
APEX Calculus
for University of Lethbridge





APEX Calculus
for University of Lethbridge

Gregory Hartman, Ph.D.
Virginia Military Institute

Sean Fitzpatrick, Ph.D., Editor
University of Lethbridge

Alex Jordan, Ph.D., Editor
Portland Community College

Carly Vollet, M.S., Editor
Portland Community College

July 4, 2024



Contributors to the 4th Edition: Jennifer Bowen, Troy Siemers, Brian Heinold,
Dimplekumar Chalishajar

Edition: 5

Website: apexcalculus.com¹

©2021 Gregory Hartman

Licensed to the public under Creative Commons Attribution-Noncommercial 4.0
International Public License

¹www.apexcalculus.com

https://www.apexcalculus.com/


Thanks

There aremanypeoplewhodeserve recognition for the important role they have
played in the development of this text. First, I thank Michelle for her support
and encouragement, even as this “project from work” occupied my time and
attention at home. Many thanks to Troy Siemers, whose most important con-
tributions extend far beyond the sections he wrote or the 227 figures he coded
in Asymptote for 3D interaction. He provided incredible support, advice and
encouragement for which I am very grateful. My thanks to Brian Heinold and
Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for read-
ing through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee and Dan for their patience in teach-
ing Calc III while I was still writing the Calc III material.) Thanks to Randy Cone
for encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above and beyondwhat I expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. I am blessed to
have so many people give of their time to make this book better.

v





Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that youmay better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com², and HTML versions of the book can be found at opentext.uleth.ca³.

These three texts are intended towork together andmake one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com⁴.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—level top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just—learned material helps address future problems.

• Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

²apexcalculus.com
³opentext.uleth.ca/calculus.html
⁴amazon.com
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• You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

• Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theoremmeans and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX – Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculuswould not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
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need. The source files can be found at github.com/APEXCalculus⁵.
You can learn more at www.vmi.edu/APEX⁶.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

• The underlying source code has been completely rewritten, to use the
PreTeXt⁷ language, instead of the original LATEX .

• Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is bothmore accessible andmore interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca⁸.

• The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

• In the html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com⁹ for more information.

• More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

⁵github.com/APEXCalculus
⁶www.vmi.edu/APEX
⁷pretextbook.org
⁸opentext.uleth.ca/calculus.html
⁹apexcalculus.com
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A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate × time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

xi
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Chapter 6

Techniques ofAntidifferentiation

The previous chapter introduced the antiderivative and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applications of definite integrals than just area. As eval-
uating definite integrals will become important, we will want to find antideriva-
tives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions (a con-
cept introduced in the section on Numerical Integration), we can still find anti-
derivatives of a wide variety of functions.

6.1 Substitution

youtu.be/watch?v=mElhuqXsPhQ

Figure 6.1.1 Video introduction to
Section 6.1

We motivate this section with an example. Let f(x) = (x2 +3x− 5)10. We
can compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3)

= (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x + 30)(x2 + 3x − 5)9 dx? We have the

answer in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starting with
f(x) as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not-so-complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the
integrand is (x2 + 3x− 5)9. We wish to make this simpler; we do so through a
substitution. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

285

https://www.youtube.com/watch?v=mElhuqXsPhQ


286 CHAPTER 6. TECHNIQUES OF ANTIDIFFERENTIATION

We have established u as a function of x, so now consider the differential of
u:

du = (2x+ 3)dx.

Keep in mind that (2x+ 3) and dx are multiplied; the dx is not “just sitting
there.”

Return to the original integral and do some substitutions through algebra:∫
(20x+ 30)(x2 + 3x− 5)9 dx =

∫
10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x− 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F (x) and g(x) be differentiable functions and consider the de-
rivative of their composition:

d

dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

Thus ∫
F ′(g(x))g′(x) dx = F (g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x)
and replacing it with a variable. By setting u = g(x), we can rewrite the deriva-
tive as

d

dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F (u) + C = F (g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 6.1.2 Integration by Substitution.

LetF and g be differentiable functions, where the range of g is an interval
I contained in the domain of F . Then∫

F ′(g(x))g′(x) dx = F (g(x)) + C.

If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F (u) + C = F (g(x)) + C.
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The point of substitution is to make the integration step easy. Indeed, the
step

∫
F ′(u) du = F (u) + C looks easy, as the antiderivative of the deriva-

tive of F is just F , plus a constant. The “work” involved is making the proper
substitution. There is not a step-by-step process that one can memorize; rather,
experience will be one’s guide. To gain experience, we now embark on many
examples.

Example 6.1.3 Integrating by substitution.

Evaluate
∫

x sin(x2 + 5) dx.

Solution. Knowing that substitution is related to the Chain Rule, we
choose to letu be the “inside” function of sin(x2+5). (This is not always
a good choice, but it is often the best place to start.)
Let u = x2+5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x
does not physically have to be next to dx for there to be an x dx term.)
We can divide both sides of the du expression by 2:

du = 2x dx ⇒ 1

2
du = x dx.

We can now substitute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

)x dx︸︷︷︸
1
2du

=

∫
1

2
sin(u) du

= −1

2
cos(u) + C (now replace u with x2 + 5)

= −1

2
cos(x2 + 5) + C.

Thus
∫
x sin(x2+5) dx = − 1

2 cos(x
2+5)+C. We can check our work

by evaluating the derivative of the right hand side.

Example 6.1.4 Integrating by substitution.

Evaluate
∫
cos(5x) dx.

Solution. Again let u replace the “inside” function. Letting u = 5x,
we have du = 5 dx. Since our integrand does not have a 5 dx term, we
can divide the previous equation by 5 to obtain 1

5du = dx. We can now
substitute. ∫

cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5du

=

∫
1

5
cos(u) du

=
1

5
sin(u) + C

=
1

5
sin(5x) + C.
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We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 6.1.5 Substitution With A Linear Function.

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Letting

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1

a
F (ax+ b) + C.

Thus
∫
sin(7x − 4) dx = − 1

7 cos(7x − 4) + C. Our next example can use
Key Idea 6.1.5, but we will only employ it after going through all of the steps.

Example 6.1.6 Integrating by substituting a linear function.

Evaluate
∫

7

−3x+ 1
dx.

Solution. View the integrand as the composition of functions f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding
of substitution, we let u = −3x + 1, the inside function. Thus du =
−3 dx. The integrand lacks a−3; hence divide the previous equation by
−3 to obtain −du/3 = dx. We can now evaluate the integral through
substitution. ∫

7

−3x+ 1
dx =

∫
7

u

du

−3

=
−7

3

∫
du

u

=
−7

3
ln |u|+ C

= −7

3
ln |−3x+ 1|+ C.

Using Key Idea 6.1.5 is faster, recognizing that u is linear and a = −3.
One may want to continue writing out all the steps until they are com-
fortable with this particular shortcut.

youtu.be/watch?v=-6CFSvtMCDU

Figure 6.1.7 Video presentation of Ex-
amples 6.1.3–6.1.6

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.8 Integrating by substitution.

Evaluate
∫
sin(x) cos(x) dx.

Solution. There is not a composition of functions here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given
an integral to evaluate, it is often beneficial to think “If I let u be this,
then dumust be that …” and see if this helps simplify the integral at all.
In this example, let’s set u = sin(x). Then du = cos(x) dx, which we

https://www.youtube.com/watch?v=-6CFSvtMCDU
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have as part of the integrand! The substitution becomes very straight-
forward: ∫

sin(x) cos(x) dx =

∫
u du

=
1

2
u2 + C

=
1

2
sin2(x) + C.

One would do well to ask “What would happen if we let u = cos(x)?”
The result is just as easy to find, yet looks very different. The challenge
to the reader is to evaluate the integral letting u = cos(x) and discover
why the answer is the same, yet looks different.

Video solution

youtu.be/watch?v=UdGVU8H5w3M

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 6.1.9 Integrating by substitution.

Evaluate
∫

x
√
x+ 3 dx.

Solution. Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitution.
But at this stage, we have:∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We
need to convert the x to an expression involving just u.
Since we set u = x+ 3, we can also state that u− 3 = x. Thus we can
replace x in the integrand with u − 3. It will also be helpful to rewrite√
u as u 1

2 . ∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2

)
du

=
2

5
u

5
2 − 2u

3
2 + C

=
2

5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this particular case, some
algebra will be needed to make one’s answer match the integrand in the
original problem.

Example 6.1.10 Integrating by substitution.

Evaluate
∫

1

x ln(x)
dx.

Solution. This is another example where there does not seem to be

https://www.youtube.com/watch?v=UdGVU8H5w3M
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an obvious composition of functions. The line of thinking used in Exam-
ple 6.1.9 is useful here: choose something for u and consider what this
implies dumust be. If u can be chosen such that du also appears in the
integrand, then we have chosen well.
Choosing u = 1/x makes du = −1/x2 dx; that does not seem helpful.
However, setting u = ln(x) makes du = 1/x dx, which is part of the
integrand. Thus: ∫

1

x ln(x)
dx =

∫
1

ln(x)︸ ︷︷ ︸
u

1

x
dx︸ ︷︷ ︸

du

=

∫
1

u
du

= ln |u|+ C

= ln |ln(x)|+ C.

The final answer is interesting; the natural log of the natural log. Take
the derivative to confirm this answer is indeed correct.

youtu.be/watch?v=Qzj4UJX_69c

Figure 6.1.11 Video presentation of
Examples 6.1.9–6.1.10

6.1.1 Integrals Involving Trigonometric Functions
Section 6.3 delves deeper into integrals of a variety of trigonometric functions;
here we use substitution to establish a foundation that we will build upon.

The next three examples will help fill in somemissing pieces of our antideriv-
ative knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.12 Integrating by substitution: the antiderivative of
tan(x).

Evaluate
∫
tan(x) dx.

Solution. The previous paragraph established that we did not know the
antiderivatives of tangent, hence wemust assume that we have learned
something in this section that can help us evaluate this indefinite inte-
gral.
Rewrite tan(x) as sin(x)/ cos(x). While the presence of a composition
of functions may not be immediately obvious, recognize that cos(x) is
“inside” the 1/x function. Therefore, we see if setting u = cos(x) re-
turns usable results. We have that du = − sin(x) dx, hence −du =
sin(x) dx. We can integrate:∫

tan(x) dx =

∫
sin(x)
cos(x)

dx

=

∫
1

cos(x)︸ ︷︷ ︸
u

sin(x) dx︸ ︷︷ ︸
−du

=

∫
−1

u
du

= − ln |u|+ C

https://www.youtube.com/watch?v=Qzj4UJX_69c
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= − ln |cos(x)|+ C.

Some texts prefer to bring the −1 inside the logarithm as a power of
cos(x), as in:

− ln |cos(x)|+ C = ln
∣∣(cos(x))−1

∣∣+ C

= ln
∣∣∣∣ 1

cos(x)

∣∣∣∣+ C

= ln |sec(x)|+ C.

Thus the result they give is
∫
tan(x) dx = ln |sec(x)| + C. These two

answers are equivalent.

Video solution

youtu.be/watch?v=sJryXwwdqM4

Example 6.1.13 Integrating by substitution: the antiderivative of
sec(x).

Evaluate
∫
sec(x) dx.

Solution. This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case,
we write “1” as

1 =
sec(x) + tan(x)
sec(x) + tan(x)

.

This may seem like it came out of left field, but it works beautifully. Con-
sider: ∫

sec(x) dx =

∫
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx

=

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx.

Now let u = sec(x) + tan(x); this means du = (sec(x) tan(x) +
sec2(x)) dx, which is our numerator. Thus:

=

∫
du

u

= ln |u|+ C

= ln |sec(x) + tan(x)|+ C.

Video solution

youtu.be/watch?v=ivQ5GFSvEGg

We can use similar techniques to those used in Examples 6.1.12 and 6.1.13
to find antiderivatives of cot(x) and csc(x) (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.14 Antiderivatives of Trigonometric Functions.

1.
∫
sin(x) dx = − cos(x) + C,

2.
∫
cos(x) dx = sin(x) + C,

3.
∫
tan(x) dx = − ln |cos(x)|+ C,

4.
∫
csc(x) dx = − ln |csc(x) + cot(x)|+ C,

5.
∫
sec(x) dx = ln |sec(x) + tan(x)|+ C,

https://www.youtube.com/watch?v=sJryXwwdqM4
https://www.youtube.com/watch?v=ivQ5GFSvEGg
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6.
∫
cot(x) dx = ln |sin(x)|+ C,

We explore one more common trigonometric integral.

Example 6.1.15 Integration by substitution: powers of cos(x) and
sin(x).

Evaluate
∫
cos2(x) dx.

Solution. We have a composition of functions as cos2(x) =
(
cos(x)

)2.
However, setting u = cos(x)means du = − sin(x) dx, which we do not
have in the integral. Another technique is needed.The power reduction identities

can be found in List B.3.5 in Ap-
pendix B.

The process we’ll employ is to use a Power Reducing formula for cos2(x),
which states

cos2(x) =
1 + cos(2x)

2
.

The right hand side of this equation is not difficult to integrate. We have:∫
cos2(x) dx =

∫
1 + cos(2x)

2
dx

=

∫ (
1

2
+

1

2
cos(2x)

)
dx

=
1

2
x+

1

2

sin(2x)
2

+ C

=
1

2
x+

sin(2x)
4

+ C,

where we used Key Idea 6.1.5 for the antiderivative of cos(2x).
We’ll make significant use of this power-reducing technique in future
sections.

youtu.be/watch?v=XB_PG1Z_n1M

Figure 6.1.16 Video presentation
of Example 6.1.15 and two other
trigonometric examples

6.1.2 Simplifying the Integrand
It is common to be reluctant to manipulate the integrand of an integral; at first,
our grasp of integration is tenuous and onemay think that working with the inte-
grandwill improperly change the results. Integration by substitutionworks using
a different logic: as long as equality is maintained, the integrand can be manipu-
lated so that its form is easier to deal with. The next two examples demonstrate
common ways in which using algebra first makes the integration easier to per-
form.

Example 6.1.17 Integration by substitution: simplifying first.

Evaluate
∫

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx.

Solution. Onemay try to start by settingu equal to either the numerator
or denominator; in each instance, the result is not workable.
When dealing with rational functions (i.e., quotients made up of poly-
nomial functions), it is an almost universal rule that everything works
better when the degree of the numerator is less than the degree of the
denominator. Hence we use polynomial division.

https://www.youtube.com/watch?v=XB_PG1Z_n1M
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We skip the specifics of the steps, but note that when x2 + 2x + 1 is
divided into x3 + 4x2 + 8x+ 5, it goes in x+ 2 times with a remainder
of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
= x+ 2 +

3x+ 3

x2 + 2x+ 1
.

Integrating x + 2 is simple. The fraction can be integrated by setting
u = x2 + 2x + 1, giving du = (2x + 2) dx. This is very similar to
the numerator. Note that du/2 = (x + 1) dx and then consider the
following:∫

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2 +

3x+ 3

x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1

2
x2 + 2x+ C1 +

∫
3

u

du

2

=
1

2
x2 + 2x+ C1 +

3

2
ln |u|+ C2

=
1

2
x2 + 2x+

3

2
ln
∣∣x2 + 2x+ 1

∣∣+ C.

In some ways, we “lucked out” in that after dividing, substitution was
able to be done. In later sections we’ll develop techniques for handling
rational functions where substitution is not directly feasible.

Video solution

youtu.be/watch?v=kuHKfsyaOAI

Example 6.1.18 Integration by alternate methods.

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, substitution.

Solution. We already know how to integrate this particular example.
Rewrite

√
x as x 1

2 and simplify the fraction:

x2 + 2x+ 3

x1/2
= x

3
2 + 2x

1
2 + 3x− 1

2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x− 1

2

)
dx

=
2

5
x

5
2 +

4

3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be
solved using substitution as its implementation is rather clever.
Let u =

√
x = x

1
2 ; therefore

du =
1

2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =

∫
(x2 +2x+3) · 2 du. What are we

to do with the other x terms? Since u = x
1
2 , u2 = x, etc. We can then

https://www.youtube.com/watch?v=kuHKfsyaOAI
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replace x2 and x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2

5
u5 +

4

3
u3 + 6u+ C

=
2

5
x

5
2 +

4

3
x

3
2 + 6x

1
2 + C,

which is obviously the same answerweobtained before. In this situation,
substitution is arguablymorework than our othermethod. The fantastic
thing is that it works. It demonstrates how flexible integration is.

6.1.3 Substitution and Inverse Trigonometric Functions
When studying derivatives of inverse functions, we learned that

d

dx

(
tan−1(x)

)
=

1

1 + x2
.

Applying the Chain Rule to this is not difficult; for instance,

d

dx

(
tan−1(5x)

)
=

5

1 + 25x2
.

We now explore how Substitution can be used to “undo” certain derivatives
that are the result of the Chain Rule applied to Inverse Trigonometric functions.
We begin with an example.

Example 6.1.19 Integratingby substitution: inverse trigonometric func-
tions.

Evaluate
∫

1

25 + x2
dx.

Solution. The integrand looks similar to the derivative of the arctangent
function. Note:

1

25 + x2
=

1

25
(
1 + x2

25

)
=

1

25(1 +
(
x
5

)2
)

=
1

25

1

1 +
(
x
5

)2 .
Thus ∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx.

This can be integrated using Substitution. Set u = x/5, hence du =
dx/5 or dx = 5 du. Thus∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx
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=
1

5

∫
1

1 + u2
du

=
1

5
tan−1(u) + C

=
1

5
tan−1

(x
5

)
+ C

Video solution

youtu.be/watch?v=skYWHK8feRsExample 6.1.19 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 6.1.20 Integrals Involving Inverse Trigonometric Functions.

Let a > 0.

1.
∫

1

a2 + x2
dx =

1

a
tan−1

(x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
(x
a

)
+ C

3.
∫

1

x
√
x2 − a2

dx =
1

a
sec−1

(
|x|
a

)
+ C

Let’s practice using Theorem 6.1.20.

Example 6.1.21 Integratingby substitution: inverse trigonometric func-
tions.

Evaluate the given indefinite integrals:

1.
∫

1

9 + x2
dx 2.

∫
1√

5− x2
dx 3.

∫
1

x
√
x2 − 1

100

dx

Solution. Each can be answered using a straightforward application of
Theorem 6.1.20.

1.
∫

1

9 + x2
dx =

1

3
tan−1

(x
3

)
+ C, as a = 3.

2.
∫

1√
5− x2

= sin−1

(
x√
5

)
+ C, as a =

√
5.

3.
∫

1

x
√
x2 − 1

100

dx = 10 sec−1(10x) + C, as a = 1
10 .

Most applications of Theorem 6.1.20 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

Example 6.1.22 Integrating by substitution: completing the square.

Evaluate
∫

1

x2 − 4x+ 13
dx.

https://www.youtube.com/watch?v=skYWHK8feRs
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Solution. Initially, this integral seems to have nothing in common with
the integrals in Theorem 6.1.20. As it lacks a square root, it almost cer-
tainly is not related to arcsine or arcsecant. It is, however, related to the
arctangent function.
We see this by completing the square in the denominator. We give a
brief reminder of the process here.
Start with a quadraticwith a leading coefficient of 1. It will have the form
of x2+ bx+ c. Take 1/2 of b, square it, and add/subtract it back into the
expression. i.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b

2

)2

+ c− b2

4

In our example, we take half of −4 and square it, getting 4. We add/
subtract it into the denominator as follows:

1

x2 − 4x+ 13
=

1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4 + 13

=
1

(x− 2)2 + 9

We can now integrate this using the arctangent rule. Technically, we
need to substitute first with u = x−2, but we can employ Key Idea 6.1.5
instead. Thus we have∫

1

x2 − 4x+ 13
dx =

∫
1

(x− 2)2 + 9
dx

=
1

3
tan−1

(
x− 2

3

)
+ C.

Video solution

youtu.be/watch?v=wSrXvtTvUjI

Example 6.1.23 Integrals requiring multiple methods.

Evaluate
∫

4− x√
16− x2

dx.

Solution. This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral into two terms:∫

4− x√
16− x2

dx =

∫
4√

16− x2
dx−

∫
x√

16− x2
dx.

We handle each separately. The first integral is handled using a straight-
forward application of Theorem 6.1.20:∫

4√
16− x2

dx = 4 sin−1
(x
4

)
+ C.

The second integral is handled by substitution, with u = 16 − x2.∫
x√

16− x2
dx: Set u = 16−x2, so du = −2x dx and x dx = −du/2.

https://www.youtube.com/watch?v=wSrXvtTvUjI
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We have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1

2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1
(x
4

)
+
√
16− x2 + C.

As with all definite integrals, you can check your work by differentiation.

Video solution

youtu.be/watch?v=tEPUnupFCfs

6.1.4 Substitution and Definite Integration

youtu.be/watch?v=JGD5OtxoKoI

Figure 6.1.24 Video introduction to
Subsection 6.1.4

This section has focused on evaluating indefinite integrals as we are learning
a new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

1. Start with a definite integral
∫ b

a

f(x) dx that requires substitution.

2. Ignore the bounds; use substitution to evaluate
∫

f(x) dx and find an

antiderivative F (x).

3. Evaluate F (x) at the bounds; that is, evaluate F (x)
∣∣∣b
a
= F (b)− F (a).

This workflow works fine, but substitution offers an alternative that is pow-
erful and amazing (and a little time saving).

At its heart, (using the notation of Theorem 6.1.2) substitution converts in-
tegrals of the form

∫
F ′(g(x))g′(x) dx into an integral of the form

∫
F ′(u) du

with the substitution ofu = g(x). The following theorem states how the bounds
of a definite integral can be changed as the substitution is performed.

Theorem 6.1.25 Substitution with Definite Integrals.

LetF and g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F and u = g(x). Then∫ b

a

F ′(g(x))g′(x) dx =

∫ g(b)

g(a)

F ′(u) du.

In effect, Theorem 6.1.25 states that once you convert to integrating with
respect to u, you do not need to switch back to evaluating with respect to x. A
few examples will help one understand.

https://www.youtube.com/watch?v=tEPUnupFCfs
https://www.youtube.com/watch?v=JGD5OtxoKoI
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Example 6.1.26 Definite integrals and substitution: changing the
bounds.

Evaluate
∫ 2

0

cos(3x− 1) dx using Theorem 6.1.25.

Solution. Observing the composition of functions, letu = 3x−1, hence
du = 3 dx. As 3 dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.
By setting u = 3x − 1, we are implicitly stating that g(x) = 3x − 1.
Theorem 6.1.25 states that the new lower bound is g(0) = −1; the new
upper bound is g(2) = 5. We now evaluate the definite integral:∫ 2

0

cos(3x− 1) dx =

∫ 5

−1

cos(u)
du

3

=
1

3
sin(u)

∣∣∣5
−1

=
1

3

(
sin(5)− sin(−1)

)
≈ −0.039.

Notice how once we converted the integral to be in terms of u, we never
went back to using x.

y = cos(3x− 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

y = 1
3 cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

(b)

Figure 6.1.27 Graphing the areas defined by the definite integrals of Ex-
ample 6.1.26
The graphs in Figure 6.1.27 tell more of the story. In Figure 6.1.27(a)
the area defined by the original integrand is shaded, whereas in Fig-
ure 6.1.27(b) the area defined by the new integrand is shaded. In
this particular situation, the areas look very similar; the new region is
“shorter” but “wider,” giving the same area.

Example 6.1.28 Definite integrals and substitution: changing the
bounds.

Evaluate
∫ π/2

0

sin(x) cos(x) dx using Theorem 6.1.25.

Solution. Wesaw the corresponding indefinite integral in Example 6.1.8.
In that example we set u = sin(x) but stated that we could have let
u = cos(x). For variety, we do the latter here.
Let u = g(x) = cos(x), giving du = − sin(x) dx and hence sin(x) dx =
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−du. The new upper bound is g(π/2) = 0; the new lower bound is
g(0) = 1. Note how the lower bound is actually larger than the upper
bound now. We have∫ π/2

0

sin(x) cos(x) dx =

∫ 0

1

−u du (switch bounds and change sign)

=

∫ 1

0

u du

=
1

2
u2
∣∣∣1
0
= 1/2.

In Figure 6.1.29 we have again graphed the two regions defined by our
definite integrals. Unlike the previous example, they bear no resem-
blance to each other. However, Theorem 6.1.25 guarantees that they
have the same area.

y = sin(x) cos(x)

−0.5

0.5

1

π
2

x

y

(a)

y = u

1

−0.5

0.5

1

π
2

u

y

(b)

Figure 6.1.29 Graphing the areas defined by the definite integrals of Ex-
ample 6.1.28

Video solution

youtu.be/watch?v=U3B47kxjidk

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundationonwhichmost
other integration techniques are based.

https://www.youtube.com/watch?v=U3B47kxjidk
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6.1.5 Exercises

Terms and Concepts

1. Substitution “undoes” what derivative rule?
2. (□ True □ False) One can use algebra to rewrite the integrand of an integral to make it easier to evaluate.

Problems

Exercise Group. Evaluate the indefinite integral to develop an understanding of Substitution.

3.
∫

4x3
(
x4 + 3

)5
dx 4.

∫
(2x− 9)

(
x2 − 9x− 3

)6
dx

5.
∫

x
(
x2 − 7

)9
dx 6.

∫
(6− 20x)

(
3x− 5x2 − 4

)8
dx

7.
∫

1

4x+ 5
dx 8.

∫
1√

5x+ 9
dx

9.
∫

x√
x+ 1

dx 10.
∫

x3 + 3x√
x

dx

11.
∫

e
√
x

√
x
dx 12.

∫
x5

√
x6 + 8

dx

13.
∫ 1

x − 9

x2
dx 14.

∫
ln(x)
x

dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving trigonometric functions.

15.
∫
sin3(x) cos(x) dx 16.

∫
cos4(x) sin(x) dx

17.
∫
cos(8− 5x) dx 18.

∫
sec2(5− 4x) dx

19.
∫
sec(7x) dx 20.

∫
tan8(x) sec2(x) dx

21.
∫

x8 sin
(
x9
)
dx 22.

∫
tan2(x)dx

23.
∫
cot(x) dx

Do not just refer to Theorem 6.1.14 for the
answer; justify it through Substitution.

24.
∫
csc(x) dx

Do not just refer to Theorem 6.1.14 for the
answer; justify it through Substitution.

Exercise Group. Use Substitution to evaluate the indefinite integral involving exponential functions.

25.
∫

e4x−9 dx 26.
∫

ex
5

x4 dx

27.
∫

ex
2+2x+1(x+ 1) dx 28.

∫
ex + 3

ex
dx

29.
∫

ex

ex + 8
dx 30.

∫
ex + e−x

e3x
dx

31.
∫

22x dx 32.
∫

27x dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving logarithmic functions.
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33.
∫
ln(x)
x

dx 34.
∫

(ln(x))4

x
dx

35.
∫ ln

(
x5
)

x
dx 36.

∫
1

x ln(x6)
dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving rational functions.

37.
∫

x2 + 4x+ 7

x
dx 38.

∫
x3 + x2 + x+ 1

x
dx

39.
∫

x3 − 6

x+ 1
dx 40.

∫
x2 + 4x− 9

x− 3
dx

41.
∫

8−
(
7x2 + x

)
x− 6

dx 42.
∫

x2 − 4x− 3

x3 − 6x2 − 9x
dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving inverse trigonometric functions.

43.
∫

6

x2 + 6
dx 44.

∫
5√

25− x2
dx

45.
∫

3√
10− x2

dx 46.
∫

8

x
√
x2 − 49

dx

47.
∫

4x√
x6 − 64x4

dx 48.
∫

x√
1− x4

dx

49.
∫

1

x2 + 18x+ 92
dx 50.

∫
7√

−x2 + 14x− 33
dx

51.
∫

2√
−x2 + 10x+ 56

dx 52.
∫

7

x2 − 6x+ 58
dx

Exercise Group. Evaluate the indefinite integral.

53.
∫

x5

(x6 − 4)
2 dx 54.

∫ (
25x4 + 36x3

) (
5x5 + 9x4 − 4

)6
dx

55.
∫

x√
6 + 2x2

dx 56.
∫

x7 sec2
(
x8 − 5

)
dx

57.
∫
sin(x)

√
cos(x) dx 58.

∫
cos(9x+ 1) dx

59.
∫

1

x− 7
dx 60.

∫
2

8x+ 7
dx

61.
∫

2x3 − 6x2 − 4x− 2

x2 − 4x+ 1
dx 62.

∫
2x− 2

x2 − 2x− 7
dx

63.
∫

4(x+ 3)

x2 + 6x− 9
dx 64.

∫
−x3 − 4x2 + 4

x2 + 3x− 1
dx

65.
∫

x

x4 + 64
dx 66.

∫
9

81x2 + 1
dx

67.
∫

1

x
√
81x2 − 1

dx 68.
∫

1√
4− 9x2

dx

69.
∫

5x− 24

x2 − 10x+ 74
dx 70.

∫
2x+ 13

x2 − 6x+ 34
dx

71.
∫

x2 + 15x+ 6

x2 − 2x+ 3
dx 72.

∫
x3

x2 + 36
dx

73.
∫

x3 − 14x− 58

x2 + 6x+ 15
dx 74.

∫
sin(x)

cos2(x) + 1
dx
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75.
∫

cos(x)
sin2(x) + 1

dx 76.
∫

sin(x)
1− cos2(x)

dx

77.
∫

9x+ 72√
x2 + 16x+ 63

dx 78.
∫

x+ 6√
x2 + 12x+ 32

dx

Exercise Group. Evaluate the definite integral.

79.
∫ 0

−4

1

x− 3
dx 80.

∫ 82

2

x
√
x− 1 dx

81.
∫ π

2

−π
2

cos2(x) sin(x) dx 82.
∫ 1

0

2x
(
1− x2

)7
dx

83.
∫ −3

−6

(x+ 5) ex
2+10x+25 dx 84.

∫ 1

−1

1

1 + x2
dx

85.
∫ −8

−10

1

x2 + 18x+ 82
dx 86.

∫ √
3

−2

1√
4− x2

dx
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6.2 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:∫
x cos(x) dx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

youtu.be/watch?v=v7KGuoM-cgU

Figure 6.2.1 Video introduction to
Section 6.2

The Product Rule says that if u and v are functions of x, then (uv)′ = u′v +
uv′. For simplicity, we’vewrittenu foru(x) and v for v(x). Supposewe integrate
both sides with respect to x. This gives∫

(uv)′ dx =

∫
(u′v + uv′) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The
right side can be broken up into two integrals, and we have

uv =

∫
u′v dx+

∫
uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv −

∫
u′v dx.

Using differential notation, we can write du = u′(x)dx and dv = v′(x)dx
and the expression above can be written as follows:∫

u dv = uv −
∫

v du.

This is the Integration by Parts formula. For reference purposes, we state
this in a theorem.

Theorem 6.2.2 Integration by Parts.

Let u and v be differentiable functions of x on an interval I containing a
and b. Then ∫

u dv = uv −
∫

v du,

and ∫ x=b

x=a

u dv = uv
∣∣∣b
a
−
∫ x=b

x=a

v du.

The integrationbyparts formula
can also be written as∫

f(x) g′(x) dx

= f(x)g(x)−
∫

f ′(x) g(x) dx

for differentiable functions f and
g.

Let’s try an example to understand our new technique.

Example 6.2.3 Integrating using Integration by Parts.

Evaluate
∫

x cos(x) dx.

Solution. The key to Integration by Parts is to identify part of the inte-
grand as “u” and part as “dv.” Regular practice will help one make good
identifications, and later wewill introduce some principles that help. For
now, let u = x and dv = cos(x) dx.
It is generally useful to make a small table of these values as done below.

https://www.youtube.com/watch?v=v7KGuoM-cgU
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Right now we only know u and dv as shown on the left of Figure 6.2.4;
on the right we fill in the rest of what we need. If u = x, then du = dx.
Since dv = cos(x) dx, v is an antiderivative of cos(x). We choose v =
sin(x).

u = x v = ?

du = ? dv = cos(x) dx
=⇒ u = x v = sin(x)

du = dx dv = cos(x) dx

Figure 6.2.4 Setting up Integration by Parts
Now substitute all of this into the Integration by Parts formula, giving∫

x cos(x) dx = x sin(x)−
∫
sin(x) dx.

We can then integrate sin(x) to get− cos(x)+C and overall our answer
is ∫

x cos(x) dx = x sin(x) + cos(x) + C.

Note how the antiderivative contains a product, x sin(x). This product
is what makes Integration by Parts necessary.
We can check our work by taking the derivative:

d

dx
(x sin(x) + cos(x) + C) = x cos(x) + sin(x)− sin(x) + 0

= x cos(x).

Video solution

youtu.be/watch?v=gKtzlaH2EPo

Youmay wonder what would have happened in Example 6.2.3 if we had cho-
sen our u and dv differently. If we had chosen u = cos(x) and dv = x dx then
du = − sin(x) dx and v = x2/2. Our second integral is not simpler than the
first; we would have∫

x cos(x) dx = cos(x)
x2

2
−
∫

x2

2
(− sin(x)) dx.

The only way to approach this second integral would be yet another integration
by parts.

Example 6.2.3 demonstrates how Integration by Parts works in general. We
try to identify u and dv in the integral we are given, and the key is that we usually
want to choose u and dv so that du is simpler than u and v is hopefully not too
much more complicated than dv. This will mean that the integral on the right
side of the Integration by Parts formula,

∫
v du will be simpler to integrate than

the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos(x) dx. Then du = dx
was simpler than u and v = sin(x) is no more complicated than dv. Therefore,
instead of integrating x cos(x) dx, we could integrate sin(x) dx, which we knew
how to do.

A useful mnemonic for helping to determine u is “liate,” where
l = Logarithmic, i = Inverse Trig., a = Algebraic (polynomials, roots, power

functions), t = Trigonometric, and e = Exponential.
If the integrand contains both a logarithmic and an algebraic term, in general

letting u be the logarithmic term works best, as indicated by l coming before a
in liate.

We now consider another example.

https://www.youtube.com/watch?v=gKtzlaH2EPo
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Example 6.2.5 Integrating using Integration by Parts.

Evaluate
∫

xex dx.

Solution. The integrand contains an Algebraic term (x) and an
Exponential term (ex). Our mnemonic suggests letting u be the alge-
braic term, so we choose u = x and dv = ex dx. Then du = dx and
v = ex as indicated by the tables below.

u = x v = ?

du = ? dv = ex dx

=⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.2.6 Setting up Integration by Parts
We see du is simpler than u, while there is no change in going from dv
to v. This is good. The Integration by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the antiderivatives contain a product term.

Example 6.2.7 Integrating using Integration by Parts.

Evaluate
∫

x2 cos(x) dx.

Solution. The mnemonic suggests letting u = x2 instead of the
trigonometric function, hence dv = cos(x) dx. Then du = 2x dx and
v = sin(x) as shown below.

u = x2 v = ?

du = ? dv = cos(x) dx
=⇒ u = x2 v = sin(x)

du = 2x dx dv = cos(x) dx

Figure 6.2.8 Setting up Integration by Parts
The Integration by Parts formula gives∫

x2 cos(x) dx = x2 sin(x)−
∫

2x sin(x) dx.

At this point, the integral on the right is indeed simpler than the one
we started with, but to evaluate it, we need to do Integration by Parts
again. Here we choose r = 2x and ds = sin(x) and fill in the rest below.
(We are choosing new names since we have already used u and v. Our
integration by parts formula is now

∫
r ds = rs−

∫
s dr.)
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u = 2x v = ?
du = ? dv = sin(x) dx

⇒ u = 2x v = − cos(x)
du = 2 dx dv = sin(x) dx

Figure 6.2.9 Setting up Integration by Parts (again)

∫
x2 cos(x) dx = x2 sin(x)−

(
−2x cos(x)−

∫
−2 cos(x) dx

)
.

The integral all theway on the right is now somethingwe can evaluate. It
evaluates to−2 sin(x). Then going through and simplifying, being care-
ful to keep all the signs straight, our answer is∫

x2 cos(x) dx = x2 sin(x) + 2x cos(x)− 2 sin(x) + C.

Video solution

youtu.be/watch?v=j9pCcQMSjbg

Example 6.2.10 Integrating using Integration by Parts.

Evaluate
∫

ex cos(x) dx.

Solution. This is a classic problem. Our mnemonic suggests letting u be
the trigonometric function instead of the exponential. In this particular
example, one can letu be either cos(x) or ex; to demonstrate thatwe do
not have to follow liate, we choose u = ex and hence dv = cos(x) dx.
Then du = ex dx and v = sin(x) as shown below.

u = ex v = ?

du = ? dv = cos(x) dx
=⇒ u = ex v = sin(x)

du = ex dv = cos(x) dx

Figure 6.2.11 Setting up Integration by Parts
Notice that du is no simpler than u, going against our general rule (but
bear with us). The Integration by Parts formula yields∫

ex cos(x) dx = ex sin(x)−
∫

ex sin(x) dx.

The integral on the right is not much different than the one we started
with, so it seems like we have gotten nowhere. Let’s keep working and
apply Integration by Parts to the new integral, using u = ex and dv =
sin(x) dx. This leads us to the following:

r = ex s = ?

dr = ? ds = sin(x) dx
=⇒ r = ex s = − cos(x)

dr = ex dx ds = sin(x) dx

Figure 6.2.12 Setting up Integration by Parts (again)
The Integration by Parts formula then gives:∫

ex cos(x) dx = ex sin(x)−
(
−ex cos(x)−

∫
−ex cos(x) dx

)

https://www.youtube.com/watch?v=j9pCcQMSjbg
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= ex sin(x) + ex cos(x)−
∫

ex cos(x) dx.

It seems we are back right where we started, as the right hand side con-
tains

∫
ex cos(x) dx. But this is actually a good thing.

Add
∫

ex cos(x) dx to both sides. This gives

2

∫
ex cos(x) dx = ex sin(x) + ex cos(x)

Now divide both sides by 2 and then add the integration constant:∫
ex cos(x) dx =

1

2

(
ex sin(x) + ex cos(x)

)
+ C.

Simplifying a little, our answer is thus∫
ex cos(x) dx =

1

2
ex (sin(x) + cos(x)) + C.

Video solution

youtu.be/watch?v=z0A1v2Zkfns

Example 6.2.13 Integrating using Integration by Parts: antiderivative
of ln(x).

Evaluate
∫
ln(x) dx.

Solution. One may have noticed that we have rules for integrating the
familiar trigonometric functions and ex, but we have not yet given a rule
for integrating ln(x). That is because ln(x) can’t easily be integrated
with any of the rules we have learned up to this point. But we can find
its antiderivative by a clever application of Integration by Parts. Set u =
ln(x) and dv = dx. This is a good, sneaky trick to learn as it can help in
other situations. This determines du = (1/x) dx and v = x as shown
below.

u = ln(x) v = ?

du = ? dv = 1 dx

=⇒ u = ln(x) v = x

du = 1/x dx dv = 1 dx

Figure 6.2.14 Setting up Integration by Parts
Putting this all together in the Integration by Parts formula, things work
out very nicely: ∫

ln(x) dx = x ln(x)−
∫

x
1

x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things

get. Its integral is x+ C and our answer is∫
ln(x) dx = x ln(x)− x+ C.

Video solution

youtu.be/watch?v=NGkLj7djFSw

https://www.youtube.com/watch?v=z0A1v2Zkfns
https://www.youtube.com/watch?v=NGkLj7djFSw
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Example 6.2.15 Integrating using Int. by Parts: antiderivative of
arctanx.

Evaluate
∫
arctanx dx.

Solution. The same sneaky trick we used above works here. Let u =
arctanx and dv = dx. Then du = 1/(1 + x2) dx and v = x. The
Integration by Parts formula gives∫

arctanx dx = x arctanx−
∫

x

1 + x2
dx.

The integral on the right can be solvedby substitution. Takingw = 1+x2,
we get dw = 2x dx. The integral then becomes∫

arctanx dx = x arctanx− 1

2

∫
1

w
dw.

The integral on the right evaluates to ln |w|+ C, which becomes ln(1 +
x2) + C (we can drop the absolute values as 1 + x2 is always positive).
Therefore, the answer is∫

arctanx dx = x arctanx− 1

2
ln(1 + x2) + C.

Video solution

youtu.be/watch?v=md3-8bv5E5M

Substitution Before Integration. When taking derivatives, it was common to
employ multiple rules (such as using both the Quotient and the Chain Rules).
It should then come as no surprise that some integrals are best evaluated by
combining integration techniques. In particular, here we illustrate making an
“unusual” substitution first before using Integration by Parts.

Example 6.2.16 Integration by Parts after substitution.

Evaluate
∫
cos(ln(x)) dx.

Solution. The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = ln(x), we have
du = 1/x dx. This seems problematic, as we do not have a 1/x in the
integrand. But consider:

du =
1

x
dx ⇒ x · du = dx.

Since u = ln(x), we can use inverse functions and conclude that x = eu.
Therefore we have that

dx = x · du
= eu du.

We can thus replace ln(x) with u and dx with eu du. Thus we rewrite
our integral as ∫

cos(ln(x)) dx =

∫
eu cosu du.

https://www.youtube.com/watch?v=md3-8bv5E5M
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We evaluated this integral on the right in Example 6.2.10. (This integral
can also be found in a table of integrals). Using the result there, we have:∫

cos(ln(x)) dx =

∫
eu cos(u) du

=
1

2
eu
(
sin(u) + cos(u)

)
+ C

=
1

2
eln(x)

(
sin(ln(x)) + cos(ln(x))

)
+ C

=
1

2
x
(
sin(ln(x)) + cos(ln(x))

)
+ C.

Video solution

youtu.be/watch?v=0j0vM0nosYs

Definite Integrals and Integration By Parts. So far we have focused only on
evaluating indefinite integrals. Of course, we can use Integration by Parts to
evaluate definite integrals as well, as Theorem 6.2.2 states. We do so in the next
example.

Example 6.2.17 Definite integration using Integration by Parts.

Evaluate
∫ 2

1

x2 ln(x) dx.

Solution. Our mnemonic suggests letting u = ln(x), hence dv = x2 dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u = ln(x) v = ?

du = ? dv = x2 dx

⇒ u = ln(x) v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.2.18 Setting up Integration by Parts
The Integration by Parts formula then gives∫ 2

1

x2 ln(x) dx =
x3

3
ln(x)

∣∣∣∣2
1

−
∫ 2

1

x3

3

1

x
dx

=
x3

3
ln(x)

∣∣∣∣2
1

−
∫ 2

1

x2

3
dx

=
x3

3
ln(x)

∣∣∣∣2
1

− x3

9

∣∣∣∣2
1

=

(
x3

3
ln(x)− x3

9

)∣∣∣∣2
1

=

(
8

3
ln(2)− 8

9

)
−
(
1

3
ln(1)− 1

9

)
=

8

3
ln(2)− 7

9
≈ 1.07.

Video solution

youtu.be/watch?v=O9_0B2gatMo

In general, Integration by Parts is useful for integrating certain products of
functions, like

∫
xex dx or

∫
x3 sin(x) dx. It is also useful for integrals involving

logarithms and inverse trigonometric functions.
As stated before, integration is generally more difficult than derivation. We

https://www.youtube.com/watch?v=0j0vM0nosYs
https://www.youtube.com/watch?v=O9_0B2gatMo
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are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar-looking integrals∫

xex dx,

∫
xex

2

dx and
∫

xex
3

dx.

While the first is calculated easilywith Integrationby Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to Substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. Section 6.3 focuses on handling integrals containing trigonometric
functions.
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6.2.1 Exercises

Terms and Concepts

1. (□ True □ False) Integration by Parts is useful in evaluating integrands that contain products of functions.
2. (□ True □ False) Integration by Parts can be thought of as the “opposite of the Chain Rule.”
3. For what is “LIATE” useful?
4. (□ True □ False) If the integral that results from Integration by Parts appears to also need Integration by

Parts, then a mistake was made in the original choice of “u”.

Problems

Exercise Group. Evaluate the given indefinite integral.

5.
∫

x sin(x) dx 6.
∫

xe−x dx

7.
∫

x2 sin(x) dx 8.
∫

x3 sin(x) dx

9.
∫

xex
2

dx 10.
∫

x3ex dx

11.
∫

xe−2x dx 12.
∫

ex sin(x) dx

13.
∫

e2x cos(x) dx 14.
∫

e7x sin(9x) dx

15.
∫

e8x cos(8x) dx 16.
∫
sin(x) cos(x) dx

17.
∫
sin−1(x) dx 18.

∫
tan−1(2x) dx

19.
∫

x tan−1(x) dx 20.
∫
cos−1(x) dx

21.
∫

x ln(x) dx 22.
∫

(x+ 1) ln(x) dx

23.
∫

x ln(x− 3) dx 24.
∫

x ln(x2) dx

25.
∫

x2 ln(x) dx 26.
∫

(ln(x))2 dx

27.
∫
ln2(x− 8) dx 28.

∫
x sec2(x) dx

29.
∫

x csc2(x) dx 30.
∫

x
√
x− 2 dx

31.
∫

x
√
x2 − 6 dx 32.

∫
sec(x) tan(x) dx

33.
∫

x sec(x) tan(x) dx 34.
∫

x csc(x) cot(x) dx

Exercise Group. Evaluate the indefinite integral after first making a substitution.

35.
∫
cos(ln(x)) dx 36.

∫
e2x sin(ex) dx

37.
∫
sin
(√

x
)
dx 38.

∫
ln(

√
x) dx
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39.
∫

e
√
x dx 40.

∫
eln(x) dx

Exercise Group. Evaluate the definite integral. Note: the corresponding indefinite integral appears in Exercises 5–13.

41.
∫ 3π/2

0

x sin(x) dx 42.
∫ 1

−2

xe−x dx

43.
∫ π/2

−π/2

x2 sin(x) dx 44.
∫ π/2

−π/2

x3 sin(x) dx

45.
∫ √

ln(2)

0

xex
2

dx 46.
∫ 1

0

x3ex dx

47.
∫ 3

2

xe−2x dx 48.
∫ π

0

ex sin(x) dx

49.
∫ 3π/2

−3π/2

e2x cos(x) dx
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6.3 Trigonometric Integrals

Functions involving trigonometric functions are useful as they are good at de-
scribing periodic behavior. This section describes several techniques for finding
antiderivatives of certain combinations of trigonometric functions.

6.3.1 Integrals of the form
∫
sinm(x) cosn(x) dx

In learning the technique of Substitution, we saw the integral
∫
sin(x) cos(x) dx

in Example 6.1.8. The integration was not difficult, and one could easily evalu-
ate the indefinite integral by letting u = sin(x) or by letting u = cos(x). This
integral is easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm(x) cosn(x) dx,

where m,n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the identity cos2(x) + sin2(x) = 1 to convert high powers of one
trigonometric function into the other, leaving a single sine or cosine term in the
integrand. Let’s see an example of how this technique works.

Example 6.3.1 Integrating powers of sine and cosine.

Evaluate
∫
sin3(x) cos(x) dx.

Solution. We have used substitution on problems similar to this prob-
lem in Section 6.1 . If we let u = sin(x), then du = cos(x) dx, and∫

sin3(x) cos(x) dx =

∫
u3 du =

u4

4
+ C =

1

4
sin4(x) + C.

But what if, for some reason, we wanted to let u = cos(x) instead?
Unfortunately, we have sin3(x) as part of our integrand, not just sin(x).
The solution to this problem is to replace some of our powers of sine
(two of them to be exact) with expressions that involve cosine. We will
use the Pythagorean Identity sin2(x) = 1− cos2(x).∫

sin3(x) cos(x) dx =

∫
sin(x) · sin2(x) cos(x) dx

=

∫
sin(x)

(
1− cos2(x)

)
cos(x) dx.

Now we let u = cos(x) so that−du = sin(x) dx.∫
sin3(x) cos(x) dx =

∫
sin(x)

(
1− cos2(x)

)
cos(x) dx

=

∫
−
(
1− u2

)
u du

=

∫
−
(
u− u3

)
du

= −u2

2
+

u4

4
+ C

= −cos
2(x)

2
+
cos4(x)

4
+ C.

This looks like a very different answer, so you might wonder if we went
wrong somewhere. But in fact, the two answers are equivalent, in the
sense that they differ by a constant! (So the “+C” is different in each
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case, if you like.) Notice that

1

4
sin4(x) =

1

4
(1− cos2(x))2

=
1

4
− 1

2
cos2(x) +

1

4
cos4(x),

so the difference between the two answers is the constant 1
4 .

Video solution

youtu.be/watch?v=soXjOeFRrsk

We summarize the general technique in the following Key Idea.

Key Idea 6.3.2 Integrals Involving Powers of Sine and Cosine.

Consider
∫
sinm(x) cosn(x) dx, wherem,n are nonnegative integers.

1. Ifm is odd, thenm = 2k + 1 for some integer k. Rewrite

sinm(x) = sin2k+1(x)

= sin2k(x) sin(x)

= (sin2(x))k sin(x)

= (1− cos2(x))k sin(x).

Then∫
sinm(x) cosn(x) dx =

∫
(1− cos2(x))k sin(x) cosn(x) dx

= −
∫
(1− u2)kun du,

where u = cos(x) and du = − sin(x) dx.

2. If n is odd, then using substitutions similar to that outlined above
(replacing all of the even powers of cosine using a Pythagorean
identity) we have:∫

sinm(x) cosn(x) dx =

∫
um(1− u2)k du,

where u = sin(x) and du = cos(x) dx.

3. If bothm and n are even, use the power-reducing identities:

cos2(x) =
1 + cos(2x)

2
and sin2(x) =

1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply
the principles of this Key Idea again.

We practice applying Key Idea 6.3.2 in the next examples.

Example 6.3.3 Integrating powers of sine and cosine.

Evaluate
∫
sin5(x) cos8(x) dx.

https://www.youtube.com/watch?v=soXjOeFRrsk
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Solution. The power of the sine term is odd, so we rewrite sin5(x) as

sin5(x) = sin4(x) sin(x)

= (sin2(x))2 sin(x)

= (1− cos2(x))2 sin(x).

Our integral is now
∫
(1− cos2(x))2 cos8(x) sin(x) dx. Let u = cos(x),

hence du = − sin(x) dx. Making the substitution and expanding the
integrand gives∫

(1− cos2)2 cos8(x) sin(x) dx = −
∫

(1− u2)2u8 du

= −
∫ (

1− 2u2 + u4
)
u8 du

= −
∫ (

u8 − 2u10 + u12
)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2

11
u11 − 1

13
u13 + C

= −1

9
cos9(x) +

2

11
cos11(x)− 1

13
cos13(x) + C.

Video solution

youtu.be/watch?v=CAV4gSbw1GU

Example 6.3.4 Integrating powers of sine and cosine.

Evaluate
∫
sin5(x) cos9(x) dx.

Solution. The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 6.3.2 to either power. We
choose to work with the power of the cosine term since the previous
example used the sine term’s power.
We rewrite cos9(x) as

cos9(x) = cos8(x) cos(x)

=
(
cos2(x)

)4 cos(x)
=
(
1− sin2(x)

)4
cos(x).

We rewrite the integral as∫
sin5(x) cos9(x) dx =

∫
sin5(x)

(
1− sin2(x)

)4
cos(x) dx.

Now substitute and integrate, using u = sin(x) and du = cos(x) dx.
Expand the binomial using algebra.

∫
u5(1− u2)4 du

=

∫
u5(1− 4u2 + 6u4 − 4u6 + u8) du

https://www.youtube.com/watch?v=CAV4gSbw1GU
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=

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1

6
u6 − 1

2
u8 +

3

5
u10 − 1

3
u12 +

1

14
u14 + C

=
1

6
sin6(x)− 1

2
sin8(x) +

3

5
sin10(x)− 1

3
sin12(x) +

1

14
sin14(x) + C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.
Nowadays problems of this sort are often solved using a computer algebra sys-
tem. The powerful programMathematica™ integrates

∫
sin5(x) cos9(x) dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

−cos(10x)
81920

−cos(12x)
24576

−cos(14x)
114688

,

which clearly has a different form than our answer in Example 6.3.4, which is

g(x) =
1

6
sin6(x)− 1

2
sin8(x) +

3

5
sin10(x)− 1

3
sin12(x) +

1

14
sin14(x).

Figure 6.3.5 shows a graph of f and g; they are clearly not equal, but they
differ only by a constant. That is g(x) = f(x) + C for some constant C. So we
have two different antiderivatives of the same function, meaning both answers
are correct.

g(x)

f(x)

0.5 1 1.5 2 2.5 3

−0.002

0.002

0.004

x

y

Figure 6.3.5 A plot of f(x) and g(x)
from Example 6.3.4 and the Technol-
ogy Note

Example 6.3.6 Integrating powers of sine and cosine.

Evaluate
∫
cos4(x) sin2(x) dx.

Solution. The powers of sine and cosine are both even, so we employ
the power-reducing formulas and algebra as follows.∫

cos4(x) sin2(x) dx =

∫ (
1 + cos(2x)

2

)2(
1− cos(2x)

2

)
dx

=

∫
1 + 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1

8

(
1 + cos(2x) + cos2(2x)− cos3(2x)

)
dx

=
1

8

∫ 1 dx︸ ︷︷ ︸
a

+

∫
cos(2x) dx︸ ︷︷ ︸

b

−
∫
cos2(2x) dx︸ ︷︷ ︸

c

−
∫
cos3(2x) dx︸ ︷︷ ︸

d


The first integral labeled a is easy to integrate. The cos(2x) term is also
easy to integrate, especially with Key Idea 6.1.5. The cos2(2x) term is
another trigonometric integral with an even power, requiring the power-
reducing formula again. The cos3(2x) term is a cosine function with an
odd power, requiring a substitution as done before. We integrate each
in turn below. ∫

cos(2x) dx︸ ︷︷ ︸
b

=
1

2
sin(2x) + C
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∫
cos2(2x) dx︸ ︷︷ ︸

c

=

∫
1 + cos(4x)

2
dx

=
1

2

(
x+

1

4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x)

=
(
1− sin2(2x)

)
cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx︸ ︷︷ ︸

d

=

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1

2
(1− u2) du

=
1

2

(
u− 1

3
u3
)
+ C

=
1

2

(
sin(2x)− 1

3
sin3(2x)

)
+ C.

Putting all the pieces together, we have∫
cos4(x) sin2(x) dx

=

∫
1

8

(
1 + cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1

8

[
x+

1

2
sin(2x)− 1

2

(
x+

1

4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1

8

[1
2
x− 1

8
sin(4x) +

1

6
sin3(2x)

]
+ C.

Video solution

youtu.be/watch?v=EXODR17otIw

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

6.3.2 Integrals of the form
∫
sin(mx) sin(nx) dx,

∫
cos(mx) cos(nx) dx,

and
∫
sin(mx) cos(nx) dx

Functions that contain products of sines and cosines of differing periods are im-
portant in many applications including the analysis of sound waves. Integrals of
the form∫

sin(mx) sin(nx) dx,
∫
cos(mx) cos(nx) dx and

∫
sin(mx) cos(nx) dx

are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1

2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1

2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]

https://www.youtube.com/watch?v=EXODR17otIw
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sin(mx) cos(nx) =
1

2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
.

Example 6.3.7 Integrating products of sin(mx) and cos(nx).

Evaluate
∫
sin(5x) cos(2x) dx.

Solution. The application of the formula and subsequent integration
are straightforward:∫

sin(5x) cos(2x) dx =

∫
1

2

[
sin((5− 2)x) + sin((5 + 2)x)

]
dx

=

∫
1

2

[
sin(3x) + sin(7x)

]
dx

= −1

6
cos(3x)− 1

14
cos(7x) + C

Video solution

youtu.be/watch?v=KbW-xwlTuyI

6.3.3 Integrals of the form
∫
tanm(x) secn(x) dx

When evaluating integrals of the form
∫
sinm(x) cosn(x) dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise-versa. If, for instance, the power of sine was odd, we pulled out one
sin(x) and converted the remaining even power of sin(x) into a function using
powers of cos(x), leading to an easy substitution.

The samebasic strategy applies to integrals of the form
∫
tanm(x) secn(x) dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan(x)) = sec2(x),

• d
dx (sec(x)) = sec(x) tan(x),

• 1 + tan2(x) = sec2(x) (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2(x) term with the
remaining secant power even, or if a sec(x) tan(x) term can be separated with
the remaining tan(x) power even, the Pythagorean Theorem can be employed,
leading to a simple substitution. This strategy is outlined in the following Key
Idea.

Key Idea 6.3.8 Integrals Involving Powers of Tangent and Secant.

Consider
∫
tanm(x) secn(x) dx, wherem,n are nonnegative integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn(x) as

secn(x) = sec2k(x)

= sec2k−2(x) sec2(x)

= (1 + tan2(x))k−1 sec2(x).

Then∫
tanm(x) secn(x) dx =

∫
tanm(x)(1 + tan2(x))k−1 sec2(x) dx

=

∫
um(1 + u2)k−1 du,

https://www.youtube.com/watch?v=KbW-xwlTuyI
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where u = tan(x) and du = sec2(x) dx.

2. Ifm is odd, thenm = 2k + 1 for some integer k. Rewrite tanm(x) secn(x)
as

tanm(x) secn(x) = tan2k+1(x) secn(x)

= tan2k(x) secn−1(x) sec(x) tan(x)

= (sec2(x)− 1)k secn−1(x) sec(x) tan(x).

Then∫
tanm(x) secn(x) dx =

∫
(sec2(x)− 1)k secn−1(x) sec(x) tan(x) dx

=

∫
(u2 − 1)kun−1 du,

where u = sec(x) and du = sec(x) tan(x) dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm(x)
to (sec2(x) − 1)k. Expand the new integrand and use Integration By Parts,
with dv = sec2(x) dx.

4. Ifm is even and n = 0, rewrite tanm(x) as

tanm(x) = tanm−2(x) tan2(x)

= tanm−2(x)(sec2(x)− 1)

= tanm−2 sec2(x)− tanm−2(x).

So ∫
tanm(x) dx =

∫
tanm−2 sec2(x) dx︸ ︷︷ ︸

apply rule 1

−
∫
tanm−2(x) dx︸ ︷︷ ︸
apply rule 4 again

.

The techniques described in Item 1 and Item 2 of Key Idea 6.3.8 are relatively
straightforward, but the techniques in Item 3 and Item 4 can be rather tedious.
A few examples will help with these methods.

Example 6.3.9 Integrating powers of tangent and secant.

Evaluate
∫
tan2(x) sec6(x) dx.

Solution. Since the power of secant is even, we use Rule 1from Key
Idea 6.3.8 and pull out a sec2(x) in the integrand. We convert the re-
maining powers of secant into powers of tangent.∫

tan2(x) sec6(x) dx =

∫
tan2(x) sec4(x) sec2(x) dx

=

∫
tan2(x)

(
1 + tan2(x)

)2 sec2(x) dx
Now substitute, with u = tan(x), with du = sec2(x) dx.

=

∫
u2
(
1 + u2

)2
du
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We leave the integration and subsequent substitution to the reader. The
final answer is

=
1

3
tan3(x) +

2

5
tan5(x) +

1

7
tan7(x) + C.

Video solution

youtu.be/watch?v=yYbn6R20qTk When we have an odd power of tan(x) (and sec(x) to any power of at least
one), we can split off a factor of tan(x) sec(x) and use the substitution u =
sec(x), as the video in Figure 6.3.10 illustrates.

youtu.be/watch?v=QsdKxEr3jG8

Figure 6.3.10 An integral with odd
powers of tan(x) and sec(x)

Example 6.3.11 Integrating powers of tangent and secant.

Evaluate
∫
sec3(x) dx.

Solution. We apply Rule 3 from Key Idea 6.3.8 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use
Integration by Parts; the rule suggests letting dv = sec2(x) dx, meaning
that u = sec(x).

u = sec(x) v = ?

du = ? dv = sec2(x) dx

=⇒
u = sec(x) v = tan(x)

du = sec(x) tan(x) dx dv = sec2(x) dx

Figure 6.3.12 Setting up Integration by Parts
Employing Integration by Parts, we have∫

sec3(x) dx =

∫
sec(x)︸ ︷︷ ︸

u

· sec2(x) dx︸ ︷︷ ︸
dv

= sec(x) tan(x)−
∫
sec(x) tan2(x) dx.

This new integral also requires applying Rule 3 of Key Idea 6.3.8:∫
sec3(x) dx = sec(x) tan(x)−

∫
sec(x)

(
sec2(x)− 1

)
dx

= sec(x) tan(x)−
∫
sec3(x) dx+

∫
sec(x) dx

= sec(x) tan(x)−
∫
sec3(x) dx+ ln |sec(x) + tan(x)|

In previous applications of Integration by Parts, we have seen where the
original integral has reappeared in our work. We resolve this by adding∫
sec3(x) dx to both sides, giving:

2

∫
sec3(x) dx = sec(x) tan(x) + ln |sec(x) + tan(x)|∫
sec3(x) dx =

1

2

(
sec(x) tan(x) + ln |sec(x) + tan(x)|

)
+ C

Video solution

youtu.be/watch?v=mPuR46ztxZQ

Integrals involving odd powers of sec(x) (and nothing else) are often among
the more intimidating tasks for beginning calculus students. However, larger
odd powers are best handled not by doing the integral directly, but by employ-
ing a reduction forumula. The video in Figure 6.3.13 shows how to obtain a re-
duction formula for the integral of sec2k+1(x); this formula allows us to express

https://www.youtube.com/watch?v=yYbn6R20qTk
https://www.youtube.com/watch?v=QsdKxEr3jG8
https://www.youtube.com/watch?v=mPuR46ztxZQ
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the integral in terms of an integral where the power of sec(x) is reduced by two.

youtu.be/watch?v=Om0iOgV9IwA

Figure 6.3.13 Deriving a power reduc-
tion formula for secant integrals

We give one more example.

Example 6.3.14 Integrating powers of tangent and secant.

Evaluate
∫
tan6(x) dx.

Solution. We employ Rule 3 of Key Idea 6.3.8.∫
tan6(x) dx =

∫
tan4(x) tan2(x) dx

=

∫
tan4(x)

(
sec2(x)− 1

)
dx

=

∫
tan4(x) sec2(x) dx−

∫
tan4(x) dx

Integrate the first integral with substitution, u = tan(x); integrate the
second by employing rule Rule 4 again.

=
1

5
tan5(x)−

∫
tan2(x) tan2(x) dx

=
1

5
tan5(x)−

∫
tan2(x)

(
sec2(x)− 1

)
dx

=
1

5
tan5(x)−

∫
tan2(x) sec2(x) dx︸ ︷︷ ︸

a

+

∫
tan2(x) dx︸ ︷︷ ︸

b

Again, use substitution (u = tan(x)) for the first integral (a) and Rule 4
for the second (b).

=
1

5
tan5(x)− 1

3
tan3(x) +

∫ (
sec2(x)− 1

)
dx∫

tan6(x) dx =
1

5
tan5(x)− 1

3
tan3(x) + tan(x)− x+ C.

Video solution

youtu.be/watch?v=MUDKKDz3_C8

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

Section 6.4 introduces an integration technique known as Trigonometric Sub-
stitution, a clever combination of Substitution and the Pythagorean Theorem.

https://www.youtube.com/watch?v=Om0iOgV9IwA
https://www.youtube.com/watch?v=MUDKKDz3_C8
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6.3.4 Exercises

Terms and Concepts

1. (□ True □ False)
∫
sin2(x) cos2(x) dx cannot be evaluated using the techniques described in this section

since both powers of sin(x) and cos(x) are even.

2. (□ True □ False)
∫
sin3(x) cos3(x) dx cannot be evaluated using the techniques described in this section

since both powers of sin(x) and cos(x) are odd.

3. (□ True □ False) This section addresses how to evaluate indefinite integrals such as
∫
sin5(x) tan3(x) dx.

4. (□ True □ False) Sometimes computer programs evaluate integrals involving trigonometric functions dif-
ferently than one would using the techniques of this section. When this is the case, the techniques of this
section have failed and one should only trust the answer given by the computer.

Problems

Exercise Group. Evaluate the indefinite integral.

5.
∫
sin(x) cos4(x) dx 6.

∫
sin3(x) cos(x) dx

7.
∫
sin3(x) cos4(x) dx 8.

∫
sin3(x) cos5(x) dx

9.
∫
sin6(x) cos5(x) dx 10.

∫
sin2(x) cos7(x) dx

11.
∫
sin2(x) cos2(x) dx 12.

∫
sin(5x) cos(3x) dx

13.
∫
sin(x) cos(3x) dx 14.

∫
sin(2x) sin(9x) dx

15.
∫
sin(πx) sin(7πx) dx 16.

∫
cos(x) cos(2x) dx

17.
∫
cos
(π
3
x
)
cos(πx) dx 18.

∫
tan4(x) sec2(x) dx

19.
∫
tan2(x) sec4(x) dx 20.

∫
tan7(x) sec4(x) dx

21.
∫
tan8(x) sec2(x) dx 22.

∫
tan3(x) sec9(x) dx

23.
∫
tan5(x) sec2(x) dx 24.

∫
tan4(x) dx

25.
∫
sec5(x) dx 26.

∫
tan2(x) sec(x) dx

27.
∫
tan2(x) sec3(x) dx

Exercise Group. Evaluate the definite integral. Note: the corresponding indefinite integrals appear in Exercises 5–27.

28.
∫ 3π

2

0

sin(x) cos4(x) dx 29.
∫ 3π

2

− 3π
2

sin3(x) cos(x) dx

30.
∫ 2π

−2π

sin2(x) cos7(x) dx 31.
∫ 2π

0

sin(5x) cos(3x) dx
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32.
∫ π

2

−π
2

cos(x) cos(2x) dx 33.
∫ π

4

0

tan4(x) sec2(x) dx

34.
∫ π/4

−π/4

tan2(x) sec4(x) dx
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6.4 Trigonometric Substitution

In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π

2
(6.4.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integration techniques, including Sub-

stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte-
gration skill. This techniqueworks on the sameprinciple as Substitution as found
in Section 6.1, though it can feel “backward.” In Section 6.1, we setu = f(x), for
some function f , and replaced f(x)with u. In this section, we will set x = f(θ),
where f is a trigonometric function, then replace x with f(θ).

youtu.be/watch?v=l3gtQyPLr-E

Figure 6.4.1 Video introduction to
Section 6.4

We start by demonstrating this method in evaluating the integral in Equa-
tion (6.4.1). After the example, we will generalize the method and give more
examples.

Example 6.4.2 Using Trigonometric Substitution.

Evaluate
∫ 3

−3

√
9− x2 dx.

Solution. We begin by noting that 9
(
sin2(θ) + cos2(θ)

)
= 9, and

hence 9 cos2(θ) = 9 − 9 sin2(θ). If we let x = 3 sin(θ), then 9 − x2 =
9− 9 sin2(θ) = 9 cos2(θ).
Setting x = 3 sin(θ) gives dx = 3 cos(θ) dθ. We are almost ready
to substitute. We also wish to change our bounds of integration. The
bound x = −3 corresponds to θ = −π/2 (for when θ = −π/2,
x = 3 sin(θ) = −3). Likewise, the bound of x = 3 is replaced by the
bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2(θ) (3 cos(θ)) dθ

=

∫ π/2

−π/2

3
√
9 cos2(θ) cos(θ) dθ

=

∫ π/2

−π/2

3 |3 cos(θ)| cos(θ) dθ.

On [−π/2, π/2], cos(θ) is always positive, so we can drop the absolute
value bars, then employ a power-reducing formula:∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

9 cos2(θ) dθ

=

∫ π/2

−π/2

9

2

(
1 + cos(2θ)

)
dθ

=
9

2

(
θ +

1

2
sin(2θ)

)∣∣∣∣π/2
−π/2

https://www.youtube.com/watch?v=l3gtQyPLr-E
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=
9

2
π.

This matches our answer from before.

Video solution

youtu.be/watch?v=5CKWeQvnGAU

We now describe in detail Trigonometric Substitution. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the rela-
tionships between x and θ.

Key Idea 6.4.3 Trigonometric Substitution.

1. Integrands containing
√
a2 − x2.

Let x = a sin(θ), dx = a cos(θ) dθ.
Thus θ = sin−1(x/a), for −π/2 ≤
θ ≤ π/2. On this interval, cos(θ) ≥
0, so

√
a2 − x2 = a cos(θ).

√
a2 − x2

x
a

θ

Figure 6.4.4

2. Integrands containing
√
x2 + a2.

Let x = a tan(θ), dx = a sec2(θ) dθ.
Thus θ = tan−1(x/a), for −π/2 <
θ < π/2. On this interval, sec(θ) >
0, so

√
x2 + a2 = a sec(θ).

a

x√ x
2 +

a
2

θ

Figure 6.4.5

3. Integrands containing
√
x2 − a2.

Let x = a sec(θ), dx =
a sec(θ) tan(θ) dθ. Thus
θ = sec−1(x/a). If x/a ≥ 1,
then 0 ≤ θ < π/2; if x/a ≤ −1,
then π/2 < θ ≤ π. We restrict
our work to where x ≥ a, so
x/a ≥ 1, and 0 ≤ θ < π/2.
On this interval, tan(θ) ≥ 0, so√
x2 − a2 = a tan(θ).

a

√
x
2−

a
2

x

θ

Figure 6.4.6

Example 6.4.7 Using Trigonometric Substitution.

Evaluate
∫

1√
5 + x2

dx.

Solution. Using Item 2 in Key Idea 6.4.3, we recognize a =
√
5 and set

x =
√
5 tan(θ). This makes dx =

√
5 sec2(θ) dθ. We will use the fact

that
√
5 + x2 =

√
5 + 5 tan2(θ) =

√
5 sec2(θ) =

√
5 sec(θ). Substi-

https://www.youtube.com/watch?v=5CKWeQvnGAU
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tuting, we have:∫
1√

5 + x2
dx =

∫
1√

5 + 5 tan2(θ)

√
5 sec2(θ) dθ

=

∫ √
5 sec2(θ)√
5 sec(θ)

dθ

=

∫
sec(θ) dθ

= ln |sec(θ) + tan(θ)|+ C.

While the integration steps are over, we are not yet done. The original
problem was stated in terms of x, whereas our answer is given in terms
of θ. We must convert back to x.
The reference triangle given in Figure 6.4.5 helps. With x =

√
5 tan(θ),

we have

tan(θ) =
x√
5
and sec(θ) =

√
x2 + 5√

5
.

This gives ∫
1√

5 + x2
dx = ln |sec(θ) + tan(θ)|+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic identity to
simplify it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5 + x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣∣√x2 + 5 + x

∣∣∣+ C

= ln
∣∣∣√x2 + 5 + x

∣∣∣+ C,

where the ln
(
1/
√
5
)
term is absorbed into the constant C. (In Sec-

tion 6.6 we will learn another way of approaching this problem.)

Video solution

youtu.be/watch?v=2a9Oks-FCg0

Example 6.4.8 Using Trigonometric Substitution.

Evaluate
∫ √

4x2 − 1 dx.

Solution. We start by rewriting the integrand so that it looks like√
x2 − a2 for some value of a:√

4x2 − 1 =

√
4

(
x2 − 1

4

)

= 2

√
x2 −

(
1

2

)2

.

So we have a = 1/2, and following Part 3 of Key Idea 6.4.3, we set

https://www.youtube.com/watch?v=2a9Oks-FCg0
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x = 1
2 sec(θ), and hence dx = 1

2 sec(θ) tan(θ) dθ. We now rewrite the
integral with these substitutions:

∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1

2

)2

dx

=

∫
2

√
1

4
sec2(θ)− 1

4

(
1

2
sec(θ) tan(θ)

)
dθ

=

∫ √
1

4
(sec2(θ)− 1)

(
sec(θ) tan(θ)

)
dθ

=

∫ √
1

4
tan2(θ)

(
sec(θ) tan(θ)

)
dθ

=

∫
1

2
tan2(θ) sec(θ) dθ

=
1

2

∫ (
sec2(θ)− 1

)
sec(θ) dθ

=
1

2

∫ (
sec3(θ)− sec(θ)

)
dθ.

We integrated sec3(θ) in Example 6.3.11, finding its antiderivatives to be∫
sec3(θ) dθ =

1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
+ C.

Thus∫ √
4x2 − 1 dx =

1

2

∫ (
sec3(θ)− sec(θ)

)
dθ

=
1

2

(
1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
− ln |sec(θ) + tan(θ)|

)
+ C

=
1

4
(sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|) + C.

We are not yet done. Our original integral is given in terms of x, whereas
our final answer, as given, is in terms of θ. Weneed to rewrite our answer
in terms of x. With a = 1/2, and x = 1

2 sec(θ), the reference triangle in
Figure 6.4.6 shows that

tan(θ) =
√
x2 − 1/4

/
(1/2) = 2

√
x2 − 1/4 and sec(θ) = 2x.

Thus

1

4

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)
+ C

=
1

4

(
2x · 2

√
x2 − 1/4− ln

∣∣∣2x+ 2
√

x2 − 1/4
∣∣∣ )+ C

=
1

4

(
4x
√
x2 − 1/4− ln

∣∣∣2x+ 2
√
x2 − 1/4

∣∣∣ )+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1

4

(
4x
√
x2 − 1/4− ln

∣∣∣2x+ 2
√
x2 − 1/4

∣∣∣ )+ C.

Video solution

youtu.be/watch?v=0oCjVzIa_t8

https://www.youtube.com/watch?v=0oCjVzIa_t8
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Example 6.4.9 Using Trigonometric Substitution.

Evaluate
∫ √

4− x2

x2
dx.

Solution. We use Part 1 of Key Idea 6.4.3 with a = 2, x = 2 sin(θ),
dx = 2 cos(θ) and hence

√
4− x2 = 2 cos(θ). This gives∫ √

4− x2

x2
dx =

∫
2 cos(θ)
4 sin2(θ)

(2 cos(θ)) dθ

=

∫
cot2(θ) dθ

=

∫
(csc2(θ)− 1) dθ

= − cot(θ)− θ + C.

We need to rewrite our answer in terms of x. Using the reference tri-
angle found in Figure 6.4.4, we have cot(θ) =

√
4− x2/x and θ =

sin−1(x/2). Thus∫ √
4− x2

x2
dx = −

√
4− x2

x
− sin−1

(x
2

)
+ C.

Video solution

youtu.be/watch?v=E37-2LvYSsg

Trigonometric Substitution can be applied in many situations, even those
not of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example,

we apply it to an integral we already know how to handle.

Example 6.4.10 Using Trigonometric Substitution.

Evaluate
∫

1

x2 + 1
dx.

Solution. We know the answer already as tan−1(x) + C. We apply
Trigonometric Substitution here to show that we get the same answer
without inherently relying on knowledge of the derivative of the arctan-
gent function.
Using Part 2 of Key Idea 6.4.3, let x = tan(θ), dx = sec2(θ) dθ and note
that x2 + 1 = tan2(θ) + 1 = sec2(θ). Thus∫

1

x2 + 1
dx =

∫
1

sec2(θ)
sec2(θ) dθ

=

∫
1 dθ

= θ + C.

Since x = tan(θ), θ = tan−1(x), and we conclude that
∫

1

x2 + 1
dx =

tan−1(x) + C.

The next example is similar to the previous one in that it does not involve a
square-root. It shows how several techniques and identities can be combined
to obtain a solution.

https://www.youtube.com/watch?v=E37-2LvYSsg
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Example 6.4.11 Using Trigonometric Substitution.

Evaluate
∫

1

(x2 + 6x+ 10)2
dx.

Solution. We start by completing the square, then make the substitu-
tionu = x+3, followed by the trigonometric substitution of u = tan(θ):∫

1

(x2 + 6x+ 10)2
dx =

∫
1(

(x+ 3)2 + 1
)2 dx =

∫
1

(u2 + 1)2
du.

Now make the substitution u = tan(θ), du = sec2(θ) dθ:

=

∫
1

(tan2(θ) + 1)2
sec2(θ) dθ

=

∫
1

(sec2(θ))2
sec2(θ) dθ

=

∫
cos2(θ) dθ.

Applying a power reducing formula, we have

=

∫ (
1

2
+

1

2
cos(2θ)

)
dθ

=
1

2
θ +

1

4
sin(2θ) + C.

(6.4.2)

Weneed to return to the variablex. Asu = tan(θ), θ = tan−1(u). Using
the identity sin(2θ) = 2 sin(θ) cos(θ) and using the reference triangle
found in Figure 6.4.5, we have

1

4
sin(2θ) =

1

2

u√
u2 + 1

· 1√
u2 + 1

=
1

2

u

u2 + 1
.

Finally, we return to x with the substitution u = x + 3. We start with
the expression in Equation (6.4.2):

1

2
θ +

1

4
sin(2θ) + C =

1

2
tan−1(u) +

1

2

u

u2 + 1
+ C

=
1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Stating our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Video solution

youtu.be/watch?v=5JAXeV1-vCo

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converting back tox) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.

https://www.youtube.com/watch?v=5JAXeV1-vCo
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Example 6.4.12 Definite integration and Trigonometric Substitution.

Evaluate
∫ 5

0

x2

√
x2 + 25

dx.

Solution. Using Part 2 of Key Idea 6.4.3, we set x = 5 tan(θ), dx =
5 sec2(θ) dθ, and note that

√
x2 + 25 = 5 sec(θ). As we substitute, we

can also change the bounds of integration.
The lower bound of the original integral is x = 0. As x = 5 tan(θ),
we solve for θ and find θ = tan−1(x/5). Thus the new lower bound is
θ = tan−1(0) = 0. The original upper bound is x = 5, thus the new
upper bound is θ = tan−1(5/5) = π/4.
Thus we have∫ 5

0

x2

√
x2 + 25

dx =

∫ π/4

0

25 tan2(θ)
5 sec(θ)

5 sec2(θ) dθ

= 25

∫ π/4

0

tan2(θ) sec(θ) dθ.

We encountered this indefinite integral in Example 6.4.8wherewe found∫
tan2(θ) sec(θ) dθ =

1

2

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)
.

So

25

∫ π/4

0

tan2(θ) sec(θ) dθ =
25

2

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)∣∣∣∣π/4
0

=
25

2

(√
2− ln(

√
2 + 1)

)
≈ 6.661.

Video solution

youtu.be/watch?v=Pz56QfleHX4

The following equalities are very usefulwhenevaluating integrals using Trigono-
metric Substitution.

Key Idea 6.4.13 Useful Equalities with Trigonometric Substitution.

1. sin(2θ) = 2 sin(θ) cos(θ)

2. cos(2θ) = cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ)

3.
∫
sec3(θ) dθ =

1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
+ C

4.
∫
cos2(θ) dθ =

∫
1

2

(
1 + cos(2θ)

)
dθ =

1

2

(
θ + sin(θ) cos(θ)

)
+

C.

The next section introduces Partial Fraction Decomposition, which is an alge-
braic technique that turns “complicated” fractions into sums of “simpler” frac-
tions, making integration easier.

https://www.youtube.com/watch?v=Pz56QfleHX4
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6.4.1 Exercises

Terms and Concepts

1. Trigonometric Substitution works on the same principles as Integration by Substitution, though it can feel “
”.

2. If one uses Trigonometric Substitution on an integrand containing
√
36− x2, then one should set x =

.

3. Consider the Pythagorean Identity sin2(θ) + cos2(θ) = 1.

a. What identity is obtained when both sides are divided by cos2(θ)?

b. Use the new identity to simplify 9 tan2(θ) + 9.

4. Why does Part 1 of Key Idea 6.4.3 state that
√
a2 − x2 = a cos(θ), and not |a cos(θ)| ?

Problems

Exercise Group. Apply Trigonometric Substitution to evaluate the indefinite integral.

5.
∫ √

x2 + 1 dx 6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx 8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx 10.
∫ √

x2 − 16 dx

11.
∫ √

36x2 + 1 dx 12.
∫ √

1− 36x2 dx

13.
∫ √

49x2 − 1 dx 14.
∫

8√
x2 + 3

dx

15.
∫

9√
13− x2

dx 16.
∫

2√
x2 − 7

dx

Exercise Group. Evaluate the indefinite integral. Trigonometric Substitution may not be required.

17.
∫ √

x2 − 3

x
dx 18.

∫
1

(x2 + 1)2
dx

19.
∫

x√
x2 − 6

dx 20.
∫

x2
√

1− x2 dx

21.
∫

x

(x2 + 36)(
3
2 )

dx 22.
∫

7x2

√
x2 − 6

dx

23.
∫

1

(x2 − 12x+ 117)
2 dx 24.

∫
x2(1− x2)−3/2 dx

25.
∫ √

5− x2

2x2
dx 26.

∫
x2

√
x2 + 3

dx

Exercise Group. Evaluate the definite integral by making the proper trigonometric substitution and changing the
bounds of integration. (Note: the corresponding indefinite integrals appeared previously in the Section 6.4 exercises.)

27.
∫ 1

−1

√
1− x2 dx 28.

∫ 7

4

√
x2 − 16 dx
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29.
∫ 5

0

√
x2 + 4 dx 30.

∫ 7

−7

1

(x2 + 1)2
dx

31.
∫ 2

−2

√
9− x2 dx 32.

∫ 1

−1

x2
√

1− x2 dx
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6.5 Partial Fraction Decomposition

In this sectionwe investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = p(x)

q(x) , where p(x) and q(x)
are polynomials and q(x) ̸= 0. Such functions arise in many contexts, one of
which is the solving of certain fundamental differential equations.

youtu.be/watch?v=BoUWS_SVr8A

Figure 6.5.1 Video introduction to
Section 6.5

We beginwith an example that demonstrates themotivation behind this sec-

tion. Consider the integral
∫

1

x2 − 1
dx. We do not have a simple formula for

this (if the denominator were x2 + 1, we would recognize the antiderivative as
being the arctangent function). It can be solved using Trigonometric Substitu-
tion, but note how the integral is easy to evaluate once we realize:

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Thus ∫
1

x2 − 1
dx =

∫
1/2

x− 1
dx−

∫
1/2

x+ 1
dx

=
1

2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This section teaches how to decompose

1

x2 − 1
into

1/2

x− 1
− 1/2

x+ 1
.

We start with a rational function f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadratic terms. The following Key Idea states how to decompose a
rational function into a sum of rational functions whose denominators are all of
lower degree than q.

Key Idea 6.5.2 Partial Fraction Decomposition.

Let
p(x)

q(x)
be a rational function, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decompositionof p(x)q(x)

will contain the sum
A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. Quadratic Terms: Let x2 + bx+ c be an irreducible quadratic that
divides q(x), where (x2+bx+c)n is the highest power ofx2+bx+

c that divides q(x). Then the decomposition of p(x)
q(x) will contain

the sum
B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai,Bi and Ci:

1. Multiply all fractions by q(x), clearing the denominators. Collect
like terms.

https://www.youtube.com/watch?v=BoUWS_SVr8A
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2. Equate the resulting coefficients of the powers of x and solve the
resulting system of linear equations.

An irreducible quadratic is a qua-
dratic that has no real solutions.
Solving ax2 + bx + c = 0 us-
ing the quadratic equation will
determine if a quadratic is irre-
ducible. Completing the square
(which is a common integration
technique) will also tell you if a
quadratic is irreducible.

The following examples will demonstrate how to put this Key Idea into prac-
tice. Example 6.5.3 stresses the decomposition aspect of the Key Idea.

Example 6.5.3 Decomposing into partial fractions.

Decompose f(x) =
1

(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2
with-

out solving for the resulting coefficients.
Solution. The denominator is already factored, as both x2 + x+ 2 and
x2 + x + 7 cannot be factored further. We need to decompose f(x)
properly. Since (x + 5) is a linear term that divides the denominator,
there will be a

A

x+ 5

term in the decomposition.
As (x − 2)3 divides the denominator, we will have the following terms
in the decomposition:

B

x− 2
,

C

(x− 2)2
and

D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+H

x2 + x+ 7
and

Ix+ J

(x2 + x+ 7)2
.

All together, we have

1

(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=
A

x+ 5
+

B

x− 2
+

C

(x− 2)2
+

D

(x− 2)3

+
Ex+ F

x2 + x+ 2
+

Gx+H

x2 + x+ 7
+

Ix+ J

(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not
“hard.”

Video solution

youtu.be/watch?v=9gRlWESr8lM

Example 6.5.4 Decomposing into partial fractions.

Perform the partial fraction decomposition of
1

x2 − 1
.

Solution. The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1

x2 − 1
=

A

x− 1
+

B

x+ 1
.

https://www.youtube.com/watch?v=9gRlWESr8lM
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To solve forA andB, first multiply through by x2 − 1 = (x− 1)(x+1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)

x+ 1

= A(x+ 1) +B(x− 1)

= Ax+A+Bx−B

= (A+B)x+ (A−B),

by collecting like terms.
The next step is key. Note the equality we have:

1 = (A+B)x+ (A−B).

For clarity’s sake, rewrite the left hand side as

0x+ 1 = (A+B)x+ (A−B).

On the left, the coefficient of the x term is 0; on the right, it is (A+B).
Since both sides are equal, we must have that 0 = A+B.
Likewise, on the left, we have a constant term of 1; on the right, the
constant term is (A−B). Therefore we have 1 = A−B.
We have two linear equations with two unknowns. This one is easy to
solve by hand, leading to

A+B = 0

A−B = 1

If we add these two equations, we get 2A = 1 ⇒ A = 1/2. Substitution
into the first equation gives B = −1/2.
Thus

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Video solution

youtu.be/watch?v=u-avVoj3qR0

There is anothermethod for finding the partial fraction decomposition called
the “Heaviside” method, named after Oliver Heaviside. We show a variation of
this process using the same example as in Example 6.5.3.

Example 6.5.5 Decomposing into partial fractions using the Heaviside
method.

Perform the partial fraction decomposition of
1

x2 − 1
.

Solution. As we saw in Example 6.5.4,

1

x2 − 1
=

A

x− 1
+

B

x+ 1
.

To solve forA andB using the Heaviside method, we will build to a com-
mon denominator:

1

x2 − 1
=

A(x+ 1)

(x− 1)(x+ 1)
+

B(x− 1)

(x+ 1)(x− 1)

=
A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

Now since the denomiators match, we will only consider the numerator

https://www.youtube.com/watch?v=u-avVoj3qR0
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equation (essentially if we multiply both sides of the equation by (x −
1)(x+ 1), we will clear the denomiators):

1 = A(x+ 1) +B(x− 1)

Now we substitute in “convenient” values of x. When x = 1, we get
1 = 2A ⇒ A = 1/2. When x = −1, we get 1 = −2B ⇒ B = −1/2.
You may note that x = 1 and x = −1 were not in the domain of the
original fraction. However,

1

x2 − 1
=

A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

is an identity, meaning it is true for all values of x, even those for which
the equation is undefined. We could have chosen any values of x to
substitute. Whenever possible, we choose values of x that will make
one of the factors zero. In this way, we can avoid solving a system of
equations.
Thus as in Example 6.5.3, we get

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Video solution

youtu.be/watch?v=QfEgKEhkL6o

For the remaining examples, we will use a combination of systems of equa-
tions and the Heaviside method to get partial fraction decompositions.

Example 6.5.6 Integrating using partial fractions.

Use partial fraction decomposition to integrate
∫

1

(x− 1)(x+ 2)2
dx.

Solution. We decompose the integrand as follows, as described by Key
Idea 6.5.2:

1

(x− 1)(x+ 2)2
=

A

x− 1
+

B

x+ 2
+

C

(x+ 2)2
.

To solve for A,B and C, we multiply both sides by (x− 1)(x+ 2)2:

1 = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1) (6.5.1)

Now we collect like terms:

1 = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1)

= Ax2 + 4Ax+ 4A+Bx2 +Bx− 2B + Cx− C

= (A+B)x2 + (4A+B + C)x+ (4A− 2B − C)

Equation (6.5.1) offers a direct
route to finding the values of A,
B and C. Since the equation
holds for all values of x, it holds
in particular when x = 1. How-
ever, when x = 1, the right
hand side simplifies to A(1 +
2)2 = 9A. Since the left hand
side is still 1, we have 1 = 9A.
Hence A = 1/9.
Likewise, the equality holds
when x = −2; this leads to
the equation 1 = −3C. Thus
C = −1/3.
Knowing A and C, we can find
the value of B by choosing yet
another value of x, such as x =
0, and solving forB.

We have

0x2 + 0x+ 1 = (A+B)x2 + (4A+B + C)x+ (4A− 2B − C)

leading to the equations

A+B = 0, 4A+B + C = 0 and 4A− 2B − C = 1.

These three equations of three unknowns lead to a unique solution:

A = 1/9, B = −1/9 and C = −1/3.

https://www.youtube.com/watch?v=QfEgKEhkL6o


6.5. PARTIAL FRACTION DECOMPOSITION 337

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9

x− 1
dx+

∫
−1/9

x+ 2
dx+

∫
−1/3

(x+ 2)2
dx.

Each can be integrated with a simple substitution with u = x − 1 or
u = x + 2 (or by directly applying Key Idea 6.1.5 as the denominators
are linear functions). The end result is∫

1

(x− 1)(x+ 2)2
dx =

1

9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Video solution

youtu.be/watch?v=LqE8pvIvJco

In examples like Example 6.5.6 where there are repeated roots, there is an
extension of the Heaviside method using derivatives. This method is explained
in Figure 6.5.7 below.

youtu.be/watch?v=0yrzd4JhR3I

Figure 6.5.7 Alternate method for
finding coefficients in Example 6.5.6

Example 6.5.8 Integrating using partial fractions.

Use partial fraction decomposition to integrate
∫

x3

(x− 5)(x+ 3)
dx.

Solution. Key Idea 6.5.2 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case
here, we begin by using polynomial division to reduce the degree of the
numerator. We omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2 +

19x+ 30

(x− 5)(x+ 3)
.

Using Key Idea 6.5.2, we can rewrite the new rational function as:

19x+ 30

(x− 5)(x+ 3)
=

A

x− 5
+

B

x+ 3

for appropriate values of A andB. Clearing denominators, we have
The values of A and B can
be quickly found using the
technique described in Exam-
ple 6.5.6, or they can be found
by equating coefficients, as we
do in Example 6.5.8.

19x+ 30 = A(x+ 3) +B(x− 5)

= (A+B)x+ (3A− 5B).

This implies that:

19 = A+B

30 = 3A− 5B.

Solving this system of linear equations gives

125/8 = A

27/8 = B.

We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2 +

125/8

x− 5
+

27/8

x+ 3

)
dx

=
x2

2
+ 2x+

125

8
ln |x− 5|+ 27

8
ln |x+ 3|+ C.

Video solution

youtu.be/watch?v=1cszweGfYR0

https://www.youtube.com/watch?v=LqE8pvIvJco
https://www.youtube.com/watch?v=0yrzd4JhR3I
https://www.youtube.com/watch?v=1cszweGfYR0
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Example 6.5.9 Integrating using partial fractions.

Use partial fraction decomposition to evaluate∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx.

Solution. The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.2. We have:

7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
=

A

x+ 1
+

Bx+ C

x2 + 6x+ 11
.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)

Now, letting x = −1 we have 30 = 6A ⇒ A = 5. When x = 0,
54 = 11A + C. But we know that A = 5, so 54 = 55 + C ⇒ C = −1
Finally, we choose x = 1 (with A = 5, C = −1) we have 92 = 90 +
(B − 1)(2) ⇒ B = 2.
Thus∫

7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1

x2 + 6x+ 11

)
dx.

The first term of this new integrand is easy to evaluate; it leads to a
5 ln |x+ 1| term. The second term is not hard, but takes several steps
and uses substitution techniques.
The integrand

2x− 1

x2 + 6x+ 11
has a quadratic in the denominator and a

linear term in the numerator. This leads us to try substitution. Let u =
x2+6x+11, so du = (2x+6) dx. The numerator is 2x−1, not 2x+6,
but we can get a 2x+ 6 term in the numerator by adding 0 in the form
of “7− 7.”

2x− 1

x2 + 6x+ 11
=

2x− 1 + 7− 7

x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

We can now integrate the first term with substitution, leading to a
ln
∣∣x2 + 6x+ 11

∣∣ term. The final term can be integrated using arctan-
gent. (We can tell there is no further factoring for this quadratic since
the denominator has no real solutions). First, complete the square in
the denominator:

7

x2 + 6x+ 11
=

7

(x+ 3)2 + 2
.

An antiderivative of the latter term can be found using Theorem 6.1.20
and substitution:∫

7

x2 + 6x+ 11
dx =

7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx
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=

∫ (
5

x+ 1
+

2x− 1

x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

(x+ 3)2 + 2
dx

= 5 ln |x+ 1|+ ln
∣∣x2 + 6x+ 11

∣∣− 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember
that one is not expected to “see” the final answer immediately after see-
ing the problem. Rather, given the initial problem, we break it down into
smaller problems that are easier to solve. The final answer is a combina-
tion of the answers of the smaller problems.

Video solution

youtu.be/watch?v=KNN0krvf1UE

Partial Fraction Decomposition is an important tool when dealing with ratio-
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

Section 6.6 introduces new functions, called the Hyperbolic Functions. They
will allow us tomake substitutions similar to those foundwhen studying Trigono-
metric Substitution, allowing us to approach even more integration problems.

https://www.youtube.com/watch?v=KNN0krvf1UE
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6.5.1 Exercises

Terms and Concepts

1. Partial Fraction Decomposition is a method of rewriting functions.

2. (□ True □ False) It is sometimes necessary to use polynomial division before using Partial Fraction De-
composition.

Exercise Group. Decompose without solving for the coefficients, as done in Example 6.5.3.

3.
1

x2 − 6x
4.

−x− 5

x2 − 9

5.
x− 7

x2 − 6
6.

7x+ 1

x3 + 5x

Problems

Exercise Group. Evaluate the indefinite integral.

7.
∫

14x+ 17

x2 + x− 6
dx 8.

∫
− 32

x2 − 4x
dx

9.
∫

12

4x2 − 16
dx 10.

∫
33− 8x

33x− 4x2 − 8
dx

11.
∫

x+ 12

(x+ 9)
2 dx 12.

∫
7x+ 54

(x+ 7)
2 dx

13.
∫

4x2 + 24x+ 48

x(x+ 4)
2 dx 14.

∫
16x2 − 72x− 216

(x+ 3) (x− 9) (9− 3x)
dx

15.
∫

24x2 + 168x

(9x− 9) (5x+ 3) (7x+ 1)
dx 16.

∫
x2 − 18

x2 + 3x− 10
dx

17.
∫

x3

x2 − 12x+ 32
dx 18.

∫
2x2 − 12x+ 24

x2 − 6x+ 12
dx

19.
∫

1

x3 − 8x2 + 18x
dx 20.

∫
x2 + 16x+ 17

x2 + 8x+ 22
dx

21.
∫

− 55x+ 1

(x− 9) (3x2 + x− 4)
dx 22.

∫
13x2 + 82x+ 109

(x+ 6) (x2 + 4x+ 5)
dx

23.
∫

(3)x2 − (2)x− (4)

(x− 7) (x2 + 9)
dx 24.

∫
x2 + 4x− 29

(x+ 4) (x2 − 2x+ 5)
dx

25.
∫

97− 35x

(x+ 9) (x2 − 2x+ 4)
dx 26.

∫
(31)−

(
(2)x2 + (1)x

)
(x+ 1) (x2 − 8x+ 21)

dx

Exercise Group. Evaluate the definite integral.

27.
∫ 2

1

11x− 47

(x+ 3) (x− 7)
dx 28.

∫ 9

0

− 16x+ 19

(3x+ 2) (x+ 9)
dx

29.
∫ 1

−1

x2 + 9x+ 11

(x− 6) (x2 + 8x+ 17)
dx 30.

∫ 1

0

x

(x+ 1)(x2 + 2x+ 1)
dx
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6.6 Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to
mathematics, physics, and engineering. Among many other applications, they
are used to describe the formation of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many, many connections between them and the stan-
dard trigonometric functions. Figure 6.6.2 demonstrates one such connection.
Just as cosine and sine are used to define points on the circle defined by x2 +
y2 = 1, the functions hyperbolic cosine and hyperbolic sine are used to define
points on the hyperbola x2 − y2 = 1.

youtu.be/watch?v=-6y0xCwCy4s

Figure 6.6.1 Video introduction to
Section 6.6

(cos(θ),sin(θ))

θ

2

x2 + y2 = 1

−1 −0.5 0.5 1

−1

1

x

y

(a)

(cosh(θ),sinh(θ))

θ

2

x2 − y2 = 1

−2 2

−2

2

x

y

(b)

Figure 6.6.2Using trigonometric functions to define points on a circle and hyper-
bolic functions to define points on a hyperbola. The area of the shaded regions
are included in them.

6.6.1 The Hyperbolic Functions and their Properties
We begin with their definition.

Definition 6.6.3 Hyperbolic Functions.

1. cosh(x) =
ex + e−x

2

2. sinh(x) =
ex − e−x

2

3. tanh(x) =
sinh(x)
cosh(x)

4. sech(x) =
1

cosh(x)

5. csch(x) =
1

sinh(x)

6. coth(x) =
cosh(x)
sinh(x) Pronunciation Note:

“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,”

and
“tanh” rhymes with “ranch.”

These hyperbolic functions are graphed in Figure 6.6.4 and Figure 6.6.6.
In the graph of cosh(x) in Figure 6.6.4(a), the graphs of ex/2 and e−x/2 are

included with dashed lines. In the graph of sinh(x) in Figure 6.6.4(b), the graphs
of ex/2 and −e−x/2 are included with dashed lines. As x gets “large,” cosh(x)
and sinh(x) each act like ex/2; when x is a large negative number, cosh(x) acts
like e−x/2 whereas sinh(x) acts like−e−x/2.

https://www.youtube.com/watch?v=-6y0xCwCy4s
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f(x) = cosh(x)

ex/2 e−x/2

−3 −2 −1 1 2 3

−10

−5

5

10

x

y

(a)

f(x) = sinh(x)

ex/2 −e−x/2

−3 −2 −1 1 2 3

−10

−5

5

10

x

y

(b)

Figure 6.6.4 Graphs of sinh(x) and cosh(x)

youtu.be/watch?v=0YP4mVrroVk

Figure 6.6.5 Video presentation of
graphs and basic properties of hyper-
bolic functions

In Figure Figure 6.6.6, notice thedomains of tanh(x) and sech(x) are (−∞,∞),
whereas both coth(x) and csch(x) have vertical asymptotes at x = 0. Also note
the ranges of these functions, especially tanh(x): as x → ∞, both sinh(x) and
cosh(x) approach e−x/2, hence tanh(x) approaches 1.

tanh(x)

coth(x)

−3 −2 −1 1 2 3

−2

2

x

y

(a)

sech(x) csch(x)

−3 −2 −1 1 2 3

−2

2

x

y

(b)

Figure 6.6.6 Graphs of tanh(x), coth(x), csch(x) and cosh(x)

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun-
terparts.

Example 6.6.7 Exploring properties of hyperbolic functions.

Use Definition 6.6.3 to rewrite the following expressions.

1. cosh2(x)− sinh2(x)

2. tanh2(x) + sech2(x)

3. 2 cosh(x) sinh(x)

4.
d

dx

(
cosh(x)

)

5.
d

dx

(
sinh(x)

)
6.

d

dx

(
tanh(x)

)

Solution.

1. By Definition 6.6.3

cosh2(x)− sinh2(x) =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

https://www.youtube.com/watch?v=0YP4mVrroVk
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=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4

4
= 1.

So cosh2(x)− sinh2(x) = 1.

2. Again, use Definition 6.6.3

tanh2(x) + sech2(x) =
sinh2(x)
cosh2(x)

+
1

cosh2(x)

=
sinh2(x) + 1

cosh2(x)
Now use identity from Part 1

=
cosh2(x)
cosh2(x)

= 1.

So tanh2(x) + sech2(x) = 1.

3. Again, use Definition 6.6.3

2 cosh(x) sinh(x) = 2

(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh(x) sinh(x) = sinh(2x).

4. Again, use Definition 6.6.3

d

dx

(
cosh(x)

)
=

d

dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh(x)

So d
dx

(
cosh(x)

)
= sinh(x).

5. Apply derivatives to Definition 6.6.3:

d

dx

(
sinh(x)

)
=

d

dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh(x).

So d
dx

(
sinh(x)

)
= cosh(x).

6. Apply derivatives to Definition 6.6.3:

d

dx

(
tanh(x)

)
=

d

dx

(
sinh(x)
cosh(x)

)
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=
cosh(x) cosh(x)− sinh(x) sinh(x)

cosh2(x)

=
1

cosh2(x)
= sech2(x).

So d
dx

(
tanh(x)

)
= sech2(x).

Video solution

youtu.be/watch?v=VunyFD8keVg

The following Key Idea summarizes many of the important identities relat-
ing to hyperbolic functions. Each can be verified by referring back to Defini-
tion 6.6.3.

Key Idea 6.6.8 Useful Hyperbolic Function Properties.

List 6.6.9 Basic Identities

1. cosh2(x)− sinh2(x) = 1

2. tanh2(x) + sech2(x) = 1

3. coth2(x)− csch2(x) = 1

4. cosh(2x) = cosh2(x) + sinh2(x)

5. sinh(2x) = 2 sinh(x) cosh(x)

6. cosh2(x) =
cosh(2x) + 1

2

7. sinh2(x) =
cosh(2x)− 1

2

List 6.6.10 Derivatives

1.
d

dx

(
cosh(x)

)
= sinh(x)

2.
d

dx

(
sinh(x)

)
= cosh(x)

3.
d

dx

(
tanh(x)

)
= sech2(x)

4.
d

dx

(
sech(x)

)
= − sech(x) tanh(x)

5.
d

dx

(
csch(x)

)
= − csch(x) coth(x)

6.
d

dx

(
coth(x)

)
= − csch2(x)

https://www.youtube.com/watch?v=VunyFD8keVg
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List 6.6.11 Integrals

1.
∫
cosh(x) dx = sinh(x) + C

2.
∫
sinh(x) dx = cosh(x) + C

3.
∫
tanh(x) dx = ln(cosh(x)) + C

4.
∫
coth(x) dx = ln |sinh(x) |+ C

We practice using Key Idea 6.6.8.

Example 6.6.12 Derivatives and integrals of hyperbolic functions.

Evaluate the following derivatives and integrals.

1.
d

dx

(
cosh(2x)

)
2.
∫
sech2(7t− 3) dt

3.
∫ ln(2)

0

cosh(x) dx

Solution.

1. Using the Chain Rule directly, we have d
dx

(
cosh(2x)

)
=

2 sinh(2x). Just to demonstrate that it works, let’s also use the
Basic Identity found in Key Idea 6.6.8: cosh(2x) = cosh2(x) +
sinh2(x).

d

dx

(
cosh(2x)

)
=

d

dx

(
cosh2(x) + sinh2(x)

)
= 2 cosh(x) sinh(x) + 2 sinh(x) cosh(x)
= 4 cosh(x) sinh(x).

Using another Basic Identity, we can see that 4 cosh(x) sinh(x) =
2 sinh(2x). We get the same answer either way.

2. We employ substitution, with u = 7t− 3 and du = 7dt. Applying
Key Ideas 6.1.5 and 6.6.8 we have:∫

sech2(7t− 3) dt =
1

7
tanh(7t− 3) + C.

3. ∫ ln(2)

0

cosh(x) dx = sinh(x)
∣∣∣ln(2)
0

= sinh(ln(2))− sinh(0)
= sinh(ln(2)).
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We can simplify this last expression as sinh(x) is based on expo-
nentials:

sinh(ln(2)) =
eln(2) − e− ln(2)

2

=
2− 1/2

2

=
3

4
.

Video solution

youtu.be/watch?v=MwYZHh9UaRo

6.6.2 Inverse Hyperbolic Functions
Just as the inverse trigonometric functions are useful in certain applications, the
inverse hyperbolic functions are useful with others. Figure 6.6.15(a) shows re-
striction on the domain of cosh(x) to make the function one-to-one and the re-
sulting domain and range of its inverse function. Since sinh(x) is already one-to-
one, no domain restriction is needed as shown in Figure 6.6.15(b). Since sech(x)
is not one to one, it also needs a restricted domain in order to be invertible. Fig-
ure 6.6.15(d) shows the graph of sech−1(x). You should carefully compare the
graph of this function to the graph given in Figure 6.6.6(b) to see how this inverse
was constructed. The rest of the hyperbolic functions area already one-to-one
and need no domain restrictions. Their graphs are also shown in Figure 6.6.15.

Because the hyperbolic functions are defined in terms of exponential func-
tions, their inverses can be expressed in terms of logarithms as shown in Key
Idea 6.6.16. It is often more convenient to refer to sinh−1(x) than to ln

(
x +√

x2 + 1
)
, especially when one is working on theory and does not need to com-

pute actual values. On the other hand, when computations are needed, technol-
ogy is often helpful but many hand-held calculators lack a convenient sinh−1(x)
button. (Often it can be accessed under a menu system, but not conveniently.)
In such a situation, the logarithmic representation is useful. The reader is not
encouraged to memorize these, but rather know they exist and know how to
use them when needed.

youtu.be/watch?v=znJxWgMJPw8

Figure 6.6.13 Finding the inverse of
f(x) = sinh(x)

Table 6.6.14 Domains and ranges of the hyperbolic and inverse hyperbolic functions

Function Domain Range Function Domain Range
cosh(x) [0,∞) [1,∞) cosh−1(x) [1,∞) [0,∞)

sinh(x) (−∞,∞) (−∞,∞) sinh−1(x) (−∞,∞) (−∞,∞)

tanh(x) (−∞,∞) (−1, 1) tanh−1(x) (−1, 1) (−∞,∞)

sech(x) [0,∞) (0, 1] sech−1(x) (0, 1] [0,∞)

csch(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞) csch−1(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)

coth(x) (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞) coth−1(x) (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

https://www.youtube.com/watch?v=MwYZHh9UaRo
https://www.youtube.com/watch?v=znJxWgMJPw8
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y = cosh−1(x)

y = cosh(x)
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Figure 6.6.15 Graphs of the hyperbolic functions (with restricted domains) and
their inverses

Key Idea 6.6.16 Logarithmic definitions of Inverse Hyperbolic Func-
tions.

1. cosh−1(x) = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1(x) =
1

2
ln
(
1 + x

1− x

)
; |x| < 1

3. sech−1(x) = ln

(
1 +

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1(x) = ln
(
x+

√
x2 + 1

)
5. coth−1(x) =

1

2
ln
(
x+ 1

x− 1

)
; |x| > 1

6. csch−1(x) = ln

(
1

x
+

√
1 + x2

|x|

)
; x ̸= 0

The following Key Ideas give the derivatives and integrals relating to the in-
verse hyperbolic functions. In Key Idea 6.6.18, both the inverse hyperbolic and
logarithmic function representations of the antiderivative are given, based on
Key Idea 6.6.16. Again, these latter functions are often more useful than the
former. Note how inverse hyperbolic functions can be used to solve integrals
we used Trigonometric Substitution to solve in Section 6.4.
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Key Idea 6.6.17 Derivatives Involving Inverse Hyperbolic Functions.

1.
d

dx

(
cosh−1(x)

)
=

1√
x2 − 1

;

x > 1

2.
d

dx

(
sinh−1(x)

)
=

1√
x2 + 1

3.
d

dx

(
tanh−1(x)

)
=

1

1− x2
;

|x| < 1

4.
d

dx

(
sech−1(x)

)
=

−1

x
√
1− x2

;

0 < x < 1

5.
d

dx

(
csch−1(x)

)
=

−1

|x|
√
1 + x2

;

x ̸= 0

6.
d

dx

(
coth−1(x)

)
=

1

1− x2
;

|x| > 1

Key Idea 6.6.18 Integrals Involving Inverse Hyperbolic Functions.

Assume a > 0.

1. ∫
1√

x2 − a2
dx = ln

∣∣∣x+
√
x2 − a2

∣∣∣+ C

(for 0 < x < a) = cosh−1
(x
a

)
+ C

2. ∫
1√

x2 + a2
dx = ln

∣∣∣x+
√
x2 + a2

∣∣∣+ C

= sinh−1
(x
a

)
+ C

3. ∫
1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

=

{
1
a tanh

−1
(
x
a

)
+ C x2 < a2

1
a coth

−1
(
x
a

)
+ C a2 < x2

4. ∫
1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

(for 0 < x < a) = −1

a
sech−1

(x
a

)
+ C
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5. ∫
1

x
√
x2 + a2

dx =
1

a
ln
∣∣∣∣ x

a+
√
a2 + x2

∣∣∣∣+ C

= −1

a
csch−1

∣∣∣x
a

∣∣∣+ C

Hyperbolic functions can be used as an alternative to trigonometric substi-
tution, as illustrated in Figure 6.6.19.

youtu.be/watch?v=xYG0fnGDakI

Figure 6.6.19 Using a hyperbolic sub-
stitution to evaluate an integral

We practice using the derivative and integral formulas in the following exam-
ple.

Example 6.6.20 Derivatives and integrals involving inverse hyperbolic
functions.

Evaluate the following.

1.
d

dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1

x2 − 1
dx 3.

∫
1√

9x2 + 10
dx

Solution.

1. Applying Key Idea 6.6.17 with the Chain Rule gives:

d

dx

[
cosh−1

(
3x− 2

5

)]
=

1√(
3x−2

5

)2 − 1
· 3
5
.

2. Multiplying the numerator and denominator by (−1) gives:∫
1

x2 − 1
dx =

∫
−1

1− x2
dx. The second integral can be solved

with a direct application of item #3 from Key Idea 6.6.18, with
a = 1. Thus∫

1

x2 − 1
dx = −

∫
1

1− x2
dx

=


− tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1

2
ln
∣∣∣∣x+ 1

x− 1

∣∣∣∣+ C

=
1

2
ln
∣∣∣∣x− 1

x+ 1

∣∣∣∣+ C. (6.6.1)

We should note that this exact problem was solved at the begin-
ning of Section 6.5. In that example the answer was given as
1
2 ln |x− 1| − 1

2 ln |x+ 1|+C. Note that this is equivalent to the
answer given in Equation (6.6.1), as ln(a/b) = ln(a)− ln(b).

3. This requires a substitution, then item #2 of Key Idea 6.6.18 can
be applied. Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1

3

∫
1√

u2 + 10
du.

https://www.youtube.com/watch?v=xYG0fnGDakI
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Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1

3
sinh−1

(
3x√
10

)
+ C

=
1

3
ln
∣∣∣3x+

√
9x2 + 10

∣∣∣+ C.

Video solution

youtu.be/watch?v=vlW6Og4hk-w

This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be mem-
orized, but rather as a reference for future problem solving. Key Idea 6.6.18
contains perhaps the most useful information. Know the integration forms it
helps evaluate and understand how to use the inverse hyperbolic answer and
the logarithmic answer.

The next section takes a brief break from demonstrating new integration
techniques. It instead demonstrates a technique of evaluating limits that return
indeterminate forms. This technique will be useful in Section 6.8, where limits
will arise in the evaluation of certain definite integrals.

https://www.youtube.com/watch?v=vlW6Og4hk-w
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6.6.3 Exercises

Terms and Concepts

1. In Key Idea 6.6.8, the equation
∫
tanh(x) dx = ln(cosh(x))+C is given. Why is “ln |cosh(x)|” not used— i.e.,

why are absolute values not necessary?

2. The hyperbolic functions are used to define points on the right hand portion of the hyperbola x2 − y2 = 1, as
shown in Figure 6.6.2. How can we use the hyperbolic functions to define points on the left hand portion of the
hyperbola?

Problems

Exercise Group. In the following exercises, verify the given identity using Definition 6.6.3, as done in Example 6.6.7.

3. Verify the identity coth2(x)− csch2(x) = 1 using the definitions of the hyperbolic functions.

4. Verify the identity cosh(2x) = cosh2(x) + sinh2(x) using the definitions of the hyperbolic functions.

5. Verify the identity cosh2(x) =
cosh(2x) + 1

2
using the definitions of the hyperbolic functions.

6. Verify the identity sinh2(x) =
cosh(2x)− 1

2
using the definitions of the hyperbolic functions.

7. Verify the identity
d

dx
[sech(x)] = − sech(x) tanh(x) using the definitions of the hyperbolic functions.

8. Verify the identity
d

dx
[coth(x)] = − csch2(x) using the definitions of the hyperbolic functions.

9. Verify the identity
∫
tanh(x) dx = ln(cosh(x)) + C using the definitions of the hyperbolic functions.

10. Verify the identity
∫
coth(x) dx = ln |sinh(x)|+ C using the definitions of the hyperbolic functions.

Exercise Group. In the following exercises, find the derivative of the given function.
11. Find the derivative of f(x) = sinh(2x). 12. Find the derivative of f(x) = cosh2 x.
13. Find the derivative of f(x) = tanh(x2). 14. Find the derivative of f(x) = ln(sinh(x)).
15. Find the derivative of f(x) = sinh(x) cosh(x). 16. Find the derivative of

f(x) = x sinh(x)− cosh(x).

17. Find the derivative of f(x) = sech−1(x2). 18. Find the derivative of f(x) = sinh−1(3x).

19. Find the derivative of f(x) = cosh−1(2x2). 20. Find the derivative of f(x) = tanh−1(x+ 5).

21. Find the derivative of f(x) = tanh−1(cos(x)). 22. Find the derivative of f(x) = cosh−1(sec(x)).

Exercise Group. In the following exercises, find the equation of the line tangent to the function at the given x-value.
23. Find the equation of the tangent line to

y = f(x) at x = 0, where f(x) = sinh(x).
y =

24. Find the equation of the tangent line to
y = f(x) at x = ln(2), where f(x) = cosh(x).

y =

25. Find the equation of the tangent line to
y = f(x) at x = − ln(3), where
f(x) = tanh(x).

y =

26. Find the equation of the tangent line to
y = f(x) at x = ln(3), where f(x) = sech2(x).

y =

27. Find the equation of the tangent line to
y = f(x) at x = 0, where f(x) = sinh−1(x).

y =

28. Find the equation of the tangent line to
y = f(x) at x =

√
2, where f(x) = cosh−1(x).

y =
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Exercise Group. In the following exercises, evaluate the given indefinite integral.

29. Evaluate the indefinite integral
∫
tanh(2x) dx.

30. Evaluate the indefinite integral∫
cosh(3x− 7) dx.

31. Evaluate the indefinite integral∫
sinh(x) cosh(x) dx.

32. Evaluate the indefinite integral
∫

x cosh(x) dx.

33. Evaluate the indefinite integral
∫

x sinh(x) dx. 34. Evaluate the indefinite integral
∫

1√
x2 + 1

dx.

35. Evaluate the indefinite integral
∫

1√
x2 − 9

dx. 36. Evaluate the indefinite integral
∫

1

9− x2
dx.

37. Evaluate the indefinite integral
∫

2x√
x4 − 4

dx. 38. Evaluate the indefinite integral
∫ √

x√
1 + x3

dx.

39. Evaluate the indefinite integral
∫

1

x4 − 16
dx. 40. Evaluate the indefinite integral

∫
1

x2 + x
dx.

41. Evaluate the indefinite integral
∫

ex

e2x + 1
dx. 42. Evaluate the indefinite integral

∫
sinh−1(x) dx.

43. Evaluate the indefinite integral∫
tanh−1(x) dx.

44. Evaluate the indefinite integral
∫
sech(x) dx.

(Hint: mutiply by cosh(x)
cosh(x) ; set u = sinh(x).)

Exercise Group. In the following exercises, evaluate the given definite integral.

45. Evaluate the definite integral
∫ 1

−1

sinh(x) dx.
46. Evaluate the definite integral∫ ln(2)

− ln(2)
cosh(x) dx.

47. Evaluate the definite integral
∫ 1

0

sech2(x) dx. 48. Evaluate the definite integral
∫ 2

0

1√
x2 + 1

dx.
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6.7 L’Hospital’s Rule

While this chapter is devoted to learning techniques of integration, this section
is not about integration. Rather, it is concerned with a technique of evaluating
certain limits that will be useful in the following section, where integration is
once more discussed.

Our treatment of limits exposed us to the notion of “0/0”, an indeterminate
form. If lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0, wedonot conclude that lim

x→c
f(x)/g(x)

is 0/0; rather, we use 0/0 as notation to describe the fact that both the numer-
ator and denominator approach 0. The expression 0/0 has no numeric value;
other work must be done to evaluate the limit.

Other indeterminate forms exist; they are:∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be. youtu.be/watch?v=_tRdRiWmFhM

Figure 6.7.1 Video introduction to
Section 6.7

This section introduces l’Hospital’s Rule, a method of resolving limits that
produce the indeterminate forms 0/0 and∞/∞. We’ll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

6.7.1 L’Hospital’s Rule with indeterminate forms 0/0 and∞/∞

Theorem 6.7.2 L’Hospital’s Rule, Part 1.

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differentiable
functions on an open interval I containing c, and g′(x) ̸= 0 on I except
possibly at c. If

lim
x→c

f ′(x)

g′(x)
= L,

then
lim
x→c

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. The result applies to one-sided
limits as well.

To use Theorem 6.7.2 in prac-
tice, notice that there are two con-
ditions we need to check. First,
the original limit needs to be of
the “0/0” form. Second, the new
limit (involving the derivatives of
f and g) must exist (or be infi-
nite).

In some cases, the new limit
will also be 0/0, in which case
we can apply l’Hospital’s rule again.
The rule can be applied repeat-
edly (taking additional derivatives),
as long aswe reach a stepwhere
the limit exists.We demonstrate the use of l’Hospital’s Rule in the following examples; we

will often use “LHR” as an abbreviation of “l’Hospital’s Rule.”

Example 6.7.3 Using l’Hospital’s Rule.

Evaluate the following limits, using l’Hospital’s Rule as needed.

1. lim
x→0

sin(x)
x

2. lim
x→1

√
x+ 3− 2

1− x

3. lim
x→0

x2

1− cos(x)

4. lim
x→2

x2 + x− 6

x2 − 3x+ 2

Solution.

https://www.youtube.com/watch?v=_tRdRiWmFhM
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1. We proved this limit is 1 in Example 1.3.13 using the Squeeze The-
orem. Here we use l’Hospital’s Rule to show its power.

lim
x→0

sin(x)
x

by LHR
= lim

x→0

cos(x)
1

= 1.

2.

lim
x→1

√
x+ 3− 2

1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3.

lim
x→0

x2

1− cos(x)
by LHR
= lim

x→0

2x

sin(x)
.

This latter limit also evaluates to the 0/0 indeterminate form. To
evaluate it, we apply l’Hospital’s Rule again.

lim
x→0

2x

sin(x)
by LHR
=

2

cos(x)
= 2.

Thus lim
x→0

x2

1−cos(x) = 2.

4. We already know how to evaluate this limit; first factor the numer-
ator and denominator. We then have:

lim
x→2

x2 + x− 6

x2 − 3x+ 2
= lim

x→2

(x− 2)(x+ 3)

(x− 2)(x− 1)
= lim

x→2

x+ 3

x− 1
= 5.

We now show how to solve this using l’Hospital’s Rule.

lim
x→2

x2 + x− 6

x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1

2x− 3
= 5.

Video solution

youtu.be/watch?v=Y2O3RD9tt34

Note that at each step where l’Hospital’s Rule was applied, it was needed:
the initial limit returned the indeterminate form of “0/0.” If the initial limit re-
turns, for example, 1/2, then l’Hospital’s Rule does not apply.

The following theorem extends our initial version of l’Hospital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem 6.7.4 L’Hospital’s Rule, Part 2.

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are
differentiable on an open interval I containing a. If

lim
x→a

f ′(x)

g′(x)
= L,

then
lim
x→a

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. The result applies to one-
sided limits as well.

2. Let f and g be differentiable functions on the open interval (a,∞)
for some value a, where g′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

https://www.youtube.com/watch?v=Y2O3RD9tt34
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returns either 0/0 or∞/∞. If

lim
x→∞

f ′(x)

g′(x)
= L,

then
lim

x→∞

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. A similar statement can
be made for limits where x approaches−∞.

Example 6.7.5 Using l’Hospital’s Rule with limits involving∞.

Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2

4x2 + 5x− 1000
2. lim

x→∞

ex

x3
.

Solution.

1. We can evaluate this limit already using Theorem 1.6.21; the an-
swer is 3/4. We apply l’Hospital’s Rule to demonstrate its applica-
bility.

lim
x→∞

3x2 − 100x+ 2

4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100

8x+ 5

by LHR
= lim

x→∞

6

8
=

3

4
.

2.

lim
x→∞

ex

x3

by LHR
= lim

x→∞

ex

3x2

by LHR
= lim

x→∞

ex

6x

by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x ap-
proaches∞, the expression ex/x3 grows without bound. We can
infer from this that ex grows “faster” than x3; as x gets large, ex is
far larger than x3. (This has important implications in computing
when considering efficiency of algorithms.)

Video solution

youtu.be/watch?v=1WIItaObKQk

6.7.2 Indeterminate Forms 0 · ∞ and∞−∞
L’Hospital’s Rule can only be applied to ratios of functions. When faced with an
indeterminate form such as 0 · ∞ or∞−∞, we can sometimes apply algebra
to rewrite the limit so that l’Hospital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.7.6 Applying l’Hospital’s Rule to other indeterminate forms.

Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln(x)

4. lim
x→∞

x2 − ex

Solution.

https://www.youtube.com/watch?v=1WIItaObKQk
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1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeter-

minate form 0 · ∞. We rewrite the expression x · e1/x as e1/x

1/x
;

now, as x → 0+, we get the indeterminate form∞/∞ to which
l’Hospital’s Rule can be applied.

lim
x→0+

x·e1/x = lim
x→0+

e1/x

1/x

by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

Interpretation: e1/x grows “faster” than x shrinks to zero, mean-
ing their product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates
to 0 ·0which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit initially evaluates to the indeterminate form∞−∞. By
applying a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln(x) = lim
x→∞

ln
(
x+ 1

x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to
which we can apply l’Hospital’s Rule.

lim
x→∞

x+ 1

x

by LHR
=

1

1
= 1.

Since x → ∞ implies
x+ 1

x
→ 1, it follows that

x → ∞ implies ln
(
x+ 1

x

)
→ ln(1) = 0.

Thus

lim
x→∞

ln(x+ 1)− ln(x) = lim
x→∞

ln
(
x+ 1

x

)
= 0.

Interpretation: since this limit evaluates to 0, it means that for
large x, there is essentially no difference between ln(x + 1) and
ln(x); their difference is essentially 0.

4. The limit lim
x→∞

x2−ex initially returns the indeterminate form∞−
∞. We can rewrite the expression by factoring out x2; x2 − ex =

x2

(
1− ex

x2

)
. We need to evaluate how ex/x2 behaves as x →

∞:
lim

x→∞

ex

x2

by LHR
= lim

x→∞

ex

2x

by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞· (−∞), which is not
an indeterminate form; rather,∞ · (−∞) evaluates to −∞. We
conclude that lim

x→∞
x2−ex = −∞. Interpretation: asx gets large,

the difference between x2 and ex grows very large.

Video solution

youtu.be/watch?v=wJzKupOv8cg

https://www.youtube.com/watch?v=wJzKupOv8cg
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6.7.3 Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it often helps to
employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.7.7 Evaluating Limits Involving Indeterminate Forms 00, 1∞
and∞0.

If lim
x→c

ln
(
f(x)

)
= L, then

lim
x→c

f(x) = lim
x→c

eln(f(x)) = eL.

Example 6.7.8 Using l’Hospital’s Rule with indeterminate forms involv-
ing exponents.

Evaluate the following limits.

1. lim
x→∞

(
1 +

1

x

)x
2. lim

x→0+
xx

Solution.

1. This is equivalent to a special limit given in Theorem 1.3.17;
these limits have important applications within mathematics and
finance. Note that the exponent approaches ∞ while the base
approaches 1, leading to the indeterminate form 1∞. Let f(x) =
(1 + 1/x)x; the problem asks to evaluate lim

x→∞
f(x). Let’s first

evaluate lim
x→∞

ln
(
f(x)

)
.

lim
x→∞

ln
(
f(x)

)
= lim

x→∞
ln
(
1 +

1

x

)x

= lim
x→∞

x ln
(
1 +

1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1/x

This produces the indeterminate form 0/0, sowe apply l’Hospital’s
Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1

1 + 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)

)
= 1. We return to the original limit and apply

Key Idea 6.7.7.

lim
x→∞

(
1 +

1

x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.
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2. This limit leads to the indeterminate form 00. Let f(x) = xx and
consider first lim

x→0+
ln
(
f(x)

)
.

lim
x→0+

ln
(
f(x)

)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln(x)

= lim
x→0+

ln(x)
1/x

.

This produces the indeterminate form −∞/∞ so we apply
l’Hospital’s Rule.

= lim
x→0+

1/x

−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)

)
= 0. We return to the original limit and apply

Key Idea 6.7.7.

lim
x→0+

xx = lim
x→0+

f(x) = lim
x→0+

eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Fig-
ure 6.7.9.

f(x) = xx

0.5 1 1.5 2

1

2

3

4

x

y

Figure 6.7.9 A graph of f(x) = xx

supporting the fact that as x → 0+,
f(x) → 1

Video solution

youtu.be/watch?v=wHCd7Wsxzug

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0

f(x) dx. Improper integra-

tion considers integrals where one, or both, of the bounds are “infinity.” Such
integrals have many uses and applications, in addition to generating ideas that
are enlightening.

https://www.youtube.com/watch?v=wHCd7Wsxzug
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6.7.4 Exercises

Terms and Concepts

1. List the different indeterminate forms described in this section.
2. T/F: l’Hospital’s Rule provides a faster method of computing derivatives. (□ True □ False)

3. l’Hospital’s Rule states that
d

dx

[
f(x)

g(x)

]
=

f ′(x)

g′(x)
. (□ True □ False)

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: The Quotient Rule is applied to
f(x)

g(x)
when taking ; l’Hospital’s Rule is applied when taking

certain .
6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a function f(x) such that lim
x→1

f(x) returns “00”.

8. Create a function f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems

Exercise Group. Evaluate the given limit using l’Hospital’s rule.

9. lim
x→1

x2+x−2
x−1

10.
lim
x→2

x2 + x− 6

x2 − 7x+ 10
11.

lim
x→π

sin(x)
x− π

12.
lim

x→π/4

sin(x)− cos(x)
cos(2x)

13.
lim
x→0

sin(5x)
x

14.
lim
x→0

sin(2x)
x+ 2

15.
lim
x→0

sin(2x)
sin(3x)

16.
lim
x→0

sin(ax)
sin(bx)

17.
lim

x→0+

ex − 1

x2

18.
lim

x→0+

ex − x− 1

x2

19.
lim

x→0+

x− sin(x)
x3 − x2

20.
lim

x→∞

x4

ex

21.
lim

x→∞

√
x

ex

22.
lim

x→∞

ex

x2

23.
lim

x→∞

ex√
x

24.
lim

x→∞

ex

2x

25.
lim

x→∞

ex

3x

26.
lim
x→3

x3 − 5x2 + 3x+ 9

x3 − 7x2 + 15x− 9
27.

lim
x→−2

x3 + 4x2 + 4x

x3 + 7x2 + 16x+ 12

28.
lim

x→∞

ln(x)
x

29.

lim
x→∞

ln
(
x2
)

x

30.

lim
x→∞

ln2(x)
x
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31.
lim

x→0+
x · ln(x)

32.
lim

x→0+

√
x · ln(x)

33.
lim

x→0+
x · e 1

x

34.
lim

x→∞
x3 − x2

35.
lim

x→∞

√
x− ln(x)

36.
lim

x→−∞
x · ex

37.
lim

x→0+

1

x2
· e

−1
x

38.
lim

x→0+
(1 + x)

1
x

39.
lim

x→0+
(2x)x

40.
lim

x→0+
(
2

x
)x

41.
lim

x→0+
(sin(x))x

Hint: use the Squeeze Theorem.

42.
lim

x→1−
(1− x)1−x

43.
lim

x→∞
(x)

1
x

44.
lim

x→∞
(
1

x
)x

45.
lim

x→1+
(ln(x))1−x

46.
lim

x→∞
(1 + x)

1
x

47.
lim

x→∞
(1 + x2)

1
x

48.
lim

x→π/2
tan(x)cos(x)

49.
lim

x→π/2
tan(x)sin(2x)

50.
lim

x→1+

1

ln(x)
− 1

x− 1

51.
lim

x→3+

5

x2 − 9
− x

x− 3

52.
lim

x→∞
xtan

(
1

x

)
53.

lim
x→∞

ln3(x)
x

54.
lim
x→1

x2 + x− 2

ln(x)
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6.8 Improper Integration

We begin this section by considering the following definite integrals:

•
∫ 100

0

1

1 + x2
dx ≈ 1.5608

•
∫ 1000

0

1

1 + x2
dx ≈ 1.5698

•
∫ 10,000

0

1

1 + x2
dx ≈ 1.5707

Notice how the integrand is 1/(1+x2) in each integral (which is sketched in
Figure 6.8.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1

1 + x2
dx = tan−1(x)

∣∣∣b
0
= tan−1(b)− tan−1(0) = tan−1(b).

As b → ∞, tan−1(b) → π/2. Therefore it seems that as the upper bound

b grows, the value of the definite integral
∫ b

0

1

1 + x2
dx approaches π/2 ≈

1.5708. This should strike the reader as being a bit amazing: even though the
curve extends “to infinity,” it has a finite amount of area underneath it.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.1Graphing f(x) =
1

1 + x2

youtu.be/watch?v=HhBRqV7rt4I

Figure 6.8.2 Video introduction to
Section 6.8

When we defined the definite integral
∫ b

a

f(x) dx, we made two stipula-

tions:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

In this section we consider integrals where one or both of the above condi-
tions do not hold. Such integrals are called improper integrals.

6.8.1 Improper Integrals with Infinite Bounds

Definition 6.8.3 Improper Integrals with Infinite Bounds; Converge, Di-
verge.

1. Let f be a continuous function on [a,∞). Define∫ ∞

a

f(x) dx to be lim
b→∞

∫ b

a

f(x) dx.

2. Let f be a continuous function on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a

f(x) dx.

3. Let f be a continuous function on (−∞,∞). Let c be any real
number; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a

f(x) dx + lim
b→∞

∫ b

c

f(x) dx.

https://www.youtube.com/watch?v=HhBRqV7rt4I
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An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.8.4 Evaluating improper integrals.

Evaluate the following improper integrals.

1.
∫ ∞

1

1

x2
dx

2.
∫ ∞

1

1

x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1

1 + x2
dx

Solution.

1. ∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞

−1

x

∣∣∣b
1

= lim
b→∞

−1

b
+ 1

= 1.

A graph of the area defined by this integral is given in Figure 6.8.5.

f(x) =
1

x2

1 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.5 A graph of f(x) = 1
x2 in

Example 6.8.4

2. ∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1

x
dx

diverges. Compare the graphs in Figures 6.8.5 and 6.8.6; notice
how the graph of f(x) = 1/x is noticeably larger. This difference
is enough to cause the improper integral to diverge.

f(x) =
1

x

1 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.6 A graph of f(x) = 1
x in

Example 6.8.4

3. ∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a

ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.

A graph of the area defined by this integral is given in Figure 6.8.7.

f(x) = ex

−1−5−10

1

x

y

Figure 6.8.7 A graph of f(x) = ex in
Example 6.8.4
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4. Wewill need to break this into two improper integrals and choose
a value of c as in part 3 of Definition 6.8.3. Any value of c is fine;
we choose c = 0.∫ ∞

−∞

1

1 + x2
dx = lim

a→−∞

∫ 0

a

1

1 + x2
dx+ lim

b→∞

∫ b

0

1

1 + x2
dx

= lim
a→−∞

tan−1(x)
∣∣∣0
a
+ lim

b→∞
tan−1(x)

∣∣∣b
0

= lim
a→−∞

(
tan−1(0)− tan−1(a)

)
+ lim

b→∞

(
tan−1(b)− tan−1(0)

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has
value:

= π.

A graph of the area defined by this integral is given in Figure 6.8.8.

f(x) =
1

1 + x2

−10 −5 5 10

1

x

y

Figure 6.8.8 A graph of f(x) = 1
1+x2

in Example 6.8.4

Video solution

youtu.be/watch?v=hXnmu7fZj-E

The previous section introduced L’Hospital’s Rule, a method of evaluating
limits that return indeterminate forms. It is not uncommon for the limits result-
ing from improper integrals to need this rule as demonstrated next.

Example 6.8.9 Improper integration and L’Hospital’s Rule.

Evaluate the improper integral
∫ ∞

1

ln(x)
x2

dx.

Solution. This integral will require the use of Integration by Parts. Let
u = ln(x) and dv = 1/x2 dx. Then

f(x) =
ln(x)
x2

1 5 10

0.2

0.4

x

y

Figure 6.8.10 A graph of f(x) = ln(x)
x2

in Example 6.8.9

∫ ∞

1

ln(x)
x2

dx = lim
b→∞

∫ b

1

ln(x)
x2

dx

= lim
b→∞

(
− ln(x)

x

∣∣∣b
1
+

∫ b

1

1

x2
dx

)

= lim
b→∞

(
− ln(x)

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln(b)

b
− 1

b
− (− ln(1)− 1)

)
.

The 1/b and ln(1) terms go to 0, leaving lim
b→∞

− ln(b)
b + 1. We need to

evaluate lim
b→∞

ln(b)
b with l’Hospital’s Rule. We have:

lim
b→∞

ln(b)
b

by LHR
= lim

b→∞

1/b

1

= 0.

https://www.youtube.com/watch?v=hXnmu7fZj-E
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Thus the improper integral evaluates as:∫ ∞

1

ln(x)
x2

dx = 1.

Video solution

youtu.be/watch?v=hKpXU3fFS6g
6.8.2 Improper Integrals with Infinite Range
We have just considered definite integrals where the interval of integration was
infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.

Definition 6.8.11 Improper Integration with Infinite Range.

Let f(x) be a continuous function on [a, b] except at c, a ≤ c ≤ b, where
x = c is a vertical asymptote of f . Define∫ b

a

f(x) dx = lim
t→c−

∫ t

a

f(x) dx+ lim
t→c+

∫ b

t

f(x) dx.

Example 6.8.12 Improper integration of functions with infinite range.

Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1

x2
dx

Solution.

1. A graph of f(x) = 1/
√
x is given in Figure 6.8.13. Notice that f

has a vertical asymptote at x = 0; in some sense, we are trying to
compute the area of a region that has no “top.” Could this have a
finite value? ∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though
it has no upper bound (strange things can occur in mathematics
when considering the infinite).

In Definition 6.8.11, c can be
one of the endpoints (a or b). In
that case, there is only one limit
to consider as part of the defini-
tion.

f(x) =
1√
x
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Figure 6.8.13 A graph of f(x) = 1√
x

in Example 6.8.12

2. The function f(x) = 1/x2 has a vertical asymptote at x = 0,
as shown in Figure 6.8.14, so this integral is an improper integral.
Let’s eschew using limits for a moment and proceed without rec-
ognizing the improper nature of the integral. This leads to:∫ 1

−1

1

x2
dx = − 1

x

∣∣∣1
−1

https://www.youtube.com/watch?v=hKpXU3fFS6g
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= −1− (1)

= −2. (!)

f(x) =
1

x2

−1 −0.5 0.5 1
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y

Figure 6.8.14 A graph of f(x) = 1
x2 in

Example 6.8.12

Clearly the area in question is above the x-axis, yet the area is sup-
posedly negative! Why does our answer not match our intuition?
To answer this, evaluate the integral using Definition 6.8.11.∫ 1

−1

1

x2
dx = lim

t→0−

∫ t

−1

1

x2
dx+ lim

t→0+

∫ 1

t

1

x2
dx

= lim
t→0−

− 1

x

∣∣∣t
−1

+ lim
t→0+

− 1

x

∣∣∣1
t

= lim
t→0−

−1

t
− 1 + lim

t→0+
−1 +

1

t

⇒
(
∞− 1

)
+
(
− 1 +∞

)
.

Neither limit converges hence the original improper integral di-
verges. The nonsensical answer we obtained by ignoring the im-
proper nature of the integral is just that: nonsensical.

Video solution

youtu.be/watch?v=F46oIXOBjAw
6.8.3 Understanding Convergence and Divergence
Oftentimes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integrating.

Our first tool is to understand the behavior of functions of the form
1

xp
.

Example 6.8.15 Improper integration of 1/xp.

Determine the values of p for which
∫ ∞

1

1

xp
dx converges.

Solution. We begin by integrating and then evaluating the limit.∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

1

xp
dx

= lim
b→∞

∫ b

1

x−p dx (assume p ̸= 1)

= lim
b→∞

1

−p+ 1
x−p+1

∣∣∣b
1

= lim
b→∞

1

1− p

(
b1−p − 11−p

)
.

When does this limit converge— i.e., when is this limit not∞? This limit
converges precisely when the power of b is less than 0: when 1 − p <
0 ⇒ 1 < p.

f(x) =
1

xq

f(x) =
1

xp

p < 1 < q

1

x

y

Figure 6.8.16 Plotting functions of the
form 1/xp in Example 6.8.15

Our analysis shows that if p > 1, then
∫ ∞

1

1

xp
dx converges. When

p < 1 the improper integral diverges; we showed in Example 6.8.4 that
when p = 1 the integral also diverges.

https://www.youtube.com/watch?v=F46oIXOBjAw
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Figure 6.8.16 graphs y = 1/x with a dashed line, along with graphs of
y = 1/xp, p < 1, and y = 1/xq , q > 1. Somehow the dashed line forms
a dividing line between convergence and divergence.

Video solution

youtu.be/watch?v=-W8yESqiexA

The result of Example 6.8.15 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1

xp
dx. These results are summarized in the

following Key Idea.

Key Idea 6.8.17 Convergence of Improper Integrals involving 1/xp.

1. The improper integral
∫ ∞

1

1

xp
dx converges when p > 1 and di-

verges when p ≤ 1.

2. The improper integral
∫ 1

0

1

xp
dx converges when p < 1 and di-

verges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We often use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

We used the upper and lower
bound of “1” in Key Idea 6.8.17
for convenience. It canbe replaced
by any a where a > 0.

Theorem 6.8.18 Direct Comparison Test for Improper Integrals.

Let f and g be continuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a

g(x) dx converges, then
∫ ∞

a

f(x) dx converges.

2. If
∫ ∞

a

f(x) dx diverges, then
∫ ∞

a

g(x) dx diverges.

Example 6.8.19 Determining convergence of improper integrals.

Determine the convergence of the following improper integrals.

1.
∫ ∞

1

e−x2

dx 2.
∫ ∞

3

1√
x2 − x

dx

Solution.

1. The function f(x) = e−x2

does not have an antiderivative ex-
pressible in terms of elementary functions, sowe cannot integrate
directly. It is comparable to g(x) = 1/x2, and as demonstrated
in Figure 6.8.20, e−x2

< 1/x2 on [1,∞). We know from Key

Idea 6.8.17 that
∫ ∞

1

1

x2
dx converges, hence

∫ ∞

1

e−x2

dx also
converges.

f(x) = e−x2

f(x) =
1

x2

1 2 3 4

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.20 Graphs of f(x) = e−x2

and f(x) = 1/x2 in Example 6.8.19

https://www.youtube.com/watch?v=-W8yESqiexA
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2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1

x
. We know

from Key Idea 6.8.17 and the subsequent note that
∫ ∞

3

1

x
dx di-

verges, so we seek to compare the original integrand to 1/x. It
is easy to see that when x > 0, we have x =

√
x2 >

√
x2 − x.

Taking reciprocals reverses the inequality, giving

1

x
<

1√
x2 − x

.

Using Theorem 6.8.18, we conclude that since
∫ ∞

3

1

x
dx diverges,∫ ∞

3

1√
x2 − x

dx diverges as well. Figure 6.8.21 illustrates this.
f(x) =

1√
x2 − x

f(x) =
1

x

1 2 3 4 5 6

0.2

0.4

x

y

Figure 6.8.21 Graphs of f(x) =
1/

√
x2 − x and f(x) = 1/x in Exam-

ple 6.8.19

Video solution

youtu.be/watch?v=356-QIN7fWA

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a little

“too nice.” For instance, it was convenient that
1

x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x + 5”? That is, what can we say about the

convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1

x
>

1√
x2 + 2x+ 5

, so we

cannot use Theorem 6.8.18.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Theorem 6.8.22 Limit Comparison Test for Improper Integrals.

Let f and g be continuous functions on [a,∞) where f(x) > 0 and
g(x) > 0 for all x. If

lim
x→∞

f(x)

g(x)
= L, 0 < L < ∞,

then ∫ ∞

a

f(x) dx and
∫ ∞

a

g(x) dx

either both converge or both diverge.

Example 6.8.23 Determining convergence of improper integrals.

Determine the convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx.

Solution. As x gets large, the denominator of the integrand will begin

to behave much like y = x. So we compare
1√

x2 + 2x+ 5
to

1

x
with

the Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5

1/x
= lim

x→∞

x√
x2 + 2x+ 5

.

The immediate evaluation of this limit returns∞/∞, an indeterminate

https://www.youtube.com/watch?v=356-QIN7fWA
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form. Using L’Hospital’s Rule seems appropriate, but in this situation, it
does not lead to useful results. (We encourage the reader to employ
L’Hospital’s Rule at least once to verify this.)
The trouble is the square root function. To get rid of it, we employ the
following fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true

when either c or L is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As

x gets very large, the function
1√

x2 + 2x+ 5
looks very much like

1

x
.

Since we know that
∫ ∞

3

1

x
dx diverges, by the Limit Comparison Test

we know that
∫ ∞

3

1√
x2 + 2x+ 5

dx also diverges. Figure 6.8.24 graphs

f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, illustrating that as x gets

large, the functions become indistinguishable.

f(x) =
1√

x2 + 2x+ 5

f(x) =
1

x

5 10 15 20

−0.1

0.1

0.2

0.3

x

y

Figure 6.8.24 Graphing f(x) =
1√

x2+2x+5
and f(x) = 1

x in Exam-
ple 6.8.23

Video solution

youtu.be/watch?v=nIr1A1Tmako

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

If you do need to use compari-
son for an improper integralwith
infinite range, it is generallywise
to stick with direct comparison.
Direct comparison will continue
to work in more or less the way
you expect; however, limit com-
parison ismuchmore subtle, and
prone to incorrect conclusions.

This chapter has explored many integration techniques. We learned Substi-
tution, which “undoes” the Chain Rule of differentiation, as well as Integration
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric functions and introduced the hyperbolic functions,
which are closely related to the trigonometric functions. All techniques effec-
tively have this goal in common: rewrite the integrand in a new way so that the
integration step is easier to see and implement.

As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible to write in terms of elementary functions,
and evenwhen a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer al-
gebra systemMathematica™ has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in-
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximating
the value of integration.

The next chapter stresses the uses of integration. We generally do not find
antiderivatives for antiderivative’s sake, but rather because they provide the so-
lution to some typeof problem. The following chapter introduces us to a number
of different problems whose solution is provided by integration.

https://www.youtube.com/watch?v=nIr1A1Tmako
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6.8.4 Exercises

Terms and Concepts

1. The definite integral was defined with what two stipulations?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0

f(x) dx is said to .

3. If
∫ ∞

1

f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we know that
∫ ∞

1

g(x) dx .

4. For what values of p will
∫ ∞

1

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

5. For what values of p will
∫ ∞

10

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

6. For what values of p will
∫ 1

0

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

Problems

Exercise Group. In the following exercises, evaluate the given improper integral.

7.
∫ ∞

0

e5−2x dx 8.
∫ ∞

1

1

x3
dx

9.
∫ ∞

1

x−4 dx 10.
∫ ∞

−∞

1

x2 + 9
dx

11.
∫ 0

−∞
2x dx 12.

∫ 0

−∞
0.5x dx

13.
∫ ∞

−∞

x

x2 + 1
dx 14.

∫ ∞

3

x

x2 − 4
dx

15.
∫ ∞

2

1

(x− 1)
2 dx 16.

∫ 2

1

1

(x− 1)
2 dx
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17.
∫ ∞

2

1

x− 1
dx 18.

∫ 2

1

1

x− 1
dx

19.
∫ 1

−1

1

x
dx 20.

∫ 3

1

1

x− 2
dx

21.
∫ π

0

sec2(x) dx 22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0

xe−x dx 24.
∫ ∞

0

xe−x2

dx

25.
∫ ∞

−∞
xe−x2

dx 26.
∫ ∞

−∞

1

ex + e−x
dx

27.
∫ 1

0

x ln(x) dx 28.
∫ 1

0

x2 ln(x) dx

29.
∫ ∞

1

ln(x)
x

dx 30.
∫ 1

0

ln(x) dx

31.
∫ ∞

1

ln(x)
x2

dx 32.
∫ ∞

1

ln(x)√
x

dx

33.
∫ ∞

0

e−x sin(x) dx 34.
∫ ∞

0

e−x cos(x) dx

Exercise Group. In the following exercises, use the Direct Comparison Test or the Limit Comparison Test to determine
whether the given definite integral converges or diverges. Clearly state what test is being used and what function the
integrand is being compared to.

35.
∫ ∞

10

3√
3x2 + 2x− 5

dx 36.
∫ ∞

2

4√
7x3 − x

dx

37.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx 38.

∫ ∞

1

e−x ln(x) dx

39.
∫ ∞

5

e−x2+3x+1 dx 40.
∫ ∞

0

√
x

ex
dx

41.
∫ ∞

2

1

x2 + sin(x)
dx 42.

∫ ∞

0

x

x2 + cos(x)
dx

43.
∫ ∞

0

1

x+ ex
dx 44.

∫ ∞

0

1

ex − x
dx



Chapter 7

Applications of Integration

Webegin this chapter with a reminder of a few key concepts from Chapter 5. Let
f be a continuous function on [a, b] which is partitioned into n equally spaced
subintervals as

a = x0 < x1 < · · · < xn < xn = b.

Let∆x = (b− a)/n denote the length of the subintervals, and let ci be any
x-value in the ith subinterval. Definition 5.3.17 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are often used to approximate some quan-
tity (area, volume, work, pressure, etc.). The approximation becomes exact by
taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 5.3.26 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =

∫ b

a

f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals
can be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications.
Suppose the valueQ of a quantity is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 7.0.1 Application of Definite Integrals Strategy.

Let a quantity be given whose valueQ is to be computed.

1. Divide the quantity into n smaller “subquantities” of valueQi.

2. Identify a variable x and function f(x) such that each subquan-
tity can be approximated with the product f(ci)∆x, where ∆x
represents a small change in x. Thus Qi ≈ f(ci)∆x. A sample
approximation f(ci)∆x ofQi is called a differential element.

3. Recognize that Q =

n∑
i=1

Qi ≈
n∑

i=1

f(ci)∆x, which is a Riemann

Sum.

371
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4. Taking the appropriate limit givesQ =

∫ b

a

f(x) dx

This Key Idea will make more sense after we have had a chance to use it
several times. We begin with Area Between Curves, which we addressed briefly
in Section 5.4.

7.1 Area Between Curves

We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.4 and approach it instead using the
technique described in Key Idea 7.0.1.

youtu.be/watch?v=HAWBGypgKoQ

Figure 7.1.1 Video introduction to
Section 7.1

Let Q be the area of a region bounded by continuous functions f and g. If
we break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systematically break a region into subre-

gions. A graph will help. Consider Figure 7.1.2(a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
particularly efficient way is to “slice” it vertically, as shown in Figure 7.1.2(b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value ci in the ith slice, we set
the height of the rectangle to be f(ci)−g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure 7.1.2(c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differential element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑
i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b

a

(
f(x)− g(x)

)
dx.

f(x)

g(x)

a b

x

y

(a)

f(x)

g(x)

a b

x

y

(b)

f(x)

g(x)

a b

x

y

(c)

Figure 7.1.2 Subdividing a region into vertical slices and approximating the areas
with rectangles

Theorem 7.1.3 Area Between Curves (restatement of Theorem 5.4.23).

Let f(x) and g(x) be continuous functions defined on [a, b] where
f(x) ≥ g(x) for all x in [a, b]. The area of the region bounded by the

https://www.youtube.com/watch?v=HAWBGypgKoQ
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curves y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 7.1.4 Finding area enclosed by curves.

Find the area of the region bounded by f(x) = sin(x) + 2, g(x) =
1
2 cos(2x)− 1, x = 0 and x = 4π, as shown in Figure 7.1.5.

f(x)

g(x)

2 4 6 8 10

−2

−1

1

2

3

4π

x

y

Figure 7.1.5 Graphing an enclosed re-
gion in Example 7.1.4

Solution. The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the
region is the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin(x) + 2−

(1
2
cos(2x)− 1

))
dx

= − cos(x)− 1

4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.

Video solution

youtu.be/watch?v=qbhOWW70UyM

Example 7.1.6 Finding total area enclosed by curves.

Find the total area of the region enclosed by the functions f(x) = −2x+
5 and g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.1.7.

1 2 3 4

−4

−2

2

x

y

Figure 7.1.7 Graphing a region en-
closed by two functions in Exam-
ple 7.1.6

Solution. A quick calculation shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by computing
∫ 4

1

(
f(x)− g(x)

)
dx, but this

ignores the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless
integration returns −9/4, hardly the expected value of an area.) Thus
we compute the total area by breaking the interval [1, 4] into two subin-
tervals, [1, 2] and [2, 4] and using the proper integrand in each.

Total Area =
∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12 + 8/3

= 37/12 = 3.083 units2.

Video solution

youtu.be/watch?v=4wap7fFasZk

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 7.1.3. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

https://www.youtube.com/watch?v=qbhOWW70UyM
https://www.youtube.com/watch?v=4wap7fFasZk


374 CHAPTER 7. APPLICATIONS OF INTEGRATION

Example 7.1.8 Finding area: integrating with respect to y.

Find the area of the region enclosed by the functions y =
√
x+ 2, y =

−(x− 1)2 + 3 and y = 2, as shown in Figure 7.1.9.

y =
√
x+ 2 y = −(x− 1)2 + 3

1 2

1

2

3

x

y

Figure 7.1.9 Graphing a region for Ex-
ample 7.1.8

Solution. Wegive twoapproaches to this problem. In the first approach,
we notice that the region’s “top” is defined by two different curves. On
[0, 1], the top function is y =

√
x + 2; on [1, 2], the top function is

y = −(x− 1)2 + 3.
Thus we compute the area as the sum of two integrals:

Total Area =
∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3 + 2/3

= 4/3.

The second approach is clever and very useful in certain situations. We
are used to viewing curves as functions of x; we input an x-value and a
y-value is returned. Some curves can also be described as functions of y:
input a y-value and anx-value is returned. We can rewrite the equations
describing the boundary by solving for x:

y =
√
x+ 2 ⇒ x = (y − 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y + 1.

x = (y − 2)2 x =
√
3− y + 1

1 2

1

2

3

x

y

Figure 7.1.10 The region used in Ex-
ample 7.1.8 with boundaries rela-
beled as functions of y

Figure 7.1.10 shows the region with the boundaries relabeled. A differ-
ential element, a horizontal rectangle, is also pictured. The width of the
rectangle is a small change in y: ∆y. The height of the rectangle is a dif-
ference in x-values. The “top” x-value is the largest value, i.e., the right-
most. The “bottom” x-value is the smaller, i.e., the leftmost. Therefore
the height of the rectangle is(√

3− y + 1
)
− (y − 2)2.

The area is found by integrating the above function with respect to y
with the appropriate bounds. We determine these by considering the y-
values the region occupies. It is bounded below by y = 2, and bounded
above by y = 3. That is, both the “top” and “bottom” functions exist on
the y interval [2, 3]. Thus

Total Area =
∫ 3

2

(√
3− y + 1− (y − 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y − 1

3
(y − 2)3

)∣∣∣3
2

= 4/3.

Video solution

youtu.be/watch?v=GhdqEHPbPm0

This calculus-based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 7.1.11 computes the area of a
triangle. While the formula “ 12 × base × height” is well known, in arbitrary
triangles it can be nontrivial to compute the height. Calculusmakes the problem
simple.

https://www.youtube.com/watch?v=GhdqEHPbPm0


7.1. AREA BETWEEN CURVES 375

Example 7.1.11 Finding the area of a triangle.

Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+ 5
2 , as shown in Figure 7.1.12.

y = x+ 1
y = −2x+ 7

y = − 1
2x+ 5

2

1 2 3

1

2

3

x

y

Figure 7.1.12Graphing a triangular re-
gion in Example 7.1.11

Solution. Recognize that there are two “top” functions to this region,
causing us to use two definite integrals.

Total Area =
∫ 2

1

(
(x+ 1)− (−1

2
x+

5

2
)
)
dx

+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5

2
)
)
dx

= 3/4 + 3/4

= 3/2.

We can also approach this by converting each function into a function
of y. This also requires 2 integrals, so there isn’t really any advantage to
doing so. We do it here for demonstration purposes.
The “top” function is always x = 7−y

2 while there are two “bottom”
functions. Being mindful of the proper integration bounds, we have

Total Area =
∫ 2

1

(7− y

2
− (5− 2y)

)
dy +

∫ 3

2

(7− y

2
− (y − 1)

)
dy

= 3/4 + 3/4

= 3/2.

Of course, the final answer is the same. (It is interesting to note that the
area of all 4 subregions used is 3/4. This is coincidental.)

Video solution

youtu.be/watch?v=tdFHE8cjDAY

Whilewehave focused on producing exact answers, we are also able tomake
approximations using the principle of Theorem 7.1.3. The integrand in the theo-
rem is a distance (“top minus bottom”); integrating this distance function gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integration techniques developed in Section 5.5. The fol-
lowing example demonstrates this.

Example 7.1.13 Numerically approximating area.

To approximate the area of a lake, shown in Figure 7.1.14(a), the
“length” of the lake is measured at 200-foot increments, as shown in Fig-
ure 7.1.14(b). The lengths are given in hundreds of feet. Approximate
the area of the lake.

https://www.youtube.com/watch?v=tdFHE8cjDAY
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(a)

2.
25 5.
08

6.
35

5.
21

2.
76

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

x

y

(b)

Figure 7.1.14 (a) A sketch of a lake, and (b) the lake with lengthmeasure-
ments

Solution. The measurements of length can be viewed as measuring
“top minus bottom” of two functions. The exact answer is found by inte-

grating
∫ 12

0

(
f(x)−g(x)

)
dx, but of coursewedon’t know the functions

f and g. Our discrete measurements instead allow us to approximate.
We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2

3

(
1 · 0 + 4 · 2.25 + 2 · 5.08 + 4 · 6.35 + 2 · 5.21 + 4 · 2.76 + 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, square units are given
by (100 ft)2 =10, 000 ft2, giving a total area of 440, 133 ft2. (Sincewe are
approximating, we’d likely say the area was about 440, 000 ft2, which is
a little more than 10 acres.)

In the next section we apply our applications of integration techniques to
finding the volumes of certain solids.
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7.1.1 Exercises

Terms and Concepts

1. The area between curves is always positive. (□ True □ False)
2. Calculus can be used to find the area of basic geometric shapes. (□ True □ False)
3. In your own words, describe how to find the total area enclosed by y = f(x) and y = g(x).

4. Describe a situationwhere it is advantageous to find an area enclosed by curves through integrationwith respect
to y instead of x.

Problems

Exercise Group. In the following exercises, find the area of the shaded region in the given graph.
5. Between y = 1

2x+ 3 and y = 1
2 cos(x) + 1, for

0 ≤ x ≤ 2π.

y = 1
2 cos(x) + 1

y = 1
2x+ 3

2

4

6

π 2π

x

y

6. Between y = −3x3 + 3x+ 2 and
y = x2 + x− 1, for−1 ≤ x ≤ 1.

y = x2 + x− 1

y = −3x3 + 3x+ 2

−1 1

−1

1

2

3

x

y

7. Between y = 1 and y = 2, for 0 ≤ x ≤ π.

y = 1

y = 2

1

2

ππ/2

x

y
8. Between y = sin(x) + 1 and y = sin(x), for

0 ≤ x ≤ π.

y = sin(x)

y = sin(x) + 1

1

2

ππ/2

x

y
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9. Between y = sin(4x) and y = sec2(x), for
0 ≤ x ≤ π/4.

y = sin(4x)

y = sec2(x)

1

2

π/4π/8

x

y

10. Between y = sin(x) and y = cos(x), for
π/4 ≤ x ≤ 5π/4.

y = sin(x)

y = cos(x)

−1

−0.5

0.5

1

π/4 π/2 3π/4 π 5π/4

x

y

11. Between y = 2x and y = 4x, for 0 ≤ x ≤ 1.

y = 2x

y = 4x

0.2 0.4 0.6 0.8 1

1

2

3

4

x

y

12. Bounded by the curves y =
√
x+ 1,

y =
√
2− x+ 1, and y = 1.

y =
√
x+ 1 y =

√
2− x+ 1

0.5 1 1.5 2

0.5

1

1.5

2

2.5

x

y

Exercise Group. In the following exercises, find the total area enclosed by the functions f and g.
13. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1 14. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3

15. f(x) = sin(x), g(x) = 2x/π 16. f(x) = x3 − 4x2 +x− 1, g(x) = −x2 +2x− 4

17. f(x) = x, g(x) =
√
x 18. f(x) = −x3 + 5x2 + 2x+ 1,

g(x) = 3x2 + x+ 3

19. The functions f(x) = cos(x) and g(x) = sinx intersect infinitely many times, forming an infinite number of
repeated, enclosed regions. Find the areas of these regions.

20. The functions f(x) = cos(2x) and g(x) = sin(x) intersect infinitely many times, forming an infinite number of
repeated, enclosed regions. Find the areas of these regions.

Exercise Group. In the following exercises, find the area of the enclosed region in two ways:

(a) by treating the boundaries as functions of x, and

(b) by treating the boundaries as functions of y.
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21. Bounded by y = x2 + 1, y = 1
4 (x− 3)2 + 1,

and y = 1.

y = 1
4 (x− 3)2 + 1

y = x2 + 1

y = 1

1 2 3

0.5

1

1.5

2

x

y

22. Bounded by y =
√
x, y = −2x+ 3, and

y = − 1
2x.

y =
√
x

y = − 1
2x

y = −2x+ 3

−0.5 0.5 1 1.5 2 2.5

−1

−0.5

0.5

1

x

y

23. Between the curves y = x+ 2 and y = x2.

y = x2

y = x+ 2

−1 1 2

1

2

3

4

x

y
24. Between the curves x = − 1

2y + 1 and x = 1
2y

2.

x = 1
2y

2

x = − 1
2y + 1

−0.5 0.5 1 1.5 2 2.5

−2

−1

1

x

y

25. Bounded by y = x1/3, y =
√

x− 1/2, y = 0,
and x = 1.

y = x1/3

y =
√
x− 1/2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

26. Bounded by the curves y =
√
x+ 1,

y =
√
2− x+ 1, and y = 1.

y =
√
x+ 1 y =

√
2− x+ 1

0.5 1 1.5 2

0.5

1

1.5

2

2.5

x

y

Exercise Group. In the following exercises, find the area of the triangle formed by the given three points.
27. (1, 1),(2, 3), and (3, 3) 28. (−1, 1),(1, 3), and (2,−1)

29. (1, 1),(3, 3), and (0, 4) 30. (0, 0),(2, 5), and (5, 2)

31. Use the Trapezoidal Rule to approximate the area of the pictured lake whose lengths, in hundreds of feet, are
measured in 100-foot increments.
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4.
9

5
.2 7.
3

4
.5

32. Use Simpson’s Rule to approximate the area of the pictured lake whose lengths, in hundreds of feet, are mea-
sured in 200-foot increments.

4.
25

6.
6

7.
7

6
.4
5

4
.9
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7.2 Volume by Cross-Sectional Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.2.1, is

Area of the base × height.

Figure 7.2.1 The volume of a general
right cylinder

We can use this fact as the building block in finding volumes of a variety of
shapes.

youtu.be/watch?v=jx9XyQKDaP4

Figure 7.2.2 Video introduction to
Section 7.2

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sectional area × thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(xi) represent the cross-
sectional area of the ith slice, and let ∆xi represent the thickness of this slice
(the thickness is a small change in x). The total volume of the solid is approxi-
mately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 7.2.3 Volume By Cross-Sectional Area.

The volume V of a solid, oriented along the x-axis with cross-sectional
area A(x) from x = a to x = b, is

V =

∫ b

a

A(x) dx.

Example 7.2.4 Finding the volume of a solid.

Find the volume of a pyramid with a square base of side length 10 in and
a height of 5 in.
Solution. There aremanyways to “orient” the pyramid along thex-axis;
Figure 7.2.5 gives one such way, with the pointed top of the pyramid at
the origin and the x-axis going through the center of the base.

Figure 7.2.5 Orienting a pyramid
along the x-axis in Example 7.2.4

Each cross section of the pyramid is a square; this is a sample differential
element. To determine its area A(x), we need to determine the side
lengths of the square.
When x = 5, the square has side length 10; when x = 0, the square
has side length 0. Since the edges of the pyramid are lines, it is easy to
figure that each cross-sectional square has side length 2x, givingA(x) =
(2x)2 = 4x2.
If one were to cut a slice out of the pyramid at x = 3, as shown in
Figure 7.2.6, one would have a shape with square bottom and top with
sloped sides. If the slice were thin, both the bottom and top squares
would have sides lengths of about 6, and thus the cross-sectional area
of the bottom and top would be about 36 in2. Letting ∆xi represent
the thickness of the slice, the volume of this slice would then be about

https://www.youtube.com/watch?v=jx9XyQKDaP4
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36∆xi in3.

Figure 7.2.6 Cutting a slice in the pyra-
mid in Example 7.2.4 at x = 3

Cutting the pyramid into n slices divides the total volume into n equally-
spaced smaller pieces, each with volume (2xi)

2∆x, where xi is the ap-
proximate location of the slice along the x-axis and ∆x represents the
thickness of each slice. One can approximate total volume of the pyra-
mid by summing up the volumes of these slices:

Approximate volume =
n∑

i=1

(2xi)
2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid;
recoginizing this sum as a Riemann Sum allows us to find the exact an-
swer using a definite integral, matching the definite integral given by
Theorem 7.2.3.
We have

V = lim
n→∞

n∑
i=1

(2xi)
2∆x

=

∫ 5

0

4x2 dx

=
4

3
x3
∣∣∣5
0

=
500

3
in3 ≈ 166.67 in3.

We can check our work by consulting the general equation for the vol-
ume of a pyramid (see the back cover under “Volume of A General
Cone”):
1
3 × area of base × height.
Certainly, using this formula from geometry is faster than our new
method, but the calculus-based method can be applied to much more
than just cones.

Video solution

youtu.be/watch?v=JeQve79KVDE

An important special case of Theorem 7.2.3 is when the solid is a solid of
revolution, that is, when the solid is formed by rotating a shape around an axis.

Start with a function y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sections
are disks (thin circles). Let R(x) represent the radius of the cross-sectional disk
at x; the area of this disk is πR(x)2. Applying Theorem 7.2.3 gives the Disk
Method.

Key Idea 7.2.7 The Disk Method.

Let a solid be formed by revolving the curve y = f(x) from x = a to
x = b around a horizontal axis, and let R(x) be the radius of the cross-
sectional disk at x. The volume of the solid is

V = π

∫ b

a

R(x)2 dx.

https://www.youtube.com/watch?v=JeQve79KVDE
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Example 7.2.8 Finding volume using the Disk Method.

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, around the x-axis.
Solution. A sketch can help us understand this problem. In Fig-
ure 7.2.9(a), the curve y = 1/x is sketched along with the differential
element — a disk — at xwith radiusR(x) = 1/x. In Figure 7.2.9(b) the
whole solid is pictured, along with the differential element.
The volume of the differential element shown in Figure 7.2.9(a) is ap-
proximately πR(xi)

2∆x, where R(xi) is the radius of the disk shown
and ∆x is the thickness of that slice. The radius R(xi) is the distance
from the x-axis to the curve, henceR(xi) = 1/xi.

(a)
(b)

Figure 7.2.9 Sketching a solid in Example 7.2.8
Slicing the solid into n equally-spaced slices, we can approximate the
total volume by adding up the approximate volume of each slice:

Approximate volume =
n∑

i=1

π

(
1

xi

)2

∆x.

Taking the limit of the above sumasn → ∞ gives the actual volume; rec-
ognizing this sum as a Riemann sum allows us to evaluate the limit with
a definite integral, which matches the formula given in Key Idea 7.2.7:

V = lim
n→∞

n∑
i=1

π

(
1

xi

)2

∆x

= π

∫ 2

1

(
1

x

)2

dx

= π

∫ 2

1

1

x2
dx

= π

[
− 1

x

] ∣∣∣2
1

= π

[
−1

2
− (−1)

]
=

π

2
units3.

Video solution

youtu.be/watch?v=_a79nyOUVTg

https://www.youtube.com/watch?v=_a79nyOUVTg
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While Key Idea 7.2.7 is given in terms of functions of x, the principle involved
can be applied to functions of y when the axis of rotation is vertical, not horizon-
tal. We demonstrate this in the next example.

Example 7.2.10 Finding volume using the Disk Method.

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, about the y-axis.
Solution. Since the axis of rotation is vertical, we need to convert
the function into a function of y and convert the x-bounds to y-bounds.
Since y = 1/x defines the curve, we rewrite it as x = 1/y. The bound
x = 1 corresponds to the y-bound y = 1, and the bound x = 2 corre-
sponds to the y-bound y = 1/2.
Thus we are rotating the curve x = 1/y, from y = 1/2 to y = 1 about
the y-axis to form a solid. The curve and sample differential element
are sketched in Figure 7.2.11(a), with a full sketch of the solid in Fig-
ure 7.2.11(b).

(a) (b)

Figure 7.2.11 Sketching a solid in Example 7.2.10
We integrate to find the volume:

V = π

∫ 1

1/2

1

y2
dy

= −π

y

∣∣∣1
1/2

= π units3.

Video solution

youtu.be/watch?v=k9vdYxWD8xc

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid isR(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a

R(x)2 dx− π

∫ b

a

r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

https://www.youtube.com/watch?v=k9vdYxWD8xc
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(a) (b)

Figure 7.2.12 Establishing the Washer Method; see also Figure 7.2.13
One can generate a solid of revolution with a hole in the middle by revolving

a region about an axis. Consider Figure 7.2.12(a), where a region is sketched
along with a dashed, horizontal axis of rotation. By rotating the region about
the axis, a solid is formed as sketched in Figure 7.2.12(b). The outside of the
solid has radius R(x), whereas the inside has radius r(x). Each cross section
of this solid will be a washer (a disk with a hole in the center) as sketched in
Figure 7.2.13. This leads us to the Washer Method.

Figure 7.2.13 Establishing theWasher
Method; see also Figure 7.2.12

Key Idea 7.2.14 The Washer Method.

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross section at xwill be a washer with outside radiusR(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.15 Finding volume with the Washer Method.

Find the volume of the solid formed by rotating the region bounded by
y = x2 − 2x+ 2 and y = 2x− 1 about the x-axis.
Solution. A sketch of the region will help, as given in Figure 7.2.16(a).
Rotating about the x-axis will produce cross sections in the shape of
washers, as shown in Figure 7.2.16(b); the complete solid is shown in
Figure 7.2.16(c). The outside radius of this washer is R(x) = 2x − 1;
the inside radius is r(x) = x2 − 2x+ 2. As the region is bounded from
x = 1 to x = 3, we integrate as follows to compute the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1
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=
104

15
π ≈ 21.78 units3.

(a) (b) (c)

Figure 7.2.16 Sketching the differential element and solid in Exam-
ple 7.2.15

Video solution

youtu.be/watch?v=EcQPsBZwpZ8

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.

Example 7.2.17 Finding volume with the Washer Method.

Find the volume of the solid formed by rotating the triangular region
with vertices at (1, 1), (2, 1) and (2, 3) about the y-axis.
Solution. The triangular region is sketched in Figure 7.2.18(a); the differ-
ential element is sketched in Figure 7.2.18(b) and the full solid is drawn
in Figure 7.2.18(c). They help us establish the outside and inside radii.
Since the axis of rotation is vertical, each radius is a function of y.
The outside radius R(y) is formed by the line connecting (2, 1) and
(2, 3); it is a constant function, as regardless of the y-value the distance
from the line to the axis of rotation is 2. Thus R(y) = 2.

(a) (b) (c)

Figure 7.2.18 Sketching the solid in Example 7.2.17
The inside radius is formed by the line connecting (1, 1) and (2, 3). The
equation of this line is y = 2x−1, but we need to refer to it as a function
of y. Solving for x gives r(y) = 1

2 (y + 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y + 1)

)2)
dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y +

15

4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15

4
y
]∣∣∣3

1

https://www.youtube.com/watch?v=EcQPsBZwpZ8
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=
10

3
π ≈ 10.47 units3.

Video solution

youtu.be/watch?v=VO7B1TRcvhM

This section introduced a new application of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 7.0.1: to find the exact value of some
quantity,

• we start with an approximation (in this section, slice the solid and approx-
imate the volume of each slice),

• then make the approximation better by refining our original approxima-
tion (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.

We practice this principle in the next section where we find volumes by slic-
ing solids in a different way.

https://www.youtube.com/watch?v=VO7B1TRcvhM


388 CHAPTER 7. APPLICATIONS OF INTEGRATION

7.2.1 Exercises

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape around an axis.
2. In your own words, explain how the Disk and Washer Methods are related.

3. Explain the how the units of volume are found in the integral of Theorem 7.2.3: if A(x) has units of in2, how
does

∫
A(x) dx have units of in3?

Problems

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by revolving the
given region about the x-axis.

4. The region between y = 3− x2 and the x axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

5. The region between y = 5x and the x axis, for
1 ≤ x ≤ 2:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

6. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

7. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by revolving the
given region about the y-axis.
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8. The region bounded by the curve y = 3− x2,
the x axis, and the y axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

9. The region between y = 5x and the y axis, for
5 ≤ y ≤ 10:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

10. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

(Hint: Integration By Parts will be necessary,
twice. First let u = arccos2 x, then let
u = arccosx.)

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

11. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by rotating the
given region about each of the given axes.

12. Region bounded by: y =
√
x, y = 0 and x = 1.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about the y axis.

(d) Rotate about x = 1.

13. Region bounded by: y = 4− x2 and y = 0.

(a) Rotate about the x axis.

(b) Rotate about y = 4.

(c) Rotate about y = −1.

(d) Rotate about x = 2.
14. The triangle with vertices (1, 1), (1, 2) and

(2, 1).

(a) Roate about the x axis.

(b) Roate about y = 2.

(c) Rotate about the y axis.

(d) Rotate about x = 1.

15. Region bounded by y = x2 − 2x+ 2 and
y = 2x− 1.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about y = 5.
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16. Region bounded by y = 1/
√
x2 + 1, x = −1,

x = 1 and the x-axis.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about y = −1.

17. Region bounded by y = 2x, y = x and x = 2.

(a) Rotate about the x axis.

(b) Rotate about y = 4.

(c) Rotate about the y axis.

(d) Rotate about x = 2.

Exercise Group. Orient the given solid along thex-axis such that a cross-sectional area functionA(x) can be obtained,
then apply Theorem 7.2.3 to find the volume of the solid.

18. A right circular cone with height of 10 and base
radius of 5.

5

10
19. A skew right circular cone with height of 10 and

base radius of 5. (Hint: all cross-sections are
circles.)

5

10

20. A right triangular cone with height of 10 and
whose base is a right, isosceles triangle with
side length 4.

4 4

10

21. A solid with length 10 with a rectangular base
and triangular top, wherein one end is a square
with side length 5 and the other end is a
triangle with base and height of 5.

10

5
5

5
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7.3 The Shell Method

Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolution by integrating the cross-sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of rotation, creating
“shells.”

youtu.be/watch?v=YPZjBrm770g

Figure 7.3.1 Video introduction to
Section 7.3

Consider Figure 7.3.2, where the region shown in Figure 7.3.2(a) is rotated
around the y-axis forming the solid shown in Figure 7.3.2(b). A small slice of
the region is drawn in Figure 7.3.2(a), parallel to the axis of rotation. When
the region is rotated, this thin slice forms a cylindrical shell, as pictured in Fig-
ure 7.3.2(c). The previous section approximated a solid with lots of thin disks
(or washers); we now approximate a solid with many thin cylindrical shells.

(a) (b) (c)

Figure 7.3.2 Introducing the Shell Method
To compute the volume of one shell, first consider the paper label on a soup

can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.3.3(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.3.3(b). (We say “approximately” since our radius was an approxima-
tion.)

By breaking the solid into n cylindrical shells, we can approximate the vol-
ume of the solid as

V ≈
n∑

i=1

2πrihi∆xi,

where ri, hi and ∆xi are the radius, height and thickness of the ith shell, re-
spectively.

This is a Riemann Sum. Taking a limit as the thickness of the shells approaches
0 leads to a definite integral.

https://www.youtube.com/watch?v=YPZjBrm770g
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h
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2πr

hA = 2πrh

(a)
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th
er
e

r
∆x

2πr

h

∆x

V ≈ 2πrh∆x

(b)

Figure 7.3.3 Determining the volume of a thin cylindrical shell

Key Idea 7.3.4 The Shell Method.

Let a solid be formed by revolving a regionR, bounded byx = a andx =
b, around a vertical axis. Let r(x) represent the distance from the axis
of rotation to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π

∫ b

a

r(x)h(x) dx.

Special Cases:

1. When the regionR is bounded above by y = f(x) and belowby y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotation is the y-axis (i.e., x = 0) then r(x) = x.

Let’s practice using the Shell Method.

Example 7.3.5 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the region bounded by
y = 0, y = 1/(1 + x2), x = 0 and x = 1 about the y-axis.
Solution. This is the region used to introduce the Shell Method in Fig-
ure 7.3.2, but is sketched again in Figure 7.3.6 for closer reference. A line
is drawn in the region parallel to the axis of rotation representing a shell
that will be carved out as the region is rotated about the y-axis. (This is
the differential element.)

h(x)


︸ ︷︷ ︸

r(x)

y =
1

1 + x2

1

1

x

x

y

Figure 7.3.6 Graphing a region in Ex-
ample 7.3.5

The distance this line is from the axis of rotation determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this
line determines h(x); the top of the line is at y = 1/(1 + x2), whereas
the bottom of the line is at y = 0. Thus h(x) = 1/(1 + x2) − 0 =
1/(1 + x2). The region is bounded from x = 0 to x = 1, so the volume
is

V = 2π

∫ 1

0

x

1 + x2
dx.

This requires substitution. Let u = 1 + x2, so du = 2x dx. We also
change the bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1

u
du

= π ln(u)
∣∣∣2
1

= π ln(2) ≈ 2.178 units3.
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Note: in order to find this volume using the Disk Method, two integrals
would be needed to account for the regions above and below y = 1/2.

Video solution

youtu.be/watch?v=WQ3rUzAhgPw

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.7 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the triangular region
determined by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.
Solution. The region is sketched in Figure 7.3.8(a) along with the differ-
ential element, a line within the region parallel to the axis of rotation. In
Figure 7.3.8(b), we see the shell traced out by the differential element,
and in Figure 7.3.8(c) the whole solid is shown.

y
=
2x

+
1

}
h(x).

︸ ︷︷ ︸
r(x)

1 2 3

1

2

3

x

x

y

(a)
(b) (c)

Figure 7.3.8 Graphing a region in Example 7.3.7
The height of the differential element is the distance from y = 1 to
y = 2x + 1, the line that connects the points (0, 1) and (1, 3). Thus
h(x) = 2x+1−1 = 2x. The radius of the shell formedby the differential
element is the distance from x to x = 3; that is, it is r(x) = 3− x. The
x-bounds of the region are x = 0 to x = 1, giving

V = 2π

∫ 1

0

(3− x)(2x) dx

= 2π

∫ 1

0

(
6x− 2x2

)
dx

= 2π

(
3x2 − 2

3
x3

) ∣∣∣1
0

=
14

3
π ≈ 14.66 units3.

Video solution

youtu.be/watch?v=wGVmSx1TqQI

When revolving a region around a horizontal axis, we must consider the ra-
dius and height functions in terms of y, not x.

Example 7.3.9 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the region given in Ex-
ample 7.3.7 about the x-axis.
Solution. The region is sketched in Figure 7.3.10(a) with a sample differ-
ential element. In Figure 7.3.10(b) the shell formed by the differential
element is drawn, and the solid is sketched in Figure 7.3.10(c). (Note
that the triangular region looks “short and wide” here, whereas in the

https://www.youtube.com/watch?v=WQ3rUzAhgPw
https://www.youtube.com/watch?v=wGVmSx1TqQI
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previous example the same region looked “tall and narrow.” This is be-
cause the bounds on the graphs are different.)
The height of the differential element is an x-distance, between x =
1
2y − 1

2 and x = 1. Thus h(y) = 1− ( 12y − 1
2 ) = − 1

2y + 3
2 . The radius

is the distance from y to the x-axis, so r(y) = y. The y bounds of the
region are y = 1 and y = 3, leading to the integral

x
=
1
2
y −

1
2

︸ ︷︷ ︸
h(y)  r(y)

1

1

2

3

y

x

y

(a)
(b) (c)

Figure 7.3.10 Graphing a region in Example 7.3.9

V = 2π

∫ 3

1

[
y

(
−1

2
y +

3

2

)]
dy

= 2π

∫ 3

1

[
−1

2
y2 +

3

2
y

]
dy

= 2π

[
−1

6
y3 +

3

4
y2
] ∣∣∣3

1

= 2π

[
9

4
− 7

12

]
=

10

3
π ≈ 10.472 units3.

Video solution

youtu.be/watch?v=pu80zsXPw5E

At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

Example 7.3.11 Finding volume using the Shell Method.

Find the volume of the solid formed by revolving the region bounded by
y = sin(x) and the x-axis from x = 0 to x = π about the y-axis.
Solution. The region and a differential element, the shell formed by this
differential element, and the resulting solid are given in Figure 7.3.12.

https://www.youtube.com/watch?v=pu80zsXPw5E
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h(x)

r(x)︷ ︸︸ ︷

1

x π
2

π

x

y

(a)

(b) (c)

Figure 7.3.12 Graphing a region in Example 7.3.11
The radius of a sample shell is r(x) = x; the height of a sample shell is
h(x) = sin(x), each from x = 0 to x = π. Thus the volume of the solid
is

V = 2π

∫ π

0

x sin(x) dx.

This requires Integration By Parts. Set u = x and dv = sin(x) dx; we
leave it to the reader to fill in the rest. We have:

= 2π
[
− x cos(x)

∣∣∣π
0
+

∫ π

0

cos(x) dx
]

= 2π
[
π + sin(x)

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve
y = sinx for x, requiring the use of the arcsine function. We leave
it to the reader to verify that the outside radius function is R(y) =
π − arcsin y and the inside radius function is r(y) = arcsin y. Thus the
volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is
more onerous than the integral created by the Shell Method.

Video solution

youtu.be/watch?v=nd16wB-0qIQ

We end this section with a table summarizing the usage of the Washer and
Shell Methods.

Key Idea 7.3.13 Summary of the Washer and Shell Methods.

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

https://www.youtube.com/watch?v=nd16wB-0qIQ
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Washer Method Shell Method

Horizontal Axis π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c

r(y)h(y) dy

Vertical Axis π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a

r(x)h(x) dx

As in the previous section, the real goal of this section is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next section, where we find the
length of curves in the plane.
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7.3.1 Exercises

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape around an axis.
2. T/F: The Shell Method can only be used when the Washer Method fails.
3. T/F: The Shell Method works by integrating cross-sectional areas of a solid.
4. T/F: When finding the volume of a solid of revolution that was revolved around a vertical axis, the Shell Method

integrates with respect to x.

Problems

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revolving the given
region about the y-axis.

5. The region bounded by the curve y = 3− x2,
the x axis, and the y axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

6. The region between y = 5x and the x axis, for
1 ≤ x ≤ 2:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

7. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

8. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revolving the given
region about the x-axis.
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9. The region between y = 3− x2 and the x axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

10. The region between y = 5x and the y axis, for
5 ≤ y ≤ 10:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

11. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

12. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revloving the given
region about each of the given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about the x axis.

(d) Rotate about y = 1.

14. Region bounded by: y = 4− x2 and y = 0.

(a) Rotate about x = 2.

(b) Rotate about x = −2.

(c) Rotate about the x axis.

(d) Rotate about y = 4.
15. The triangle with vertices (1, 1), (1, 2) and

(2, 1).

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about the x axis.

(d) Rotate about y = 2.

16. Region bounded by y = x2 − 2x+ 2 and
y = 2x− 1.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about x = −1.
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17. Region bounded by y = 1/
√
x2 + 1, x = 1 and

the x and y axes.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

18. Region bounded by y = 2x, y = x and x = 2.

(a) Rotate about the y axis.

(b) Rotate about x = 2.

(c) Rotate about the x axis.

(d) Rotate about y = 4.
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7.4 Arc Length and Surface Area

In previous sections we have used integration to answer the following questions:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

youtu.be/watch?v=r8JJru-DcAw

Figure 7.4.1 Video introduction to
Section 7.4

In this section, we address two related questions:

1. Given a curve, what is its length? This is often referred to as arc length.

2. Given a solid, what is its surface area?

7.4.1 Arc Length
Consider the graph of y = sin(x) on [0, π] given in Figure 7.4.2(a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight-line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

0.5

1

π
4

π
2

3π
4

π

x

y

(a)

0.5

1

π
4

π
2

3π
4

π

√
2
2

x

y

(b)

Figure 7.4.2Graphing y = sin(x) on [0, π] and approximating the curvewith line
segments

In Figure 7.4.2(b), the curve y = sin(x) has been approximated with 4 line
segments (the interval [0, π]has beendivided into 4 subintervals of equal length).
It is clear that these four line segments approximate y = sin(x) very well on the
first and last subinterval, though not so well in the middle. Regardless, the sum
of the lengths of the line segments is 3.79, so we approximate the arc length of
y = sin(x) on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x0 < x1 < . . . < xn−1 < xn = b be a partition
of [a, b] into n subintervals. Let∆xi represent the length of the ith subinterval
[xi−1, xi].

∆yi

∆xi

xi−1 xi

yi−1

yi

x

y

Figure 7.4.3 Zooming in on the ith
subinterval [xi−1, xi] of a partition of
[a, b]

Figure 7.4.3 zooms in on the ith subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line
segment as the hypotenuse of a right triangle whose sides have length∆xi and
∆yi. Using the Pythagorean Theorem, the length of this line segment is√

∆x2
i +∆y2i .

https://www.youtube.com/watch?v=r8JJru-DcAw
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Summing over all subintervals gives an arc length approximation

L ≈
n∑

i=1

√
∆x2

i +∆y2i .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.

In the above expression factor out a∆x2
i term:

n∑
i=1

√
∆x2

i +∆y2i =

n∑
i=1

√
∆x2

i

(
1 +

∆y2i
∆x2

i

)
.

Now pull the∆x2
i term out of the square root:

=

n∑
i=1

√
1 +

∆y2i
∆x2

i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2
i term. The expression

∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run”
of f on the ith subinterval. The Mean Value Theorem of Differentiation (Theo-
rem3.2.4) states that there is a ci in the ith subintervalwhere f ′(ci) = ∆yi/∆xi.
Thus we can rewrite our above expression as:

=

n∑
i=1

√
1 + f ′(ci)2 ∆xi.

This is aRiemann Sum. As long as f ′ is continuous, we can invoke Theorem5.3.26
and conclude

=

∫ b

a

√
1 + f ′(x)2 dx.

Theorem 7.4.4 Arc Length.

Let f be differentiable on [a, b], where f ′ is also continuous on [a, b].
Then the arc length of f from x = a to x = b is

L =

∫ b

a

√
1 + f ′(x)2 dx.

Note: This is our first use of dif-
ferentiability on a closed interval
since Section 2.1.

The theoremalso requires that
f ′ be continuous on [a, b]; while
examples are arcane, it is possi-
ble for f to be differentiable yet
f ′ is not continuous.

As the integrand contains a square root, it is often difficult to use the formula
in Theorem 7.4.4 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximating definite
integrals. The following examples will demonstrate this.

Example 7.4.5 Finding arc length.

Find the arc length of f(x) = x3/2 from x = 0 to x = 4.
Solution. We find f ′(x) = 3

2x
1/2; note that on [0, 4], f is differentiable
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and f ′ is also continuous. Using the formula, we find the arc length L as

L =

∫ 4

0

√
1 +

(
3

2
x1/2

)2

dx

=

∫ 4

0

√
1 +

9

4
x dx

=

∫ 4

0

(
1 +

9

4
x

)1/2

dx

=
2

3
· 4
9
·
(
1 +

9

4
x

)3/2 ∣∣∣4
0

=
8

27

(
103/2 − 1

)
≈ 9.07 units.
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4
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8

x

y

Figure 7.4.6 A graph of f(x) = x3/2

from Example 7.4.5

A graph of f is given in Figure 7.4.6.

Video solution

youtu.be/watch?v=0NPr4wZlTi8

Example 7.4.7 Finding arc length.

Find the arc length of f(x) =
1

8
x2 − ln(x) from x = 1 to x = 2.

Solution. This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 −
1/x. The arc length is

L =

∫ 2

1

√
1 +

(
x

4
− 1

x

)2

dx

=

∫ 2

1

√
1 +

x2

16
− 1

2
+

1

x2
dx

=

∫ 2

1

√
x2

16
+

1

2
+

1

x2
dx

=

∫ 2

1

√(
x

4
+

1

x

)2

dx

=

∫ 2

1

(
x

4
+

1

x

)
dx

=

(
x2

8
+ ln(x)

)∣∣∣∣2
1

=
3

8
+ ln(2) ≈ 1.07 units.

0.5 1 1.5 2 2.5 3

0.5

1

x

y

Figure 7.4.8 A graph of f(x) = 1
8x

2−
ln(x) from Example 7.4.7

A graph of f is given in Figure 7.4.8; the portion of the curve measured
in this problem is in bold.

Video solution

youtu.be/watch?v=mJlyz_9yiao

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.

https://www.youtube.com/watch?v=0NPr4wZlTi8
https://www.youtube.com/watch?v=mJlyz_9yiao
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Example 7.4.9 Approximating arc length numerically.

Find the length of the sine curve from x = 0 to x = π.
Solution. This is somewhat of a mathematical curiosity; in Exam-
ple 5.4.14 we found the area under one “hump” of the sine curve is 2
square units; now we are measuring its arc length.
The setup is straightforward: f(x) = sin(x) and f ′(x) = cos(x). Thus

L =

∫ π

0

√
1 + cos2(x) dx.

This integral cannot be evaluated in terms of elementary functions sowe
will approximate it with Simpson’s Method with n = 4.

x
√
1 + cos2(x)

0
√
2

π/4
√

3/2

π/2 1

3π/4
√
3/2

π
√
2

Figure 7.4.10 A table of values of y =√
1 + cos2(x) to evaluate a definite

integral in Example 7.4.9

Figure 7.4.10 gives
√
1 + cos2(x) evaluated at 5 evenly spaced points in

[0, π]. Simpson’s Rule then states that∫ π

0

√
1 + cos2(x) dx ≈ π − 0

4 · 3

(√
2 + 4

√
3/2 + 2(1) + 4

√
3/2 +

√
2
)

= 3.82918.

Using a computer with n = 100 the approximation is L ≈ 3.8202; our
approximation with n = 4 is quite good.

7.4.2 Surface Area of Solids of Revolution
We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

youtu.be/watch?v=uVgiUPdoPZM

Figure 7.4.11 Video introduction to
Subsection 7.4.2

a xi−1 xi b

x

(a) (b)

Figure 7.4.12 Establishing the formula for surface area
We begin as we have in the previous sections: we partition the interval [a, b]

with n subintervals, where the ith subinterval is [xi−1, xi]. On each subinter-
val, we can approximate the curve y = f(x) with a straight line that connects
f(xi−1) and f(xi) as shown in Figure 7.4.12(a). Revolving this line segment
about the x-axis creates part of a cone (called a frustum of a cone) as shown in
Figure 7.4.12(b). The surface area of a frustum of a cone is

2π · length · average of the two radiiR and r.

https://www.youtube.com/watch?v=uVgiUPdoPZM
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The length is given by L; we use the material just covered by arc length to
state that

L ≈
√
1 + f ′(ci)2∆xi

for some ci in the ith subinterval. The radii are just the function evaluated at
the endpoints of the interval. That is,

R = f(xi) and r = f(xi−1).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi−1) + f(xi)

2

√
1 + f ′(ci)2∆xi.

Since f is a continuous function, the Intermediate Value Theorem states

there is some di in [xi−1, xi] such that f(di) =
f(xi−1) + f(xi)

2
; we can use

this to rewrite the above equation as

2πf(di)
√

1 + f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approx-
imately

Surface Area ≈
n∑

i=1

2πf(di)
√
1 + f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.

Theorem 7.4.13 Surface Area of a Solid of Revolution.

Let f be differentiable on [a, b], where f ′ is also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π

∫ b

a

x
√
1 + f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resulting frustum
are xi−1 and xi; their average value is simply themidpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 7.4.13.)

Example 7.4.14 Finding surface area of a solid of revolution.

Find the surface area of the solid formed by revolving y = sin(x) on
[0, π] around the x-axis, as shown in Figure 7.4.15.

Figure 7.4.15Revolving y = sin(x) on
[0, π] about the x-axis

Solution. The setup is relatively straightforward. Using Theorem 7.4.13,
we have the surface area SA is:

SA = 2π

∫ π

0

sin(x)
√
1 + cos2(x) dx
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= −2π
1

2

(
sinh−1(cos(x)) + cos(x)

√
1 + cos2(x)

)∣∣∣π
0

= 2π
(√

2 + sinh−1(1)
)

≈ 14.42 units2.

The integration step above is nontrivial, utilizing the integration method
of Trigonometric Substitution from Section 6.4.
It is interesting to see that the surface area of a solid, whose shape is
defined by a trigonometric function, involves both a square root and an
inverse hyperbolic trigonometric function.

Video solution

youtu.be/watch?v=ehC1adQ-pTs

Example 7.4.16 Finding surface area of a solid of revolution.

Find the surface area of the solid formed by revolving the curve y = x2

on [0, 1] about:

1. the x-axis

2. the y-axis.

(a) (b)

Figure 7.4.17 The solids used in Example 7.4.16

Solution.

1. The integral is straightforward to setup:

SA = 2π

∫ 1

0

x2
√
1 + (2x)2 dx.

Like the integral in Example 7.4.14, this requires Trigonometric
Substitution.

=
π

32

(
2(8x3 + x)

√
1 + 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18
√
5− sinh−1(2)

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed
in Figure 7.4.17(a).

https://www.youtube.com/watch?v=ehC1adQ-pTs
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2. Since we are revolving around the y-axis, the “radius” of the solid
is not f(x) but rather x. Thus the integral to compute the surface
area is:

SA = 2π

∫ 1

0

x
√
1 + (2x)2 dx.

This integral can be solved using substitution. Set u = 1 + 4x2;
the new bounds are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4

2

3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed
in Figure 7.4.17(b).

Video solution

youtu.be/watch?v=jK04gmbaTtE

Our final example is a famous mathematical “paradox.”

Example 7.4.18 The surface area and volume of Gabriel’s Horn.

Consider the solid formed by revolving y = 1/x about the x-axis on
[1,∞). Find the volume and surface area of this solid. (This shape, as
graphed in Figure 7.4.19, is known as “Gabriel’s Horn” since it looks like
a very long horn that only a supernatural person, such as an angel, could
play.)

Figure 7.4.19 A graph of Gabriel’s
Horn

Solution. To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1

x2
dx

= lim
b→∞

π

∫ b

1

1

x2
dx

= lim
b→∞

π

(
−1

x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume ofπ cubic units. Sincewe have already
seen that regions with infinite length can have a finite area, this is not
too difficult to accept.
We now consider its surface area. The integral is straightforward to
setup:

SA = 2π

∫ ∞

1

1

x

√
1 + 1/x4 dx.

https://www.youtube.com/watch?v=jK04gmbaTtE
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Integrating this expression is not trivial. We can, however, compare it to
other improper integrals. Since 1 <

√
1 + 1/x4 on [1,∞), we can state

that

2π

∫ ∞

1

1

x
dx < 2π

∫ ∞

1

1

x

√
1 + 1/x4 dx.

By Key Idea 6.8.17, the improper integral on the left diverges. Since
the integral on the right is larger, we conclude it also diverges, mean-
ing Gabriel’s Horn has infinite surface area.
Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount of
paint, but since it has infinite surface area, we can never paint it.
Somehow this paradox is striking when we think about it in terms of
volume and area. However, we have seen a similar paradox before, as
referenced above. We know that the area under the curve y = 1/x2 on
[1,∞) is finite, yet the shape has an infinite perimeter. Strange things
can occur when we deal with the infinite.

Video solution

youtu.be/watch?v=L4ogGgyzmvs

A standard equation from physics is “Work = force × distance”, when the
force applied is constant. In Section 7.5 we learn how to compute work when
the force applied is variable.

https://www.youtube.com/watch?v=L4ogGgyzmvs
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7.4.3 Exercises

Terms and Concepts

1. T/F: The integral formula for computing Arc Length was found by first approximating arc length with straight line
segments.

2. T/F: The integral formula for computing Arc Length includes a square-root, meaning the integration is probably
easy.

Problems

Exercise Group. In the following exercises, find the arc length of the function on the given interval.
3. f(x) = x on [0, 1]. 4. f(x) =

√
8x on [−1, 1].

5. f(x) =
1

3
x3/2 − x1/2 on [0, 1]. 6. f(x) =

1

12
x3 +

1

x
on [1, 4].

7. f(x) = 2x3/2 − 1

6

√
x on [1, 4]. 8. f(x) = cosh(x) on [− ln(2), ln(2)].

9. f(x) =
1

2

(
ex + e−x

)
on [0, ln(5)]. 10. f(x) =

1

12
x5 +

1

5x3
on [0.1, 1].

11. f(x) = ln
(
sin(x)

)
on [π/6, π/2]. 12. f(x) = ln

(
cos(x)

)
on [0, π/4].

Exercise Group. In the following exercises, set up the integral to compute the arc length of the function on the given
interval. Do not evaluate the integral.

13. f(x) = x2 on [0, 1]. 14. f(x) = x10 on [0, 1].
15. f(x) = ln(x) on [1, e]. 16. f(x) =

1

x
on [1, 2].

17. f(x) = cos(x) on [0, π/2]. 18. f(x) = sec(x) on [−π/4, π/4].

Exercise Group. In the following exercises, use Simpson’s Rule, with n = 4, to approximate the arc length of the
function on the given interval. Note: these are the same problems as in Exercises 13–18.

19. f(x) = x2 on [0, 1]. 20. f(x) = x10 on [0, 1].
21. f(x) = ln(x) on [1, e]. 22. f(x) =

1

x
on [1, 2].

23. f(x) = cos(x) on [0, π/2]. 24. f(x) = sec(x) on [−π/4, π/4].

Exercise Group. In the following exercises, find the surface area of the described solid of revolution.
25. The solid formed by revolving y = 2x on [0, 1]

about the x-axis.
26. The solid formed by revolving y = 2x on [0, 1]

about the y-axis.
27. The solid formed by revolving y = x2 on [0, 1]

about the y-axis.
28. The solid formed by revolving y = x3 on [0, 1]

about the x-axis.

Exercise Group. The following arc length and surface area problems lead to improper integrals. Although the hy-
potheses of Theorem 7.4.4 and Theorem 7.4.13 are not satisfied, the improper integrals converge, and formulas for
arc length and surface area still give the correct result.

29. Find the length of the curve f(x) =
√
x on

[0, 1]. (Note: this is the same as the length of
f(x) = x2 on [0, 1]. Why?)

30. Find the length of the curve f(x) =
√
1− x2

on [−1, 1]. (Note: this describes the top half of
a circle with radius 1.)

31. Find the length of the curve f(x) =
√
1− x2/9

on [−3, 3]. (Note: this describes the top half of
an ellipse with a major axis of length 6 and a
minor axis of length 2.)

32. Find the surface area of the solid formed by
revolving y =

√
x on [0, 1] about the x-axis.
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33. Find the surface area of the sphere formed by
revolving y =

√
1− x2 on [−1, 1] about the

x-axis.
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7.5 Work

Work is the scientific term used to describe the action of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the newton; one newton is equal to one kg·m
s2 , and the

SI unit of distance is a meter (m). The fundamental unit of work is one newton–
meter, or a joule (J). That is, applying a force of one newton for one meter per-
forms one joule of work. In Imperial units (as used in the United States), force
is measured in pounds (lb) and distance is measured in feet (ft), hence work is
measured in ft–lb.

Mass and weight are closely re-
lated, yet different, concepts. The
mass m of an object is a quan-
titative measure of that object’s
resistance to acceleration. The
weight w of an object is a mea-
surement of the force applied to
the object by the acceleration of
gravity g.

Since the twomeasurements
are proportional,w = m·g, they
are often used interchangeably
in everyday conversation. When
computingwork, onemust be care-
ful to notewhich is being referred
to. When mass is given, it must
bemultiplied by the acceleration
of gravity to reference the related
force.

When force is constant, the measurement of work is straightforward. For
instance, lifting a 200 lb object 5 ft performs 200 · 5 = 1000 ft–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 ft rope up a vertical face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

7.5.1 Work Done by a Variable Force
In general, letF (x) be a force function on an interval [a, b]. Wewant tomeasure
the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by partitioning [a, b] into subinter-
vals a = x0 < x1 < · · · < xn = b and assuming that F is constant on each
subinterval. Let ci be a value in the ith subinterval [xi−1, xi]. Then the work
done on this interval is approximatelyWi ≈ F (ci) · (xi − xi−1) = F (ci)∆xi, a
constant force × the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1

F (ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero gives an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work.

Let F (x) be a continuous function on [a, b] describing the amount of
force being applied to an object in the direction of travel from distance
x = a to distance x = b. The total workW done on [a, b] is

W =

∫ b

a

F (x) dx.

Example 7.5.2 Computing work performed: applying variable force.

A 60m climbing rope is hanging over the side of a tall cliff. How much
work is performed in pulling the rope up to the top, where the rope has
a linear mass density of 66 g

m?
Solution. Weneed to create a force functionF (x)on the interval [0, 60].
To do so, wemust first decide what x is measuring: is it the length of the
rope still hanging or is it the amount of rope pulled in? As long as we
are consistent, either approach is fine. We adopt for this example the
convention that x is the amount of rope pulled in. This seems to match
intuition better; pulling up the first 10meters of rope involves x = 0 to
x = 10 instead of x = 60 to x = 50.
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As x is the amount of rope pulled in, the amount of rope still hanging is
60− x. This length of rope has a mass of 66 g

m or 0.066
kg
m . The mass of

the rope still hanging is 0.066(60 − x) kg; multiplying this mass by the
acceleration of gravity, 9.8 m

s2 , gives our variable force function

F (x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0

0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in lifting the entire rope 60me-
ters. The ropeweighs 60×0.066×9.8 = 38.808N, so thework applying
this force for 60meters is 60×38.808 = 2, 328.48 J. This is exactly twice
the work calculated before (and we leave it to the reader to understand
why.)

Example 7.5.3 Computing work performed: applying variable force.

Consider again pulling a 60m rope up a cliff face, where the rope has a
mass of 66 g

m . At what point is exactly half the work performed?
Solution. From Example 7.5.2 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the
rope from a height of x = 0 to a height of x = h is 582.12, or half the
total work. Thus we want to solve the equation∫ h

0

0.6468(60− x) dx = 582.12

for h. ∫ h

0

0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12

−0.3234h2 + 38.808h− 582.12 = 0.

Apply the Quadratic Formula:

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57.
Thus about half the work is done pulling up the first 17.57m; the other
half of the work is done pulling up the remaining 42.43m.

In Example 7.5.3, we find that
half of the work performed in
pulling up a 60m rope is done
in the last 42.43m. Why is it
not coincidental that 60/

√
2 =

42.43?
Example 7.5.4 Computing work performed: applying variable force.

A box of 100 lb of sand is being pulled up at a uniform rate a distance
of 50 ft over 1minute. The sand is leaking from the box at a rate of 1 lb

s .
The box itself weighs 5 lb and is pulled by a rope weighing 0.2 lb

ft .
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1. How much work is done lifting just the rope?

2. How much work is done lifting just the box and sand?

3. What is the total amount of work performed?

Solution.

1. We start by forming the force function Fr(x) for the rope (where
the subscript denotes we are considering the rope). As in the pre-
vious example, let x denote the amount of rope, in feet, pulled in.
(This is the same as saying x denotes the height of the box.) The
weight of the rope with x feet pulled in is Fr(x) = 0.2(50− x) =
10− 0.2x. (Note that we do not have to include the acceleration
of gravity here, for theweight of the rope per foot is given, not its
mass per meter as before.) The work performed lifting the rope is

Wr =

∫ 50

0

(10− 0.2x) dx = 250ft–lb.

2. The sand is leaving the box at a rate of 1 lb
s . As the vertical trip

is to take one minute, we know that 60 lb will have left when the
box reaches its final height of 50 ft. Again letting x represent the
height of the box, we have two points on the line that describes
the weight of the sand: when x = 0, the sand weight is 100 lb,
producing the point (0, 100); when x = 50, the sand in the box
weighs 40 lb, producing the point (50, 40). The slope of this line is
100−40
0−50 = −1.2, giving the equation of the weight of the sand at
height x asw(x) = −1.2x+100. The box itself weighs a constant
5 lb, so the total force function is Fb(x) = −1.2x+ 105. Integrat-
ing from x = 0 to x = 50 gives the work performed in lifting box
and sand:

Wb =

∫ 50

0

(−1.2x+ 105) dx = 3750ft–lb.

3. The total work is the sum ofWr andWb: 250+3750 = 4000 ft–lb.
We can also arrive at this via integration:

W =

∫ 50

0

(Fr(x) + Fb(x)) dx

=

∫ 50

0

(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0

(−1.4x+ 115) dx

= 4000ft–lb.

7.5.2 Hooke’s Law and Springs
Hooke’s Law states that the force required to compress or stretch a springx units
from its natural length is proportional to x; that is, this force is F (x) = kx for
some constant k. For example, if a force of 1N stretches a given spring 2 cm,
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then a force of 5N will stretch the spring 10 cm. Converting the distances to
meters, wehave that stretching this spring 0.02 cm requires a force ofF (0.02) =
k(0.02) = 1 N, hence k = 1/0.02 = 50 N

m .

Example 7.5.5 Computing work performed: stretching a spring.

A force of 20 lb stretches a spring from a natural length of 7 inches to a
length of 12 inches. How much work was performed in stretching the
spring to this length?
Solution. In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do
not care that 20 lb of force stretches the spring to a length of 12 inches,
but rather that a force of 20 lb stretches the spring by 5 inches. This is
illustrated in Figure 7.5.6; we only measure the change in the spring’s
length, not the overall length of the spring.

F

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Figure 7.5.6 Illustrating the important
aspects of stretching a spring in com-
puting work in Example 7.5.5

Converting the units of length to feet, we have

F (5/12) = 5/12k = 20 lb.

Thus k = 48 lb
ft and F (x) = 48x.

We compute the total work performed by integrating F (x) from x = 0
to x = 5/12:

W =

∫ 5/12

0

48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667ft–lb.

7.5.3 Pumping Fluids
Another useful example of the applicationof integration to computework comes
in the pumping of fluids, often illustrated in the context of emptying a storage
tank by pumping the fluid out the top. This situation is different than our previ-
ous examples for the forces involved are constant. After all, the force required
to move one cubic foot of water (about 62.4 lb ) is the same regardless of its
location in the tank. What is variable is the distance that cubic foot of water has
to travel; water closer to the top travels less distance than water at the bottom,
producing less work.

Table 7.5.7 Weight and Mass densities

Fluid lb/ft3 kg/m3

Concrete 150 2400

Fuel Oil 55.46 890.13

Gasoline 45.93 737.22

Iodine 307 4927

Methanol 49.3 791.3

Mercury 844 13546

Milk 63.6–65.4 1020–1050
Water 62.4 1000
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Wedemonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Example 7.5.8 Computing work performed: pumping fluids.

A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is
filled with water, which weighs approximately 62.4 lb

ft3 . Compute the
amount of work performed by pumping the water up to a point 5 feet
above the top of the tank.
Solution. Wewill refer often to Figure 7.5.9 which illustrates the salient
aspects of this problem.

y

0

30

35

35
−
y i

10

yi−1

yi }
∆yi

Figure 7.5.9 Illustrating a water tank
in order to compute the work re-
quired to empty it in Example 7.5.8

We start as we often do: we partition an interval into subintervals. We
orient our tank vertically since this makes intuitive sense with the base
of the tank at y = 0. Hence the top of the water is at y = 30, meaning
we are interested in subdividing the y-interval [0, 30] into n subintervals
as

0 = y0 < y1 < · · · < yn = 30.

Consider the work Wi of pumping only the water residing in the ith
subinterval, illustrated in Figure 7.5.9. The force required to move this
water is equal to its weight which we calculate as volume × density.
The volume of water in this subinterval is Vi = 102π∆yi; its density
is 62.4 lb

ft3 . Thus the required force is 6240π∆yi lb.
We approximate the distance the force is applied by using any y-value
contained in the ith subinterval; for simplicity, we arbitrarily use yi for
now (it will not matter later on). The water will be pumped to a point 5
feet above the top of the tank, that is, to the height of y = 35 ft. Thus
the distance the water at height yi travels is 35− yi ft.
In all, the approximate workWi performed in moving the water in the
ith subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water
from the tank, we sum all the workWi performed in pumping the water
from each of the n subintervals of [0, 30]:

W ≈
n∑

i=1

Wi =
n∑

i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to
0 gives

W =

∫ 30

0

6240π(35− y) dy

= 6240π
(
35y − 1/2y2

) ∣∣∣30
0

= 11, 762, 123ft–lb

≈ 1.176× 107 ft–lb.

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.5.10 shows the tank from
Example 7.5.8 without the ith subinterval identified.

y

0

30

35

y

35
−

y i

10

V (y) = 100πdy

Figure 7.5.10 A simplified illustration
for computing work

Instead, we just drawonedifferential element. This helps establish the height
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a small amount of water must travel along with the force required to move it
(where the force is volume × density).

We demonstrate the concepts again in the next examples.

Example 7.5.11 Computing work performed: pumping fluids.

A conical water tank has its top at ground level and its base 10 feet be-
low ground. The radius of the cone at ground level is 2 ft. It is filled with
water weighing 62.4 lb

ft3 and is to be emptied by pumping the water to
a spigot 3 feet above ground level. Find the total amount of work per-
formed in emptying the tank.
Solution. The conical tank is sketched in Figure 7.5.12. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of
the tank and y = 10 represent the top of the tank, but we choose to
keep the convention of the wording given in the problem and let y = 0
represent ground level and hence y = −10 represents the bottom of
the tank. The actual “height” of the water does not matter; rather, we
are concerned with the distance the water travels.

y

−10

0

3

y

3
−

y i

2

V (y) = π(y5 + 2)2dy

Figure 7.5.12 A graph of the conical
water tank in Example 7.5.11

The figure also sketches a differential element, a cross-sectional circle.
The radius of this circle is variable, depending on y. When y = −10, the
circle has radius 0; when y = 0, the circle has radius 2. These two points,
(−10, 0) and (0, 2), allow us to find the equation of the line that gives
the radius of the cross-sectional circle, which is r(y) = 1/5y+2. Hence
the volume of water at this height is V (y) = π(1/5y + 2)2dy, where
dy represents a very small height of the differential element. The force
required to move the water at height y is F (y) = 62.4× V (y).
The distance the water at height y travels is given by h(y) = 3−y. Thus
the total work done in pumping the water from the tank is

W =

∫ 0

−10

62.4π(1/5y + 2)2(3− y) dy

= 62.4π

∫ 0

−10

(
− 1

25
y3 − 17

25
y2 − 8

5
y + 12

)
dy

= 62.2π · 220
3

≈ 14, 376ft–lb.

Example 7.5.13 Computing work performed: pumping fluids.

A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end”
and a 6 ft “deep end.” It is to have its water pumped out to a point 2 ft
above the current top of the water. The cross-sectional dimensions of
thewater in the pool are given in Figure 7.5.14; note that the dimensions
are for the water, not the pool itself. Compute the amount of work per-
formed in draining the pool.

10 ft.

10 ft.
3 ft.

6 ft.

25 ft

Figure 7.5.14 The cross-section of a
swimming pool filled with water in Ex-
ample 7.5.13

Solution. For the purposes of this problem we choose to set y = 0
to represent the bottom of the pool, meaning the top of the water is at
y = 6.

y

0
y
3

6
8

(10, 0)

(15, 3)

x
0 10 15

Figure 7.5.15 Orienting the pool and
showing differential elements for Ex-
ample 7.5.13

Figure 7.5.15 shows the pool oriented with this y-axis, along with 2 dif-
ferential elements as the pool must be split into two different regions.
The top region lies in the y-interval of [3, 6], where the length of the
differential element is 25 ft as shown. As the pool is 20 ft wide, this dif-
ferential element represents a thin slice of water with volume V (y) =
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20 ·25 ·dy. The water is to be pumped to a height of y = 8, so the height
function is h(y) = 8 − y. The work done in pumping this top region of
water is

Wt = 62.4

∫ 6

3

500(8− y) dy = 327, 600ft–lb.

The bottom region lies in the y-interval of [0, 3]; we need to compute
the length of the differential element in this interval.
One end of the differential element is at x = 0 and the other is along the
line segment joining the points (10, 0) and (15, 3). The equation of this
line is y = 3/5(x − 10); as we will be integrating with respect to y, we
rewrite this equation as x = 5/3y+10. So the length of the differential
element is a difference of x-values: x = 0 and x = 5/3y + 10, giving a
length of x = 5/3y + 10.
Again, as the pool is 20 ft wide, this differential element represents a
thin slice of water with volume V (y) = 20 · (5/3y+10) · dy; the height
function is the same as before at h(y) = 8− y. The work performed in
emptying this part of the pool is

Wb = 62.4

∫ 3

0

20(5/3y + 10)(8− y) dy = 299, 520ft–lb.

The total work in empyting the pool is

W = Wb +Wt = 327, 600 + 299, 520 = 627, 120ft–lb.

Notice how the emptying of the bottom of the pool performs almost
as much work as emptying the top. The top portion travels a shorter
distance but has more water. In the end, this extra water producesmore
work.

The next section introduces one final application of the definite integral, the
calculation of fluid force on a plate.
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7.5.4 Exercises

Terms and Concepts

1. What are the typical units of work?
2. If a man has a mass of 80 kg on Earth, will his mass on the moon be bigger, smaller, or the same?
3. If a woman weighs 130 lb on Earth, will her weight on the moon be bigger, smaller, or the same?
4. Fill in the blanks:

Some integrals in this section are set up by multiplying a variable by a constant distance; others
are set up by multiplying a constant force by a variable .

Problems

5. A 100 ft rope, weighing 0.1 lb
ft , hangs over the edge of a tall building.

(a) How much work is done pulling the entire rope to the top of the building?

(b) How much rope is pulled in when half of the total work is done?

6. A 50m rope, with a mass density of 0.2 kg
m , hangs over the edge of a tall building.

(a) How much work is done pulling the entire rope to the top of the building?

(b) How much work is done pulling in the first 20 m?
7. A rope of length ℓ ft hangs over the edge of tall cliff. (Assume the cliff is taller than the length of the rope.) The

rope has a weight density of d lb
ft .

(a) How much work is done pulling the entire rope to the top of the cliff?

(b) What percentage of the total work is done pulling in the first half of the rope?

(c) How much rope is pulled in when half of the total work is done?

8. A 20m rope with mass density of 0.5 kg
m hangs over the edge of a 10m building. Howmuch work is done pulling

the rope to the top?

9. A crane lifts a 2000 lb load vertically 30 ft with a 1 in cable weighing 1.68 lb
ft .

(a) How much work is done lifting the cable alone?

(b) How much work is done lifting the load alone?

(c) Could one conclude that the work done lifting the cable is negligible compared to the work done lifting
the load?

10. A100 lb bag of sand is lifted uniformly 120 ft in one minute. Sand leaks from the bag at a rate of 1/4 lb
s . What is

the total work done in lifting the bag?
11. A box weighing 2 lb lifts 10 lb of sand vertically 50 ft. A crack in the box allows the sand to leak out such that

9 lb of sand is in the box at the end of the trip. Assume the sand leaked out at a uniform rate. What is the total
work done in lifting the box and sand?

12. A force of 1000 lb compresses a spring 3 in. How much work is performed in compressing the spring?
13. A force of 2N stretches a spring 5 cm. How much work is performed in stretching the spring?
14. A force of 50 lb compresses a spring from a natural length of 18 in to 12 in. How much work is performed in

compressing the spring?
15. A force of 20 lb stretches a spring from a natural length of 6 in to 8 in. Howmuch work is performed in stretching

the spring?
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16. A force of 7N stretches a spring from a natural length of 11 cm to 21 cm. How much work is performed in
stretching the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring d m from its natural length. How much work is performed in stretching the
spring?

18. A 20 lb weight is attached to a spring. The weight rests on the spring, compressing the spring from a natural
length of 1 ft to 6 in.

Howmuchwork is done in lifting the box 1.5 ft (i.e, the springwill be stretched 1 ft beyond its natural length)?
19. A 20 lb weight is attached to a spring. The weight rests on the spring, compressing the spring from a natural

length of 1 ft to 6 in.
How much work is done in lifting the box 6 in (i.e, bringing the spring back to its natural length)?

20. A 5m tall cylindrical tank with radius of 2m is filled with 3m of gasoline, with a mass density of 737.22 kg
m3 .

Compute the total work performed in pumping all the gasoline to the top of the tank.

21. A 6 ft cylindrical tank with a radius of 3 ft is filled with water, which has a weight density of 62.4 lb
ft3 . The water

is to be pumped to a point 2 ft above the top of the tank.

(a) How much work is performed in pumping all the water from the tank?

(b) How much work is performed in pumping 3 ft of water from the tank?

(c) At what point is 1/2 of the total work done?

22. A gasoline tanker is filled with gasoline with a weight density of 45.93 lb
ft3 . The dispensing valve at the base is

jammed shut, forcing the operator to empty the tank via pumping the gas to a point 1 ft above the top of the
tank. Assume the tank is a perfect cylinder, 20 ft long with a diameter of 7.5 ft. Howmuch work is performed in
pumping all the gasoline from the tank?

23. A fuel oil storage tank is 10 ft deep with trapezoidal sides, 5 ft at the top and 2 ft at the bottom, and is 15 ft wide
(see diagram below). Given that fuel oil weighs 55.46 lb

ft3 , find the work performed in pumping all the oil from
the tank to a point 3 ft above the top of the tank.

10

2

15

5

24. A conical water tank is 5m deep with a top radius of 3m. (This is similar to Example 7.5.11.) The tank is filled
with pure water, with a mass density of 1000 kg

m3 .

(a) Find the work performed in pumping all the water to the top of the tank.

(b) Find the work performed in pumping the top 2.5m of water to the top of the tank.

(c) Find the work performed in pumping the top half of the water, by volume, to the top of the tank.
25. A water tank has the shape of a truncated cone, with dimensions given below, and is filled with water with a

weight density of 62.4 lb
ft3 . Find the work performed in pumping all water to a point 1 ft above the top of the

tank.
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2 ft

5 ft
10 ft

26. A water tank has the shape of an inverted pyramid, with dimensions given below, and is filled with water with
a mass density of 1000 kg

m3 . Find the work performed in pumping all water to a point 5m above the top of the
tank.

2 m

2 m

7 m

27. A water tank has the shape of a truncated, inverted pyramid, with dimensions given below, and is filled with
water with a mass density of 1000 kg

m3 . Find the work performed in pumping all water to a point 1m above the
top of the tank.

5 m

5 m

2 m
2 m

9 m
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7.6 Fluid Forces

In the unfortunate situation of a car driving into a body of water, the conven-
tional wisdom is that the water pressure on the doors will quickly be so great
that they will be effectively unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiting until
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
options.)

How can this be true? How much force does it take to open the door of
a submerged car? In this section we will find the answer to this question by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equations:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definition.

Definition 7.6.1 Fluid Pressure.

Let w be the weight-density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definition to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 7.6.2 Computing fluid force.

1. A cylindrical storage tank has a radius of 2 ft and holds 10 ft of a
fluid with a weight-density of 50 lb

ft3 . (See Figure 7.6.3.) What is
the force exerted on the base of the cylinder by the fluid?

2 ft

10
ft

Figure 7.6.3 A cylindrical tank in Ex-
ample 7.6.2

2. A rectangular tank whose base is a 5 ft square has a circular hatch
at the bottom with a radius of 2 ft. The tank holds 10 ft of a fluid
with a weight-density of 50 lb

ft3 . (See Figure 7.6.4.) What is the
force exerted on the hatch by the fluid?

5 ft 5 ft
2 ft

10
ft

Figure 7.6.4 A rectangular tank in Ex-
ample 7.6.2

Solution.

1. Using Definition 7.6.1, we calculate that the pressure exerted on
the cylinder’s base isw ·d =50 lb

ft3 ×10 ft=500 lb
ft2 . The area of the

base is π · 22 = 4π ft2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effectively just computed the weight of the fluid in
the tank.

2. The dimensions of the tank in this problem are irrelevant. All we
are concernedwith are the dimensions of the hatch and the depth
of the fluid. Since the dimensions of the hatch are the same as
the base of the tank in the previous part of this example, as is the
depth, we see that the fluid force is the same. That is, F = 6283
lb. A key concept to understand here is that we are effectively
measuring the weight of a 10 ft column of water above the hatch.
The size of the tank holding the fluid does not matter.
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The previous example demonstrates that computing the force exerted on a
horizontally oriented plate is relatively easy to compute. What about a vertically
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all directions. Thus the pressure on any portion of a plate that is 1 ft be-
low the surface of water is the same no matter how the plate is oriented. (Thus
a hollow cube submerged at a great depth will not simply be “crushed” from
above, but the sides will also crumple in. The fluid will exert force on all sides of
the cube.)

So consider a vertically oriented plate as shown in Figure 7.6.5 submerged in
a fluid with weight-densityw. What is the total fluid force exerted on this plate?
We find this force by first approximating the force on small horizontal strips. }∆yi

ℓ(ci)

di

Figure 7.6.5 A thin, vertically ori-
ented plate submerged in a fluid with
weight-density w

Let the top of the plate be at depth b and let the bottom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the bottom of the
plate is 3 ft under the surface, we have a = −3. We will come back to this later.)
We partition the interval [a, b] into n subintervals

a = y0 < y1 < · · · < yn = b,

with the ith subinterval having length∆yi. The force Fi exerted on the plate in
the ith subinterval is Fi = Pressure× Area.

The pressure is depth times the weight density w. We approximate the
depth of this thin strip by choosing any value di in [yi−1, yi]; the depth is ap-
proximately −di. (Our convention has di being a negative number, so −di is
positive.) For convenience, we let di be an endpoint of the subinterval; we let
di = yi.

The area of the thin strip is approximately length × width. The width is∆yi.
The length is a function of some y-value ci in the ith subinterval. We state the
length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w × ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each
of the n thin strips:

F =

n∑
i=1

Fi ≈
n∑

i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by
taking a limit as the subinterval lengths go to 0; we evaluate this limit with a
definite integral.

Key Idea 7.6.6 Fluid Force on a Vertically Oriented Plate.

Let a vertically oriented plate be submerged in a fluid with weight-
density w, where the top of the plate is at y = b and the bottom is
at y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =

∫ b

a

w · (−y) · ℓ(y) dy.
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2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate
by the fluid is

F =

∫ b

a

w · d(y) · ℓ(y) dy.

Example 7.6.7 Finding fluid force.

Consider a thin plate in the shape of an isosceles triangle as shown in
Figure 7.6.8, submerged in water with a weight-density of 62.4 lb

ft3 . If
the bottom of the plate is 10 ft below the surface of the water, what is
the total fluid force exerted on this plate?

4 ft

4
ft

Figure 7.6.8 A thin plate in the
shape of an isosceles triangle in Exam-
ple 7.6.7

Solution. We approach this problem in two different ways to illustrate
the different ways Key Idea 7.6.6 can be implemented. First we will let
y = 0 represent the surface of the water, then we will consider an alter-
nate convention.

1. We let y = 0 represent the surface of the water; therefore the
bottom of the plate is at y = −10. We center the triangle on the
y-axis as shown in Figure 7.6.9. The depth of the plate at y is −y
as indicated by the Key Idea. We now consider the length of the
plate at y. We need to find equations of the left and right edges
of the plate. The right hand side is a line that connects the points
(0,−10) and (2,−6): that line has equation x = 1/2(y + 10).
(Find the equation in the familiar y = mx + b format and solve
for x.) Likewise, the left hand side is described by the line x =
−1/2(y+10). The total length is the distance between these two
lines: ℓ(y) = 1/2(y + 10)− (−1/2(y + 10)) = y + 10.

(2,−6)(−2,−6)

(0,−10)

y

y

x
−2−1 1 2

−10

−8

−4

−2

water line

d
(y
)
=

−
y

Figure 7.6.9 Sketching the triangular
plate in Example 7.6.7 with the con-
vention that the water level is at y =
0

The total fluid force is then:

F =

∫ −6

−10

62.4(−y)(y + 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. Sometimes it seems easier to orient the thin plate nearer the ori-
gin. For instance, consider the convention that the bottom of
the triangular plate is at (0, 0), as shown in Figure 7.6.10. The
equations of the left and right hand sides are easy to find. They
are y = 2x and y = −2x, respectively, which we rewrite as
x = 1/2y and x = −1/2y. Thus the length function is ℓ(y) =
1/2y − (−1/2y) = y.

(2, 4)(−2, 4)
y

y

x
−2−1 1 2

10

8

6

2

water line

d
(y
)
=

1
0
−

y

Figure 7.6.10 Sketching the triangular
plate in Example 7.6.7 with the con-
vention that the base of the triangle
is at (0, 0)

As the surface of the water is 10 ft above the base of the plate, we
have that the surface of the water is at y = 10. Thus the depth
function is the distance between y = 10 and y; d(y) = 10 − y.
We compute the total fluid force as:

F =

∫ 4

0

62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the
plate in the coordinate plane as long as we are consistent.
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Example 7.6.11 Finding fluid force.

Find the total fluid force on a car door submerged up to the bottomof its
window in water, where the car door is a rectangle 40 in long and 27 in
high (based on the dimensions of a 2005 Fiat Grande Punto.)
Solution. The car door, as a rectangle, is drawn in Figure 7.6.12. Its
length is 10/3 ft and its height is 2.25 ft. We adopt the convention that
the top of the door is at the surface of the water, both of which are at
y = 0. Using the weight-density of water of 62.4 lb

ft3 , we have the total
force as

F =

∫ 0

−2.25

62.4(−y)10/3 dy

=

∫ 0

−2.25

−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a
car door while seated inside, making the door effectively impossible to
open. This is counter-intuitive as most assume that the door would be
relatively easy to open. The truth is that it is not, hence the survival tips
mentioned at the beginning of this section.

(3.3, 0)

(3.3,−2.25)(0,−2.25)

(0, 0)

y

y

x

Figure 7.6.12 Sketching a submerged
car door in Example 7.6.11

Example 7.6.13 Finding fluid force.

An underwater observation tower is being built with circular viewing
portholes enabling visitors to see underwater life. Each vertically ori-
ented porthole is to have a 3 ft diameter whose center is to be located
50 ft underwater. Find the total fluid force exerted on each porthole.
Also, compute the fluid force on a horizontally oriented porthole that is
under 50 ft of water.

y

y

x

−2 −1 1 2

−2

−1

1

2

50

water line

not to scale

d
(y
)
=

5
0
−

y

Figure 7.6.14 Measuring the fluid
force on an underwater porthole in
Example 7.6.13

Solution. We place the center of the porthole at the origin, meaning
the surface of the water is at y = 50 and the depth function will be
d(y) = 50− y; see Figure 7.6.14
The equation of a circle with a radius of 1.5 is x2 + y2 = 2.25; solv-
ing for x we have x = ±

√
2.25− y2, where the positive square root

corresponds to the right side of the circle and the negative square root
corresponds to the left side of the circle. Thus the length function at
depth y is ℓ(y) = 2

√
2.25− y2. Integrating on [−1.5, 1.5] we have:

F = 62.4

∫ 1.5

−1.5

2(50− y)
√
2.25− y2 dy

= 62.4

∫ 1.5

−1.5

(
100
√
2.25− y2 − 2y

√
2.25− y2

)
dy

= 6240

∫ 1.5

−1.5

(√
2.25− y2

)
dy − 62.4

∫ 1.5

−1.5

(
2y
√
2.25− y2

)
dy.

The second integral above can be evaluated using substitution. Let u =
2.25 − y2 with du = −2y dy. The new bounds are: u(−1.5) = 0 and
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u(1.5) = 0; the new integral will integrate from u = 0 to u = 0, hence
the integral is 0.
The first integral above finds the area of half a circle of radius 1.5, thus
the first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total
fluid force on a vertically oriented porthole is 22, 054 lb.
Finding the force on a horizontally oriented porthole is more straightfor-
ward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the
fluid force applied to a vertically oriented circle whose center is at depth
d is the same as force applied to a horizontally oriented circle at depth
d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revolution. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximating the solution, then refining the approximation, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is bene-
ficial as it helps solve problems found in the exercises, and other mathematical
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summation of approximations; each summation was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.
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7.6.1 Exercises

Terms and Concepts

1. State in your own words Pascal’s Principle.
2. State in your own words how pressure is different from force.

Problems

Exercise Group. In the following exercises, find the fluid force exerted on the given plate, submerged in water with
a weight density of 62.4 lb

ft3 .
3.

2 ft

2 ft

1 ft

4.

1 ft

2 ft

1 ft

5.

4 ft

5 ft

6 ft

6.

4 ft

5 ft

6 ft

7.

2 ft

5 ft

8.

4 ft

5 ft
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9.

4 ft

2 ft

5 ft

10.

4 ft

2 ft

5 ft

11.

2 ft

2 ft

1 ft

12.

2 ft

2 ft

1 ft

Exercise Group. In the following exercises, the side of a container is pictured. Find the fluid force exerted on this
plate when the container is full of:

(a) water, with a weight density of 62.4 lb
ft3 , and

(b) concrete, with a weight density of 150 lb
ft3 .

13.

3 ft

5 ft

14.

4 ft

y = x2

4 ft

15.

4 ft

y = 4− x2

4 ft

16.

2 ft

y = −
√
1− x2
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17.

2 ft

y =
√
1− x2

18.

6 ft

y = −
√
9− x2

19. How deepmust the center of a vertically oriented circular plate with a radius of 1 ft be submerged in water, with
a weight density of 62.4 lb

ft3 , for the fluid force on the plate to reach 1, 000 lb?

20. How deep must the center of a vertically oriented square plate with a side length of 2 ft be submerged in water,
with a weight density of 62.4 lb

ft3 , for the fluid force on the plate to reach 1,000 lb?





Chapter 8

Differential Equations

One of the strengths of calculus is its ability to describe real-world phenomena.
We have seen hints of this in our discussion of the applications of derivatives
and integrals in the previous chapters. The process of formulating an equation
ormultiple equations to describe a physical phenomenon is calledmathematical
modeling. As a simple example, populations of bacteria are often described as
“growing exponentially.” Looking in a biology text, we might see P (t) = P0e

kt,
where P (t) is the bacteria population at time t, P0 is the initial population at
time t = 0, and the constant k describes how quickly the population grows. This
equation for exponential growth arises from the assumption that the population
of bacteria grows at a rate proportional to its size. Recalling that the derivative
gives the rate of change of a function, we can describe the growth assumption
precisely using the equation P ′ = kP . This equation is called a differential
equation, and these equations are the subject of the current chapter.

8.1 Graphical and Numerical Solutions to Differential
Equations

In Section 5.1, we were introduced to the idea of a differential equation. Given
a function y = f(x), we defined a differential equation as an equation involving
y, x, and derivatives of y. We explored the simple differential equation y ′ = 2x,
and saw that a solution to a differential equation is simply a function that satisfies
the differential equation.

youtu.be/watch?v=aevFioTbghg

Figure 8.1.1 Video introduction to
Section 8.1

8.1.1 Introduction and Terminology

Definition 8.1.2 Differential Equation.

Given a function y = f(x), a differential equation is an equation relat-
ing x, y, and derivatives of y.

• The variable x is called the independent variable.

• The variable y is called the dependent variable.

• The order of the differential equation is the order of the highest
derivative of y that appears in the equation.

429

https://www.youtube.com/watch?v=aevFioTbghg
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Let us return to the simple differential equation

y ′ = 2x.

To find a solution, we must find a function whose derivative is 2x. In other
words, we seek an antiderivative of 2x. The function

y = x2

is an antiderivative of 2x, and solves the differential equation. So do the func-
tions

y = x2 + 1

and
y = x2 − 2346.

We call the function
y = x2 + C,

with C an arbitrary constant of integration, the general solution to the differen-
tial equation.

In order to specify the value of the integration constant C, we require addi-
tional information. For example, if we know that y(1) = 3, it follows thatC = 2.
This additional information is called an initial condition.

Definition 8.1.3 Initial Value Problem.

A differential equation paired with an initial condition (or initial condi-
tions) is called an initial value problem.
The solution to an initial value problem is called a particular solution. A
particular solution does not include arbitrary constants.
The family of solutions to a differential equation that encompasses all
possible solutions is called the general solution to the differential equa-
tion.

Note: Ageneral solution typically
includes one or more arbitrary
constants. Different values of the
constant(s) specify differentmem-
bers in the family of solutions. The
particular solution to an initial value
problem is the specific member
in the family of solutions that cor-
responds to the given initial con-
dition(s).

Example 8.1.4 A simple first-order differential equation.

Solve the differential equation y ′ = 2y.
Solution. The solution is a function y such that differentiation yields
twice the original function. Unlike our starting example, finding the so-
lution here does not involve computing an antiderivative. Notice that
“integrating both sides” would yield the result y =

∫
2y dx, which is not

useful. Without knowledge of the function y, we can’t compute the in-
definite integral. Later sections will explore systematic ways to find ana-
lytic solutions to simple differential equations. For now, a bit of thought
might let us guess the solution

y = e2x.

Notice that application of the chain rule yields y ′ = 2e2x = 2y. Another
solution is given by

y = −3e2x.

In fact,
y = Ce2x,

where C is any constant, is the general solution to the differential equa-
tion because y ′ = 2Ce2x = 2y.
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If we are provided with a single initial condition, say y(0) = 3/2, we can
identify C = 3/2 so that

y =
3

2
e2x

is the particular solution to the initial value problem

y ′ = 2y, with y(0) =
3

2
.

Figure 8.1.5 shows variousmembers of the general solution to the differ-
ential equation y ′ = 2y. Each C value yields a different member of the
family, and a different function. We emphasize the particular solution
corresponding to the initial condition y(0) = 3/2.

−2 −1 1 2

−10

−5
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10

x

y

Figure 8.1.5A representation of some
of themembers of general solution to
the differential equation y ′ = 2y, in-
cluding the particular solution to the
initial value problemwith y(0) = 3/2,
from Example 8.1.4

Video solution

youtu.be/watch?v=PAn_TrwF27M

Example 8.1.6 A second-order differential equation.

Solve the differential equation y ′′ + 9y = 0.
Solution. We seek a function whose second derivative is negative 9
multiplied by the original function. Both sin(3x) and cos(3x) have this
feature. The general solution to the differential equation is given by

y = C1 sin(3x) + C2 cos(3x),

where C1 and C2 are arbitrary constants. To fully specify a particular
solution, we require two additional conditions. For example, the initial
conditions y(0) = 1 and y ′(0) = 3 yield C1 = C2 = 1.

The differential equation in Example 8.1.6 is second order, because the equa-
tion involves a second derivative. In general, the number of initial conditions
required to specify a particular solution depends on the order of the differential
equation. For the remainder of the chapter, we restrict our attention to first
order differential equations and first order initial value problems.

Example 8.1.7 Verifying a solution to the differential equation.

Which of the following is a solution to the differential equation

y ′ +
y

x
−√

y = 0?

(a) y = C (1 + ln(x))2

(b) y =

(
1

3
x+

C√
x

)2

(c) y = Ce−3x +
√
sin(x)

Solution. Verifying a solution to a differential equation is simply an ex-
ercise in differentiation and simplification. We substitute each potential
solution into the differential equation to see if it satisfies the equation.

(a) Testing the potential solution y = C (1 + ln(x))2:

Differentiating, we have y ′ =
2C(1 + ln(x))

x
. Substituting into

https://www.youtube.com/watch?v=PAn_TrwF27M
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the differential equation,

2C(1 + ln(x))
x

+
C(1 + ln(x))2

x
−

√
C(1 + ln(x))

= (1 + ln(x))
(
2C

x
+

C(1 + ln(x))
x

−
√
C

)
̸= 0.

Since it doesn’t satisfy the differential equation, y = C(1+ln(x))2
is not a solution.

(b) Testing the potential solution y =

(
1

3
x+

C√
x

)2

:

Differentiating, we have y ′ = 2

(
1

3
x+

C√
x

)(
1

3
− C

2x3/2

)
.

Substituting into the differential equation,

2

(
1

3
x+

C√
x

)(
1

3
− C

2x3/2

)
+

1

x

(
1

3
x+

C√
x

)2

−
(
1

3
x+

C√
x

)
=

(
1

3
x+

C√
x

)(
2

3
− C

x3/2
+

1

3
+

C

x3/2
− 1

)
= 0. (Note how the second parenthetical grouping above reduces to 0.)

Thus y =

(
1

3
x+

C√
x

)2

is a solution to the differential equation.

(c) Testing the potential solution y = Ce−3x +
√
sin(x):

Differentiating, y ′ = −3Ce−3x+
cos(x)

2
√
sin(x)

. Substituting into the

differential equation,

−3Ce−3x+
cos(x)

2
√
sin(x)

+
Ce−3x +

√
sin(x)

x
−
√
Ce−3x +

√
sin(x) ̸= 0.

The function y = Ce−3x +
√
sin(x) is not a solution to the differ-

ential equation.

Video solution

youtu.be/watch?v=bf_WyPauK0Y

Example 8.1.8 Verifying a solution to a differential equation.

Verify that x2 + y2 = Cy is a solution to y ′ =
2xy

x2 − y2
.

Solution. The solution in this example is called an implicit solution. That
means the dependent variable y is a function of x, but has not been
explicitly solved for. Verifying the solution still involves differentiation,
but we must take the derivatives implicitly. Differentiating, we have

2x+ 2yy ′ = Cy ′.

https://www.youtube.com/watch?v=bf_WyPauK0Y
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Solving for y ′, we have

y ′ =
2x

C − 2y
.

From the solution, we know that C =
x2 + y2

y
. Then

y ′ =
2x

x2 + y2

y
− 2y

=
2xy

x2 + y2 − 2y2

=
2xy

x2 − y2
.

We have verified that x2 + y2 = Cy is a solution to y ′ =
2xy

x2 − y2
.

Video solution

youtu.be/watch?v=B0gxkvJf9oY

8.1.2 Graphical Solutions to Differential Equations
In the examples we have explored so far, we have found exact forms for the
functions that solve the differential equations. Solutions of this type are called
analytic solutions. Many times a differential equation has a solution, but it is dif-
ficult or impossible to find the solution analytically. This is analogous to algebraic
equations. The algebraic equationx2+3x−1 = 0has two real solutions that can
be found analytically by using the quadratic formula. The equation cos(x) = x
has one real solution, but we can’t find it analytically. As shown in Figure 8.1.9,
we can find an approximate solution graphically by plotting cos(x) and x and
observing the x-value of the intersection. We can similarly use graphical tools
to understand the qualitative behavior of solutions to a first order-differential
equation.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 8.1.9 Graphically finding an ap-
proximate solution to cos(x) = x

Consider the first-order differential equation

y ′ = f(x, y).

The function f could be any function of the two variables x and y. Written in
this way, we can think of the function f as providing a formula to find the slope
of a solution at a given point in the xy-plane. In other words, suppose a solu-
tion to the differential equation passes through the point (x0, y0). At the point
(x0, y0), the slope of the solution curve will be f(x0, y0). Since this calculation
of the slope is possible at any point (x, y)where the function f(x, y) is defined,
we can produce a plot called a slope field (or direction field) that shows the slope
of a solution at any point in the xy-plane where the solution is defined. Further,
this process can be done purely by working with the differential equation itself.
In other words, we can draw a slope field and use it to determine the qualita-
tive behavior of solutions to a differential equation without having to solve the
differential equation.

Definition 8.1.10 Slope Field.

A slope field for a first-order differential equation y ′ = f(x, y) is a plot
in the xy-planemade up of short line segments or arrows. At each point
(x0, y0) where f(x, y) is defined, the slope of the line segment is given
by f(x0, y0). Plots of solutions to a differential equation are tangent to

https://www.youtube.com/watch?v=B0gxkvJf9oY
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the line segments in the slope field.

Example 8.1.11 Sketching a slope field.

Find a slope field for the differential equation y ′ = x+ y.
Solution. Because the function f(x, y) = x+ y is defined for all points
(x, y), every point in the xy-plane has an associated line segment. It is
not practical to draw an entire slope field by hand, but many tools exist
for drawing slope fields on a computer. Here, we explicitly calculate a
few of the line segments in the slope field.

• The slope of the line segment at (0, 0) is f(0, 0) = 0 + 0 = 0.

• The slope of the line segment at (1, 1) is f(1, 1) = 1 + 1 = 2.

• The slope of the line segment at (1,−1) is f(1,−1) = 1− 1 = 0.

• The slope of the line segment at (−2,−1) is f(−2,−1) = −2 −
1 = −3.

Though it is possible to continue this process to sketch a slope field, we
usually use a computer to make the drawing. Most popular computer
algebra systems can draw slope fields. There are also various online tools
that can make the drawings. The slope field for y ′ = x + y is shown in
Figure 8.1.12.

x

y

Figure 8.1.12 Slope field for y ′ = x+
y from Example 8.1.11

Example 8.1.13 A graphical solution to an initial value problem.

Approximate, with a sketch, the solution to the initial value problem
y ′ = x+ y, with y(1) = −1.
Solution. The solution to the initial value problem should be a continu-
ous smooth curve. Using the slope field, we can draw of a sketch of the
solution using the following two criteria:

1. The solution must pass through the point (1,−1).

2. When the solution passes through a point (x0, y0) it must be tan-
gent to the line segment at (x0, y0).

Essentially, we sketch a solution to the initial value problemby starting at
the point (1,−1) and “following the lines” in either direction. A sketch
of the solution is shown in Figure 8.1.14.

x

y

Figure 8.1.14 Solution to the initial
value problem y ′ = x + y, with
y(1) = −1 from Example 8.1.13

Example 8.1.15 Using a slope field to predict long term behavior.

Use the slope field for the differential equation y ′ = y(1− y), shown in
Figure 8.1.16, to predict long term behavior of solutions to the equation.

t

y

Figure 8.1.16 Slope field for the logis-
tic differential equation y ′ = y(1−y)
from Example 8.1.15

Solution. This differential equation, called the logistic differential equa-
tion, often appears in population biology to describe the size of a pop-
ulation. For that reason, we use t (time) as the independent variable
instead of x. We also often restrict attention to non-negative y-values
because negative values correspond to a negative population.
Looking at the slope field in Figure 8.1.16, we can predict long term be-
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havior for a given initial condition.

• If the initial y-value is negative (y(0) < 0), the solution curvemust
pass though the point (0, y(0)) and follow the slope field. We ex-
pect the solution y to become more and more negative as time
increases. Note that this result is not physically relevantwhen con-
sidering a population.

• If the initial y-value is greater than 0 but less than 1, we expect
the solution y to increase and level off at y = 1.

• If the initial y-value is greater than 1, we expect the solution y to
decrease and level off at y = 1.

The slope field for the logistic differential equation, along with represen-
tative solution curves, is shown in Figure 8.1.17. Notice that any solution
curve with positive initial value will tend towards the value y = 1. We
call this the carrying capacity.

t

y

Figure 8.1.17 Slope field for the logis-
tic differential equation y ′ = y(1−y)
from Example 8.1.15with a few repre-
sentative solution curves

8.1.3 Numerical Solutions toDifferential Equations: Euler’sMethod
While the slope field is an effective way to understand the qualitative behavior
of solutions to a differential equation, it is difficult to use a slope field to make
quantitative predictions. For example, if we have the slope field for the differ-
ential equation y ′ = x+ y from Example 8.1.11 along with the initial condition
y(0) = 1, we can understand the qualitative behavior of the solution to the ini-
tial value problem, but will struggle to predict a specific value, y(2) for example,
with any degree of confidence. The most straightforward way to predict y(2) is
to find the analytic solution to the the initial value problem and evaluate it at
x = 2. Unfortunately, we have already mentioned that it is impossible to find
analytic solutions to many differential equations. In the absence of an analytic
solution, a numerical solution can serve as an effective tool tomake quantitative
predictions about the solution to an initial value problem.

There aremany techniques for computing numerical solutions to initial value
problems. A course in numerical analysis will discuss various techniques along
with their strengths and weaknesses. The simplest technique is called Euler’s
Method.

Euler’sMethod is named for Leon-
hard Euler, a prolific Swiss math-
ematician during the 1700’s. His
last name is properly pronounced
“oil-er”, not “you-ler.”

Consider the first-order initial value problem

y ′ = f(x, y), with y(x0) = y0.

Using the definition of the derivative,

y ′(x) = lim
h→0

y(x+ h)− y(x)

h
.

This notation can be confusing at first, but “y(x)” simply means “the y-value
of the solution when the x-value is x”, and “y(x + h)” means “the y-value of
the solution when the x-value is x+ h”.

If we remove the limit but restrict h to be “small,” we have

y ′(x) ≈ y(x+ h)− y(x)

h
,

so that
f(x, y) ≈ y(x+ h)− y(x)

h
,
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because y ′ = f(x, y) according to the differential equation. Rearranging terms,

y(x+ h) ≈ y(x) + h f(x, y).

This statement says that if we know the solution (y-value) to the initial value
problem for somegivenx-value, we canfind an approximation for the solution at
the valuex+h by taking our y-value and addinghtimes the function f evaluated
at the x and y values. Euler’s method uses the initial condition of an initial value
problem as the starting point, and then uses the above idea to find approximate
values for the solution y at later x-values. The algorithm is summarized in Key
Idea 8.1.18.

Key Idea 8.1.18 Euler’s Method.

Consider the initial value problem

y ′ = f(x, y) with y(x0) = y0.

Let h be a small positive number andN be an integer.

1. For i = 0, 1, 2, . . . , N , define

xi = x0 + ih.

2. The value y0 is given by the initial condition. For i = 0, 1, 2, . . . , N − 1,
define

yi+1 = yi + hf(xi, yi).

This process yields a sequence ofN+1 points (xi, yi) for i = 0, 1, 2, . . . , N , where
(xi, yi) is an approximation for (xi, y(xi)).

Let’s practice Euler’s Method using a few concrete examples.

Example 8.1.19 Using Euler’s Method 1.

Find an approximation at x = 2 for the solution to y ′ = x + y with
y(1) = −1 using Euler’s Method with h = 0.5.
Solution. Our initial condition yields the starting values x0 = 1 and
y0 = −1. With h = 0.5, it takes N = 2 steps to get to x = 2. Using
steps 1 and 2 from the Euler’s Method algorithm,

x0 = 1 y0 = −1

x1 = x0 + h y1 = y0 + hf(x0, y0)

= 1 + 0.5 = −1 + 0.5(1− 1)

= 1.5 = −1

x2 = x0 + 2h y2 = y1 + hf(x1, y1)

= 1 + 2(0.5) = −1 + 0.5(1.5− 1)

= 2 = −0.75.

Using Euler’s method, we find the approximate y(2) ≈ −0.75.
To help visualize the Euler’s method approximation, these three points
(connected by line segments) are plotted along with the analytical solu-
tion to the initial value problem in Figure 8.1.20.

1 1.5 2

−1

−0.5

xy

Figure 8.1.20 Euler’s Method approxi-
mation to y ′ = x+ y with y(1) = −1
from Example 8.1.19, along with the
analytical solution to the initial value
problem

This approximation doesn’t appear terrific, though it is better than merely
guessing. Let’s repeat the previous example using a smaller h-value.
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Example 8.1.21 Using Euler’s Method 2.

Find an approximation on the interval [1, 2] for the solution to y ′ = x+y
with y(1) = −1 using Euler’s Method with h = 0.25.
Solution. Our initial condition yields the starting values x0 = 1 and
y0 = −1. With h = 0.25, we need N = 4 steps on the interval [1, 2]
Using steps 1 and 2 from the Euler’s Method algorithm (and rounding to
4 decimal points), we have

x0 = 1 y0 = −1

x1 = 1.25 y1 = −1 + 0.25(1− 1)

= −1

x2 = 1.5 y2 = −1 + 0.25(1.25− 1)

= −0.9375

x3 = 1.75 y3 = −0.9375 + 0.25(1.5− 0.9375)

= −0.7969

x4 = 2 y4 = −0.7969 + 0.25(1.75− 0.7969)

= −0.5586.

Using Euler’s method, we find y(2) ≈ −0.5586.
These five points, along with the points from Example 8.1.19 and the
analytic solution, are plotted in Figure 8.1.22.

1 1.5 2
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−0.5

h = 0.5

h = 0.25

xy

Figure 8.1.22 Euler’s Method approx-
imations to y ′ = x + y with y(1) =
−1 from Examples 8.1.19 and 8.1.21,
along with the analytical solution

Using the results from Examples 8.1.19 and 8.1.21, we can make a few ob-
servations about Euler’s method. First, the Euler approximation generally gets
worse aswe get farther from the initial condition. This is because Euler’smethod
involves two sources of error. The first comes from the fact that we’re using a
positive h-value in the derivative approximation instead of using a limit as h ap-
proaches zero. Essentially, we’re using a linear approximation to the solution y
(similar to the process described in Section 4.4 on Differentials.) This error is of-
ten called the local truncation error. The second source of error comes from the
fact that every step in Euler’s method uses the result of the previous step. That
means we’re using an approximate y-value to approximate the next y-value. Do-
ing this repeatedly causes the errors to build on each other. This second type of
error is often called the propagated or accumulated error.

A second observation is that the Euler approximation is more accurate for
smaller h-values. This accuracy comes at a cost, though. Example 8.1.21 is
more accurate than Example 8.1.19, but takes twice as many computations. In
general, numerical algorithms (even when performed by a computer program)
require striking a balance between a desired level of accuracy and the amount
of computational effort we are willing to undertake.

Let’s do one final example of Euler’s Method.

Example 8.1.23 Using Euler’s Method 3.

Find an approximation for the solution to the logistic differential equa-
tion
y ′ = y(1− y) with y(0) = 0.25, for 0 ≤ y ≤ 4. UseN = 10 steps.
Solution. The logistic differential equation is what is called an au-
tonomous equation. An autonomous differential equation has no ex-
plicit dependence on the independent variable (t in this case). This has
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no real effect on the application of Euler’s method other than the fact
that the function f(t, y) is really just a function of y. To take steps in the
y variable, we use

yi+1 = yi + hf(ti, yi) = yi + hyi(1− yi).

Using N = 10 steps requires h =
4− 0

10
= 0.4. Implementing Euler’s

Method, we have

x0 = 0 y0 = 0.25

x1 = 0.4 y1 = 0.25 + 0.4(0.25)(1− 0.25)

= 0.325

x2 = 0.8 y2 = 0.325 + 0.4(0.325)(1− 0.325)

= 0.41275

x3 = 1.2 y3 = 0.41275 + 0.4(0.41275)(1− 0.41275)

= 0.50970

x4 = 1.6 y4 = 0.50970 + 0.4(0.50970)(1− 0.50970)

= 0.60966

x5 = 2.0 y5 = 0.60966 + 0.4(0.60966)(1− 0.60966)

= 0.70485

x6 = 2.4 y6 = 0.70485 + 0.4(0.70485)(1− 0.70485)

= 0.78806

x7 = 2.8 y7 = 0.78806 + 0.4(0.78806)(1− 0.78806)

= 0.85487

x8 = 3.2 y8 = 0.85487 + 0.4(0.85487)(1− 0.85487)

= 0.90450

x9 = 3.6 y9 = 0.90450 + 0.4(0.90450)(1− 0.90450)

= 0.93905

x10 = 4.0 y10 = 0.93905 + 0.4(0.93905)(1− 0.93905)

= 0.96194.

These 11 points, along with the the analytic solution, are plotted in Fig-
ure 8.1.24. Notice how well they seem to match the true solution.
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Figure 8.1.24 Euler’s Method approxi-
mation to y ′ = y(1− y) with y(0) =
0.25 from Example 8.1.23, along with
the analytical solution

The study of differential equations is a natural extension of the study of de-
rivatives and integrals. The equations themselves involve derivatives, and meth-
ods to find analytic solutions often involve finding antiderivatives. In this sec-
tion, we focus on graphical and numerical techniques to understand solutions
to differential equations. We restrict our examples to relatively simple initial
value problems that permit analytic solutions to the equations, but we should
remember that this is only for comparison purposes. In reality, many differential
equations, even some that appear straightforward, do not have solutionswe can
find analytically. Even so, we can use the techniques presented in this section
to understand the behavior of solutions. In the next two sections, we explore
two techniques to find analytic solutions to two different classes of differential
equations.
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8.1.4 Exercises

Terms and Concepts

1. In your own words, what is an initial value problem, and how is it different than a differential equation?
2. In your own words, describe what it means for a function to be a solution to a differential equation.
3. How can we verify that a function is a solution to a differential equation?
4. Describe the difference between a particular solution and a general solution.
5. Why might we use a graphical or numerical technique to study solutions to a differential equation instead of

simply solving the differential equation to find an analytic solution?
6. Describe the considerations that should be made when choosing an h value to use in a numerical method like

Euler’s Method.

Problems

Exercise Group. In the following exercises, verify that the given function is a solution to the differential equation or
initial value problem.

7. y = Ce−6x2

; y ′ = −12xy. 8. y = x sin(x);
y ′ − x cos(x) = (x2 + 1) sin(x)− xy, with
y(π) = 0.

9. 2x2 − y2 = C; yy ′ − 2x = 0 10. y = xex; y ′′ − 2y ′ + y = 0

Exercise Group. In the following exercises, verify that the given function is a solution to the differential equation and
find the C value required to make the function satisfy the initial condition.

11. y = 4e3x sin(x) +Ce3x; y ′ − 3y = 4e3x cos(x),
with y(0) = 2

12. y(x2 + y) = C; 2xy + (x2 + 2y)y ′ = 0, with
y(1) = 2

Exercise Group. In the following exercises, sketch a slope field for the given differential equation. Let x and y range
between−2 and 2.

13. y ′ = y − x 14. y ′ =
x

2y

15. y ′ = sin(πy) 16. y ′ = y
4

Exercise Group. Match each slope field below with the appropriate differential equation.

x

y

x

y

(a) (b)
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x

y

x

y

(c) (d)
17. y ′ = xy 18. y ′ = −y

19. y ′ = −x 20. y ′ = x(1− x)

Exercise Group. In the following exercises, sketch the slope field for the differential equation, and use it to draw a
sketch of the solution to the initial value problem.

21. y ′ =
y

x
− y, with y(0.5) = 1. 22. y ′ = y sin(x), with y(0) = 1.

23. y ′ = y2 − 3y + 2, with y(0) = 2. 24. y ′ = − xy

1 + x2
, with y(0) = 1.

Exercise Group. In the following exercises, use Euler’s Method to make a table of values that approximates the
solution to the initial value problem on the given interval. Use the specified h orN value.

25. y ′ = x+ 2y
y(0) = 1
interval: [0, 1]
h = 0.25

26. y ′ = xe−y

y(0) = 1
interval: [0, 0.5]
N = 5

27. y ′ = y + sin(x)
y(0) = 2
interval: [0, 1]
h = 0.2

28. y ′ = ex−y

y(0) = 0
interval: [0, 2]
h = 0.5

Exercise Group. In the following exercises, use the provided solution y(x) and Euler’s Method with the h = 0.2 and
h = 0.1 to complete the following table.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x)

h = 0.2

h = 0.1

29. y ′ = xy2

y(0) = 1

Solution: y(x) =
2

1− x2

30. y ′ = xex
2

+
1

2
xy

y(0) =
1

2

Solution: y(x) =
1

2
(x2 + 1)ex

2
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8.2 Separable Differential Equations

There are specific techniques that can be used to solve specific types of differ-
ential equations. This is similar to solving algebraic equations. In algebra, we
can use the quadratic formula to solve a quadratic equation, but not a linear or
cubic equation. In the same way, techniques that can be used for a specific type
of differential equation are often ineffective for a differential equation of a dif-
ferent type. In this section, we describe and practice a technique to solve a class
of differential equations called separable equations.

youtu.be/watch?v=tIkZsA3kK6o

Figure 8.2.1 Video introduction to
Section 8.2

Definition 8.2.2 Separable Differential Equation.

A separable differential equation is one that can be written in the form

n(y)
dy

dx
= m(x),

where n is a function that depends only on the dependent variable y,
andm is a function that depends only on the independent variable x.

Below, we show a few examples of separable differential equations, along
with similar looking equations that are not separable.

1.
dy

dx
= x2y

2. y
√
y2 − 5

dy

dx
−

sin(x) cos(y) = 0

3.
dy

dx
=

(x2 + 1)ey

y

List 8.2.3 Separable

1.
dy

dx
= x2 + y

2. y
√
y2 − 5

dy

dx
−

sin(x) cos(y) = 1

3.
dy

dx
=

(xy + 1)ey

y

List 8.2.4 Not Separable

Notice that a separable equation requires that the functions of the depen-
dent and independent variables bemultiplied, not added (like Item1 in List 8.2.4).
An alternate definition of a separable differential equation states that an equa-
tion is separable if it can be written in the form

dy

dx
= f(x)g(y),

for some functions f and g.

8.2.1 Separation of Variables
Let’s find a formal solution to the separable equation

n(y)
dy

dx
= m(x).

Since the functions on the left and right hand sides of the equation are equal,
their antiderivatives should be equal up to an arbitrary constant of integration.
That is ∫

n(y)
dy

dx
dx =

∫
m(x) dx+ C.

Though the integral on the left may look a bit strange, recall that y itself is
a function of x. Consider the substitution u = y(x). The differential is du =

https://www.youtube.com/watch?v=tIkZsA3kK6o
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dy

dx
dx. Using this substitution, the above equation becomes∫

n(u) du =

∫
m(x) dx+ C.

LetN(u) andM(x) be antiderivatives of n(u) andm(x), respectively. Then

N(u) = M(x) + C.

Since u = y(x), this is

N(y) = M(x) + C.

This relationship between y and x is an implicit form of the solution to the
differential equation. Sometimes (but not always) it is possible to solve for y to
find an explicit version of the solution.

Though the technique outlined above is formally correct, what we did es-
sentially amounts to integrating the function n with respect to its variable and
integrating the functionmwith respect to its variable. The informal way to solve

a separable equation is to treat the derivative
dy

dx
as if it were a fraction. The

separated form of the equation is

n(y) dy = m(x) dx.

To solve, we integrate the left hand side with respect to y and the right hand
sidewith respect tox and add a constant of integration. As long aswe are able to
find the antiderivatives, we can find an implicit form for the solution. Sometimes
we are able to solve for y in the implicit solution to find an explicit form of the
solution to the differential equation. We practice the technique by solving the
three differential equations listed in the separable column above, and conclude
by revisiting and finding the general solution to the logistic differential equation
from Section 8.1.

Example 8.2.5 Solving a Separable Differential Equation.

Find the general solution to the differential equation y ′ = x2y.
Solution. Using the informal solution method outlined above, we treat
dy

dx
as a fraction, and write the separated form of the differential equa-

tion as
dy

y
= x2dx.

The indefinite integrals
∫

dy
y

and
∫
x2 dx both produce arbi-

trary constants. Since both con-
stants are arbitrary, we combine
them into a single constant of in-
tegration.

Integrating the left hand side of the equation with respect to y and the
right hand side of the equation with respect to x yields

ln |y| = 1

3
x3 + C.

This is an implicit form of the solution to the differential equation. Solv-
ing for y yields an explicit form for the solution. Exponentiating both
sides, we have

|y| = ex
3/3+C = ex

3/3eC .

This solution is a bit problematic. First, the absolute value makes the
solution difficult to understand. The second issue comes from our desire
to find the general solution. Recall that a general solution includes all
possible solutions to the differential equation. In other words, for any
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given initial condition, the general solution must include the solution to
that specific initial value problem. We can often satisfy any given initial
condition by choosing an appropriate C value. When solving separable
equations, though, it is possible to lose solutions that have the form y =
constant. Notice that y = 0 solves the differential equation, but it is not
possible to choose a finite C to make our solution look like y = 0. Our

solution cannot solve the initial value problem
dy

dx
= x2y, with y(a) = 0

(wherea is any value). Thus, wehaven’t actually found a general solution
to the problem. We can clean up the solution and recover the missing
solution with a bit of clever thought.

Missing constant solutions can’t
always be recovered by clev-
erly redefining the arbitrary con-
stant. The differential equation
y ′ = y2 − 1 is an example of
this fact. Both y = 1 and y =
−1 are constant solutions to this
differential equation. Separa-
tionof variables yields a solution
where y = 1 can be attained
by choosing an appropriate C
value, but y = −1 can’t. The
general solution is the set con-
taining the solution produced by
separation of variables and the
missing solution y = −1. We
should always be careful to look
for missing constant solutions
when seeking the general solu-
tion to a separable differential
equation.

Recall the formal definition of the absolute value: |y| = y if y ≥ 0

and |y| = −y if y < 0. Our solution is either y = eCe
x3

3 or y =

−eCe
x3

3 . Further, note that C is constant, so eC is also constant. If
we write our solution as y = Ae

x3

3 , and allow the constant A to take
on either positive or negative values, we incorporate both cases of the
absolute value. Finally, if we allow A to be zero, we recover the missing
solution discussed above. The best way to express the general solution
to our differential equation is

y = Ae
x3

3 .

Video solution

youtu.be/watch?v=pDXfO52xNVw

Example 8.2.6 Solving a Separable Initial Value Problem.

Solve the initial value problem (y
√
y2 − 5)y ′ − sin(x) cos(x) = 0, with

y(0) = −3.
Solution. We first put the differential equation in separated form

y
√
y2 − 5 dy = sin(x) cos(x) dx.

The indefinite integral
∫

y
√
y2 − 5 dy requires the substitution u =

y2 − 5. Using this substitute yields the antiderivative
1

3
(y2 − 5)3/2.

The indefinite integral
∫
sin(x) cos(x) dx requires the substitution u =

sin(x). Using this substitution yields the antiderivative
1

2
sin2 x. Thus,

we have an implicit formof the solution to the differential equation given
by

1

3
(y2 − 5)3/2 =

1

2
sin2 x+ C.

The initial condition says that y should be−3 when x is 0, or

1

3
((−3)2 − 5)3/2 =

1

2
sin2 0 + C.

Evaluating the line above, we find C = 8/3, yielding the particular solu-
tion to the initial value problem

1

3
(y2 − 5)3/2 =

1

2
sin2 x+

8

3
.

Video solution

youtu.be/watch?v=Bl3ugfR-Guw

https://www.youtube.com/watch?v=pDXfO52xNVw
https://www.youtube.com/watch?v=Bl3ugfR-Guw
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Example 8.2.7 Solving a Separable Differential Equation.

Find the general solution to the differential equation
dy

dx
=

(x2 + 1)ey

y
.

Solution. We start by observing that there are no constant solutions to
this differential equation because there are no constant y values that
make the right hand side of the equation identically zero. Thus, we
need not worry about losing solutions during the separation of variables
process. The separated form of the equation is given by

ye−y dy = (x2 + 1) dx.

The antiderivative of the left hand side requires Integration by Parts.
Evaluating both indefinite integrals yields the implicit solution

−(y + 1)e−y =
1

3
x3 + x+ C.

Since we cannot solve for y, we cannot find an explicit form of the solu-
tion.

Video solution

youtu.be/watch?v=OharserepNU

Example 8.2.8 Solving the Logistic Differential Equation.

Solve the logistic differential equation
dy

dt
= ky

(
1− y

M

)
Solution. We looked at a slope field for this equation in Section 8.1 in
the specific case of k = M = 1. Here, we use separation of variables to
find an analytic solution to the more general equation. Notice that the
independent variable t does not explicitly appear in the differential equa-
tion. We mentioned that an equation of this type is called autonomous.
All autonomous first order differential equations are separable.
We start by making the observation that both y = 0 and y = M are con-
stant solutions to the differential equation. We must check that these
solutions are not lost during the separation of variables process. The
separated form of the equation is

1

y
(
1− y

M

) dy = k dt.

The antiderivative of the left hand side of the equation can be found
by making use of partial fractions. Using the techniques discussed in
Section 6.5, we write

1

y
(
1− y

M

) =
1

y
+

1

M − y
.

Then an implicit form of the solution is given by

ln |y| − ln |M − y| = kt+ C.

Combining the logarithms,

ln
∣∣∣∣ y

M − y

∣∣∣∣ = kt+ C.

https://www.youtube.com/watch?v=OharserepNU
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Similarly to Example 8.2.5, we can write

y

M − y
= Aekt.

Letting A take on positive values or negative values incorporates both
cases of the absolute value. This is another implicit form of the solution.
Solving for y gives the explicit form

y =
M

1 + be−kt
,

where b is an arbitrary constant. Notice that b = 0 recovers the constant
solution y = M . The constant solution y = 0 cannot be produced
with a finite b value, and has been lost. The general solution the logistic

differential equation is the set containing y =
M

1 + be−kt
and y = 0.

Video solution

youtu.be/watch?v=nLItalqug6A

Solving for y initially yields the

explicit solution y =
AMekt

1 +Aekt
.

Dividing numerator and denom-
inator by Aekt and defining b =
1/A yields the commonly presented
form of the solution given in Ex-
ample 8.2.8.

https://www.youtube.com/watch?v=nLItalqug6A
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8.2.2 Exercises

Problems

Exercise Group. In the following exercises, decide whether the differential equation is separable or not separable. If
the equation is separable, write it in separated form.

1. y ′ = y2 − y 2. xy ′ + x2y =
sin(x)
x− y

3. (y + 3)y ′ + (ln(x))y ′ − x sin y = (y + 3) ln(x) 4. y ′ − x2 cos y + y = cos y − x2y

Exercise Group. In the following exercises, find the general solution to the separable differential equation. Be sure
to check for missing constant solutions.

5. y ′ + 1− y2 = 0 6. y ′ = y − 2

7. xy ′ = 4y 8. yy ′ = 4x

9. exyy ′ = e−y + e−2x−y
10. (x2 + 1)y ′ =

x

y − 1

11. y ′ =
x
√
1− 4y2

x4 + 2x2 + 2

12. (ex + e−x)y ′ = y2

Exercise Group. In the following exercises, find the particular solution to the separable initial value problem.

13. y ′ =
sin(x)
cos y

, with y(0) =
π

2
14. y ′ =

x2

1− y2
, with y(0) = −2

15. y ′ =
2x

y + x2y
, with y(0) = −4 16. x+ ye−xy ′ = 0, with y(0) = −2

17. y ′ =
x ln(x2 + 1)

y − 1
, with y(0) = 2 18.

√
1− x2 y ′ − arcsinx

y cos(y2)
= 0, with

y(0) =

√
7π

6

19. y ′ = (cos2 x)(cos2 2y), with y(0) = 0
20. y ′ =

y2
√
1− y2

x
, with y(0) = 1
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8.3 First Order Linear Differential Equations

In the previous section, we explored a specific techique to solve a specific type of
differential equation called a separable differential equation. In this section, we
develop and practice a technique to solve a type of differential equation called
a first order linear differential equation.

Recall than a linear algebraic equation in one variable is one that can be
written ax+ b = 0, where a and b are real numbers. Notice that the variable x
appears to the first power. The equations

√
x+ 1 = 0 and sin(x)− 3x = 0 are

both nonlinear. A linear differential equation is one in which the dependent vari-
able and its derivatives appear only to the first power. We focus on first order
equations, which involve first (but not higher order) derivatives of the depen-
dent variable.

youtu.be/watch?v=aGk_H6jc5BE

Figure 8.3.1 Introduction to Sec-
tion 8.3, and presentation of Exam-
ple 8.3.3

8.3.1 Solving First Order Linear Equations

Definition 8.3.2 First Order Linear Differential Equation.

A first order linear differential equation is a differential equation that
can be written in the form

dy

dx
+ p(x)y = q(x),

where p and q are arbitrary functions of the independent variable x.

Example 8.3.3 Classifying Differential Equations.

Classify each differential equation as first order linear, separable, both,
or neither.

(a) y ′ = xy

(b) y ′ = ey + 3x

(c) y ′ − (cos(x))y = cos(x)

(d) yy ′ − 3xy = 4 ln(x)

Solution.

(a) Both. We identify p(x) = −x and q(x) = 0. The separated form

of the equation is
dy

y
= x dx.

(b) Neither. The ey term makes the equation nonlinear. Because of
the addition, it is not possible to write the equation in separated
form.

(c) First order linear. We identify p(x) = − cos(x) and q(x) = cos(x).
The equation cannot be written in separated form.

(d) Neither. Notice that dividing by y results in the nonlinear term
4 ln(x)

y
. It is not possible to write the equation in separated form.

Notice that linearity depends on the dependent variable y, not the indepen-
dent variable x. The functions p(x) and q(x) need not be linear, as demon-
strated in part (c) of Example 8.3.3. Neither cos(x) nor sin(x) are linear func-
tions of x, but the differential equation is still linear.

https://www.youtube.com/watch?v=aGk_H6jc5BE
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Before working out a general technique for solving first order linear differen-
tial equations, we look at a specific example. Consider the differential equation

d

dx

(
xy
)
= sin(x) cos(x).

This is an easy differential equation to solve. On the left, the antiderivative
of the derivative is simply the function xy. Using the substitution u = sin(x) on
the right and integrating results in the implicit solution

xy =
1

2
sin2 x+ C.

Solving for y yields the explicit solution

y =
sin2 x
2x

+
C

x
.

Though not obvious, the differential equation above is actually a linear dif-
ferential equation. Using the product rule and implicit differentiation, we can

write
d

dx

(
xy
)
= x

dy

dx
+ y. Our original differential equation can be written

x
dy

dx
+ y = sin(x) cos(x).

If we divide by x, we have

dy

dx
+

1

x
y =

sin(x) cos(x)
x

,

which matches the form in Definition 8.3.2. Reversing our steps would lead us
back to the original form our our differential equation.

In the examples in the previous
section, weperformedoperations
on the arbitrary constantC, but
still called the result C. The jus-
tification is that the result after
the operation is still an arbitrary
contant. Here, we divide C by
x, so the result depends explic-
itly on the independent variable
x. Since C/x is not contant, we
can’t just call it C.

As motivated by the problemwe just explored, the basic idea behind solving
first order linear differential equations is tomultiply both sides of the differential
equation by a function, called an integrating factor, thatmakes the left hand side
of the equation look like an expanded Product Rule. We then condense the left
hand side into the derivative of a product and integrate both sides. An obvious
question is, “How do you find this integrating factor?”

youtu.be/watch?v=f-Bea35N11g

Figure 8.3.4 Using an integrating fac-
tor to solve a linear differential equa-
tion

Consider the first order linear equation

dy

dx
+ p(x)y = q(x).

Let’s call the integrating factor µ(x). We multiply both sides of the differen-
tial equation by µ(x) to get

µ(x)

(
dy

dx
+ p(x)y

)
= µ(x)q(x).

Though we use µ(x) for our in-
tegrating factor, the symbol is unim-
portant. The notation µ(x) is a
common choice, but other texts
myuseα(x), I(x), or someother
symbol to designate the integrat-
ing factor.

Our goal is to choose µ(x) so that the left hand side of the differential equa-
tion looks like the result of a Product Rule. The left hand side of the equation
is

µ(x)
dy

dx
+ µ(x)p(x)y.

Using the Product Rule and Implicit Differentiation,

d

dx

(
µ(x)y

)
=

dµ

dx
y + µ(x)

dy

dx
.

https://www.youtube.com/watch?v=f-Bea35N11g
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Equating d
dx

(
µ(x)y

)
and µ(x)

(
dy
dx + p(x)y

)
gives

dµ

dx
y + µ(x)

dy

dx
= µ(x)

dy

dx
+ µ(x)p(x)y,

which is equivalent to
dµ

dx
= µ(x)p(x).

In order for the integrating factor µ(x) to perform its job, it must solve the
differential equation above. But that differential equation is separable, so we
can solve it. The separated form is

dµ

µ
= p(x) dx.

Integrating,

lnµ =

∫
p(x) dx,

or
µ(x) = e

∫
p(x) dx.

Following the steps outlined in
the previous section, we should
technically end up with µ(x) =
Ce
∫
p(x) dx, where C is an arbi-

trary constant. Because we mul-
tiply both sides of the differen-
tial equation by µ(x), the arbi-
trary constant cancels, andweomit
itwhenfinding the integrating fac-
tor.

If µ(x) is chosen this way, after multiplying by µ(x), we can always write the
differential equation in the form

d

dx

(
µ(x)y

)
= µ(x)q(x).

Integrating and solving for y, the explicit solution is

y =
1

µ(x)

∫ (
µ(x)q(x)

)
dx.

Though this formula can be used to write down the solution to a first order
linear equation, we shy away from simply memorizing a formula. The process
is lost, and it’s easy to forget the formula. Rather, we always always follow the
steps outlined in Key Idea 8.3.5 when solving equations of this type.

Key Idea 8.3.5 Solving First Order Linear Equations.

1. Write the differential equation in the form

dy

dx
+ p(x)y = q(x).

2. Compute the integrating factor

µ(x) = e
∫
p(x) dx.

3. Multiply both sides of the differential equation by µ(x), and con-
dense the left hand side to get

d

dx

(
µ(x)y

)
= µ(x)q(x).

4. Integrate both sides of the differential equation with respect to x,
taking care to remember the arbitrary constant.

5. Solve for y to find the explicit solution to the differential equation.

Let’s practice the process by solving the two first order linear differential
equations from Example 8.3.3.
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Example 8.3.6 Solving a First Order Linear Equation.

Find the general solution to y ′ = xy.
Solution. We solve by following the steps in Key Idea 8.3.5. Unlike the
process for solving separable equations, we need not worry about losing
constant solutions. The answer we find will be the general solution to
the differential equation. We first write the equation in the form

dy

dx
− xy = 0.

By identifying p(x) = −x, we can compute the integrating factor

µ(x) = e
∫
−x dx = e−

1
2x

2

.

Multiplying both side of the differential equation by µ(x), we have

e−
1
2x

2

(
dy

dx
− xy

)
= 0.

The left hand side of the differential equation condenses to yield

d

dx

(
e−

1
2x

2

y
)
= 0.The step where the left hand

side of the differential equation
condenses to the derivative of
a product can feel a bit mag-
ical. The reality is that we
choose µ(x) so that we can get
exactly this condensing behav-
ior. It’s not magic, it’s math!
If you’re still skeptical, try us-
ing the Product Rule and Im-
plicit Differentiation to evaluate
d

dx

(
e−

1
2x

2

y
)
, and verify that it

becomes e− 1
2x

2

(
dy

dx
− xy

)
.

We integrate both sides with respect to x to find the implicit solution

e−
1
2x

2

y = C,

or the explicit solution
y = Ce

1
2x

2

.

Video solution

youtu.be/watch?v=fgeo61eY3qo

Example 8.3.7 Solving a First Order Linear Equation.

Find the general solution to y ′ − (cos(x))y = cos(x).
Solution. The differential equation is already in the correct form. The
integrating factor is given by

µ(x) = e−
∫
cos(x) dx = e− sin(x).

Multiplying both sides of the equation by the integrating factor and con-
densing,

d

dx

(
e− sin(x)y

)
= (cos(x))e− sin(x)

Using the substitution u = − sin(x), we can integrate to find the implicit
solution

e− sin(x)y = −e− sin(x) + C.

The explicit form of the general solution is

y = −1 + Cesin(x).

Video solution

youtu.be/watch?v=qB_aSFCQfcE

We continue our practice by finding the particular solution to an initial value
problem.

https://www.youtube.com/watch?v=fgeo61eY3qo
https://www.youtube.com/watch?v=qB_aSFCQfcE
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Example 8.3.8 Solving a First Order Linear Initial Value Problem.

Solve the initial value problem xy ′ − y = x3 ln(x), with y(1) = 0.
Solution. We first divide by x to get

dy

dx
− 1

x
y = x2 ln(x).

The integrating factor is given by

µ(x) = e
∫
− 1

x dx

= e− ln(x)

= eln(x)
−1

= x−1.

Multiplying both sides of the differential equation by the integrating fac-
tor and condensing the left hand side, we have

d

dx

(y
x

)
= x ln(x).

Using Integrating by Parts to find the antiderivative of x ln(x), we find
the implicit solution

y

x
=

1

2
x2 ln(x)− 1

4
x2 + C.

Solving for y, the explicit solution is

y =
1

2
x3 ln(x)− 1

4
x3 + Cx.

The initial condition y(1) = 0 yieldsC = 1/4. The solution to the initial
value problem is

y =
1

2
x3 ln(x)− 1

4
x3 +

1

4
x.

Video solution

youtu.be/watch?v=XsFRAzdk7WI

Differential equations are a valuable tool for exploring various physical prob-
lems. This process of using equations to describe real world situations is called
mathematical modeling, and is the topic of the next section. The last two exam-
ples in this section begin our discussion of mathematical modeling.

Example 8.3.9 A Falling Object Without Air Resistance.

Suppose an object with massm is dropped from an airplane. Find and
solve a differential equation describing the vertical velocity of the object
assuming no air resistance.
Solution. The basic physical law at play is Newton’s second law,

mass × acceleration = the sum of the forces .

Using the fact that acceleration is the derivative of velocity, mass × ac-
celeration can be writtingmv′. In the absence of air resistance, the only
force of interest is the force due to gravity. This force is approximately
constant, and is given bymg, where g is the gravitational constant. The

https://www.youtube.com/watch?v=XsFRAzdk7WI
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word equation above can be written as the differential equation

m
dv

dt
= mg.

Because g is constant, this differential equation is simply an integration
problem, and we find

v = gt+ C.

Since v = C with t = 0, we see that the arbitrary constant here corre-
sponds to the initial vertical velocity of the object.

The process of mathematical modeling does not stop simply because we
have found an answer. We must examine the answer to see how well it can
describe real world observations. In the previous example, the answer may be
somewhat useful for short times, but intuition tells us that something is missing.
Our answer says that a falling object’s velocity will increase linearly as a function
of time, but we know that a falling object does not speed up indefinitely. In or-
der to more fully describe real world behavior, our mathematical model must
be revised.

youtu.be/watch?v=skI9GlhB3dc

Figure 8.3.10 Video presentation of
Examples 8.3.9–8.3.11

Example 8.3.11 A Falling Object with Air Resistance.

Suppose an object with massm is dropped from an airplane. Find and
solve a differential equation describing the vertical velocity of the object,
taking air resistance into account.
Solution. We still begin with Newon’s second law, but now we assume
that the forces in the object come both from gravity and from air resis-
tance. The gravitational force is still given bymg. For air resistance, we
assume the force is related to the velocity of the object. A simple way
to describe this assumption might be kvp, where k is a proportionality
constant and p is a positive real number. The value k depends on various
factors such as the density of the object, surface area of the object, and
density of the air. The value p affects how changes in the velocity affect
the force. Taken together, a function of the form kvp is often called a
power law. The differential equation for the velocity is given by

m
dv

dt
= mg − kvp.

(Notice that the force from air resistance opposes motion, and points in
the opposite direction as the force from gravity.) This differential equa-
tion is separable, and can be written in the separated form

m

mg − kvp
dv = dt.

For arbitrary positive p, the integration is difficult, making this problem
hard to solve analytically. In the case that p = 1, the differential equa-
tion becomes linear, and is easy to solve either using either separation
of variables or integrating factor techniques. We assume p = 1, and pro-
ceedwith an integrating factor sowe can continue practicing the process.
Writing

dv

dt
+

k

m
v = g,

we identify the integrating factor

µ(t) = e
∫

k
m dt = e

k
m t.

https://www.youtube.com/watch?v=skI9GlhB3dc
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Then
d

dt

(
e

k
m tv

)
= ge

k
m t,

so
e

k
m tv =

mg

k
e

k
m t + C,

or
v =

mg

k
+ Ce−

k
m t.
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Figure 8.3.12 The velocity functions
from Examples 8.3.9 (dashed) and
8.3.11 (solid) under the assumption
that v(0) = 0, with g = 9.8,m = 1,
and k = 1

In the solution above, the exponential term decays as time increases, caus-
ing the velocity to approach the constant valuemg/k in the limit as t approaches
infinity. This value is called the terminal velocity. If we assume a zero initial ve-
locity (the object is dropped, not thrown from the plane), the velocities from
Examples 8.3.9 and 8.3.11 are given by v = gt and v =

mg

k

(
1− e−

k
m t
)
, re-

spectively. These two functions are shown in Figure 8.3.12, with g = 9.8,m = 1,
and k = 1. Notice that the two curves agree well for short times, but have
dramatically different behaviors as t increases. Part of the art in mathematical
modeling is deciding on the level of detail required to answer the question of
interest. If we are only interested in the initial behavior of the falling object,
the simple model in Example 8.3.9 may be sufficient. If we are interested in the
longer term behavior of the object, the simple model is not sufficient, and we
should consider a more complicated model.
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8.3.2 Exercises

Problems

Exercise Group. In the following exercises, Find the general solution to the first order linear differential equation.
1. y ′ = 2y − 3 2. x2y ′ + xy = 1

3. x2y ′ − xy = 1 4. xy ′ + 4y = x3 − x

5. (cos2 x sin(x))y ′ + (cos3 x)y = 1 6.
y ′

x
= 1− 2y

7. x3y ′ − 3x3y = x4e2x 8. y ′ + y = 5 sin(2x)

Exercise Group. In the following exercises, Find the particular solution to the initial value problem.
9. y ′ = y + 2xex, y(0) = 2 10. xy ′ + 2y = x2 − x+ 1, y(1) = 1

11. xy ′ + (x+ 2)y = x, y(1) = 0 12. y ′ + 2y = 0, y(0) = 3

13. (x+ 1)y ′ + (x+ 2)y = 2xe−x, y(0) = 1 14. (cos(x))y ′ + (sin(x))y = 1, y(0) = −3

15. (x2 − 1)y ′ + 2y = (x+ 1)2, y(0) = 2 16. xy ′ − 2y =
x3

1 + x2
, y(1) = 0

Exercise Group. In the following exercises, classify the differential equation as separable, first order linear, or both,
and solve the initial value problem using an appropriate method.

17. y ′ = y + yx2, y(0) = −5 18. xeyy ′ = x2 sin(x), y(0) = 0

19. (x− 1)y ′ + y = x2 − 1, y(0) = 2 20. y ′ = y2 + y − 2, y(0) = 1

Exercise Group. In the following exercises, draw a slope field for the differential equation. Use the slope field to
predict the behavior of the solution to the initial value problem for large x values. Solve the initial value problem, and
verify your prediction.

21. y ′ = x− y, y(0) = 0 22. (X + 1)y ′ + y =
1

x+ 1
, y(0) = 2
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8.4 Modeling with Differential Equations

In the first three sections of this chapter, we focused on the basic ideas behind
differential equations and the mechanics of solving certain types of differential
equations. We have only hinted at their practical use. In this section, we use dif-
ferential equations for mathematical modeling, the process of using equations
to describe real world processes. We explore a few different mathematical mod-
els with the goal of gaining an introduction to this large field of applied mathe-
matics.

8.4.1 Models Involving Proportional Change
Some of the simplest differential equation models involve one quantity that
changes at a rate proportional to another quantity. In the introduction to this
chapter, we considered a population that grows at a rate proportional to the
current population. The words in this assumption can be directly translated into
a differential equation as shown below.

dp

dt
= kp

The rate of
change of the
population

the pop-
ulation.

is proportional
to

Figure 8.4.1 Translating words into a
differential equation

There are some key ideas that can be helpful when translating words into a
differential equation. Any time we see something about rates or changes, we
should think about derivatives. The word “is” usually corresponds to an equal
sign in the equation. The words “proportional to” mean we have a constant
multiplied by something.

The differential equation in Figure 8.4.1 is easily solved using separation of
variables. We find

p = Cekt.

Notice that we need values for bothC and k before we can use this formula
to predict population size. We require information about the population at two
different times in order to fully determine the population model.

Example 8.4.2 Bacterial Growth.

Suppose a population of e-coli bacteria grows at a rate proportional to
the current population. If an initial popluation of 200 bacteria has grown
to 1600 three hours later, find a function for the size of the population at
time t, and use it to predict when the population size will reach 10,000.
Solution. We already know that the population at time t is given by
p = Cekt for some C and k. The information about the initial size of
the population means that p(0) = 200. Thus C = 200. Our knowledge
of the population size after three hours allows us to solve for k via the
equation

1600 = 200e3k.

Solving this exponential equation yields k = ln(8)/3 ≈ 0.6931. The
popluation at time t is given by

p = 200e(ln(8)/3)t.

Solving
10000 = 200e(ln(8)/3)t

yields t = (3 ln(50))/ ln(8) ≈ 5.644. The population is predicted to
reach 10,000 bacteria in slightly more than five and a half hours.

Video solution

youtu.be/watch?v=EC18tbH7SQw

Another example of porportional change is Newton’s Law of Cooling. The
laws of thermodynamics state that heat flows from areas of higher temperature
to areas of lower temperature. A simple example is a hot object that cools down

https://www.youtube.com/watch?v=EC18tbH7SQw
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when placed in a cool room. Newton’s Law of Cooling is the simple assumption
that the temperature of the object changes at a rate proportional to the differ-
ence between the temperature of the object and the ambient temperature of
the room. If T is the temperature of the object and A is the constant ambi-
ent temperature, Newton’s Law of Cooling can be expressed as the differential
equation

dT

dt
= k(A− T ).

This differential equation is both linear and separable. The separated form
is

1

A− T
dT = k dt.

Then an implicit definition of the temperature is given by

− ln |A− T | = kt+ C.

If we solve for T , we find the explicit temperature

T = A− Ce−kt.

Though we didn’t show the steps, the explicit solution involves the typical
process of renaming the constant ±e−C as C, and allowing C to be positive,
negative, or zero to account for both cases of the absolution value and to catch
the constant solution T = A. Notice that the temperature of the object ap-
proaches the ambient temperature in the limit as t → ∞.

The equation
dT

dt
= k(T − A)

is also a valid representation of
Newton’s Law of Cooling. Intu-
ition tells us that T will increase
if T is less than A and decrease
if T is greater then A. The form
we use in the text follows this in-
tuitionwith a positivek value. The
formabovewill require thatk take
on a negative value. In the end,
both forms result in the same func-
tion.

Example 8.4.3 Hot Coffee.

A freshly brewed cup of coffee is set on the counter and has a temper-
ature of 200◦ Fahrenheit. After 3 minutes, it has cooled to 190◦, but is
still too hot to drink. If the room is 72◦ and the coffee cools according
to Newton’s Law of Cooling, how long will the impatient coffee drinker
have to wait until the coffee has cooled to 165◦?
Solution. Since we have already solved the differential equation for
Newton’s Law of Cooling, we can immediately use the function

T = A− Ce−kt.

Since the room is 72◦, we knowA = 72. The initial temperature is 200◦,
which means C = −128. At this point, we have

T = 72 + 128e−kt

The information about the coffee cooling to 190◦ in 3 minutes leads to
the equation

190 = 72 + 128e−3k.

Solving the exponential equation for k, we have

k = −1

3
ln
(
59

64

)
≈ 0.0271.

Finally, we finish the problem by solving the exponential equation

165 = 72 + 128e
1
3 ln(

59
64 )t.

The coffee drinker must wait t =
3 ln

(
93
128

)
ln
(
59
64

) ≈ 11.78minutes.

Video solution

youtu.be/watch?v=tEMLcz1yvFI

https://www.youtube.com/watch?v=tEMLcz1yvFI
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Wefinish our discussion ofmodels of proportional change by exploring three
different models of disease spread through a population. In all of the models,
we let y denote the proportion of the population that is sick (0 ≤ y ≤ 1). We
assume a proportion of 0.05 is initially sick and that a proportion of 0.1 is sick 1
week later.

Example 8.4.4 Disease Spread 1.

Suppose a disease spreads through a population at a rate proportional
to the number of individuals who are sick. If 5% of the population is sick
initially and 10% of the population is sick one week later, find a formula
for the proportion of the popoulation that is sick at time t.
Solution. The assumption here seems to have some merit because it
matches our intuition that a disease should spread more rapidly when
more individuals are sick. The differential equation is simply

dy

dt
= ky,

with solution
y = Cekt.

The conditions y(0) = 0.05 and y(1) = 0.1 lead to C = 0.05 a and
k = ln(2), so the function is

y = 0.05e(ln(2)t.

We should point out a glaring problem with this model. The variable
y is a proportion and should take on values between 0 and 1, but the
function y = 0.05e2t grows without bound. After t ≈ 4.32 weeks, y
exceeds 1, and the model ceases to make physical sense.

youtu.be/watch?v=UjRpT852su4

Figure 8.4.5 Video presentation of Ex-
amples 8.4.4–8.4.6

Example 8.4.6 Disease Spread 2.

Suppose a disease spreads through a population at a rate proportional
to the number of individuals who are not sick. If 5% of the population
is sick initially and 10% of the population is sick one week later, find a
formula for the proportion of the popoulation that is sick at time t.
Solution. The intuition behind the assumption here is that a disease can
only spread if there are individuals who are susceptible to the infection.
As fewer and fewer people are able to be infected, the disease spread
should slow down. Since y is proportion of the population that is sick,
1− y is the proportion who are not sick, and the differential equation is

dy

dt
= k(1− y).

Though the context is quite different, the differential equation is identi-
cal to the differential equation for Newton’s Law of Cooling, withA = 1.
The solution is

y = 1− Ce−kt.

The conditions y(0) = 0.05 and y(1) = 0.1 yield C = 0.95 and k =
− ln

(
18
19

)
≈ 0.0541, so the final function is

y = 1− .95eln(
18
19 )t.

https://www.youtube.com/watch?v=UjRpT852su4
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Notice that this function approaches y = 1 in the limit as t → ∞,
and does not suffer from the non-physical behavior described in Exam-
ple 8.4.4.

In Example 8.4.4, we assumed disease spread depends on the number of in-
fected individuals. In Example 8.4.6, we assumeddisease spread depends on the
number of susceptible individuals who are able to become infected. In reality,
we would expect many diseases to require the interaction of both infected and
susceptible individuals in order to spread. One of the simplest ways to model
this required interaction is to assume disease spread depends on the product of
the proportions of infected and uninfected individuals. This assumption (regu-
larly seen in the context of chemical reactions) is often called the law of mass
action.

Example 8.4.7 Disease Spread 3.

Suppose a disease spreads through a population at a rate proportional
to the product of the number of infected and uninfected individuals. If
5% of the population is sick initially and 10% of the population is sick
one week later, find a formula for the proportion of the population that
is sick at time t.
Solution. The differential equation is

dy

dt
= ky(1− y).

This is exactly the logistic equation withM = 1. We solved this differ-
ential equation in Example 8.2.8, and found

y =
1

1 + be−kt
.

The conditions y(0) = 0.05 and y(1) = 0.1 yield b = 19 and k =
− ln

(
9
19

)
≈ 0.7472. The final function is

y =
1

1 + 19eln(
9
19 )t

.

Based on the three different assumptions about the rate of disease
spread explored in the last three examples, we now have three differ-
ent functions giving the proportion of a population that is sick at time
t. Each of the three functions meets the conditions y(0) = 0.05 and
y(1) = 0.1. The three functions are shown in Figure 8.4.8.
Notice that the logistic function mimics specific parts of the functions
from Examples 8.4.4 and 8.4.6. We see in Figure 8.4.8(a) that the logis-
tic and exponential functions are virtually indistinguishable for small t
values. When there are few infected individuals and lots of susceptible
individuals, the spread of a disease is largely determined by the number
of sick people. The logistic curve captures this feature, and is “almost
exponential” early on.
In Figure 8.4.8(b), we see that the logistic curve leaves the exponential
curve from Example 8.4.4 and approaches the curve from Example 8.4.6.
This result implies that when most of the population is sick, the spread
of the disease is largely dependent on the number of susceptible indi-
viduals. Though there are much more sophisticated mathematical mod-
els describing the spread of infections, we could argue that the logistic
model presented in this example is the “best” of the three.
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Figure 8.4.8 Plots of the functions from Example 8.4.4 (dotted), Exam-
ple 8.4.6 (dashed), and Example 8.4.7 (solid)

Video solution

youtu.be/watch?v=vV8Jy231gLk

8.4.2 Rate-in Rate-out Problems
One of the classic ways to build a mathematical model involves tracking the
way the amount of something can change. We sometimes say these models
are based on conservation laws. Consider a box with some amount of a specific
type of material inside. (Some type of chemical, for example.) The amount of
material of the specific type in the box can only change in four ways; we can
add more to the box, we can remove some from the box, some of the material
can change into material of a different type, or some other type of material can
turn into the type we’re tracking. In the examples that follow, we assume mate-
rial doesn’t change type, so we only need to keep track of material coming into
the box and material leaving the box. To derive a differential equation, we track
rates:

rate of change of some quantity = rate in − rate out .

youtu.be/watch?v=G3nvU0Jc5pw

Figure 8.4.9 Introduction to Rate-in
Rate-out problems

Though we stick to relatively simple examples, this basic idea can be used to
derive some very important differential equations in mathematics and physics.

The examples to follow involve tracking the amount of a chemical in solution.
We assume liquid containing some chemical flows into a container at some rate.
That liquid mixes instantaneously with the liquid already in the container. Then
the liquid from the container flows out at some (potentially different) rate.

The assumption about instanta-
neous mixing, though not phys-
ically accurate, leads to a differ-
ential equation we have hope of
solving. In reality, the amount
of chemical at a specific location
in the container depends bothon
the locationandhow longwehave
been waiting. This dependence
on both space and time leads to
a typeof differential equation called
apartial differential equation. Dif-
ferential equations of this type
are more interesting, but signifi-
cantly harder to study. Instanta-
neous mixing removes any spa-
tial dependence from the prob-
lem, and leaves us with an ordi-
nary differential equation.

Example 8.4.10 Equal Flow Rates.

Suppose a 10 liter tank has 5 liters of salt solution in it. The initial con-
centration of the salt solution is 1 gram per liter. A salt solution with
concentration 3 g

L flows into the tank at a rate of 2
L
min . Suppose the salt

solutionmixes instantaneously with the solution already in the tank, and
that the mixed solution from the tank flows out at a rate of 2 L

min . Find a
function that gives the amount of salt in the tank at time t.
Solution. We use the rate in - rate out setup described above. The
quantity here is the amount (in grams) of salt in the tank at time t. Let
y denote the amount of salt. In words, the differential equation is given
by

dy

dt
= rate in − rate out .

Thinking in terms of units can help fill in the details of the differential
equation. Since y has units of grams, the left hand side of the equation
has units g/min. Both termson the right hand sidemust have these same

https://www.youtube.com/watch?v=vV8Jy231gLk
https://www.youtube.com/watch?v=G3nvU0Jc5pw
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units. Notice that the product of a concentration (with units g/L) and a
flow rate (with units L/min) results in a quantity with units g/min. Both
terms on the right hand side of the equationwill include a concentration
multiplied by a flow rate.
For the rate in, we multiply the inflow concentration by the rate that

fluid is flowing into the bucket. This is
(
3
g
L

)(
2

L
min

)
= 6 g/min.

The rate out is more complicated. The flow rate is still 2 L
min , meaning

that the overall volume of the fluid in the bucket is the constant 5 L. The
salt concentration in the bucket is not constant though,meaning that the
outflow concentration is not constant. In particular, the outflow concen-
tration is not the constant 1 L

min . This is simply the initial concentration.
To find the concentration at any time, we need the amount of salt in the
bucket at that time and the volume of liquid in the bucket at that time.
The volume of liquid is the constant 5 L, and the amount of salt is given
by the dependent variable y. Thus, the outflow concentration is

y

5
g/L,

yielding a rate out given by(y
5

g
L

)(
2

L
min

)
=

2y

5
g/min .

The differential equation we wish to solve is given by

dy

dt
= 6− 2y

5
.

To furnish an initial condition, we must convert the initial salt concentra-
tion into an initial amount of salt. This is

(
1
g
L

)
(5 L ) = 5 g, so y(0) = 5

is our initial condition.
Our differential equation is both separable and linear. We solve using
separation of variables. The separated form of the differential equation
is

5

30− 2y
dy = dt.

Integration yields the implicit solution

−5

2
ln |30− 2y| = t+ C.

Solving for y (and redefining the arbitrary constant C as necessary)
yields the explicit solution

y = 15 + Ce−
2
5 t.

The initial condition y(0) = 5means that C = −10 so that

y = 15− 10e−
2
5 t

is the particular solution to our initial value problem.
This function is plotted in Figure 8.4.11. Notice that in the limit as t → ∞,
y approaches 15. This corresponds to a bucket concentration of 15/5 =
3 g/L. It should not be surprising that salt concentration inside the tank
will move to match the inflow salt concentration.

2 4 6 8 10

5

10

15

t

y

Figure 8.4.11 Salt concentration at
time t, from Example 8.4.10

Video solution

youtu.be/watch?v=Au4n_QP73Ko

https://www.youtube.com/watch?v=Au4n_QP73Ko
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Example 8.4.12 Unequal Flow Rates.

Suppose the setup is identical to the setup in Example 8.4.10 except that
now liquid flows out of the bucket at a rate of 1 L/min. Find a function
that gives the amount of salt in the bucket at time t. What is the salt
concentration when the solution ceases to be valid?
Solution. Because the inflow and outflow rates no longer match, the
volume of liquid in the bucket is not the constant 5 L. In general, we can
find the volume of liquid via the equation

volume = initial volume + (inflow rate - outflow rate) t.

In this example, the volume at time t is 5 + t liters. Because the total
volume of the bucket is only 10 L, it follows that our solution will only be
valid for 0 ≤ t ≤ 5. At that point it is no longer possible to have liquid
flow into a the bucket at a rate of 2 L/min and out of the bucket at a rate
of 1 L/min.
To update the differential equation, we must modify the rate out. Since
the volume is 5+ t, the concentration at time t is given by y

5+t g/L. Thus

for rate out, we must use
(

y
5+t

)
(1) g/min. The initial value problem is

dy

dt
= 6− y

5 + t
, with y(0) = 5.

Unlike Example 8.4.10, where we had equal flow rates, this differential
equation is no longer separable. We must proceed with an integrating
factor. Writing the differential equation in the form

dy

dt
+

1

5 + t
y = 6,

we identify the integrating factor

µ(t) = e
∫

1
5+t dt = eln(5+t) = 5 + t.

Then
d

dt

(
(5 + t)y

)
= 6(5 + t),

yielding the implicit solution

(5 + t)y = 30t+ 3t2 + C.

The initial condition y(0) = 5 impliesC = 25, so the explicit solution to
our initial value problem is given by

y =
3t2 + 30t+ 25

5 + t
.

This solution ceases to be valid at t = 5. At that time, there are 25 g of
salt in the tank. The volume of liquid is 10 L, resulting in a salt concen-
tration of 2.5 g/L.

Video solution

youtu.be/watch?v=P3fkhn-TQEk

Differential equations are powerful tools that can be used to help describe
the world around us. Though relatively simple in concept, the ideas of pro-
portional change and matching rates can serve as building blocks in the devel-
opment of more sophisticated mathematical models. As we saw in this sec-

https://www.youtube.com/watch?v=P3fkhn-TQEk
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tion, some simple mathematical models can be solved analytically using the
techniques developed in this chapter. Most sophisticated mathematical mod-
els don’t allow for analytic solutions. Even so, there are an array of graphical
and numerical techniques that can be used to analyze the model to make pre-
dictions and infer information about real world phenomena.
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8.4.3 Exercises

Problems

Exercise Group. In the following exercises, use the tools in the section to answer the questions presented.
1. Suppose the rate of change of y with respect to

x is proportional to 10− y. Write down and
solve a differential equation for y.

2. A rumor is spreading through a middle school
with 250 students. Suppose the rumor spreads
at a rate proportional to the number of
students who haven’t heard the rumor yet. If 1
person starts the rumor, and 75 students have
heard the rumor 3 days later, how many days
will it take until 80% of the students in the
school have heard the rumor?

3. A rumor is spreading through a middle school
with 250 students. Suppose the rumor spreads
at a rate proportional to the product of number
of students who have heard the rumor and the
number who haven’t heard the rumor. If 1
person starts the rumor, and 75 students have
heard the rumor 3 days later, how many days
will it take until 80% of the students in the
school have heard the rumor?

4. A feature of radioactive decay is that the
amount of a radioactive substance decreases at
a rate proportional to the current amount of
the substance. The half life of a substance is the
amount of time it takes for half of a given
amount of substance to decay. The half life of
carbon-14 is approximately 5730 years. If an
ancient object has a carbon-14 amount that is
20% of the original amount, how old is the
object?

5. Consider a chemical reaction where molecules
of type A combine with molecules of type B to
form molecules of type C. Suppose one
molecule of type A combines with one molecule
of type B to form one molecule of type C, and
that type C is produced at a rate proportional
the product of the remaining number of
molecules of types A and B. Let x denote moles
of molecules of type C. Find a function giving
the number of moles of type C at time t if there
are originally amoles of type A, bmoles of type
B, and zero moles of type C.

6. Suppose an object with a temperature of 100◦
is introduced into a room with an ambient
temperature of 70◦. Suppose the temperature
of the object changes at a rate proportional to
the difference between the temperature of the
object and the temperature of the room
(Newton’s Law of Cooling). If the object has
cooled to 92◦ in 10 minutes, how long until the
object has cooled to 84◦?

7. Suppose an object with a temperature of 100◦
is introduced into a room with an ambient
temperature given by 60 + 20e−

1
4 t degrees.

Suppose the temperature of the object changes
at a rate proportional to the difference between
the temperature of the object and the
temperature of the room (Newton’s Law of
Cooling). If the object is 80◦ after 20 minutes,
find a formula giving the temperature of the
object at time t. (Note: This problem requires a
numerical technique to solve for the unknown
constants.)

8. A tank contains 5 gallons of salt solution with
concentration 0.5 g/gal. Pure water flows into
the tank at a rate of 1 gallon per minute. Salt
solution flows out of the tank at a rate of 1
gallon per minute. (Assume instantaneous
mixing.) Find the concentration of the salt
solution at 10 minutes.
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9. Dead leaves accumulate on the ground at a rate
of 4 grams per square centimeter per year. The
dead leaves on the ground decompose at a rate
of 50% per year. Find a formula giving grams
per square centimeter on the ground if there
are no leaves on the ground at time t = 0.

10. A pond initially contains 10 million gallons of
fresh water. Water containing an undesirable
chemical flows into the pond at a rate of 5
million gallons per year, and fluid from the pond
flows out at the same rate. (Assume
instantaneous mixing.) If the concentration (in
grams per million gallons) of the incoming
chemical varies periodically according to the
expression 2 + sin(2t), find a formula giving the
amount of chemical in the pond at time t.

11. A large tank contains 1 gallon of a salt solution
with concentration 2 g/gal. A salt solution with
concentration 1 g/gal flows into the tank at a
rate of 4 gal/min. Salt solution flows out of the
tank at a rate of 3 gal/min. (Assume
instantaneous mixing.) Find the amount of salt
in the tank at 10 minutes.

12. A stream flows into a pond containing 2 million
gallons of fresh water at a rate of 1 million
gallons per day. The stream flows out of the
first pond and into a second pond containing 3
million gallons of fresh water. The stream then
flows out of the second pond. Suppose the
inflow and outflow rates are the same so that
both ponds maintain their volumes. A factory
upstream of the first pond starts polluting the
stream. Directly below the factory, pollutant has
a concentration of 55 grams per million gallons,
and this concentration starts to flow into the
first pond. Find the concentration of pollutant
in the first and second ponds at 5 days.



Chapter 9

Curves in the Plane

We have explored functions of the form y = f(x) closely throughout this text.
We have explored their limits, their derivatives and their antiderivatives; we
have learned to identify key features of their graphs, such as relative maxima
andminima, inflection points and asymptotes; we have found equations of their
tangent lines, the areas between portions of their graphs and the x-axis, and the
volumes of solids generated by revolving portions of their graphs about a hori-
zontal or vertical axis.

Despite all this, the graphs created by functions of the form y = f(x) are
limited. Since each x-value can correspond to only 1 y-value, common shapes
like circles cannot be fully described by a function in this form. Fittingly, the
“vertical line test” excludes vertical lines from being functions of x, even though
these lines are important in mathematics.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
still workwithin the framework of functions, as an inputwill still only correspond
to one output. However, our new techniques of drawing curves will render the
vertical line test pointless, and allow us to create important — and beautiful —
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, continuing to find equations of tangent lines and the areas of enclosed
regions.

9.1 Conic Sections

The ancient Greeks recognized that interesting shapes can be formed by inter-
secting a plane with a double napped cone (i.e., two identical cones placed tip-
to-tip as shown in the following figures). As these shapes are formed as sections
of conics, they have earned the official name “conic sections.”

youtu.be/watch?v=NAPXAQHSgdk

Figure 9.1.1 Video introduction to
Section 9.1

The three “most interesting” conic sections are given in the top row of Fig-
ure 9.1.2. They are the parabola, the ellipse (which includes circles) and the
hyperbola. In each of these cases, the plane does not intersect the tips of the
cones (usually taken to be the origin).

465

https://www.youtube.com/watch?v=NAPXAQHSgdk
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(a) Parabola (b) Ellipse (c) Circle (d) Hyperbola

(e) Point (f) Line (g) Crossed Lines

Figure 9.1.2 Conic Sections
When the plane does contain the origin, three degenerate cones can be

formed as shown the bottom row of Figure 9.1.2: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuitive, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a function. It can be shown that
all conics can be defined by the general second-degree equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

While this algebraic definition has its uses, most find another geometric per-
spective of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
satisfy a certain distance property. These distance properties can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
function.

9.1.1 Parabolas
youtu.be/watch?v=tnyEnnE2AS8

Figure 9.1.3 Video introduction to the
parabola

Definition 9.1.4 Parabola.

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Directrix

Focus

Vertex

}
p}
p

(x, y)d

d

Ax
is
of

Sy
m
m
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ry

Figure 9.1.5 Illustrating the definition
of the parabola and establishing an al-
gebraic formula

Figure 9.1.5 illustrates this definition. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the portion of the parabola on one side of
this line is the mirror-image of the portion on the opposite side.

The definition leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d1 between F and P :

d1 =
√

(x− 0)2 + (y − p)2.

https://www.youtube.com/watch?v=tnyEnnE2AS8
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The distance d2 from P to the directrix is more straightforward:

d2 = y − (−p) = y + p.

These two distances are equal. Setting d1 = d2, we can solve for y in terms
of x:

d1 = d2√
x2 + (y − p)2 = y + p

Now square both sides.

x2 + (y − p)2 = (y + p)2

x2 + y2 − 2yp+ p2 = y2 + 2yp+ p2

x2 = 4yp

y =
1

4p
x2.

The geometric definition of the parabola has led us to the familiar quadratic
functionwhose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

Key Idea 9.1.6 General Equation of a Parabola.

1. Vertical Axis of Symmetry: The equation of the parabola with ver-
tex at (h, k) and directrix y = k − p in standard form is

y =
1

4p
(x− h)2 + k.

The focus is at (h, k + p).

2. Horizontal Axis of Symmetry: The equation of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
1

4p
(y − k)2 + h.

The focus is at (h+ p, k).

Note: p is not necessarily a positive number.

Example 9.1.7 Finding the equation of a parabola.

Give the equation of the parabola with focus at (1, 2) and directrix at
y = 3.
Solution. The vertex is located halfway between the focus and directrix,
so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 9.1.6 we have
the equation of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

−2 2 4

−6

−4

−2

2

x

y

Figure 9.1.8 The parabola described
in Example 9.1.7

The parabola is sketched in Figure 9.1.8.

Video solution

youtu.be/watch?v=dk8lrQac8Qg

https://www.youtube.com/watch?v=dk8lrQac8Qg
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Example 9.1.9 Finding the focus and directrix of a parabola.

Find the focus and directrix of the parabola x = 1
8y

2 − y+1. The point
(7, 12) lies on the graph of this parabola; verify that it is equidistant from
the focus and directrix.
Solution. We need to put the equation of the parabola in its general
form. This requires us to complete the square:

x =
1

8
y2 − y + 1

=
1

8

(
y2 − 8y + 8

)
=

1

8

(
y2 − 8y + 16− 16 + 8

)
=

1

8

(
(y − 4)2 − 8

)
=

1

8
(y − 4)2 − 1.

Hence the vertex is located at (−1, 4). We have 1
8 = 1

4p , so p = 2.
We conclude that the focus is located at (1, 4) and the directrix is x =
−3. The parabola is graphed in Figure 9.1.10, along with its focus and
directrix.

−10 −5 5 10

−5

5

10

10

10

x

y

Figure 9.1.10 The parabola described
in Example 9.1.9. The distances from
a point on the parabola to the focus
and directrix are given.

The point (7, 12) lies on the graph and is 7− (−3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:√

(7− 1)2 + (12− 4)2 =
√
100 = 10.

Indeed, the point on the parabola is equidistant from the focus and di-
rectrix.

Video solution

youtu.be/watch?v=R8oJdTbZXh4

Reflective Property. One of the fascinating things about the nondegenerate
conic sections is their reflective properties. Parabolas have the following reflec-
tive property:

Any ray emanating from the focus that intersects the parabola re-
flects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.1.11. The following theorem states this more rigor-
ously.

Figure 9.1.11 Illustrating the
parabola’s reflective property

Theorem 9.1.12 Reflective Property of the Parabola.

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F , and

2. The line perpendicular to the directrix through P .

Because of this reflective property, paraboloids (the 3D analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effectively approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

https://www.youtube.com/watch?v=R8oJdTbZXh4
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9.1.2 Ellipses

youtu.be/watch?v=eAKfJphIwIE

Figure 9.1.13 Video introduction to
the ellipse

Definition 9.1.14 Ellipse.

An ellipse is the locus of all pointswhose sumof distances from twofixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil tight against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 9.1.15.

d1
d2

d1 + d2 = constant

Figure 9.1.15 Illustrating the construc-
tion of an ellipse with pins, pencil and
string

We can again find an algebraic equation for an ellipse using this geometric
definition. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled asF1 = (−c, 0) andF2 = (c, 0). LetP = (x, y) be a point
on the ellipse. The sum of distances from F1 to P (d1) and from F2 to P (d2) is
a constant d. That is, d1 + d2 = d. Using the Distance Formula, we have√

(x+ c)2 + y2 +
√
(x− c)2 + y2 = d.

Using a fair amount of algebra can produce the following equation of an
ellipse (note that the equation is an implicitly defined function; it has to be, as
an ellipse fails the Vertical Line Test):

x2(
d
2

)2 +
y2(

d
2

)2 − c2
= 1.

This is not particularly illuminating, but by making the substitution a = d/2
and b =

√
a2 − c2, we can rewrite the above equation as

x2

a2
+

y2

b2
= 1.

This choice of a and b is not without reason; as shown in Figure 9.1.16, the
values of a and b have geometric meaning in the graph of the ellipse.

Major axis Minor axis

Vertices Foci

︸ ︷︷ ︸
a

︸ ︷︷ ︸
c

b



Figure 9.1.16 Labeling the significant
features of an ellipse

In general, the two foci of an ellipse lie on the major axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shifting of the ellipse gives the following standard equations.

Key Idea 9.1.17 Standard Equation of the Ellipse.

The equation of an ellipse centered at (h, k) with major axis of length
2a and minor axis of length 2b in standard form is:

1. Horizontal major axis:
(x− h)2

a2
+

(y − k)2

b2
= 1.

2. Vertical major axis:
(x− h)2

b2
+

(y − k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

https://www.youtube.com/watch?v=eAKfJphIwIE
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Example 9.1.18 Finding the equation of an ellipse.

Find the general equation of the ellipse graphed in Figure 9.1.19.

−6 −4 −2 2 4 6
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2

4

6

x

y

Figure 9.1.19 The ellipse used in Ex-
ample 9.1.18

Solution. The center is located at (−3, 1). The distance from the center
to a vertex is 5 units, hence a = 5. The minor axis seems to have length
4, so b = 2. Thus the equation of the ellipse is

(x+ 3)2

4
+

(y − 1)2

25
= 1.

Video solution

youtu.be/watch?v=NVqlZCWDDnI

Example 9.1.20 Graphing an ellipse.

Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.
Solution. It is simple to graph an ellipse once it is in standard form. In
order to put the given equation in standard form, wemust complete the
square with both the x and y terms. We first rewrite the equation by
regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4

4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y + 4− 4) = −4

4
(
(x− 1)2 − 1

)
+ 9
(
(y − 2)2 − 4

)
= −4

4(x− 1)2 − 4 + 9(y − 2)2 − 36 = −4

4(x− 1)2 + 9(y − 2)2 = 36

(x− 1)2

9
+

(y − 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2;
the major axis is horizontal, so the vertices are located at (−2, 2) and
(4, 2). We find c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along

themajor axis, approximately 2.24 units from the center, at (1±2.24, 2).
This is all graphed in Figure 9.1.21
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Figure 9.1.21 Graphing the ellipse in
Example 9.1.20

Video solution

youtu.be/watch?v=U3uhopYrG8o

Eccentricity. When a = b, we have a circle. The general equation becomes

(x− h)2

a2
+

(y − k)2

a2
= 1 ⇒ (x− h)2 + (y − k)2 = a2,

the familiar equation of the circle centered at (h, k) with radius a. Since a = b,
c =

√
a2 − b2 = 0. The circle has “two” foci, but they lie on the same point, the

center of the circle.
Consider Figure 9.1.22, where several ellipses are graphed with a = 1. In

Figure 9.1.22(a), we have c = 0 and the ellipse is a circle. As c grows, the re-
sulting ellipses look less and less circular. A measure of this “noncircularness” is
eccentricity.

https://www.youtube.com/watch?v=NVqlZCWDDnI
https://www.youtube.com/watch?v=U3uhopYrG8o
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Figure 9.1.22 Understanding the eccentricity of an ellipse

Definition 9.1.23 Eccentricity of an Ellipse.

The eccentricity e of an ellipse is e =
c

a
.

The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 9.1.22(d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are elliptical. Earth has an eccentricity of 0.0167— it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very
circular.

Reflective Property. The ellipse also possesses an interesting reflective prop-
erty. Any ray emanating from one focus of an ellipse reflects off the ellipse along
a line through the other focus, as illustrated in Figure 9.1.24. This property is
given formally in the following theorem.

F2F1

Figure 9.1.24 Illustrating the reflec-
tive property of an ellipse

Theorem 9.1.25 Reflective Property of an Ellipse.

Let P be a point on a ellipse with foci F1 and F2. The tangent line to the
ellipse at P makes equal angles with the following two lines:

1. The line through F1 and P , and
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2. The line through F2 and P .

This reflective property is useful in optics and is the basis of the phenomena
experienced in whispering halls.

9.1.3 Hyperbolas
youtu.be/watch?v=9aLDYQrTaBo

Figure 9.1.26 Video introduction to
hyperbolas

The definition of a hyperbola is very similar to the definition of an ellipse; we
essentially just change the word “sum” to “difference.”

Definition 9.1.27 Hyperbola.

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

We do not have a convenient way of visualizing the construction of a hyper-
bola as we did for the ellipse. The geometric definition does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of the
line segment joining the foci is the center of the hyperbola. The transverse axis
intersects the hyperbola at two points, each a vertex of the hyperbola. The line
through the center and perpendicular to the transverse axis is the conjugate axis.
This is illustrated in Figure 9.1.28. It is easy to show that the constant difference
of distances used in the definition of the hyperbola is the distance between the
vertices, i.e., 2a.

Transverse
axis

ax
is

Co
nj
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e

FociVertices

a︷︸︸︷ c︷ ︸︸ ︷

Figure 9.1.28 Labeling the significant
features of a hyperbola

Key Idea 9.1.29 Standard Equation of a Hyperbola.

The equation of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y − k)2

b2
= 1.

2. Vertical Transverse Axis:
(y − k)2

a2
− (x− h)2

b2
= 1.

The vertices are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas. Consider the hyperbola x2

9 − y2

1 = 1. Solving for y, we
find y = ±

√
x2/9− 1. As x grows large, the “−1” part of the equation for y

becomes less significant and y ≈ ±
√

x2/9 = ±x/3. That is, as x gets large, the
graph of the hyperbola looks very much like the lines y = ±x/3. These lines are
asymptotes of the hyperbola, as shown in Figure 9.1.30.

−8 −6 −4 −2 2 4 6 8

−2

2

x

y

Figure 9.1.30 Graphing the hyperbola
x2

9 − y2

1 = 1 along with its asymp-
totes, y = ±x/3

This is a valuable tool in sketching. Given the equation of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 9.1.31 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

h− a h+ ah

k − b

k

k + b

x

y

Figure 9.1.31Using the asymptotes of
a hyperbola as a graphing aid

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is vertical, their slopes are±a/b. This
gives equations:

https://www.youtube.com/watch?v=9aLDYQrTaBo
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Horizontal Transverse Axis Vertical Transverse Axis

y = ± b

a
(x− h) + k y = ±a

b
(x− h) + k.

Example 9.1.32 Graphing a hyperbola.

Sketch the hyperbola given by
(y − 2)2

25
− (x− 1)2

4
= 1.

Solution. The hyperbola is centered at (1, 2); a = 5 and b = 2. In
Figure 9.1.33 we draw the prescribed rectangle centered at (1, 2) along
with the asymptotes defined by its diagonals. The hyperbola has a verti-
cal transverse axis, so the vertices are located at (1, 7) and (1,−3). This
is enough to make a good sketch.
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Figure 9.1.33 Graphing the hyperbola
in Example 9.1.32

We also find the location of the foci: as c2 = a2 + b2, we have c =√
29 ≈ 5.4. Thus the foci are located at (1, 2 ± 5.4) as shown in the

figure.

Video solution

youtu.be/watch?v=0YVNci7ZOfo

Example 9.1.34 Graphing a hyperbola.

Sketch the hyperbola given by 9x2 − y2 + 2y = 10.
Solution. Wemust complete the square to put the equation in general
form. (We recognize this as a hyperbola since it is a general quadratic
equation and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10

9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y + 1− 1) = 10

9x2 −
(
(y − 1)2 − 1

)
= 10

9x2 − (y − 1)2 = 9

x2 − (y − 1)2

9
= 1
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Figure 9.1.35 Graphing the hyperbola
in Example 9.1.34

We see the hyperbola is centered at (0, 1), with a horizontal transverse
axis, where a = 1 and b = 3. The appropriate rectangle is sketched in
Figure 9.1.35 along with the asymptotes of the hyperbola. The vertices
are located at (±1, 1). We have c =

√
10 ≈ 3.2, so the foci are located

at (±3.2, 1) as shown in the figure.

Video solution

youtu.be/watch?v=b-1_3ATvn9A

Eccentricity.
Definition 9.1.36 Eccentricity of a Hyperbola.

The eccentricity of a hyperbola is e =
c

a
.

https://www.youtube.com/watch?v=0YVNci7ZOfo
https://www.youtube.com/watch?v=b-1_3ATvn9A
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Figure 9.1.37 Understanding the eccentricity of a hyperbola
Note that this is the definition of eccentricity as used for the ellipse. When

c is close in value to a (i.e., e ≈ 1), the hyperbola is very narrow (looking almost
like crossed lines). Figure 9.1.37 shows hyperbolas centered at the origin with
a = 1. The graph in Figure 9.1.37(a) has c = 1.05, giving an eccentricity of
e = 1.05, which is close to 1. As c grows larger, the hyperbola widens and
begins to look like parallel lines, as shown in Figure 9.1.37(d).

ReflectiveProperty. Hyperbolas share a similar reflectivepropertywith ellipses.
However, in the case of a hyperbola, a ray emanating from a focus that intersects
the hyperbola reflects along a line containing the other focus, but moving away
from that focus. This is illustrated in Figure 9.1.39 (on the next page). Hyperbolic
mirrors are commonly used in telescopes because of this reflective property. It
is stated formally in the following theorem.

Theorem 9.1.38 Reflective Property of Hyperbolas.

Let P be a point on a hyperbola with foci F1 and F2. The tangent line to
the hyperbola at P makes equal angles with the following two lines:

1. The line through F1 and P , and

2. The line through F2 and P .

LocationDetermination. Determining the location of a known event hasmany
practical uses (locating the epicenter of an earthquake, an airplane crash site,
the position of the person speaking in a large room, etc.).

To determine the location of an earthquake’s epicenter, seismologists use
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trilateration (not to be confused with triangulation). A seismograph allows one
to determine how far away the epicenter was; using three separate readings,
the location of the epicenter can be approximated.

A key to this method is knowing distances. What if this information is not
available? Consider threemicrophones at positionsA,B andC which all record
a noise (a person’s voice, an explosion, etc.) created at unknown location D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the location be determined in such a situation? F2F1

Figure 9.1.39 Illustrating the reflec-
tive property of a hyperbola

If each location has a clock set to the same time, hyperbolas can be used
to determine the location. Suppose the microphone at position A records the
sound at exactly 12:00, location B records the time exactly 1 second later, and
location C records the noise exactly 2 seconds after that. We are interested
in the difference of times. Since the speed of sound is approximately 340 m/
s, we can conclude quickly that the sound was created 340 meters closer to
positionA than positionB. IfA andB are a known distance apart (as shown in
Figure 9.1.40(a)), then we can determine a hyperbola on whichD must lie.

The “difference of distances” is 340; this is also the distance between vertices
of the hyperbola. So we know 2a = 340. Positions A and B lie on the foci, so
2c = 1000. From this we can find b ≈ 470 and can sketch the hyperbola, given
in Figure 9.1.40(b). We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by positions B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get toC. We still have 2c =
1000, centering this hyperbola at (−500, 500). We find b ≈ 367. This hyperbola
is sketched in Figure 9.1.40(c). The intersection point of the two graphs is the
location of the sound, at approximately (188,−222.5).
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Figure 9.1.40
This chapter explores curves in the plane, in particular curves that cannot

be described by functions of the form y = f(x). In this section, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
sections, we will learn completely new ways of describing curves in the plane,
using parametric equations and polar coordinates, then study these curves using
calculus techniques.
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9.1.4 Exercises

Terms and Concepts

1. What is the difference between degenerate and nondegenerate conics?
2. Use your own words to explain what the eccentricity of an ellipse measures.
3. What has the largest eccentricity: an ellipse or a hyperbola?

4. Explain why the following is true: “If the coefficient of the x2 term in the equation of an ellipse in standard form
is smaller than the coefficient of the y2 term, then the ellipse has a horizontal major axis.”

5. Explain how one can quickly look at the equation of a hyperbola in standard form and determine whether the
transverse axis is horizontal or vertical.

6. Fill in the blank: It can be said that ellipses and hyperbolas share the same reflective property: “A ray emanating
from one focus will reflect off the conic along a that contains the other focus.”

Problems

Exercise Group. In the following exercises, find the equation of the parabola defined by the given information. Sketch
the parabola.

7. Focus: (3, 2); directrix: y = 1 8. Focus: (−1,−4); directrix: y = 2

9. Focus: (1, 5); directrix: x = 3 10. Focus: (1/4, 0); directrix: x = −1/4

11. Focus: (1, 1); vertex: (1, 2) 12. Focus: (−3, 0); vertex: (0, 0)
13. Vertex: (0, 0); directrix: y = −1/16 14. Vertex: (2, 3); directrix: x = 4

Exercise Group. In the following exercises, the equation of a parabola and a point on its graph are given. Find the
focus and directrix of the parabola, and verify that the given point is equidistant from the focus and directrix.

15. y = 1
4x

2, P = (2, 1) 16. x = 1
8 (y − 2)2 + 3, P = (11, 10)

Exercise Group. In the following exercises, sketch the ellipse defined by the given equation. Label the center, foci
and vertices.

17.
(x− 1)2

3
+

(y − 2)2

5
= 1 18.

1

25
x2 +

1

9
(y + 3)2 = 1

Exercise Group. In the following exercises, find the equation of the ellipse shown in the graph. Give the location of
the foci and the eccentricity of the ellipse.

19.

−4 −2 2

2

4

x

y
20.

−1 −0.5 0.5 1 1.5 2

−2

2

x

y

Exercise Group. In the following exercises, find the equation of the ellipse defined by the given information. Sketch
the elllipse.
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21. Foci: (±2, 0); vertices: (±3, 0) 22. Foci: (−1, 3) and (5, 3); vertices: (−3, 3) and
(7, 3)

23. Foci: (2,±2); vertices: (2,±7) 24. Focus: (−1, 5); vertex: (−1,−4); center:
(−1, 1)

Exercise Group. In the following exercises, write the equation of the given ellipse in standard form.
25. x2 − 2x+ 2y2 − 8y = −7 26. 5x2 + 3y2 = 15

27. 3x2 + 2y2 − 12y + 6 = 0 28. x2 + y2 − 4x− 4y + 4 = 0

Exercise Group. In the following exercises, find the equation of the hyperbola shown in the graph.
29.

−1 1 2−2

−2

2

x

y
30.

−8 −6 −4 −2 2 4 6 8

−6

−4

−2

2

4

6

x

y

31.

−4 −2 2 4 6

2

4

6

x

y
32.

−4 −2 2 4 6

2

4

6

x

y

Exercise Group. In the following exercises, sketch the hyperbola defined by the given equation. Label the center and
foci.

33.
(x− 1)2

16
− (y + 2)2

9
= 1 34. (y − 4)2 − (x+ 1)2

25
= 1

Exercise Group. In the following exercises, find the equation of the hyperbola defined by the given information.
Sketch the hyperbola.

35. Foci: (±3, 0); vertices: (±2, 0) 36. Foci: (0,±3); vertices: (0,±2)

37. Foci: (−2, 3) and (8, 3); vertices: (−1, 3) and
(7, 3)

38. Foci: (3,−2) and (3, 8); vertices: (3, 0) and
(3, 6)

Exercise Group. In the following exercises, write the equation of the hyperbola in standard form.
39. 3x2 − 4y2 = 12 40. 3x2 − y2 + 2y = 10
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41. x2 − 10y2 + 40y = 30 42. (4y − x)(4y + x) = 4

43. Consider the ellipse given by
(x− 1)2

4
+

(y − 3)2

12
= 1.

(a) Verify that the foci are located at (1, 3± 2
√
2).

(b) The points P1 = (2, 6) and P2 = (1 +
√
2, 3 +

√
6) ≈ (2.414, 5.449) lie on the ellipse. Verify that the

sum of distances from each point to the foci is the same.
44. Johannes Kepler discovered that the planets of our solar system have elliptical orbits with the Sun at one focus.

The Earth’s elliptical orbit is used as a standard unit of distance; the distance from the center of Earth’s elliptical
orbit to one vertex is 1 Astronomical Unit, or A.U.

The following table gives information about the orbits of three planets.

Planet Distance from
center to vertex

Orbit
eccentricity

Mercury 0.387 A.U. 0.2056

Earth 1 A.U. 0.0167

Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing c2 = a2−b2 and e = c/a allows us to find b in terms of a and e. Show b = a
√
1− e2.

(b) For each planet, find equations of their elliptical orbit of the form
x2

a2
+

y2

b2
= 1. (This places the center

at (0, 0), but the Sun is in a different location for each planet.)

(c) Shift the equations so that the Sun lies at the origin. Plot the three elliptical orbits.
45. A loud sound is recorded at three stations that lie on a line as shown in the figure below. Station A recorded

the sound 1 second after Station B, and Station C recorded the sound 3 seconds after B. Using the speed of
sound as 340m/s, determine the location of the sound’s origination.

A

1000m
B

2000m
C
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9.2 Parametric Equations

youtu.be/watch?v=ktYtHfYoWi4

Figure 9.2.1 Video introduction to
Section 9.2

We are familiar with sketching shapes, such as parabolas, by following this
basic procedure:

Choose x Use a function f to find y
(
y = f(x)

)
Plot point (x, y)

Figure 9.2.2 Plotting a graph y = f(x)

The rectangular equation y = f(x)workswell for some shapes like a parabola
with a vertical axis of symmetry, but in the previous section we encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bottom” separately.)

In this section we introduce a new sketching procedure:

Choose t

Use a function f to find x
(
x = f(t)

)

Use a function g to find y
(
y = g(t)

)Plot point (x, y)

Figure 9.2.3 Plotting a curve
(x(t), y(t))

Here, x and y are found separately but then plotted together: for each value
of the input t, we plot the output - the point (x(t), y(t)).

9.2.1 Plotting parametric curves
The procedure outlined in Figure 9.2.3 leads us to a definition.

Definition 9.2.4 Parametric Equations and Curves.

Let f and g be continuous functions on an interval I . The set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I , is the

graph of the parametric equations x = f(t) and y = g(t), where t is
the parameter. A curve is a graph along with the parametric equations
that define it.

This is a formal definition of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is often referred to as a plane curve. Examples
will help us understand the concepts introduced in the definition.

Example 9.2.5 Plotting parametric functions.

Plot the graph of the parametric equations x = t2, y = t + 1 for t in
[−2, 2].
Solution. Weplot the graphs of parametric equations inmuch the same
manner as we plotted graphs of functions like y = f(x): we make a ta-
ble of values, plot points, then connect these points with a “reasonable”
looking curve. Figure 9.2.6(a) shows such a table of values; note howwe
have 3 columns.
The points (x, y) from the table are plotted in Figure 9.2.6(b). The points
have been connected with a smooth curve. Each point has been labeled
with its corresponding t-value. These values, along with the two arrows
along the curve, are used to indicate the orientation of the graph. This
information helps us determine the direction in which the graph is “mov-
ing.”

https://www.youtube.com/watch?v=ktYtHfYoWi4
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t x y

−2 4 −1

−1 1 0

0 0 1

1 1 2

2 4 3

(a)

t = −2

t = −1

t = 0

t = 1

t = 2

1 2 3 4 5

−2

2

4

x

y

(b)

Figure 9.2.6 A table of values of the parametric equations in Exam-
ple 9.2.5 along with a sketch of their graph

Video solution

youtu.be/watch?v=7Ytw9RTrFtM

We often use the letter t as the parameter as we often regard t as represent-
ing time. Certainly there are many contexts in which the parameter is not time,
but it can be helpful to think in terms of time as one makes sense of parametric
plots and their orientation (for instance, “At time t = 0 the position is (1, 2) and
at time t = 3 the position is (5, 1).”).

Example 9.2.7 Plotting parametric functions.

Sketch the graphof the parametric equationsx = cos2(t), y = cos(t)+1
for t in [0, π].
Solution. We again start by making a table of values in Figure 9.2.8(a),
then plot the points (x, y) on the Cartesian plane in Figure 9.2.8(b).

t x y

0 1 2

π/4 1/2 1 +
√
2/2

π/2 0 1

3π/4 1/2 1−
√
2/2

π 1 0

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2 t = 0

t = π/4

t = π/2

t = 3π/4

t = π x

y

(b)

Figure 9.2.8 A table of values of the parametric equations in Exam-
ple 9.2.7 along with a sketch of their graph
It is not difficult to show that the curves in Examples 9.2.5 and 9.2.7
are portions of the same parabola. While the parabola is the same, the
curves are different. In Example 9.2.5, if we let t vary over all real num-
bers, we’d obtain the entire parabola. In this example, letting t vary over
all real numbers would still produce the same graph; this portion of the
parabola would be traced, and re-traced, infinitely many times. The ori-
entation shown in Figure 9.2.8 shows the orientation on [0, π], but this
orientation is reversed on [π, 2π].
These examples begin to illustrate the powerful nature of parametric
equations. Their graphs are far more diverse than the graphs of func-
tions produced by “y = f(x)” functions.

https://www.youtube.com/watch?v=7Ytw9RTrFtM
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Technology Note: Most graphing utilities can graph functions given in para-
metric form. Often the word “parametric” is abbreviated as “PAR” or “PARAM”
in the options. The user usually needs to determine the graphing window (i.e,
the minimum andmaximum x- and y-values), along with the values of t that are
to be plotted. The user is often prompted to give a t minimum, a t maximum,
and a “t-step” or “∆t.” Graphing utilities effectively plot parametric functions
just as we’ve shown here: they plots lots of points. A smaller t-step plots more
points, making for a smoother graph (but may take longer). In Figure 9.2.6, the
t-step is 1; in Figure 9.2.8, the t-step is π/4.

One nice feature of parametric equations is that their graphs are easy to shift.
While this is not too difficult in the “y = f(x)” context, the resulting function
can look rather messy. (Plus, to shift to the right by two, we replace xwith x−2,
which is counter-intuitive.) The following example demonstrates this.

Example 9.2.9 Shifting the graph of parametric functions.

Sketch the graph of the parametric equations x = t2 + t, y = t2 − t.
Find new parametric equations that shift this graph to the right 3 places
and down 2.
Solution. The graph of the parametric equations is given in Fig-
ure 9.2.10(a). It is a parabola with a axis of symmetry along the line
y = x; the vertex is at (0, 0).
In order to shift the graph to the right 3 units, we need to increase the
x-value by 3 for every point. The straightforward way to accomplish this
is simply to add 3 to the function defining x: x = t2 + t + 3. To shift
the graph down by 2 units, we wish to decrease each y-value by 2, so
we subtract 2 from the function defining y: y = t2 − t − 2. Thus our
parametric equations for the shifted graph are x = t2 + t + 3, y =
t2 − t− 2. This is graphed in Figure 9.2.10(a). Notice how the vertex is
now at (3,−2).

2 4 6 8 10

−2

2

4

6
x = t2 + t
y = t2 − t

x

y

(a)

x = t2 + t+ 3
y = t2 − t− 2

2 4 6 8 10

−2

2

4

6

x

y

(b)

Figure 9.2.10 Illustrating how to shift graphs in Example 9.2.9

Because the x- and y-values of a graph are determined independently, the
graphs of parametric functions often possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 9.2.11 Graphs that cross themselves.

Plot the parametric functions x = t3−5t2+3t+11 and y = t2−2t+3
and determine the t-values where the graph crosses itself.
Solution. Using the methods developed in this section, we again plot



482 CHAPTER 9. CURVES IN THE PLANE

points and graph the parametric equations as shown in Figure 9.2.12. It
appears that the graph crosses itself at the point (2, 6), but we’ll need
to analytically determine this.

−5 5 10 15

5

10

15 x = t3 − 5t2 + 3t+ 11
y = t2 − 2t+ 3

x

y

Figure 9.2.12 A graph of the paramet-
ric equations from Example 9.2.11

We are looking for two different values, say, s and t, where x(s) = x(t)
and y(s) = y(t). That is, the x-values are the same precisely when
the y-values are the same. This gives us a system of 2 equations with 2
unknowns:

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11

s2 − 2s+ 3 = t2 − 2t+ 3

Solving this system is not trivial but involves only algebra. Using the qua-
dratic formula, one can solve for t in the second equation and find that
t = 1 ±

√
s2 − 2s+ 1. This can be substituted into the first equation,

revealing that the graph crosses itself at t = −1 and t = 3. We confirm
our result by computing x(−1) = x(3) = 2 and y(−1) = y(3) = 6.

9.2.2 Converting between rectangular and parametric equations
It is sometimes useful to rewrite equations in rectangular form (i.e., y = f(x))
into parametric form, and vice-versa. Converting from rectangular to parametric
can be very simple: given y = f(x), the parametric equations x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equa-
tions x = t, y = t2 produce the familiar parabola. However, other parametriza-
tions can be used. The following example demonstrates one possible alterna-
tive.

Example 9.2.13 Converting from rectangular to parametric.

Consider y = x2. Find parametric equations x = f(t), y = g(t) for the
parabola where t = dy

dx . That is, t = a corresponds to the point on the
graph whose tangent line has slope a.
Solution. We start by computing dy

dx : y
′ = 2x. Thus we set t = 2x.

We can solve for x and find x = t/2. Knowing that y = x2, we have
y = t2/4. Thus parametric equations for the parabola y = x2 are

x = t/2y = t2/4.

To find the pointwhere the tangent line has a slope of−2, we set t = −2.
This gives the point (−1, 1). We can verify that the slope of the line
tangent to the curve at this point indeed has a slope of−2.

Video solution

youtu.be/watch?v=YsOEEcCXNb8

We sometimes choose the parameter to accurately model physical behavior.

Example 9.2.14 Converting from rectangular to parametric.

An object is fired from a height of 0 feet and lands 6 seconds later, 192
feet away. Assuming ideal projectile motion, the height, in feet, of the
object can be described byh(x) = −x2/64+3x, wherex is the distance
in feet from the initial location. (Thus h(0) = h(192) = 0 feet.) Find
parametric equations x = f(t), y = g(t) for the path of the projectile
where x is the horizontal distance the object has traveled at time t (in

https://www.youtube.com/watch?v=YsOEEcCXNb8
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seconds) and y is the height at time t.
Solution. Physics tells us that the horizontal motion of the projectile is
linear; that is, the horizontal speedof the projectile is constant. Since the
object travels 192 ft in 6 s, we deduce that the object is moving horizon-
tally at a rate of 32 ft

s , giving the equation x = 32t. As y = −x2/64+3x,
we find y = −16t2 + 96t. We can quickly verify that y′′ = −32 ft

ft2 , the
acceleration due to gravity, and that the projectile reaches its maximum
at t = 3, halfway along its path.
These parametric equations make certain determinations about the ob-
ject’s location easy: 2 seconds into the flight the object is at the point(
x(2), y(2)

)
=
(
64, 128

)
. That is, it has traveled horizontally 64 ft and

is at a height of 128 ft, as shown in Figure 9.2.15.

50 100 150 200

50

100

150

t = 2

x = 32t
y = −16t2 + 96t

x

y

Figure 9.2.15 Graphing projectile mo-
tion in Example 9.2.14

It is sometimes necessary to convert given parametric equations into rec-
tangular form. This can be decidedly more difficult, as some “simple” looking
parametric equations can have very “complicated” rectangular equations. This
conversion is often referred to as “eliminating the parameter,” as we are looking
for a relationship between x and y that does not involve the parameter t.

Example 9.2.16 Eliminating the parameter.

Find a rectangular equation for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

Solution. There is not a set way to eliminate a parameter. One method
is to solve for t in one equation and then substitute that value in the sec-
ond. We use that technique here, then show a second, simpler method.
Starting with x = 1/(t2 + 1), solve for t: t = ±

√
1/x− 1. Substitute

this value for t in the equation for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1 + 1

=
1/x− 1

1/x

=

(
1

x
− 1

)
· x

= 1− x.

−2 −1 1 2

−1

1

2

x =
1

t2 + 1

y =
t2

t2 + 1

y = 1− x

x

y

Figure 9.2.17 Graphing parametric
and rectangular equations for a graph
in Example 9.2.16

Thus y = 1 − x. One may have recognized this earlier by manipulating
the equation for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

This is a shortcut that is very specific to this problem; sometimes short-
cuts exist and are worth looking for.
We should be careful to limit the domain of the function y = 1 − x.
The parametric equations limit x to values in (0, 1], thus to produce the
same graph we should limit the domain of y = 1− x to the same.
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The graphs of these functions is given in Figure 9.2.17. The portion of
the graph defined by the parametric equations is given in a thick line;
the graph defined by y = 1 − x with unrestricted domain is given in a
thin line.

Video solution

youtu.be/watch?v=8Vgv74zCWFQ

Example 9.2.18 Eliminating the parameter.

Eliminate the parameter in x = 4 cos(t) + 3, y = 2 sin(t) + 1

Solution. Weshould not try to solve for t in this situation as the resulting
algebra/trig would be messy. Rather, we solve for cos(t) and sin(t) in
each equation, respectively. This gives

cos(t) =
x− 3

4
and sin(t) =

y − 1

2
.

The Pythagorean Theorem gives cos2(t) + sin2(t) = 1, so:

cos2(t) + sin2(t) = 1(
x− 3

4

)2

+

(
y − 1

2

)2

= 1

(x− 3)2

16
+

(y − 1)2

4
= 1

2 4 6 8

−2

2

4

x

y

Figure 9.2.19 Graphing the paramet-
ric equations x = 4 cos(t) + 3, y =
2 sin(t) + 1 in Example 9.2.18

This final equation should look familiar — it is the equation of an ellipse!
Figure 9.2.19 plots the parametric equations, demonstrating that the
graph is indeed of an ellipse with a horizontal major axis and center at
(3, 1).

Video solution

youtu.be/watch?v=RYkPHhpgnas

The Pythagorean Theorem can also be used to identify parametric equations
for hyperbolas. We give the parametric equations for ellipses and hyperbolas in
the following Key Idea.

Key Idea 9.2.20 Parametric Equations of Ellipses and Hyperbolas.

• The parametric equations

x = a cos(t) + h, y = b sin(t) + k

define an ellipse with horizontal axis of length 2a and vertical axis
of length 2b, centered at (h, k).

• The parametric equations

x = a tan(t) + h, y = ±b sec(t) + k

define a hyperbola with vertical transverse axis centered at (h, k),
and

x = ±a sec(t) + h, y = b tan(t) + k

defines a hyperbola with horizontal transverse axis. Each has as-
ymptotes at y = ±b/a(x− h) + k.

https://www.youtube.com/watch?v=8Vgv74zCWFQ
https://www.youtube.com/watch?v=RYkPHhpgnas
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9.2.3 Special Curves
Figure 9.2.21 gives a small gallery of “interesting” and “famous” curves along
with parametric equations that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
functions are not differentiable at these points. This leads us to a definition.

−1 −0.5 0.5 1

−1

1

x

y

(a) Astroid where x = cos3(t) and
y = sin3(t)

−1 1

−1

1

x

y

(b) Rose Curve where x =
cos(t) sin(4t) and y = sin(t) sin(4t)

−6 −4 −2 2 4 6

−5

5

x

y

(c) Hypotrochoid where
x = 2 cos(t) + 5 cos(2t/3) and
y = 2 sin(t)− 5 sin(2t/3)

−6 −4 −2 2 4 6

−5

5

x

y

(d) Epicycloid where x = 4 cos(t) −
cos(4t) and y = 4 sin(t)− sin(4t)

Figure 9.2.21 A gallery of interesting planar curves

Definition 9.2.22 Smooth.

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if
f ′ and g′ are continuous on I and not simultaneously 0 (except possibly
at the endpoints of I). A curve is piecewise smooth on I if I can be
partitioned into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cos3(t), y = sin3(t). Taking derivatives,
we have:

x′ = −3 cos2(t) sin(t) and y′ = 3 sin2(t) cos(t).

It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not
smooth at these points, corresponding to the cusps seen in the figure.

We demonstrate this once more.
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Example 9.2.23 Determine where a curve is not smooth.

Let a curveC be defined by the parametric equations x = t3− 12t+17
and y = t2−4t+8. Determine the points, if any, where it is not smooth.
Solution. We begin by taking derivatives.

x′ = 3t2 − 12, y′ = 2t− 4.

We set each equal to 0:

x′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2

y′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We see at t = 2 both x′ and y′ are 0; thus C is not smooth at t = 2,
corresponding to the point (1, 4). The curve is graphed in Figure 9.2.24,
illustrating the cusp at (1, 4).

2 4 6 8 10

2

4

6

8

x

y

Figure 9.2.24 Graphing the curve in
Example 9.2.23; note it is not smooth
at (1, 4)

Video solution

youtu.be/watch?v=rqhh0McArDM

If a curve is not smooth at t = t0, it means that x′(t0) = y′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equations describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direction, whereas moving objects tend to change
direction in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6

produce the familiar y = x2 parabola. However, in this parametrization, the
curve is not smooth. A particle traveling along the parabola according to the
given parametric equations comes to rest at t = 0, though no sharp point is
created.

Our previous experience with cusps taught us that a function was not differ-
entiable at a cusp. This can lead us to wonder about derivatives in the context
of parametric equations and the application of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec-
tion.

https://www.youtube.com/watch?v=rqhh0McArDM
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9.2.4 Exercises

Terms and Concepts

1. True or False? When sketching the graph of parametric equations, the x- and y-values are found separately,
then plotted together. (□ True □ False)

2. The direction in which a graph is “moving” is called the of the graph.

3. An equation written as y = f(x) is written in form.

4. Create parametric equations x = f(t), y = g(t) and sketch their graph. Explain any interesting features of your
graph based on the functions f and g.

Problems

Exercise Group. In the following exercises, sketch the graph of the given parametric equations by hand, making a
table of points to plot. Be sure to indicate the orientation of the graph.

5. x = t2 + t,y = 1− t2,−3 ≤ t ≤ 3 6. x = 1,y = 5 sin(t),−π/2 ≤ t ≤ π/2

7. x = t2,y = 2,−2 ≤ t ≤ 2 8. x = t3 − t+ 3,y = t2 + 1,−2 ≤ t ≤ 2

Exercise Group. In the following exercises, sketch the graph of the given parametric equations; using a graphing
utility is advisable. Be sure to indicate the orientation of the graph.

9. x = t3 − 2t2,y = t2,−2 ≤ t ≤ 3 10. x = 1/t,y = sin(t),0 < t ≤ 10

11. x = 3 cos(t),y = 5 sin(t),0 ≤ t ≤ 2π 12. x = 3 cos(t) + 2,y = 5 sin(t) + 3,0 ≤ t ≤ 2π

13. x = cos(t),y = cos(2t),0 ≤ t ≤ π 14. x = cos(t),y = sin(2t),0 ≤ t ≤ 2π

15. x = 2 sec(t),y = 3 tan(t),−π/2 < t < π/2 16. x = cosh(t),y = sinh(t),−2 ≤ t ≤ 2

17. x = cos(t) + 1
4 cos(8t),y =

sin(t) + 1
4 sin(8t),0 ≤ t ≤ 2π

18. x = cos(t) + 1
4 sin(8t),y =

sin(t) + 1
4 cos(8t),0 ≤ t ≤ 2π

Exercise Group. In the following exercises, four sets of parametric equations are given. Describe how their graphs
are similar and different. Be sure to discuss orientation and ranges.

19.

(a) x = t y = t2,−∞ < t < ∞

(b) x = sin(t) y = sin2(t),−∞ < t < ∞

(c) x = et y = e2t,−∞ < t < ∞

(d) x = −t y = t2,−∞ < t < ∞

20.

(a) x = cos(t) y = sin(t), 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos(t)) y = sin(cos(t)),
0 ≤ t ≤ 2π

Exercise Group. Eliminate the parameter in the given parametric equations.
21. x = 2t+ 5, y = −3t+ 1 22. x = sec(t), y = tan(t)
23. x = 4 sin(t) + 1, y = 3 cos(t)− 2 24. x = t2, y = t3

25. x = 1
t+1 , y = 3t+5

t+1 26. x = et, y = e3t − 3

27. x = ln(t), y = t2 − 1 28. x = cot(t), y = csc(t)

29. x = cosh(t), y = sinh(t) 30. x = cos(2t), y = sin(t)

Exercise Group. In the following exercises, eliminate the parameter in the given parametric equations. Describe the
curve defined by the parametric equations based on its rectangular form.

31. x = at+ x0, y = bt+ y0 32. x = r cos(t), y = r sin(t)
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33. x = a cos(t) + h, y = b sin(t) + k 34. x = a sec(t) + h, y = b tan(t) + k

Exercise Group. In the following exercises, find parametric equations for the given rectangular equation using the

parameter t =
dy

dx
. Verify that at t = 1, the point on the graph has a tangent line with slope of 1.

35. y = 3x2 − 11x+ 2 36. y = ex

37. y = sin(x) 38. y =
√
x on [0,∞)

Exercise Group. In the following exercises, find the values of t where the graph of the parametric equations crosses
itself.

39. x = t3 − t+ 3, y = t2 − 3 40. x = t3 − 4t2 + t+ 7,y = t2 − t

41. x = cos(t),y = sin(2t) on [0, 2π] 42. x = cos(t) cos(3t),y = sin(t) cos(3t) on [0, π]

Exercise Group. In the following exercises, find the value(s) of twhere the curve defined by the parametric equations
is not smooth.

43. x = t3 + t2 − t,y = t2 + 2t+ 3 44. x = t2 − 4t, y = t3 − 2t2 − 4t

45. x = cos(t),y = 2 cos(t) 46. x = 2 cos(t)− cos(2t), y = 2 sin(t)− sin(2t)

Exercise Group. Find parametric equations that describe the given situation.
47. A projectile is fired from a height of 0 ft, landing

16 ft away in 4 s.
48. A projectile is fired from a height of 0 ft, landing

200 ft away in 4 s.
49. A projectile is fired from a height of 0 ft, landing

200 ft away in 20 s.
50. Find parametric equations that describe a circle

of radius 2, centered at the origin, that is traced
clockwise once at constant speed on [0, 2π].

51. Find parametric equations that describe a circle
of radius 3, centered at (1, 1), that is traced
once counter-clockwise at constant speed on
[0, 1].

52. Find parametric equations that describe an
ellipse centered at (1, 3), with vertical major
axis of length 6 and minor axis of length 2.

53. An ellipse with foci at (±1, 0) and vertices at
(±5, 0).

54. A hyperbola with foci at (5,−3) and (−1,−3),
and with vertices at (1,−3) and (3,−3).

55. A hyperbola with vertices at (0,±6) and
asymptotes y = ±3x.
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9.3 Calculus and Parametric Equations

The previous section defined curves based on parametric equations. In this sec-
tion we’ll employ the techniques of calculus to study these curves.

We are still interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximations, and they indicate instantaneous direction of travel.

youtu.be/watch?v=FIvX66HAaj8

Figure 9.3.1 Video introduction to
Section 9.3

The slope of the tangent line is still dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equations. If x = f(t) and y = g(t), the
Chain Rule states that

dy

dt
=

dy

dx
· dx
dt
.

Solving for dy
dx , we get

dy

dx
=

dy

dt

/
dx

dt
=

g′(t)

f ′(t)
,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

Key Idea 9.3.2 Finding dy
dx with Parametric Equations.

Let x = f(t) and y = g(t), where f and g are differentiable on some
open interval I and f ′(t) ̸= 0 on I . Then

dy

dx
=

g′(t)

f ′(t)
.

We use this to define the tangent line.

Definition 9.3.3 Tangent and Normal Lines.

Let a curve C be parametrized by x = f(t) and y = g(t), where f and
g are differentiable functions on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through

(
f(t0), g(t0)

)
with slope

m = g′(t0)/f
′(t0), provided f ′(t0) ̸= 0.

The normal line to C at t = t0 is the line through
(
f(t0), g(t0)

)
with

slopem = −f ′(t0)/g
′(t0), provided g′(t0) ̸= 0.

The definition leaves two special cases to consider. When the tangent line
is horizontal, the normal line is undefined by the above definition as g′(t0) = 0.
Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definition.

1. If the tangent line at t = t0 has a slope of 0, the normal line toC at t = t0
is the line x = f(t0).

2. If the normal line at t = t0 has a slope of 0, the tangent line toC at t = t0
is the line x = f(t0).

Example 9.3.4 Tangent and Normal Lines to Curves.

Let x = 5t2−6t+4 and y = t2+6t−1, and letC be the curve defined
by these equations.

1. Find the equations of the tangent and normal lines to C at t = 3.

https://www.youtube.com/watch?v=FIvX66HAaj8


490 CHAPTER 9. CURVES IN THE PLANE

2. Find where C has vertical and horizontal tangent lines.

Solution.

1. We start by computing f ′(t) = 10t− 6 and g′(t) = 2t+ 6. Thus

dy

dx
=

2t+ 6

10t− 6
.

Make note of something thatmight seemunusual: dy
dx is a function

of t, not x. Just as points on the curve are found in terms of t, so
are the slopes of the tangent lines. The point on C at t = 3 is
(31, 26). The slope of the tangent line ism = 1/2 and the slope
of the normal line ism = −2. Thus,

• the equation of the tangent line is y =
1

2
(x− 31) + 26, and

• the equation of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 9.3.5.

20 40 60 80

−20

20

40

x

y

Figure 9.3.5 Graphing tangent and
normal lines in Example 9.3.4

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and

solve for t. In this case, this amounts to setting g′(t) = 0 and
solving for t (and making sure that f ′(t) ̸= 0).

g′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point onC corresponding to t = −3 is (67,−10); the tangent
line at that point is horizontal (hence with equation y = −10).
To find where C has a vertical tangent line, we find where it has
a horizontal normal line, and set − f ′(t)

g′(t) = 0. This amounts to
setting f ′(t) = 0 and solving for t (and making sure that g′(t) ̸=
0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tan-
gent line at that point is x = 2.2. The points where the tangent
lines are vertical and horizontal are indicated on the graph in Fig-
ure 9.3.5.

Video solution

youtu.be/watch?v=A62eUDxiOw4

Example 9.3.6 Tangent and Normal Lines to a Circle.

1. Find where the unit circle, defined by x = cos(t) and y = sin(t)
on [0, 2π], has vertical and horizontal tangent lines.

2. Find the equation of the normal line at t = t0.

Solution.

1. We compute the derivative following Key Idea 9.3.2:

dy

dx
=

g′(t)

f ′(t)
= −cos(t)

sin(t)
.

The derivative is 0 when cos(t) = 0; that is, when t = π/2, 3π/2.
These are the points (0, 1) and (0,−1) on the circle. The normal

https://www.youtube.com/watch?v=A62eUDxiOw4
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line is horizontal (and hence, the tangent line is vertical) when
sin(t) = 0; that is, when t = 0, π, 2π, corresponding to the
points (−1, 0) and (0, 1) on the circle. These results should make
intuitive sense.

2. The slope of the normal line at t = t0 ism =
sin(t0)
cos(t0)

= tan(t0).

This normal line goes through the point (cos(t0), sin(t0)), giving
the line

y =
sin(t0)
cos(t0)

(x− cos(t0)) + sin(t0)

= (tan(t0))x,

as long as cos(t0) ̸= 0. It is an important fact to recognize that
the normal lines to a circle pass through its center, as illustrated in
Figure 9.3.7. Stated in another way, any line that passes through
the center of a circle intersects the circle at right angles.

−1 −0.5 0.5 1

−1

1

x

y

Figure 9.3.7 Illustrating how a circle’s
normal lines pass through its center

Video solution

youtu.be/watch?v=PpmsaMVJAZI

Example 9.3.8 Tangent lines when dy
dx is not defined.

Find the equation of the tangent line to the astroid x = cos3(t), y =
sin3(t) at t = 0, shown in Figure 9.3.9.

−1 1

−1

1

x

y

Figure 9.3.9 A graph of an astroid

Solution. We start by finding x′(t) and y′(t):

x′(t) = −3 sin(t) cos2(t), y′(t) = 3 cos(t) sin2(t).

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0
forming a cusp on the graph. Evaluating dy

dx at this point returns the
indeterminate form of “0/0”.
We can, however, examine the slopes of tangent lines near t = 0, and
take the limit as t → 0.

lim
t→0

y′(t)

x′(t)
= lim

t→0

3 cos(t) sin2(t)
−3 sin(t) cos2(t)

(We can cancel as t ̸= 0.)

= lim
t→0

− sin(t)
cos(t)

= 0.

We have accomplished something significant. When the derivative dy
dx

returns an indeterminate form at t = t0, we can define its value by set-
ting it to be lim

t→t0

dy
dx , if that limit exists. This allows us to find slopes of

tangent lines at cusps, which can be very beneficial.
We found the slope of the tangent line at t = 0 to be 0; therefore the
tangent line is y = 0, the x-axis.

Video solution

youtu.be/watch?v=rb4wEkhcUtE

9.3.1 Concavity
We continue to analyze curves in the plane by considering their concavity; that
is, we are interested in d2y

dx2 , “the second derivative of y with respect to x.” To

https://www.youtube.com/watch?v=PpmsaMVJAZI
https://www.youtube.com/watch?v=rb4wEkhcUtE
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find this, we need to find the derivative of dy
dx with respect to x; that is,

d2y

dx2
=

d

dx

[
dy

dx

]
,

but recall that dy
dx is a function of t, not x, making this computation not straight-

forward.
To make the upcoming notation a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh

dt
=

dh

dx
· dx
dt

⇒ dh

dx
=

dh

dt

/
dx

dt
.

In words, to find d2y
dx2 , we first take the derivative of dy

dx with respect to t, then
divide by x′(t). We restate this as a Key Idea.

Key Idea 9.3.10 Finding d2y
dx2 with Parametric Equations.

Let x = f(t) and y = g(t) be twice differentiable functions on an open
interval I , where f ′(t) ̸= 0 on I . Then

d2y

dx2
=

d

dt

[
dy

dx

]/
dx

dt
=

d

dt

[
dy

dx

]/
f ′(t).

Examples will help us understand this Key Idea.

Example 9.3.11 Concavity of Plane Curves.

Let x = 5t2−6t+4 and y = t2+6t−1 as in Example 9.3.4. Determine
the t-intervals on which the graph is concave up/down.
Solution (a). Concavity is determined by the second derivative of
y with respect to x, d2y

dx2 , so we compute that here following Key
Idea 9.3.10.
In Example 9.3.4, we found

dy

dx
=

2t+ 6

10t− 6
and f ′(t) = 10t− 6. So:

d2y

dx2
=

d

dt

[
2t+ 6

10t− 6

]/
(10t− 6)

= − 72

(10t− 6)2

/
(10t− 6)

= − 72

(10t− 6)3

= − 9

(5t− 3)3
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Figure 9.3.12 Graphing the paramet-
ric equations in Example 9.3.11 to
demonstrate concavity

The graph of the parametric functions is concave up when d2y
dx2 > 0 and

concave down when d2y
dx2 < 0. We determine the intervals when the

second derivative is greater/less than 0 by first finding when it is 0 or
undefined.
As the numerator of − 9

(5t− 3)3
is never 0, d2y

dx2 ̸= 0 for all t. It is un-

defined when 5t − 3 = 0; that is, when t = 3/5. Following the work
established in Section 3.4, we look at values of t greater/less than 3/5
on a number line:
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d2y
dx2 > 0

concave up
d2y
dx2 < 0

concave down

3/5

Reviewing Example 9.3.4, we see that when t = 3/5 = 0.6, the graph
of the parametric equations has a vertical tangent line. This point is also
a point of inflection for the graph, illustrated in Figure 9.3.12.
The video in Figure 9.3.13 shows how this information can be used to
sketch the curve by hand.

youtu.be/watch?v=HSBSVFSVqms

Figure 9.3.13 Sketching the curve in
Example 9.3.11

Video solution

youtu.be/watch?v=ZUN_apodMWw

Example 9.3.14 Concavity of Plane Curves.

Find the points of inflection of the graph of the parametric equations
x =

√
t, y = sin(t), for 0 ≤ t ≤ 16.

Solution. We need to compute dy
dx and

d2y
dx2 .

dy

dx
=

y′(t)

x′(t)
=

cos(t)
1/(2

√
t)

= 2
√
t cos(t).

d2y

dx2
=

d
dt

[
dy
dx

]
x′(t)

=
cos(t)/

√
t− 2

√
t sin(t)

1/(2
√
t)

= 2 cos(t)− 4t sin(t).

The points of inflection are found by setting d2y
dx2 = 0. This is not trivial,

as equations thatmix polynomials and trigonometric functions generally
do not have “nice” solutions.
In Figure 9.3.15(a) we see a plot of the second derivative. It shows that
it has zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These
approximations are not very good, made only by looking at the graph.
Newton’s Method provides more accurate approximations. Accurate to
2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plotted on the graph of the para-
metric equations in Figure 9.3.15(b). Note how most occur near the x-
axis, but not exactly on the axis.
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0.5

1

x

y

(b)

Figure 9.3.15 In (a), a graph of d2y
dx2 , showing where it is approximately 0.

In (b), graph of the parametric equations in Example 9.3.14 along with
the points of inflection

https://www.youtube.com/watch?v=HSBSVFSVqms
https://www.youtube.com/watch?v=ZUN_apodMWw
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9.3.2 Arc Length
We continue our study of the features of the graphs of parametric equations by
computing their arc length.

youtu.be/watch?v=57F7ZspP0lU

Figure 9.3.16 Video introduction to
arc length for parametric curves

Recall in Section 7.4 we found the arc length of the graph of a function, from
x = a to x = b, to be

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

We can use this equation and convert it to the parametric equation context.
Letting x = f(t) and y = g(t), we know that dy

dx = g′(t)/f ′(t). It will also be
useful to calculate the differential of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

Starting with the arc length formula above, consider:

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

=

∫ b

a

√
1 +

g′(t)2

f ′(t)2
dx.

Factor out the f ′(t)2:

=

∫ b

a

√
f ′(t)2 + g′(t)2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

=

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are
found by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is
important, so we restate it as a theorem.

Theorem 9.3.17 Arc Length of Parametric Curves.

Let x = f(t) and y = g(t) be parametric equations with f ′ and g′

continuous on [t1, t2], on which the graph traces itself only once. The
arc length of the graph, from t = t1 to t = t2, is

L =

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note: Theorem9.3.17makes use
of differentiability on closed in-
tervals, just as was done in Sec-
tion 7.4.

As before, these integrals are often not easy to compute. We start with a
simple example, then give another where we approximate the solution.

Example 9.3.18 Arc Length of a Circle.

Find the arc length of the circle parametrized by x = 3 cos(t), y =
3 sin(t) on [0, 3π/2].

https://www.youtube.com/watch?v=57F7ZspP0lU
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Solution. By direct application of Theorem 9.3.17, we have

L =

∫ 3π/2

0

√
(−3 sin(t))2 + (3 cos(t))2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0

3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This shouldmake sense; we know fromgeometry that the circumference
of a circle with radius 3 is 6π; since we are finding the arc length of 3/4
of a circle, the arc length is 3/4 · 6π = 9π/2.

Video solution

youtu.be/watch?v=It8vHw3RHEw

Example 9.3.19 Arc Length of a Parametric Curve.

The graph of the parametric equations x = t(t2−1), y = t2−1 crosses
itself as shown in Figure 9.3.20, forming a “teardrop.” Find the arc length
of the teardrop.

1−1

−1

1

x

y

Figure 9.3.20 A graph of the para-
metric equations in Example 9.3.19,
where the arc length of the teardrop
is calculated

Solution. We can see by the parametrizations of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to
t = 1. Applying Theorem 9.3.17, we have

L =

∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an antiderivative expressible
by elementary functions. We turn to numerical integration to approxi-
mate its value. Using 4 subintervals, Simpson’s Rule approximates the
value of the integral as 2.65051. Using a computer, more subintervals
are easy to employ, and n = 20 gives a value of 2.71559. Increasing n
shows that this value is stable and a good approximation of the actual
value.

Video solution

youtu.be/watch?v=G5U9BVhB3PE

9.3.3 Surface Area of a Solid of Revolution
Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Theorem 7.4.13 from Section 7.4 in a
similar way as done to produce the formula for arc length done before.

Theorem 9.3.21 Surface Area of a Solid of Revolution.

Consider the graph of the parametric equations x = f(t) and y = g(t),
where f ′ and g′ are continuous on an open interval I containing t1 and
t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about

https://www.youtube.com/watch?v=It8vHw3RHEw
https://www.youtube.com/watch?v=G5U9BVhB3PE
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the x-axis is (where g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π

∫ t2

t1

g(t)
√
f ′(t)2 + g′(t)2 dt.

2. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π

∫ t2

t1

f(t)
√

f ′(t)2 + g′(t)2 dt.

Example 9.3.22 Surface Area of a Solid of Revolution.

Consider the teardrop shape formed by the parametric equations x =
t(t2 − 1), y = t2 − 1 as seen in Example 9.3.19. Find the surface area if
this shape is rotated about the x-axis, as shown in Figure 9.3.23.

Figure 9.3.23 Rotating a teardrop
shape about the x-axis in Exam-
ple 9.3.22

Solution. The teardrop shape is formed between t = −1 and t = 1.
Using Theorem 9.3.21, we see we need for g(t) ≥ 0 on [−1, 1], and this
is not the case. To fix this, we simplify replace g(t) with −g(t), which
flips the whole graph about the x-axis (and does not change the surface
area of the resulting solid). The surface area is:

Area S = 2π

∫ 1

−1

(1− t2)
√

(3t2 − 1)2 + (2t)2 dt

= 2π

∫ 1

−1

(1− t2)
√

9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of
elementary functions. Using Simpson’s Rule with n = 20, we find the
area to be S = 9.44. Using larger values of n shows this is accurate to 2
places after the decimal.

After defining a new way of creating curves in the plane, in this section
we have applied calculus techniques to the parametric equation defining these
curves to study their properties. In the next section, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that identifies points in the plane in a manner different than
from measuring distances from the y- and x- axes.
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9.3.4 Exercises

Terms and Concepts

1. True or False? Given parametric equations x = f(t) and y = g(t), dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

(□ True □ False)

2. Given parametric equations x = f(t) and y = g(t), the derivative dy
dx as given in Key Idea 9.3.2 is a function of

?

3. True or False? Given parametric equations x = f(t) and y = g(t), to find d2y
dx2 , one simply computes d

dt

(
dy
dx

)
.

(□ True □ False)

4. True or False? If dy
dx = 0 at t = t0, then the normal line to the curve at t = t0 is a vertical line. (□ True

□ False)

Problems

Exercise Group. In the following exercises, parametric equations for a curve are given.

(a) Find
dy

dx
.

(b) Find the equations of the tangent and normal line(s) at the point(s) given.

(c) Sketch the graph of the parametric functions along with the found tangent and normal lines.

5. x = t, y = t2;t = 1 6. x =
√
t, y = 5t+ 2;t = 4

7. x = t2 − t, y = t2 + t;t = 1 8. x = t2 − 1, y = t3 − t;t = 0 and t = 1

9. x = sec(t), y = tan(t) on (−π/2, π/2);t = π/4 10. x = cos(t), y = sin(2t) on [0, 2π];t = π/4

11. x = cos(t) sin(2t), y = sin(t) sin(2t) on [0, 2π];
t = 3π/4

12. x = et/10 cos(t), y = et/10 sin(t); t = π/2

Exercise Group. Find the t-valueswhere the curve defined by the given parametric equations has a horizontal tangent
line. Note: these are the same equations as in Exercises 5–12.

13. x = t, y = t2 14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t 16. x = t2 − 1, y = t3 − t

17. x = sec(t), y = tan(t) on (−π/2, π/2) 18. x = cos(t), y = sin(2t), on [0, 2π)
19. x = cos(t) sin(2t), y = sin(t) sin(2t) on [0, 2π] 20. x = et/10 cos(t), y = et/10 sin(t)

Exercise Group. Find the point t = t0 where the graph of the given parametric equations is not smooth, then find
lim
t→t0

dy
dx .

21. x = 1
t2+1 , y = t3 22. x = −t3+7t2− 16t+13, y = t3− 5t2+8t− 2

23. x = t3 − 3t2 + 3t− 1,y = t2 − 2t+ 1 24. x = cos2(t),y = 1− sin2(t)

Exercise Group. For the given parametric equations for a curve, find d2y
dx2 , then determine the intervals on which the

graph of the curve is concave up/down. Note: these are the same equations as in Exercises 5–12.
25. x = t,y = t2 26. x =

√
t,y = 5t+ 2

27. x = t2 − t, y = t2 + t 28. x = t2 − 1,y = t3 − t

29. x = sec(t),y = tan(t) on (−π/2, π/2) 30. x = cos(t), y = sin(2t), on [0, 2π)
31. x = cos(t) sin(2t),y = sin(t) sin(2t) on

[−π/2, π/2]
32. x = et/10 cos(t),y = et/10 sin(t)
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Exercise Group. Find the arc length of the graph of the parametric equations on the given interval(s).
33. x = −3 sin(2t), y = 3 cos(2t) on [0, π] 34. x = et/10 cos(t), y = et/10 sin(t) on [0, 2π] and

[2π, 4π].
35. x = 5t+ 2, y = 1− 3t on [−1, 1] 36. x = 2t3/2,y = 3t on [0, 1]

Exercise Group. In the following exercises, numerically approximate the given arc length.
37. Approximate the arc length of one petal of the

rose curve x = cos(t) cos(2t),y = sin(t) cos(2t)
using Simpson’s Rule and n = 4.

38. Approximate the arc length of the “bow tie
curve” x = cos(t),y = sin(2t) using Simpson’s
Rule and n = 6.

39. Approximate the arc length of the parabola
x = t2 − t,y = t2 + t on [−1, 1] using
Simpson’s Rule and n = 4.

40. A common approximate of the circumference of
an ellipse given by x = a cos(t),y = b sin(t) is

C ≈ 2π

√
a2 + b2

2
. Use this formula to

approximate the circumference of x = 5 cos(t),
y = 3 sin(t) and compare this to the
approximation given by Simpson’s Rule and
n = 6.

Exercise Group. In the following exercises, a solid of revolution is described. Find or approximate its surface area as
specified.

41. Find the surface area of the sphere formed by
rotating the circle x = 2 cos(t),y = 2 sin(t)
about:

(a) The x-axis.

(b) The y-axis.

42. Find the surface area of the torus (or “donut”)
formed by rotating the circle
x = cos(t) + 2,y = sin(t) about the y-axis.

43. Approximate the surface area of the solid
formed by rotating the “upper right half” of the
bow tie curve x = cos(t),y = sin(2t) on
[0, π/2] about the x-axis, using Simpson’s Rule
and n = 4.

44. Approximate the surface area of the solid
formed by rotating the one petal of the rose
curve x = cos(t) cos(2t),y = sin(t) cos(2t) on
[0, π/4] about the x-axis, using Simpson’s Rule
and n = 4.
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9.4 Introduction to Polar Coordinates

youtu.be/watch?v=pyS8sweaJ9w

Figure 9.4.1 Video introduction to
Section 9.4

We are generally introduced to the idea of graphing curves by relating x-
values to y-values through a function f . That is, we set y = f(x), and plot lots
of point pairs (x, y) to get a good notion of how the curve looks. This method is
useful but has limitations, not least of which is that curves that “fail the vertical
line test” cannot be graphed without using multiple functions.

The previous two sections introduced and studied a new way of plotting
points in the x, y-plane. Using parametric equations, x and y values are com-
puted independently and then plotted together. This method allows us to graph
an extraordinary range of curves. This section introduces yet anotherway to plot
points in the plane: using polar coordinates.

9.4.1 Polar Coordinates
Start with a pointO in the plane called the pole (wewill always identify this point
with the origin). From the pole, draw a ray, called the initial ray (we will always
draw this ray horizontally, identifying it with the positive x-axis). A pointP in the
plane is determined by the distance r that P is fromO, and the angle θ formed
between the initial ray and the segmentOP (measured counter-clockwise). We
record the distance and angle as an ordered pair (r, θ). To avoid confusion with
rectangular coordinates, we will denote polar coordinates with the letter P , as
in P (r, θ). This is illustrated in Figure 9.4.2

O initial ray

r

P = P (r, θ)

θ

Figure 9.4.2 Illustrating polar coordi-
nates

Practice will make this process more clear.

Example 9.4.3 Plotting Polar Coordinates.

Plot the following polar coordinates:

A = P (1, π/4)B = P (1.5, π)C = P (2,−π/3)D = P (−1, π/4)

Solution. To aid in the drawing, a polar grid is provided below. To place
the point A, go out 1 unit along the initial ray (putting you on the inner
circle shown on the grid), then rotate counter-clockwise π/4 radians (or
45◦). Alternately, one can consider the rotation first: think about the ray
from O that forms an angle of π/4 with the initial ray, then move out 1
unit along this ray (again placing you on the inner circle of the grid).

O 1 2 3

To plot B, go out 1.5 units along the initial ray and rotate π radians
(180◦).
To plot C, go out 2 units along the initial ray then rotate clockwise π/3
radians, as the angle given is negative.

O 1 2 3

A

B

C

D

Figure 9.4.4 Plotting polar points in
Example 9.4.3

To plotD, move along the initial ray “−1” units — in other words, “back
up” 1 unit, then rotate counter-clockwise by π/4. The results are given
in Figure 9.4.4.

https://www.youtube.com/watch?v=pyS8sweaJ9w
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Consider the following two points: A = P (1, π) and B = P (−1, 0). To
locate A, go out 1 unit on the initial ray then rotate π radians; to locate B, go
out −1 units on the initial ray and don’t rotate. One should see that A and B
are located at the same point in the plane. We can also consider C = P (1, 3π),
orD = P (1,−π); all four of these points share the same location.

This ability to identify a point in the plane with multiple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beautiful functions that intersect themselves (much like we sawwith parametric
functions). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this section.

9.4.2 Polar to Rectangular Conversion
It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 9.4.5 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P (r, θ). Using
trigonometry, we can make the identities given in the following Key Idea.

x

yr

θ

O

P

Figure 9.4.5 Converting between rec-
tangular and polar coordinates

Key Idea 9.4.6 Converting Between Rectangular and Polar Coordinates.

Given the polar point P (r, θ), the rectangular coordinates are deter-
mined by

x = r cos(θ) y = r sin(θ).

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan(θ) =
y

x
.

Example 9.4.7 Converting Between Polar and Rectangular Coordi-
nates.

1. Convert the polar coordinates P (2, 2π/3) and P (−1, 5π/4) to
rectangular coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar co-
ordinates.

Solution.

1. (a) We start with P (2, 2π/3). Using Key Idea 9.4.6, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point P (−1, 5π/4) is converted to rectangular
with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈

(0.707, 0.707).

These points are plotted in Figure 9.4.8(a). The rectangular coor-
dinate system is drawn lightly under the polar coordinate system
so that the relationship between the two can be seen.
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O

P (2, 2π
3 )

P (−1, 5π
4 )

(a)

(0, 0)

(1, 2)

(−1, 1)

3π
4
3π
4

−π
4

1.11

(b)

Figure 9.4.8 Plotting rectangular and polar points in Example 9.4.7

2. (a) To convert the rectangular point (1, 2) to polar coordinates,
we use the Key Idea to form the following two equations:

12 + 22 = r2 tan(θ) =
2

1
.

The first equation tells us that r =
√
5. Using the inverse

tangent function, we find

tan(θ) = 2 ⇒ θ = tan−1(2) ≈ 1.11 ≈ 63.43◦.

Thus polar coordinates of (1, 2) are P (
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equa-
tions

(−1)2 + 12 = r2 tan(θ) =
1

−1
.

Thus r =
√
2. We need to be careful in computing θ: using

the inverse tangent function, we have

tan(θ) = −1 ⇒ θ = tan−1(−1) = −π/4 = −45◦.

This is not the angle we desire. The range of tan−1(x) is
(−π/2, π/2); that is, it returns angles that lie in the 1st and
4th quadrants. To find locations in the 2nd and 3rd quad-
rants, add π to the result of tan−1(x). So π + (−π/4) puts
the angle at 3π/4. Thus the polar point is P (

√
2, 3π/4). An

alternate method is to use the angle θ given by arctangent,
but change the sign of r. Thus we could also refer to (−1, 1)
as P (−

√
2,−π/4).

These points are plotted in Figure 9.4.8(b). The polar system is
drawn lightly under the rectangular grid with rays to demonstrate
the angles used.

9.4.3 Polar Functions and Polar Graphs
Defining a new coordinate system allows us to create a new kind of function, a
polar function. Rectangular coordinates lent themselves well to creating func-
tions that related x and y, such as y = x2. Polar coordinates allow us to create
functions that relate r and θ. Normally these functions look like r = f(θ), al-
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though we can create functions of the form θ = f(r). The following examples
introduce us to this concept.

Example 9.4.9 Introduction to Graphing Polar Functions.

Describe the graphs of the following polar functions.

1. r = 1.5

2. θ = π/4

Solution.

1. The equation r = 1.5 describes all points that are 1.5 units from
the pole; as the angle is not specified, any θ is allowable. All points
1.5 units from the pole describes a circle of radius 1.5. We can
consider the rectangular equivalent of this equation; using r2 =
x2 + y2, we see that 1.52 = x2 + y2, which we recognize as
the equation of a circle centered at (0, 0) with radius 1.5. This is
sketched in Figure 9.4.10.

2. The equation θ = π/4 describes all points such that the line
through them and the pole make an angle of π/4 with the initial
ray. As the radius r is not specified, it can be any value (even neg-
ative). Thus θ = π/4 describes the line through the pole that
makes an angle of π/4 = 45◦ with the initial ray. We can again
consider the rectangular equivalent of this equation. Combine
tan(θ) = y/x and θ = π/4:

tan(π)/4 = y/x ⇒ x tan(π)/4 = y ⇒ y = x.

This graph is also plotted in Figure 9.4.10.

O 1 2

r = 1.5
θ = π

4

Figure 9.4.10 Plotting standard polar
plots

Video solution

youtu.be/watch?v=HTCbzFnW9KU

The basic rectangular equations of the form x = h and y = k create vertical
and horizontal lines, respectively; the basic polar equations r = h and θ = α
create circles and lines through the pole, respectively. With this as a foundation,
we can createmore complicated polar functions of the form r = f(θ). The input
is an angle; the output is a length, how far in the direction of the angle to go out.

We sketch these functions much like we sketch rectangular and parametric
functions: we plot lots of points and “connect the dots” with curves. We demon-
strate this in the following example.

Example 9.4.11 Sketching Polar Functions.

Sketch the polar function r = 1 + cos(θ) on [0, 2π] by plotting points.
Solution. A common question when sketching curves by plotting points
is “Which points should I plot?” With rectangular equations, we often
choose “easy” values — integers, then add more if needed. When plot-
ting polar equations, start with the “common” angles—multiples of π/6
and π/4. Figure 9.4.12 gives a table of just a few values of θ in [0, π].
Consider the point P (2, 0) determined by the first line of the table. The
angle is 0 radians — we do not rotate from the initial ray — then we go
out 2 units from the pole. When θ = π/6, r = 1.866 (actually, it is
1 +

√
3/2); so rotate by π/6 radians and go out 1.866 units.

https://www.youtube.com/watch?v=HTCbzFnW9KU
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The graph shown uses more points, connected with straight lines. (The
points on the graph that correspond to points in the table are signified
with larger dots.) Such a sketch is likely good enough to give one an idea
of what the graph looks like.

θ r = 1 + cos(θ)
0 2

π/6 1.86603

π/2 1

4π/3 0.5

7π/4 1.70711

(a)

O 1 2

(b)

Figure 9.4.12 Graphing a polar function in Example 9.4.11 by plotting
points

Video solution

youtu.be/watch?v=1omaozpN7wI

Technology Note: Plotting functions in this way can be tedious, just as it was
with rectangular functions. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar functions; in the menu, set the
plottingmode to something like polar or POL, depending on one’s calculator. As
with plotting parametric functions, the viewing “window” no longer determines
the x-values that are plotted, so additional information needs to be provided.
Often with the “window” settings are the settings for the beginning and ending
θ values (often called θmin and θmax ) as well as the θ step — that is, how far
apart the θ values are spaced. The smaller the θ step value, the more accurate
the graph (which also increases plotting time). Using technology, we graphed
the polar function r = 1 + cos(θ) from Example 9.4.11 in Figure 9.4.13.

O 1 2

Figure 9.4.13 Using technology to
graph a polar function

Example 9.4.14 Sketching Polar Functions.

Sketch the polar function r = cos(2θ) on [0, 2π] by plotting points.
Solution. We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 9.4.15. These points are then plotted in
Figure 9.4.16(a). This particular graph “moves” around quite a bit and
one can easily forget which points should be connected to each other.
To help us with this, we numbered each point in the table and on the
graph.

Pt. θ cos(2θ)
1 0 1

2 π/6 0.5

3 π/4 0

4 π/3 −0.5

5 π/2 −1

6 2π/3 −0.5

7 3π/4 0

8 5π/6 0.5

9 π 1

10 7π/6 0.5

11 5π/4 0

12 4π/3 −0.5

13 3π/2 −1

14 5π/3 −0.5

15 7π/4 0

16 11π/6 0.5

17 2π 1

Figure 9.4.15 Table of points for plot-
ting a polar curve in Example 9.4.14

Using more points (and the aid of technology) a smoother plot can be
made as shown in Figure 9.4.16(b). This plot is an example of a rose
curve.

https://www.youtube.com/watch?v=1omaozpN7wI
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1
2

3

4

5

6

7

8
9

10
11

12

13

14

15 16 17

(a)

O 1

(b)

Figure 9.4.16 Polar plots from Example 9.4.14

Video solution

youtu.be/watch?v=DSmu6HQXiS4 It is sometimes desirable to refer to a graph via a polar equation, and other
times by a rectangular equation. Therefore it is necessary to be able to convert
between polar and rectangular functions, which we practice in the following
example. We will make frequent use of the identities found in Key Idea 9.4.6.

Example 9.4.17 Converting between rectangular and polar equations.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

1. r =
2

sin(θ)− cos(θ)

2. r = 2 cos(θ)

Solution.

1. Replace y with r sin(θ) and replace x with r cos(θ), giving:

y = x2

r sin(θ) = r2 cos2(θ)
sin(θ)
cos2(θ)

= r

We have found that r = sin(θ)/ cos2(θ) = tan(θ) sec(θ). The
domain of this polar function is (−π/2, π/2); plot a few points to
see how the familiar parabola is traced out by the polar equation.

2. We again replace x and y using the standard identities and work
to solve for r:

xy = 1

r cos(θ) · r sin(θ) = 1

r2 =
1

cos(θ) sin(θ)

r =
1√

cos(θ) sin(θ)

This function is valid only when the product of cos(θ) sin(θ) is pos-
itive. This occurs in the first and third quadrants, meaning the do-
main of this polar function is (0, π/2)∪(π, 3π/2). We can rewrite

https://www.youtube.com/watch?v=DSmu6HQXiS4
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the original rectangular equation xy = 1 as y = 1/x. This is
graphed in Figure 9.4.18; note how it only exists in the first and
third quadrants.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 9.4.18 Graphing xy = 1 from
Example 9.4.17

3. There is no set way to convert from polar to rectangular; in gen-
eral, we look to form the products r cos(θ) and r sin(θ), and then
replace these with x and y, respectively. We start in this problem
by multiplying both sides by sin(θ)− cos(θ):

r =
2

sin(θ)− cos(θ)
r(sin(θ)− cos(θ)) = 2

r sin(θ)− r cos(θ) = 2. Now replace with y and x:
y − x = 2

y = x+ 2.

The original polar equation, r = 2/(sin(θ)−cos(θ)) does not eas-
ily reveal that its graph is simply a line. However, our conversion
shows that it is. The upcoming gallery of polar curves gives the
general equations of lines in polar form.

4. By multiplying both sides by r, we obtain both an r2 term and an
r cos(θ) term, which we replace with x2 + y2 and x, respectively.

r = 2 cos(θ)

r2 = 2r cos(θ)

x2 + y2 = 2x.

We recognize this as a circle; by completing the squarewe can find
its radius and center.

x2 − 2x+ y2 = 0

(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming
gallery of polar curves gives the equations of some circles in po-
lar form; circles with arbitrary centers have a complicated polar
equation that we do not consider here.

Video solution

youtu.be/watch?v=kWnHXtXTzSw

Some curves have very simple polar equations but rather complicated rec-
tangular ones. For instance, the equation r = 1 + cos(θ) describes a cardioid
(a shape important the sensitivity of microphones, among other things; one is
graphed in the gallery in the Limaçon section). It’s rectangular form is not nearly
as simple; it is the implicit equation x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0.
The conversion is not “hard,” but takes several steps, and is left as a problem in
the Exercise section.

Gallery of Polar Curves
There are a number of basic and “classic” polar curves, famous for their

beauty and/or applicability to the sciences. This section endswith a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to investigate with technology other types of polar func-
tions.

https://www.youtube.com/watch?v=kWnHXtXTzSw


506 CHAPTER 9. CURVES IN THE PLANE

α

(a) Through the origin:
θ = α

a
{

(b) Horizontal line: r =
a csc(θ)

︷︸︸︷a

(c) Vertical line: r =
a sec(θ)

slo
pe
=
m

}
b

(d) Not through origin:

r =
b

sin(θ)−m cos(θ)

Figure 9.4.19 Lines in polar coordinates

︷ ︸︸ ︷a

(a) Centered on x-axis:
r = a cos(θ)

a



(b) Centered on y-axis:
r = a sin(θ)

︷ ︸︸ ︷a

(c) Centered on origin:
r = a

(d) Archimedean spiral:
r = θ

Figure 9.4.20 Circles and Spirals

(a) With inner loop:
a

b
<

1
(b) Cardioid:

a

b
= 1 (c) Dimpled: 1 <

a

b
< 2 (d) Convex:

a

b
> 2

Figure 9.4.21 Limaçons
Symmetric about x-axis: r = a± b cos(θ)
Symmetric about y-axis: r = a± b sin(θ); a, b > 0

(a) r = a cos(2θ) (b) r = a sin(2θ) (c) r = a cos(3θ) (d) r = a sin(3θ)

Figure 9.4.22 Rose curves
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Symmetric about x-axis: r = a cos(nθ)
Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.

(a) Rose curve: r =
a sin(θ/5)

(b) Rose curve: r =
a sin(2θ/5)

(c) Lemniscate: r2 =
a2 cos(2θ)

(d) Eight Curve: r2 =
a2 sec4(θ) cos(2θ)

Figure 9.4.23 Special Curves
Earlier we discussed how each point in the plane does not have a unique

representation in polar form. This can be a “good” thing, as it allows for the
beautiful and interesting curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 9.4.24 Finding points of intersection with polar curves.

Determine where the graphs of the polar equations r = 1 + 3 cos(θ)
and r = cos(θ) intersect.
Solution. As technology is generally readily available, it is usually a good
idea to start with a graph. We have graphed the two functions in Fig-
ure 9.4.25(a); to better discern the intersection points, Figure 9.4.25(b)
zooms in around the origin.
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Figure 9.4.25 Graphs to help determine the points of intersection of the
polar functions given in Example 9.4.24
We start by setting the two functions equal to each other and solving for
θ:

1 + 3 cos(θ) = cos(θ)
2 cos(θ) = −1

cos(θ) = −1

2
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θ =
2π

3
,
4π

3
.

(There are, of course, infinite solutions to the equation cos(θ) = −1/2;
as the limaçon is traced out once on [0, 2π], we restrict our solutions to
this interval.)
We need to analyze this solution. When θ = 2π/3 we obtain the point
of intersection that lies in the 4th quadrant. When θ = 4π/3, we get
the point of intersection that lies in the second quadrant. There is more
to say about this second intersection point, however. The circle defined
by r = cos(θ) is traced out once on [0, π], meaning that this point of
intersection occurs while tracing out the circle a second time. It seems
strange to pass by the point once and then recognize it as a point of
intersection only when arriving there a “second time.” The first time the
circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos(π/3), π/3) and (cos(4π/3), 4π/3).
To summarize what we have done so far, we have found two points of
intersection: when θ = 2π/3 and when θ = 4π/3. When referencing
the circle r = cos(θ), the latter point is better referenced as when θ =
π/3.
There is yet another point of intersection: the pole (or, the origin). We
did not recognize this intersection point using our work above as each
graph arrives at the pole at a different θ value.
A graph intersects the pole when r = 0. Considering the circle r =
cos(θ), r = 0 when θ = π/2 (and odd multiples thereof, as the circle is
repeatedly traced). The limaçon intersects the pole when 1+3 cos(θ) =
0; this occurs when cos(θ) = −1/3, or for θ = cos−1(−1/3). This is a
nonstandard angle, approximately θ = 1.9106 = 109.47◦. The limaçon
intersects the pole twice in [0, 2π]; the other angle at which the limaçon
is at the pole is the reflection of the first angle across the x-axis. That is,
θ = 4.3726 = 250.53◦.

Video solution

youtu.be/watch?v=mI8vfQxub9g

If all one is concerned with is the (x, y) coordinates at which the graphs in-
tersect, much of the abovework is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3 can
give us the needed rectangular coordinates. However, in the next section we ap-
ply calculus concepts to polar functions. When computing the area of a region
bounded by polar curves, understanding the nuances of the points of intersec-
tion becomes important.

https://www.youtube.com/watch?v=mI8vfQxub9g
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9.4.4 Exercises

Terms and Concepts

1. In your own words, describe how to plot the polar point P (r, θ).

2. True or False? When plotting a point with polar coordinate P (r, θ), r must be positive. (□ True □ False)

3. True or False? Every point in the Cartesian plane can be represented by a polar coordinate. (□ True □ False)
4. True or False? Every point in the Cartesian plane can be represented uniquely by a polar coordinate. (□ True

□ False)

Problems

5. Plot the points with the given polar coordinates.

(a) A = P (2, 0)

(b) B = P (1, π)

(c) C = P (−2, π/2)

(d) D = P (1, π/4)

6. Plot the points with the given polar coordinates.

(a) A = P (2, 3π)

(b) B = P (1,−π)

(c) C = P (1, 2)

(d) D = P (1/2, 5π/6)

7. For each of the given points give two sets of polar coordinates that identify it, where 0 ≤ θ ≤ 2π.

O 1 2 3

A

B

C

D

8. For each of the given points give two sets of polar coordinates that identify it, where−π < θ ≤ π.
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O 1 2 3

A

B

C

D

9. Convert each of the following polar coordinates to rectangular, and each of the following rectangular coordinates
to polar.

a. A = P (2, π/4)

(x, y) =

b. B = P (2,−π/4)

(x, y) =

c. C = (2,−1)

P (r, θ) = P

d. D = (−2, 1)

P (r, θ) = P

10. Convert each of the following polar coordinates to rectangular, and each of the followingrectangular coordinates
to polar.

a. A = P (3, π)

(x, y) =

b. B = P (1, 2π/3)

(x, y) =

c. C = (0, 4)

P (r, θ) = P

d. D = (1,−
√
3)

P (r, θ) = P

Exercise Group. In the following exercises, graph the polar function on the given interval.
11. r = 2,0 ≤ θ ≤ π/2 12. θ = π/6,−1 ≤ r ≤ 2

13. r = 1− cos(θ),[0, 2π] 14. r = 2 + sin(θ),[0, 2π]
15. r = 2− sin(θ),[0, 2π] 16. r = 1− 2 sin(θ),[0, 2π]
17. r = 1 + 2 sin(θ),[0, 2π] 18. r = cos(2θ),[0, 2π]
19. r = sin(3θ),[0, π] 20. r = cos(θ/3),[0, 3π]
21. r = cos(2θ/3),[0, 6π] 22. r = θ/2,[0, 4π]
23. r = 3 sin(θ),[0, π] 24. r = 2 cos(θ),[0, π/2]
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25. r = cos(θ) sin(θ),[0, 2π] 26. r = θ2 − (π/2)2,[−π, π]

27. r =
3

5 sin(θ)− cos(θ)
,[0, 2π] 28. r =

−2

3 cos(θ)− 2 sin(θ)
,[0, 2π]

29. r = 3 sec(θ),(−π/2, π/2) 30. r = 3 csc(θ),(0, π)

Exercise Group. In the following exercises, convert the polar equation to a rectangular equation.
31. Convert the polar equation to a rectangular

equation.
r = 6 cos(θ)

32. Convert the polar equation to a rectangular
equation.

r = −4 sin(θ)
33. Convert the polar equation to a rectangular

equation.
r = cos(θ) + sin(θ)

34. Convert the polar equation to a rectangular
equation.

r =
7

5 sin(θ)− 2 cos(θ)
35. Convert the polar equation to a rectangular

equation.
r =

3

cos(θ)

36. Convert the polar equation to a rectangular
equation.

r =
4

sin(θ)
37. r = tan(θ) 38. r = cot θ
39. Convert the polar equation to a rectangular

equation.
r = 2

40. Convert the polar equation to a rectangular
equation.

θ = π/6

Exercise Group. In the following exercises, convert the rectangular equation to a polar equation.
41. Convert the rectangular equation to a polar

equation. Type ‘theta’ for θ.
y = x

42. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

y = 4x+ 7

43. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x = 5

44. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

y = 5

45. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x = y2

46. x2y = 1

47. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x2 + y2 = 7

48. (x+ 1)2 + y2 = 1

Exercise Group. In the following exercises, find the points of intersection of the polar graphs.
49. Find the points where r = sin(2θ) intersects

r = cos(θ) on [0, π], expressed in polar
coordinates with notation P (r, θ).

50. r = cos(2θ) and r = cos(θ) on [0, π]

51. Find the points where r = 2 cos(θ) intersects
r = 2 sin(θ) on [0, π], expressed in polar
coordinates with notation P (r, θ).

52. r = sin(θ) and r =
√
3 + 3 sin(θ) on [0, 2π]

53. r = sin(3θ) and r = cos(3θ) on [0, π] 54. Find the points where r = 3 cos(θ) intersects
r = 1 + cos(θ) on [−π, π], expressed in polar
coordinates with notation P (r, θ).

55. r = 1 and r = 2 sin(2θ) on [0, 2π] 56. r = 1− cos(θ) and r = 1 + sin(θ) on [0, 2π]

57. Pick a integer value for n, where n ̸= 2, 3, and use technology to plot r = sin
(m
n
θ
)
for three different integer

values ofm. Sketch these and determine a minimal interval on which the entire graph is shown.
58. Create your own polar function, r = f(θ) and sketch it. Describe why the graph looks as it does.
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9.5 Calculus and Polar Functions

youtu.be/watch?v=rj1KoMXvhKw

Figure 9.5.1 Video introduction to
Section 9.5

The previous section defined polar coordinates, leading to polar functions.
We investigated plotting these functions and solving a fundamental question
about their graphs, namely, where do two polar graphs intersect?

We now turn our attention to answering other questions, whose solutions
require the use of calculus. A basis for much of what is done in this section is
the ability to turn a polar function r = f(θ) into a set of parametric equations.
Using the identities x = r cos(θ) and y = r sin(θ), we can create the para-
metric equations x = f(θ) cos(θ), y = f(θ) sin(θ) and apply the concepts of
Section 9.3.

9.5.1 Polar Functions and dy/dx
We are interested in the lines tangent to a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equations. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concernedwith r ′ = f ′(θ); that describes how fast r changeswith
respect to θ. Instead, we will use x = f(θ) cos(θ), y = f(θ) sin(θ) to compute
dy
dx .

Using Key Idea 9.3.2 we have

dy

dx
=

dy

dθ

/dx

dθ
.

Each of the two derivatives on the right hand side of the equality requires
the use of the Product Rule. We state the important result as a Key Idea.

Key Idea 9.5.2 Finding dy
dx with Polar Functions.

Let r = f(θ) be a polar function. With x = f(θ) cos(θ) and y =
f(θ) sin(θ),

dy

dx
=

f ′(θ) sin(θ) + f(θ) cos(θ)
f ′(θ) cos(θ)− f(θ) sin(θ)

.

Example 9.5.3 Finding dy
dx with polar functions.

Consider the limaçon r = 1 + 2 sin(θ) on [0, 2π].

1. Find the equations of the tangent and normal lines to the graph
at θ = π/4.

2. Find where the graph has vertical and horizontal tangent lines.

Solution.

1. We start by computing dy
dx . With f

′(θ) = 2 cos(θ), we have

dy

dx
=

2 cos(θ) sin(θ) + cos(θ)(1 + 2 sin(θ))
2 cos2(θ)− sin(θ)(1 + 2 sin(θ))

=
cos(θ)(4 sin(θ) + 1)

2(cos2(θ)− sin2(θ))− sin(θ)
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simpli-

fication). In rectangular coordinates, the point on the graph at

https://www.youtube.com/watch?v=rj1KoMXvhKw
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θ = π/4 is (1+
√
2/2, 1+

√
2/2). Thus the rectangular equation

of the line tangent to the limaçon at θ = π/4 is

y = (−2
√
2−1)

(
x− (1+

√
2/2)

)
+1+

√
2/2 ≈ −3.83x+8.24.

The limaçon and the tangent line are graphed in Figure 9.5.4. The
normal line has the opposite-reciprocal slope as the tangent line,
so its equation is

y ≈ 1

3.83
x+ 1.26.

−2 −1 1 2

1

2

3

x

y

0

π/2

Figure 9.5.4 The limaçon in Exam-
ple 9.5.3 with its tangent line at θ =
π/4 and points of vertical and hori-
zontal tangency

2. To find the horizontal lines of tangency, we find where dy
dx = 0;

thus we find where the numerator of our equation for dy
dx is 0.

cos(θ)(4 sin(θ) + 1) = 0 ⇒ cos(θ) = 0 or 4 sin(θ) + 1 = 0.

On [0, 2π], cos(θ) = 0 when θ = π/2, 3π/2. Setting 4 sin(θ) +
1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦. We want
the results in [0, 2π]; we also recognize there are two solutions,
one in the third quadrant and one in the fourth. Using reference
angles, we have our two solutions as θ = 3.39 and 6.03 radians.
The four points we obtained where the limaçon has a horizontal
tangent line are given in Figure 9.5.4 with black-filled dots. To find
the vertical lines of tangency, we set the denominator of dy

dx = 0.

2(cos2(θ)− sin2(θ))− sin(θ) = 0.

Convert the cos2(θ) term to 1− sin2(θ):

2(1− sin2(θ)− sin2(θ))− sin(θ) = 0

4 sin2(θ) + sin(θ)− 2 = 0.

Recognize this as a quadratic in the variable sin(θ). Using the qua-
dratic formula, we have

sin(θ) =
−1±

√
33

8
.

We solve sin(θ) = −1+
√
33

8 and sin(θ) = −1−
√
33

8 :

sin(θ) =
−1 +

√
33

8
sin(θ) =

−1−
√
33

8

θ = sin−1

(
−1 +

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ = 0.6349 θ = −1.0030

In each of the solutions above, we only get one of the possible
two solutions as sin−1(x) only returns solutions in [−π/2, π/2],
the 4th and 1st quadrants. Again using reference angles, we have:

sin θ =
−1 +

√
33

8
⇒ θ = 0.6349, 2.5067 radians

and

sin(θ) =
−1−

√
33

8
⇒ θ = 4.1446, 5.2802 radians.

These points are also shown in Figure 9.5.4 with white-filled dots.

Video solution

youtu.be/watch?v=QLsLabLb6I4

https://www.youtube.com/watch?v=QLsLabLb6I4
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When the graph of the polar function r = f(θ) intersects the pole, it means
that f(α) = 0 for some angle α. Thus the formula for dy

dx in such instances is
very simple, reducing simply to

dy

dx
= tanα.

This equation makes an interesting point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Exam-
ple 9.4.9) shows us that the line through the pole with slope tanα has polar
equation θ = α. Thus when a polar graph touches the pole at θ = α, the
equation of the tangent line at the pole is θ = α.

Example 9.5.5 Finding tangent lines at the pole.

Let r = 1 + 2 sin(θ), a limaçon. Find the equations of the lines tangent
to the graph at the pole.
Solution. We need to know when r = 0.

1 + 2 sin(θ) = 0

sin(θ) = −1/2

θ =
7π

6
,
11π

6
.

Thus the equations of the tangent lines, in polar, are θ = 7π/6 and
θ = 11π/6. In rectangular form, the tangent lines are y = tan(7π/6)x
and y = tan(11π/6)x. The full limaçon can be seen in Figure 9.5.4; we
zoom in on the tangent lines in Figure 9.5.6.

−1 −0.5 0.5 1

−0.5

0.5

1

x

y

0

π/2

Figure 9.5.6 Graphing the tangent
lines at the pole in Example 9.5.5

Video solution

youtu.be/watch?v=1bAf6kE9F1Y

9.5.2 Area
When using rectangular coordinates, the equations x = h and y = k defined
vertical and horizontal lines, respectively, and combinations of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equations θ = α and r = c form lines
through the origin and circles centered at the origin, respectively, and combi-
nations of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar functions by first approximating
with sectors of circles.

Consider Figure 9.5.7(a) where a region defined by r = f(θ) on [α, β] is
given. (Note how the “sides” of the region are the lines θ = α and θ = β,
whereas in rectangular coordinates the “sides” of regionswere often the vertical
lines x = a and x = b.)

Recall that the area of a sector
of a circlewith radius r subtended
by an angle θ is A = 1

2θr
2.

r

θ

Partition the interval [α, β] into n equally spaced subintervals as α = θ0 <
θ1 < · · · < θn = β. The length of each subinterval is ∆θ = (β − α)/n,
representing a small change in angle. The area of the region defined by the ith
subinterval [θi−1, θi] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi−1, θi]. The area of this sector is 1

2f(ci)
2∆θ. This is

shown in Figure 9.5.7(b), where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ≈
n∑

i=1

1

2
f(ci)

2∆θ.

https://www.youtube.com/watch?v=1bAf6kE9F1Y
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This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the
exact area of the region in the form of a definite integral.
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(b)

Figure 9.5.7 Computing the area of a polar region

youtu.be/watch?v=dYEMKbxRxpY

Figure 9.5.8 Video presentation of
Theorem 9.5.9

Theorem 9.5.9 Area of a Polar Region.

Let f be continuous and non-negative on [α, β], where 0 ≤ β −α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1

2

∫ β

α

f(θ)2 dθ =
1

2

∫ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 9.5.10 Area of a polar region.

Find the area of the circle defined by r = cos(θ). (Recall this circle has
radius 1/2.)
Solution. This is a direct application of Theorem 9.5.9. The circle is
traced out on [0, π], leading to the integral

Area =
1

2

∫ π

0

cos2(θ) dθ

=
1

2

∫ π

0

1 + cos(2θ)
2

dθ

=
1

4

(
θ +

1

2
sin(2θ)

)∣∣∣∣∣
π

0

=
1

4
π.

Of course, we already knew the area of a circle with radius 1/2. We did
this example to demonstrate that the area formula is correct.

Video solution

youtu.be/watch?v=T_z8FNS3Whs

Example 9.5.10 requires the use

of the integral
∫
cos2(θ) dθ. This

is handledwell by using the power
reducing formula as found in Sub-
section B.3.2 of the Quick Refer-
ence Appendix. Due to the na-
ture of the area formula, integrat-
ing cos2(θ) and sin2(θ) is required
often. We offer here these in-
definite integrals as a time-saving
measure.∫

cos2 θ dθ =

1

2
θ +

1

4
sin(2θ) + C∫

sin2 θ dθ =

1

2
θ − 1

4
sin(2θ) + C

https://www.youtube.com/watch?v=dYEMKbxRxpY
https://www.youtube.com/watch?v=T_z8FNS3Whs
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Example 9.5.11 Area of a polar region.

Find the area of the cardioid r = 1 + cos(θ) bound between θ = π/6
and θ = π/3, as shown in Figure 9.5.12.

−0.5 0.5 1 1.5 2

1

θ =
π/
6

θ
=
π
/3

x

y

0

π/2

Figure 9.5.12 Finding the area of the
shaded region of a cardioid in Exam-
ple 9.5.11

Solution. This is again a direct application of Theorem 9.5.9.

Area =
1

2

∫ π/3

π/6

(1 + cos(θ))2 dθ

=
1

2

∫ π/3

π/6

(1 + 2 cos(θ) + cos2(θ)) dθ

=
1

2

(
θ + 2 sin(θ) +

1

2
θ +

1

4
sin(2θ)

) ∣∣∣∣∣
π/3

π/6

=
1

8

(
π + 4

√
3− 4

)
≈ 0.7587.

Video solution

youtu.be/watch?v=yZpBCQnB7r8

Area Between Curves. Our study of area in the context of rectangular func-
tions led naturally to finding area bounded between curves. We consider the
same in the context of polar functions.

Consider the shaded region shown in Figure 9.5.13. We can find the area of
this region by computing the area bounded by r2 = f2(θ) and subtracting the
area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1

2

∫ β

α

r 2
2 dθ − 1

2

∫ β

α

r 2
1 dθ =

1

2

∫ β

α

(
r 2
2 − r 2

1

)
dθ.

0.2 0.4 0.6 0.8 1 1.2
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Figure 9.5.13 Illustrating area bound
between two polar curves

Key Idea 9.5.14 Area Between Polar Curves.

The areaA of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where f1(θ) ≤ f2(θ) on [α, β], is

A =
1

2

∫ β

α

(
r 2
2 − r 2

1

)
dθ.

Example 9.5.15 Area between polar curves.

Find the area bounded between the curves r = 1 + cos(θ) and r =
3 cos(θ), as shown in Figure 9.5.16.

1 2 3

−1

1

x

y

0

π/2

Figure 9.5.16 Finding the area be-
tween polar curves in Example 9.5.15

Solution. Weneed to find the points of intersection between these two
functions. Setting them equal to each other, we find:

1 + cos(θ) = 3 cos(θ)
cos(θ) = 1/2

θ = ±π/3

Thus we integrate 1
2

(
(3 cos(θ))2 − (1 + cos(θ))2

)
on [−π/3, π/3].

Area =
1

2

∫ π/3

−π/3

(
(3 cos(θ))2 − (1 + cos(θ))2

)
dθ

=
1

2

∫ π/3

−π/3

(
8 cos2(θ)− 2 cos(θ)− 1

)
dθ

https://www.youtube.com/watch?v=yZpBCQnB7r8
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=
1

2

(
2 sin(2θ)− 2 sin(θ) + 3θ

)∣∣∣∣∣
π/3

−π/3

= π.

Amazingly enough, the area between these curves has a “nice” value.

Video solution

youtu.be/watch?v=CM7XsZRRqSIExample 9.5.17 Area defined by polar curves.

Find the area bounded between the polar curves r = 1 and r =
2 cos(2θ), as shown in Figure 9.5.18.
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Figure 9.5.18 The region bounded by
the functions in Example 9.5.17

Solution. We need to find the point of intersection between the two
curves. Setting the two functions equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1

2
⇒ 2θ = π/3 ⇒ θ = π/6.
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Figure 9.5.19 Breaking the region
bounded by the functions in Exam-
ple 9.5.17 into its component parts

In Figure 9.5.19, we zoom in on the region and note that it is not re-
ally bounded between two polar curves, but rather by two polar curves,
along with θ = 0. The dashed line breaks the region into its component
parts. Below the dashed line, the region is defined by r = 1, θ = 0
and θ = π/6. (Note: the dashed line lies on the line θ = π/6.) Above
the dashed line the region is bounded by r = 2 cos(2θ) and θ = π/6.
Since we have two separate regions, we find the area using two separate
integrals.
Call the area below the dashed line A1 and the area above the dashed
line A2. They are determined by the following integrals:

A1 =
1

2

∫ π/6

0

(1)2 dθ A2 =
1

2

∫ π/4

π/6

(
2 cos(2θ)

)2
dθ.

(The upper bound of the integral computing A2 is π/4 as r = 2 cos(2θ)
is at the pole when θ = π/4.)
We omit the integration details and let the reader verify thatA1 = π/12
and A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8.

Video solution

youtu.be/watch?v=5MHcrQVTjjU

9.5.3 Arc Length
As we have already considered the arc length of curves defined by rectangular
and parametric equations, we now consider it in the context of polar equations.
Recall that the arc length L of the graph defined by the parametric equations
x = f(t), y = g(t) on [a, b] is

L =

∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt. (9.5.1)

Now consider the polar function r = f(θ). We again use the identities x =
f(θ) cos(θ) and y = f(θ) sin(θ) to create parametric equations based on the
polar function. We compute x′(θ) and y′(θ) as done before when computing
dy
dx , then apply Equation (9.5.1).

The expression x′(θ)2 + y′(θ)2 can be simplified a great deal; we leave this
as an exercise and state that

x′(θ)2 + y′(θ)2 = f ′(θ)2 + f(θ)2.

https://www.youtube.com/watch?v=CM7XsZRRqSI
https://www.youtube.com/watch?v=5MHcrQVTjjU
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This leads us to the arc length formula.

Theorem 9.5.20 Arc Length of Polar Curves.

Let r = f(θ) be a polar function with f ′ continuous on [α, β], on which
the graph traces itself only once. The arc length L of the graph on [α, β]
is

L =

∫ β

α

√
f ′(θ)2 + f(θ)2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

Example 9.5.21 Arc length of a limaçon.

Find the arc length of the limaçon r = 1 + 2 sin(θ).
Solution. With r = 1+2 sin(θ), we have r ′ = 2 cos(θ). The limaçon is
traced out once on [0, 2π], giving us our bounds of integration. Applying
Theorem 9.5.20, we have

L =

∫ 2π

0

√
(2 cos θ)2 + (1 + 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

−2 −1 1 2

1

2

3

x

y

0

π/2

Figure 9.5.22 The limaçon in Exam-
ple 9.5.21 whose arc length is mea-
sured

The final integral cannot be solved in terms of elementary functions, so
we resorted to a numerical approximation. (Simpson’s Rule, with n = 4,
approximates the value with 13.0608. Using n = 22 gives the value
above, which is accurate to 4 places after the decimal.)

Video solution

youtu.be/watch?v=o-cetriP4Ms

9.5.4 Surface Area
The formula for arc length leads us to a formula for surface area. The following
Theorem is based on Theorem 9.3.21.

Theorem 9.5.23 Surface Area of a Solid of Revolution.

Consider the graph of the polar equation r = f(θ), where f ′ is continu-
ous on [α, β], on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the initial ray (θ = 0) is:

Surface Area = 2π

∫ β

α

f(θ) sin(θ)
√

f ′(θ)2 + f(θ)2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π

∫ β

α

f(θ) cos(θ)
√
f ′(θ)2 + f(θ)2 dθ.

https://www.youtube.com/watch?v=o-cetriP4Ms
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Example 9.5.24 Surface area determined by a polar curve.

Find the surface area formed by revolving one petal of the rose curve
r = cos(2θ) about its central axis, as shown in Figure 9.5.25.

−1 1

−1

1

x

y

0

π/2

(a) (b)

Figure 9.5.25 Finding the surface area of a rose-curve petal that is re-
volved around its central axis

Solution. We choose, as implied by the figure, to revolve the portion of
the curve that lies on [0, π/4] about the initial ray. Using Theorem 9.5.23
and the fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π

∫ π/4

0

cos(2θ) sin(θ)
√(

− 2 sin(2θ)
)2

+
(
cos(2θ)

)2
dθ

≈ 1.36707.

The integral is another that cannot be evaluated in terms of elemen-
tary functions. Simpson’s Rule, with n = 4, approximates the value at
1.36751.

This chapter has been about curves in the plane. While there is great math-
ematics to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathematics in 3D —
that is, in space. The next chapter begins our exploration into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathematical
objects.
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9.5.5 Exercises

Terms and Concepts

1. Given polar equation r = f(θ), how can one create parametric equations of the same curve?

2. With rectangular coordinates, it is natural to approximate area with ; with polar coordinates, it is
natural to approximate area with .

Problems

Exercise Group. Find dy
dx (in terms of θ). Then find the equations of the tangent and normal lines to the curve at the

indicated θ-value.
3. r = 1, θ = π/4 4. r = cos(θ), θ = π/4

5. r = 1 + sin(θ), θ = π/6 6. r = 1− 3 cos(θ), θ = 3π/4

7. r = θ, θ = π/2 8. r = cos(3θ), θ = π/6

9. r = sin(4θ), θ = π/3 10. r =
1

sin(θ)− cos(θ)
;θ = π

Exercise Group. Find the values of θ in the given interval where the graph of the polar function has horizontal and
vertical tangent lines.

11. r = 3; [0, 2π] 12. r = 2 sin(θ); [0, π]
13. r = cos(2θ); [0, 2π] 14. r = 1 + cos(θ); [0, 2π)

Exercise Group. Find the equation of the lines tangent to the graph at the pole.
15. r = sin(θ);[0, π] 16. r = sin(3θ);[0, π]

Exercise Group. Find the area of the described region.
17. Enclosed by the circle: r = 4 sin(θ) 18. Enclosed by the circle r = 5

19. Find the area enclosed by one petal of
r = sin(3θ).

20. Enclosed by one petal of the rose curve
r = cos(n θ), where n is a positive integer.

21. Find the area enclosed by the cardioid
r = 1− sin(θ).

22. Enclosed by the inner loop of the limaçon
r = 1 + 2 cos(θ)

23. Find the area enclosed by the outer loop of the
limaçon r = 1 + 2 cos(θ) (including area
enclosed by the inner loop).

24. Find the area enclosed between the inner and
outer loop of the limaçon r = 1 + 2 cos(θ).
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25. Find the area enclosed by r = 2 cos(θ),
r = 2 sin(θ), and the x-axis, as shown:

−1 1 2

−1

1

2

x

y

The area is .

26. Find the area enclosed by r = cos(θ) and
r = sin(2θ), as shown:

1

1

x

y

The area is .

27. Enclosed by r = cos(3θ) and r = sin(3θ), as
shown:

1

0.5

x

y

28. Enclosed by r = cos(θ) and r = 1− cos(θ), as
shown:

−2 −1.5 −1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

Exercise Group. In the following exercises, answer the questions involving arc length.
29. Use the arc length formula to compute the arc

length of the circle r = 2.
30. Use the arc length formula to compute the arc

length of the circle r = 4 sin(θ).
31. Use the arc length formula to compute the arc

length of r = cos θ + sin θ.
32. Use the arc length formula to compute the arc

length of the cardioid r = 1 + cos θ. (Hint:
apply the formula, simplify, then use a
Power-Reducing Formula to convert 1 + cos θ
into a square.)

33. Approximate the arc length of one petal of the
rose curve r = sin(3θ) with Simpson’s Rule and
n = 4.

34. Let x(θ) = f(θ) cos(θ) and y(θ) = f(θ) sin(θ).
Show, as suggested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

Exercise Group. In the following exercises, answer the questions involving surface area.
35. Use Theorem 9.5.23 to find the surface area of

the sphere formed by revolving the circle r = 2
about the initial ray.

36. Use Theorem 9.5.23 to find the surface area of
the sphere formed by revolving the circle
r = 2 cos(θ) about the initial ray.

37. Find the surface area of the solid formed by
revolving the cardioid r = 1 + cos(θ) about the
initial ray.

38. Find the surface area of the solid formed by
revolving the circle r = 2 cos(θ) about the line
θ = π/2.
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39. Find the surface area of the solid formed by
revolving the line r = 3 sec(θ),
−π/4 ≤ θ ≤ π/4, about the line θ = π/2.

40. Find the surface area of the solid formed by
revolving the line r = 3 sec θ, 0 ≤ θ ≤ π/4,
about the initial ray.
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II · Math 2560: Calculus II
6 · Techniques of Antidifferentiation
6.1 · Substitution
6.1 · Exercises

Terms and Concepts

6.1.1. the Chain Rule
6.1.2. True

Problems

6.1.3. 1
6

(
x4 + 3

)6
+ C 6.1.4. 1

7

(
x2 − 9x− 3

)7
+ C

6.1.5. 1
20

(
x2 − 7

)10
+ C 6.1.6.

(
2
9

) (
3x− 5x2 − 4

)9
+ C

6.1.7. 1
4 ln(|4x+ 5|) + C 6.1.8.

(
2
5

)√
5x+ 9 + C

6.1.9. 2
3 (x− 2)

√
x+ 1 + C 6.1.10. x(

3
2 )
(
2
7x

2 + 2
)
+ C

6.1.11. 2e
√
x + C 6.1.12.

(
1
3

)√
x6 + 8 + C

6.1.13. C − 1
2

(
1
x − 9

)2
6.1.14. ln

2(x)
2 + C

6.1.15. (sin(x))4

4 + C 6.1.16. C − (cos(x))5

5

6.1.17. C − sin(8−5x)
5 6.1.18. C − tan(5−4x)

4

6.1.19. 1
7 ln(|sec(7x) + tan(7x)|) + C 6.1.20. 1

9 (tan(x))
9
+ C

6.1.21. C − 1
9 cos

(
x9
)

6.1.22. tan(x)− x+ C

6.1.23. ln(|sin(x)|) + C 6.1.24. − ln(|csc(x) + cot(x)|) + C

6.1.25. 1
4e

4x−9 + C 6.1.26. 1
5e

x5

+ C

6.1.27. 1
2e

(x+1)2 + C 6.1.28. x− 3e−x + C

6.1.29. ln(ex + 8) + C 6.1.30. C −
(
1
2e

−2x + 1
4e

−4x
)

6.1.31. 22x

1.38629 + C 6.1.32. 27x

4.85203 + C

6.1.33. ln
2(x)
2 + C 6.1.34. (ln(x))5

5 + C

6.1.35.
(
5
2

)
(ln(x))2 + C 6.1.36. 1

6 ln
(∣∣ln(x6

)∣∣)+ C

6.1.37. x2

2 + 4x+ 7 ln(|x|) + C 6.1.38. x3

3 + x2

2 + x+ ln(|x|) + C

6.1.39. 1
3 (x+ 1)

3
+
(
3
2

)
(x+ 1)

2
+ 3(x+ 1)−

5 ln(|x+ 1|) + C
6.1.40. (x−3)2

2 + 10(x− 3) + 12 ln(|x− 3|) + C

6.1.41.
C −

((
7
2

)
(x− 6)

2
+ 85(x− 6) + 250 ln(|x− 6|)

) 6.1.42. 1
3 ln
(∣∣x3 − 6x2 − 9x

∣∣)+ C

6.1.43. 2.44949 tan−1
(

x
2.44949

)
+ C 6.1.44. 5 sin−1

(
x
5

)
+ C

6.1.45. 3 sin−1
(

x
3.16228

)
+ C 6.1.46.

(
8
7

)
sec−1

(
|x|
7

)
+ C
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6.1.47.
(
1
2

)
sec−1

(
|x|
8

)
+ C 6.1.48. 0.5 sin−1

(
x2
)
+ C

6.1.49. 0.301511 tan−1
(
x+9
11

)
+ C 6.1.50. 7 sin−1

(
x−7
4

)
+ C

6.1.51. 2 sin−1
(
x−5
9

)
+ C 6.1.52. tan−1

(
x−3
7

)
+ C

6.1.53. C − 1
6(x6−4) 6.1.54. 1

7

(
5x5 + 9x4 − 4

)7
+ C

6.1.55.
(
1
2

)√
6 + 2x2 + C 6.1.56. tan

(
x8 − 5

)
+ C

6.1.57. C − 2
3 (cos(x))

( 3
2 ) 6.1.58. 1

9 sin(9x+ 1) + C

6.1.59. ln(|x− 7|) + C 6.1.60.
(
1
4

)
ln(|8x+ 7|) + C

6.1.61. x2 + 2x+ ln
(∣∣x2 − 4x+ 1

∣∣)+ C 6.1.62. ln
(∣∣x2 − 2x− 7

∣∣)+ C

6.1.63. 2 ln
(∣∣x2 + 6x− 9

∣∣)+ C 6.1.64. −
(
1
2

)
x2 − x+ ln

(∣∣x2 + 3x− 1
∣∣)+ C

6.1.65. 1
16 tan

−1
(

x2

8

)
+ C 6.1.66. tan−1(9x) + C

6.1.67. sec−1(|9x|) + C 6.1.68. 1
3 sin

−1
(
3x
2

)
+ C

6.1.69.(
5
2

)
ln
(∣∣x2 − 10x+ 74

∣∣)+ ( 17) tan−1
(
x−5
7

)
+ C

6.1.70.
(
19
5

)
tan−1

(
x−3
5

)
+ ln

(∣∣x2 − 6x+ 34
∣∣)+ C

6.1.71. x+ 14.1421 tan−1
(

x−1
1.41421

)
+(

17
2

)
ln
(∣∣x2 − 2x+ 3

∣∣)+ C
6.1.72. x2

2 − 18 ln
(∣∣x2 + 36

∣∣)+ C

6.1.73. 1
2x

2 − 6x+
(
7
2

)
ln
(∣∣x2 + 6x+ 15

∣∣)+
4.49073 tan−1

(
x+3

2.44949

)
+ C

6.1.74. − tan−1(cos(x)) + C

6.1.75. tan−1(sin(x)) + C 6.1.76. C − ln(|csc(x) + cot(x)|)

6.1.77. 9
√
x2 + 16x+ 63 + C 6.1.78.

√
x2 + 12x+ 32 + C

6.1.79. ln
((

3
7

))
6.1.80. 361568

15

6.1.81. 0 6.1.82. 1
8

6.1.83. 1
2

(
e4 − e

)
6.1.84. π

2

6.1.85. π
2 6.1.86.

(
5
6

)
π

6.2 · Integration by Parts
6.2 · Exercises

Terms and Concepts

6.2.1. True
6.2.2. False
6.2.4. False

Problems

6.2.5. sin(x)− x cos(x) + C 6.2.6. −e−x(x+ 1) + C

6.2.7. −x2 cos(x) + 2x sin(x) + 2 cos(x) + C 6.2.8.
−x3 cos(x) + 3x2 sin(x) + 6x cos(x)− 6 sin(x) + C

6.2.9. 1
2e

x2

+ C 6.2.10. ex
(
x3 − 3x2 + 6x− 6

)
+ C
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6.2.11. − 1
2xe

−2x − e−2x

4 + C 6.2.12. 1
2e

x(sin(x)− cos(x)) + C

6.2.13. 1
5e

2x(sin(x) + 2 cos(x)) + C 6.2.14.
(

1
130

)
e7x(7 sin(9x)− 9 cos(9x)) + C

6.2.15.
(

1
16

)
e8x(sin(8x) + cos(8x)) + C 6.2.16. 0.5 sin2(x) + C

6.2.17.
√
1− x2 + x sin−1(x) + C 6.2.18. x tan−1(2x)− 0.25 ln

(
4x2 + 1

)
+ C

6.2.19. 0.5x2 tan−1(x)− x
2 + 0.5 tan−1(x) + C 6.2.20. −

√
1− x2 + x cos−1(x) + C

6.2.21. 0.5x2 ln(x)− x2

4 + C 6.2.22. 1
2x

2 ln(x)− x2

4 + x ln(x)− x+ C

6.2.23.
1
2x

2 ln(x− 3)− 1
4 (x− 3)

2 − 3x−
(
9
2

)
ln(x− 3) +C

6.2.24. 0.5x2 ln
(
x2
)
− x2

2 + C

6.2.25. 0.333333x3 ln(x)− x3

9 + C 6.2.26. 2x+ x ln2(x)− 2x ln(x) + C

6.2.27. 2(x− 8) + (x− 8) (ln(x− 8))
2 −

2(x− 8) ln(x− 8) + C

6.2.28. x tan(x) + ln(|cos(x)|) + C

6.2.29. ln(|sin(x)|)− x cot(x) + C 6.2.30.
(

2
5 (x− 2)

2
+
(
4
3

)
(x− 2)

)√
x− 2 + C

6.2.31. 1
3

(
x2 − 6

)( 3
2 ) + C

6.2.32. sec(x) + C

6.2.33. x sec(x)− ln(|sec(x) + tan(x)|) + C 6.2.34. −x csc(x)− ln(|csc(x) + cot(x)|) + C

6.2.35. x
2 (sin(ln(x)) + cos(ln(x))) + C 6.2.36. sin(ex)− ex cos(ex) + C

6.2.37. 2 sin(
√
x)− 2

√
x cos(

√
x) + C 6.2.38. x ln(

√
x)− x

2 + C

6.2.39. 2
√
xe

√
x − 2e

√
x + C 6.2.40. x2

2 + C

6.2.41. −1 6.2.42. −
(
2 1
e + e2

)
6.2.43. 0 6.2.44. 3π2

2 − 12

6.2.45. 1
2

6.2.46. 0.563436

6.2.47.
(
− 7

4

)
e−6 −

(
− 5

4

)
e−4 6.2.48. 0.5eπ + 0.5

6.2.49. 0.2
(
−e3π − e−3π

)
6.3 · Trigonometric Integrals
6.3 · Exercises

Terms and Concepts

6.3.1. False
6.3.2. False
6.3.3. False
6.3.4. False

Problems

6.3.5. −0.2 cos5(x) + C 6.3.6. 0.25 sin4(x) + C

6.3.7. 1
7 (cos(x))

7 − 1
5 (cos(x))

5
+ C 6.3.8. 1

8 (cos(x))
8 − 1

6 (cos(x))
6
+ C

6.3.9. 1
11 (sin(x))

11 − 2
9 (sin(x))

9
+ 1

7 (sin(x))
7
+ C 6.3.10. −0.111111 sin9(x) + 0.428571 sin7(x)−

0.6 sin5(x) + 0.333333 sin3(x) + C
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6.3.11. x
8 − 0.03125 sin(4x) + C 6.3.12. 0.5(−0.125 cos(8x)− 0.5 cos(2x)) + C

6.3.13. C −
((

1
4

)
cos(2x) +

(
1
8

)
cos(4x)

)
6.3.14.

(
1
14

)
sin(7x)−

(
1
22

)
sin(11x) + C

6.3.15. 1
12π sin(6πx)−

1
16π sin(8πx) + C 6.3.16. 0.5(sin(x) + 0.333333 sin(3x)) + C

6.3.17. 3
4π cos

(
2π
3 πx

)
+ 3

8π cos
(
4π
3 πx

)
+ C 6.3.18. tan

5(x)
5 + C

6.3.19. tan
5(x)
5 + tan3(x)

3 + C 6.3.20. 1
10 (tan(x))

10
+ 1

8 (tan(x))
8
+ C

6.3.21. 1
9 (tan(x))

9
+ C 6.3.22. 1

11 (sec(x))
11 − 1

9 (sec(x))
9
+ C

6.3.23. 1
6 (sec(x))

6 − 1
2 (sec(x))

4
+ 1

2 (sec(x))
2
+ C 6.3.24. tan

3(x)
3 − tan(x) + x+ C

6.3.25. 0.25 tan(x) sec3(x) +
0.375(sec(x) tan(x) + ln(|sec(x) + tan(x)|)) + C

6.3.26.
0.5(sec(x) tan(x)− ln(|sec(x) + tan(x)|)) + C

6.3.27. 0.25 tan(x) sec3(x)−
0.125(sec(x) tan(x) + ln(|sec(x) + tan(x)|)) + C

6.3.28. 1
5

6.3.29. 0

6.3.30. 0 6.3.31. 0
6.3.32. 2

3 6.3.33. 1
5

6.3.34. 8
15

6.4 · Trigonometric Substitution
6.4 · Exercises

Terms and Concepts

6.4.1. backward
6.4.2. 6 sin(θ) or 6 cos(θ)

6.4.3. (a). tan2(θ) + 1 = sec2(θ)
(b). 6 sec2(θ)

Problems

6.4.5. 1
2

(
x
√
x2 + 1 + ln

(√
x2 + 1 + x

))
+ C 6.4.6. x

2

√
x2 + 4 + 2 ln

(√
x2+4
2 + x

2

)
+ C

6.4.7. 1
2 sin

−1(x) + x
2

√
1− x2 + C 6.4.8. 9

2 sin
−1
(
x
3

)
+ x

2

√
9− x2 + C

6.4.9. 1
2x

√
x2 − 1− 1

2 ln
(∣∣x+

√
x2 − 1

∣∣)+ C 6.4.10. 1
2x

√
x2 − 16− 8 ln

(∣∣∣x4 +
√
x2−16
4

∣∣∣)+ C

6.4.11. x
2

√
36x2 + 1 + 1

12 ln
(
6x+

√
36x2 + 1

)
+ C 6.4.12. x

2

√
1− 36x2 + 1

12 sin
−1(6x) + C

6.4.13. x
2

√
49x2 − 1− 1

14 ln
(∣∣7x+

√
49x2 − 1

∣∣)+C 6.4.14. 8 ln
(

x
1.73205 +

√
x2

3 + 1

)
+ C

6.4.15. 9 sin−1
(

x
3.60555

)
+ C 6.4.16. 2 ln

(∣∣∣∣ x
2.64575 +

√
x2

7 − 1

∣∣∣∣)+ C

6.4.17.
√
x2 − 3− 1.73205 sec−1

(
x

1.73205

)
+ C 6.4.18. 1

2 tan
−1(x) + x

2(x2+1) + C

6.4.19.
√
x2 − 6 + C 6.4.20. 1

8 sin
−1(x) + x

8

√
1− x2

(
2x2 − 1

)
+ C
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6.4.21. C − 1√
x2+36

6.4.22.
7x
2

√
x2 − 6 + 21 ln

(∣∣∣∣ x
2.44949 +

√
x2

6 − 1

∣∣∣∣)+ C

6.4.23.
(

1
162

)
x−6

x2−12x+117 +
(

1
1458

)
tan−1

(
x−6
9

)
+ C 6.4.24. x√

1−x2
− sin−1(x) + C

6.4.25. C −
(√

5−x2

2x + 1
2 sin

−1
(

x
2.23607

)) 6.4.26.
x
2

√
x2 + 3−

(
3
2

)
ln
(

x
1.73205 +

√
x2

3 + 1

)
+ C

6.4.27. π
2 6.4.28.

(
7
2

)√
33− 8 ln

(∣∣( 7
4

)
+
(
1
4

)√
33
∣∣)

6.4.29.
(
5
2

)√
29 + 2 ln

((
5
2

)
+
(
1
2

)√
29
)

6.4.30. tan−1(7) +
(

7
50

)
6.4.31. 9 sin−1

((
2
3

))
+ 2

√
5 6.4.32. π

8

6.5 · Partial Fraction Decomposition
6.5 · Exercises

Terms and Concepts

6.5.1. rational
6.5.2. True

6.5.3. A
x + B

x−6 6.5.4. A
x−3 + B

x+3

6.5.5. A
x−

√
6
+ B

x+
√
6

6.5.6. A
x + Bx+C

x2+5

Problems

6.5.7. 5 ln(|x+ 3|) + 9 ln(|x− 2|) + C 6.5.8. 8 ln(|x|)− 8 ln(|x− 4|) + C

6.5.9.
(
3
4

)
ln(|x− 2|)−

(
3
4

)
ln(|x+ 2|) + C 6.5.10. ln(|x− 8|) + ln(|1− 4x|) + C

6.5.11. ln(|x+ 9|)− 3
x+9 + C 6.5.12. 7 ln(|x+ 7|)− 5

x+7 + C

6.5.13. 3 ln(|x|) + ln(|x+ 4|) + 4
x+4 + C 6.5.14.

C − (2 ln(|9− 3x|) + ln(|x+ 3|) + 5 ln(|x− 9|))
6.5.15.(
1
7

)
ln(|7x+ 1|)−

(
2
5

)
ln(|5x+ 3|) + ( 1

3 )
9x−9 + C

6.5.16. x− 2 ln(|x− 2|)− ln(|x+ 5|) + C

6.5.17.
1
2x

2 + 12x− 16 ln(|x− 4|) + 128 ln(|x− 8|) + C
6.5.18. 2x+ C

6.5.19.
(

1
18

)
ln(|x|)−

(
1
36

)
ln
(
x2 − 8x+ 18

)
+

0.157135 tan−1
(

x−4
1.41421

)
+ C

6.5.20.
x+4 ln

(
x2 + 8x+ 22

)
−15.1052 tan−1

(
x+4

2.44949

)
+C

6.5.21. ln
(∣∣3x2 + x− 4

∣∣)− 2 ln(|x− 9|) + C 6.5.22.
5 ln(|x+ 6|)+4 ln

(
x2 + 4x+ 5

)
−2 tan−1(x+ 2)+C

6.5.23.
(
129
58

)
ln(|x− 7|) +

(
45
116

)
ln
(
x2 + 9

)
+(

199
174

)
tan−1

(
x
3

)
+ C

6.5.24.
ln
(
x2 − 2x+ 5

)
− ln(|x+ 4|)− 2 tan−1

(
x−1
2

)
+ C

6.5.25. 4 ln(|x+ 9|)− 2 ln
(
x2 − 2x+ 4

)
+

2.88675 tan−1
(

x−1
1.73205

)
+ C

6.5.26. ln(|x+ 1|)−
(
3
2

)
ln
(
x2 − 8x+ 21

)
−

0.894427 tan−1
(

x−4
2.23607

)
+ C

6.5.27. ln
((

48828125
14155776

))
6.5.28. −4.35712

6.5.29. ln
((

5
7

))
+ tan−1(5)− tan−1(3) 6.5.30. 1

8
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6.6 · Hyperbolic Functions
6.6 · Exercises

Problems

6.6.11. 2 cosh(2x) 6.6.12. 2 cosh(x) sinh(x)

6.6.13. sech2
(
x2
)
· 2x 6.6.14. 1

sinh(x) cosh(x)

6.6.15. cosh(x) cosh(x) + sinh(x) sinh(x) 6.6.16. sinh(x) + x cosh(x)− sinh(x)

6.6.17. − 1

x2
√

1−(x2)2
· 2x 6.6.18. 3 1√

1+(3x)2

6.6.19. 1√
(2x2)2−1

· 2 · 2x 6.6.20. 1
1−(x+5)2

6.6.21. − 1
1−cos2(x) sin(x) 6.6.22. 1√

sec2(x)−1
sec(x) tan(x)

6.6.23. 1(x− 0) + 0 6.6.24. 0.75(x− 0.693147) + 1.25

6.6.25. 0.36(x− (−1.09861)) + (−0.8) 6.6.26. −0.576(x− 1.09861) + 0.36

6.6.27. 1(x− 0) + 0 6.6.28. 1(x− 1.41421) + 0.881374

6.6.29. 0.5 ln(cosh(2x)) + C 6.6.30. 0.333333 sinh(3x− 7) + C

6.6.31. 0.5 sinh2(x) + C 6.6.32. x sinh(x)− cosh(x) + C

6.6.33. x cosh(x)− sinh(x) + C 6.6.34. sinh−1 x+ C = ln
(
x+

√
x2 + 1

)
+ C

6.6.35. cosh−1 x/3 + C = ln
(
x+

√
x2 − 9

)
+ C 6.6.36. 0.5 ln(|x+ 1|)− 0.5 ln(|x− 1|) + C

6.6.37. cosh−1
(

x2

2

)
+ C 6.6.38. 0.666667 sinh−1

(
x1.5

)
+ C

6.6.39. −0.0625 tan−1
(
x
2

)
+ 0.03125 ln(|x− 2|)−

0.03125 ln(|x+ 2|) + C

6.6.40. ln(x)− ln(|x+ 1|) + C

6.6.41. tan−1(ex) + C 6.6.42. x sinh−1(x)−
√
x2 + 1 + C

6.6.43. x tanh−1(x) + 0.5 ln
(∣∣x2 − 1

∣∣)+ C 6.6.44. tan−1(sinh(x)) + C

6.6.45. 0 6.6.46. 1.5
6.6.47. 0.761594 6.6.48. 1.44364

6.7 · L’Hospital’s Rule
6.7 · Exercises

Terms and Concepts

6.7.2. False
6.7.3. False

Problems

6.7.9. 3 6.7.10. −1.66667

6.7.11. −1 6.7.12. −0.707107

6.7.13. 5 6.7.14. 0
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6.7.15. 0.666667 6.7.16. a cos(a·0)
b cos(b·0)

6.7.17. ∞ 6.7.18. 0.5
6.7.19. 0 6.7.20. 0
6.7.21. 0 6.7.23. ∞
6.7.24. ∞ 6.7.25. 0
6.7.26. 2 6.7.27. −2

6.7.28. 0 6.7.29. 0
6.7.30. 0 6.7.31. 0
6.7.32. 0 6.7.33. ∞
6.7.34. ∞ 6.7.35. ∞
6.7.36. 0 6.7.37. 0
6.7.38. e 6.7.39. 1
6.7.40. 1 6.7.41. 1
6.7.42. 1 6.7.43. 1
6.7.44. 0 6.7.45. 1
6.7.46. 1 6.7.47. 1
6.7.48. 1 6.7.49. 2
6.7.50. 1

2
6.7.51. −∞

6.7.52. 1 6.7.53. 0
6.7.54. 3

6.8 · Improper Integration
6.8 · Exercises

Terms and Concepts

6.8.4. p > 1

6.8.5. p > 1

6.8.6. p < 1

Problems

6.8.7. e5

2
6.8.8. 1

2

6.8.9. 1
3

6.8.10. π
3

6.8.11. 1
ln(2)

6.8.12. ∞

6.8.13. ∞ 6.8.14. ∞
6.8.15. 1 6.8.16. ∞
6.8.17. ∞ 6.8.18. ∞
6.8.19. ∞ 6.8.20. ∞
6.8.21. ∞ 6.8.22. 2 + 2

√
2

6.8.23. 1 6.8.24. 1
2

6.8.25. 0 6.8.26. π
2

6.8.27. −1
4 6.8.28. −1

9

6.8.29. ∞ 6.8.30. −1

6.8.31. 1 6.8.32. ∞
6.8.33. 1

2 6.8.34. 1
2
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6.8.35. (a). Limit Comparison Test
(b). diverges
(c). 1

x

6.8.36. (a). Limit Comparison Test
(b). converges
(c). 1

x1.5

6.8.37. (a). Limit Comparison Test
(b). diverges
(c). 1

x

6.8.38. (a). Direct Comparison Test
(b). converges
(c). xe−x

6.8.39. (a). Direct Comparison Test
(b). converges
(c). e−x

6.8.40. (a). Direct Comparison Test
(b). converges
(c). xe−x

6.8.41. (a). Direct Comparison Test
(b). converges
(c). 1

x2−1

6.8.42. (a). Direct Comparison Test
(b). diverges
(c). x

x2+1

6.8.43. (a). Direct Comparison Test
(b). converges
(c). 1

ex

6.8.44. (a). Limit Comparison Test
(b). converges
(c). 1

ex

7 · Applications of Integration
7.1 · Area Between Curves
7.1 · Exercises

Terms and Concepts

7.1.1. True
7.1.2. True

Problems

7.1.5. 22.436 7.1.6. 5.33333
7.1.7. 3.14159 7.1.8. 3.14159
7.1.9. 0.5 7.1.10. 2.82843
7.1.11. 0.721354 7.1.12. 4/3

7.1.13. 4.5 7.1.14. 1.33333
7.1.15. 0.429204 7.1.16. 8
7.1.17. 0.166667 7.1.18. 3.08333

7.1.19. All enclosed regions have the same area, with regions being the reflection of adjacent regions. One region is
formed on [π/4, 5π/4], with area 2

√
2.

7.1.20. 3.89711
7.1.21. 1 7.1.22. 1.66667
7.1.23. 4.5 7.1.24. 2.25
7.1.25. 0.514298 7.1.26. 4/3

7.1.27. 1 7.1.28. 5
7.1.29. 4 7.1.30. 10.5

7.1.31. 262800 ft2

7.1.32. 623333 ft2
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7.2 · Volume by Cross-Sectional Area; Disk and Washer Methods
7.2 · Exercises

Terms and Concepts

7.2.1. T
7.2.2. Answers will vary.

Problems

7.2.4. 48π
√
3/5 units3 7.2.5. 175π/3 units3

7.2.6. π2/4 units3 7.2.7. π/6 units3

7.2.8. 9π/2 units3 7.2.9. 35π/3 units3

7.2.10. π2 − 2π units3 7.2.11. 2π/15 units3

7.2.12.

(a) π/2

(b) 5π/6

(c) 4π/5

(d) 8π/15

7.2.13.

(a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

7.2.14.

(a) 4π/3

(b) 2π/3

(c) 4π/3

(d) π/3

7.2.15.

(a) 104π/15

(b) 64π/15

(c) 32π/5

7.2.16.

(a) π2/2

(b) π2/2− 4π sinh−1(1)

(c) π2/2 + 4π sinh−1(1)

7.2.17.

(a) 8π

(b) 8π

(c) 16π/3

(d) 8π/3

7.2.18. 250π/3 7.2.19. 250π/3
7.2.20. 80/3 7.2.21. 187.5

7.3 · The Shell Method
7.3 · Exercises

Terms and Concepts

7.3.1. T
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7.3.2. F
7.3.3. F
7.3.4. T

Problems

7.3.5. 9π/2 units3 7.3.6. 70π/3 units3

7.3.7. π2 − 2π units3 7.3.8. 2π/15 units3

7.3.9. 48π
√
3/5 units3 7.3.10. 350π/3 units3

7.3.11. π2/4 units3 7.3.12. π/6 units3

7.3.13.

(a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

7.3.14.

(a) 128π/3

(b) 128π/3

(c) 512π/15

(d) 256π/5

7.3.15.

(a) 4π/3

(b) π/3

(c) 4π/3

(d) 2π/3

7.3.16.

(a) 16π/3

(b) 8π/3

(c) 8π

7.3.17.

(a) 2π(
√
2− 1)

(b) 2π(1−
√
2 + sinh−1(1))

7.3.18.

(a) 16π/3

(b) 8π/3

(c) 8π

(d) 8π

7.4 · Arc Length and Surface Area
7.4 · Exercises

Problems

7.4.3.
√
2 7.4.4. 6

7.4.5. 10
3

7.4.6. 6

7.4.7. 157
3 7.4.8. 3

2

7.4.9. 12
5 7.4.10. 7.99533×107

400000

7.4.11. − ln(2−
√
3) ≈ 1.31696 7.4.12. sinh−1(1)

7.4.13.
∫ 1

0

√
1 + 4x2 dx 7.4.14.

∫ 1

0

√
1 + 100x18 dx
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7.4.15.
∫ e

1

√
1 + 1

x2 dx 7.4.16.
∫ 2

1

√
1 + 1

x4 dx

7.4.17.
∫ π/2

0

√
1 + sin2(x) dx 7.4.18.

∫ π/4

−π/4

√
1 + sec2(x) tan2(x) dx

7.4.19. 1.4790 7.4.20. 1.8377
7.4.21. 2.1300 7.4.22. 1.3254
7.4.23. 1.00013 7.4.24. 1.7625

7.4.25. 2π
∫ 1

0
2x

√
5 dx = 2π

√
5 7.4.26. 2π

∫ 1

0
x
√
5 dx = π

√
5

7.4.27. 2π
∫ 1

0
x
√
1 + 4x2 dx = π/6(5

√
5− 1) 7.4.28. 2π

∫ 1

0
x3

√
1 + 9x4 dx = π/27(10

√
10− 1)

7.4.29.
∫ 1

0

√
1 + 1

4x dx 7.4.30.
∫ 1

−1

√
1 + x2

1−x2 dx

7.4.31.
∫ 3

−3

√
1 + x2

81−9x2 dx 7.4.32. 2π
∫ 1

0

√
x
√
1 + 1/(4x) dx = π/6(5

√
5− 1)

7.4.33. 2π
∫ 1

0

√
1− x2

√
1 + x/(1− x2) dx = 4π

7.5 · Work
7.5 · Exercises

Terms and Concepts

7.5.1. In SI units, it is one joule, i.e., one newton–meter, or kg·ms2 m In Imperial Units, it is ft–lb.

7.5.2. The same.
7.5.3. Smaller.
7.5.4. force; distance

Problems

7.5.5.

(a) 500 ft–lb

(b) 100− 50
√
2 ≈ 29.29 ft

7.5.6.

(a) 2450 J

(b) 1568 J
7.5.7.

(a) 1
2 · d · l2 ft–lb

(b) 75 %

(c) ℓ(1−
√
2/2) ≈ 0.2929ℓ

7.5.8. 735 J
7.5.9.

(a) 756 ft–lb

(b) 60,000 ft–lb
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(c) Yes, for the cable accounts for about 1% of the total work.
7.5.10. 11,100 ft–lb
7.5.11. 575 ft–lb
7.5.12. 125 ft–lb
7.5.13. 0.05 J
7.5.14. 12.5 ft–lb
7.5.15. 5/3 ft–lb
7.5.16. 0.2625 = 21/80 J
7.5.17. f · d/2 J
7.5.18. 45 ft–lb
7.5.19. 5 ft–lb
7.5.20. 953, 284 J
7.5.21.

(a) 52,929.6 ft–lb

(b) 18,525.3 ft–lb

(c) When 3.83 ft of water have been pumped from the tank, leaving about 2.17 ft in the tank.
7.5.22. 192,767 ft–lb. Note that the tank is oriented horizontally. Let the origin be the center of one of the circular
ends of the tank. Since the radius is 3.75 ft, the fluid is being pumped to y = 4.75; thus the distance the gas travels
is h(y) = 4.75 − y. A differential element of water is a rectangle, with length 20 and width 2

√
3.752 − y2. Thus

the force required to move that slab of gas is F (y) = 40 · 45.93 ·
√
3.752 − y2dy. Total work is

∫ 3.75

−3.75
40 · 45.93 ·

(4.75− y)
√
3.752 − y2 dy. This can be evaluated without actual integration; split the integral into

∫ 3.75

−3.75
40 · 45.93 ·

(4.75)
√
3.752 − y2 dy +

∫ 3.75

−3.75
40 · 45.93 · (−y)

√
3.752 − y2 dy. The first integral can be evaluated as measuring

half the area of a circle; the latter integral can be shown to be 0 without much difficulty. (Use substitution and realize
the bounds are both 0.)
7.5.23. 212,135 ft–lb
7.5.24.

(a) approx. 577,000 J

(b) approx. 399,000 J

(c) approx 110,000 J (By volume, half of the water is between the base of the cone and a height of 3.9685 m. If
one rounds this to 4m, the work is approx 104,000 J.)

7.5.25. 187,214 ft–lb
7.5.26. 617,400 J
7.5.27. 4,917,150 J

7.6 · Fluid Forces
7.6 · Exercises

Terms and Concepts

7.6.1. Answers will vary.
7.6.2. Answers will vary.
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Problems

7.6.3. 499.2 lb 7.6.4. 249.6 lb
7.6.5. 6739.2 lb 7.6.6. 5241.6 lb
7.6.7. 3920.7 lb 7.6.8. 15682.8 lb
7.6.9. 2496 lb 7.6.10. 2496 lb
7.6.11. 602.59 lb 7.6.12. 291.2 lb

7.6.13.

(a) 2340 lb

(b) 5625 lb

7.6.14.

(a) 1064.96 lb

(b) 2560 lb
7.6.15.

(a) 1597.44 lb

(b) 3840 lb

7.6.16.

(a) 41.6 lb

(b) 100 lb
7.6.17.

(a) 56.42 lb

(b) 135.62 lb

7.6.18.

(a) 1123.2 lb

(b) 2700 lb

7.6.19. 5.1 ft
7.6.20. 4.1 ft

8 · Differential Equations
8.1 · Graphical and Numerical Solutions to Differential Equations
8.1 · Exercises

Terms and Concepts

8.1.1. An initial value problems is a differential equation that is pairedwith one ormore initial conditions. A differential
equation is simply the equation without the initial conditions.
8.1.2. Answers will vary.
8.1.3. Substitute the proposed function into the differential equation, and show the the statement is satisfied.
8.1.4. A particular solution is one specifica member of a family of solutions, and has no arbitrary constants. A general
solution is a family of solutions, includes all possible solutions to the differential equation, and typically includes one
or more arbitrary constants.
8.1.5. Many differential equations are impossible to solve analytically.
8.1.6. A smaller h value leads to a numerical solution that is closer to the true solution, but decreasing the h value
leads to more computational effort.

Problems

8.1.7. Answers will vary. 8.1.8. Answers will vary.
8.1.9. Answers will vary. 8.1.10. Answers will vary.

8.1.11. C = 2 8.1.12. C = 6
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8.1.13.

x

y

8.1.14.

x

y

8.1.15.

x

y

8.1.16.

x

y

8.1.17. b 8.1.18. c
8.1.19. d 8.1.20. a

8.1.21.

x

y

8.1.22.

x

y

8.1.23.

x

y

8.1.24.

x

y

8.1.25.

xi yi

0.00 1.0000

0.25 1.5000

0.50 2.3125

0.75 3.5938

1.00 5.5781

8.1.26.

xi yi

0.0 1.0000

0.1 1.0000

0.2 1.0037

0.3 1.0110

0.4 1.0219

0.5 1.0363
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8.1.27.

xi yi

0.0 2.0000

0.2 2.4000

0.4 2.9197

0.6 3.5816

0.8 4.4108

1.0 5.4364

8.1.28.

xi yi

0.0 0.0000

0.5 0.5000

1.0 1.8591

1.5 10.5824

2.0 88378.1190

8.1.29.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x) 1.0000 1.0204 1.0870 1.2195 1.4706 2.0000
h = 0.2 1.0000 1.0000 1.0400 1.1265 1.2788 1.5405
h = 0.1 1.0000 1.0100 1.0623 1.1687 1.3601 1.7129

8.1.30.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x) 0.5000 0.5412 0.6806 0.9747 1.5551 2.7183
h = 0.2 0.5000 0.5000 0.5816 0.7686 1.1250 1.7885
h = 0.1 0.5000 0.5201 0.6282 0.8622 1.3132 2.1788

8.2 · Separable Differential Equations
8.2 · Exercises

Problems

8.2.1. Separable.
1

y2 − y
dy = dx

8.2.2. Not separable.

8.2.3. Not separable. 8.2.4. Separable.
1

cos y − y
dy = (x2 + 1) dx

8.2.5.
{
y =

1 + Ce2x

1− Ce2x
, y = −1

} 8.2.6. y = 2 + Cex

8.2.7. y = Cx4 8.2.8. y2 − 4x2 = C

8.2.9. (y − 1)ey = −e−x − 1

3
e−3x + C 8.2.10. (y − 1)2 = ln(x2 + 1) + C

8.2.11.
{
arcsin 2y − arctan(x2 + 1) = C, y = ±1

2

}
8.2.12.

{
y =

1

C − arctanx
, y = 0

}
8.2.13. sin y + cos(x) = 2 8.2.14. −x3 + 3y − y3 = 2

8.2.15. 1
2y

2 − ln(1 + x2) = 8 8.2.16. y2 + 2xex − 2ex = 2

8.2.17.
1

2
y2 − y =

1

2

(
(x2 + 1) ln(x2 + 1)− (x2 + 1)

)
+

1

2

8.2.18. sin(y2)− (arcsinx)2 = − 1
2

8.2.19. 2 tan 2y = 2x+ sin 2x
8.2.20. x = exp

(
−
√
1− y2

y

)

8.3 · First Order Linear Differential Equations
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8.3 · Exercises

Problems

8.3.1. y =
3

2
+ Ce2x 8.3.2. y =

ln |x|+ C

x

8.3.3. y = − 1

2x
+ Cx 8.3.4. y =

x3

7
− x

5
+

C

x4

8.3.5. y = secx+ C(cscx) 8.3.6. y =
1

2
+ Ce−x2

8.3.7. y = Ce3x − (x+ 1)e2x 8.3.8. y = sin(2x)− 2 cos(2x) + Ce−x

8.3.9. y = (x2 + 2)ex 8.3.10. y =
1

4
x2 − 1

3
x+

1

2
+

7

12x2

8.3.11. y = 1− 2

x
+

2− e1−x

x2

8.3.12. y = 3e−2x

8.3.13. y =
x2 + 1

x+ 1
e−x 8.3.14. y = sin(x)− 3 cos(x)

8.3.15. y =
(x− 2)(x+ 1)

x− 1
8.3.16. y = x2

(
arctanx− π

4

)

8.3.17. Both; y = −5ex+
1
3x

3 8.3.18. separable; ey = sin(x)− x cos(x) + 1

8.3.19. linear; y =
x3 − 3x− 6

3(x− 1)

8.3.20. separable; y = 1

8.3.21.

x

y

The solution will increase and begin to follow the
line y = x− 1.

y = x− 1 + e−x

8.3.22.

x

y

The solution will decrease and approach y = 0.

y =
2 + ln(x+ 1)

x+ 1

8.4 · Modeling with Differential Equations
8.4 · Exercises

Problems

8.4.1. y = 10 + Ce−kx 8.4.2. 13.66 days
8.4.3. 4.43 days 8.4.4. 13,304.65 years old

8.4.5. x =


ab(1− e(a−b)kt)

b− ae(a−b)kt
if a ̸= b

a2kt

1 + akt
if a = b

8.4.6. 24.57 minutes

8.4.7. y = 60− 3.69858e−
1
4 t + 43.69858e−0.0390169t 8.4.8. 0.06767 g/gal
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8.4.9. y = 8(1− e−
1
2 t) g/cm2 8.4.10.

y = 20− 10

17
(4 cos(2t)− sin(2t))− 300

17
e−

1
2 t g

8.4.11. 11.00075 g 8.4.12. pond 1: 50.4853 grams per million gallons
pond 2: 32.8649 grams per million gallons

9 · Curves in the Plane
9.1 · Conic Sections
9.1 · Exercises

Terms and Concepts

9.1.6. line

Problems

9.1.19. (x+1)2

9 + (y−2)2

4 = 1; foci at (−1±
√
5, 2);

e =
√
5/3

9.1.20. (x−1)2

1/4 + y2

9 = 1; foci at (1,±
√
8.75);

e =
√
8.75/3 ≈ 0.99

9.1.29. x2 − y2

3 = 1 9.1.30. y2 − x2

24 = 1

9.1.31. (y−3)2

4 − (x−1)2

9 = 1 9.1.32. (x−1)2

9 − (y−3)2

4 = 1

9.1.45. The sound originated from a point approximately 31m to the right of B and 1390m above or below it. (Since
the three points are collinear, we cannot distinguish whether the sound originated above/below the line containing
the points.)

9.2 · Parametric Equations
9.2 · Exercises

Terms and Concepts

9.2.1. True
9.2.2. orientation
9.2.3. rectangular
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Problems

9.2.5.

2 4 6 8 10 12

−8

−6

−4

−2

2

x

y

9.2.6.

−0.5 0.5 1 1.5

−4

−2

2

4

x

y

9.2.7.

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

9.2.8.

1 2 3 4 5

1

2

3

4

x

y

9.2.9.

−10 −5 5 10

2

4

6

8

x

y

9.2.10.

−0.5 0.5 1 1.5

−1

−0.5

0.5

1

x

y
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9.2.11.

−4 −2 2 4

−4

−2

2

4

x

y

9.2.12.

−4 −2 2 4 6

−5

5

x

y

9.2.13.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

9.2.14.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

9.2.15.

2 4 6 8 10

−10

10

x

y

9.2.16.

1 2 3 4

−4

−2

2

4

x

y
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9.2.17.

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

y

9.2.18.

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

y

9.2.19.

(a) Traces the parabola y = x2, moves from left to
right.

(b) Traces the parabola y = x2, but only from
−1 ≤ x ≤ 1; traces this portion back and forth
infinitely.

(c) Traces the parabola y = x2, but only for 0 < x.
Moves left to right.

(d) Traces the parabola y = x2, moves from right
to left.

9.2.20.

(a) Traces a circle of radius 1 counterclockwise
once.

(b) Traces a circle of radius 1 counterclockwise over
6 times.

(c) Traces a circle of radius 1 clockwise infinite
times.

(d) Traces an arc of a circle of radius 1, from an
angle of -1 radians to 1 radian, twice.

9.2.21. 3x+ 2y = 17 9.2.25. y − 2x = 3

9.2.30. x = 1− 2y2

9.2.35. (a). t+11
6

(b). t2−97
12

(c). (2,−8)

(d). 6x− 11

(e). 1

9.2.36. (a). ln(t)
(b). t

(c). (0, 1)

(d). ex

(e). 1

9.2.37. (a). cos−1(t)

(b).
√
1− t2

(c). (0, 0)

(d). cos(x)
(e). 1

9.2.39. (a). −1, 1

(b). (3,−2)

9.2.44. (a). 2

(b). (−4,−8)

9.2.46. (a). 0

(b). (1, 0)

9.2.50. 2 cos(t) ; −2 sin(t) 9.2.51. 3 cos(2πt) + 1; 3 sin(2πt) + 1

9.2.52. 3 cos(2πt) + 1; 3 sin(2πt) + 1
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9.3 · Calculus and Parametric Equations
9.3 · Exercises

Terms and Concepts

9.3.1. False
9.3.3. False
9.3.4. True

Problems

9.3.15. (a). −0.5

(b). (0.75,−0.25)

9.3.18. (a). π
4 ,

3π
4 , 5π

4 , 7π
4

(b).
(√

2
2 , 1

)
,
(

−
√
2

2 ,−1
)
,
(

−
√
2

2 , 1
)
,
(√

2
2 ,−1

)
9.3.21. (a). 0

(b). 0

9.3.22. (a). 2

(b). 1

9.3.27. (a). − 4
(2t−1)3

(b). (−∞, 0.5]

(c). [0.5,∞)

9.3.30. (a). 2(sin(t)(−2) sin(2t)−cos(2t) cos(t))
sin3(t)

(b).
[
π
2 , π

]
,
[
3π
2 , 2π

]
(c).

[
0, π

2

]
,
[
π, 3π

2

]
9.3.33. 6π 9.3.34. (a).

√
101
(
e

π
5 − 1

)
(b).

√
101
(
e

2π
5 − e

π
5

)
9.3.35. 2

√
34

9.4 · Introduction to Polar Coordinates
9.4 · Exercises

Terms and Concepts

9.4.1. Answers will vary.
9.4.2. False
9.4.3. True
9.4.4. False

Problems

9.4.5.
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1 2O

A
B

C

D

9.4.6.

1 2O

A B

C

D

9.4.7. A = P (2.5, π/4) and P (−2.5, 5π/4);
B = P (−1, 5π/6) and P (1, 11π/6);
C = P (3, 4π/3) and P (−3, π/3);
D = P (1.5, 2π/3) and P (−1.5, 5π/3);

9.4.8. (a). (2, 0.523599) , (−2,−2.61799)

(b). (1,−1.0472) , (−1, 2.0944)

(c). (2, 2.35619) , (−2,−0.785398)

(d). (2.5, 3.14159) , (2.5,−3.14159)

9.4.9. (a).
(√

2,
√
2
)

(b).
(√

2,−
√
2
)

(c).
(√

5, tan−1
(−1

2

))
(d).

(√
5, π + tan−1

(−1
2

))
9.4.10. (a). (−3, 0)

(b).
(

−1
2 ,

√
3
2

)
(c).

(
4, π

2

)
(d).

(
2, −π

3

)



1057

9.4.11.

−0.5 0.5 1 1.5 2 2.5

−0.5

0.5

1

1.5

2

x

y

9.4.12.

1 2−1−2

−2

−1

1

2

x

y

9.4.13.

−2 −1 1 2

−2

−1

1

2

x

y

9.4.14.

−3 −2 −1 1 2 3

−2

2

x

y

9.4.15.

−3 −2 −1 1 2 3

−2

2

x

y

9.4.16.

−3 −2 −1 1 2 3

−2

2

x

y
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9.4.17.

−3 −2 −1 1 2 3

−2

2

x

y

9.4.18.

−1 −0.5 0.5 1

−1

1

x

y

9.4.19.

−1 −0.5 0.5 1

−1

1

x

y

9.4.20.

−1 −0.5 0.5 1

−1

1

x

y

9.4.21.

−1 −0.5 0.5 1

−1

1

x

y

9.4.22.

−6 −4 −2 2 4 6

−4

−2

2

4

x

y
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9.4.23.

−2 −1 1 2

2

3

1

x

y

9.4.24.

−2 −1 1 2

−2

−1

1

2

x

y

9.4.25.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

9.4.26.

−8 −6 −4 −2

−2

2

x

y

9.4.27.

−4 −2 2 4

−4

−2

2

4

x

y

9.4.28.

−4 −2 2 4

−4

−2

2

4

x

y
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9.4.29.

−4 −2 2 4

−4

−2

2

4

x

y

9.4.30.

−4 −2 2 4

−4

−2

2

4

x

y

9.4.31. (x− 3)
2
+ y2 = 9 9.4.32. x2 + (y + 2)

2
= 4

9.4.33. (x− 0.5)
2
+ (y − 0.5)

2
= 0.5 9.4.34. y = 0.4x+ 1.4

9.4.35. x = 3 9.4.36. y = 4

9.4.38. y4 + x2y2 − x2 = 0 9.4.39. x2 + y2 = 4

9.4.40. y = x
1.73205

9.4.41. θ = π
4 9.4.42. r = 7

sin(θ)−4 cos(θ)

9.4.43. r = 5 sec(θ) 9.4.44. r = 5 csc(θ)

9.4.45. r = cos(θ)
sin2(θ)

9.4.47. r =
√
7

9.4.49. P
(√

3
2 , π

6

)
, P
(
0, π

2

)
, P
(

−
√
3

2 , 5π
6

)
9.4.51. P (0, 0) , P

(√
2, π

4

)
9.4.54. P

(
3
2 ,

π
3

)
, P
(
3
2 ,

−π
3

)
, P (0, π)

9.5 · Calculus and Polar Functions
9.5 · Exercises

Problems

9.5.3. (a). − cot(θ)

(b). y = −
(
x−

√
2
2

)
+

√
2
2

(c). y = x

9.5.4. (a). 0.5(tan(θ)− cot(θ))
(b). y = 1

2

(c). x = 1
2

9.5.7. (a). θ cos(θ)+sin(θ)
cos(θ)−θ sin(θ)

(b). y = −2
π x+ π

2

(c). y = π
2x+ π

2

9.5.8. (a). cos(θ) cos(3θ)−3 sin(θ) sin(3θ)
− cos(3θ) sin(θ)−3 cos(θ) sin(3θ)

(b). y = x√
3

(c). y = −
√
3x

9.5.9. (a). 4 sin(θ) cos(4θ)+sin(4θ) cos(θ)
4 cos(θ) cos(4θ)−sin(θ) sin(4θ)

(b). y = 5
√
3
(
x+

√
3
4

)
− 3

4

(c). y = −1
5
√
3

(
x+

√
3
4

)
− 3

4
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9.5.14. (a). π
3 , π,

5π
3

(b). 0, 2π
3 , 4π

3

9.5.19. π
12 9.5.20. area = π/(4n)

9.5.21. 3π
2 9.5.23. 2π + 3·1.73205

2

9.5.24. π + 3 · 1.73205 9.5.25. 1
9.5.26. 1

32 (4π − 3 · 1.73205)

9.5.29. 4π 9.5.30. 4π
9.5.31.

√
2π 9.5.32. 8

9.5.33. 2.2592 or 2.22748

9.5.40. SA = 9π



Appendix B

Quick Reference

B.1 Differentiation Formulas

List B.1.1 Derivative Rules

1.
d

dx
(cx) = c

2.
d

dx
(u± v) = u′ ± v′

3.
d

dx
(u · v) = uv′ + u′v

4.
d

dx
(
u

v
) =

vu′ − uv′

v2

5.
d

dx
(u(v)) = u′(v)v′

6.
d

dx
(c) = 0

7.
d

dx
(x) = 1

List B.1.2 Derivatives of Elementary Functions

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ex) = ex

3.
d

dx
(ax) = ln a · ax

4.
d

dx
(lnx) =

1

x

5.
d

dx
(loga x) =

1

ln a
· 1
x

6.
d

dx
(sinx) = cosx

7.
d

dx
(cosx) = − sinx

8.
d

dx
(cscx) = − cscx cotx

9.
d

dx
(secx) = secx tanx

10.
d

dx
(tanx) = sec2 x

11.
d

dx
(cotx) = − csc2 x

12.
d

dx
(coshx) = sinhx

13.
d

dx
(sinhx) = coshx

14.
d

dx
(sechx) = − sechx tanhx

15.
d

dx
(tanhx) = sech2 x

16.
d

dx
(cschx) = − cschx cothx

17.
d

dx
(cothx) = − csch2 x

1093
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List B.1.3 Derivatives of Inverse Functions

1.
d

dx
(sin−1 x) =

1√
1− x2

2.
d

dx
(cos−1 x) =

−1√
1− x2

3.
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

4.
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

5.
d

dx
(tan−1 x) =

1

1 + x2

6.
d

dx
(cot−1 x) =

−1

1 + x2

7.
d

dx
(cosh−1 x) =

1√
x2 − 1

8.
d

dx
(sinh−1 x) =

1√
x2 + 1

9.
d

dx
(sech−1 x) =

−1

x
√
1− x2

10.
d

dx
(csch−1 x) =

−1

|x|
√
1 + x2

11.
d

dx
(tanh−1 x) =

1

1− x2

12.
d

dx
(coth−1 x) =

1

1− x2

B.2 Integration Formulas

List B.2.1 Basic Rules

1.
∫

c · f(x) dx = c

∫
f(x) dx

2.
∫ (

f(x)±g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

List B.2.2 Integrals of Elementary (non-Trig) Functions

1.
∫

ex dx = ex + C

2.
∫
lnx dx = x lnx− x+ C

3.
∫

ax dx =
1

ln a
· ax + C

4.
∫

1

x
dx = ln |x|+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

List B.2.3 Integrals Involving Trigonometric Functions

1.
∫
cosx dx = sinx+ C

2.
∫
sinx dx = − cosx+ C

3.
∫
tanx dx = − ln |cosx|+ C

4.
∫
secx dx = ln |secx+ tanx|+ C

5.
∫
cscx dx = − ln |cscx+ cotx|+ C
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6.
∫
cotx dx = ln |sinx|+ C

7.
∫
sec2 x dx = tanx+ C

8.
∫
csc2 x dx = − cotx+ C

9.
∫
secx tanx dx = secx+ C

10.
∫
cscx cotx dx = − cscx+ C

11.
∫
cos2 x dx =

1

2
x+

1

4
sin
(
2x
)
+ C

12.
∫
sin2 x dx =

1

2
x− 1

4
sin
(
2x
)
+ C

13.
∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ C

14.
∫

1√
a2 − x2

= sin−1
(x
a

)
+ C

15.
∫

1

x
√
x2 − a2

=
1

a
sec−1

(
|x|
a

)
+ C

List B.2.4 Integrals Involving Hyperbolic Functions

1.
∫
coshx dx = sinhx+ C

2.
∫
sinhx dx = coshx+ C

3.
∫
tanhx dx = ln(coshx) + C

4.
∫
cothx dx = ln |sinhx|+ C

5.
∫

1√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C

6.
∫

1√
x2 + a2

dx = ln
∣∣∣x+

√
x2 + a2

∣∣∣+ C

7.
∫

1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

8.
∫

1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

9.
∫

1

x
√
x2 + a2

=
1

a
ln
∣∣∣∣ x

a+
√
x2 + a2

∣∣∣∣+ C
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B.3 Trigonometry Reference

The Unit Circle.

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2
, 1
2

)
45◦

π/4

(√
2

2
,
√

2
2

)
60◦

π/3

(
1
2
,
√
3
2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2
,
√

3
2

)

135◦
3π/4

(
−

√
2

2
,
√
2
2

)

150◦
5π/6

(
−

√
3

2
, 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.3.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y
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Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.3.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.3.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.3.2 Double Angle Formulas

1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.3.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.3.4 Even/Odd Identities
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1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.3.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.3.6 Sum to Product Formulas

List B.3.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)
List B.3.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y

B.4 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r
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Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A

B.5 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)
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(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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B.6 Additional Formulas

Summation Formulas:.

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

Trapezoidal Rule:.∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
with Error≤ (b− a)3

12n2

[
max |f ′′(x)|

]
Simpson’s Rule:.

∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

]
with Error≤ (b− a)5

180n4

[
max

∣∣∣f (4)(x)
∣∣∣ ]

Arc Length:.

L =

∫ b

a

√
1 + f ′(x)2 dx

Surface of Revolution:.

2π

∫ b

a

f(x)
√
1 + f ′(x)2dx

(where f(x) ≥ 0)

S = 2π

∫ b

a

x
√
1 + f ′(x)2dx

(where a, b ≥ 0)

Work Done by a Variable Force:.

W =

∫ b

a

F (x)dx
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Force Exerted by a Fluid:.

F =

∫ b

a

w d(y) ℓ(y)dy

Taylor Series Expansion for f(x):.

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

Maclaurin Series Expansion for f(x), where c = 0:.

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

B.7 Summary of Tests for Series

Table B.7.1

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑

n=1

an lim
n→∞

an ̸= 0
Cannot be used to show
convergence.

Geometric Series
∞∑

n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑

n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑

n=1

1

(an+ b)p
p > 1 p ≤ 1

Integral Test
∞∑

n=0

an

∫ ∞

1

a(n) dn

converges

∫ ∞

1

a(n) dn diverges
an = a(n)must be
continuous

Direct Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

0 ≤ an ≤ bn

∞∑
n=0

bn diverges and

0 ≤ bn ≤ an

Limit Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

lim
n→∞

an

bn
≥ 0

∞∑
n=0

bn diverges and

lim
n→∞

an

bn
> 0

Also diverges if
lim

n→∞
an

bn
= ∞

Ratio Test
∞∑

n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1 {an}must be positive

Also diverges if lim
n→∞

an+1

an
= ∞

Root Test
∞∑

n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1 {an}must be positive

Also diverges if lim
n→∞

(an)
1/n = ∞



Index

!, 526
Absolute Convergence Theorem,

579
absolute maximum, 133
absolute minimum, 133
Absolute Value Theorem, 530
acceleration, 81, 695
accumulated error

using Euler’s method, 437
Alternating Harmonic Series, 549,

578, 590
Alternating Series Test, 574
aN, 712, 723
analytic function, 598
angle of elevation, 700
antiderivative, 217

of vector-valued function, 690
approximation

linear, 196
tangent line, 196

arc length, 401, 494, 517, 692, 717
arc length parameter, 717, 719
asymptote

horizontal, 54
vertical, 53

aT, 712, 723
average rate of change, 681
average value of a function, 843
average value of function, 263
average velocity, 8

bacterial growth, 455
Binomial Series, 598
Bisection Method, 46
boundary point, 735
bounded

interval, 41
bounded sequence, 532

convergence, 533
bounded set, 735

carrying capacity, 435
center of mass, 858, 859, 861, 862,

890
Chain Rule, 105

multivariable, 769, 772
notation, 111

chain rule
as matrix multiplication, 812

change of variables, 908
circle of curvature, 721
circulation, 961
closed, 735
closed disk, 735
concave down, 156
concave up, 156
concavity, 156, 492

inflection point, 158
test for, 158

conic sections, 466
degenerate, 466
ellipse, 469
hyperbola, 472
parabola, 466

connected, 955
simply, 956

conservative field, 956, 957, 959
Constant Multiple Rule

of derivatives, 88
of integration, 221
of series, 548

constrained optimization, 801
continuity

of exponential functions, 21
of logarithmic functions, 21
of polynomial functions, 20
of rational functions, 20
of trigonometric functions, 21

continuous
at a point, 40
everywhere, 40

1103
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on an interval, 40
continuous function, 40, 740

properties, 43, 741
vector-valued, 684

continuously differentiable, 761
contour lines, 729
convergence

absolute, 578, 579
Alternating Series Test, 574
conditional, 578
Direct Comparison Test, 559
for integration, 366

Integral Test, 556
interval of, 585
Limit Comparison Test, 561
for integration, 367

nth-term test, 551
of geometric series, 543
of improper int., 361, 366,

367
of monotonic sequences, 536
of p-series, 545
of power series, 585
of sequence, 528, 533
of series, 540
radius of, 585
Ratio Comparison Test, 567
Root Comparison Test, 569

coordinates
cylindrical, 896
polar, 499
spherical, 899

critical number, 135
critical point, 135, 797, 799
critical value

of a function of two variables,
817

cross product
and derivatives, 687
applications, 653
area of parallelogram, 654
torque, 656
volume of parallelepiped,
656

definition, 650
properties, 652

curl, 945
of conservative fields, 959

curvature, 719
and motion, 723
equations for, 720
of circle, 721
radius of, 721

curve

parametrically defined, 479
rectangular equation, 479
smooth, 485

curve sketching, 165
cusp, 485
cycloid, 680
cylinder, 612
cylindrical coordinates, 896

decreasing function, 148
finding intervals, 149

definite integral, 228
and substitution, 297
of vector-valued function, 690
properties, 229

del operator, 944
derivative

acceleration, 81
as a function, 69
at a point, 65
basic rules, 86
Chain Rule, 105, 111, 769, 772
Constant Multiple Rule, 88
Constant Rule, 86
differential, 196
directional, 778, 779, 781, 784
exponential functions, 111
First Deriv. Test, 151
general, 811
Generalized Power Rule, 106
higher order, 89
interpretation, 90

hyperbolic funct., 344
implicit, 114, 773
interpretation, 79
inverse function, 125
inverse hyper., 348
inverse trig., 128
logarithmic, 120
Mean Value Theorem, 143
mixed partial, 749
motion, 81
multivariable differentiability,

760, 765
normal line, 67
notation, 69, 89
parametric equations, 489
partial, 744, 752
Power Rule, 86, 100, 119
power series, 588
Product Rule, 94
Quotient Rule, 97
Second Deriv. Test, 161
Sum/Difference Rule, 87
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tangent line, 65
trigonometric functions, 98
vector-valued functions, 685,

687
velocity, 81

difference quotient, 8
differentiability

functions of several variables,
809

differentiable, 65, 760, 765
general functions, 807
on a closed interval, 74

differential, 196
notation, 196

differential equation
definition, 429
first order linear, 447
general solution, 430
graphical solution, 433
implicit soution, 432
integrating factor, 448
logistic, 434, 458
modeling, 455
numerical solution, 435
order of, 429
particular solution, 430
separable, 441

Direct Comparison Test
for integration, 366
for series, 559

direction field, see slope field
directional derivative, 778, 779,

781, 784
directrix, 466, 612
discontinuity

infinite, 44
jump, 44
removable, 44

Disk Method, 382
displacement, 257, 680, 692
distance

between lines, 665
between point and line, 665
between point and plane, 673
between points in space, 610
traveled, 702

divergence, 944, 945
Alternating Series Test, 574
Direct Comparison Test, 559
for integration, 366

Integral Test, 556
Limit Comparison Test, 561
for integration, 367

nth-term test, 551

of geometric series, 543
of improper int., 361, 366,

367
of p-series, 545
of sequence, 528
of series, 540
Ratio Comparison Test, 567
Root Comparison Test, 569

Divergence Theorem
in space, 990
in the plane, 967

dot product
and derivatives, 687
definition, 638
properties, 638, 639

double integral, 837, 838
in polar, 848
properties, 840

eccentricity, 471, 473
elementary function, 267
ellipse

definition, 469
eccentricity, 471
parametric equations, 484
reflective property, 471
standard equation, 469

Euler’s Method, 436
Euler’s method

accumulated error, 437
everywhere continuous, 40
exponential function

continuity of, 21
extrema

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
finding, 136
relative, 134, 797

Extreme Value Theorem, 134, 801
extreme values, 133

factorial, 526
First Derivative Test, 151
first octant, 610
floor function, 40
flow, 961, 962
fluid pressure/force, 420, 421
flux, 961, 962, 984, 985
focus, 466, 469, 472
Fubini’s Theorem, 838
function

continuous, 40
floor, 40
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of three variables, 731
of two variables, 727
vector-valued, 677

Fundamental Theorem of Calculus,
254, 255

and Chain Rule, 259
Fundamental Theorem of Line

Integrals, 955, 957

Gabriel’s Horn, 406
Gauss’s Law, 993
general solution

of a differential equation, 430
Generalized Power Rule, 106
geometric series, 542, 543
gradient, 779, 781, 784, 794

and level curves, 781
and level surfaces, 794

Green’s Theorem, 964, 965

half life, 463
Harmonic Series, 549
Head To Tail Rule, 628
Hooke’s Law, 413
hyperbola

definition, 472
eccentricity, 473
parametric equations, 484
reflective property, 474
standard equation, 472

hyperbolic function
definition, 341
derivatives, 344
identities, 344
integrals, 344
inverse, 346
derivative, 348
integration, 349
logarithmic def., 347

image
of a point, 910
of a subset, 910

implicit differentiation, 114, 773
improper integration, 361, 364
incompressible vector field, 944
increasing function, 148

finding intervals, 149
indefinite integral, 217

of vector-valued function, 690
indeterminate form, 4, 53, 355,

357
inflection point, 158
initial condition, 430
initial point, 625

initial value problem, 222
for differential equations, 430

Integral Test, 556
integration

arc length, 401
area, 228, 830
area between curves, 260,

373
average value, 263
by parts, 303
by substitution, 286
definite, 228
and substitution, 297
properties, 229
Riemann Sums, 249

displacement, 257
distance traveled, 702
double, 837
fluid force, 420, 421
Fun. Thm. of Calc., 254, 255
general application technique,

371
hyperbolic funct., 344
improper, 361, 364, 366, 367
indefinite, 217
inverse hyperbolic, 349
iterated, 829
Mean Value Theorem, 262
multiple, 829
notation, 218, 228, 255, 829
numerical, 267
Left/Right Hand Rule, 267,
275

Simpson’s Rule, 273, 275,
276

Trapezoidal Rule, 270, 275,
276

of multivariable functions,
827

of power series, 588
of trig. functions, 291
of trig. powers, 314, 318
of vector-valued function, 690
of vector-valued functions,

690
partial fraction decomp., 333
Power Rule, 221
Sum/Difference Rule, 221
surface area, 404, 495, 518
trig. subst., 325
triple, 876, 887, 889
volume
cross-sectional area, 381
Disk Method, 382
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Shell Method, 392, 396
Washer Method, 385, 396

with cylindrical coordinates,
897

with spherical coordinates,
901

work, 410
interior point, 735
Intermediate Value Theorem, 45
interval of convergence, 585
inverse

of a transformation, 921
iterated integration, 829, 837, 838,

876, 887, 889
changing order, 832
properties, 840, 882

Jacobian
of a transformation, 912

Jacobian matrix, 811

l’Hospital’s Rule
infinity over infinity, 354
zero over zero, 353

Lagrange multipliers, 816
lamina, 855
Left Hand Rule, 238, 242, 267
Left/Right Hand Rule, 275
level curves, 729, 781
level surface, 732, 794
limit

Absolute Value Theorem, 530
at infinity, 54
definition, 12
difference quotient, 8
does not exist, 6, 33
indeterminate form, 4, 25, 53,

355, 357
l’Hospital’s Rule, 353, 354
left-handed, 31
of exponential functions, 21
of infinity, 51
of logarithmic functions, 21
of multivariable function, 736,

737, 742
of polynomial functions, 20
of rational functions, 20
of sequence, 528
of trigonometric functions, 21
of vector-valued functions,

683
one-sided, 31
properties, 19, 737
pseudo-definition, 4

right-handed, 31
Squeeze Theorem, 23

Limit Comparison Test
for integration, 367
for series, 561

line integral
Fundamental Theorem, 955,

957
over scalar field, 933, 934,

951
over vector field, 952
path independent, 956, 957
properties over a scalar field,

938
properties over a vector field,

954
linear function, 807
linearization, 196, 806

functions of several variables,
808

lines, 660
distances between, 665
equations for, 661
intersecting, 662
parallel, 662
skew, 662

logarithmic differentiation, 120
logarithmic function

continuity of, 21

Maclaurin Polynomial
definition, 205

Maclaurin Polynomial|see{Taylor
Polynomial}, 205

Maclaurin Series
definition, 595

Maclaurin Series|see{Taylor
Series}, 595

magnitude of vector, 625
mass, 855, 856, 890, 938

center of, 858, 938
matrix

Jacobian, 811
maximum

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
relative/local, 134, 797, 800

Mean Value Theorem
of differentiation, 143
of integration, 262

Midpoint Rule, 238, 242
minimum

absolute, 133, 797
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and First Deriv. Test, 151, 161
relative/local, 134, 797, 800

moment, 860, 862, 890
monotonic sequence, 533
multi-index notation, 823
multiple integration|see{iterated

integration}, 829
multivariable function, 727, 731

continuity, 740–742, 761, 766
differentiability, 760, 761,

765, 766
domain, 727, 731
level curves, 729
level surface, 732
limit, 736, 737, 742
range, 727, 731

Möbius band, 971

Newton’s Law of Cooling, 456
Newton’s Method, 174
norm, 625
normal line, 67, 489, 790
normal vector, 669
nth-term test, 551
numerical integration, 267

Left/Right Hand Rule, 267,
275

Simpson’s Rule, 273, 275
error bounds, 276

Trapezoidal Rule, 270, 275
error bounds, 276

octant
first, 610

one to one, 971
one-to-one, 910
onto, 910
open, 735
open ball, 742
open disk, 735
optimization, 188

constrained, 801
with Lagrange multipliers, 816

order
of a differential equation, 429

orientable, 971
orientation, 916
orthogonal, 641, 790

decomposition, 645
orthogonal decomposition of

vectors, 645
orthogonal projection, 643
osculating circle, 721
outer unit normal vector, 990

p-series, 545
parabola

definition, 466
general equation, 467
reflective property, 468

parallel vectors, 631
Parallelogram Law, 628
parametric equations

arc length, 494
concavity, 492
definition, 479
finding d2y

dx2 , 492
finding dy

dx , 489
normal line, 489
of a surface, 971
surface area, 495
tangent line, 489

parametrized surface, 971
partial derivative, 744, 752

high order, 753
meaning, 746
mixed, 749
second derivative, 749
total differential, 760, 765

partition, 244
size of, 244

path independent, 956, 957
perpendicular|see{orthogonal},

641
piecewise smooth curve, 937
planes

coordinate plane, 611
distance between point and

plane, 673
equations of, 669
introduction, 611
normal vector, 669
tangent, 793

point of inflection, 158
polar

coordinates, 499
function
arc length, 517
gallery of graphs, 505
surface area, 518

functions, 502
area, 514
area between curves, 516
finding dy

dx , 512
graphing, 502

polar coordinates, 499
plotting points, 499

polynomial function
continuity of, 20
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potential function, 949, 957
Power Rule

differentiation, 86, 94, 100,
119

integration, 221
power series, 584

algebra of, 600
convergence, 585
derivatives and integrals, 588

projectile motion, 700, 713

quadric surface
definition, 616
ellipsoid, 618
elliptic cone, 618
elliptic paraboloid, 617
gallery, 617, 619
hyperbolic paraboloid, 619
hyperboloid of one sheet, 618
hyperboloid of two sheets,

619
sphere, 618
trace, 616

Quotient Rule, 97

R, 625
radius of convergence, 585
radius of curvature, 721
Ratio Comparison Test

for series, 567
rational function

continuity of, 20
rearrangements of series, 579
reduction formula

trigonometric integral, 321
regular value, 817
Related Rates, 179
related rates, 179
Riemann Sum, 238, 241, 244

and definite integral, 249
Right Hand Rule, 238, 242, 267
right hand rule

of Cartesian coordinates, 609
of the cross product, 653

Rolle’s Theorem, 143
Root Comparison Test

for series, 569

saddle point, 799, 800
Second Derivative Test, 161, 800
sensitivity analysis, 764
separation of variables, 441
sequence

Absolute Value Theorem, 530
positive, 559

sequences
boundedness, 532
convergent, 528, 533, 536
definition, 525
divergent, 528
limit, 528
limit properties, 531
monotonic, 533

series
absolute convergence, 578
Absolute Convergence

Theorem, 579
alternating, 574
Approximation Theorem,
576

Alternating Series Test, 574
Binomial, 598
conditional convergence, 578
convergent, 540
definition, 540
Direct Comparison Test, 559
divergent, 540
geometric, 542, 543
Integral Test, 556
interval of convergence, 585
Limit Comparison Test, 561
Maclaurin, 595
nth-term test, 551
p-series, 545
partial sums, 540
power, 584, 585
derivatives and integrals,
588

properties, 548
radius of convergence, 585
Ratio Comparison Test, 567
rearrangements, 579
Root Comparison Test, 569
Taylor, 595
telescoping, 546

Shell Method, 392, 396
signed area, 228
signed volume, 837, 838
simple curve, 956
simply connected, 956
Simpson’s Rule, 273, 275

error bounds, 276
slope field, 434
smooth, 687

curve, 485
surface, 971

smooth curve
piecewise, 937

speed, 695
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sphere, 610
spherical coordinates, 899
Squeeze Theorem, 23
Stokes’ Theorem, 995
Sum/Difference Rule

of derivatives, 87
of integration, 221
of series, 548

summation
notation, 239
properties, 241

surface, 971
smooth, 971

surface area, 868
of parametrized surface, 977,

978
solid of revolution, 404, 495,

518
surface integral, 983
surface of revolution, 614, 615

tangent line, 65, 489, 512, 686
directional, 788

tangent plane, 748, 793
to a graph, 748

Taylor polynimial
of several variables, 823

Taylor Polynomial
definition, 205
Taylor’s Theorem, 208

Taylor Series
common series, 600
definition, 595
equality with generating

function, 597
Taylor’s Theorem, 208

in several variables, 823
telescoping series, 546
terminal point, 625
theorem

Intermediate Value, 45
torque, 656
total differential, 760, 765

sensitivity analysis, 764
total signed area, 228
trace, 616
transformation, 908, 914
Trapezoidal Rule, 270, 275

error bounds, 276
trigonometric function

continuity of, 21
triple integral, 876, 887, 889

properties, 882

unbounded sequence, 532

unbounded set, 735
unit normal vector

aN, 712
and acceleration, 711, 712
and curvature, 723
definition, 709
in R2, 711

unit tangent vector
and acceleration, 711, 712
and curvature, 719, 723
aT, 712
definition, 708
in R2, 711

unit vector, 629
properties, 631
standard unit vector, 632
unit normal vector, 709
unit tangent vector, 708

vector field, 942
conservative, 956, 957
curl of, 945
divergence of, 944, 945
over vector field, 952
potential function of, 949, 957

vector-valued function
algebra of, 679
arc length, 692
average rate of change, 681
continuity, 684
definition, 677
derivatives, 685, 687
describing motion, 695
displacement, 680
distance traveled, 702
graphing, 677
integration, 690
limits, 683
of constant length, 689, 699,

700, 709
projectile motion, 700
smooth, 687
tangent line, 686

vectors, 625
algebra of, 627
algebraic properties, 629
component form, 626
cross product, 650, 652
definition, 625
dot product, 638, 639
Head To Tail Rule, 628
magnitude, 625
norm, 625
normal vector, 669
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orthogonal, 641
orthogonal decomposition,

645
orthogonal projection, 643
parallel, 631
Parallelogram Law, 628
resultant, 628
standard unit vector, 632

unit vector, 629, 631
zero vector, 628

velocity, 81, 695
average velocity, 8

volume, 837, 838, 874

Washer Method, 385, 396
work, 410, 647
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