33333, 0]

(e). −1.33333

(f). 0

3.3.17. (a). (−∞,∞)

(b). − 5
7 ,

7
3

(c). (−∞,−0.714286] , [2.33333,∞)

(d). [−0.714286, 2.33333]

(e). − 5
7

(f). 7
3

3.3.18. (a). (−∞,∞)

(b). 3

(c). (−∞,∞)

(d). NONE
(e). NONE
(f). NONE

3.3.19. (a). (−∞,∞)

(b). 5

(c). (−∞, 5]

(d). [5,∞)

(e). 5

(f). NONE

3.3.20. (a). (−∞,−6) ∪ (−6, 6) ∪ (6,∞)

(b). 0

(c). (−∞,−6) , (−6, 0]

(d). [0, 6) , (6,∞)

(e). 0

(f). NONE
3.3.21. (a). (−∞,−7) ∪ (−7,−5) ∪ (−5,∞)

(b). −5.91608, 5.91608

(c). [−5.91608,−5) , (−5, 5.91608]

(d). (−∞,−7) , (−7,−5.91608] , [5.91608,∞)

(e). 5.91608

(f). −5.91608

3.3.22. (a). (−∞, 0) ∪ (0,∞)

(b). −5,−15

(c). [−15,−5]

(d). (−∞,−15] , [−5, 0) , (0,∞)

(e). −5

(f). −15

3.3.23. (a). (−π, π)

(b). −2.35619,−0.785398, 0.785398, 2.35619

(c). (−3.14159,−2.35619) , (−0.785398, 0.785398),
(2.35619, 3.14159)

(d). (−2.35619,−0.785398) , (0.785398, 2.35619)

(e). −2.35619, 0.785398

(f). −0.785398, 2.35619

3.3.24. (a). (−∞,∞)

(b). −2

(c). [−2,∞)

(d). (−∞,−2]

(e). NONE
(f). −2

3.4 · Concavity and the Second Derivative
3.4 · Exercises



1022 APPENDIX A. ANSWERS TO SELECTED EXERCISES

Terms and Concepts

3.4.1. Answers will vary.
3.4.2. Answers will vary.
3.4.3. Yes; Answers will vary.
3.4.4. No.

Problems

3.4.15. (a). NONE
(b). (−∞,∞)

(c). NONE

3.4.16. (a). NONE
(b). NONE
(c). (−∞,∞)

3.4.17. (a). 0

(b). [0,∞)

(c). (−∞, 0]

3.4.18. (a). − 1
4

(b). [−0.25,∞)

(c). (−∞,−0.25]

3.4.19. (a). − 32
3 , 0

(b). (−∞,−10.6667] , [0,∞)

(c). [−10.6667, 0]

3.4.20. (a). 4.42265, 5.57735

(b). (−∞, 4.42265] , [5.57735,∞)

(c). [4.42265, 5.57735]

3.4.21. (a). −2

(b). (−∞,∞)

(c). NONE

3.4.22. (a). NONE
(b). (−1.5708, 1.5708)

(c). (−4.71239,−1.5708) , (1.5708, 4.71239)

3.4.23. (a). −0.57735, 0.57735

(b). (−∞,−0.57735] , [0.57735,∞)

(c). [−0.57735, 0.57735]

3.4.24. (a). NONE
(b). (−∞, 2) , (5,∞)

(c). (2, 5)

3.4.25. (a). −0.785398, 2.35619

(b). (−3.14159,−0.785398] , [2.35619, 3.14159)

(c). [−0.785398, 2.35619]

3.4.26. (a). −0.585786,−3.41421

(b). (−∞,−3.41421] , [−0.585786,∞)

(c). [−3.41421,−0.585786]

3.4.27. (a). 0.22313

(b). [0.22313,∞)

(c). (0, 0.22313]

3.4.28. (a). 0.707107,−0.707107

(b). (−∞,−0.707107] , [0.707107,∞)

(c). [−0.707107, 0.707107]

3.4.29. (a). −7

(b). NONE
(c). −7

3.4.30. (a). − 5
2

(b). − 5
2

(c). NONE
3.4.31. (a). −1.1547, 1.1547

(b). −1.1547

(c). 1.1547

3.4.32. (a). NONE
(b). NONE
(c). NONE

3.4.33. (a). −4

(b). NONE
(c). −4

3.4.34. (a). −3,−2, 2

(b). −2

(c). −3, 2

3.4.35. (a). 3

(b). NONE
(c). NONE

3.4.36. (a). −3.14159, 0, 3.14159

(b). −3.14159, 3.14159

(c). 0



1023

3.4.37. (a). −9

(b). −9

(c). NONE

3.4.38. (a). 0

(b). 0

(c). NONE
3.4.39. (a). −2.35619, 0.785398

(b). 0.785398

(c). −2.35619

3.4.40. (a). −2, 0

(b). −2

(c). 0

3.4.41. (a). 0.606531

(b). NONE
(c). 0.606531

3.4.42. (a). 0

(b). 0

(c). NONE

3.4.43. (a). NONE
(b). NONE

3.4.44. (a). NONE
(b). NONE

3.4.45. (a). NONE
(b). 0

3.4.46. (a). − 8
27

(b). NONE
3.4.47. (a). − 28

3

(b). 0

3.4.48. (a). 1.42265

(b). 2.57735

3.4.49. (a). NONE
(b). NONE

3.4.50. (a). NONE
(b). NONE

3.4.51. (a). 0

(b). 2

3.4.52. (a). NONE
(b). NONE

3.4.53. (a). −0.785398

(b). 2.35619

3.4.54. (a). −3.41421

(b). −0.585786

3.4.55. (a). NONE
(b). 0.22313

3.4.56. (a). −0.707107

(b). 0.707107

3.5 · Curve Sketching
3.5 · Exercises

Terms and Concepts

3.5.3. True
3.5.4. True
3.5.5. True

4 · Applications of the Derivative
4.1 · Newton’s Method
4.1 · Exercises

Terms and Concepts

4.1.1. False
4.1.2. False
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Problems

4.1.3. (a). 1.57091

(b). 1.5708

(c). 1.5708

(d). 1.5708

(e). 1.5708

4.1.4. (a). −0.557408

(b). 0.0659365

(c). −9.57219× 10−5

(d). 0

(e). 0

4.1.5. (a). 2

(b). 1.2

(c). 1.01176

(d). 1.00005

(e). 1

4.1.6. (a). 1.41667

(b). 1.41422

(c). 1.41421

(d). 1.41421

(e). 1.41421

4.1.7. (a). 0.613706

(b). 0.913341

(c). 0.996132

(d). 0.999993

(e). 1

4.1.8. (a). 1.44444

(b). 1.13057

(c). 1.01498

(d). 1.00022

(e). 1

4.1.9. {−5.15633,−0.369102, 0.525428}
4.1.10. {−3.71448,−0.856723, 1, 1.5712}
4.1.11. {−1.0134, 0.988312, 1.39341}
4.1.12. {−2.16477, 0, 0.524501, 1.81328}

4.1.13. {−0.824132, 0.824132}
4.1.14. {−0.636733, 1.40962}
4.1.15. {0}
4.1.16. {−4.49341, 0, 4.49341}

4.2 · Related Rates
4.2 · Exercises

Terms and Concepts

4.2.1. True
4.2.2. False

Problems

4.2.3.

(a) 0.198944 cm
s

(b) 0.0198944 cm
s

(c) 0.00198944 cm
s



1025

4.2.4.

(a) 0.397887 cm
s

(b) 0.00397887 cm
s

(c) 3.97887× 10−5 cm
s

4.2.5. 51.066 mi
h

4.2.6.

(a) 68.75 mi
h

(b) 75 mi
h

4.2.7.

(a) 258.537 rad
hr

(b) 413.417 rad
hr

(c) 424 rad
hr

4.2.8.

(a) 0.0225641 rad
s

(b) 0.553459 rad
s

(c) 7.33333 rad
s

4.2.9.

(a) 0.0417029 ft
s

(b) 0.458349 ft
s

(c) 3.35489 ft
s

(d) ∞
4.2.10.

(a) 30.5941 ft
min

(b) 36.0555 ft
min

(c) 301.496 ft
min

4.2.11.

(a) 19.1658 ft
s

(b) 0.191658 ft
s

(c) 0.0395988 ft
s

(d) 381.791 s
4.2.12.
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(a) 0.632456 ft
s

(b) 1.6 ft
s

(c) 51.9615 ft
4.2.13.

(a) 80 ft

(b) 1.71499 ft
s

(c) 1.83829 ft
s

(d) 74.162 ft
4.2.14.

(a) 96 ft

(b) 9.42478 ft
s

4.2.15. 0.00230973 ft
s

4.3 · Optimization
4.3 · Exercises

Terms and Concepts

4.3.1. True
4.3.2. False

Problems

4.3.3. 5625
4.3.4. 2

√
560

4.3.5. DNE
4.3.6. 8450

29

4.3.7. 1
4.3.8. 150 ft;

(
225
2

)
ft

4.3.9. (a). 3.83722 cm
(b). 7.67443 cm
4.3.10. (a). 3.20058 in
(b). 6.40117 in
4.3.11. (a). 3.0456 cm
(b). 12.1824 cm

4.3.12. 11664 in3

4.3.13. 10.3923 in; 14.6969 in
4.3.14. (a). 0.535898mi
(b). $503,730.67
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4.3.15. (a). 0mi
(b). $474,341.65

4.3.16. 33.6239 ft
4.3.17. 23.7599 ft
4.3.18.

√
2;

√
2

4.4 · Differentials
4.4 · Exercises

Terms and Concepts

4.4.1. True
4.4.2. True
4.4.3. False
4.4.4. True
4.4.6. True

Problems

4.4.7. 4.28 4.4.8. 8.7
4.4.9. 83.2 4.4.10. 102.5
4.4.11. 5.05 4.4.12. 5.88333
4.4.13. 4.98667 4.4.14. 6.00556
4.4.15. 0.141593 4.4.16. 1.1

4.4.17. (2x− 5) dx 4.4.18.
(
5x4 + 9x8

)
dx

4.4.19. − 24x5

(4x6)2
dx 4.4.20. 2(6x+ sin(x)) (6 + cos(x)) dx

4.4.21.
(
7x6 + 8e8x

)
dx 4.4.22. − 40x4

(x5)2
dx

4.4.23. 9(tan(x)+2)−9x sec2(x)
(tan(x)+2)2

dx 4.4.24. 9
9xdx

4.4.25. (ex sin(x) + ex cos(x)) dx 4.4.26. − sin(sin(x)) cos(x) dx

4.4.27. x+5−(x−4)

(x+5)2
dx 4.4.28.

(
1.60944 · 5x ln(x) + 5x·1

x

)
dx

4.4.29. tan−1(x) dx 4.4.30. cot(x) dx

4.4.31. 5.02655 cm3

4.4.32.

(a) 51.2

(b) 76.8

4.4.33. 3.92699
4.4.34. −4 ft2

4.4.35.

(a) 297.717 ft

(b) 62.3155 ft

(c) 20.9%

4.4.36.

(a) 298.868 ft

(b) 17.335 ft

(c) 5.8%
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4.4.37.

(a) 298.868 ft

(b) 8.66751 ft

(c) 2.9%

4.4.38. Isosceles ... feet

4.4.39. 1%

4.5 · Taylor Polynomials
4.5 · Exercises

Terms and Concepts

4.5.2. True
4.5.3. 6 + 3x− 4x2

4.5.4. 30

Problems

4.5.5. 1− x+ 0.5x2 − 0.166667x3 4.5.6.
x− 0.166667x3 + 0.00833333x5 − 0.000198413x7

4.5.7. x+ x2 + 0.5x3 + 0.166667x4 + 0.0416667x5 4.5.8. x+ 0.333333x3 + 0.133333x5

4.5.9. 1 + 2x+ 2x2 + 1.33333x3 + 0.666667x4 4.5.10. 1 + x+ x2 + x3 + x4

4.5.11. 1− x+ x2 − x3 + x4 4.5.12. 1− x+ x2 − x3 + x4 − x5 + x6 − x7

4.5.13. 1 + 0.5(x− 1)− 0.125(x− 1)
2
+

0.0625(x− 1)
3 − 0.0390625(x− 1)

4
4.5.14. 0.693147 + 0.5(x− 1)− 0.125(x− 1)

2
+

0.0416667(x− 1)
3 − 0.015625(x− 1)

4

4.5.15.
0.707107− 0.707107

(
x− π

4

)
− 0.353553

(
x− π

4

)2
+

0.117851
(
x− π

4

)3
+ 0.0294628

(
x− π

4

)4 −
0.00589256

(
x− π

4

)5 − 0.000982093
(
x− π

4

)6
4.5.16. 0.5 + 0.866025

(
x− π

6

)
− 0.25

(
x− π

6

)2 −
0.144338

(
x− π

6

)3
+ 0.0208333

(
x− π

6

)4
+

0.00721688
(
x− π

6

)5
4.5.17.
0.5−0.25(x− 2)+0.125(x− 2)

2−0.0625(x− 2)
3
+

0.03125(x− 2)
4
+ 0.015625(x− 2)

5

4.5.18.
1− 2(x− 1) + 3(x− 1)

2 − 4(x− 1)
3
+ 5(x− 1)

4 −
6(x− 1)

5
+ 7(x− 1)

6 − 8(x− 1)
7
+ 9(x− 1)

8

4.5.19. 0.5 + 0.5(x+ 1) + 0.25(x+ 1)
2 4.5.20. −π2 − 2π(x− π) + π2−2

2 (x− π)
2

4.5.31. The nth term is: when n even, 0; when n is
odd, (−1)(n−1)/2

n! xn.

4.6 · L’Hospital’s Rule
4.6 · Exercises

Terms and Concepts

4.6.2. False
4.6.3. False
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Problems

4.6.9. 3 4.6.10. −1.66667

4.6.11. −1 4.6.12. −0.707107

4.6.13. 5 4.6.14. 0
4.6.15. 0.666667 4.6.16. a cos(a·0)

b cos(b·0)

4.6.17. ∞ 4.6.18. 0.5
4.6.19. 0 4.6.20. 0
4.6.21. 0 4.6.23. ∞
4.6.24. ∞ 4.6.25. 0
4.6.26. 2 4.6.27. −2

4.6.28. 0 4.6.29. 0
4.6.30. 0 4.6.31. 0
4.6.32. 0 4.6.33. ∞
4.6.34. ∞ 4.6.35. ∞
4.6.36. 0 4.6.37. 0
4.6.38. e 4.6.39. 1
4.6.40. 1 4.6.41. 1
4.6.42. 1 4.6.43. 1
4.6.44. 0 4.6.45. 1
4.6.46. 1 4.6.47. 1
4.6.48. 1 4.6.49. 2
4.6.50. 1

2
4.6.51. −∞

4.6.52. 1 4.6.53. 0
4.6.54. 3

5 · Integration
5.1 · Antiderivatives and Indefinite Integration
5.1 · Exercises

Terms and Concepts

5.1.2. an antiderivative
5.1.4. (a). opposite
(b). opposite
5.1.6. velocity
5.1.7. velocity
5.1.8. F (x) +G(x)

Problems

5.1.9. 1x8 + C 5.1.10. 1
10x

10 + C

5.1.11.
(
5
3

)
x3 + 3x+ C 5.1.12. t+ C

5.1.13. s+ C 5.1.14. C − 1
40t8

5.1.15. C − 1
t6

5.1.16. 2
√
x+ C

5.1.17. sec(θ) + C 5.1.18. − cos(θ) + C

5.1.19. sec(x) + csc(x) + C 5.1.20. 2eθ + C
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5.1.21. 3t

ln(3) + C 5.1.22. 4t

3 ln(4) + C

5.1.23.
(
25
3

)
t3 + 30t2 + 36t+

(
72
5

)
+ C 5.1.24. t10

10 − 3 t6

2 + 4t2 + C

5.1.25. x9

9 + C 5.1.26. 1.41421ex+ C

5.1.27. rx+ C

5.1.30. − (cos(x) + 7)

5.1.31. 2ex + 8

5.1.32. 3x4

4 − 2x3

3 −
(
5
3

)
5.1.33. sec(x) + (−10)

5.1.34. 5x

ln(5) −
25
ln(5) + 7

5.1.35.
(
5
2

)
x2 + 4x+ 9

5.1.36.
(
1
2

)
x3 + (−10)x+

(
9
2

)
5.1.37. 7ex − 3x− 2

5.1.38. 2θ − cos(θ) + 10

5.1.39. 29x6

30 + 6x

3.2104 − cos(x)− 3.55811x− 0.311487

5.1.40. 3x+ 23

5.2 · The Definite Integral
5.2 · Exercises

Terms and Concepts

5.2.3. 0
5.2.4.

∫
02(2x+ 3) dx

Problems

5.2.5.

(a) 3

(b) 4

(c) 3

(d) 0

(e) −4

(f) 9

5.2.6.

(a) −4

(b) −5

(c) −3

(d) 1

(e) −2

(f) 10
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5.2.7.

(a) 4

(b) 2

(c) 4

(d) 2

(e) 1

(f) 2

5.2.8.

(a) − 1
2

(b) 0

(c) 3
2

(d) 3
2

(e) 9
2

(f) 15
2

5.2.9.

(a) π

(b) π

(c) 2π

(d) 10π

5.2.10.

(a) 15

(b) 12

(c) 0

(d) 3(b− a)

5.2.11.

(a) −59

(b) −48

(c) −27

(d) −33

5.2.12.

(a) 4
π

(b) −4
π

(c) 0

(d) 2
π

5.2.13.

(a) 4

(b) 4

(c) −4

(d) −2

5.2.14.

(a) 40
3

(b) 26
3

(c) 8
3

(d) 38
3

5.2.15.

(a) 2 ft
s

(b) 2 ft

(c) 1.5 ft

5.2.16.

(a) 3 ft
s

(b) 9.5 ft

(c) 9.5 ft

5.2.17.

(a) 64 ft
s

(b) 64 ft

(c) 2 s

(d) 4.64575 s
5.2.18.

(a) 96 ft
s

(b) 6 s
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(c) 6 s

(d) 208 ft
5.2.19. 2 5.2.20. 5
5.2.21. 16 5.2.22. a = − 2

7b

5.2.23. 22 5.2.24. −7
5.2.25. 0 5.2.26. a = − 18

11b

5.3 · Riemann Sums
5.3 · Exercises

Terms and Concepts

5.3.1. limits
5.3.2. 14
5.3.3. rectangles
5.3.4. True

Problems

5.3.5. (a). 9 + 16 + 25

(b). 50

5.3.6. (a). −8 + (−3) + 2 + 7 + 12 + 17

(b). 27

5.3.7. (a). 0 + (−1) + 0 + 1 + 0

(b). 0

5.3.8. (a). 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5

(b). 40

5.3.9. (a). 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6

(b). 49
20

5.3.10.
(a). −1 + 2 + (−3) + 4 + (−5) + 6 + (−7) + 8

(b). 4

5.3.11. (a). 1
2 + 1

6 + 1
12

(b). 3
4

5.3.12. (a). 1 + 1 + 1 + 1 + 1 + 1 + 1

(b). 7

5.3.13. 1; 4; 5i 5.3.14. 0; 6; i2 − 2

5.3.15. 1; 5; i
i+4 5.3.16. 1; 5; − (−e)

i

5.3.17. 40 5.3.18. 406
5.3.19. 1794 5.3.20. 36552
5.3.21. 3308 5.3.22. 903
5.3.23. 4560 5.3.24. 4324

5.3.25. 155 5.3.26. 170729
5.3.27. 48 5.3.28. 22491

5.3.35. (a). (n−1)2

4n2

(b). 0.2025

(c). 0.245025

(d). 0.2495

(e). 1
4

5.3.36. (a). 6 + −9
1n + 9

1n2

(b). 5.19

(c). 5.9109

(d). 5.99101

(e). 6
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5.3.37. (a). 3
2

(b). 3
2

(c). 3
2

(d). 3
2

(e). 3
2

5.3.38. (a).
(
844
3

)
+ −256

1n + 128
3n2

(b). 256.16

(c). 278.778

(d). 281.077

(e). 844
3

5.3.39. (a). 60− 200
n

(b). 40

(c). 58

(d). 59.8

(e). 60

5.3.40. (a). − 1
12 + 1

12n2

(b). −0.0825

(c). −0.083325

(d). −0.0833332

(e). − 1
12

5.4 · The Fundamental Theorem of Calculus
5.4 · Exercises

Terms and Concepts

5.4.2. 0
5.4.3. True

Problems

5.4.5. 40 5.4.6. 98
3

5.4.7. 0 5.4.8. 1
5.4.9. 2−

√
2 5.4.10. 7

5.4.11. (
4095
512 )
ln(8)

5.4.12. −14

5.4.13. 6 5.4.14. e2 − e1

5.4.15. 248
3

5.4.16. 4

5.4.17. 968
5

5.4.18. ln(6)

5.4.19. 6
7 5.4.20. 242

1215

5.4.21. 1
2 5.4.22. 1

3

5.4.23. 1
4 5.4.24. 1

90

5.4.25. 14 5.4.26. 16
5.4.27. 0 5.4.28. 1

5.4.31. 1.1547 5.4.32. −4.6188, 4.6188

5.4.33. 0.541325 5.4.34. 4

5.4.35.
1

π−π
2
·3.14159

π
5.4.36.

0
π−0 ·3.14159

π

5.4.37. 7
2 5.4.38. 64

3

5.4.39. 729
4 5.4.40. 1

e1−1

5.4.41. −144 ft 5.4.42. 504 ft
5.4.43. 28 ft 5.4.44. 246.212mi
5.4.45. −1 ft 5.4.46. 160

3 ft
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5.4.47. −256 ft
s 5.4.48. 99 ft

s

5.4.49. 1
2
ft
s 5.4.50. 0 ft

s

5.4.55. 3x2−2
x3−2x

5.4.56. −3x11

5.4.57. 4x3
(
x4 − 1

)
− (x− 1) 5.4.58. 1

xe
ln(x) − esin(x) cos(x)

5.4.59. 4x3 sin
(
3x8
)

5.4.60. 1
2
√
x

√
(
√
x)

4
+ 5(

√
x)

2
+

sin(x)
√
cos4(x) + 5 cos2(x)

5.5 · Numerical Integration
5.5 · Exercises

Terms and Concepts

5.5.1. False
5.5.4. A quadratic function (i.e., parabola)

Problems

5.5.5.

(a) 0.75

(b) 0.666667

(c) 0.666667

5.5.6.

(a) 250

(b) 250

(c) 250

5.5.7.

(a) 1.89612

(b) 2.00456

(c) 2

5.5.8.

(a) 5.14626

(b) 5.25221

(c) 5.33333

5.5.9.

(a) 38.5781

(b) 36.75

(c) 36.75

5.5.10.

(a) 0.220703

(b) 0.200521

(c) 0.2

5.5.11.

(a) 0

(b) 0

(c) 0

5.5.12.

(a) 12.2942

(b) 13.3923

(c) 14.1372

5.5.13.

(a) 0.900628

(b) 0.904523

5.5.14.

(a) 3.02419

(b) 2.93151
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5.5.15.

(a) 13.9604

(b) 13.9066

5.5.16.

(a) 3.06949

(b) 3.14295

5.5.17.

(a) 1.17029

(b) 1.18728

5.5.18.

(a) 2.52971

(b) 2.54465

5.5.19.

(a) 1.08025

(b) 1.07699

5.5.20.

(a) 3.46822

(b) 3.4985

5.5.21.

(a) 161

(b) 12

5.5.22.

(a) 130

(b) 18

5.5.23.

(a) 994

(b) 62

5.5.24.

(a) 5591

(b) 46

5.5.25. (a). 30.8667 cm2

(b). 308667 ft2
5.5.26. (a). 25.0667 cm2

(b). 250667 ft2

5.6 · Substitution
5.6 · Exercises

Terms and Concepts

5.6.1. the Chain Rule
5.6.2. True

Problems

5.6.3. 1
8

(
x4 + 8

)8
+ C 5.6.4. 1

10

(
x2 + 9x+ 1

)10
+ C

5.6.5. 1
10

(
x2 − 7

)5
+ C 5.6.6.

(
3
10

) (
7x− 6x2 + 5

)10
+ C

5.6.7. 1
4 ln(|4x+ 6|) + C 5.6.8.

(
2
5

)√
5x+ 3 + C

5.6.9. 2
3 (x− 2)

√
x+ 1 + C 5.6.10. x(

3
2 )
(
2
9x

3 + 2
)
+ C

5.6.11. 2e
√
x + C 5.6.12.

(
2
7

)√
x7 + 7 + C

5.6.13. C − 1
4

(
1
x2 + 9

)2
5.6.14. ln

2(x)
2 + C

5.6.15. (sin(x))4

4 + C 5.6.16. C − (cos(x))5

5

5.6.17. cos(1−6x)
6 + C 5.6.18. C − tan(7−5x)

5

5.6.19. 1
7 ln(|sec(7x) + tan(7x)|) + C 5.6.20. 1

9 (tan(x))
9
+ C
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5.6.21. 1
9 sin

(
x9
)
+ C 5.6.22. tan(x)− x+ C

5.6.23. ln(|sin(x)|) + C 5.6.24. − ln(|csc(x) + cot(x)|) + C

5.6.25. 1
4e

4x−5 + C 5.6.26. 1
5e

x5

+ C

5.6.27. 1
2e

(x+1)2 + C 5.6.28. x− 3e−x + C

5.6.29. ln(ex + 7) + C 5.6.30. C −
(
1
3e

−3x + 1
5e

−5x
)

5.6.31. 99x

19.775 + C 5.6.32. 28x

5.54518 + C

5.6.33. ln
2(x)
2 + C 5.6.34. (ln(x))5

5 + C

5.6.35.
(
5
2

)
(ln(x))2 + C 5.6.36. 1

6 ln
(∣∣ln(x6

)∣∣)+ C

5.6.37. x2

2 + 3x− 8 ln(|x|) + C 5.6.38. x3

3 + x2

2 + x+ ln(|x|) + C

5.6.39.
1
3 (x+ 1)

3
+
(
3
2

)
(x+ 1)

2
+3(x+ 1)− ln(|x+ 1|)+C

5.6.40. (x+8)2

2 − 7(x+ 8)− 17 ln(|x+ 8|) + C

5.6.41.
C −

(
4(x− 6)

2
+ 92(x− 6) + 266 ln(|x− 6|)

) 5.6.42. 1
3 ln
(∣∣x3 − 6x2 + 9

∣∣)+ C

5.6.43. 2.44949 tan−1
(

x
2.44949

)
+ C 5.6.44. 5 sin−1

(
x
5

)
+ C

5.6.45. 7 sin−1
(

x
3.16228

)
+ C 5.6.46.

(
9
7

)
sec−1

(
|x|
7

)
+ C

5.6.47.
(
3
4

)
sec−1

(
|x|
8

)
+ C 5.6.48. 0.5 sin−1

(
x2
)
+ C

5.6.49. 0.258199 tan−1
(
x+9
15

)
+ C 5.6.50. 3 sin−1

(
x−8
6

)
+ C

5.6.51. 6 sin−1
(
x−6
3

)
+ C 5.6.52. tan−1

(
x−4
8

)
+ C

5.6.53. C − 1
5(x5−2) 5.6.54. 1

36

(
5x6 − 6x4 + 6

)6
+ C

5.6.55.
(
1
6

)√
6 + 6x2 + C 5.6.56. tan

(
x8 + 3

)
+ C

5.6.57. C − 2
3 (cos(x))

( 3
2 ) 5.6.58. C − 1

9 cos(9x+ 5)

5.6.59. ln(|x− 8|) + C 5.6.60. 2 ln(|x+ 5|) + C

5.6.61. 2x2 + 3x+ ln
(∣∣x2 − 4x+ 5

∣∣)+ C 5.6.62. ln
(∣∣x2 − 2x− 3

∣∣)+ C

5.6.63. 2 ln
(∣∣x2 − 9x+ 3

∣∣)+ C 5.6.64. −
(
1
2

)
x2 + 9x+ ln

(∣∣x2 + 3x+ 4
∣∣)+ C

5.6.65. 1
14 tan

−1
(

x2

7

)
+ C 5.6.66. tan−1(8x) + C

5.6.67. sec−1(|9x|) + C 5.6.68. 1
5 sin

−1
(
5x
2

)
+ C

5.6.69.(
5
2

)
ln
(∣∣x2 − 12x+ 117

∣∣)− ( 89) tan−1
(
x−6
9

)
+ C

5.6.70.(
5
3

)
tan−1

(
x−4
6

)
+
(
3
2

)
ln
(∣∣x2 − 8x+ 52

∣∣)+ C

5.6.71.
x+20.1246 tan−1

(
x−2

2.23607

)
+9 ln

(∣∣x2 − 4x+ 9
∣∣)+C

5.6.72. x2

2 − 18 ln
(∣∣x2 + 36

∣∣)+ C

5.6.73. 1
2x

2 − 6x+ 4 ln
(∣∣x2 + 6x+ 19

∣∣)+
11.7004 tan−1

(
x+3

3.16228

)
+ C

5.6.74. − tan−1(cos(x)) + C

5.6.75. tan−1(sin(x)) + C 5.6.76. C − ln(|csc(x) + cot(x)|)

5.6.77. 5
√
x2 + 16x+ 56 + C 5.6.78.

√
x2 + 12x+ 34 + C

5.6.79. ln
((

5
8

))
5.6.80. 10190

3



1037

5.6.81. 1
3 5.6.82. 1

8

5.6.83. 1
2

(
e4 − e4

)
5.6.84. π

2

5.6.85. π
2 5.6.86.

(
1
6

)
π

5.7 · Hyperbolic Functions
5.7 · Exercises

Problems

5.7.11. 2 cosh(2x) 5.7.12. 2 cosh(x) sinh(x)

5.7.13. sech2
(
x2
)
· 2x 5.7.14. 1

sinh(x) cosh(x)

5.7.15. cosh(x) cosh(x) + sinh(x) sinh(x) 5.7.16. sinh(x) + x cosh(x)− sinh(x)

5.7.17. − 1

x2
√

1−(x2)2
· 2x 5.7.18. 3 1√

1+(3x)2

5.7.19. 1√
(2x2)2−1

· 2 · 2x 5.7.20. 1
1−(x+5)2

5.7.21. − 1
1−cos2(x) sin(x) 5.7.22. 1√

sec2(x)−1
sec(x) tan(x)

5.7.23. 1(x− 0) + 0 5.7.24. 0.75(x− 0.693147) + 1.25

5.7.25. 0.36(x− (−1.09861)) + (−0.8) 5.7.26. −0.576(x− 1.09861) + 0.36

5.7.27. 1(x− 0) + 0 5.7.28. 1(x− 1.41421) + 0.881374

5.7.29. 0.5 ln(cosh(2x)) + C 5.7.30. 0.333333 sinh(3x− 7) + C

5.7.31. 0.5 sinh2(x) + C 5.7.32. x sinh(x)− cosh(x) + C

5.7.33. x cosh(x)− sinh(x) + C 5.7.34. sinh−1 x+ C = ln
(
x+

√
x2 + 1

)
+ C

5.7.35. cosh−1 x/3 + C = ln
(
x+

√
x2 − 9

)
+ C 5.7.36. 0.5 ln(|x+ 1|)− 0.5 ln(|x− 1|) + C

5.7.37. cosh−1
(

x2

2

)
+ C 5.7.38. 0.666667 sinh−1

(
x1.5

)
+ C

5.7.39. −0.0625 tan−1
(
x
2

)
+ 0.03125 ln(|x− 2|)−

0.03125 ln(|x+ 2|) + C

5.7.40. ln(x)− ln(|x+ 1|) + C

5.7.41. tan−1(ex) + C 5.7.42. x sinh−1(x)−
√
x2 + 1 + C

5.7.43. x tanh−1(x) + 0.5 ln
(∣∣x2 − 1

∣∣)+ C 5.7.44. tan−1(sinh(x)) + C

5.7.45. 0 5.7.46. 1.5
5.7.47. 0.761594 5.7.48. 1.44364





Appendix B

Quick Reference

B.1 Differentiation Formulas

List B.1.1 Derivative Rules

1.
d

dx
(cx) = c

2.
d

dx
(u± v) = u′ ± v′

3.
d

dx
(u · v) = uv′ + u′v

4.
d

dx
(
u

v
) =

vu′ − uv′

v2

5.
d

dx
(u(v)) = u′(v)v′

6.
d

dx
(c) = 0

7.
d

dx
(x) = 1

List B.1.2 Derivatives of Elementary Functions

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ex) = ex

3.
d

dx
(ax) = ln a · ax

4.
d

dx
(lnx) =

1

x

5.
d

dx
(loga x) =

1

ln a
· 1
x

6.
d

dx
(sinx) = cosx

7.
d

dx
(cosx) = − sinx

8.
d

dx
(cscx) = − cscx cotx

9.
d

dx
(secx) = secx tanx

10.
d

dx
(tanx) = sec2 x

11.
d

dx
(cotx) = − csc2 x

12.
d

dx
(coshx) = sinhx

13.
d

dx
(sinhx) = coshx

14.
d

dx
(sechx) = − sechx tanhx

15.
d

dx
(tanhx) = sech2 x

16.
d

dx
(cschx) = − cschx cothx

17.
d

dx
(cothx) = − csch2 x

1093
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List B.1.3 Derivatives of Inverse Functions

1.
d

dx
(sin−1 x) =

1√
1− x2

2.
d

dx
(cos−1 x) =

−1√
1− x2

3.
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

4.
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

5.
d

dx
(tan−1 x) =

1

1 + x2

6.
d

dx
(cot−1 x) =

−1

1 + x2

7.
d

dx
(cosh−1 x) =

1√
x2 − 1

8.
d

dx
(sinh−1 x) =

1√
x2 + 1

9.
d

dx
(sech−1 x) =

−1

x
√
1− x2

10.
d

dx
(csch−1 x) =

−1

|x|
√
1 + x2

11.
d

dx
(tanh−1 x) =

1

1− x2

12.
d

dx
(coth−1 x) =

1

1− x2

B.2 Integration Formulas

List B.2.1 Basic Rules

1.
∫

c · f(x) dx = c

∫
f(x) dx

2.
∫ (

f(x)±g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

List B.2.2 Integrals of Elementary (non-Trig) Functions

1.
∫

ex dx = ex + C

2.
∫
lnx dx = x lnx− x+ C

3.
∫

ax dx =
1

ln a
· ax + C

4.
∫

1

x
dx = ln |x|+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

List B.2.3 Integrals Involving Trigonometric Functions

1.
∫
cosx dx = sinx+ C

2.
∫
sinx dx = − cosx+ C

3.
∫
tanx dx = − ln |cosx|+ C

4.
∫
secx dx = ln |secx+ tanx|+ C

5.
∫
cscx dx = − ln |cscx+ cotx|+ C
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6.
∫
cotx dx = ln |sinx|+ C

7.
∫
sec2 x dx = tanx+ C

8.
∫
csc2 x dx = − cotx+ C

9.
∫
secx tanx dx = secx+ C

10.
∫
cscx cotx dx = − cscx+ C

11.
∫
cos2 x dx =

1

2
x+

1

4
sin
(
2x
)
+ C

12.
∫
sin2 x dx =

1

2
x− 1

4
sin
(
2x
)
+ C

13.
∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ C

14.
∫

1√
a2 − x2

= sin−1
(x
a

)
+ C

15.
∫

1

x
√
x2 − a2

=
1

a
sec−1

(
|x|
a

)
+ C

List B.2.4 Integrals Involving Hyperbolic Functions

1.
∫
coshx dx = sinhx+ C

2.
∫
sinhx dx = coshx+ C

3.
∫
tanhx dx = ln(coshx) + C

4.
∫
cothx dx = ln |sinhx|+ C

5.
∫

1√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C

6.
∫

1√
x2 + a2

dx = ln
∣∣∣x+

√
x2 + a2

∣∣∣+ C

7.
∫

1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

8.
∫

1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

9.
∫

1

x
√
x2 + a2

=
1

a
ln
∣∣∣∣ x

a+
√
x2 + a2

∣∣∣∣+ C
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B.3 Trigonometry Reference

The Unit Circle.

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2
, 1
2

)
45◦

π/4

(√
2

2
,
√

2
2

)
60◦

π/3

(
1
2
,
√
3
2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2
,
√

3
2

)

135◦
3π/4

(
−

√
2

2
,
√
2
2

)

150◦
5π/6

(
−

√
3

2
, 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.3.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y
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Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.3.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.3.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.3.2 Double Angle Formulas

1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.3.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.3.4 Even/Odd Identities
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1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.3.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.3.6 Sum to Product Formulas

List B.3.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)
List B.3.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y

B.4 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r
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Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A

B.5 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)
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(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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B.6 Additional Formulas

Summation Formulas:.

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

Trapezoidal Rule:.∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
with Error≤ (b− a)3

12n2

[
max |f ′′(x)|

]
Simpson’s Rule:.

∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

]
with Error≤ (b− a)5

180n4

[
max

∣∣∣f (4)(x)
∣∣∣ ]

Arc Length:.

L =

∫ b

a

√
1 + f ′(x)2 dx

Surface of Revolution:.

2π

∫ b

a

f(x)
√
1 + f ′(x)2dx

(where f(x) ≥ 0)

S = 2π

∫ b

a

x
√
1 + f ′(x)2dx

(where a, b ≥ 0)

Work Done by a Variable Force:.

W =

∫ b

a

F (x)dx
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Force Exerted by a Fluid:.

F =

∫ b

a

w d(y) ℓ(y)dy

Taylor Series Expansion for f(x):.

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

Maclaurin Series Expansion for f(x), where c = 0:.

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

B.7 Summary of Tests for Series

Table B.7.1

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑

n=1

an lim
n→∞

an ̸= 0
Cannot be used to show
convergence.

Geometric Series
∞∑

n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑

n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑

n=1

1

(an+ b)p
p > 1 p ≤ 1

Integral Test
∞∑

n=0

an

∫ ∞

1

a(n) dn

converges

∫ ∞

1

a(n) dn diverges
an = a(n)must be
continuous

Direct Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

0 ≤ an ≤ bn

∞∑
n=0

bn diverges and

0 ≤ bn ≤ an

Limit Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

lim
n→∞

an

bn
≥ 0

∞∑
n=0

bn diverges and

lim
n→∞

an

bn
> 0

Also diverges if
lim

n→∞
an

bn
= ∞

Ratio Test
∞∑

n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1 {an}must be positive

Also diverges if lim
n→∞

an+1

an
= ∞

Root Test
∞∑

n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1 {an}must be positive

Also diverges if lim
n→∞

(an)
1/n = ∞
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!, 465
Absolute Convergence Theorem,

519
absolute maximum, 133
absolute minimum, 133
Absolute Value Theorem, 470
acceleration, 81, 727
accumulated error

using Euler’s method, 437
Alternating Harmonic Series, 489,

518, 530
Alternating Series Test, 514
aN, 744, 755
analytic function, 538
angle of elevation, 732
antiderivative, 225

of vector-valued function, 722
approximation

linear, 196
tangent line, 196

arc length, 401, 578, 602, 724, 749
arc length parameter, 749, 751
asymptote

horizontal, 54
vertical, 53

aT, 744, 755
average rate of change, 713
average value of a function, 843
average value of function, 271
average velocity, 8

bacterial growth, 455
Binomial Series, 538
Bisection Method, 46
boundary point, 617
bounded

interval, 41
bounded sequence, 472

convergence, 473
bounded set, 617

carrying capacity, 435
center of mass, 858, 859, 861, 862,

890
Chain Rule, 105

multivariable, 769, 772
notation, 111

chain rule
as matrix multiplication, 812

change of variables, 908
circle of curvature, 753
circulation, 961
closed, 617
closed disk, 617
concave down, 156
concave up, 156
concavity, 156, 576

inflection point, 158
test for, 158

conic sections, 550
degenerate, 550
ellipse, 553
hyperbola, 556
parabola, 550

connected, 955
simply, 956

conservative field, 956, 957, 959
Constant Multiple Rule

of derivatives, 88
of integration, 229
of series, 488

constrained optimization, 801
continuity

of exponential functions, 21
of logarithmic functions, 21
of polynomial functions, 20
of rational functions, 20
of trigonometric functions, 21

continuous
at a point, 40
everywhere, 40

1103
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on an interval, 40
continuous function, 40, 622

properties, 43, 623
vector-valued, 716

continuously differentiable, 761
contour lines, 611
convergence

absolute, 518, 519
Alternating Series Test, 514
conditional, 518
Direct Comparison Test, 499
for integration, 366

Integral Test, 496
interval of, 525
Limit Comparison Test, 501
for integration, 367

nth-term test, 491
of geometric series, 483
of improper int., 361, 366,

367
of monotonic sequences, 476
of p-series, 485
of power series, 525
of sequence, 468, 473
of series, 480
radius of, 525
Ratio Comparison Test, 507
Root Comparison Test, 509

coordinates
cylindrical, 896
polar, 583
spherical, 899

critical number, 135
critical point, 135, 797, 799
critical value

of a function of two variables,
817

cross product
and derivatives, 719
applications, 685
area of parallelogram, 686
torque, 688
volume of parallelepiped,
688

definition, 682
properties, 684

curl, 945
of conservative fields, 959

curvature, 751
and motion, 755
equations for, 752
of circle, 753
radius of, 753

curve

parametrically defined, 563
rectangular equation, 563
smooth, 569

curve sketching, 165
cusp, 569
cycloid, 712
cylinder, 644
cylindrical coordinates, 896

decreasing function, 148
finding intervals, 149

definite integral, 236
and substitution, 301
of vector-valued function, 722
properties, 237

del operator, 944
derivative

acceleration, 81
as a function, 69
at a point, 65
basic rules, 86
Chain Rule, 105, 111, 769, 772
Constant Multiple Rule, 88
Constant Rule, 86
differential, 196
directional, 778, 779, 781, 784
exponential functions, 111
First Deriv. Test, 151
general, 811
Generalized Power Rule, 106
higher order, 89
interpretation, 90

hyperbolic funct., 310
implicit, 114, 773
interpretation, 79
inverse function, 125
inverse hyper., 314
inverse trig., 128
logarithmic, 120
Mean Value Theorem, 143
mixed partial, 631
motion, 81
multivariable differentiability,

760, 765
normal line, 67
notation, 69, 89
parametric equations, 573
partial, 626, 634
Power Rule, 86, 100, 119
power series, 528
Product Rule, 94
Quotient Rule, 97
Second Deriv. Test, 161
Sum/Difference Rule, 87
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tangent line, 65
trigonometric functions, 98
vector-valued functions, 717,

719
velocity, 81

difference quotient, 8
differentiability

functions of several variables,
809

differentiable, 65, 760, 765
general functions, 807
on a closed interval, 74

differential, 196
notation, 196

differential equation
definition, 429
first order linear, 447
general solution, 430
graphical solution, 433
implicit soution, 432
integrating factor, 448
logistic, 434, 458
modeling, 455
numerical solution, 435
order of, 429
particular solution, 430
separable, 441

Direct Comparison Test
for integration, 366
for series, 499

direction field, see slope field
directional derivative, 778, 779,

781, 784
directrix, 550, 644
discontinuity

infinite, 44
jump, 44
removable, 44

Disk Method, 382
displacement, 265, 712, 724
distance

between lines, 697
between point and line, 697
between point and plane, 705
between points in space, 642
traveled, 734

divergence, 944, 945
Alternating Series Test, 514
Direct Comparison Test, 499
for integration, 366

Integral Test, 496
Limit Comparison Test, 501
for integration, 367

nth-term test, 491

of geometric series, 483
of improper int., 361, 366,

367
of p-series, 485
of sequence, 468
of series, 480
Ratio Comparison Test, 507
Root Comparison Test, 509

Divergence Theorem
in space, 990
in the plane, 967

dot product
and derivatives, 719
definition, 670
properties, 670, 671

double integral, 837, 838
in polar, 848
properties, 840

eccentricity, 555, 557
elementary function, 275
ellipse

definition, 553
eccentricity, 555
parametric equations, 568
reflective property, 555
standard equation, 553

Euler’s Method, 436
Euler’s method

accumulated error, 437
everywhere continuous, 40
exponential function

continuity of, 21
extrema

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
finding, 136
relative, 134, 797

Extreme Value Theorem, 134, 801
extreme values, 133

factorial, 465
First Derivative Test, 151
first octant, 642
floor function, 40
flow, 961, 962
fluid pressure/force, 420, 421
flux, 961, 962, 984, 985
focus, 550, 553, 556
Fubini’s Theorem, 838
function

continuous, 40
floor, 40



1106 INDEX

of three variables, 613
of two variables, 609
vector-valued, 709

Fundamental Theorem of Calculus,
262, 263

and Chain Rule, 267
Fundamental Theorem of Line

Integrals, 955, 957

Gabriel’s Horn, 406
Gauss’s Law, 993
general solution

of a differential equation, 430
Generalized Power Rule, 106
geometric series, 482, 483
gradient, 779, 781, 784, 794

and level curves, 781
and level surfaces, 794

Green’s Theorem, 964, 965

half life, 463
Harmonic Series, 489
Head To Tail Rule, 660
Hooke’s Law, 413
hyperbola

definition, 556
eccentricity, 557
parametric equations, 568
reflective property, 558
standard equation, 556

hyperbolic function
definition, 307
derivatives, 310
identities, 310
integrals, 310
inverse, 312
derivative, 314
integration, 315
logarithmic def., 313

image
of a point, 910
of a subset, 910

implicit differentiation, 114, 773
improper integration, 361, 364
incompressible vector field, 944
increasing function, 148

finding intervals, 149
indefinite integral, 225

of vector-valued function, 722
indeterminate form, 4, 53, 217,

219
inflection point, 158
initial condition, 430
initial point, 657

initial value problem, 230
for differential equations, 430

Integral Test, 496
integration

arc length, 401
area, 236, 830
area between curves, 268,

373
average value, 271
by parts, 324
by substitution, 290
definite, 236
and substitution, 301
properties, 237
Riemann Sums, 257

displacement, 265
distance traveled, 734
double, 837
fluid force, 420, 421
Fun. Thm. of Calc., 262, 263
general application technique,

371
hyperbolic funct., 310
improper, 361, 364, 366, 367
indefinite, 225
inverse hyperbolic, 315
iterated, 829
Mean Value Theorem, 270
multiple, 829
notation, 226, 236, 263, 829
numerical, 275
Left/Right Hand Rule, 275,
283

Simpson’s Rule, 281, 283,
284

Trapezoidal Rule, 278, 283,
284

of multivariable functions,
827

of power series, 528
of trig. functions, 295
of trig. powers, 334, 338
of vector-valued function, 722
of vector-valued functions,

722
partial fraction decomp., 353
Power Rule, 229
Sum/Difference Rule, 229
surface area, 404, 579, 603
trig. subst., 345
triple, 876, 887, 889
volume
cross-sectional area, 381
Disk Method, 382
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Shell Method, 392, 396
Washer Method, 385, 396

with cylindrical coordinates,
897

with spherical coordinates,
901

work, 410
interior point, 617
Intermediate Value Theorem, 45
interval of convergence, 525
inverse

of a transformation, 921
iterated integration, 829, 837, 838,

876, 887, 889
changing order, 832
properties, 840, 882

Jacobian
of a transformation, 912

Jacobian matrix, 811

l’Hospital’s Rule
infinity over infinity, 216
zero over zero, 215

Lagrange multipliers, 816
lamina, 855
Left Hand Rule, 246, 250, 275
Left/Right Hand Rule, 283
level curves, 611, 781
level surface, 614, 794
limit

Absolute Value Theorem, 470
at infinity, 54
definition, 12
difference quotient, 8
does not exist, 6, 33
indeterminate form, 4, 25, 53,

217, 219
l’Hospital’s Rule, 215, 216
left-handed, 31
of exponential functions, 21
of infinity, 51
of logarithmic functions, 21
of multivariable function, 618,

619, 624
of polynomial functions, 20
of rational functions, 20
of sequence, 468
of trigonometric functions, 21
of vector-valued functions,

715
one-sided, 31
properties, 19, 619
pseudo-definition, 4

right-handed, 31
Squeeze Theorem, 23

Limit Comparison Test
for integration, 367
for series, 501

line integral
Fundamental Theorem, 955,

957
over scalar field, 933, 934,

951
over vector field, 952
path independent, 956, 957
properties over a scalar field,

938
properties over a vector field,

954
linear function, 807
linearization, 196, 806

functions of several variables,
808

lines, 692
distances between, 697
equations for, 693
intersecting, 694
parallel, 694
skew, 694

logarithmic differentiation, 120
logarithmic function

continuity of, 21

Maclaurin Polynomial
definition, 205

Maclaurin Polynomial|see{Taylor
Polynomial}, 205

Maclaurin Series
definition, 535

Maclaurin Series|see{Taylor
Series}, 535

magnitude of vector, 657
mass, 855, 856, 890, 938

center of, 858, 938
matrix

Jacobian, 811
maximum

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
relative/local, 134, 797, 800

Mean Value Theorem
of differentiation, 143
of integration, 270

Midpoint Rule, 246, 250
minimum

absolute, 133, 797
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and First Deriv. Test, 151, 161
relative/local, 134, 797, 800

moment, 860, 862, 890
monotonic sequence, 473
multi-index notation, 823
multiple integration|see{iterated

integration}, 829
multivariable function, 609, 613

continuity, 622–624, 761, 766
differentiability, 760, 761,

765, 766
domain, 609, 613
level curves, 611
level surface, 614
limit, 618, 619, 624
range, 609, 613

Möbius band, 971

Newton’s Law of Cooling, 456
Newton’s Method, 174
norm, 657
normal line, 67, 573, 790
normal vector, 701
nth-term test, 491
numerical integration, 275

Left/Right Hand Rule, 275,
283

Simpson’s Rule, 281, 283
error bounds, 284

Trapezoidal Rule, 278, 283
error bounds, 284

octant
first, 642

one to one, 971
one-to-one, 910
onto, 910
open, 617
open ball, 624
open disk, 617
optimization, 188

constrained, 801
with Lagrange multipliers, 816

order
of a differential equation, 429

orientable, 971
orientation, 916
orthogonal, 673, 790

decomposition, 677
orthogonal decomposition of

vectors, 677
orthogonal projection, 675
osculating circle, 753
outer unit normal vector, 990

p-series, 485
parabola

definition, 550
general equation, 551
reflective property, 552

parallel vectors, 663
Parallelogram Law, 660
parametric equations

arc length, 578
concavity, 576
definition, 563
finding d2y

dx2 , 576
finding dy

dx , 573
normal line, 573
of a surface, 971
surface area, 579
tangent line, 573

parametrized surface, 971
partial derivative, 626, 634

high order, 635
meaning, 628
mixed, 631
second derivative, 631
total differential, 759, 765

partition, 252
size of, 252

path independent, 956, 957
perpendicular|see{orthogonal},

673
piecewise smooth curve, 937
planes

coordinate plane, 643
distance between point and

plane, 705
equations of, 701
introduction, 643
normal vector, 701
tangent, 793

point of inflection, 158
polar

coordinates, 583
function
arc length, 602
gallery of graphs, 589
surface area, 603

functions, 586
area, 599
area between curves, 601
finding dy

dx , 597
graphing, 586

polar coordinates, 583
plotting points, 583

polynomial function
continuity of, 20
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potential function, 949, 957
Power Rule

differentiation, 86, 94, 100,
119

integration, 229
power series, 524

algebra of, 540
convergence, 525
derivatives and integrals, 528

projectile motion, 732, 745

quadric surface
definition, 648
ellipsoid, 650
elliptic cone, 650
elliptic paraboloid, 649
gallery, 649, 651
hyperbolic paraboloid, 651
hyperboloid of one sheet, 650
hyperboloid of two sheets,

651
sphere, 650
trace, 648

Quotient Rule, 97

R, 657
radius of convergence, 525
radius of curvature, 753
Ratio Comparison Test

for series, 507
rational function

continuity of, 20
rearrangements of series, 519
reduction formula

trigonometric integral, 341
regular value, 817
Related Rates, 179
related rates, 179
Riemann Sum, 246, 249, 252

and definite integral, 257
Right Hand Rule, 246, 250, 275
right hand rule

of Cartesian coordinates, 641
of the cross product, 685

Rolle’s Theorem, 143
Root Comparison Test

for series, 509

saddle point, 799, 800
Second Derivative Test, 161, 800
sensitivity analysis, 764
separation of variables, 441
sequence

Absolute Value Theorem, 470
positive, 499

sequences
boundedness, 472
convergent, 468, 473, 476
definition, 465
divergent, 468
limit, 468
limit properties, 471
monotonic, 473

series
absolute convergence, 518
Absolute Convergence

Theorem, 519
alternating, 514
Approximation Theorem,
516

Alternating Series Test, 514
Binomial, 538
conditional convergence, 518
convergent, 480
definition, 480
Direct Comparison Test, 499
divergent, 480
geometric, 482, 483
Integral Test, 496
interval of convergence, 525
Limit Comparison Test, 501
Maclaurin, 535
nth-term test, 491
p-series, 485
partial sums, 480
power, 524, 525
derivatives and integrals,
528

properties, 488
radius of convergence, 525
Ratio Comparison Test, 507
rearrangements, 519
Root Comparison Test, 509
Taylor, 535
telescoping, 486

Shell Method, 392, 396
signed area, 236
signed volume, 837, 838
simple curve, 956
simply connected, 956
Simpson’s Rule, 281, 283

error bounds, 284
slope field, 434
smooth, 719

curve, 569
surface, 971

smooth curve
piecewise, 937

speed, 727
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sphere, 642
spherical coordinates, 899
Squeeze Theorem, 23
Stokes’ Theorem, 995
Sum/Difference Rule

of derivatives, 87
of integration, 229
of series, 488

summation
notation, 247
properties, 249

surface, 971
smooth, 971

surface area, 868
of parametrized surface, 977,

978
solid of revolution, 404, 579,

603
surface integral, 983
surface of revolution, 646, 647

tangent line, 65, 573, 597, 718
directional, 788

tangent plane, 630, 793
to a graph, 630

Taylor polynimial
of several variables, 823

Taylor Polynomial
definition, 205
Taylor’s Theorem, 208

Taylor Series
common series, 540
definition, 535
equality with generating

function, 537
Taylor’s Theorem, 208

in several variables, 823
telescoping series, 486
terminal point, 657
theorem

Intermediate Value, 45
torque, 688
total differential, 759, 765

sensitivity analysis, 764
total signed area, 236
trace, 648
transformation, 908, 914
Trapezoidal Rule, 278, 283

error bounds, 284
trigonometric function

continuity of, 21
triple integral, 876, 887, 889

properties, 882

unbounded sequence, 472

unbounded set, 617
unit normal vector

aN, 744
and acceleration, 743, 744
and curvature, 755
definition, 741
in R2, 743

unit tangent vector
and acceleration, 743, 744
and curvature, 751, 755
aT, 744
definition, 740
in R2, 743

unit vector, 661
properties, 663
standard unit vector, 664
unit normal vector, 741
unit tangent vector, 740

vector field, 942
conservative, 956, 957
curl of, 945
divergence of, 944, 945
over vector field, 952
potential function of, 949, 957

vector-valued function
algebra of, 711
arc length, 724
average rate of change, 713
continuity, 716
definition, 709
derivatives, 717, 719
describing motion, 727
displacement, 712
distance traveled, 734
graphing, 709
integration, 722
limits, 715
of constant length, 721, 731,

732, 741
projectile motion, 732
smooth, 719
tangent line, 718

vectors, 657
algebra of, 659
algebraic properties, 661
component form, 658
cross product, 682, 684
definition, 657
dot product, 670, 671
Head To Tail Rule, 660
magnitude, 657
norm, 657
normal vector, 701
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orthogonal, 673
orthogonal decomposition,

677
orthogonal projection, 675
parallel, 663
Parallelogram Law, 660
resultant, 660
standard unit vector, 664

unit vector, 661, 663
zero vector, 660

velocity, 81, 727
average velocity, 8

volume, 837, 838, 874

Washer Method, 385, 396
work, 410, 679
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