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Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that youmay better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com², and HTML versions of the book can be found at opentext.uleth.ca³.

These three texts are intended towork together andmake one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com⁴.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—level top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just—learned material helps address future problems.

• Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

²apexcalculus.com
³opentext.uleth.ca/calculus.html
⁴amazon.com
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• You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

• Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theoremmeans and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX – Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculuswould not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
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need. The source files can be found at github.com/APEXCalculus⁵.
You can learn more at www.vmi.edu/APEX⁶.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

• The underlying source code has been completely rewritten, to use the
PreTeXt⁷ language, instead of the original LATEX .

• Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is bothmore accessible andmore interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca⁸.

• The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

• In the html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com⁹ for more information.

• More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

⁵github.com/APEXCalculus
⁶www.vmi.edu/APEX
⁷pretextbook.org
⁸opentext.uleth.ca/calculus.html
⁹apexcalculus.com
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A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate × time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”
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Chapter 6

Techniques ofAntidifferentiation

The previous chapter introduced the antiderivative and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applications of definite integrals than just area. As eval-
uating definite integrals will become important, we will want to find antideriva-
tives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions (a con-
cept introduced in the section on Numerical Integration), we can still find anti-
derivatives of a wide variety of functions.

6.1 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:∫
x cos(x) dx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

youtu.be/watch?v=v7KGuoM-cgU

Figure 6.1.1 Video introduction to
Section 6.1

The Product Rule says that if u and v are functions of x, then (uv)′ = u′v +
uv′. For simplicity, we’vewrittenu foru(x) and v for v(x). Supposewe integrate
both sides with respect to x. This gives∫

(uv)′ dx =

∫
(u′v + uv′) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The
right side can be broken up into two integrals, and we have

uv =

∫
u′v dx+

∫
uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv −

∫
u′v dx.

323
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324 CHAPTER 6. TECHNIQUES OF ANTIDIFFERENTIATION

Using differential notation, we can write du = u′(x)dx and dv = v′(x)dx
and the expression above can be written as follows:∫

u dv = uv −
∫

v du.

This is the Integration by Parts formula. For reference purposes, we state
this in a theorem.

Theorem 6.1.2 Integration by Parts.

Let u and v be differentiable functions of x on an interval I containing a
and b. Then ∫

u dv = uv −
∫

v du,

and ∫ x=b

x=a

u dv = uv
∣∣∣b
a
−
∫ x=b

x=a

v du.

The integrationbyparts formula
can also be written as∫

f(x) g′(x) dx

= f(x)g(x)−
∫

f ′(x) g(x) dx

for differentiable functions f and
g.

Let’s try an example to understand our new technique.

Example 6.1.3 Integrating using Integration by Parts.

Evaluate
∫

x cos(x) dx.

Solution. The key to Integration by Parts is to identify part of the inte-
grand as “u” and part as “dv.” Regular practice will help one make good
identifications, and later wewill introduce some principles that help. For
now, let u = x and dv = cos(x) dx.
It is generally useful to make a small table of these values as done below.
Right now we only know u and dv as shown on the left of Figure 6.1.4;
on the right we fill in the rest of what we need. If u = x, then du = dx.
Since dv = cos(x) dx, v is an antiderivative of cos(x). We choose v =
sin(x).

u = x v = ?

du = ? dv = cos(x) dx
=⇒ u = x v = sin(x)

du = dx dv = cos(x) dx

Figure 6.1.4 Setting up Integration by Parts
Now substitute all of this into the Integration by Parts formula, giving∫

x cos(x) dx = x sin(x)−
∫
sin(x) dx.

We can then integrate sin(x) to get− cos(x)+C and overall our answer
is ∫

x cos(x) dx = x sin(x) + cos(x) + C.

Note how the antiderivative contains a product, x sin(x). This product
is what makes Integration by Parts necessary.
We can check our work by taking the derivative:

d

dx
(x sin(x) + cos(x) + C) = x cos(x) + sin(x)− sin(x) + 0

= x cos(x).

Video solution

youtu.be/watch?v=gKtzlaH2EPo

https://www.youtube.com/watch?v=gKtzlaH2EPo
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Youmay wonder what would have happened in Example 6.1.3 if we had cho-
sen our u and dv differently. If we had chosen u = cos(x) and dv = x dx then
du = − sin(x) dx and v = x2/2. Our second integral is not simpler than the
first; we would have∫

x cos(x) dx = cos(x)
x2

2
−
∫

x2

2
(− sin(x)) dx.

The only way to approach this second integral would be yet another integration
by parts.

Example 6.1.3 demonstrates how Integration by Parts works in general. We
try to identify u and dv in the integral we are given, and the key is that we usually
want to choose u and dv so that du is simpler than u and v is hopefully not too
much more complicated than dv. This will mean that the integral on the right
side of the Integration by Parts formula,

∫
v du will be simpler to integrate than

the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos(x) dx. Then du = dx
was simpler than u and v = sin(x) is no more complicated than dv. Therefore,
instead of integrating x cos(x) dx, we could integrate sin(x) dx, which we knew
how to do.

A useful mnemonic for helping to determine u is “liate,” where
l = Logarithmic, i = Inverse Trig., a = Algebraic (polynomials, roots, power

functions), t = Trigonometric, and e = Exponential.
If the integrand contains both a logarithmic and an algebraic term, in general

letting u be the logarithmic term works best, as indicated by l coming before a
in liate.

We now consider another example.

Example 6.1.5 Integrating using Integration by Parts.

Evaluate
∫

xex dx.

Solution. The integrand contains an Algebraic term (x) and an
Exponential term (ex). Our mnemonic suggests letting u be the alge-
braic term, so we choose u = x and dv = ex dx. Then du = dx and
v = ex as indicated by the tables below.

u = x v = ?

du = ? dv = ex dx

=⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.1.6 Setting up Integration by Parts
We see du is simpler than u, while there is no change in going from dv
to v. This is good. The Integration by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the antiderivatives contain a product term.
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Example 6.1.7 Integrating using Integration by Parts.

Evaluate
∫

x2 cos(x) dx.

Solution. The mnemonic suggests letting u = x2 instead of the
trigonometric function, hence dv = cos(x) dx. Then du = 2x dx and
v = sin(x) as shown below.

u = x2 v = ?

du = ? dv = cos(x) dx
=⇒ u = x2 v = sin(x)

du = 2x dx dv = cos(x) dx

Figure 6.1.8 Setting up Integration by Parts
The Integration by Parts formula gives∫

x2 cos(x) dx = x2 sin(x)−
∫

2x sin(x) dx.

At this point, the integral on the right is indeed simpler than the one
we started with, but to evaluate it, we need to do Integration by Parts
again. Here we choose r = 2x and ds = sin(x) and fill in the rest below.
(We are choosing new names since we have already used u and v. Our
integration by parts formula is now

∫
r ds = rs−

∫
s dr.)

u = 2x v = ?
du = ? dv = sin(x) dx

⇒ u = 2x v = − cos(x)
du = 2 dx dv = sin(x) dx

Figure 6.1.9 Setting up Integration by Parts (again)

∫
x2 cos(x) dx = x2 sin(x)−

(
−2x cos(x)−

∫
−2 cos(x) dx

)
.

The integral all theway on the right is now somethingwe can evaluate. It
evaluates to−2 sin(x). Then going through and simplifying, being care-
ful to keep all the signs straight, our answer is∫

x2 cos(x) dx = x2 sin(x) + 2x cos(x)− 2 sin(x) + C.

Video solution

youtu.be/watch?v=j9pCcQMSjbg

Example 6.1.10 Integrating using Integration by Parts.

Evaluate
∫

ex cos(x) dx.

Solution. This is a classic problem. Our mnemonic suggests letting u be
the trigonometric function instead of the exponential. In this particular
example, one can letu be either cos(x) or ex; to demonstrate thatwe do
not have to follow liate, we choose u = ex and hence dv = cos(x) dx.
Then du = ex dx and v = sin(x) as shown below.

https://www.youtube.com/watch?v=j9pCcQMSjbg
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u = ex v = ?

du = ? dv = cos(x) dx
=⇒ u = ex v = sin(x)

du = ex dv = cos(x) dx

Figure 6.1.11 Setting up Integration by Parts
Notice that du is no simpler than u, going against our general rule (but
bear with us). The Integration by Parts formula yields∫

ex cos(x) dx = ex sin(x)−
∫

ex sin(x) dx.

The integral on the right is not much different than the one we started
with, so it seems like we have gotten nowhere. Let’s keep working and
apply Integration by Parts to the new integral, using u = ex and dv =
sin(x) dx. This leads us to the following:

r = ex s = ?

dr = ? ds = sin(x) dx
=⇒ r = ex s = − cos(x)

dr = ex dx ds = sin(x) dx

Figure 6.1.12 Setting up Integration by Parts (again)
The Integration by Parts formula then gives:∫

ex cos(x) dx = ex sin(x)−
(
−ex cos(x)−

∫
−ex cos(x) dx

)
= ex sin(x) + ex cos(x)−

∫
ex cos(x) dx.

It seems we are back right where we started, as the right hand side con-
tains

∫
ex cos(x) dx. But this is actually a good thing.

Add
∫

ex cos(x) dx to both sides. This gives

2

∫
ex cos(x) dx = ex sin(x) + ex cos(x)

Now divide both sides by 2 and then add the integration constant:∫
ex cos(x) dx =

1

2

(
ex sin(x) + ex cos(x)

)
+ C.

Simplifying a little, our answer is thus∫
ex cos(x) dx =

1

2
ex (sin(x) + cos(x)) + C.

Video solution

youtu.be/watch?v=z0A1v2Zkfns

Example 6.1.13 Integrating using Integration by Parts: antiderivative
of ln(x).

Evaluate
∫
ln(x) dx.

Solution. One may have noticed that we have rules for integrating the
familiar trigonometric functions and ex, but we have not yet given a rule
for integrating ln(x). That is because ln(x) can’t easily be integrated

https://www.youtube.com/watch?v=z0A1v2Zkfns
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with any of the rules we have learned up to this point. But we can find
its antiderivative by a clever application of Integration by Parts. Set u =
ln(x) and dv = dx. This is a good, sneaky trick to learn as it can help in
other situations. This determines du = (1/x) dx and v = x as shown
below.

u = ln(x) v = ?

du = ? dv = 1 dx

=⇒ u = ln(x) v = x

du = 1/x dx dv = 1 dx

Figure 6.1.14 Setting up Integration by Parts
Putting this all together in the Integration by Parts formula, things work
out very nicely: ∫

ln(x) dx = x ln(x)−
∫

x
1

x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things

get. Its integral is x+ C and our answer is∫
ln(x) dx = x ln(x)− x+ C.

Video solution

youtu.be/watch?v=NGkLj7djFSw

Example 6.1.15 Integrating using Int. by Parts: antiderivative of
arctanx.

Evaluate
∫
arctanx dx.

Solution. The same sneaky trick we used above works here. Let u =
arctanx and dv = dx. Then du = 1/(1 + x2) dx and v = x. The
Integration by Parts formula gives∫

arctanx dx = x arctanx−
∫

x

1 + x2
dx.

The integral on the right can be solvedby substitution. Takingw = 1+x2,
we get dw = 2x dx. The integral then becomes∫

arctanx dx = x arctanx− 1

2

∫
1

w
dw.

The integral on the right evaluates to ln |w|+ C, which becomes ln(1 +
x2) + C (we can drop the absolute values as 1 + x2 is always positive).
Therefore, the answer is∫

arctanx dx = x arctanx− 1

2
ln(1 + x2) + C.

Video solution

youtu.be/watch?v=md3-8bv5E5M

Substitution Before Integration. When taking derivatives, it was common to
employ multiple rules (such as using both the Quotient and the Chain Rules).
It should then come as no surprise that some integrals are best evaluated by
combining integration techniques. In particular, here we illustrate making an
“unusual” substitution first before using Integration by Parts.

https://www.youtube.com/watch?v=NGkLj7djFSw
https://www.youtube.com/watch?v=md3-8bv5E5M
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Example 6.1.16 Integration by Parts after substitution.

Evaluate
∫
cos(ln(x)) dx.

Solution. The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = ln(x), we have
du = 1/x dx. This seems problematic, as we do not have a 1/x in the
integrand. But consider:

du =
1

x
dx ⇒ x · du = dx.

Since u = ln(x), we can use inverse functions and conclude that x = eu.
Therefore we have that

dx = x · du
= eu du.

We can thus replace ln(x) with u and dx with eu du. Thus we rewrite
our integral as ∫

cos(ln(x)) dx =

∫
eu cosu du.

We evaluated this integral on the right in Example 6.1.10. (This integral
can also be found in a table of integrals). Using the result there, we have:∫

cos(ln(x)) dx =

∫
eu cos(u) du

=
1

2
eu
(
sin(u) + cos(u)

)
+ C

=
1

2
eln(x)

(
sin(ln(x)) + cos(ln(x))

)
+ C

=
1

2
x
(
sin(ln(x)) + cos(ln(x))

)
+ C.

Video solution

youtu.be/watch?v=0j0vM0nosYs

Definite Integrals and Integration By Parts. So far we have focused only on
evaluating indefinite integrals. Of course, we can use Integration by Parts to
evaluate definite integrals as well, as Theorem 6.1.2 states. We do so in the next
example.

Example 6.1.17 Definite integration using Integration by Parts.

Evaluate
∫ 2

1

x2 ln(x) dx.

Solution. Our mnemonic suggests letting u = ln(x), hence dv = x2 dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u = ln(x) v = ?

du = ? dv = x2 dx

⇒ u = ln(x) v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.1.18 Setting up Integration by Parts

https://www.youtube.com/watch?v=0j0vM0nosYs
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The Integration by Parts formula then gives∫ 2

1

x2 ln(x) dx =
x3

3
ln(x)

∣∣∣∣2
1

−
∫ 2

1

x3

3

1

x
dx

=
x3

3
ln(x)

∣∣∣∣2
1

−
∫ 2

1

x2

3
dx

=
x3

3
ln(x)

∣∣∣∣2
1

− x3

9

∣∣∣∣2
1

=

(
x3

3
ln(x)− x3

9

)∣∣∣∣2
1

=

(
8

3
ln(2)− 8

9

)
−
(
1

3
ln(1)− 1

9

)
=

8

3
ln(2)− 7

9
≈ 1.07.

Video solution

youtu.be/watch?v=O9_0B2gatMo

In general, Integration by Parts is useful for integrating certain products of
functions, like

∫
xex dx or

∫
x3 sin(x) dx. It is also useful for integrals involving

logarithms and inverse trigonometric functions.
As stated before, integration is generally more difficult than derivation. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar-looking integrals∫

xex dx,

∫
xex

2

dx and
∫

xex
3

dx.

While the first is calculated easilywith Integrationby Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to Substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. Section 6.2 focuses on handling integrals containing trigonometric
functions.

https://www.youtube.com/watch?v=O9_0B2gatMo
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6.1.1 Exercises

Terms and Concepts

1. (□ True □ False) Integration by Parts is useful in evaluating integrands that contain products of functions.
2. (□ True □ False) Integration by Parts can be thought of as the “opposite of the Chain Rule.”
3. For what is “LIATE” useful?
4. (□ True □ False) If the integral that results from Integration by Parts appears to also need Integration by

Parts, then a mistake was made in the original choice of “u”.

Problems

Exercise Group. Evaluate the given indefinite integral.

5.
∫

x sin(x) dx 6.
∫

xe−x dx

7.
∫

x2 sin(x) dx 8.
∫

x3 sin(x) dx

9.
∫

xex
2

dx 10.
∫

x3ex dx

11.
∫

xe−2x dx 12.
∫

ex sin(x) dx

13.
∫

e2x cos(x) dx 14.
∫

e7x sin(3x) dx

15.
∫

e8x cos(8x) dx 16.
∫
sin(x) cos(x) dx

17.
∫
sin−1(x) dx 18.

∫
tan−1(3x) dx

19.
∫

x tan−1(x) dx 20.
∫
cos−1(x) dx

21.
∫

x ln(x) dx 22.
∫

(x+ 2) ln(x) dx

23.
∫

x ln(x− 4) dx 24.
∫

x ln(x2) dx

25.
∫

x2 ln(x) dx 26.
∫

(ln(x))2 dx

27.
∫
ln2(x− 7) dx 28.

∫
x sec2(x) dx

29.
∫

x csc2(x) dx 30.
∫

x
√
x+ 2 dx

31.
∫

x
√
x2 − 6 dx 32.

∫
sec(x) tan(x) dx

33.
∫

x sec(x) tan(x) dx 34.
∫

x csc(x) cot(x) dx

Exercise Group. Evaluate the indefinite integral after first making a substitution.

35.
∫
sin(ln(x)) dx 36.

∫
e2x sin(ex) dx

37.
∫
sin
(√

x
)
dx 38.

∫
ln(

√
x) dx
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39.
∫

e
√
x dx 40.

∫
eln(x) dx

Exercise Group. Evaluate the definite integral. Note: the corresponding indefinite integral appears in Exercises 5–13.

41.
∫ 3π/2

0

x sin(x) dx 42.
∫ 2

−1

xe−x dx

43.
∫ π/2

−π/2

x2 sin(x) dx 44.
∫ π/6

−π/6

x3 sin(x) dx

45.
∫ √

ln(2)

0

xex
2

dx 46.
∫ 1

0

x3ex dx

47.
∫ 4

2

xe−2x dx 48.
∫ π

0

ex sin(x) dx

49.
∫ 3π/2

−3π/2

e2x cos(x) dx
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6.2 Trigonometric Integrals

Functions involving trigonometric functions are useful as they are good at de-
scribing periodic behavior. This section describes several techniques for finding
antiderivatives of certain combinations of trigonometric functions.

6.2.1 Integrals of the form
∫
sinm(x) cosn(x) dx

In learning the technique of Substitution, we saw the integral
∫
sin(x) cos(x) dx

in Example 5.6.8. The integration was not difficult, and one could easily evalu-
ate the indefinite integral by letting u = sin(x) or by letting u = cos(x). This
integral is easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm(x) cosn(x) dx,

where m,n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the identity cos2(x) + sin2(x) = 1 to convert high powers of one
trigonometric function into the other, leaving a single sine or cosine term in the
integrand. Let’s see an example of how this technique works.

Example 6.2.1 Integrating powers of sine and cosine.

Evaluate
∫
sin3(x) cos(x) dx.

Solution. We have used substitution on problems similar to this prob-
lem in Section 5.6 . If we let u = sin(x), then du = cos(x) dx, and∫

sin3(x) cos(x) dx =

∫
u3 du =

u4

4
+ C =

1

4
sin4(x) + C.

But what if, for some reason, we wanted to let u = cos(x) instead?
Unfortunately, we have sin3(x) as part of our integrand, not just sin(x).
The solution to this problem is to replace some of our powers of sine
(two of them to be exact) with expressions that involve cosine. We will
use the Pythagorean Identity sin2(x) = 1− cos2(x).∫

sin3(x) cos(x) dx =

∫
sin(x) · sin2(x) cos(x) dx

=

∫
sin(x)

(
1− cos2(x)

)
cos(x) dx.

Now we let u = cos(x) so that−du = sin(x) dx.∫
sin3(x) cos(x) dx =

∫
sin(x)

(
1− cos2(x)

)
cos(x) dx

=

∫
−
(
1− u2

)
u du

=

∫
−
(
u− u3

)
du

= −u2

2
+

u4

4
+ C

= −cos
2(x)

2
+
cos4(x)

4
+ C.

This looks like a very different answer, so you might wonder if we went
wrong somewhere. But in fact, the two answers are equivalent, in the
sense that they differ by a constant! (So the “+C” is different in each
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case, if you like.) Notice that

1

4
sin4(x) =

1

4
(1− cos2(x))2

=
1

4
− 1

2
cos2(x) +

1

4
cos4(x),

so the difference between the two answers is the constant 1
4 .

Video solution

youtu.be/watch?v=soXjOeFRrsk

We summarize the general technique in the following Key Idea.

Key Idea 6.2.2 Integrals Involving Powers of Sine and Cosine.

Consider
∫
sinm(x) cosn(x) dx, wherem,n are nonnegative integers.

1. Ifm is odd, thenm = 2k + 1 for some integer k. Rewrite

sinm(x) = sin2k+1(x)

= sin2k(x) sin(x)

= (sin2(x))k sin(x)

= (1− cos2(x))k sin(x).

Then∫
sinm(x) cosn(x) dx =

∫
(1− cos2(x))k sin(x) cosn(x) dx

= −
∫
(1− u2)kun du,

where u = cos(x) and du = − sin(x) dx.

2. If n is odd, then using substitutions similar to that outlined above
(replacing all of the even powers of cosine using a Pythagorean
identity) we have:∫

sinm(x) cosn(x) dx =

∫
um(1− u2)k du,

where u = sin(x) and du = cos(x) dx.

3. If bothm and n are even, use the power-reducing identities:

cos2(x) =
1 + cos(2x)

2
and sin2(x) =

1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply
the principles of this Key Idea again.

We practice applying Key Idea 6.2.2 in the next examples.

Example 6.2.3 Integrating powers of sine and cosine.

Evaluate
∫
sin5(x) cos8(x) dx.

https://www.youtube.com/watch?v=soXjOeFRrsk
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Solution. The power of the sine term is odd, so we rewrite sin5(x) as

sin5(x) = sin4(x) sin(x)

= (sin2(x))2 sin(x)

= (1− cos2(x))2 sin(x).

Our integral is now
∫
(1− cos2(x))2 cos8(x) sin(x) dx. Let u = cos(x),

hence du = − sin(x) dx. Making the substitution and expanding the
integrand gives∫

(1− cos2)2 cos8(x) sin(x) dx = −
∫

(1− u2)2u8 du

= −
∫ (

1− 2u2 + u4
)
u8 du

= −
∫ (

u8 − 2u10 + u12
)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2

11
u11 − 1

13
u13 + C

= −1

9
cos9(x) +

2

11
cos11(x)− 1

13
cos13(x) + C.

Video solution

youtu.be/watch?v=CAV4gSbw1GU

Example 6.2.4 Integrating powers of sine and cosine.

Evaluate
∫
sin5(x) cos9(x) dx.

Solution. The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 6.2.2 to either power. We
choose to work with the power of the cosine term since the previous
example used the sine term’s power.
We rewrite cos9(x) as

cos9(x) = cos8(x) cos(x)

=
(
cos2(x)

)4 cos(x)
=
(
1− sin2(x)

)4
cos(x).

We rewrite the integral as∫
sin5(x) cos9(x) dx =

∫
sin5(x)

(
1− sin2(x)

)4
cos(x) dx.

Now substitute and integrate, using u = sin(x) and du = cos(x) dx.
Expand the binomial using algebra.

∫
u5(1− u2)4 du

=

∫
u5(1− 4u2 + 6u4 − 4u6 + u8) du

https://www.youtube.com/watch?v=CAV4gSbw1GU
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=

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1

6
u6 − 1

2
u8 +

3

5
u10 − 1

3
u12 +

1

14
u14 + C

=
1

6
sin6(x)− 1

2
sin8(x) +

3

5
sin10(x)− 1

3
sin12(x) +

1

14
sin14(x) + C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.
Nowadays problems of this sort are often solved using a computer algebra sys-
tem. The powerful programMathematica™ integrates

∫
sin5(x) cos9(x) dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

−cos(10x)
81920

−cos(12x)
24576

−cos(14x)
114688

,

which clearly has a different form than our answer in Example 6.2.4, which is

g(x) =
1

6
sin6(x)− 1

2
sin8(x) +

3

5
sin10(x)− 1

3
sin12(x) +

1

14
sin14(x).

Figure 6.2.5 shows a graph of f and g; they are clearly not equal, but they
differ only by a constant. That is g(x) = f(x) + C for some constant C. So we
have two different antiderivatives of the same function, meaning both answers
are correct.

g(x)

f(x)

0.5 1 1.5 2 2.5 3

−0.002

0.002

0.004

x

y

Figure 6.2.5 A plot of f(x) and g(x)
from Example 6.2.4 and the Technol-
ogy Note

Example 6.2.6 Integrating powers of sine and cosine.

Evaluate
∫
cos4(x) sin2(x) dx.

Solution. The powers of sine and cosine are both even, so we employ
the power-reducing formulas and algebra as follows.∫

cos4(x) sin2(x) dx =

∫ (
1 + cos(2x)

2

)2(
1− cos(2x)

2

)
dx

=

∫
1 + 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1

8

(
1 + cos(2x) + cos2(2x)− cos3(2x)

)
dx

=
1

8

∫ 1 dx︸ ︷︷ ︸
a

+

∫
cos(2x) dx︸ ︷︷ ︸

b

−
∫
cos2(2x) dx︸ ︷︷ ︸

c

−
∫
cos3(2x) dx︸ ︷︷ ︸

d


The first integral labeled a is easy to integrate. The cos(2x) term is also
easy to integrate, especially with Key Idea 5.6.5. The cos2(2x) term is
another trigonometric integral with an even power, requiring the power-
reducing formula again. The cos3(2x) term is a cosine function with an
odd power, requiring a substitution as done before. We integrate each
in turn below. ∫

cos(2x) dx︸ ︷︷ ︸
b

=
1

2
sin(2x) + C
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∫
cos2(2x) dx︸ ︷︷ ︸

c

=

∫
1 + cos(4x)

2
dx

=
1

2

(
x+

1

4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x)

=
(
1− sin2(2x)

)
cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx︸ ︷︷ ︸

d

=

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1

2
(1− u2) du

=
1

2

(
u− 1

3
u3
)
+ C

=
1

2

(
sin(2x)− 1

3
sin3(2x)

)
+ C.

Putting all the pieces together, we have∫
cos4(x) sin2(x) dx

=

∫
1

8

(
1 + cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1

8

[
x+

1

2
sin(2x)− 1

2

(
x+

1

4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1

8

[1
2
x− 1

8
sin(4x) +

1

6
sin3(2x)

]
+ C.

Video solution

youtu.be/watch?v=EXODR17otIw

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

6.2.2 Integrals of the form
∫
sin(mx) sin(nx) dx,

∫
cos(mx) cos(nx) dx,

and
∫
sin(mx) cos(nx) dx

Functions that contain products of sines and cosines of differing periods are im-
portant in many applications including the analysis of sound waves. Integrals of
the form∫

sin(mx) sin(nx) dx,
∫
cos(mx) cos(nx) dx and

∫
sin(mx) cos(nx) dx

are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1

2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1

2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]

https://www.youtube.com/watch?v=EXODR17otIw
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sin(mx) cos(nx) =
1

2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
.

Example 6.2.7 Integrating products of sin(mx) and cos(nx).

Evaluate
∫
sin(5x) cos(2x) dx.

Solution. The application of the formula and subsequent integration
are straightforward:∫

sin(5x) cos(2x) dx =

∫
1

2

[
sin((5− 2)x) + sin((5 + 2)x)

]
dx

=

∫
1

2

[
sin(3x) + sin(7x)

]
dx

= −1

6
cos(3x)− 1

14
cos(7x) + C

Video solution

youtu.be/watch?v=KbW-xwlTuyI

6.2.3 Integrals of the form
∫
tanm(x) secn(x) dx

When evaluating integrals of the form
∫
sinm(x) cosn(x) dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise-versa. If, for instance, the power of sine was odd, we pulled out one
sin(x) and converted the remaining even power of sin(x) into a function using
powers of cos(x), leading to an easy substitution.

The samebasic strategy applies to integrals of the form
∫
tanm(x) secn(x) dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan(x)) = sec2(x),

• d
dx (sec(x)) = sec(x) tan(x),

• 1 + tan2(x) = sec2(x) (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2(x) term with the
remaining secant power even, or if a sec(x) tan(x) term can be separated with
the remaining tan(x) power even, the Pythagorean Theorem can be employed,
leading to a simple substitution. This strategy is outlined in the following Key
Idea.

Key Idea 6.2.8 Integrals Involving Powers of Tangent and Secant.

Consider
∫
tanm(x) secn(x) dx, wherem,n are nonnegative integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn(x) as

secn(x) = sec2k(x)

= sec2k−2(x) sec2(x)

= (1 + tan2(x))k−1 sec2(x).

Then∫
tanm(x) secn(x) dx =

∫
tanm(x)(1 + tan2(x))k−1 sec2(x) dx

=

∫
um(1 + u2)k−1 du,

https://www.youtube.com/watch?v=KbW-xwlTuyI
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where u = tan(x) and du = sec2(x) dx.

2. Ifm is odd, thenm = 2k + 1 for some integer k. Rewrite tanm(x) secn(x)
as

tanm(x) secn(x) = tan2k+1(x) secn(x)

= tan2k(x) secn−1(x) sec(x) tan(x)

= (sec2(x)− 1)k secn−1(x) sec(x) tan(x).

Then∫
tanm(x) secn(x) dx =

∫
(sec2(x)− 1)k secn−1(x) sec(x) tan(x) dx

=

∫
(u2 − 1)kun−1 du,

where u = sec(x) and du = sec(x) tan(x) dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm(x)
to (sec2(x) − 1)k. Expand the new integrand and use Integration By Parts,
with dv = sec2(x) dx.

4. Ifm is even and n = 0, rewrite tanm(x) as

tanm(x) = tanm−2(x) tan2(x)

= tanm−2(x)(sec2(x)− 1)

= tanm−2 sec2(x)− tanm−2(x).

So ∫
tanm(x) dx =

∫
tanm−2 sec2(x) dx︸ ︷︷ ︸

apply rule 1

−
∫
tanm−2(x) dx︸ ︷︷ ︸
apply rule 4 again

.

The techniques described in Item 1 and Item 2 of Key Idea 6.2.8 are relatively
straightforward, but the techniques in Item 3 and Item 4 can be rather tedious.
A few examples will help with these methods.

Example 6.2.9 Integrating powers of tangent and secant.

Evaluate
∫
tan2(x) sec6(x) dx.

Solution. Since the power of secant is even, we use Rule 1from Key
Idea 6.2.8 and pull out a sec2(x) in the integrand. We convert the re-
maining powers of secant into powers of tangent.∫

tan2(x) sec6(x) dx =

∫
tan2(x) sec4(x) sec2(x) dx

=

∫
tan2(x)

(
1 + tan2(x)

)2 sec2(x) dx
Now substitute, with u = tan(x), with du = sec2(x) dx.

=

∫
u2
(
1 + u2

)2
du
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We leave the integration and subsequent substitution to the reader. The
final answer is

=
1

3
tan3(x) +

2

5
tan5(x) +

1

7
tan7(x) + C.

Video solution

youtu.be/watch?v=yYbn6R20qTk When we have an odd power of tan(x) (and sec(x) to any power of at least
one), we can split off a factor of tan(x) sec(x) and use the substitution u =
sec(x), as the video in Figure 6.2.10 illustrates.

youtu.be/watch?v=QsdKxEr3jG8

Figure 6.2.10 An integral with odd
powers of tan(x) and sec(x)

Example 6.2.11 Integrating powers of tangent and secant.

Evaluate
∫
sec3(x) dx.

Solution. We apply Rule 3 from Key Idea 6.2.8 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use
Integration by Parts; the rule suggests letting dv = sec2(x) dx, meaning
that u = sec(x).

u = sec(x) v = ?

du = ? dv = sec2(x) dx

=⇒
u = sec(x) v = tan(x)

du = sec(x) tan(x) dx dv = sec2(x) dx

Figure 6.2.12 Setting up Integration by Parts
Employing Integration by Parts, we have∫

sec3(x) dx =

∫
sec(x)︸ ︷︷ ︸

u

· sec2(x) dx︸ ︷︷ ︸
dv

= sec(x) tan(x)−
∫
sec(x) tan2(x) dx.

This new integral also requires applying Rule 3 of Key Idea 6.2.8:∫
sec3(x) dx = sec(x) tan(x)−

∫
sec(x)

(
sec2(x)− 1

)
dx

= sec(x) tan(x)−
∫
sec3(x) dx+

∫
sec(x) dx

= sec(x) tan(x)−
∫
sec3(x) dx+ ln |sec(x) + tan(x)|

In previous applications of Integration by Parts, we have seen where the
original integral has reappeared in our work. We resolve this by adding∫
sec3(x) dx to both sides, giving:

2

∫
sec3(x) dx = sec(x) tan(x) + ln |sec(x) + tan(x)|∫
sec3(x) dx =

1

2

(
sec(x) tan(x) + ln |sec(x) + tan(x)|

)
+ C

Video solution

youtu.be/watch?v=mPuR46ztxZQ

Integrals involving odd powers of sec(x) (and nothing else) are often among
the more intimidating tasks for beginning calculus students. However, larger
odd powers are best handled not by doing the integral directly, but by employ-
ing a reduction forumula. The video in Figure 6.2.13 shows how to obtain a re-
duction formula for the integral of sec2k+1(x); this formula allows us to express

https://www.youtube.com/watch?v=yYbn6R20qTk
https://www.youtube.com/watch?v=QsdKxEr3jG8
https://www.youtube.com/watch?v=mPuR46ztxZQ
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the integral in terms of an integral where the power of sec(x) is reduced by two.

youtu.be/watch?v=Om0iOgV9IwA

Figure 6.2.13 Deriving a power reduc-
tion formula for secant integrals

We give one more example.

Example 6.2.14 Integrating powers of tangent and secant.

Evaluate
∫
tan6(x) dx.

Solution. We employ Rule 3 of Key Idea 6.2.8.∫
tan6(x) dx =

∫
tan4(x) tan2(x) dx

=

∫
tan4(x)

(
sec2(x)− 1

)
dx

=

∫
tan4(x) sec2(x) dx−

∫
tan4(x) dx

Integrate the first integral with substitution, u = tan(x); integrate the
second by employing rule Rule 4 again.

=
1

5
tan5(x)−

∫
tan2(x) tan2(x) dx

=
1

5
tan5(x)−

∫
tan2(x)

(
sec2(x)− 1

)
dx

=
1

5
tan5(x)−

∫
tan2(x) sec2(x) dx︸ ︷︷ ︸

a

+

∫
tan2(x) dx︸ ︷︷ ︸

b

Again, use substitution (u = tan(x)) for the first integral (a) and Rule 4
for the second (b).

=
1

5
tan5(x)− 1

3
tan3(x) +

∫ (
sec2(x)− 1

)
dx∫

tan6(x) dx =
1

5
tan5(x)− 1

3
tan3(x) + tan(x)− x+ C.

Video solution

youtu.be/watch?v=MUDKKDz3_C8

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

Section 6.3 introduces an integration technique known as Trigonometric Sub-
stitution, a clever combination of Substitution and the Pythagorean Theorem.

https://www.youtube.com/watch?v=Om0iOgV9IwA
https://www.youtube.com/watch?v=MUDKKDz3_C8
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6.2.4 Exercises

Terms and Concepts

1. (□ True □ False)
∫
sin2(x) cos2(x) dx cannot be evaluated using the techniques described in this section

since both powers of sin(x) and cos(x) are even.

2. (□ True □ False)
∫
sin3(x) cos3(x) dx cannot be evaluated using the techniques described in this section

since both powers of sin(x) and cos(x) are odd.

3. (□ True □ False) This section addresses how to evaluate indefinite integrals such as
∫
sin5(x) tan3(x) dx.

4. (□ True □ False) Sometimes computer programs evaluate integrals involving trigonometric functions dif-
ferently than one would using the techniques of this section. When this is the case, the techniques of this
section have failed and one should only trust the answer given by the computer.

Problems

Exercise Group. Evaluate the indefinite integral.

5.
∫
sin(x) cos4(x) dx 6.

∫
sin3(x) cos(x) dx

7.
∫
sin3(x) cos4(x) dx 8.

∫
sin3(x) cos5(x) dx

9.
∫
sin6(x) cos5(x) dx 10.

∫
sin2(x) cos7(x) dx

11.
∫
sin2(x) cos2(x) dx 12.

∫
sin(5x) cos(3x) dx

13.
∫
sin(x) cos(6x) dx 14.

∫
sin(3x) sin(4x) dx

15.
∫
sin(πx) sin(8πx) dx 16.

∫
cos(x) cos(2x) dx

17.
∫
cos
(π
3
x
)
cos
(π
6
x
)
dx 18.

∫
tan4(x) sec2(x) dx

19.
∫
tan2(x) sec4(x) dx 20.

∫
tan8(x) sec4(x) dx

21.
∫
tan9(x) sec2(x) dx 22.

∫
tan3(x) sec2(x) dx

23.
∫
tan5(x) sec3(x) dx 24.

∫
tan4(x) dx

25.
∫
sec5(x) dx 26.

∫
tan2(x) sec(x) dx

27.
∫
tan2(x) sec3(x) dx

Exercise Group. Evaluate the definite integral. Note: the corresponding indefinite integrals appear in Exercises 5–27.

28.
∫ 3π

2

0

sin(x) cos4(x) dx 29.
∫ 2π

−2π

sin3(x) cos(x) dx

30.
∫ 2π

−2π

sin2(x) cos7(x) dx 31.
∫ π

4

0

sin(5x) cos(3x) dx
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32.
∫ π

2

−π
2

cos(x) cos(2x) dx 33.
∫ π

4

0

tan4(x) sec2(x) dx

34.
∫ π/4

−π/4

tan2(x) sec4(x) dx
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6.3 Trigonometric Substitution

In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π

2
(6.3.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integration techniques, including Sub-

stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte-
gration skill. This techniqueworks on the sameprinciple as Substitution as found
in Section 5.6, though it can feel “backward.” In Section 5.6, we setu = f(x), for
some function f , and replaced f(x)with u. In this section, we will set x = f(θ),
where f is a trigonometric function, then replace x with f(θ).

youtu.be/watch?v=l3gtQyPLr-E

Figure 6.3.1 Video introduction to
Section 6.3

We start by demonstrating this method in evaluating the integral in Equa-
tion (6.3.1). After the example, we will generalize the method and give more
examples.

Example 6.3.2 Using Trigonometric Substitution.

Evaluate
∫ 3

−3

√
9− x2 dx.

Solution. We begin by noting that 9
(
sin2(θ) + cos2(θ)

)
= 9, and

hence 9 cos2(θ) = 9 − 9 sin2(θ). If we let x = 3 sin(θ), then 9 − x2 =
9− 9 sin2(θ) = 9 cos2(θ).
Setting x = 3 sin(θ) gives dx = 3 cos(θ) dθ. We are almost ready
to substitute. We also wish to change our bounds of integration. The
bound x = −3 corresponds to θ = −π/2 (for when θ = −π/2,
x = 3 sin(θ) = −3). Likewise, the bound of x = 3 is replaced by the
bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2(θ) (3 cos(θ)) dθ

=

∫ π/2

−π/2

3
√
9 cos2(θ) cos(θ) dθ

=

∫ π/2

−π/2

3 |3 cos(θ)| cos(θ) dθ.

On [−π/2, π/2], cos(θ) is always positive, so we can drop the absolute
value bars, then employ a power-reducing formula:∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

9 cos2(θ) dθ

=

∫ π/2

−π/2

9

2

(
1 + cos(2θ)

)
dθ

=
9

2

(
θ +

1

2
sin(2θ)

)∣∣∣∣π/2
−π/2

https://www.youtube.com/watch?v=l3gtQyPLr-E
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=
9

2
π.

This matches our answer from before.

Video solution

youtu.be/watch?v=5CKWeQvnGAU

We now describe in detail Trigonometric Substitution. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the rela-
tionships between x and θ.

Key Idea 6.3.3 Trigonometric Substitution.

1. Integrands containing
√
a2 − x2.

Let x = a sin(θ), dx = a cos(θ) dθ.
Thus θ = sin−1(x/a), for −π/2 ≤
θ ≤ π/2. On this interval, cos(θ) ≥
0, so

√
a2 − x2 = a cos(θ).

√
a2 − x2

x
a

θ

Figure 6.3.4

2. Integrands containing
√
x2 + a2.

Let x = a tan(θ), dx = a sec2(θ) dθ.
Thus θ = tan−1(x/a), for −π/2 <
θ < π/2. On this interval, sec(θ) >
0, so

√
x2 + a2 = a sec(θ).

a

x√ x
2 +

a
2

θ

Figure 6.3.5

3. Integrands containing
√
x2 − a2.

Let x = a sec(θ), dx =
a sec(θ) tan(θ) dθ. Thus
θ = sec−1(x/a). If x/a ≥ 1,
then 0 ≤ θ < π/2; if x/a ≤ −1,
then π/2 < θ ≤ π. We restrict
our work to where x ≥ a, so
x/a ≥ 1, and 0 ≤ θ < π/2.
On this interval, tan(θ) ≥ 0, so√
x2 − a2 = a tan(θ).

a

√
x
2−

a
2

x

θ

Figure 6.3.6

Example 6.3.7 Using Trigonometric Substitution.

Evaluate
∫

1√
5 + x2

dx.

Solution. Using Item 2 in Key Idea 6.3.3, we recognize a =
√
5 and set

x =
√
5 tan(θ). This makes dx =

√
5 sec2(θ) dθ. We will use the fact

that
√
5 + x2 =

√
5 + 5 tan2(θ) =

√
5 sec2(θ) =

√
5 sec(θ). Substi-

https://www.youtube.com/watch?v=5CKWeQvnGAU
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tuting, we have:∫
1√

5 + x2
dx =

∫
1√

5 + 5 tan2(θ)

√
5 sec2(θ) dθ

=

∫ √
5 sec2(θ)√
5 sec(θ)

dθ

=

∫
sec(θ) dθ

= ln |sec(θ) + tan(θ)|+ C.

While the integration steps are over, we are not yet done. The original
problem was stated in terms of x, whereas our answer is given in terms
of θ. We must convert back to x.
The reference triangle given in Figure 6.3.5 helps. With x =

√
5 tan(θ),

we have

tan(θ) =
x√
5
and sec(θ) =

√
x2 + 5√

5
.

This gives ∫
1√

5 + x2
dx = ln |sec(θ) + tan(θ)|+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic identity to
simplify it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5 + x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣∣√x2 + 5 + x

∣∣∣+ C

= ln
∣∣∣√x2 + 5 + x

∣∣∣+ C,

where the ln
(
1/
√
5
)
term is absorbed into the constant C. (In Sec-

tion 5.7 we will learn another way of approaching this problem.)

Video solution

youtu.be/watch?v=2a9Oks-FCg0

Example 6.3.8 Using Trigonometric Substitution.

Evaluate
∫ √

4x2 − 1 dx.

Solution. We start by rewriting the integrand so that it looks like√
x2 − a2 for some value of a:√

4x2 − 1 =

√
4

(
x2 − 1

4

)

= 2

√
x2 −

(
1

2

)2

.

So we have a = 1/2, and following Part 3 of Key Idea 6.3.3, we set

https://www.youtube.com/watch?v=2a9Oks-FCg0
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x = 1
2 sec(θ), and hence dx = 1

2 sec(θ) tan(θ) dθ. We now rewrite the
integral with these substitutions:

∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1

2

)2

dx

=

∫
2

√
1

4
sec2(θ)− 1

4

(
1

2
sec(θ) tan(θ)

)
dθ

=

∫ √
1

4
(sec2(θ)− 1)

(
sec(θ) tan(θ)

)
dθ

=

∫ √
1

4
tan2(θ)

(
sec(θ) tan(θ)

)
dθ

=

∫
1

2
tan2(θ) sec(θ) dθ

=
1

2

∫ (
sec2(θ)− 1

)
sec(θ) dθ

=
1

2

∫ (
sec3(θ)− sec(θ)

)
dθ.

We integrated sec3(θ) in Example 6.2.11, finding its antiderivatives to be∫
sec3(θ) dθ =

1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
+ C.

Thus∫ √
4x2 − 1 dx =

1

2

∫ (
sec3(θ)− sec(θ)

)
dθ

=
1

2

(
1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
− ln |sec(θ) + tan(θ)|

)
+ C

=
1

4
(sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|) + C.

We are not yet done. Our original integral is given in terms of x, whereas
our final answer, as given, is in terms of θ. Weneed to rewrite our answer
in terms of x. With a = 1/2, and x = 1

2 sec(θ), the reference triangle in
Figure 6.3.6 shows that

tan(θ) =
√
x2 − 1/4

/
(1/2) = 2

√
x2 − 1/4 and sec(θ) = 2x.

Thus

1

4

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)
+ C

=
1

4

(
2x · 2

√
x2 − 1/4− ln

∣∣∣2x+ 2
√

x2 − 1/4
∣∣∣ )+ C

=
1

4

(
4x
√
x2 − 1/4− ln

∣∣∣2x+ 2
√
x2 − 1/4

∣∣∣ )+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1

4

(
4x
√
x2 − 1/4− ln

∣∣∣2x+ 2
√
x2 − 1/4

∣∣∣ )+ C.

Video solution

youtu.be/watch?v=0oCjVzIa_t8

https://www.youtube.com/watch?v=0oCjVzIa_t8
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Example 6.3.9 Using Trigonometric Substitution.

Evaluate
∫ √

4− x2

x2
dx.

Solution. We use Part 1 of Key Idea 6.3.3 with a = 2, x = 2 sin(θ),
dx = 2 cos(θ) and hence

√
4− x2 = 2 cos(θ). This gives∫ √

4− x2

x2
dx =

∫
2 cos(θ)
4 sin2(θ)

(2 cos(θ)) dθ

=

∫
cot2(θ) dθ

=

∫
(csc2(θ)− 1) dθ

= − cot(θ)− θ + C.

We need to rewrite our answer in terms of x. Using the reference tri-
angle found in Figure 6.3.4, we have cot(θ) =

√
4− x2/x and θ =

sin−1(x/2). Thus∫ √
4− x2

x2
dx = −

√
4− x2

x
− sin−1

(x
2

)
+ C.

Video solution

youtu.be/watch?v=E37-2LvYSsg

Trigonometric Substitution can be applied in many situations, even those
not of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example,

we apply it to an integral we already know how to handle.

Example 6.3.10 Using Trigonometric Substitution.

Evaluate
∫

1

x2 + 1
dx.

Solution. We know the answer already as tan−1(x) + C. We apply
Trigonometric Substitution here to show that we get the same answer
without inherently relying on knowledge of the derivative of the arctan-
gent function.
Using Part 2 of Key Idea 6.3.3, let x = tan(θ), dx = sec2(θ) dθ and note
that x2 + 1 = tan2(θ) + 1 = sec2(θ). Thus∫

1

x2 + 1
dx =

∫
1

sec2(θ)
sec2(θ) dθ

=

∫
1 dθ

= θ + C.

Since x = tan(θ), θ = tan−1(x), and we conclude that
∫

1

x2 + 1
dx =

tan−1(x) + C.

The next example is similar to the previous one in that it does not involve a
square-root. It shows how several techniques and identities can be combined
to obtain a solution.

https://www.youtube.com/watch?v=E37-2LvYSsg
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Example 6.3.11 Using Trigonometric Substitution.

Evaluate
∫

1

(x2 + 6x+ 10)2
dx.

Solution. We start by completing the square, then make the substitu-
tionu = x+3, followed by the trigonometric substitution of u = tan(θ):∫

1

(x2 + 6x+ 10)2
dx =

∫
1(

(x+ 3)2 + 1
)2 dx =

∫
1

(u2 + 1)2
du.

Now make the substitution u = tan(θ), du = sec2(θ) dθ:

=

∫
1

(tan2(θ) + 1)2
sec2(θ) dθ

=

∫
1

(sec2(θ))2
sec2(θ) dθ

=

∫
cos2(θ) dθ.

Applying a power reducing formula, we have

=

∫ (
1

2
+

1

2
cos(2θ)

)
dθ

=
1

2
θ +

1

4
sin(2θ) + C.

(6.3.2)

Weneed to return to the variablex. Asu = tan(θ), θ = tan−1(u). Using
the identity sin(2θ) = 2 sin(θ) cos(θ) and using the reference triangle
found in Figure 6.3.5, we have

1

4
sin(2θ) =

1

2

u√
u2 + 1

· 1√
u2 + 1

=
1

2

u

u2 + 1
.

Finally, we return to x with the substitution u = x + 3. We start with
the expression in Equation (6.3.2):

1

2
θ +

1

4
sin(2θ) + C =

1

2
tan−1(u) +

1

2

u

u2 + 1
+ C

=
1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Stating our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Video solution

youtu.be/watch?v=5JAXeV1-vCo

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converting back tox) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.

https://www.youtube.com/watch?v=5JAXeV1-vCo
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Example 6.3.12 Definite integration and Trigonometric Substitution.

Evaluate
∫ 5

0

x2

√
x2 + 25

dx.

Solution. Using Part 2 of Key Idea 6.3.3, we set x = 5 tan(θ), dx =
5 sec2(θ) dθ, and note that

√
x2 + 25 = 5 sec(θ). As we substitute, we

can also change the bounds of integration.
The lower bound of the original integral is x = 0. As x = 5 tan(θ),
we solve for θ and find θ = tan−1(x/5). Thus the new lower bound is
θ = tan−1(0) = 0. The original upper bound is x = 5, thus the new
upper bound is θ = tan−1(5/5) = π/4.
Thus we have∫ 5

0

x2

√
x2 + 25

dx =

∫ π/4

0

25 tan2(θ)
5 sec(θ)

5 sec2(θ) dθ

= 25

∫ π/4

0

tan2(θ) sec(θ) dθ.

We encountered this indefinite integral in Example 6.3.8wherewe found∫
tan2(θ) sec(θ) dθ =

1

2

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)
.

So

25

∫ π/4

0

tan2(θ) sec(θ) dθ =
25

2

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)∣∣∣∣π/4
0

=
25

2

(√
2− ln(

√
2 + 1)

)
≈ 6.661.

Video solution

youtu.be/watch?v=Pz56QfleHX4

The following equalities are very usefulwhenevaluating integrals using Trigono-
metric Substitution.

Key Idea 6.3.13 Useful Equalities with Trigonometric Substitution.

1. sin(2θ) = 2 sin(θ) cos(θ)

2. cos(2θ) = cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ)

3.
∫
sec3(θ) dθ =

1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
+ C

4.
∫
cos2(θ) dθ =

∫
1

2

(
1 + cos(2θ)

)
dθ =

1

2

(
θ + sin(θ) cos(θ)

)
+

C.

The next section introduces Partial Fraction Decomposition, which is an alge-
braic technique that turns “complicated” fractions into sums of “simpler” frac-
tions, making integration easier.

https://www.youtube.com/watch?v=Pz56QfleHX4
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6.3.1 Exercises

Terms and Concepts

1. Trigonometric Substitution works on the same principles as Integration by Substitution, though it can feel “
”.

2. If one uses Trigonometric Substitution on an integrand containing
√
36− x2, then one should set x =

.

3. Consider the Pythagorean Identity sin2(θ) + cos2(θ) = 1.

a. What identity is obtained when both sides are divided by cos2(θ)?

b. Use the new identity to simplify 9 tan2(θ) + 9.

4. Why does Part 1 of Key Idea 6.3.3 state that
√
a2 − x2 = a cos(θ), and not |a cos(θ)| ?

Problems

Exercise Group. Apply Trigonometric Substitution to evaluate the indefinite integral.

5.
∫ √

x2 + 1 dx 6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx 8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx 10.
∫ √

x2 − 16 dx

11.
∫ √

36x2 + 1 dx 12.
∫ √

1− 49x2 dx

13.
∫ √

64x2 − 1 dx 14.
∫

9√
x2 + 6

dx

15.
∫

2√
15− x2

dx 16.
∫

3√
x2 − 11

dx

Exercise Group. Evaluate the indefinite integral. Trigonometric Substitution may not be required.

17.
∫ √

x2 − 5

x
dx 18.

∫
1

(x2 + 1)2
dx

19.
∫

x√
x2 − 7

dx 20.
∫

x2
√

1− x2 dx

21.
∫

x

(x2 + 49)(
3
2 )

dx 22.
∫

8x2

√
x2 − 10

dx

23.
∫

1

(x2 − 16x+ 68)
2 dx 24.

∫
x2(1− x2)−3/2 dx

25.
∫ √

10− x2

3x2
dx 26.

∫
x2

√
x2 + 5

dx

Exercise Group. Evaluate the definite integral by making the proper trigonometric substitution and changing the
bounds of integration. (Note: the corresponding indefinite integrals appeared previously in the Section 6.3 exercises.)

27.
∫ 1

−1

√
1− x2 dx 28.

∫ 7

4

√
x2 − 16 dx
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29.
∫ 6

0

√
x2 + 4 dx 30.

∫ 7

−7

1

(x2 + 1)2
dx

31.
∫ 2

−2

√
9− x2 dx 32.

∫ 1

−1

x2
√

1− x2 dx
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6.4 Partial Fraction Decomposition

In this sectionwe investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = p(x)

q(x) , where p(x) and q(x)
are polynomials and q(x) ̸= 0. Such functions arise in many contexts, one of
which is the solving of certain fundamental differential equations.

youtu.be/watch?v=BoUWS_SVr8A

Figure 6.4.1 Video introduction to
Section 6.4

We beginwith an example that demonstrates themotivation behind this sec-

tion. Consider the integral
∫

1

x2 − 1
dx. We do not have a simple formula for

this (if the denominator were x2 + 1, we would recognize the antiderivative as
being the arctangent function). It can be solved using Trigonometric Substitu-
tion, but note how the integral is easy to evaluate once we realize:

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Thus ∫
1

x2 − 1
dx =

∫
1/2

x− 1
dx−

∫
1/2

x+ 1
dx

=
1

2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This section teaches how to decompose

1

x2 − 1
into

1/2

x− 1
− 1/2

x+ 1
.

We start with a rational function f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadratic terms. The following Key Idea states how to decompose a
rational function into a sum of rational functions whose denominators are all of
lower degree than q.

Key Idea 6.4.2 Partial Fraction Decomposition.

Let
p(x)

q(x)
be a rational function, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decompositionof p(x)q(x)

will contain the sum
A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. Quadratic Terms: Let x2 + bx+ c be an irreducible quadratic that
divides q(x), where (x2+bx+c)n is the highest power ofx2+bx+

c that divides q(x). Then the decomposition of p(x)
q(x) will contain

the sum
B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai,Bi and Ci:

1. Multiply all fractions by q(x), clearing the denominators. Collect
like terms.

https://www.youtube.com/watch?v=BoUWS_SVr8A
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2. Equate the resulting coefficients of the powers of x and solve the
resulting system of linear equations.

An irreducible quadratic is a qua-
dratic that has no real solutions.
Solving ax2 + bx + c = 0 us-
ing the quadratic equation will
determine if a quadratic is irre-
ducible. Completing the square
(which is a common integration
technique) will also tell you if a
quadratic is irreducible.

The following examples will demonstrate how to put this Key Idea into prac-
tice. Example 6.4.3 stresses the decomposition aspect of the Key Idea.

Example 6.4.3 Decomposing into partial fractions.

Decompose f(x) =
1

(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2
with-

out solving for the resulting coefficients.
Solution. The denominator is already factored, as both x2 + x+ 2 and
x2 + x + 7 cannot be factored further. We need to decompose f(x)
properly. Since (x + 5) is a linear term that divides the denominator,
there will be a

A

x+ 5

term in the decomposition.
As (x − 2)3 divides the denominator, we will have the following terms
in the decomposition:

B

x− 2
,

C

(x− 2)2
and

D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+H

x2 + x+ 7
and

Ix+ J

(x2 + x+ 7)2
.

All together, we have

1

(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=
A

x+ 5
+

B

x− 2
+

C

(x− 2)2
+

D

(x− 2)3

+
Ex+ F

x2 + x+ 2
+

Gx+H

x2 + x+ 7
+

Ix+ J

(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not
“hard.”

Video solution

youtu.be/watch?v=9gRlWESr8lM

Example 6.4.4 Decomposing into partial fractions.

Perform the partial fraction decomposition of
1

x2 − 1
.

Solution. The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1

x2 − 1
=

A

x− 1
+

B

x+ 1
.

https://www.youtube.com/watch?v=9gRlWESr8lM
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To solve forA andB, first multiply through by x2 − 1 = (x− 1)(x+1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)

x+ 1

= A(x+ 1) +B(x− 1)

= Ax+A+Bx−B

= (A+B)x+ (A−B),

by collecting like terms.
The next step is key. Note the equality we have:

1 = (A+B)x+ (A−B).

For clarity’s sake, rewrite the left hand side as

0x+ 1 = (A+B)x+ (A−B).

On the left, the coefficient of the x term is 0; on the right, it is (A+B).
Since both sides are equal, we must have that 0 = A+B.
Likewise, on the left, we have a constant term of 1; on the right, the
constant term is (A−B). Therefore we have 1 = A−B.
We have two linear equations with two unknowns. This one is easy to
solve by hand, leading to

A+B = 0

A−B = 1

If we add these two equations, we get 2A = 1 ⇒ A = 1/2. Substitution
into the first equation gives B = −1/2.
Thus

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Video solution

youtu.be/watch?v=u-avVoj3qR0

There is anothermethod for finding the partial fraction decomposition called
the “Heaviside” method, named after Oliver Heaviside. We show a variation of
this process using the same example as in Example 6.4.3.

Example 6.4.5 Decomposing into partial fractions using the Heaviside
method.

Perform the partial fraction decomposition of
1

x2 − 1
.

Solution. As we saw in Example 6.4.4,

1

x2 − 1
=

A

x− 1
+

B

x+ 1
.

To solve forA andB using the Heaviside method, we will build to a com-
mon denominator:

1

x2 − 1
=

A(x+ 1)

(x− 1)(x+ 1)
+

B(x− 1)

(x+ 1)(x− 1)

=
A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

Now since the denomiators match, we will only consider the numerator

https://www.youtube.com/watch?v=u-avVoj3qR0
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equation (essentially if we multiply both sides of the equation by (x −
1)(x+ 1), we will clear the denomiators):

1 = A(x+ 1) +B(x− 1)

Now we substitute in “convenient” values of x. When x = 1, we get
1 = 2A ⇒ A = 1/2. When x = −1, we get 1 = −2B ⇒ B = −1/2.
You may note that x = 1 and x = −1 were not in the domain of the
original fraction. However,

1

x2 − 1
=

A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

is an identity, meaning it is true for all values of x, even those for which
the equation is undefined. We could have chosen any values of x to
substitute. Whenever possible, we choose values of x that will make
one of the factors zero. In this way, we can avoid solving a system of
equations.
Thus as in Example 6.4.3, we get

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Video solution

youtu.be/watch?v=QfEgKEhkL6o

For the remaining examples, we will use a combination of systems of equa-
tions and the Heaviside method to get partial fraction decompositions.

Example 6.4.6 Integrating using partial fractions.

Use partial fraction decomposition to integrate
∫

1

(x− 1)(x+ 2)2
dx.

Solution. We decompose the integrand as follows, as described by Key
Idea 6.4.2:

1

(x− 1)(x+ 2)2
=

A

x− 1
+

B

x+ 2
+

C

(x+ 2)2
.

To solve for A,B and C, we multiply both sides by (x− 1)(x+ 2)2:

1 = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1) (6.4.1)

Now we collect like terms:

1 = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1)

= Ax2 + 4Ax+ 4A+Bx2 +Bx− 2B + Cx− C

= (A+B)x2 + (4A+B + C)x+ (4A− 2B − C)

Equation (6.4.1) offers a direct
route to finding the values of A,
B and C. Since the equation
holds for all values of x, it holds
in particular when x = 1. How-
ever, when x = 1, the right
hand side simplifies to A(1 +
2)2 = 9A. Since the left hand
side is still 1, we have 1 = 9A.
Hence A = 1/9.
Likewise, the equality holds
when x = −2; this leads to
the equation 1 = −3C. Thus
C = −1/3.
Knowing A and C, we can find
the value of B by choosing yet
another value of x, such as x =
0, and solving forB.

We have

0x2 + 0x+ 1 = (A+B)x2 + (4A+B + C)x+ (4A− 2B − C)

leading to the equations

A+B = 0, 4A+B + C = 0 and 4A− 2B − C = 1.

These three equations of three unknowns lead to a unique solution:

A = 1/9, B = −1/9 and C = −1/3.

https://www.youtube.com/watch?v=QfEgKEhkL6o
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Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9

x− 1
dx+

∫
−1/9

x+ 2
dx+

∫
−1/3

(x+ 2)2
dx.

Each can be integrated with a simple substitution with u = x − 1 or
u = x + 2 (or by directly applying Key Idea 5.6.5 as the denominators
are linear functions). The end result is∫

1

(x− 1)(x+ 2)2
dx =

1

9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Video solution

youtu.be/watch?v=LqE8pvIvJco

In examples like Example 6.4.6 where there are repeated roots, there is an
extension of the Heaviside method using derivatives. This method is explained
in Figure 6.4.7 below.

youtu.be/watch?v=0yrzd4JhR3I

Figure 6.4.7 Alternate method for
finding coefficients in Example 6.4.6

Example 6.4.8 Integrating using partial fractions.

Use partial fraction decomposition to integrate
∫

x3

(x− 5)(x+ 3)
dx.

Solution. Key Idea 6.4.2 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case
here, we begin by using polynomial division to reduce the degree of the
numerator. We omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2 +

19x+ 30

(x− 5)(x+ 3)
.

Using Key Idea 6.4.2, we can rewrite the new rational function as:

19x+ 30

(x− 5)(x+ 3)
=

A

x− 5
+

B

x+ 3

for appropriate values of A andB. Clearing denominators, we have
The values of A and B can
be quickly found using the
technique described in Exam-
ple 6.4.6, or they can be found
by equating coefficients, as we
do in Example 6.4.8.

19x+ 30 = A(x+ 3) +B(x− 5)

= (A+B)x+ (3A− 5B).

This implies that:

19 = A+B

30 = 3A− 5B.

Solving this system of linear equations gives

125/8 = A

27/8 = B.

We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2 +

125/8

x− 5
+

27/8

x+ 3

)
dx

=
x2

2
+ 2x+

125

8
ln |x− 5|+ 27

8
ln |x+ 3|+ C.

Video solution

youtu.be/watch?v=1cszweGfYR0

https://www.youtube.com/watch?v=LqE8pvIvJco
https://www.youtube.com/watch?v=0yrzd4JhR3I
https://www.youtube.com/watch?v=1cszweGfYR0
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Example 6.4.9 Integrating using partial fractions.

Use partial fraction decomposition to evaluate∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx.

Solution. The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.4.2. We have:

7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
=

A

x+ 1
+

Bx+ C

x2 + 6x+ 11
.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)

Now, letting x = −1 we have 30 = 6A ⇒ A = 5. When x = 0,
54 = 11A + C. But we know that A = 5, so 54 = 55 + C ⇒ C = −1
Finally, we choose x = 1 (with A = 5, C = −1) we have 92 = 90 +
(B − 1)(2) ⇒ B = 2.
Thus∫

7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1

x2 + 6x+ 11

)
dx.

The first term of this new integrand is easy to evaluate; it leads to a
5 ln |x+ 1| term. The second term is not hard, but takes several steps
and uses substitution techniques.
The integrand

2x− 1

x2 + 6x+ 11
has a quadratic in the denominator and a

linear term in the numerator. This leads us to try substitution. Let u =
x2+6x+11, so du = (2x+6) dx. The numerator is 2x−1, not 2x+6,
but we can get a 2x+ 6 term in the numerator by adding 0 in the form
of “7− 7.”

2x− 1

x2 + 6x+ 11
=

2x− 1 + 7− 7

x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

We can now integrate the first term with substitution, leading to a
ln
∣∣x2 + 6x+ 11

∣∣ term. The final term can be integrated using arctan-
gent. (We can tell there is no further factoring for this quadratic since
the denominator has no real solutions). First, complete the square in
the denominator:

7

x2 + 6x+ 11
=

7

(x+ 3)2 + 2
.

An antiderivative of the latter term can be found using Theorem 5.6.20
and substitution:∫

7

x2 + 6x+ 11
dx =

7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx
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=

∫ (
5

x+ 1
+

2x− 1

x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

(x+ 3)2 + 2
dx

= 5 ln |x+ 1|+ ln
∣∣x2 + 6x+ 11

∣∣− 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember
that one is not expected to “see” the final answer immediately after see-
ing the problem. Rather, given the initial problem, we break it down into
smaller problems that are easier to solve. The final answer is a combina-
tion of the answers of the smaller problems.

Video solution

youtu.be/watch?v=KNN0krvf1UE

Partial Fraction Decomposition is an important tool when dealing with ratio-
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

Section 5.7 introduces new functions, called the Hyperbolic Functions. They
will allow us tomake substitutions similar to those foundwhen studying Trigono-
metric Substitution, allowing us to approach even more integration problems.

https://www.youtube.com/watch?v=KNN0krvf1UE
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6.4.1 Exercises

Terms and Concepts

1. Partial Fraction Decomposition is a method of rewriting functions.

2. (□ True □ False) It is sometimes necessary to use polynomial division before using Partial Fraction De-
composition.

Exercise Group. Decompose without solving for the coefficients, as done in Example 6.4.3.

3.
1

x2 − 5x
4.

4x+ 8

x2 − 16

5.
x− 3

x2 − 7
6.

9x+ 7

x3 + 6x

Problems

Exercise Group. Evaluate the indefinite integral.

7.
∫

5x− 14

x2 − 6x+ 8
dx 8.

∫
− x+ 15

x2 − 5x
dx

9.
∫

18

5x2 − 5
dx 10.

∫
6x+ 28

3x2 + 28x+ 9
dx

11.
∫

3x+ 29

(x+ 7)
2 dx 12.

∫
9x+ 48

(x+ 5)
2 dx

13.
∫

13x2 + 53x+ 54

x(x+ 3)
2 dx 14.

∫
81x2 + 735x+ 516

(x+ 1) (x+ 6) (−5− 8x)
dx

15.
∫

113x− 273x2

(5x− 4) (6x+ 2) (9x− 1)
dx 16.

∫
x2 + x− 5

x2 − 3x− 4
dx

17.
∫

x3

x2 + x− 42
dx 18.

∫
4x2 − 32x+ 84

x2 − 8x+ 21
dx

19.
∫

1

x3 + 8x2 + 19x
dx 20.

∫
x2 + 8x+ 12

x2 + 6x+ 11
dx

21.
∫

4x− 9x2 + 65

(x+ 4) (3x2 + 5x− 9)
dx 22.

∫
7x2 + 9x+ 5

(x+ 1) (x2 + 2x+ 2)
dx

23.
∫

(8)x2 + (5)x− (9)

(x+ 8) (x2 + 9)
dx 24.

∫
x2 + 18x− 194

(x+ 4) (x2 − 2x+ 26)
dx

25.
∫

6x2 − 42x+ 32

(x− 4) (x2 − 4x+ 10)
dx 26.

∫
(9)x2 − (41)x− (144)

(x+ 7) (x2 − 10x+ 27)
dx

Exercise Group. Evaluate the definite integral.

27.
∫ 2

1

11x− 64

(x− 4) (x− 8)
dx 28.

∫ 2

0

38x− 15

(5x+ 3) (x+ 6)
dx

29.
∫ 1

−1

x2 + 7x

(x− 10) (x2 + 6x+ 10)
dx 30.

∫ 1

0

x

(x+ 1)(x2 + 2x+ 1)
dx
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6.5 Improper Integration

We begin this section by considering the following definite integrals:

•
∫ 100

0

1

1 + x2
dx ≈ 1.5608

•
∫ 1000

0

1

1 + x2
dx ≈ 1.5698

•
∫ 10,000

0

1

1 + x2
dx ≈ 1.5707

Notice how the integrand is 1/(1+x2) in each integral (which is sketched in
Figure 6.5.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1

1 + x2
dx = tan−1(x)

∣∣∣b
0
= tan−1(b)− tan−1(0) = tan−1(b).

As b → ∞, tan−1(b) → π/2. Therefore it seems that as the upper bound

b grows, the value of the definite integral
∫ b

0

1

1 + x2
dx approaches π/2 ≈

1.5708. This should strike the reader as being a bit amazing: even though the
curve extends “to infinity,” it has a finite amount of area underneath it.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.5.1Graphing f(x) =
1

1 + x2

youtu.be/watch?v=HhBRqV7rt4I

Figure 6.5.2 Video introduction to
Section 6.5

When we defined the definite integral
∫ b

a

f(x) dx, we made two stipula-

tions:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

In this section we consider integrals where one or both of the above condi-
tions do not hold. Such integrals are called improper integrals.

6.5.1 Improper Integrals with Infinite Bounds

Definition 6.5.3 Improper Integrals with Infinite Bounds; Converge, Di-
verge.

1. Let f be a continuous function on [a,∞). Define∫ ∞

a

f(x) dx to be lim
b→∞

∫ b

a

f(x) dx.

2. Let f be a continuous function on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a

f(x) dx.

3. Let f be a continuous function on (−∞,∞). Let c be any real
number; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a

f(x) dx + lim
b→∞

∫ b

c

f(x) dx.

https://www.youtube.com/watch?v=HhBRqV7rt4I
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An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.5.4 Evaluating improper integrals.

Evaluate the following improper integrals.

1.
∫ ∞

1

1

x2
dx

2.
∫ ∞

1

1

x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1

1 + x2
dx

Solution.

1. ∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞

−1

x

∣∣∣b
1

= lim
b→∞

−1

b
+ 1

= 1.

A graph of the area defined by this integral is given in Figure 6.5.5.

f(x) =
1

x2

1 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.5.5 A graph of f(x) = 1
x2 in

Example 6.5.4

2. ∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1

x
dx

diverges. Compare the graphs in Figures 6.5.5 and 6.5.6; notice
how the graph of f(x) = 1/x is noticeably larger. This difference
is enough to cause the improper integral to diverge.

f(x) =
1

x

1 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.5.6 A graph of f(x) = 1
x in

Example 6.5.4

3. ∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a

ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.

A graph of the area defined by this integral is given in Figure 6.5.7.

f(x) = ex

−1−5−10

1

x

y

Figure 6.5.7 A graph of f(x) = ex in
Example 6.5.4
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4. Wewill need to break this into two improper integrals and choose
a value of c as in part 3 of Definition 6.5.3. Any value of c is fine;
we choose c = 0.∫ ∞

−∞

1

1 + x2
dx = lim

a→−∞

∫ 0

a

1

1 + x2
dx+ lim

b→∞

∫ b

0

1

1 + x2
dx

= lim
a→−∞

tan−1(x)
∣∣∣0
a
+ lim

b→∞
tan−1(x)

∣∣∣b
0

= lim
a→−∞

(
tan−1(0)− tan−1(a)

)
+ lim

b→∞

(
tan−1(b)− tan−1(0)

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has
value:

= π.

A graph of the area defined by this integral is given in Figure 6.5.8.

f(x) =
1

1 + x2

−10 −5 5 10

1

x

y

Figure 6.5.8 A graph of f(x) = 1
1+x2

in Example 6.5.4

Video solution

youtu.be/watch?v=hXnmu7fZj-E

The previous section introduced L’Hospital’s Rule, a method of evaluating
limits that return indeterminate forms. It is not uncommon for the limits result-
ing from improper integrals to need this rule as demonstrated next.

Example 6.5.9 Improper integration and L’Hospital’s Rule.

Evaluate the improper integral
∫ ∞

1

ln(x)
x2

dx.

Solution. This integral will require the use of Integration by Parts. Let
u = ln(x) and dv = 1/x2 dx. Then

f(x) =
ln(x)
x2

1 5 10

0.2

0.4

x

y

Figure 6.5.10 A graph of f(x) = ln(x)
x2

in Example 6.5.9

∫ ∞

1

ln(x)
x2

dx = lim
b→∞

∫ b

1

ln(x)
x2

dx

= lim
b→∞

(
− ln(x)

x

∣∣∣b
1
+

∫ b

1

1

x2
dx

)

= lim
b→∞

(
− ln(x)

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln(b)

b
− 1

b
− (− ln(1)− 1)

)
.

The 1/b and ln(1) terms go to 0, leaving lim
b→∞

− ln(b)
b + 1. We need to

evaluate lim
b→∞

ln(b)
b with l’Hospital’s Rule. We have:

lim
b→∞

ln(b)
b

by LHR
= lim

b→∞

1/b

1

= 0.

https://www.youtube.com/watch?v=hXnmu7fZj-E
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Thus the improper integral evaluates as:∫ ∞

1

ln(x)
x2

dx = 1.

Video solution

youtu.be/watch?v=hKpXU3fFS6g
6.5.2 Improper Integrals with Infinite Range
We have just considered definite integrals where the interval of integration was
infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.

Definition 6.5.11 Improper Integration with Infinite Range.

Let f(x) be a continuous function on [a, b] except at c, a ≤ c ≤ b, where
x = c is a vertical asymptote of f . Define∫ b

a

f(x) dx = lim
t→c−

∫ t

a

f(x) dx+ lim
t→c+

∫ b

t

f(x) dx.

Example 6.5.12 Improper integration of functions with infinite range.

Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1

x2
dx

Solution.

1. A graph of f(x) = 1/
√
x is given in Figure 6.5.13. Notice that f

has a vertical asymptote at x = 0; in some sense, we are trying to
compute the area of a region that has no “top.” Could this have a
finite value? ∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though
it has no upper bound (strange things can occur in mathematics
when considering the infinite).

In Definition 6.5.11, c can be
one of the endpoints (a or b). In
that case, there is only one limit
to consider as part of the defini-
tion.

f(x) =
1√
x

0.5 1 1.5 2

2

4

6

8

10

x

y

Figure 6.5.13 A graph of f(x) = 1√
x

in Example 6.5.12

2. The function f(x) = 1/x2 has a vertical asymptote at x = 0,
as shown in Figure 6.5.14, so this integral is an improper integral.
Let’s eschew using limits for a moment and proceed without rec-
ognizing the improper nature of the integral. This leads to:∫ 1

−1

1

x2
dx = − 1

x

∣∣∣1
−1

https://www.youtube.com/watch?v=hKpXU3fFS6g
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= −1− (1)

= −2. (!)

f(x) =
1

x2

−1 −0.5 0.5 1

5

10

15

20

x

y

Figure 6.5.14 A graph of f(x) = 1
x2 in

Example 6.5.12

Clearly the area in question is above the x-axis, yet the area is sup-
posedly negative! Why does our answer not match our intuition?
To answer this, evaluate the integral using Definition 6.5.11.∫ 1

−1

1

x2
dx = lim

t→0−

∫ t

−1

1

x2
dx+ lim

t→0+

∫ 1

t

1

x2
dx

= lim
t→0−

− 1

x

∣∣∣t
−1

+ lim
t→0+

− 1

x

∣∣∣1
t

= lim
t→0−

−1

t
− 1 + lim

t→0+
−1 +

1

t

⇒
(
∞− 1

)
+
(
− 1 +∞

)
.

Neither limit converges hence the original improper integral di-
verges. The nonsensical answer we obtained by ignoring the im-
proper nature of the integral is just that: nonsensical.

Video solution

youtu.be/watch?v=F46oIXOBjAw
6.5.3 Understanding Convergence and Divergence
Oftentimes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integrating.

Our first tool is to understand the behavior of functions of the form
1

xp
.

Example 6.5.15 Improper integration of 1/xp.

Determine the values of p for which
∫ ∞

1

1

xp
dx converges.

Solution. We begin by integrating and then evaluating the limit.∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

1

xp
dx

= lim
b→∞

∫ b

1

x−p dx (assume p ̸= 1)

= lim
b→∞

1

−p+ 1
x−p+1

∣∣∣b
1

= lim
b→∞

1

1− p

(
b1−p − 11−p

)
.

When does this limit converge— i.e., when is this limit not∞? This limit
converges precisely when the power of b is less than 0: when 1 − p <
0 ⇒ 1 < p.

f(x) =
1

xq

f(x) =
1

xp

p < 1 < q

1

x

y

Figure 6.5.16 Plotting functions of the
form 1/xp in Example 6.5.15

Our analysis shows that if p > 1, then
∫ ∞

1

1

xp
dx converges. When

p < 1 the improper integral diverges; we showed in Example 6.5.4 that
when p = 1 the integral also diverges.

https://www.youtube.com/watch?v=F46oIXOBjAw
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Figure 6.5.16 graphs y = 1/x with a dashed line, along with graphs of
y = 1/xp, p < 1, and y = 1/xq , q > 1. Somehow the dashed line forms
a dividing line between convergence and divergence.

Video solution

youtu.be/watch?v=-W8yESqiexA

The result of Example 6.5.15 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1

xp
dx. These results are summarized in the

following Key Idea.

Key Idea 6.5.17 Convergence of Improper Integrals involving 1/xp.

1. The improper integral
∫ ∞

1

1

xp
dx converges when p > 1 and di-

verges when p ≤ 1.

2. The improper integral
∫ 1

0

1

xp
dx converges when p < 1 and di-

verges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We often use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

We used the upper and lower
bound of “1” in Key Idea 6.5.17
for convenience. It canbe replaced
by any a where a > 0.

Theorem 6.5.18 Direct Comparison Test for Improper Integrals.

Let f and g be continuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a

g(x) dx converges, then
∫ ∞

a

f(x) dx converges.

2. If
∫ ∞

a

f(x) dx diverges, then
∫ ∞

a

g(x) dx diverges.

Example 6.5.19 Determining convergence of improper integrals.

Determine the convergence of the following improper integrals.

1.
∫ ∞

1

e−x2

dx 2.
∫ ∞

3

1√
x2 − x

dx

Solution.

1. The function f(x) = e−x2

does not have an antiderivative ex-
pressible in terms of elementary functions, sowe cannot integrate
directly. It is comparable to g(x) = 1/x2, and as demonstrated
in Figure 6.5.20, e−x2

< 1/x2 on [1,∞). We know from Key

Idea 6.5.17 that
∫ ∞

1

1

x2
dx converges, hence

∫ ∞

1

e−x2

dx also
converges.

f(x) = e−x2

f(x) =
1

x2

1 2 3 4

0.2

0.4

0.6

0.8

1

x

y

Figure 6.5.20 Graphs of f(x) = e−x2

and f(x) = 1/x2 in Example 6.5.19

https://www.youtube.com/watch?v=-W8yESqiexA


6.5. IMPROPER INTEGRATION 367

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1

x
. We know

from Key Idea 6.5.17 and the subsequent note that
∫ ∞

3

1

x
dx di-

verges, so we seek to compare the original integrand to 1/x. It
is easy to see that when x > 0, we have x =

√
x2 >

√
x2 − x.

Taking reciprocals reverses the inequality, giving

1

x
<

1√
x2 − x

.

Using Theorem 6.5.18, we conclude that since
∫ ∞

3

1

x
dx diverges,∫ ∞

3

1√
x2 − x

dx diverges as well. Figure 6.5.21 illustrates this.
f(x) =

1√
x2 − x

f(x) =
1

x

1 2 3 4 5 6

0.2

0.4

x

y

Figure 6.5.21 Graphs of f(x) =
1/

√
x2 − x and f(x) = 1/x in Exam-

ple 6.5.19

Video solution

youtu.be/watch?v=356-QIN7fWA

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a little

“too nice.” For instance, it was convenient that
1

x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x + 5”? That is, what can we say about the

convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1

x
>

1√
x2 + 2x+ 5

, so we

cannot use Theorem 6.5.18.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Theorem 6.5.22 Limit Comparison Test for Improper Integrals.

Let f and g be continuous functions on [a,∞) where f(x) > 0 and
g(x) > 0 for all x. If

lim
x→∞

f(x)

g(x)
= L, 0 < L < ∞,

then ∫ ∞

a

f(x) dx and
∫ ∞

a

g(x) dx

either both converge or both diverge.

Example 6.5.23 Determining convergence of improper integrals.

Determine the convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx.

Solution. As x gets large, the denominator of the integrand will begin

to behave much like y = x. So we compare
1√

x2 + 2x+ 5
to

1

x
with

the Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5

1/x
= lim

x→∞

x√
x2 + 2x+ 5

.

The immediate evaluation of this limit returns∞/∞, an indeterminate

https://www.youtube.com/watch?v=356-QIN7fWA
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form. Using L’Hospital’s Rule seems appropriate, but in this situation, it
does not lead to useful results. (We encourage the reader to employ
L’Hospital’s Rule at least once to verify this.)
The trouble is the square root function. To get rid of it, we employ the
following fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true

when either c or L is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As

x gets very large, the function
1√

x2 + 2x+ 5
looks very much like

1

x
.

Since we know that
∫ ∞

3

1

x
dx diverges, by the Limit Comparison Test

we know that
∫ ∞

3

1√
x2 + 2x+ 5

dx also diverges. Figure 6.5.24 graphs

f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, illustrating that as x gets

large, the functions become indistinguishable.

f(x) =
1√

x2 + 2x+ 5

f(x) =
1

x

5 10 15 20

−0.1

0.1

0.2

0.3

x

y

Figure 6.5.24 Graphing f(x) =
1√

x2+2x+5
and f(x) = 1

x in Exam-
ple 6.5.23

Video solution

youtu.be/watch?v=nIr1A1Tmako

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

If you do need to use compari-
son for an improper integralwith
infinite range, it is generallywise
to stick with direct comparison.
Direct comparison will continue
to work in more or less the way
you expect; however, limit com-
parison ismuchmore subtle, and
prone to incorrect conclusions.

This chapter has explored many integration techniques. We learned Substi-
tution, which “undoes” the Chain Rule of differentiation, as well as Integration
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric functions and introduced the hyperbolic functions,
which are closely related to the trigonometric functions. All techniques effec-
tively have this goal in common: rewrite the integrand in a new way so that the
integration step is easier to see and implement.

As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible to write in terms of elementary functions,
and evenwhen a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer al-
gebra systemMathematica™ has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in-
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximating
the value of integration.

The next chapter stresses the uses of integration. We generally do not find
antiderivatives for antiderivative’s sake, but rather because they provide the so-
lution to some typeof problem. The following chapter introduces us to a number
of different problems whose solution is provided by integration.

https://www.youtube.com/watch?v=nIr1A1Tmako
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6.5.4 Exercises

Terms and Concepts

1. The definite integral was defined with what two stipulations?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0

f(x) dx is said to .

3. If
∫ ∞

1

f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we know that
∫ ∞

1

g(x) dx .

4. For what values of p will
∫ ∞

1

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

5. For what values of p will
∫ ∞

10

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

6. For what values of p will
∫ 1

0

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

Problems

Exercise Group. In the following exercises, evaluate the given improper integral.

7.
∫ ∞

0

e5−2x dx 8.
∫ ∞

1

1

x3
dx

9.
∫ ∞

1

x−4 dx 10.
∫ ∞

−∞

1

x2 + 9
dx

11.
∫ 0

−∞
2x dx 12.

∫ 0

−∞
0.5x dx

13.
∫ ∞

−∞

x

x2 + 1
dx 14.

∫ ∞

3

x

x2 − 4
dx

15.
∫ ∞

2

1

(x− 1)
2 dx 16.

∫ 2

1

1

(x− 1)
2 dx
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17.
∫ ∞

2

1

x− 1
dx 18.

∫ 2

1

1

x− 1
dx

19.
∫ 1

−1

1

x
dx 20.

∫ 3

1

1

x− 2
dx

21.
∫ π

0

sec2(x) dx 22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0

xe−x dx 24.
∫ ∞

0

xe−x2

dx

25.
∫ ∞

−∞
xe−x2

dx 26.
∫ ∞

−∞

1

ex + e−x
dx

27.
∫ 1

0

x ln(x) dx 28.
∫ 1

0

x2 ln(x) dx

29.
∫ ∞

1

ln(x)
x

dx 30.
∫ 1

0

ln(x) dx

31.
∫ ∞

1

ln(x)
x2

dx 32.
∫ ∞

1

ln(x)√
x

dx

33.
∫ ∞

0

e−x sin(x) dx 34.
∫ ∞

0

e−x cos(x) dx

Exercise Group. In the following exercises, use the Direct Comparison Test or the Limit Comparison Test to determine
whether the given definite integral converges or diverges. Clearly state what test is being used and what function the
integrand is being compared to.

35.
∫ ∞

10

3√
3x2 + 2x− 5

dx 36.
∫ ∞

2

4√
7x3 − x

dx

37.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx 38.

∫ ∞

1

e−x ln(x) dx

39.
∫ ∞

5

e−x2+3x+1 dx 40.
∫ ∞

0

√
x

ex
dx

41.
∫ ∞

2

1

x2 + sin(x)
dx 42.

∫ ∞

0

x

x2 + cos(x)
dx

43.
∫ ∞

0

1

x+ ex
dx 44.

∫ ∞

0

1

ex − x
dx



Chapter 7

Applications of Integration

Webegin this chapter with a reminder of a few key concepts from Chapter 5. Let
f be a continuous function on [a, b] which is partitioned into n equally spaced
subintervals as

a = x0 < x1 < · · · < xn < xn = b.

Let∆x = (b− a)/n denote the length of the subintervals, and let ci be any
x-value in the ith subinterval. Definition 5.3.17 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are often used to approximate some quan-
tity (area, volume, work, pressure, etc.). The approximation becomes exact by
taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 5.3.26 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =

∫ b

a

f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals
can be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications.
Suppose the valueQ of a quantity is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 7.0.1 Application of Definite Integrals Strategy.

Let a quantity be given whose valueQ is to be computed.

1. Divide the quantity into n smaller “subquantities” of valueQi.

2. Identify a variable x and function f(x) such that each subquan-
tity can be approximated with the product f(ci)∆x, where ∆x
represents a small change in x. Thus Qi ≈ f(ci)∆x. A sample
approximation f(ci)∆x ofQi is called a differential element.

3. Recognize that Q =

n∑
i=1

Qi ≈
n∑

i=1

f(ci)∆x, which is a Riemann

Sum.

371
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4. Taking the appropriate limit givesQ =

∫ b

a

f(x) dx

This Key Idea will make more sense after we have had a chance to use it
several times. We begin with Area Between Curves, which we addressed briefly
in Section 5.4.

7.1 Area Between Curves

We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.4 and approach it instead using the
technique described in Key Idea 7.0.1.

youtu.be/watch?v=HAWBGypgKoQ

Figure 7.1.1 Video introduction to
Section 7.1

Let Q be the area of a region bounded by continuous functions f and g. If
we break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systematically break a region into subre-

gions. A graph will help. Consider Figure 7.1.2(a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
particularly efficient way is to “slice” it vertically, as shown in Figure 7.1.2(b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value ci in the ith slice, we set
the height of the rectangle to be f(ci)−g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure 7.1.2(c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differential element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑
i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b

a

(
f(x)− g(x)

)
dx.

f(x)

g(x)

a b

x

y

(a)

f(x)

g(x)

a b

x

y

(b)

f(x)

g(x)

a b

x

y

(c)

Figure 7.1.2 Subdividing a region into vertical slices and approximating the areas
with rectangles

Theorem 7.1.3 Area Between Curves (restatement of Theorem 5.4.23).

Let f(x) and g(x) be continuous functions defined on [a, b] where
f(x) ≥ g(x) for all x in [a, b]. The area of the region bounded by the

https://www.youtube.com/watch?v=HAWBGypgKoQ
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curves y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 7.1.4 Finding area enclosed by curves.

Find the area of the region bounded by f(x) = sin(x) + 2, g(x) =
1
2 cos(2x)− 1, x = 0 and x = 4π, as shown in Figure 7.1.5.

f(x)

g(x)

2 4 6 8 10

−2

−1

1

2

3

4π

x

y

Figure 7.1.5 Graphing an enclosed re-
gion in Example 7.1.4

Solution. The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the
region is the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin(x) + 2−

(1
2
cos(2x)− 1

))
dx

= − cos(x)− 1

4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.

Video solution

youtu.be/watch?v=qbhOWW70UyM

Example 7.1.6 Finding total area enclosed by curves.

Find the total area of the region enclosed by the functions f(x) = −2x+
5 and g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.1.7.

1 2 3 4

−4

−2

2

x

y

Figure 7.1.7 Graphing a region en-
closed by two functions in Exam-
ple 7.1.6

Solution. A quick calculation shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by computing
∫ 4

1

(
f(x)− g(x)

)
dx, but this

ignores the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless
integration returns −9/4, hardly the expected value of an area.) Thus
we compute the total area by breaking the interval [1, 4] into two subin-
tervals, [1, 2] and [2, 4] and using the proper integrand in each.

Total Area =
∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12 + 8/3

= 37/12 = 3.083 units2.

Video solution

youtu.be/watch?v=4wap7fFasZk

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 7.1.3. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

https://www.youtube.com/watch?v=qbhOWW70UyM
https://www.youtube.com/watch?v=4wap7fFasZk
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Example 7.1.8 Finding area: integrating with respect to y.

Find the area of the region enclosed by the functions y =
√
x+ 2, y =

−(x− 1)2 + 3 and y = 2, as shown in Figure 7.1.9.

y =
√
x+ 2 y = −(x− 1)2 + 3

1 2

1

2

3

x

y

Figure 7.1.9 Graphing a region for Ex-
ample 7.1.8

Solution. Wegive twoapproaches to this problem. In the first approach,
we notice that the region’s “top” is defined by two different curves. On
[0, 1], the top function is y =

√
x + 2; on [1, 2], the top function is

y = −(x− 1)2 + 3.
Thus we compute the area as the sum of two integrals:

Total Area =
∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3 + 2/3

= 4/3.

The second approach is clever and very useful in certain situations. We
are used to viewing curves as functions of x; we input an x-value and a
y-value is returned. Some curves can also be described as functions of y:
input a y-value and anx-value is returned. We can rewrite the equations
describing the boundary by solving for x:

y =
√
x+ 2 ⇒ x = (y − 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y + 1.

x = (y − 2)2 x =
√
3− y + 1

1 2

1

2

3

x

y

Figure 7.1.10 The region used in Ex-
ample 7.1.8 with boundaries rela-
beled as functions of y

Figure 7.1.10 shows the region with the boundaries relabeled. A differ-
ential element, a horizontal rectangle, is also pictured. The width of the
rectangle is a small change in y: ∆y. The height of the rectangle is a dif-
ference in x-values. The “top” x-value is the largest value, i.e., the right-
most. The “bottom” x-value is the smaller, i.e., the leftmost. Therefore
the height of the rectangle is(√

3− y + 1
)
− (y − 2)2.

The area is found by integrating the above function with respect to y
with the appropriate bounds. We determine these by considering the y-
values the region occupies. It is bounded below by y = 2, and bounded
above by y = 3. That is, both the “top” and “bottom” functions exist on
the y interval [2, 3]. Thus

Total Area =
∫ 3

2

(√
3− y + 1− (y − 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y − 1

3
(y − 2)3

)∣∣∣3
2

= 4/3.

Video solution

youtu.be/watch?v=GhdqEHPbPm0

This calculus-based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 7.1.11 computes the area of a
triangle. While the formula “ 12 × base × height” is well known, in arbitrary
triangles it can be nontrivial to compute the height. Calculusmakes the problem
simple.

https://www.youtube.com/watch?v=GhdqEHPbPm0
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Example 7.1.11 Finding the area of a triangle.

Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+ 5
2 , as shown in Figure 7.1.12.

y = x+ 1
y = −2x+ 7

y = − 1
2x+ 5

2

1 2 3

1

2

3

x

y

Figure 7.1.12Graphing a triangular re-
gion in Example 7.1.11

Solution. Recognize that there are two “top” functions to this region,
causing us to use two definite integrals.

Total Area =
∫ 2

1

(
(x+ 1)− (−1

2
x+

5

2
)
)
dx

+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5

2
)
)
dx

= 3/4 + 3/4

= 3/2.

We can also approach this by converting each function into a function
of y. This also requires 2 integrals, so there isn’t really any advantage to
doing so. We do it here for demonstration purposes.
The “top” function is always x = 7−y

2 while there are two “bottom”
functions. Being mindful of the proper integration bounds, we have

Total Area =
∫ 2

1

(7− y

2
− (5− 2y)

)
dy +

∫ 3

2

(7− y

2
− (y − 1)

)
dy

= 3/4 + 3/4

= 3/2.

Of course, the final answer is the same. (It is interesting to note that the
area of all 4 subregions used is 3/4. This is coincidental.)

Video solution

youtu.be/watch?v=tdFHE8cjDAY

Whilewehave focused on producing exact answers, we are also able tomake
approximations using the principle of Theorem 7.1.3. The integrand in the theo-
rem is a distance (“top minus bottom”); integrating this distance function gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integration techniques developed in Section 5.5. The fol-
lowing example demonstrates this.

Example 7.1.13 Numerically approximating area.

To approximate the area of a lake, shown in Figure 7.1.14(a), the
“length” of the lake is measured at 200-foot increments, as shown in Fig-
ure 7.1.14(b). The lengths are given in hundreds of feet. Approximate
the area of the lake.

https://www.youtube.com/watch?v=tdFHE8cjDAY
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(a)

2.
25 5.
08

6.
35

5.
21

2.
76

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

x

y

(b)

Figure 7.1.14 (a) A sketch of a lake, and (b) the lake with lengthmeasure-
ments

Solution. The measurements of length can be viewed as measuring
“top minus bottom” of two functions. The exact answer is found by inte-

grating
∫ 12

0

(
f(x)−g(x)

)
dx, but of coursewedon’t know the functions

f and g. Our discrete measurements instead allow us to approximate.
We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2

3

(
1 · 0 + 4 · 2.25 + 2 · 5.08 + 4 · 6.35 + 2 · 5.21 + 4 · 2.76 + 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, square units are given
by (100 ft)2 =10, 000 ft2, giving a total area of 440, 133 ft2. (Sincewe are
approximating, we’d likely say the area was about 440, 000 ft2, which is
a little more than 10 acres.)

In the next section we apply our applications of integration techniques to
finding the volumes of certain solids.
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7.1.1 Exercises

Terms and Concepts

1. The area between curves is always positive. (□ True □ False)
2. Calculus can be used to find the area of basic geometric shapes. (□ True □ False)
3. In your own words, describe how to find the total area enclosed by y = f(x) and y = g(x).

4. Describe a situationwhere it is advantageous to find an area enclosed by curves through integrationwith respect
to y instead of x.

Problems

Exercise Group. In the following exercises, find the area of the shaded region in the given graph.
5. Between y = 1

2x+ 3 and y = 1
2 cos(x) + 1, for

0 ≤ x ≤ 2π.

y = 1
2 cos(x) + 1

y = 1
2x+ 3

2

4

6

π 2π

x

y

6. Between y = −3x3 + 3x+ 2 and
y = x2 + x− 1, for−1 ≤ x ≤ 1.

y = x2 + x− 1

y = −3x3 + 3x+ 2

−1 1

−1

1

2

3

x

y

7. Between y = 1 and y = 2, for 0 ≤ x ≤ π.

y = 1

y = 2

1

2

ππ/2

x

y
8. Between y = sin(x) + 1 and y = sin(x), for

0 ≤ x ≤ π.

y = sin(x)

y = sin(x) + 1

1

2

ππ/2

x

y
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9. Between y = sin(4x) and y = sec2(x), for
0 ≤ x ≤ π/4.

y = sin(4x)

y = sec2(x)

1

2

π/4π/8

x

y

10. Between y = sin(x) and y = cos(x), for
π/4 ≤ x ≤ 5π/4.

y = sin(x)

y = cos(x)

−1

−0.5

0.5

1

π/4 π/2 3π/4 π 5π/4

x

y

11. Between y = 2x and y = 4x, for 0 ≤ x ≤ 1.

y = 2x

y = 4x

0.2 0.4 0.6 0.8 1

1

2

3

4

x

y

12. Bounded by the curves y =
√
x+ 1,

y =
√
2− x+ 1, and y = 1.

y =
√
x+ 1 y =

√
2− x+ 1

0.5 1 1.5 2

0.5

1

1.5

2

2.5

x

y

Exercise Group. In the following exercises, find the total area enclosed by the functions f and g.
13. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1 14. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3

15. f(x) = sin(x), g(x) = 2x/π 16. f(x) = x3 − 4x2 +x− 1, g(x) = −x2 +2x− 4

17. f(x) = x, g(x) =
√
x 18. f(x) = −x3 + 5x2 + 2x+ 1,

g(x) = 3x2 + x+ 3

19. The functions f(x) = cos(x) and g(x) = sinx intersect infinitely many times, forming an infinite number of
repeated, enclosed regions. Find the areas of these regions.

20. The functions f(x) = cos(2x) and g(x) = sin(x) intersect infinitely many times, forming an infinite number of
repeated, enclosed regions. Find the areas of these regions.

Exercise Group. In the following exercises, find the area of the enclosed region in two ways:

(a) by treating the boundaries as functions of x, and

(b) by treating the boundaries as functions of y.
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21. Bounded by y = x2 + 1, y = 1
4 (x− 3)2 + 1,

and y = 1.

y = 1
4 (x− 3)2 + 1

y = x2 + 1

y = 1

1 2 3

0.5

1

1.5

2

x

y

22. Bounded by y =
√
x, y = −2x+ 3, and

y = − 1
2x.

y =
√
x

y = − 1
2x

y = −2x+ 3

−0.5 0.5 1 1.5 2 2.5

−1

−0.5

0.5

1

x

y

23. Between the curves y = x+ 2 and y = x2.

y = x2

y = x+ 2

−1 1 2

1

2

3

4

x

y
24. Between the curves x = − 1

2y + 1 and x = 1
2y

2.

x = 1
2y

2

x = − 1
2y + 1

−0.5 0.5 1 1.5 2 2.5

−2

−1

1

x

y

25. Bounded by y = x1/3, y =
√

x− 1/2, y = 0,
and x = 1.

y = x1/3

y =
√
x− 1/2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

26. Bounded by the curves y =
√
x+ 1,

y =
√
2− x+ 1, and y = 1.

y =
√
x+ 1 y =

√
2− x+ 1

0.5 1 1.5 2

0.5

1

1.5

2

2.5

x

y

Exercise Group. In the following exercises, find the area of the triangle formed by the given three points.
27. (1, 1),(2, 3), and (3, 3) 28. (−1, 1),(1, 3), and (2,−1)

29. (1, 1),(3, 3), and (0, 4) 30. (0, 0),(2, 5), and (5, 2)

31. Use the Trapezoidal Rule to approximate the area of the pictured lake whose lengths, in hundreds of feet, are
measured in 100-foot increments.
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4.
9

5
.2 7.
3

4
.5

32. Use Simpson’s Rule to approximate the area of the pictured lake whose lengths, in hundreds of feet, are mea-
sured in 200-foot increments.

4.
25

6.
6

7.
7

6
.4
5

4
.9
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7.2 Volume by Cross-Sectional Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.2.1, is

Area of the base × height.

Figure 7.2.1 The volume of a general
right cylinder

We can use this fact as the building block in finding volumes of a variety of
shapes.

youtu.be/watch?v=jx9XyQKDaP4

Figure 7.2.2 Video introduction to
Section 7.2

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sectional area × thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(xi) represent the cross-
sectional area of the ith slice, and let ∆xi represent the thickness of this slice
(the thickness is a small change in x). The total volume of the solid is approxi-
mately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 7.2.3 Volume By Cross-Sectional Area.

The volume V of a solid, oriented along the x-axis with cross-sectional
area A(x) from x = a to x = b, is

V =

∫ b

a

A(x) dx.

Example 7.2.4 Finding the volume of a solid.

Find the volume of a pyramid with a square base of side length 10 in and
a height of 5 in.
Solution. There aremanyways to “orient” the pyramid along thex-axis;
Figure 7.2.5 gives one such way, with the pointed top of the pyramid at
the origin and the x-axis going through the center of the base.

Figure 7.2.5 Orienting a pyramid
along the x-axis in Example 7.2.4

Each cross section of the pyramid is a square; this is a sample differential
element. To determine its area A(x), we need to determine the side
lengths of the square.
When x = 5, the square has side length 10; when x = 0, the square
has side length 0. Since the edges of the pyramid are lines, it is easy to
figure that each cross-sectional square has side length 2x, givingA(x) =
(2x)2 = 4x2.
If one were to cut a slice out of the pyramid at x = 3, as shown in
Figure 7.2.6, one would have a shape with square bottom and top with
sloped sides. If the slice were thin, both the bottom and top squares
would have sides lengths of about 6, and thus the cross-sectional area
of the bottom and top would be about 36 in2. Letting ∆xi represent
the thickness of the slice, the volume of this slice would then be about

https://www.youtube.com/watch?v=jx9XyQKDaP4
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36∆xi in3.

Figure 7.2.6 Cutting a slice in the pyra-
mid in Example 7.2.4 at x = 3

Cutting the pyramid into n slices divides the total volume into n equally-
spaced smaller pieces, each with volume (2xi)

2∆x, where xi is the ap-
proximate location of the slice along the x-axis and ∆x represents the
thickness of each slice. One can approximate total volume of the pyra-
mid by summing up the volumes of these slices:

Approximate volume =
n∑

i=1

(2xi)
2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid;
recoginizing this sum as a Riemann Sum allows us to find the exact an-
swer using a definite integral, matching the definite integral given by
Theorem 7.2.3.
We have

V = lim
n→∞

n∑
i=1

(2xi)
2∆x

=

∫ 5

0

4x2 dx

=
4

3
x3
∣∣∣5
0

=
500

3
in3 ≈ 166.67 in3.

We can check our work by consulting the general equation for the vol-
ume of a pyramid (see the back cover under “Volume of A General
Cone”):
1
3 × area of base × height.
Certainly, using this formula from geometry is faster than our new
method, but the calculus-based method can be applied to much more
than just cones.

Video solution

youtu.be/watch?v=JeQve79KVDE

An important special case of Theorem 7.2.3 is when the solid is a solid of
revolution, that is, when the solid is formed by rotating a shape around an axis.

Start with a function y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sections
are disks (thin circles). Let R(x) represent the radius of the cross-sectional disk
at x; the area of this disk is πR(x)2. Applying Theorem 7.2.3 gives the Disk
Method.

Key Idea 7.2.7 The Disk Method.

Let a solid be formed by revolving the curve y = f(x) from x = a to
x = b around a horizontal axis, and let R(x) be the radius of the cross-
sectional disk at x. The volume of the solid is

V = π

∫ b

a

R(x)2 dx.

https://www.youtube.com/watch?v=JeQve79KVDE
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Example 7.2.8 Finding volume using the Disk Method.

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, around the x-axis.
Solution. A sketch can help us understand this problem. In Fig-
ure 7.2.9(a), the curve y = 1/x is sketched along with the differential
element — a disk — at xwith radiusR(x) = 1/x. In Figure 7.2.9(b) the
whole solid is pictured, along with the differential element.
The volume of the differential element shown in Figure 7.2.9(a) is ap-
proximately πR(xi)

2∆x, where R(xi) is the radius of the disk shown
and ∆x is the thickness of that slice. The radius R(xi) is the distance
from the x-axis to the curve, henceR(xi) = 1/xi.

(a)
(b)

Figure 7.2.9 Sketching a solid in Example 7.2.8
Slicing the solid into n equally-spaced slices, we can approximate the
total volume by adding up the approximate volume of each slice:

Approximate volume =
n∑

i=1

π

(
1

xi

)2

∆x.

Taking the limit of the above sumasn → ∞ gives the actual volume; rec-
ognizing this sum as a Riemann sum allows us to evaluate the limit with
a definite integral, which matches the formula given in Key Idea 7.2.7:

V = lim
n→∞

n∑
i=1

π

(
1

xi

)2

∆x

= π

∫ 2

1

(
1

x

)2

dx

= π

∫ 2

1

1

x2
dx

= π

[
− 1

x

] ∣∣∣2
1

= π

[
−1

2
− (−1)

]
=

π

2
units3.

Video solution

youtu.be/watch?v=_a79nyOUVTg

https://www.youtube.com/watch?v=_a79nyOUVTg
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While Key Idea 7.2.7 is given in terms of functions of x, the principle involved
can be applied to functions of y when the axis of rotation is vertical, not horizon-
tal. We demonstrate this in the next example.

Example 7.2.10 Finding volume using the Disk Method.

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, about the y-axis.
Solution. Since the axis of rotation is vertical, we need to convert
the function into a function of y and convert the x-bounds to y-bounds.
Since y = 1/x defines the curve, we rewrite it as x = 1/y. The bound
x = 1 corresponds to the y-bound y = 1, and the bound x = 2 corre-
sponds to the y-bound y = 1/2.
Thus we are rotating the curve x = 1/y, from y = 1/2 to y = 1 about
the y-axis to form a solid. The curve and sample differential element
are sketched in Figure 7.2.11(a), with a full sketch of the solid in Fig-
ure 7.2.11(b).

(a) (b)

Figure 7.2.11 Sketching a solid in Example 7.2.10
We integrate to find the volume:

V = π

∫ 1

1/2

1

y2
dy

= −π

y

∣∣∣1
1/2

= π units3.

Video solution

youtu.be/watch?v=k9vdYxWD8xc

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid isR(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a

R(x)2 dx− π

∫ b

a

r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

https://www.youtube.com/watch?v=k9vdYxWD8xc
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(a) (b)

Figure 7.2.12 Establishing the Washer Method; see also Figure 7.2.13
One can generate a solid of revolution with a hole in the middle by revolving

a region about an axis. Consider Figure 7.2.12(a), where a region is sketched
along with a dashed, horizontal axis of rotation. By rotating the region about
the axis, a solid is formed as sketched in Figure 7.2.12(b). The outside of the
solid has radius R(x), whereas the inside has radius r(x). Each cross section
of this solid will be a washer (a disk with a hole in the center) as sketched in
Figure 7.2.13. This leads us to the Washer Method.

Figure 7.2.13 Establishing theWasher
Method; see also Figure 7.2.12

Key Idea 7.2.14 The Washer Method.

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross section at xwill be a washer with outside radiusR(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.15 Finding volume with the Washer Method.

Find the volume of the solid formed by rotating the region bounded by
y = x2 − 2x+ 2 and y = 2x− 1 about the x-axis.
Solution. A sketch of the region will help, as given in Figure 7.2.16(a).
Rotating about the x-axis will produce cross sections in the shape of
washers, as shown in Figure 7.2.16(b); the complete solid is shown in
Figure 7.2.16(c). The outside radius of this washer is R(x) = 2x − 1;
the inside radius is r(x) = x2 − 2x+ 2. As the region is bounded from
x = 1 to x = 3, we integrate as follows to compute the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1
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=
104

15
π ≈ 21.78 units3.

(a) (b) (c)

Figure 7.2.16 Sketching the differential element and solid in Exam-
ple 7.2.15

Video solution

youtu.be/watch?v=EcQPsBZwpZ8

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.

Example 7.2.17 Finding volume with the Washer Method.

Find the volume of the solid formed by rotating the triangular region
with vertices at (1, 1), (2, 1) and (2, 3) about the y-axis.
Solution. The triangular region is sketched in Figure 7.2.18(a); the differ-
ential element is sketched in Figure 7.2.18(b) and the full solid is drawn
in Figure 7.2.18(c). They help us establish the outside and inside radii.
Since the axis of rotation is vertical, each radius is a function of y.
The outside radius R(y) is formed by the line connecting (2, 1) and
(2, 3); it is a constant function, as regardless of the y-value the distance
from the line to the axis of rotation is 2. Thus R(y) = 2.

(a) (b) (c)

Figure 7.2.18 Sketching the solid in Example 7.2.17
The inside radius is formed by the line connecting (1, 1) and (2, 3). The
equation of this line is y = 2x−1, but we need to refer to it as a function
of y. Solving for x gives r(y) = 1

2 (y + 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y + 1)

)2)
dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y +

15

4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15

4
y
]∣∣∣3

1

https://www.youtube.com/watch?v=EcQPsBZwpZ8


7.2. VOLUME BY CROSS-SECTIONAL AREA; DISK AND WASHER METHODS 387

=
10

3
π ≈ 10.47 units3.

Video solution

youtu.be/watch?v=VO7B1TRcvhM

This section introduced a new application of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 7.0.1: to find the exact value of some
quantity,

• we start with an approximation (in this section, slice the solid and approx-
imate the volume of each slice),

• then make the approximation better by refining our original approxima-
tion (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.

We practice this principle in the next section where we find volumes by slic-
ing solids in a different way.

https://www.youtube.com/watch?v=VO7B1TRcvhM
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7.2.1 Exercises

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape around an axis.
2. In your own words, explain how the Disk and Washer Methods are related.

3. Explain the how the units of volume are found in the integral of Theorem 7.2.3: if A(x) has units of in2, how
does

∫
A(x) dx have units of in3?

Problems

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by revolving the
given region about the x-axis.

4. The region between y = 3− x2 and the x axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

5. The region between y = 5x and the x axis, for
1 ≤ x ≤ 2:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

6. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

7. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by revolving the
given region about the y-axis.
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8. The region bounded by the curve y = 3− x2,
the x axis, and the y axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

9. The region between y = 5x and the y axis, for
5 ≤ y ≤ 10:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

10. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

(Hint: Integration By Parts will be necessary,
twice. First let u = arccos2 x, then let
u = arccosx.)

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

11. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by rotating the
given region about each of the given axes.

12. Region bounded by: y =
√
x, y = 0 and x = 1.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about the y axis.

(d) Rotate about x = 1.

13. Region bounded by: y = 4− x2 and y = 0.

(a) Rotate about the x axis.

(b) Rotate about y = 4.

(c) Rotate about y = −1.

(d) Rotate about x = 2.
14. The triangle with vertices (1, 1), (1, 2) and

(2, 1).

(a) Roate about the x axis.

(b) Roate about y = 2.

(c) Rotate about the y axis.

(d) Rotate about x = 1.

15. Region bounded by y = x2 − 2x+ 2 and
y = 2x− 1.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about y = 5.
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16. Region bounded by y = 1/
√
x2 + 1, x = −1,

x = 1 and the x-axis.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about y = −1.

17. Region bounded by y = 2x, y = x and x = 2.

(a) Rotate about the x axis.

(b) Rotate about y = 4.

(c) Rotate about the y axis.

(d) Rotate about x = 2.

Exercise Group. Orient the given solid along thex-axis such that a cross-sectional area functionA(x) can be obtained,
then apply Theorem 7.2.3 to find the volume of the solid.

18. A right circular cone with height of 10 and base
radius of 5.

5

10
19. A skew right circular cone with height of 10 and

base radius of 5. (Hint: all cross-sections are
circles.)

5

10

20. A right triangular cone with height of 10 and
whose base is a right, isosceles triangle with
side length 4.

4 4

10

21. A solid with length 10 with a rectangular base
and triangular top, wherein one end is a square
with side length 5 and the other end is a
triangle with base and height of 5.

10

5
5

5
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7.3 The Shell Method

Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolution by integrating the cross-sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of rotation, creating
“shells.”

youtu.be/watch?v=YPZjBrm770g

Figure 7.3.1 Video introduction to
Section 7.3

Consider Figure 7.3.2, where the region shown in Figure 7.3.2(a) is rotated
around the y-axis forming the solid shown in Figure 7.3.2(b). A small slice of
the region is drawn in Figure 7.3.2(a), parallel to the axis of rotation. When
the region is rotated, this thin slice forms a cylindrical shell, as pictured in Fig-
ure 7.3.2(c). The previous section approximated a solid with lots of thin disks
(or washers); we now approximate a solid with many thin cylindrical shells.

(a) (b) (c)

Figure 7.3.2 Introducing the Shell Method
To compute the volume of one shell, first consider the paper label on a soup

can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.3.3(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.3.3(b). (We say “approximately” since our radius was an approxima-
tion.)

By breaking the solid into n cylindrical shells, we can approximate the vol-
ume of the solid as

V ≈
n∑

i=1

2πrihi∆xi,

where ri, hi and ∆xi are the radius, height and thickness of the ith shell, re-
spectively.

This is a Riemann Sum. Taking a limit as the thickness of the shells approaches
0 leads to a definite integral.

https://www.youtube.com/watch?v=YPZjBrm770g
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h

cu
th
er
e

r
2πr

hA = 2πrh

(a)

h

cu
th
er
e

r
∆x

2πr

h

∆x

V ≈ 2πrh∆x

(b)

Figure 7.3.3 Determining the volume of a thin cylindrical shell

Key Idea 7.3.4 The Shell Method.

Let a solid be formed by revolving a regionR, bounded byx = a andx =
b, around a vertical axis. Let r(x) represent the distance from the axis
of rotation to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π

∫ b

a

r(x)h(x) dx.

Special Cases:

1. When the regionR is bounded above by y = f(x) and belowby y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotation is the y-axis (i.e., x = 0) then r(x) = x.

Let’s practice using the Shell Method.

Example 7.3.5 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the region bounded by
y = 0, y = 1/(1 + x2), x = 0 and x = 1 about the y-axis.
Solution. This is the region used to introduce the Shell Method in Fig-
ure 7.3.2, but is sketched again in Figure 7.3.6 for closer reference. A line
is drawn in the region parallel to the axis of rotation representing a shell
that will be carved out as the region is rotated about the y-axis. (This is
the differential element.)

h(x)


︸ ︷︷ ︸

r(x)

y =
1

1 + x2

1

1

x

x

y

Figure 7.3.6 Graphing a region in Ex-
ample 7.3.5

The distance this line is from the axis of rotation determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this
line determines h(x); the top of the line is at y = 1/(1 + x2), whereas
the bottom of the line is at y = 0. Thus h(x) = 1/(1 + x2) − 0 =
1/(1 + x2). The region is bounded from x = 0 to x = 1, so the volume
is

V = 2π

∫ 1

0

x

1 + x2
dx.

This requires substitution. Let u = 1 + x2, so du = 2x dx. We also
change the bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1

u
du

= π ln(u)
∣∣∣2
1

= π ln(2) ≈ 2.178 units3.
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Note: in order to find this volume using the Disk Method, two integrals
would be needed to account for the regions above and below y = 1/2.

Video solution

youtu.be/watch?v=WQ3rUzAhgPw

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.7 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the triangular region
determined by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.
Solution. The region is sketched in Figure 7.3.8(a) along with the differ-
ential element, a line within the region parallel to the axis of rotation. In
Figure 7.3.8(b), we see the shell traced out by the differential element,
and in Figure 7.3.8(c) the whole solid is shown.

y
=
2x

+
1

}
h(x).

︸ ︷︷ ︸
r(x)

1 2 3

1

2

3

x

x

y

(a)
(b) (c)

Figure 7.3.8 Graphing a region in Example 7.3.7
The height of the differential element is the distance from y = 1 to
y = 2x + 1, the line that connects the points (0, 1) and (1, 3). Thus
h(x) = 2x+1−1 = 2x. The radius of the shell formedby the differential
element is the distance from x to x = 3; that is, it is r(x) = 3− x. The
x-bounds of the region are x = 0 to x = 1, giving

V = 2π

∫ 1

0

(3− x)(2x) dx

= 2π

∫ 1

0

(
6x− 2x2

)
dx

= 2π

(
3x2 − 2

3
x3

) ∣∣∣1
0

=
14

3
π ≈ 14.66 units3.

Video solution

youtu.be/watch?v=wGVmSx1TqQI

When revolving a region around a horizontal axis, we must consider the ra-
dius and height functions in terms of y, not x.

Example 7.3.9 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the region given in Ex-
ample 7.3.7 about the x-axis.
Solution. The region is sketched in Figure 7.3.10(a) with a sample differ-
ential element. In Figure 7.3.10(b) the shell formed by the differential
element is drawn, and the solid is sketched in Figure 7.3.10(c). (Note
that the triangular region looks “short and wide” here, whereas in the

https://www.youtube.com/watch?v=WQ3rUzAhgPw
https://www.youtube.com/watch?v=wGVmSx1TqQI
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previous example the same region looked “tall and narrow.” This is be-
cause the bounds on the graphs are different.)
The height of the differential element is an x-distance, between x =
1
2y − 1

2 and x = 1. Thus h(y) = 1− ( 12y − 1
2 ) = − 1

2y + 3
2 . The radius

is the distance from y to the x-axis, so r(y) = y. The y bounds of the
region are y = 1 and y = 3, leading to the integral

x
=
1
2
y −

1
2

︸ ︷︷ ︸
h(y)  r(y)

1

1

2

3

y

x

y

(a)
(b) (c)

Figure 7.3.10 Graphing a region in Example 7.3.9

V = 2π

∫ 3

1

[
y

(
−1

2
y +

3

2

)]
dy

= 2π

∫ 3

1

[
−1

2
y2 +

3

2
y

]
dy

= 2π

[
−1

6
y3 +

3

4
y2
] ∣∣∣3

1

= 2π

[
9

4
− 7

12

]
=

10

3
π ≈ 10.472 units3.

Video solution

youtu.be/watch?v=pu80zsXPw5E

At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

Example 7.3.11 Finding volume using the Shell Method.

Find the volume of the solid formed by revolving the region bounded by
y = sin(x) and the x-axis from x = 0 to x = π about the y-axis.
Solution. The region and a differential element, the shell formed by this
differential element, and the resulting solid are given in Figure 7.3.12.

https://www.youtube.com/watch?v=pu80zsXPw5E
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h(x)

r(x)︷ ︸︸ ︷

1

x π
2

π

x

y

(a)

(b) (c)

Figure 7.3.12 Graphing a region in Example 7.3.11
The radius of a sample shell is r(x) = x; the height of a sample shell is
h(x) = sin(x), each from x = 0 to x = π. Thus the volume of the solid
is

V = 2π

∫ π

0

x sin(x) dx.

This requires Integration By Parts. Set u = x and dv = sin(x) dx; we
leave it to the reader to fill in the rest. We have:

= 2π
[
− x cos(x)

∣∣∣π
0
+

∫ π

0

cos(x) dx
]

= 2π
[
π + sin(x)

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve
y = sinx for x, requiring the use of the arcsine function. We leave
it to the reader to verify that the outside radius function is R(y) =
π − arcsin y and the inside radius function is r(y) = arcsin y. Thus the
volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is
more onerous than the integral created by the Shell Method.

Video solution

youtu.be/watch?v=nd16wB-0qIQ

We end this section with a table summarizing the usage of the Washer and
Shell Methods.

Key Idea 7.3.13 Summary of the Washer and Shell Methods.

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

https://www.youtube.com/watch?v=nd16wB-0qIQ
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Washer Method Shell Method

Horizontal Axis π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c

r(y)h(y) dy

Vertical Axis π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a

r(x)h(x) dx

As in the previous section, the real goal of this section is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next section, where we find the
length of curves in the plane.
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7.3.1 Exercises

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape around an axis.
2. T/F: The Shell Method can only be used when the Washer Method fails.
3. T/F: The Shell Method works by integrating cross-sectional areas of a solid.
4. T/F: When finding the volume of a solid of revolution that was revolved around a vertical axis, the Shell Method

integrates with respect to x.

Problems

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revolving the given
region about the y-axis.

5. The region bounded by the curve y = 3− x2,
the x axis, and the y axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

6. The region between y = 5x and the x axis, for
1 ≤ x ≤ 2:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

7. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

8. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revolving the given
region about the x-axis.



398 CHAPTER 7. APPLICATIONS OF INTEGRATION

9. The region between y = 3− x2 and the x axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

10. The region between y = 5x and the y axis, for
5 ≤ y ≤ 10:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

11. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

12. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revloving the given
region about each of the given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about the x axis.

(d) Rotate about y = 1.

14. Region bounded by: y = 4− x2 and y = 0.

(a) Rotate about x = 2.

(b) Rotate about x = −2.

(c) Rotate about the x axis.

(d) Rotate about y = 4.
15. The triangle with vertices (1, 1), (1, 2) and

(2, 1).

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about the x axis.

(d) Rotate about y = 2.

16. Region bounded by y = x2 − 2x+ 2 and
y = 2x− 1.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about x = −1.
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17. Region bounded by y = 1/
√
x2 + 1, x = 1 and

the x and y axes.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

18. Region bounded by y = 2x, y = x and x = 2.

(a) Rotate about the y axis.

(b) Rotate about x = 2.

(c) Rotate about the x axis.

(d) Rotate about y = 4.
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7.4 Arc Length and Surface Area

In previous sections we have used integration to answer the following questions:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

youtu.be/watch?v=r8JJru-DcAw

Figure 7.4.1 Video introduction to
Section 7.4

In this section, we address two related questions:

1. Given a curve, what is its length? This is often referred to as arc length.

2. Given a solid, what is its surface area?

7.4.1 Arc Length
Consider the graph of y = sin(x) on [0, π] given in Figure 7.4.2(a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight-line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

0.5

1

π
4

π
2

3π
4

π

x

y

(a)

0.5

1

π
4

π
2

3π
4

π

√
2
2

x

y

(b)

Figure 7.4.2Graphing y = sin(x) on [0, π] and approximating the curvewith line
segments

In Figure 7.4.2(b), the curve y = sin(x) has been approximated with 4 line
segments (the interval [0, π]has beendivided into 4 subintervals of equal length).
It is clear that these four line segments approximate y = sin(x) very well on the
first and last subinterval, though not so well in the middle. Regardless, the sum
of the lengths of the line segments is 3.79, so we approximate the arc length of
y = sin(x) on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x0 < x1 < . . . < xn−1 < xn = b be a partition
of [a, b] into n subintervals. Let∆xi represent the length of the ith subinterval
[xi−1, xi].

∆yi

∆xi

xi−1 xi

yi−1

yi

x

y

Figure 7.4.3 Zooming in on the ith
subinterval [xi−1, xi] of a partition of
[a, b]

Figure 7.4.3 zooms in on the ith subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line
segment as the hypotenuse of a right triangle whose sides have length∆xi and
∆yi. Using the Pythagorean Theorem, the length of this line segment is√

∆x2
i +∆y2i .

https://www.youtube.com/watch?v=r8JJru-DcAw
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Summing over all subintervals gives an arc length approximation

L ≈
n∑

i=1

√
∆x2

i +∆y2i .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.

In the above expression factor out a∆x2
i term:

n∑
i=1

√
∆x2

i +∆y2i =

n∑
i=1

√
∆x2

i

(
1 +

∆y2i
∆x2

i

)
.

Now pull the∆x2
i term out of the square root:

=

n∑
i=1

√
1 +

∆y2i
∆x2

i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2
i term. The expression

∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run”
of f on the ith subinterval. The Mean Value Theorem of Differentiation (Theo-
rem3.2.4) states that there is a ci in the ith subintervalwhere f ′(ci) = ∆yi/∆xi.
Thus we can rewrite our above expression as:

=

n∑
i=1

√
1 + f ′(ci)2 ∆xi.

This is aRiemann Sum. As long as f ′ is continuous, we can invoke Theorem5.3.26
and conclude

=

∫ b

a

√
1 + f ′(x)2 dx.

Theorem 7.4.4 Arc Length.

Let f be differentiable on [a, b], where f ′ is also continuous on [a, b].
Then the arc length of f from x = a to x = b is

L =

∫ b

a

√
1 + f ′(x)2 dx.

Note: This is our first use of dif-
ferentiability on a closed interval
since Section 2.1.

The theoremalso requires that
f ′ be continuous on [a, b]; while
examples are arcane, it is possi-
ble for f to be differentiable yet
f ′ is not continuous.

As the integrand contains a square root, it is often difficult to use the formula
in Theorem 7.4.4 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximating definite
integrals. The following examples will demonstrate this.

Example 7.4.5 Finding arc length.

Find the arc length of f(x) = x3/2 from x = 0 to x = 4.
Solution. We find f ′(x) = 3

2x
1/2; note that on [0, 4], f is differentiable
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and f ′ is also continuous. Using the formula, we find the arc length L as

L =

∫ 4

0

√
1 +

(
3

2
x1/2

)2

dx

=

∫ 4

0

√
1 +

9

4
x dx

=

∫ 4

0

(
1 +

9

4
x

)1/2

dx

=
2

3
· 4
9
·
(
1 +

9

4
x

)3/2 ∣∣∣4
0

=
8

27

(
103/2 − 1

)
≈ 9.07 units.

1 2 3 4

2

4

6

8

x

y

Figure 7.4.6 A graph of f(x) = x3/2

from Example 7.4.5

A graph of f is given in Figure 7.4.6.

Video solution

youtu.be/watch?v=0NPr4wZlTi8

Example 7.4.7 Finding arc length.

Find the arc length of f(x) =
1

8
x2 − ln(x) from x = 1 to x = 2.

Solution. This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 −
1/x. The arc length is

L =

∫ 2

1

√
1 +

(
x

4
− 1

x

)2

dx

=

∫ 2

1

√
1 +

x2

16
− 1

2
+

1

x2
dx

=

∫ 2

1

√
x2

16
+

1

2
+

1

x2
dx

=

∫ 2

1

√(
x

4
+

1

x

)2

dx

=

∫ 2

1

(
x

4
+

1

x

)
dx

=

(
x2

8
+ ln(x)

)∣∣∣∣2
1

=
3

8
+ ln(2) ≈ 1.07 units.

0.5 1 1.5 2 2.5 3

0.5

1

x

y

Figure 7.4.8 A graph of f(x) = 1
8x

2−
ln(x) from Example 7.4.7

A graph of f is given in Figure 7.4.8; the portion of the curve measured
in this problem is in bold.

Video solution

youtu.be/watch?v=mJlyz_9yiao

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.

https://www.youtube.com/watch?v=0NPr4wZlTi8
https://www.youtube.com/watch?v=mJlyz_9yiao
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Example 7.4.9 Approximating arc length numerically.

Find the length of the sine curve from x = 0 to x = π.
Solution. This is somewhat of a mathematical curiosity; in Exam-
ple 5.4.14 we found the area under one “hump” of the sine curve is 2
square units; now we are measuring its arc length.
The setup is straightforward: f(x) = sin(x) and f ′(x) = cos(x). Thus

L =

∫ π

0

√
1 + cos2(x) dx.

This integral cannot be evaluated in terms of elementary functions sowe
will approximate it with Simpson’s Method with n = 4.

x
√
1 + cos2(x)

0
√
2

π/4
√

3/2

π/2 1

3π/4
√
3/2

π
√
2

Figure 7.4.10 A table of values of y =√
1 + cos2(x) to evaluate a definite

integral in Example 7.4.9

Figure 7.4.10 gives
√
1 + cos2(x) evaluated at 5 evenly spaced points in

[0, π]. Simpson’s Rule then states that∫ π

0

√
1 + cos2(x) dx ≈ π − 0

4 · 3

(√
2 + 4

√
3/2 + 2(1) + 4

√
3/2 +

√
2
)

= 3.82918.

Using a computer with n = 100 the approximation is L ≈ 3.8202; our
approximation with n = 4 is quite good.

7.4.2 Surface Area of Solids of Revolution
We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

youtu.be/watch?v=uVgiUPdoPZM

Figure 7.4.11 Video introduction to
Subsection 7.4.2

a xi−1 xi b

x

(a) (b)

Figure 7.4.12 Establishing the formula for surface area
We begin as we have in the previous sections: we partition the interval [a, b]

with n subintervals, where the ith subinterval is [xi−1, xi]. On each subinter-
val, we can approximate the curve y = f(x) with a straight line that connects
f(xi−1) and f(xi) as shown in Figure 7.4.12(a). Revolving this line segment
about the x-axis creates part of a cone (called a frustum of a cone) as shown in
Figure 7.4.12(b). The surface area of a frustum of a cone is

2π · length · average of the two radiiR and r.

https://www.youtube.com/watch?v=uVgiUPdoPZM
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The length is given by L; we use the material just covered by arc length to
state that

L ≈
√
1 + f ′(ci)2∆xi

for some ci in the ith subinterval. The radii are just the function evaluated at
the endpoints of the interval. That is,

R = f(xi) and r = f(xi−1).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi−1) + f(xi)

2

√
1 + f ′(ci)2∆xi.

Since f is a continuous function, the Intermediate Value Theorem states

there is some di in [xi−1, xi] such that f(di) =
f(xi−1) + f(xi)

2
; we can use

this to rewrite the above equation as

2πf(di)
√

1 + f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approx-
imately

Surface Area ≈
n∑

i=1

2πf(di)
√
1 + f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.

Theorem 7.4.13 Surface Area of a Solid of Revolution.

Let f be differentiable on [a, b], where f ′ is also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π

∫ b

a

x
√
1 + f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resulting frustum
are xi−1 and xi; their average value is simply themidpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 7.4.13.)

Example 7.4.14 Finding surface area of a solid of revolution.

Find the surface area of the solid formed by revolving y = sin(x) on
[0, π] around the x-axis, as shown in Figure 7.4.15.

Figure 7.4.15Revolving y = sin(x) on
[0, π] about the x-axis

Solution. The setup is relatively straightforward. Using Theorem 7.4.13,
we have the surface area SA is:

SA = 2π

∫ π

0

sin(x)
√
1 + cos2(x) dx
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= −2π
1

2

(
sinh−1(cos(x)) + cos(x)

√
1 + cos2(x)

)∣∣∣π
0

= 2π
(√

2 + sinh−1(1)
)

≈ 14.42 units2.

The integration step above is nontrivial, utilizing the integration method
of Trigonometric Substitution from Section 6.3.
It is interesting to see that the surface area of a solid, whose shape is
defined by a trigonometric function, involves both a square root and an
inverse hyperbolic trigonometric function.

Video solution

youtu.be/watch?v=ehC1adQ-pTs

Example 7.4.16 Finding surface area of a solid of revolution.

Find the surface area of the solid formed by revolving the curve y = x2

on [0, 1] about:

1. the x-axis

2. the y-axis.

(a) (b)

Figure 7.4.17 The solids used in Example 7.4.16

Solution.

1. The integral is straightforward to setup:

SA = 2π

∫ 1

0

x2
√
1 + (2x)2 dx.

Like the integral in Example 7.4.14, this requires Trigonometric
Substitution.

=
π

32

(
2(8x3 + x)

√
1 + 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18
√
5− sinh−1(2)

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed
in Figure 7.4.17(a).

https://www.youtube.com/watch?v=ehC1adQ-pTs
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2. Since we are revolving around the y-axis, the “radius” of the solid
is not f(x) but rather x. Thus the integral to compute the surface
area is:

SA = 2π

∫ 1

0

x
√
1 + (2x)2 dx.

This integral can be solved using substitution. Set u = 1 + 4x2;
the new bounds are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4

2

3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed
in Figure 7.4.17(b).

Video solution

youtu.be/watch?v=jK04gmbaTtE

Our final example is a famous mathematical “paradox.”

Example 7.4.18 The surface area and volume of Gabriel’s Horn.

Consider the solid formed by revolving y = 1/x about the x-axis on
[1,∞). Find the volume and surface area of this solid. (This shape, as
graphed in Figure 7.4.19, is known as “Gabriel’s Horn” since it looks like
a very long horn that only a supernatural person, such as an angel, could
play.)

Figure 7.4.19 A graph of Gabriel’s
Horn

Solution. To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1

x2
dx

= lim
b→∞

π

∫ b

1

1

x2
dx

= lim
b→∞

π

(
−1

x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume ofπ cubic units. Sincewe have already
seen that regions with infinite length can have a finite area, this is not
too difficult to accept.
We now consider its surface area. The integral is straightforward to
setup:

SA = 2π

∫ ∞

1

1

x

√
1 + 1/x4 dx.

https://www.youtube.com/watch?v=jK04gmbaTtE
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Integrating this expression is not trivial. We can, however, compare it to
other improper integrals. Since 1 <

√
1 + 1/x4 on [1,∞), we can state

that

2π

∫ ∞

1

1

x
dx < 2π

∫ ∞

1

1

x

√
1 + 1/x4 dx.

By Key Idea 6.5.17, the improper integral on the left diverges. Since
the integral on the right is larger, we conclude it also diverges, mean-
ing Gabriel’s Horn has infinite surface area.
Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount of
paint, but since it has infinite surface area, we can never paint it.
Somehow this paradox is striking when we think about it in terms of
volume and area. However, we have seen a similar paradox before, as
referenced above. We know that the area under the curve y = 1/x2 on
[1,∞) is finite, yet the shape has an infinite perimeter. Strange things
can occur when we deal with the infinite.

Video solution

youtu.be/watch?v=L4ogGgyzmvs

A standard equation from physics is “Work = force × distance”, when the
force applied is constant. In Section 7.5 we learn how to compute work when
the force applied is variable.

https://www.youtube.com/watch?v=L4ogGgyzmvs
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7.4.3 Exercises

Terms and Concepts

1. T/F: The integral formula for computing Arc Length was found by first approximating arc length with straight line
segments.

2. T/F: The integral formula for computing Arc Length includes a square-root, meaning the integration is probably
easy.

Problems

Exercise Group. In the following exercises, find the arc length of the function on the given interval.
3. f(x) = x on [0, 1]. 4. f(x) =

√
8x on [−1, 1].

5. f(x) =
1

3
x3/2 − x1/2 on [0, 1]. 6. f(x) =

1

12
x3 +

1

x
on [1, 4].

7. f(x) = 2x3/2 − 1

6

√
x on [1, 4]. 8. f(x) = cosh(x) on [− ln(2), ln(2)].

9. f(x) =
1

2

(
ex + e−x

)
on [0, ln(5)]. 10. f(x) =

1

12
x5 +

1

5x3
on [0.1, 1].

11. f(x) = ln
(
sin(x)

)
on [π/6, π/2]. 12. f(x) = ln

(
cos(x)

)
on [0, π/4].

Exercise Group. In the following exercises, set up the integral to compute the arc length of the function on the given
interval. Do not evaluate the integral.

13. f(x) = x2 on [0, 1]. 14. f(x) = x10 on [0, 1].
15. f(x) = ln(x) on [1, e]. 16. f(x) =

1

x
on [1, 2].

17. f(x) = cos(x) on [0, π/2]. 18. f(x) = sec(x) on [−π/4, π/4].

Exercise Group. In the following exercises, use Simpson’s Rule, with n = 4, to approximate the arc length of the
function on the given interval. Note: these are the same problems as in Exercises 13–18.

19. f(x) = x2 on [0, 1]. 20. f(x) = x10 on [0, 1].
21. f(x) = ln(x) on [1, e]. 22. f(x) =

1

x
on [1, 2].

23. f(x) = cos(x) on [0, π/2]. 24. f(x) = sec(x) on [−π/4, π/4].

Exercise Group. In the following exercises, find the surface area of the described solid of revolution.
25. The solid formed by revolving y = 2x on [0, 1]

about the x-axis.
26. The solid formed by revolving y = 2x on [0, 1]

about the y-axis.
27. The solid formed by revolving y = x2 on [0, 1]

about the y-axis.
28. The solid formed by revolving y = x3 on [0, 1]

about the x-axis.

Exercise Group. The following arc length and surface area problems lead to improper integrals. Although the hy-
potheses of Theorem 7.4.4 and Theorem 7.4.13 are not satisfied, the improper integrals converge, and formulas for
arc length and surface area still give the correct result.

29. Find the length of the curve f(x) =
√
x on

[0, 1]. (Note: this is the same as the length of
f(x) = x2 on [0, 1]. Why?)

30. Find the length of the curve f(x) =
√
1− x2

on [−1, 1]. (Note: this describes the top half of
a circle with radius 1.)

31. Find the length of the curve f(x) =
√
1− x2/9

on [−3, 3]. (Note: this describes the top half of
an ellipse with a major axis of length 6 and a
minor axis of length 2.)

32. Find the surface area of the solid formed by
revolving y =

√
x on [0, 1] about the x-axis.
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33. Find the surface area of the sphere formed by
revolving y =

√
1− x2 on [−1, 1] about the

x-axis.
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7.5 Work

Work is the scientific term used to describe the action of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the newton; one newton is equal to one kg·m
s2 , and the

SI unit of distance is a meter (m). The fundamental unit of work is one newton–
meter, or a joule (J). That is, applying a force of one newton for one meter per-
forms one joule of work. In Imperial units (as used in the United States), force
is measured in pounds (lb) and distance is measured in feet (ft), hence work is
measured in ft–lb.

Mass and weight are closely re-
lated, yet different, concepts. The
mass m of an object is a quan-
titative measure of that object’s
resistance to acceleration. The
weight w of an object is a mea-
surement of the force applied to
the object by the acceleration of
gravity g.

Since the twomeasurements
are proportional,w = m·g, they
are often used interchangeably
in everyday conversation. When
computingwork, onemust be care-
ful to notewhich is being referred
to. When mass is given, it must
bemultiplied by the acceleration
of gravity to reference the related
force.

When force is constant, the measurement of work is straightforward. For
instance, lifting a 200 lb object 5 ft performs 200 · 5 = 1000 ft–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 ft rope up a vertical face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

7.5.1 Work Done by a Variable Force
In general, letF (x) be a force function on an interval [a, b]. Wewant tomeasure
the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by partitioning [a, b] into subinter-
vals a = x0 < x1 < · · · < xn = b and assuming that F is constant on each
subinterval. Let ci be a value in the ith subinterval [xi−1, xi]. Then the work
done on this interval is approximatelyWi ≈ F (ci) · (xi − xi−1) = F (ci)∆xi, a
constant force × the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1

F (ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero gives an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work.

Let F (x) be a continuous function on [a, b] describing the amount of
force being applied to an object in the direction of travel from distance
x = a to distance x = b. The total workW done on [a, b] is

W =

∫ b

a

F (x) dx.

Example 7.5.2 Computing work performed: applying variable force.

A 60m climbing rope is hanging over the side of a tall cliff. How much
work is performed in pulling the rope up to the top, where the rope has
a linear mass density of 66 g

m?
Solution. Weneed to create a force functionF (x)on the interval [0, 60].
To do so, wemust first decide what x is measuring: is it the length of the
rope still hanging or is it the amount of rope pulled in? As long as we
are consistent, either approach is fine. We adopt for this example the
convention that x is the amount of rope pulled in. This seems to match
intuition better; pulling up the first 10meters of rope involves x = 0 to
x = 10 instead of x = 60 to x = 50.
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As x is the amount of rope pulled in, the amount of rope still hanging is
60− x. This length of rope has a mass of 66 g

m or 0.066
kg
m . The mass of

the rope still hanging is 0.066(60 − x) kg; multiplying this mass by the
acceleration of gravity, 9.8 m

s2 , gives our variable force function

F (x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0

0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in lifting the entire rope 60me-
ters. The ropeweighs 60×0.066×9.8 = 38.808N, so thework applying
this force for 60meters is 60×38.808 = 2, 328.48 J. This is exactly twice
the work calculated before (and we leave it to the reader to understand
why.)

Example 7.5.3 Computing work performed: applying variable force.

Consider again pulling a 60m rope up a cliff face, where the rope has a
mass of 66 g

m . At what point is exactly half the work performed?
Solution. From Example 7.5.2 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the
rope from a height of x = 0 to a height of x = h is 582.12, or half the
total work. Thus we want to solve the equation∫ h

0

0.6468(60− x) dx = 582.12

for h. ∫ h

0

0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12

−0.3234h2 + 38.808h− 582.12 = 0.

Apply the Quadratic Formula:

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57.
Thus about half the work is done pulling up the first 17.57m; the other
half of the work is done pulling up the remaining 42.43m.

In Example 7.5.3, we find that
half of the work performed in
pulling up a 60m rope is done
in the last 42.43m. Why is it
not coincidental that 60/

√
2 =

42.43?
Example 7.5.4 Computing work performed: applying variable force.

A box of 100 lb of sand is being pulled up at a uniform rate a distance
of 50 ft over 1minute. The sand is leaking from the box at a rate of 1 lb

s .
The box itself weighs 5 lb and is pulled by a rope weighing 0.2 lb

ft .
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1. How much work is done lifting just the rope?

2. How much work is done lifting just the box and sand?

3. What is the total amount of work performed?

Solution.

1. We start by forming the force function Fr(x) for the rope (where
the subscript denotes we are considering the rope). As in the pre-
vious example, let x denote the amount of rope, in feet, pulled in.
(This is the same as saying x denotes the height of the box.) The
weight of the rope with x feet pulled in is Fr(x) = 0.2(50− x) =
10− 0.2x. (Note that we do not have to include the acceleration
of gravity here, for theweight of the rope per foot is given, not its
mass per meter as before.) The work performed lifting the rope is

Wr =

∫ 50

0

(10− 0.2x) dx = 250ft–lb.

2. The sand is leaving the box at a rate of 1 lb
s . As the vertical trip

is to take one minute, we know that 60 lb will have left when the
box reaches its final height of 50 ft. Again letting x represent the
height of the box, we have two points on the line that describes
the weight of the sand: when x = 0, the sand weight is 100 lb,
producing the point (0, 100); when x = 50, the sand in the box
weighs 40 lb, producing the point (50, 40). The slope of this line is
100−40
0−50 = −1.2, giving the equation of the weight of the sand at
height x asw(x) = −1.2x+100. The box itself weighs a constant
5 lb, so the total force function is Fb(x) = −1.2x+ 105. Integrat-
ing from x = 0 to x = 50 gives the work performed in lifting box
and sand:

Wb =

∫ 50

0

(−1.2x+ 105) dx = 3750ft–lb.

3. The total work is the sum ofWr andWb: 250+3750 = 4000 ft–lb.
We can also arrive at this via integration:

W =

∫ 50

0

(Fr(x) + Fb(x)) dx

=

∫ 50

0

(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0

(−1.4x+ 115) dx

= 4000ft–lb.

7.5.2 Hooke’s Law and Springs
Hooke’s Law states that the force required to compress or stretch a springx units
from its natural length is proportional to x; that is, this force is F (x) = kx for
some constant k. For example, if a force of 1N stretches a given spring 2 cm,
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then a force of 5N will stretch the spring 10 cm. Converting the distances to
meters, wehave that stretching this spring 0.02 cm requires a force ofF (0.02) =
k(0.02) = 1 N, hence k = 1/0.02 = 50 N

m .

Example 7.5.5 Computing work performed: stretching a spring.

A force of 20 lb stretches a spring from a natural length of 7 inches to a
length of 12 inches. How much work was performed in stretching the
spring to this length?
Solution. In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do
not care that 20 lb of force stretches the spring to a length of 12 inches,
but rather that a force of 20 lb stretches the spring by 5 inches. This is
illustrated in Figure 7.5.6; we only measure the change in the spring’s
length, not the overall length of the spring.

F

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Figure 7.5.6 Illustrating the important
aspects of stretching a spring in com-
puting work in Example 7.5.5

Converting the units of length to feet, we have

F (5/12) = 5/12k = 20 lb.

Thus k = 48 lb
ft and F (x) = 48x.

We compute the total work performed by integrating F (x) from x = 0
to x = 5/12:

W =

∫ 5/12

0

48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667ft–lb.

7.5.3 Pumping Fluids
Another useful example of the applicationof integration to computework comes
in the pumping of fluids, often illustrated in the context of emptying a storage
tank by pumping the fluid out the top. This situation is different than our previ-
ous examples for the forces involved are constant. After all, the force required
to move one cubic foot of water (about 62.4 lb ) is the same regardless of its
location in the tank. What is variable is the distance that cubic foot of water has
to travel; water closer to the top travels less distance than water at the bottom,
producing less work.

Table 7.5.7 Weight and Mass densities

Fluid lb/ft3 kg/m3

Concrete 150 2400

Fuel Oil 55.46 890.13

Gasoline 45.93 737.22

Iodine 307 4927

Methanol 49.3 791.3

Mercury 844 13546

Milk 63.6–65.4 1020–1050
Water 62.4 1000
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Wedemonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Example 7.5.8 Computing work performed: pumping fluids.

A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is
filled with water, which weighs approximately 62.4 lb

ft3 . Compute the
amount of work performed by pumping the water up to a point 5 feet
above the top of the tank.
Solution. Wewill refer often to Figure 7.5.9 which illustrates the salient
aspects of this problem.

y

0

30

35

35
−
y i

10

yi−1

yi }
∆yi

Figure 7.5.9 Illustrating a water tank
in order to compute the work re-
quired to empty it in Example 7.5.8

We start as we often do: we partition an interval into subintervals. We
orient our tank vertically since this makes intuitive sense with the base
of the tank at y = 0. Hence the top of the water is at y = 30, meaning
we are interested in subdividing the y-interval [0, 30] into n subintervals
as

0 = y0 < y1 < · · · < yn = 30.

Consider the work Wi of pumping only the water residing in the ith
subinterval, illustrated in Figure 7.5.9. The force required to move this
water is equal to its weight which we calculate as volume × density.
The volume of water in this subinterval is Vi = 102π∆yi; its density
is 62.4 lb

ft3 . Thus the required force is 6240π∆yi lb.
We approximate the distance the force is applied by using any y-value
contained in the ith subinterval; for simplicity, we arbitrarily use yi for
now (it will not matter later on). The water will be pumped to a point 5
feet above the top of the tank, that is, to the height of y = 35 ft. Thus
the distance the water at height yi travels is 35− yi ft.
In all, the approximate workWi performed in moving the water in the
ith subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water
from the tank, we sum all the workWi performed in pumping the water
from each of the n subintervals of [0, 30]:

W ≈
n∑

i=1

Wi =
n∑

i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to
0 gives

W =

∫ 30

0

6240π(35− y) dy

= 6240π
(
35y − 1/2y2

) ∣∣∣30
0

= 11, 762, 123ft–lb

≈ 1.176× 107 ft–lb.

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.5.10 shows the tank from
Example 7.5.8 without the ith subinterval identified.

y

0

30

35

y

35
−

y i

10

V (y) = 100πdy

Figure 7.5.10 A simplified illustration
for computing work

Instead, we just drawonedifferential element. This helps establish the height
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a small amount of water must travel along with the force required to move it
(where the force is volume × density).

We demonstrate the concepts again in the next examples.

Example 7.5.11 Computing work performed: pumping fluids.

A conical water tank has its top at ground level and its base 10 feet be-
low ground. The radius of the cone at ground level is 2 ft. It is filled with
water weighing 62.4 lb

ft3 and is to be emptied by pumping the water to
a spigot 3 feet above ground level. Find the total amount of work per-
formed in emptying the tank.
Solution. The conical tank is sketched in Figure 7.5.12. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of
the tank and y = 10 represent the top of the tank, but we choose to
keep the convention of the wording given in the problem and let y = 0
represent ground level and hence y = −10 represents the bottom of
the tank. The actual “height” of the water does not matter; rather, we
are concerned with the distance the water travels.

y

−10

0

3

y

3
−

y i

2

V (y) = π(y5 + 2)2dy

Figure 7.5.12 A graph of the conical
water tank in Example 7.5.11

The figure also sketches a differential element, a cross-sectional circle.
The radius of this circle is variable, depending on y. When y = −10, the
circle has radius 0; when y = 0, the circle has radius 2. These two points,
(−10, 0) and (0, 2), allow us to find the equation of the line that gives
the radius of the cross-sectional circle, which is r(y) = 1/5y+2. Hence
the volume of water at this height is V (y) = π(1/5y + 2)2dy, where
dy represents a very small height of the differential element. The force
required to move the water at height y is F (y) = 62.4× V (y).
The distance the water at height y travels is given by h(y) = 3−y. Thus
the total work done in pumping the water from the tank is

W =

∫ 0

−10

62.4π(1/5y + 2)2(3− y) dy

= 62.4π

∫ 0

−10

(
− 1

25
y3 − 17

25
y2 − 8

5
y + 12

)
dy

= 62.2π · 220
3

≈ 14, 376ft–lb.

Example 7.5.13 Computing work performed: pumping fluids.

A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end”
and a 6 ft “deep end.” It is to have its water pumped out to a point 2 ft
above the current top of the water. The cross-sectional dimensions of
thewater in the pool are given in Figure 7.5.14; note that the dimensions
are for the water, not the pool itself. Compute the amount of work per-
formed in draining the pool.

10 ft.

10 ft.
3 ft.

6 ft.

25 ft

Figure 7.5.14 The cross-section of a
swimming pool filled with water in Ex-
ample 7.5.13

Solution. For the purposes of this problem we choose to set y = 0
to represent the bottom of the pool, meaning the top of the water is at
y = 6.

y

0
y
3

6
8

(10, 0)

(15, 3)

x
0 10 15

Figure 7.5.15 Orienting the pool and
showing differential elements for Ex-
ample 7.5.13

Figure 7.5.15 shows the pool oriented with this y-axis, along with 2 dif-
ferential elements as the pool must be split into two different regions.
The top region lies in the y-interval of [3, 6], where the length of the
differential element is 25 ft as shown. As the pool is 20 ft wide, this dif-
ferential element represents a thin slice of water with volume V (y) =
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20 ·25 ·dy. The water is to be pumped to a height of y = 8, so the height
function is h(y) = 8 − y. The work done in pumping this top region of
water is

Wt = 62.4

∫ 6

3

500(8− y) dy = 327, 600ft–lb.

The bottom region lies in the y-interval of [0, 3]; we need to compute
the length of the differential element in this interval.
One end of the differential element is at x = 0 and the other is along the
line segment joining the points (10, 0) and (15, 3). The equation of this
line is y = 3/5(x − 10); as we will be integrating with respect to y, we
rewrite this equation as x = 5/3y+10. So the length of the differential
element is a difference of x-values: x = 0 and x = 5/3y + 10, giving a
length of x = 5/3y + 10.
Again, as the pool is 20 ft wide, this differential element represents a
thin slice of water with volume V (y) = 20 · (5/3y+10) · dy; the height
function is the same as before at h(y) = 8− y. The work performed in
emptying this part of the pool is

Wb = 62.4

∫ 3

0

20(5/3y + 10)(8− y) dy = 299, 520ft–lb.

The total work in empyting the pool is

W = Wb +Wt = 327, 600 + 299, 520 = 627, 120ft–lb.

Notice how the emptying of the bottom of the pool performs almost
as much work as emptying the top. The top portion travels a shorter
distance but has more water. In the end, this extra water producesmore
work.

The next section introduces one final application of the definite integral, the
calculation of fluid force on a plate.
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7.5.4 Exercises

Terms and Concepts

1. What are the typical units of work?
2. If a man has a mass of 80 kg on Earth, will his mass on the moon be bigger, smaller, or the same?
3. If a woman weighs 130 lb on Earth, will her weight on the moon be bigger, smaller, or the same?
4. Fill in the blanks:

Some integrals in this section are set up by multiplying a variable by a constant distance; others
are set up by multiplying a constant force by a variable .

Problems

5. A 100 ft rope, weighing 0.1 lb
ft , hangs over the edge of a tall building.

(a) How much work is done pulling the entire rope to the top of the building?

(b) How much rope is pulled in when half of the total work is done?

6. A 50m rope, with a mass density of 0.2 kg
m , hangs over the edge of a tall building.

(a) How much work is done pulling the entire rope to the top of the building?

(b) How much work is done pulling in the first 20 m?
7. A rope of length ℓ ft hangs over the edge of tall cliff. (Assume the cliff is taller than the length of the rope.) The

rope has a weight density of d lb
ft .

(a) How much work is done pulling the entire rope to the top of the cliff?

(b) What percentage of the total work is done pulling in the first half of the rope?

(c) How much rope is pulled in when half of the total work is done?

8. A 20m rope with mass density of 0.5 kg
m hangs over the edge of a 10m building. Howmuch work is done pulling

the rope to the top?

9. A crane lifts a 2000 lb load vertically 30 ft with a 1 in cable weighing 1.68 lb
ft .

(a) How much work is done lifting the cable alone?

(b) How much work is done lifting the load alone?

(c) Could one conclude that the work done lifting the cable is negligible compared to the work done lifting
the load?

10. A100 lb bag of sand is lifted uniformly 120 ft in one minute. Sand leaks from the bag at a rate of 1/4 lb
s . What is

the total work done in lifting the bag?
11. A box weighing 2 lb lifts 10 lb of sand vertically 50 ft. A crack in the box allows the sand to leak out such that

9 lb of sand is in the box at the end of the trip. Assume the sand leaked out at a uniform rate. What is the total
work done in lifting the box and sand?

12. A force of 1000 lb compresses a spring 3 in. How much work is performed in compressing the spring?
13. A force of 2N stretches a spring 5 cm. How much work is performed in stretching the spring?
14. A force of 50 lb compresses a spring from a natural length of 18 in to 12 in. How much work is performed in

compressing the spring?
15. A force of 20 lb stretches a spring from a natural length of 6 in to 8 in. Howmuch work is performed in stretching

the spring?
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16. A force of 7N stretches a spring from a natural length of 11 cm to 21 cm. How much work is performed in
stretching the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring d m from its natural length. How much work is performed in stretching the
spring?

18. A 20 lb weight is attached to a spring. The weight rests on the spring, compressing the spring from a natural
length of 1 ft to 6 in.

Howmuchwork is done in lifting the box 1.5 ft (i.e, the springwill be stretched 1 ft beyond its natural length)?
19. A 20 lb weight is attached to a spring. The weight rests on the spring, compressing the spring from a natural

length of 1 ft to 6 in.
How much work is done in lifting the box 6 in (i.e, bringing the spring back to its natural length)?

20. A 5m tall cylindrical tank with radius of 2m is filled with 3m of gasoline, with a mass density of 737.22 kg
m3 .

Compute the total work performed in pumping all the gasoline to the top of the tank.

21. A 6 ft cylindrical tank with a radius of 3 ft is filled with water, which has a weight density of 62.4 lb
ft3 . The water

is to be pumped to a point 2 ft above the top of the tank.

(a) How much work is performed in pumping all the water from the tank?

(b) How much work is performed in pumping 3 ft of water from the tank?

(c) At what point is 1/2 of the total work done?

22. A gasoline tanker is filled with gasoline with a weight density of 45.93 lb
ft3 . The dispensing valve at the base is

jammed shut, forcing the operator to empty the tank via pumping the gas to a point 1 ft above the top of the
tank. Assume the tank is a perfect cylinder, 20 ft long with a diameter of 7.5 ft. Howmuch work is performed in
pumping all the gasoline from the tank?

23. A fuel oil storage tank is 10 ft deep with trapezoidal sides, 5 ft at the top and 2 ft at the bottom, and is 15 ft wide
(see diagram below). Given that fuel oil weighs 55.46 lb

ft3 , find the work performed in pumping all the oil from
the tank to a point 3 ft above the top of the tank.

10

2

15

5

24. A conical water tank is 5m deep with a top radius of 3m. (This is similar to Example 7.5.11.) The tank is filled
with pure water, with a mass density of 1000 kg

m3 .

(a) Find the work performed in pumping all the water to the top of the tank.

(b) Find the work performed in pumping the top 2.5m of water to the top of the tank.

(c) Find the work performed in pumping the top half of the water, by volume, to the top of the tank.
25. A water tank has the shape of a truncated cone, with dimensions given below, and is filled with water with a

weight density of 62.4 lb
ft3 . Find the work performed in pumping all water to a point 1 ft above the top of the

tank.
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2 ft

5 ft
10 ft

26. A water tank has the shape of an inverted pyramid, with dimensions given below, and is filled with water with
a mass density of 1000 kg

m3 . Find the work performed in pumping all water to a point 5m above the top of the
tank.

2 m

2 m

7 m

27. A water tank has the shape of a truncated, inverted pyramid, with dimensions given below, and is filled with
water with a mass density of 1000 kg

m3 . Find the work performed in pumping all water to a point 1m above the
top of the tank.

5 m

5 m

2 m
2 m

9 m
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7.6 Fluid Forces

In the unfortunate situation of a car driving into a body of water, the conven-
tional wisdom is that the water pressure on the doors will quickly be so great
that they will be effectively unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiting until
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
options.)

How can this be true? How much force does it take to open the door of
a submerged car? In this section we will find the answer to this question by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equations:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definition.

Definition 7.6.1 Fluid Pressure.

Let w be the weight-density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definition to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 7.6.2 Computing fluid force.

1. A cylindrical storage tank has a radius of 2 ft and holds 10 ft of a
fluid with a weight-density of 50 lb

ft3 . (See Figure 7.6.3.) What is
the force exerted on the base of the cylinder by the fluid?

2 ft

10
ft

Figure 7.6.3 A cylindrical tank in Ex-
ample 7.6.2

2. A rectangular tank whose base is a 5 ft square has a circular hatch
at the bottom with a radius of 2 ft. The tank holds 10 ft of a fluid
with a weight-density of 50 lb

ft3 . (See Figure 7.6.4.) What is the
force exerted on the hatch by the fluid?

5 ft 5 ft
2 ft

10
ft

Figure 7.6.4 A rectangular tank in Ex-
ample 7.6.2

Solution.

1. Using Definition 7.6.1, we calculate that the pressure exerted on
the cylinder’s base isw ·d =50 lb

ft3 ×10 ft=500 lb
ft2 . The area of the

base is π · 22 = 4π ft2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effectively just computed the weight of the fluid in
the tank.

2. The dimensions of the tank in this problem are irrelevant. All we
are concernedwith are the dimensions of the hatch and the depth
of the fluid. Since the dimensions of the hatch are the same as
the base of the tank in the previous part of this example, as is the
depth, we see that the fluid force is the same. That is, F = 6283
lb. A key concept to understand here is that we are effectively
measuring the weight of a 10 ft column of water above the hatch.
The size of the tank holding the fluid does not matter.
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The previous example demonstrates that computing the force exerted on a
horizontally oriented plate is relatively easy to compute. What about a vertically
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all directions. Thus the pressure on any portion of a plate that is 1 ft be-
low the surface of water is the same no matter how the plate is oriented. (Thus
a hollow cube submerged at a great depth will not simply be “crushed” from
above, but the sides will also crumple in. The fluid will exert force on all sides of
the cube.)

So consider a vertically oriented plate as shown in Figure 7.6.5 submerged in
a fluid with weight-densityw. What is the total fluid force exerted on this plate?
We find this force by first approximating the force on small horizontal strips. }∆yi

ℓ(ci)

di

Figure 7.6.5 A thin, vertically ori-
ented plate submerged in a fluid with
weight-density w

Let the top of the plate be at depth b and let the bottom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the bottom of the
plate is 3 ft under the surface, we have a = −3. We will come back to this later.)
We partition the interval [a, b] into n subintervals

a = y0 < y1 < · · · < yn = b,

with the ith subinterval having length∆yi. The force Fi exerted on the plate in
the ith subinterval is Fi = Pressure× Area.

The pressure is depth times the weight density w. We approximate the
depth of this thin strip by choosing any value di in [yi−1, yi]; the depth is ap-
proximately −di. (Our convention has di being a negative number, so −di is
positive.) For convenience, we let di be an endpoint of the subinterval; we let
di = yi.

The area of the thin strip is approximately length × width. The width is∆yi.
The length is a function of some y-value ci in the ith subinterval. We state the
length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w × ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each
of the n thin strips:

F =

n∑
i=1

Fi ≈
n∑

i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by
taking a limit as the subinterval lengths go to 0; we evaluate this limit with a
definite integral.

Key Idea 7.6.6 Fluid Force on a Vertically Oriented Plate.

Let a vertically oriented plate be submerged in a fluid with weight-
density w, where the top of the plate is at y = b and the bottom is
at y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =

∫ b

a

w · (−y) · ℓ(y) dy.
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2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate
by the fluid is

F =

∫ b

a

w · d(y) · ℓ(y) dy.

Example 7.6.7 Finding fluid force.

Consider a thin plate in the shape of an isosceles triangle as shown in
Figure 7.6.8, submerged in water with a weight-density of 62.4 lb

ft3 . If
the bottom of the plate is 10 ft below the surface of the water, what is
the total fluid force exerted on this plate?

4 ft

4
ft

Figure 7.6.8 A thin plate in the
shape of an isosceles triangle in Exam-
ple 7.6.7

Solution. We approach this problem in two different ways to illustrate
the different ways Key Idea 7.6.6 can be implemented. First we will let
y = 0 represent the surface of the water, then we will consider an alter-
nate convention.

1. We let y = 0 represent the surface of the water; therefore the
bottom of the plate is at y = −10. We center the triangle on the
y-axis as shown in Figure 7.6.9. The depth of the plate at y is −y
as indicated by the Key Idea. We now consider the length of the
plate at y. We need to find equations of the left and right edges
of the plate. The right hand side is a line that connects the points
(0,−10) and (2,−6): that line has equation x = 1/2(y + 10).
(Find the equation in the familiar y = mx + b format and solve
for x.) Likewise, the left hand side is described by the line x =
−1/2(y+10). The total length is the distance between these two
lines: ℓ(y) = 1/2(y + 10)− (−1/2(y + 10)) = y + 10.

(2,−6)(−2,−6)

(0,−10)

y

y

x
−2−1 1 2

−10

−8

−4

−2

water line

d
(y
)
=

−
y

Figure 7.6.9 Sketching the triangular
plate in Example 7.6.7 with the con-
vention that the water level is at y =
0

The total fluid force is then:

F =

∫ −6

−10

62.4(−y)(y + 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. Sometimes it seems easier to orient the thin plate nearer the ori-
gin. For instance, consider the convention that the bottom of
the triangular plate is at (0, 0), as shown in Figure 7.6.10. The
equations of the left and right hand sides are easy to find. They
are y = 2x and y = −2x, respectively, which we rewrite as
x = 1/2y and x = −1/2y. Thus the length function is ℓ(y) =
1/2y − (−1/2y) = y.

(2, 4)(−2, 4)
y

y

x
−2−1 1 2

10

8

6

2

water line

d
(y
)
=

1
0
−

y

Figure 7.6.10 Sketching the triangular
plate in Example 7.6.7 with the con-
vention that the base of the triangle
is at (0, 0)

As the surface of the water is 10 ft above the base of the plate, we
have that the surface of the water is at y = 10. Thus the depth
function is the distance between y = 10 and y; d(y) = 10 − y.
We compute the total fluid force as:

F =

∫ 4

0

62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the
plate in the coordinate plane as long as we are consistent.
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Example 7.6.11 Finding fluid force.

Find the total fluid force on a car door submerged up to the bottomof its
window in water, where the car door is a rectangle 40 in long and 27 in
high (based on the dimensions of a 2005 Fiat Grande Punto.)
Solution. The car door, as a rectangle, is drawn in Figure 7.6.12. Its
length is 10/3 ft and its height is 2.25 ft. We adopt the convention that
the top of the door is at the surface of the water, both of which are at
y = 0. Using the weight-density of water of 62.4 lb

ft3 , we have the total
force as

F =

∫ 0

−2.25

62.4(−y)10/3 dy

=

∫ 0

−2.25

−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a
car door while seated inside, making the door effectively impossible to
open. This is counter-intuitive as most assume that the door would be
relatively easy to open. The truth is that it is not, hence the survival tips
mentioned at the beginning of this section.

(3.3, 0)

(3.3,−2.25)(0,−2.25)

(0, 0)

y

y

x

Figure 7.6.12 Sketching a submerged
car door in Example 7.6.11

Example 7.6.13 Finding fluid force.

An underwater observation tower is being built with circular viewing
portholes enabling visitors to see underwater life. Each vertically ori-
ented porthole is to have a 3 ft diameter whose center is to be located
50 ft underwater. Find the total fluid force exerted on each porthole.
Also, compute the fluid force on a horizontally oriented porthole that is
under 50 ft of water.

y

y

x

−2 −1 1 2

−2

−1

1

2

50

water line

not to scale

d
(y
)
=

5
0
−

y

Figure 7.6.14 Measuring the fluid
force on an underwater porthole in
Example 7.6.13

Solution. We place the center of the porthole at the origin, meaning
the surface of the water is at y = 50 and the depth function will be
d(y) = 50− y; see Figure 7.6.14
The equation of a circle with a radius of 1.5 is x2 + y2 = 2.25; solv-
ing for x we have x = ±

√
2.25− y2, where the positive square root

corresponds to the right side of the circle and the negative square root
corresponds to the left side of the circle. Thus the length function at
depth y is ℓ(y) = 2

√
2.25− y2. Integrating on [−1.5, 1.5] we have:

F = 62.4

∫ 1.5

−1.5

2(50− y)
√
2.25− y2 dy

= 62.4

∫ 1.5

−1.5

(
100
√
2.25− y2 − 2y

√
2.25− y2

)
dy

= 6240

∫ 1.5

−1.5

(√
2.25− y2

)
dy − 62.4

∫ 1.5

−1.5

(
2y
√
2.25− y2

)
dy.

The second integral above can be evaluated using substitution. Let u =
2.25 − y2 with du = −2y dy. The new bounds are: u(−1.5) = 0 and
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u(1.5) = 0; the new integral will integrate from u = 0 to u = 0, hence
the integral is 0.
The first integral above finds the area of half a circle of radius 1.5, thus
the first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total
fluid force on a vertically oriented porthole is 22, 054 lb.
Finding the force on a horizontally oriented porthole is more straightfor-
ward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the
fluid force applied to a vertically oriented circle whose center is at depth
d is the same as force applied to a horizontally oriented circle at depth
d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revolution. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximating the solution, then refining the approximation, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is bene-
ficial as it helps solve problems found in the exercises, and other mathematical
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summation of approximations; each summation was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.
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7.6.1 Exercises

Terms and Concepts

1. State in your own words Pascal’s Principle.
2. State in your own words how pressure is different from force.

Problems

Exercise Group. In the following exercises, find the fluid force exerted on the given plate, submerged in water with
a weight density of 62.4 lb

ft3 .
3.

2 ft

2 ft

1 ft

4.

1 ft

2 ft

1 ft

5.

4 ft

5 ft

6 ft

6.

4 ft

5 ft

6 ft

7.

2 ft

5 ft

8.

4 ft

5 ft
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9.

4 ft

2 ft

5 ft

10.

4 ft

2 ft

5 ft

11.

2 ft

2 ft

1 ft

12.

2 ft

2 ft

1 ft

Exercise Group. In the following exercises, the side of a container is pictured. Find the fluid force exerted on this
plate when the container is full of:

(a) water, with a weight density of 62.4 lb
ft3 , and

(b) concrete, with a weight density of 150 lb
ft3 .

13.

3 ft

5 ft

14.

4 ft

y = x2

4 ft

15.

4 ft

y = 4− x2

4 ft

16.

2 ft

y = −
√
1− x2
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17.

2 ft

y =
√
1− x2

18.

6 ft

y = −
√
9− x2

19. How deepmust the center of a vertically oriented circular plate with a radius of 1 ft be submerged in water, with
a weight density of 62.4 lb

ft3 , for the fluid force on the plate to reach 1, 000 lb?

20. How deep must the center of a vertically oriented square plate with a side length of 2 ft be submerged in water,
with a weight density of 62.4 lb

ft3 , for the fluid force on the plate to reach 1,000 lb?





Chapter 8

Differential Equations

One of the strengths of calculus is its ability to describe real-world phenomena.
We have seen hints of this in our discussion of the applications of derivatives
and integrals in the previous chapters. The process of formulating an equation
ormultiple equations to describe a physical phenomenon is calledmathematical
modeling. As a simple example, populations of bacteria are often described as
“growing exponentially.” Looking in a biology text, we might see P (t) = P0e

kt,
where P (t) is the bacteria population at time t, P0 is the initial population at
time t = 0, and the constant k describes how quickly the population grows. This
equation for exponential growth arises from the assumption that the population
of bacteria grows at a rate proportional to its size. Recalling that the derivative
gives the rate of change of a function, we can describe the growth assumption
precisely using the equation P ′ = kP . This equation is called a differential
equation, and these equations are the subject of the current chapter.

8.1 Graphical and Numerical Solutions to Differential
Equations

In Section 5.1, we were introduced to the idea of a differential equation. Given
a function y = f(x), we defined a differential equation as an equation involving
y, x, and derivatives of y. We explored the simple differential equation y ′ = 2x,
and saw that a solution to a differential equation is simply a function that satisfies
the differential equation.

youtu.be/watch?v=aevFioTbghg

Figure 8.1.1 Video introduction to
Section 8.1

8.1.1 Introduction and Terminology

Definition 8.1.2 Differential Equation.

Given a function y = f(x), a differential equation is an equation relat-
ing x, y, and derivatives of y.

• The variable x is called the independent variable.

• The variable y is called the dependent variable.

• The order of the differential equation is the order of the highest
derivative of y that appears in the equation.

429

https://www.youtube.com/watch?v=aevFioTbghg
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Let us return to the simple differential equation

y ′ = 2x.

To find a solution, we must find a function whose derivative is 2x. In other
words, we seek an antiderivative of 2x. The function

y = x2

is an antiderivative of 2x, and solves the differential equation. So do the func-
tions

y = x2 + 1

and
y = x2 − 2346.

We call the function
y = x2 + C,

with C an arbitrary constant of integration, the general solution to the differen-
tial equation.

In order to specify the value of the integration constant C, we require addi-
tional information. For example, if we know that y(1) = 3, it follows thatC = 2.
This additional information is called an initial condition.

Definition 8.1.3 Initial Value Problem.

A differential equation paired with an initial condition (or initial condi-
tions) is called an initial value problem.
The solution to an initial value problem is called a particular solution. A
particular solution does not include arbitrary constants.
The family of solutions to a differential equation that encompasses all
possible solutions is called the general solution to the differential equa-
tion.

Note: Ageneral solution typically
includes one or more arbitrary
constants. Different values of the
constant(s) specify differentmem-
bers in the family of solutions. The
particular solution to an initial value
problem is the specific member
in the family of solutions that cor-
responds to the given initial con-
dition(s).

Example 8.1.4 A simple first-order differential equation.

Solve the differential equation y ′ = 2y.
Solution. The solution is a function y such that differentiation yields
twice the original function. Unlike our starting example, finding the so-
lution here does not involve computing an antiderivative. Notice that
“integrating both sides” would yield the result y =

∫
2y dx, which is not

useful. Without knowledge of the function y, we can’t compute the in-
definite integral. Later sections will explore systematic ways to find ana-
lytic solutions to simple differential equations. For now, a bit of thought
might let us guess the solution

y = e2x.

Notice that application of the chain rule yields y ′ = 2e2x = 2y. Another
solution is given by

y = −3e2x.

In fact,
y = Ce2x,

where C is any constant, is the general solution to the differential equa-
tion because y ′ = 2Ce2x = 2y.
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If we are provided with a single initial condition, say y(0) = 3/2, we can
identify C = 3/2 so that

y =
3

2
e2x

is the particular solution to the initial value problem

y ′ = 2y, with y(0) =
3

2
.

Figure 8.1.5 shows variousmembers of the general solution to the differ-
ential equation y ′ = 2y. Each C value yields a different member of the
family, and a different function. We emphasize the particular solution
corresponding to the initial condition y(0) = 3/2.

−2 −1 1 2

−10

−5

5

10

x

y

Figure 8.1.5A representation of some
of themembers of general solution to
the differential equation y ′ = 2y, in-
cluding the particular solution to the
initial value problemwith y(0) = 3/2,
from Example 8.1.4

Video solution

youtu.be/watch?v=PAn_TrwF27M

Example 8.1.6 A second-order differential equation.

Solve the differential equation y ′′ + 9y = 0.
Solution. We seek a function whose second derivative is negative 9
multiplied by the original function. Both sin(3x) and cos(3x) have this
feature. The general solution to the differential equation is given by

y = C1 sin(3x) + C2 cos(3x),

where C1 and C2 are arbitrary constants. To fully specify a particular
solution, we require two additional conditions. For example, the initial
conditions y(0) = 1 and y ′(0) = 3 yield C1 = C2 = 1.

The differential equation in Example 8.1.6 is second order, because the equa-
tion involves a second derivative. In general, the number of initial conditions
required to specify a particular solution depends on the order of the differential
equation. For the remainder of the chapter, we restrict our attention to first
order differential equations and first order initial value problems.

Example 8.1.7 Verifying a solution to the differential equation.

Which of the following is a solution to the differential equation

y ′ +
y

x
−√

y = 0?

(a) y = C (1 + ln(x))2

(b) y =

(
1

3
x+

C√
x

)2

(c) y = Ce−3x +
√
sin(x)

Solution. Verifying a solution to a differential equation is simply an ex-
ercise in differentiation and simplification. We substitute each potential
solution into the differential equation to see if it satisfies the equation.

(a) Testing the potential solution y = C (1 + ln(x))2:

Differentiating, we have y ′ =
2C(1 + ln(x))

x
. Substituting into

https://www.youtube.com/watch?v=PAn_TrwF27M
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the differential equation,

2C(1 + ln(x))
x

+
C(1 + ln(x))2

x
−

√
C(1 + ln(x))

= (1 + ln(x))
(
2C

x
+

C(1 + ln(x))
x

−
√
C

)
̸= 0.

Since it doesn’t satisfy the differential equation, y = C(1+ln(x))2
is not a solution.

(b) Testing the potential solution y =

(
1

3
x+

C√
x

)2

:

Differentiating, we have y ′ = 2

(
1

3
x+

C√
x

)(
1

3
− C

2x3/2

)
.

Substituting into the differential equation,

2

(
1

3
x+

C√
x

)(
1

3
− C

2x3/2

)
+

1

x

(
1

3
x+

C√
x

)2

−
(
1

3
x+

C√
x

)
=

(
1

3
x+

C√
x

)(
2

3
− C

x3/2
+

1

3
+

C

x3/2
− 1

)
= 0. (Note how the second parenthetical grouping above reduces to 0.)

Thus y =

(
1

3
x+

C√
x

)2

is a solution to the differential equation.

(c) Testing the potential solution y = Ce−3x +
√
sin(x):

Differentiating, y ′ = −3Ce−3x+
cos(x)

2
√
sin(x)

. Substituting into the

differential equation,

−3Ce−3x+
cos(x)

2
√
sin(x)

+
Ce−3x +

√
sin(x)

x
−
√
Ce−3x +

√
sin(x) ̸= 0.

The function y = Ce−3x +
√
sin(x) is not a solution to the differ-

ential equation.

Video solution

youtu.be/watch?v=bf_WyPauK0Y

Example 8.1.8 Verifying a solution to a differential equation.

Verify that x2 + y2 = Cy is a solution to y ′ =
2xy

x2 − y2
.

Solution. The solution in this example is called an implicit solution. That
means the dependent variable y is a function of x, but has not been
explicitly solved for. Verifying the solution still involves differentiation,
but we must take the derivatives implicitly. Differentiating, we have

2x+ 2yy ′ = Cy ′.

https://www.youtube.com/watch?v=bf_WyPauK0Y
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Solving for y ′, we have

y ′ =
2x

C − 2y
.

From the solution, we know that C =
x2 + y2

y
. Then

y ′ =
2x

x2 + y2

y
− 2y

=
2xy

x2 + y2 − 2y2

=
2xy

x2 − y2
.

We have verified that x2 + y2 = Cy is a solution to y ′ =
2xy

x2 − y2
.

Video solution

youtu.be/watch?v=B0gxkvJf9oY

8.1.2 Graphical Solutions to Differential Equations
In the examples we have explored so far, we have found exact forms for the
functions that solve the differential equations. Solutions of this type are called
analytic solutions. Many times a differential equation has a solution, but it is dif-
ficult or impossible to find the solution analytically. This is analogous to algebraic
equations. The algebraic equationx2+3x−1 = 0has two real solutions that can
be found analytically by using the quadratic formula. The equation cos(x) = x
has one real solution, but we can’t find it analytically. As shown in Figure 8.1.9,
we can find an approximate solution graphically by plotting cos(x) and x and
observing the x-value of the intersection. We can similarly use graphical tools
to understand the qualitative behavior of solutions to a first order-differential
equation.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 8.1.9 Graphically finding an ap-
proximate solution to cos(x) = x

Consider the first-order differential equation

y ′ = f(x, y).

The function f could be any function of the two variables x and y. Written in
this way, we can think of the function f as providing a formula to find the slope
of a solution at a given point in the xy-plane. In other words, suppose a solu-
tion to the differential equation passes through the point (x0, y0). At the point
(x0, y0), the slope of the solution curve will be f(x0, y0). Since this calculation
of the slope is possible at any point (x, y)where the function f(x, y) is defined,
we can produce a plot called a slope field (or direction field) that shows the slope
of a solution at any point in the xy-plane where the solution is defined. Further,
this process can be done purely by working with the differential equation itself.
In other words, we can draw a slope field and use it to determine the qualita-
tive behavior of solutions to a differential equation without having to solve the
differential equation.

Definition 8.1.10 Slope Field.

A slope field for a first-order differential equation y ′ = f(x, y) is a plot
in the xy-planemade up of short line segments or arrows. At each point
(x0, y0) where f(x, y) is defined, the slope of the line segment is given
by f(x0, y0). Plots of solutions to a differential equation are tangent to

https://www.youtube.com/watch?v=B0gxkvJf9oY
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the line segments in the slope field.

Example 8.1.11 Sketching a slope field.

Find a slope field for the differential equation y ′ = x+ y.
Solution. Because the function f(x, y) = x+ y is defined for all points
(x, y), every point in the xy-plane has an associated line segment. It is
not practical to draw an entire slope field by hand, but many tools exist
for drawing slope fields on a computer. Here, we explicitly calculate a
few of the line segments in the slope field.

• The slope of the line segment at (0, 0) is f(0, 0) = 0 + 0 = 0.

• The slope of the line segment at (1, 1) is f(1, 1) = 1 + 1 = 2.

• The slope of the line segment at (1,−1) is f(1,−1) = 1− 1 = 0.

• The slope of the line segment at (−2,−1) is f(−2,−1) = −2 −
1 = −3.

Though it is possible to continue this process to sketch a slope field, we
usually use a computer to make the drawing. Most popular computer
algebra systems can draw slope fields. There are also various online tools
that can make the drawings. The slope field for y ′ = x + y is shown in
Figure 8.1.12.

x

y

Figure 8.1.12 Slope field for y ′ = x+
y from Example 8.1.11

Example 8.1.13 A graphical solution to an initial value problem.

Approximate, with a sketch, the solution to the initial value problem
y ′ = x+ y, with y(1) = −1.
Solution. The solution to the initial value problem should be a continu-
ous smooth curve. Using the slope field, we can draw of a sketch of the
solution using the following two criteria:

1. The solution must pass through the point (1,−1).

2. When the solution passes through a point (x0, y0) it must be tan-
gent to the line segment at (x0, y0).

Essentially, we sketch a solution to the initial value problemby starting at
the point (1,−1) and “following the lines” in either direction. A sketch
of the solution is shown in Figure 8.1.14.

x

y

Figure 8.1.14 Solution to the initial
value problem y ′ = x + y, with
y(1) = −1 from Example 8.1.13

Example 8.1.15 Using a slope field to predict long term behavior.

Use the slope field for the differential equation y ′ = y(1− y), shown in
Figure 8.1.16, to predict long term behavior of solutions to the equation.

t

y

Figure 8.1.16 Slope field for the logis-
tic differential equation y ′ = y(1−y)
from Example 8.1.15

Solution. This differential equation, called the logistic differential equa-
tion, often appears in population biology to describe the size of a pop-
ulation. For that reason, we use t (time) as the independent variable
instead of x. We also often restrict attention to non-negative y-values
because negative values correspond to a negative population.
Looking at the slope field in Figure 8.1.16, we can predict long term be-
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havior for a given initial condition.

• If the initial y-value is negative (y(0) < 0), the solution curvemust
pass though the point (0, y(0)) and follow the slope field. We ex-
pect the solution y to become more and more negative as time
increases. Note that this result is not physically relevantwhen con-
sidering a population.

• If the initial y-value is greater than 0 but less than 1, we expect
the solution y to increase and level off at y = 1.

• If the initial y-value is greater than 1, we expect the solution y to
decrease and level off at y = 1.

The slope field for the logistic differential equation, along with represen-
tative solution curves, is shown in Figure 8.1.17. Notice that any solution
curve with positive initial value will tend towards the value y = 1. We
call this the carrying capacity.

t

y

Figure 8.1.17 Slope field for the logis-
tic differential equation y ′ = y(1−y)
from Example 8.1.15with a few repre-
sentative solution curves

8.1.3 Numerical Solutions toDifferential Equations: Euler’sMethod
While the slope field is an effective way to understand the qualitative behavior
of solutions to a differential equation, it is difficult to use a slope field to make
quantitative predictions. For example, if we have the slope field for the differ-
ential equation y ′ = x+ y from Example 8.1.11 along with the initial condition
y(0) = 1, we can understand the qualitative behavior of the solution to the ini-
tial value problem, but will struggle to predict a specific value, y(2) for example,
with any degree of confidence. The most straightforward way to predict y(2) is
to find the analytic solution to the the initial value problem and evaluate it at
x = 2. Unfortunately, we have already mentioned that it is impossible to find
analytic solutions to many differential equations. In the absence of an analytic
solution, a numerical solution can serve as an effective tool tomake quantitative
predictions about the solution to an initial value problem.

There aremany techniques for computing numerical solutions to initial value
problems. A course in numerical analysis will discuss various techniques along
with their strengths and weaknesses. The simplest technique is called Euler’s
Method.

Euler’sMethod is named for Leon-
hard Euler, a prolific Swiss math-
ematician during the 1700’s. His
last name is properly pronounced
“oil-er”, not “you-ler.”

Consider the first-order initial value problem

y ′ = f(x, y), with y(x0) = y0.

Using the definition of the derivative,

y ′(x) = lim
h→0

y(x+ h)− y(x)

h
.

This notation can be confusing at first, but “y(x)” simply means “the y-value
of the solution when the x-value is x”, and “y(x + h)” means “the y-value of
the solution when the x-value is x+ h”.

If we remove the limit but restrict h to be “small,” we have

y ′(x) ≈ y(x+ h)− y(x)

h
,

so that
f(x, y) ≈ y(x+ h)− y(x)

h
,
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because y ′ = f(x, y) according to the differential equation. Rearranging terms,

y(x+ h) ≈ y(x) + h f(x, y).

This statement says that if we know the solution (y-value) to the initial value
problem for somegivenx-value, we canfind an approximation for the solution at
the valuex+h by taking our y-value and addinghtimes the function f evaluated
at the x and y values. Euler’s method uses the initial condition of an initial value
problem as the starting point, and then uses the above idea to find approximate
values for the solution y at later x-values. The algorithm is summarized in Key
Idea 8.1.18.

Key Idea 8.1.18 Euler’s Method.

Consider the initial value problem

y ′ = f(x, y) with y(x0) = y0.

Let h be a small positive number andN be an integer.

1. For i = 0, 1, 2, . . . , N , define

xi = x0 + ih.

2. The value y0 is given by the initial condition. For i = 0, 1, 2, . . . , N − 1,
define

yi+1 = yi + hf(xi, yi).

This process yields a sequence ofN+1 points (xi, yi) for i = 0, 1, 2, . . . , N , where
(xi, yi) is an approximation for (xi, y(xi)).

Let’s practice Euler’s Method using a few concrete examples.

Example 8.1.19 Using Euler’s Method 1.

Find an approximation at x = 2 for the solution to y ′ = x + y with
y(1) = −1 using Euler’s Method with h = 0.5.
Solution. Our initial condition yields the starting values x0 = 1 and
y0 = −1. With h = 0.5, it takes N = 2 steps to get to x = 2. Using
steps 1 and 2 from the Euler’s Method algorithm,

x0 = 1 y0 = −1

x1 = x0 + h y1 = y0 + hf(x0, y0)

= 1 + 0.5 = −1 + 0.5(1− 1)

= 1.5 = −1

x2 = x0 + 2h y2 = y1 + hf(x1, y1)

= 1 + 2(0.5) = −1 + 0.5(1.5− 1)

= 2 = −0.75.

Using Euler’s method, we find the approximate y(2) ≈ −0.75.
To help visualize the Euler’s method approximation, these three points
(connected by line segments) are plotted along with the analytical solu-
tion to the initial value problem in Figure 8.1.20.

1 1.5 2

−1

−0.5

xy

Figure 8.1.20 Euler’s Method approxi-
mation to y ′ = x+ y with y(1) = −1
from Example 8.1.19, along with the
analytical solution to the initial value
problem

This approximation doesn’t appear terrific, though it is better than merely
guessing. Let’s repeat the previous example using a smaller h-value.
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Example 8.1.21 Using Euler’s Method 2.

Find an approximation on the interval [1, 2] for the solution to y ′ = x+y
with y(1) = −1 using Euler’s Method with h = 0.25.
Solution. Our initial condition yields the starting values x0 = 1 and
y0 = −1. With h = 0.25, we need N = 4 steps on the interval [1, 2]
Using steps 1 and 2 from the Euler’s Method algorithm (and rounding to
4 decimal points), we have

x0 = 1 y0 = −1

x1 = 1.25 y1 = −1 + 0.25(1− 1)

= −1

x2 = 1.5 y2 = −1 + 0.25(1.25− 1)

= −0.9375

x3 = 1.75 y3 = −0.9375 + 0.25(1.5− 0.9375)

= −0.7969

x4 = 2 y4 = −0.7969 + 0.25(1.75− 0.7969)

= −0.5586.

Using Euler’s method, we find y(2) ≈ −0.5586.
These five points, along with the points from Example 8.1.19 and the
analytic solution, are plotted in Figure 8.1.22.

1 1.5 2

−1

−0.5

h = 0.5

h = 0.25

xy

Figure 8.1.22 Euler’s Method approx-
imations to y ′ = x + y with y(1) =
−1 from Examples 8.1.19 and 8.1.21,
along with the analytical solution

Using the results from Examples 8.1.19 and 8.1.21, we can make a few ob-
servations about Euler’s method. First, the Euler approximation generally gets
worse aswe get farther from the initial condition. This is because Euler’smethod
involves two sources of error. The first comes from the fact that we’re using a
positive h-value in the derivative approximation instead of using a limit as h ap-
proaches zero. Essentially, we’re using a linear approximation to the solution y
(similar to the process described in Section 4.4 on Differentials.) This error is of-
ten called the local truncation error. The second source of error comes from the
fact that every step in Euler’s method uses the result of the previous step. That
means we’re using an approximate y-value to approximate the next y-value. Do-
ing this repeatedly causes the errors to build on each other. This second type of
error is often called the propagated or accumulated error.

A second observation is that the Euler approximation is more accurate for
smaller h-values. This accuracy comes at a cost, though. Example 8.1.21 is
more accurate than Example 8.1.19, but takes twice as many computations. In
general, numerical algorithms (even when performed by a computer program)
require striking a balance between a desired level of accuracy and the amount
of computational effort we are willing to undertake.

Let’s do one final example of Euler’s Method.

Example 8.1.23 Using Euler’s Method 3.

Find an approximation for the solution to the logistic differential equa-
tion
y ′ = y(1− y) with y(0) = 0.25, for 0 ≤ y ≤ 4. UseN = 10 steps.
Solution. The logistic differential equation is what is called an au-
tonomous equation. An autonomous differential equation has no ex-
plicit dependence on the independent variable (t in this case). This has
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no real effect on the application of Euler’s method other than the fact
that the function f(t, y) is really just a function of y. To take steps in the
y variable, we use

yi+1 = yi + hf(ti, yi) = yi + hyi(1− yi).

Using N = 10 steps requires h =
4− 0

10
= 0.4. Implementing Euler’s

Method, we have

x0 = 0 y0 = 0.25

x1 = 0.4 y1 = 0.25 + 0.4(0.25)(1− 0.25)

= 0.325

x2 = 0.8 y2 = 0.325 + 0.4(0.325)(1− 0.325)

= 0.41275

x3 = 1.2 y3 = 0.41275 + 0.4(0.41275)(1− 0.41275)

= 0.50970

x4 = 1.6 y4 = 0.50970 + 0.4(0.50970)(1− 0.50970)

= 0.60966

x5 = 2.0 y5 = 0.60966 + 0.4(0.60966)(1− 0.60966)

= 0.70485

x6 = 2.4 y6 = 0.70485 + 0.4(0.70485)(1− 0.70485)

= 0.78806

x7 = 2.8 y7 = 0.78806 + 0.4(0.78806)(1− 0.78806)

= 0.85487

x8 = 3.2 y8 = 0.85487 + 0.4(0.85487)(1− 0.85487)

= 0.90450

x9 = 3.6 y9 = 0.90450 + 0.4(0.90450)(1− 0.90450)

= 0.93905

x10 = 4.0 y10 = 0.93905 + 0.4(0.93905)(1− 0.93905)

= 0.96194.

These 11 points, along with the the analytic solution, are plotted in Fig-
ure 8.1.24. Notice how well they seem to match the true solution.

1 2 3 4

0.5

1

t

y

Figure 8.1.24 Euler’s Method approxi-
mation to y ′ = y(1− y) with y(0) =
0.25 from Example 8.1.23, along with
the analytical solution

The study of differential equations is a natural extension of the study of de-
rivatives and integrals. The equations themselves involve derivatives, and meth-
ods to find analytic solutions often involve finding antiderivatives. In this sec-
tion, we focus on graphical and numerical techniques to understand solutions
to differential equations. We restrict our examples to relatively simple initial
value problems that permit analytic solutions to the equations, but we should
remember that this is only for comparison purposes. In reality, many differential
equations, even some that appear straightforward, do not have solutionswe can
find analytically. Even so, we can use the techniques presented in this section
to understand the behavior of solutions. In the next two sections, we explore
two techniques to find analytic solutions to two different classes of differential
equations.
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8.1.4 Exercises

Terms and Concepts

1. In your own words, what is an initial value problem, and how is it different than a differential equation?
2. In your own words, describe what it means for a function to be a solution to a differential equation.
3. How can we verify that a function is a solution to a differential equation?
4. Describe the difference between a particular solution and a general solution.
5. Why might we use a graphical or numerical technique to study solutions to a differential equation instead of

simply solving the differential equation to find an analytic solution?
6. Describe the considerations that should be made when choosing an h value to use in a numerical method like

Euler’s Method.

Problems

Exercise Group. In the following exercises, verify that the given function is a solution to the differential equation or
initial value problem.

7. y = Ce−6x2

; y ′ = −12xy. 8. y = x sin(x);
y ′ − x cos(x) = (x2 + 1) sin(x)− xy, with
y(π) = 0.

9. 2x2 − y2 = C; yy ′ − 2x = 0 10. y = xex; y ′′ − 2y ′ + y = 0

Exercise Group. In the following exercises, verify that the given function is a solution to the differential equation and
find the C value required to make the function satisfy the initial condition.

11. y = 4e3x sin(x) +Ce3x; y ′ − 3y = 4e3x cos(x),
with y(0) = 2

12. y(x2 + y) = C; 2xy + (x2 + 2y)y ′ = 0, with
y(1) = 2

Exercise Group. In the following exercises, sketch a slope field for the given differential equation. Let x and y range
between−2 and 2.

13. y ′ = y − x 14. y ′ =
x

2y

15. y ′ = sin(πy) 16. y ′ = y
4

Exercise Group. Match each slope field below with the appropriate differential equation.

x

y

x

y

(a) (b)
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x

y

x

y

(c) (d)
17. y ′ = xy 18. y ′ = −y

19. y ′ = −x 20. y ′ = x(1− x)

Exercise Group. In the following exercises, sketch the slope field for the differential equation, and use it to draw a
sketch of the solution to the initial value problem.

21. y ′ =
y

x
− y, with y(0.5) = 1. 22. y ′ = y sin(x), with y(0) = 1.

23. y ′ = y2 − 3y + 2, with y(0) = 2. 24. y ′ = − xy

1 + x2
, with y(0) = 1.

Exercise Group. In the following exercises, use Euler’s Method to make a table of values that approximates the
solution to the initial value problem on the given interval. Use the specified h orN value.

25. y ′ = x+ 2y
y(0) = 1
interval: [0, 1]
h = 0.25

26. y ′ = xe−y

y(0) = 1
interval: [0, 0.5]
N = 5

27. y ′ = y + sin(x)
y(0) = 2
interval: [0, 1]
h = 0.2

28. y ′ = ex−y

y(0) = 0
interval: [0, 2]
h = 0.5

Exercise Group. In the following exercises, use the provided solution y(x) and Euler’s Method with the h = 0.2 and
h = 0.1 to complete the following table.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x)

h = 0.2

h = 0.1

29. y ′ = xy2

y(0) = 1

Solution: y(x) =
2

1− x2

30. y ′ = xex
2

+
1

2
xy

y(0) =
1

2

Solution: y(x) =
1

2
(x2 + 1)ex

2
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8.2 Separable Differential Equations

There are specific techniques that can be used to solve specific types of differ-
ential equations. This is similar to solving algebraic equations. In algebra, we
can use the quadratic formula to solve a quadratic equation, but not a linear or
cubic equation. In the same way, techniques that can be used for a specific type
of differential equation are often ineffective for a differential equation of a dif-
ferent type. In this section, we describe and practice a technique to solve a class
of differential equations called separable equations.

youtu.be/watch?v=tIkZsA3kK6o

Figure 8.2.1 Video introduction to
Section 8.2

Definition 8.2.2 Separable Differential Equation.

A separable differential equation is one that can be written in the form

n(y)
dy

dx
= m(x),

where n is a function that depends only on the dependent variable y,
andm is a function that depends only on the independent variable x.

Below, we show a few examples of separable differential equations, along
with similar looking equations that are not separable.

1.
dy

dx
= x2y

2. y
√
y2 − 5

dy

dx
−

sin(x) cos(y) = 0

3.
dy

dx
=

(x2 + 1)ey

y

List 8.2.3 Separable

1.
dy

dx
= x2 + y

2. y
√
y2 − 5

dy

dx
−

sin(x) cos(y) = 1

3.
dy

dx
=

(xy + 1)ey

y

List 8.2.4 Not Separable

Notice that a separable equation requires that the functions of the depen-
dent and independent variables bemultiplied, not added (like Item1 in List 8.2.4).
An alternate definition of a separable differential equation states that an equa-
tion is separable if it can be written in the form

dy

dx
= f(x)g(y),

for some functions f and g.

8.2.1 Separation of Variables
Let’s find a formal solution to the separable equation

n(y)
dy

dx
= m(x).

Since the functions on the left and right hand sides of the equation are equal,
their antiderivatives should be equal up to an arbitrary constant of integration.
That is ∫

n(y)
dy

dx
dx =

∫
m(x) dx+ C.

Though the integral on the left may look a bit strange, recall that y itself is
a function of x. Consider the substitution u = y(x). The differential is du =

https://www.youtube.com/watch?v=tIkZsA3kK6o
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dy

dx
dx. Using this substitution, the above equation becomes∫

n(u) du =

∫
m(x) dx+ C.

LetN(u) andM(x) be antiderivatives of n(u) andm(x), respectively. Then

N(u) = M(x) + C.

Since u = y(x), this is

N(y) = M(x) + C.

This relationship between y and x is an implicit form of the solution to the
differential equation. Sometimes (but not always) it is possible to solve for y to
find an explicit version of the solution.

Though the technique outlined above is formally correct, what we did es-
sentially amounts to integrating the function n with respect to its variable and
integrating the functionmwith respect to its variable. The informal way to solve

a separable equation is to treat the derivative
dy

dx
as if it were a fraction. The

separated form of the equation is

n(y) dy = m(x) dx.

To solve, we integrate the left hand side with respect to y and the right hand
sidewith respect tox and add a constant of integration. As long aswe are able to
find the antiderivatives, we can find an implicit form for the solution. Sometimes
we are able to solve for y in the implicit solution to find an explicit form of the
solution to the differential equation. We practice the technique by solving the
three differential equations listed in the separable column above, and conclude
by revisiting and finding the general solution to the logistic differential equation
from Section 8.1.

Example 8.2.5 Solving a Separable Differential Equation.

Find the general solution to the differential equation y ′ = x2y.
Solution. Using the informal solution method outlined above, we treat
dy

dx
as a fraction, and write the separated form of the differential equa-

tion as
dy

y
= x2dx.

The indefinite integrals
∫

dy
y

and
∫
x2 dx both produce arbi-

trary constants. Since both con-
stants are arbitrary, we combine
them into a single constant of in-
tegration.

Integrating the left hand side of the equation with respect to y and the
right hand side of the equation with respect to x yields

ln |y| = 1

3
x3 + C.

This is an implicit form of the solution to the differential equation. Solv-
ing for y yields an explicit form for the solution. Exponentiating both
sides, we have

|y| = ex
3/3+C = ex

3/3eC .

This solution is a bit problematic. First, the absolute value makes the
solution difficult to understand. The second issue comes from our desire
to find the general solution. Recall that a general solution includes all
possible solutions to the differential equation. In other words, for any
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given initial condition, the general solution must include the solution to
that specific initial value problem. We can often satisfy any given initial
condition by choosing an appropriate C value. When solving separable
equations, though, it is possible to lose solutions that have the form y =
constant. Notice that y = 0 solves the differential equation, but it is not
possible to choose a finite C to make our solution look like y = 0. Our

solution cannot solve the initial value problem
dy

dx
= x2y, with y(a) = 0

(wherea is any value). Thus, wehaven’t actually found a general solution
to the problem. We can clean up the solution and recover the missing
solution with a bit of clever thought.

Missing constant solutions can’t
always be recovered by clev-
erly redefining the arbitrary con-
stant. The differential equation
y ′ = y2 − 1 is an example of
this fact. Both y = 1 and y =
−1 are constant solutions to this
differential equation. Separa-
tionof variables yields a solution
where y = 1 can be attained
by choosing an appropriate C
value, but y = −1 can’t. The
general solution is the set con-
taining the solution produced by
separation of variables and the
missing solution y = −1. We
should always be careful to look
for missing constant solutions
when seeking the general solu-
tion to a separable differential
equation.

Recall the formal definition of the absolute value: |y| = y if y ≥ 0

and |y| = −y if y < 0. Our solution is either y = eCe
x3

3 or y =

−eCe
x3

3 . Further, note that C is constant, so eC is also constant. If
we write our solution as y = Ae

x3

3 , and allow the constant A to take
on either positive or negative values, we incorporate both cases of the
absolute value. Finally, if we allow A to be zero, we recover the missing
solution discussed above. The best way to express the general solution
to our differential equation is

y = Ae
x3

3 .

Video solution

youtu.be/watch?v=pDXfO52xNVw

Example 8.2.6 Solving a Separable Initial Value Problem.

Solve the initial value problem (y
√
y2 − 5)y ′ − sin(x) cos(x) = 0, with

y(0) = −3.
Solution. We first put the differential equation in separated form

y
√
y2 − 5 dy = sin(x) cos(x) dx.

The indefinite integral
∫

y
√
y2 − 5 dy requires the substitution u =

y2 − 5. Using this substitute yields the antiderivative
1

3
(y2 − 5)3/2.

The indefinite integral
∫
sin(x) cos(x) dx requires the substitution u =

sin(x). Using this substitution yields the antiderivative
1

2
sin2 x. Thus,

we have an implicit formof the solution to the differential equation given
by

1

3
(y2 − 5)3/2 =

1

2
sin2 x+ C.

The initial condition says that y should be−3 when x is 0, or

1

3
((−3)2 − 5)3/2 =

1

2
sin2 0 + C.

Evaluating the line above, we find C = 8/3, yielding the particular solu-
tion to the initial value problem

1

3
(y2 − 5)3/2 =

1

2
sin2 x+

8

3
.

Video solution

youtu.be/watch?v=Bl3ugfR-Guw

https://www.youtube.com/watch?v=pDXfO52xNVw
https://www.youtube.com/watch?v=Bl3ugfR-Guw
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Example 8.2.7 Solving a Separable Differential Equation.

Find the general solution to the differential equation
dy

dx
=

(x2 + 1)ey

y
.

Solution. We start by observing that there are no constant solutions to
this differential equation because there are no constant y values that
make the right hand side of the equation identically zero. Thus, we
need not worry about losing solutions during the separation of variables
process. The separated form of the equation is given by

ye−y dy = (x2 + 1) dx.

The antiderivative of the left hand side requires Integration by Parts.
Evaluating both indefinite integrals yields the implicit solution

−(y + 1)e−y =
1

3
x3 + x+ C.

Since we cannot solve for y, we cannot find an explicit form of the solu-
tion.

Video solution

youtu.be/watch?v=OharserepNU

Example 8.2.8 Solving the Logistic Differential Equation.

Solve the logistic differential equation
dy

dt
= ky

(
1− y

M

)
Solution. We looked at a slope field for this equation in Section 8.1 in
the specific case of k = M = 1. Here, we use separation of variables to
find an analytic solution to the more general equation. Notice that the
independent variable t does not explicitly appear in the differential equa-
tion. We mentioned that an equation of this type is called autonomous.
All autonomous first order differential equations are separable.
We start by making the observation that both y = 0 and y = M are con-
stant solutions to the differential equation. We must check that these
solutions are not lost during the separation of variables process. The
separated form of the equation is

1

y
(
1− y

M

) dy = k dt.

The antiderivative of the left hand side of the equation can be found
by making use of partial fractions. Using the techniques discussed in
Section 6.4, we write

1

y
(
1− y

M

) =
1

y
+

1

M − y
.

Then an implicit form of the solution is given by

ln |y| − ln |M − y| = kt+ C.

Combining the logarithms,

ln
∣∣∣∣ y

M − y

∣∣∣∣ = kt+ C.

https://www.youtube.com/watch?v=OharserepNU
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Similarly to Example 8.2.5, we can write

y

M − y
= Aekt.

Letting A take on positive values or negative values incorporates both
cases of the absolute value. This is another implicit form of the solution.
Solving for y gives the explicit form

y =
M

1 + be−kt
,

where b is an arbitrary constant. Notice that b = 0 recovers the constant
solution y = M . The constant solution y = 0 cannot be produced
with a finite b value, and has been lost. The general solution the logistic

differential equation is the set containing y =
M

1 + be−kt
and y = 0.

Video solution

youtu.be/watch?v=nLItalqug6A

Solving for y initially yields the

explicit solution y =
AMekt

1 +Aekt
.

Dividing numerator and denom-
inator by Aekt and defining b =
1/A yields the commonly presented
form of the solution given in Ex-
ample 8.2.8.

https://www.youtube.com/watch?v=nLItalqug6A
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8.2.2 Exercises

Problems

Exercise Group. In the following exercises, decide whether the differential equation is separable or not separable. If
the equation is separable, write it in separated form.

1. y ′ = y2 − y 2. xy ′ + x2y =
sin(x)
x− y

3. (y + 3)y ′ + (ln(x))y ′ − x sin y = (y + 3) ln(x) 4. y ′ − x2 cos y + y = cos y − x2y

Exercise Group. In the following exercises, find the general solution to the separable differential equation. Be sure
to check for missing constant solutions.

5. y ′ + 1− y2 = 0 6. y ′ = y − 2

7. xy ′ = 4y 8. yy ′ = 4x

9. exyy ′ = e−y + e−2x−y
10. (x2 + 1)y ′ =

x

y − 1

11. y ′ =
x
√
1− 4y2

x4 + 2x2 + 2

12. (ex + e−x)y ′ = y2

Exercise Group. In the following exercises, find the particular solution to the separable initial value problem.

13. y ′ =
sin(x)
cos y

, with y(0) =
π

2
14. y ′ =

x2

1− y2
, with y(0) = −2

15. y ′ =
2x

y + x2y
, with y(0) = −4 16. x+ ye−xy ′ = 0, with y(0) = −2

17. y ′ =
x ln(x2 + 1)

y − 1
, with y(0) = 2 18.

√
1− x2 y ′ − arcsinx

y cos(y2)
= 0, with

y(0) =

√
7π

6

19. y ′ = (cos2 x)(cos2 2y), with y(0) = 0
20. y ′ =

y2
√
1− y2

x
, with y(0) = 1
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8.3 First Order Linear Differential Equations

In the previous section, we explored a specific techique to solve a specific type of
differential equation called a separable differential equation. In this section, we
develop and practice a technique to solve a type of differential equation called
a first order linear differential equation.

Recall than a linear algebraic equation in one variable is one that can be
written ax+ b = 0, where a and b are real numbers. Notice that the variable x
appears to the first power. The equations

√
x+ 1 = 0 and sin(x)− 3x = 0 are

both nonlinear. A linear differential equation is one in which the dependent vari-
able and its derivatives appear only to the first power. We focus on first order
equations, which involve first (but not higher order) derivatives of the depen-
dent variable.

youtu.be/watch?v=aGk_H6jc5BE

Figure 8.3.1 Introduction to Sec-
tion 8.3, and presentation of Exam-
ple 8.3.3

8.3.1 Solving First Order Linear Equations

Definition 8.3.2 First Order Linear Differential Equation.

A first order linear differential equation is a differential equation that
can be written in the form

dy

dx
+ p(x)y = q(x),

where p and q are arbitrary functions of the independent variable x.

Example 8.3.3 Classifying Differential Equations.

Classify each differential equation as first order linear, separable, both,
or neither.

(a) y ′ = xy

(b) y ′ = ey + 3x

(c) y ′ − (cos(x))y = cos(x)

(d) yy ′ − 3xy = 4 ln(x)

Solution.

(a) Both. We identify p(x) = −x and q(x) = 0. The separated form

of the equation is
dy

y
= x dx.

(b) Neither. The ey term makes the equation nonlinear. Because of
the addition, it is not possible to write the equation in separated
form.

(c) First order linear. We identify p(x) = − cos(x) and q(x) = cos(x).
The equation cannot be written in separated form.

(d) Neither. Notice that dividing by y results in the nonlinear term
4 ln(x)

y
. It is not possible to write the equation in separated form.

Notice that linearity depends on the dependent variable y, not the indepen-
dent variable x. The functions p(x) and q(x) need not be linear, as demon-
strated in part (c) of Example 8.3.3. Neither cos(x) nor sin(x) are linear func-
tions of x, but the differential equation is still linear.

https://www.youtube.com/watch?v=aGk_H6jc5BE
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Before working out a general technique for solving first order linear differen-
tial equations, we look at a specific example. Consider the differential equation

d

dx

(
xy
)
= sin(x) cos(x).

This is an easy differential equation to solve. On the left, the antiderivative
of the derivative is simply the function xy. Using the substitution u = sin(x) on
the right and integrating results in the implicit solution

xy =
1

2
sin2 x+ C.

Solving for y yields the explicit solution

y =
sin2 x
2x

+
C

x
.

Though not obvious, the differential equation above is actually a linear dif-
ferential equation. Using the product rule and implicit differentiation, we can

write
d

dx

(
xy
)
= x

dy

dx
+ y. Our original differential equation can be written

x
dy

dx
+ y = sin(x) cos(x).

If we divide by x, we have

dy

dx
+

1

x
y =

sin(x) cos(x)
x

,

which matches the form in Definition 8.3.2. Reversing our steps would lead us
back to the original form our our differential equation.

In the examples in the previous
section, weperformedoperations
on the arbitrary constantC, but
still called the result C. The jus-
tification is that the result after
the operation is still an arbitrary
contant. Here, we divide C by
x, so the result depends explic-
itly on the independent variable
x. Since C/x is not contant, we
can’t just call it C.

As motivated by the problemwe just explored, the basic idea behind solving
first order linear differential equations is tomultiply both sides of the differential
equation by a function, called an integrating factor, thatmakes the left hand side
of the equation look like an expanded Product Rule. We then condense the left
hand side into the derivative of a product and integrate both sides. An obvious
question is, “How do you find this integrating factor?”

youtu.be/watch?v=f-Bea35N11g

Figure 8.3.4 Using an integrating fac-
tor to solve a linear differential equa-
tion

Consider the first order linear equation

dy

dx
+ p(x)y = q(x).

Let’s call the integrating factor µ(x). We multiply both sides of the differen-
tial equation by µ(x) to get

µ(x)

(
dy

dx
+ p(x)y

)
= µ(x)q(x).

Though we use µ(x) for our in-
tegrating factor, the symbol is unim-
portant. The notation µ(x) is a
common choice, but other texts
myuseα(x), I(x), or someother
symbol to designate the integrat-
ing factor.

Our goal is to choose µ(x) so that the left hand side of the differential equa-
tion looks like the result of a Product Rule. The left hand side of the equation
is

µ(x)
dy

dx
+ µ(x)p(x)y.

Using the Product Rule and Implicit Differentiation,

d

dx

(
µ(x)y

)
=

dµ

dx
y + µ(x)

dy

dx
.

https://www.youtube.com/watch?v=f-Bea35N11g
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Equating d
dx

(
µ(x)y

)
and µ(x)

(
dy
dx + p(x)y

)
gives

dµ

dx
y + µ(x)

dy

dx
= µ(x)

dy

dx
+ µ(x)p(x)y,

which is equivalent to
dµ

dx
= µ(x)p(x).

In order for the integrating factor µ(x) to perform its job, it must solve the
differential equation above. But that differential equation is separable, so we
can solve it. The separated form is

dµ

µ
= p(x) dx.

Integrating,

lnµ =

∫
p(x) dx,

or
µ(x) = e

∫
p(x) dx.

Following the steps outlined in
the previous section, we should
technically end up with µ(x) =
Ce
∫
p(x) dx, where C is an arbi-

trary constant. Because we mul-
tiply both sides of the differen-
tial equation by µ(x), the arbi-
trary constant cancels, andweomit
itwhenfinding the integrating fac-
tor.

If µ(x) is chosen this way, after multiplying by µ(x), we can always write the
differential equation in the form

d

dx

(
µ(x)y

)
= µ(x)q(x).

Integrating and solving for y, the explicit solution is

y =
1

µ(x)

∫ (
µ(x)q(x)

)
dx.

Though this formula can be used to write down the solution to a first order
linear equation, we shy away from simply memorizing a formula. The process
is lost, and it’s easy to forget the formula. Rather, we always always follow the
steps outlined in Key Idea 8.3.5 when solving equations of this type.

Key Idea 8.3.5 Solving First Order Linear Equations.

1. Write the differential equation in the form

dy

dx
+ p(x)y = q(x).

2. Compute the integrating factor

µ(x) = e
∫
p(x) dx.

3. Multiply both sides of the differential equation by µ(x), and con-
dense the left hand side to get

d

dx

(
µ(x)y

)
= µ(x)q(x).

4. Integrate both sides of the differential equation with respect to x,
taking care to remember the arbitrary constant.

5. Solve for y to find the explicit solution to the differential equation.

Let’s practice the process by solving the two first order linear differential
equations from Example 8.3.3.
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Example 8.3.6 Solving a First Order Linear Equation.

Find the general solution to y ′ = xy.
Solution. We solve by following the steps in Key Idea 8.3.5. Unlike the
process for solving separable equations, we need not worry about losing
constant solutions. The answer we find will be the general solution to
the differential equation. We first write the equation in the form

dy

dx
− xy = 0.

By identifying p(x) = −x, we can compute the integrating factor

µ(x) = e
∫
−x dx = e−

1
2x

2

.

Multiplying both side of the differential equation by µ(x), we have

e−
1
2x

2

(
dy

dx
− xy

)
= 0.

The left hand side of the differential equation condenses to yield

d

dx

(
e−

1
2x

2

y
)
= 0.The step where the left hand

side of the differential equation
condenses to the derivative of
a product can feel a bit mag-
ical. The reality is that we
choose µ(x) so that we can get
exactly this condensing behav-
ior. It’s not magic, it’s math!
If you’re still skeptical, try us-
ing the Product Rule and Im-
plicit Differentiation to evaluate
d

dx

(
e−

1
2x

2

y
)
, and verify that it

becomes e− 1
2x

2

(
dy

dx
− xy

)
.

We integrate both sides with respect to x to find the implicit solution

e−
1
2x

2

y = C,

or the explicit solution
y = Ce

1
2x

2

.

Video solution

youtu.be/watch?v=fgeo61eY3qo

Example 8.3.7 Solving a First Order Linear Equation.

Find the general solution to y ′ − (cos(x))y = cos(x).
Solution. The differential equation is already in the correct form. The
integrating factor is given by

µ(x) = e−
∫
cos(x) dx = e− sin(x).

Multiplying both sides of the equation by the integrating factor and con-
densing,

d

dx

(
e− sin(x)y

)
= (cos(x))e− sin(x)

Using the substitution u = − sin(x), we can integrate to find the implicit
solution

e− sin(x)y = −e− sin(x) + C.

The explicit form of the general solution is

y = −1 + Cesin(x).

Video solution

youtu.be/watch?v=qB_aSFCQfcE

We continue our practice by finding the particular solution to an initial value
problem.

https://www.youtube.com/watch?v=fgeo61eY3qo
https://www.youtube.com/watch?v=qB_aSFCQfcE
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Example 8.3.8 Solving a First Order Linear Initial Value Problem.

Solve the initial value problem xy ′ − y = x3 ln(x), with y(1) = 0.
Solution. We first divide by x to get

dy

dx
− 1

x
y = x2 ln(x).

The integrating factor is given by

µ(x) = e
∫
− 1

x dx

= e− ln(x)

= eln(x)
−1

= x−1.

Multiplying both sides of the differential equation by the integrating fac-
tor and condensing the left hand side, we have

d

dx

(y
x

)
= x ln(x).

Using Integrating by Parts to find the antiderivative of x ln(x), we find
the implicit solution

y

x
=

1

2
x2 ln(x)− 1

4
x2 + C.

Solving for y, the explicit solution is

y =
1

2
x3 ln(x)− 1

4
x3 + Cx.

The initial condition y(1) = 0 yieldsC = 1/4. The solution to the initial
value problem is

y =
1

2
x3 ln(x)− 1

4
x3 +

1

4
x.

Video solution

youtu.be/watch?v=XsFRAzdk7WI

Differential equations are a valuable tool for exploring various physical prob-
lems. This process of using equations to describe real world situations is called
mathematical modeling, and is the topic of the next section. The last two exam-
ples in this section begin our discussion of mathematical modeling.

Example 8.3.9 A Falling Object Without Air Resistance.

Suppose an object with massm is dropped from an airplane. Find and
solve a differential equation describing the vertical velocity of the object
assuming no air resistance.
Solution. The basic physical law at play is Newton’s second law,

mass × acceleration = the sum of the forces .

Using the fact that acceleration is the derivative of velocity, mass × ac-
celeration can be writtingmv′. In the absence of air resistance, the only
force of interest is the force due to gravity. This force is approximately
constant, and is given bymg, where g is the gravitational constant. The

https://www.youtube.com/watch?v=XsFRAzdk7WI
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word equation above can be written as the differential equation

m
dv

dt
= mg.

Because g is constant, this differential equation is simply an integration
problem, and we find

v = gt+ C.

Since v = C with t = 0, we see that the arbitrary constant here corre-
sponds to the initial vertical velocity of the object.

The process of mathematical modeling does not stop simply because we
have found an answer. We must examine the answer to see how well it can
describe real world observations. In the previous example, the answer may be
somewhat useful for short times, but intuition tells us that something is missing.
Our answer says that a falling object’s velocity will increase linearly as a function
of time, but we know that a falling object does not speed up indefinitely. In or-
der to more fully describe real world behavior, our mathematical model must
be revised.

youtu.be/watch?v=skI9GlhB3dc

Figure 8.3.10 Video presentation of
Examples 8.3.9–8.3.11

Example 8.3.11 A Falling Object with Air Resistance.

Suppose an object with massm is dropped from an airplane. Find and
solve a differential equation describing the vertical velocity of the object,
taking air resistance into account.
Solution. We still begin with Newon’s second law, but now we assume
that the forces in the object come both from gravity and from air resis-
tance. The gravitational force is still given bymg. For air resistance, we
assume the force is related to the velocity of the object. A simple way
to describe this assumption might be kvp, where k is a proportionality
constant and p is a positive real number. The value k depends on various
factors such as the density of the object, surface area of the object, and
density of the air. The value p affects how changes in the velocity affect
the force. Taken together, a function of the form kvp is often called a
power law. The differential equation for the velocity is given by

m
dv

dt
= mg − kvp.

(Notice that the force from air resistance opposes motion, and points in
the opposite direction as the force from gravity.) This differential equa-
tion is separable, and can be written in the separated form

m

mg − kvp
dv = dt.

For arbitrary positive p, the integration is difficult, making this problem
hard to solve analytically. In the case that p = 1, the differential equa-
tion becomes linear, and is easy to solve either using either separation
of variables or integrating factor techniques. We assume p = 1, and pro-
ceedwith an integrating factor sowe can continue practicing the process.
Writing

dv

dt
+

k

m
v = g,

we identify the integrating factor

µ(t) = e
∫

k
m dt = e

k
m t.

https://www.youtube.com/watch?v=skI9GlhB3dc
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Then
d

dt

(
e

k
m tv

)
= ge

k
m t,

so
e

k
m tv =

mg

k
e

k
m t + C,

or
v =

mg

k
+ Ce−

k
m t.

2 4 6 8 10

2

4

6

8

10

t

v

Figure 8.3.12 The velocity functions
from Examples 8.3.9 (dashed) and
8.3.11 (solid) under the assumption
that v(0) = 0, with g = 9.8,m = 1,
and k = 1

In the solution above, the exponential term decays as time increases, caus-
ing the velocity to approach the constant valuemg/k in the limit as t approaches
infinity. This value is called the terminal velocity. If we assume a zero initial ve-
locity (the object is dropped, not thrown from the plane), the velocities from
Examples 8.3.9 and 8.3.11 are given by v = gt and v =

mg

k

(
1− e−

k
m t
)
, re-

spectively. These two functions are shown in Figure 8.3.12, with g = 9.8,m = 1,
and k = 1. Notice that the two curves agree well for short times, but have
dramatically different behaviors as t increases. Part of the art in mathematical
modeling is deciding on the level of detail required to answer the question of
interest. If we are only interested in the initial behavior of the falling object,
the simple model in Example 8.3.9 may be sufficient. If we are interested in the
longer term behavior of the object, the simple model is not sufficient, and we
should consider a more complicated model.
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8.3.2 Exercises

Problems

Exercise Group. In the following exercises, Find the general solution to the first order linear differential equation.
1. y ′ = 2y − 3 2. x2y ′ + xy = 1

3. x2y ′ − xy = 1 4. xy ′ + 4y = x3 − x

5. (cos2 x sin(x))y ′ + (cos3 x)y = 1 6.
y ′

x
= 1− 2y

7. x3y ′ − 3x3y = x4e2x 8. y ′ + y = 5 sin(2x)

Exercise Group. In the following exercises, Find the particular solution to the initial value problem.
9. y ′ = y + 2xex, y(0) = 2 10. xy ′ + 2y = x2 − x+ 1, y(1) = 1

11. xy ′ + (x+ 2)y = x, y(1) = 0 12. y ′ + 2y = 0, y(0) = 3

13. (x+ 1)y ′ + (x+ 2)y = 2xe−x, y(0) = 1 14. (cos(x))y ′ + (sin(x))y = 1, y(0) = −3

15. (x2 − 1)y ′ + 2y = (x+ 1)2, y(0) = 2 16. xy ′ − 2y =
x3

1 + x2
, y(1) = 0

Exercise Group. In the following exercises, classify the differential equation as separable, first order linear, or both,
and solve the initial value problem using an appropriate method.

17. y ′ = y + yx2, y(0) = −5 18. xeyy ′ = x2 sin(x), y(0) = 0

19. (x− 1)y ′ + y = x2 − 1, y(0) = 2 20. y ′ = y2 + y − 2, y(0) = 1

Exercise Group. In the following exercises, draw a slope field for the differential equation. Use the slope field to
predict the behavior of the solution to the initial value problem for large x values. Solve the initial value problem, and
verify your prediction.

21. y ′ = x− y, y(0) = 0 22. (X + 1)y ′ + y =
1

x+ 1
, y(0) = 2
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8.4 Modeling with Differential Equations

In the first three sections of this chapter, we focused on the basic ideas behind
differential equations and the mechanics of solving certain types of differential
equations. We have only hinted at their practical use. In this section, we use dif-
ferential equations for mathematical modeling, the process of using equations
to describe real world processes. We explore a few different mathematical mod-
els with the goal of gaining an introduction to this large field of applied mathe-
matics.

8.4.1 Models Involving Proportional Change
Some of the simplest differential equation models involve one quantity that
changes at a rate proportional to another quantity. In the introduction to this
chapter, we considered a population that grows at a rate proportional to the
current population. The words in this assumption can be directly translated into
a differential equation as shown below.

dp

dt
= kp

The rate of
change of the
population

the pop-
ulation.

is proportional
to

Figure 8.4.1 Translating words into a
differential equation

There are some key ideas that can be helpful when translating words into a
differential equation. Any time we see something about rates or changes, we
should think about derivatives. The word “is” usually corresponds to an equal
sign in the equation. The words “proportional to” mean we have a constant
multiplied by something.

The differential equation in Figure 8.4.1 is easily solved using separation of
variables. We find

p = Cekt.

Notice that we need values for bothC and k before we can use this formula
to predict population size. We require information about the population at two
different times in order to fully determine the population model.

Example 8.4.2 Bacterial Growth.

Suppose a population of e-coli bacteria grows at a rate proportional to
the current population. If an initial popluation of 200 bacteria has grown
to 1600 three hours later, find a function for the size of the population at
time t, and use it to predict when the population size will reach 10,000.
Solution. We already know that the population at time t is given by
p = Cekt for some C and k. The information about the initial size of
the population means that p(0) = 200. Thus C = 200. Our knowledge
of the population size after three hours allows us to solve for k via the
equation

1600 = 200e3k.

Solving this exponential equation yields k = ln(8)/3 ≈ 0.6931. The
popluation at time t is given by

p = 200e(ln(8)/3)t.

Solving
10000 = 200e(ln(8)/3)t

yields t = (3 ln(50))/ ln(8) ≈ 5.644. The population is predicted to
reach 10,000 bacteria in slightly more than five and a half hours.

Video solution

youtu.be/watch?v=EC18tbH7SQw

Another example of porportional change is Newton’s Law of Cooling. The
laws of thermodynamics state that heat flows from areas of higher temperature
to areas of lower temperature. A simple example is a hot object that cools down

https://www.youtube.com/watch?v=EC18tbH7SQw
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when placed in a cool room. Newton’s Law of Cooling is the simple assumption
that the temperature of the object changes at a rate proportional to the differ-
ence between the temperature of the object and the ambient temperature of
the room. If T is the temperature of the object and A is the constant ambi-
ent temperature, Newton’s Law of Cooling can be expressed as the differential
equation

dT

dt
= k(A− T ).

This differential equation is both linear and separable. The separated form
is

1

A− T
dT = k dt.

Then an implicit definition of the temperature is given by

− ln |A− T | = kt+ C.

If we solve for T , we find the explicit temperature

T = A− Ce−kt.

Though we didn’t show the steps, the explicit solution involves the typical
process of renaming the constant ±e−C as C, and allowing C to be positive,
negative, or zero to account for both cases of the absolution value and to catch
the constant solution T = A. Notice that the temperature of the object ap-
proaches the ambient temperature in the limit as t → ∞.

The equation
dT

dt
= k(T − A)

is also a valid representation of
Newton’s Law of Cooling. Intu-
ition tells us that T will increase
if T is less than A and decrease
if T is greater then A. The form
we use in the text follows this in-
tuitionwith a positivek value. The
formabovewill require thatk take
on a negative value. In the end,
both forms result in the same func-
tion.

Example 8.4.3 Hot Coffee.

A freshly brewed cup of coffee is set on the counter and has a temper-
ature of 200◦ Fahrenheit. After 3 minutes, it has cooled to 190◦, but is
still too hot to drink. If the room is 72◦ and the coffee cools according
to Newton’s Law of Cooling, how long will the impatient coffee drinker
have to wait until the coffee has cooled to 165◦?
Solution. Since we have already solved the differential equation for
Newton’s Law of Cooling, we can immediately use the function

T = A− Ce−kt.

Since the room is 72◦, we knowA = 72. The initial temperature is 200◦,
which means C = −128. At this point, we have

T = 72 + 128e−kt

The information about the coffee cooling to 190◦ in 3 minutes leads to
the equation

190 = 72 + 128e−3k.

Solving the exponential equation for k, we have

k = −1

3
ln
(
59

64

)
≈ 0.0271.

Finally, we finish the problem by solving the exponential equation

165 = 72 + 128e
1
3 ln(

59
64 )t.

The coffee drinker must wait t =
3 ln

(
93
128

)
ln
(
59
64

) ≈ 11.78minutes.

Video solution

youtu.be/watch?v=tEMLcz1yvFI

https://www.youtube.com/watch?v=tEMLcz1yvFI
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Wefinish our discussion ofmodels of proportional change by exploring three
different models of disease spread through a population. In all of the models,
we let y denote the proportion of the population that is sick (0 ≤ y ≤ 1). We
assume a proportion of 0.05 is initially sick and that a proportion of 0.1 is sick 1
week later.

Example 8.4.4 Disease Spread 1.

Suppose a disease spreads through a population at a rate proportional
to the number of individuals who are sick. If 5% of the population is sick
initially and 10% of the population is sick one week later, find a formula
for the proportion of the popoulation that is sick at time t.
Solution. The assumption here seems to have some merit because it
matches our intuition that a disease should spread more rapidly when
more individuals are sick. The differential equation is simply

dy

dt
= ky,

with solution
y = Cekt.

The conditions y(0) = 0.05 and y(1) = 0.1 lead to C = 0.05 a and
k = ln(2), so the function is

y = 0.05e(ln(2)t.

We should point out a glaring problem with this model. The variable
y is a proportion and should take on values between 0 and 1, but the
function y = 0.05e2t grows without bound. After t ≈ 4.32 weeks, y
exceeds 1, and the model ceases to make physical sense.

youtu.be/watch?v=UjRpT852su4

Figure 8.4.5 Video presentation of Ex-
amples 8.4.4–8.4.6

Example 8.4.6 Disease Spread 2.

Suppose a disease spreads through a population at a rate proportional
to the number of individuals who are not sick. If 5% of the population
is sick initially and 10% of the population is sick one week later, find a
formula for the proportion of the popoulation that is sick at time t.
Solution. The intuition behind the assumption here is that a disease can
only spread if there are individuals who are susceptible to the infection.
As fewer and fewer people are able to be infected, the disease spread
should slow down. Since y is proportion of the population that is sick,
1− y is the proportion who are not sick, and the differential equation is

dy

dt
= k(1− y).

Though the context is quite different, the differential equation is identi-
cal to the differential equation for Newton’s Law of Cooling, withA = 1.
The solution is

y = 1− Ce−kt.

The conditions y(0) = 0.05 and y(1) = 0.1 yield C = 0.95 and k =
− ln

(
18
19

)
≈ 0.0541, so the final function is

y = 1− .95eln(
18
19 )t.

https://www.youtube.com/watch?v=UjRpT852su4
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Notice that this function approaches y = 1 in the limit as t → ∞,
and does not suffer from the non-physical behavior described in Exam-
ple 8.4.4.

In Example 8.4.4, we assumed disease spread depends on the number of in-
fected individuals. In Example 8.4.6, we assumeddisease spread depends on the
number of susceptible individuals who are able to become infected. In reality,
we would expect many diseases to require the interaction of both infected and
susceptible individuals in order to spread. One of the simplest ways to model
this required interaction is to assume disease spread depends on the product of
the proportions of infected and uninfected individuals. This assumption (regu-
larly seen in the context of chemical reactions) is often called the law of mass
action.

Example 8.4.7 Disease Spread 3.

Suppose a disease spreads through a population at a rate proportional
to the product of the number of infected and uninfected individuals. If
5% of the population is sick initially and 10% of the population is sick
one week later, find a formula for the proportion of the population that
is sick at time t.
Solution. The differential equation is

dy

dt
= ky(1− y).

This is exactly the logistic equation withM = 1. We solved this differ-
ential equation in Example 8.2.8, and found

y =
1

1 + be−kt
.

The conditions y(0) = 0.05 and y(1) = 0.1 yield b = 19 and k =
− ln

(
9
19

)
≈ 0.7472. The final function is

y =
1

1 + 19eln(
9
19 )t

.

Based on the three different assumptions about the rate of disease
spread explored in the last three examples, we now have three differ-
ent functions giving the proportion of a population that is sick at time
t. Each of the three functions meets the conditions y(0) = 0.05 and
y(1) = 0.1. The three functions are shown in Figure 8.4.8.
Notice that the logistic function mimics specific parts of the functions
from Examples 8.4.4 and 8.4.6. We see in Figure 8.4.8(a) that the logis-
tic and exponential functions are virtually indistinguishable for small t
values. When there are few infected individuals and lots of susceptible
individuals, the spread of a disease is largely determined by the number
of sick people. The logistic curve captures this feature, and is “almost
exponential” early on.
In Figure 8.4.8(b), we see that the logistic curve leaves the exponential
curve from Example 8.4.4 and approaches the curve from Example 8.4.6.
This result implies that when most of the population is sick, the spread
of the disease is largely dependent on the number of susceptible indi-
viduals. Though there are much more sophisticated mathematical mod-
els describing the spread of infections, we could argue that the logistic
model presented in this example is the “best” of the three.
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Figure 8.4.8 Plots of the functions from Example 8.4.4 (dotted), Exam-
ple 8.4.6 (dashed), and Example 8.4.7 (solid)

Video solution

youtu.be/watch?v=vV8Jy231gLk

8.4.2 Rate-in Rate-out Problems
One of the classic ways to build a mathematical model involves tracking the
way the amount of something can change. We sometimes say these models
are based on conservation laws. Consider a box with some amount of a specific
type of material inside. (Some type of chemical, for example.) The amount of
material of the specific type in the box can only change in four ways; we can
add more to the box, we can remove some from the box, some of the material
can change into material of a different type, or some other type of material can
turn into the type we’re tracking. In the examples that follow, we assume mate-
rial doesn’t change type, so we only need to keep track of material coming into
the box and material leaving the box. To derive a differential equation, we track
rates:

rate of change of some quantity = rate in − rate out .

youtu.be/watch?v=G3nvU0Jc5pw

Figure 8.4.9 Introduction to Rate-in
Rate-out problems

Though we stick to relatively simple examples, this basic idea can be used to
derive some very important differential equations in mathematics and physics.

The examples to follow involve tracking the amount of a chemical in solution.
We assume liquid containing some chemical flows into a container at some rate.
That liquid mixes instantaneously with the liquid already in the container. Then
the liquid from the container flows out at some (potentially different) rate.

The assumption about instanta-
neous mixing, though not phys-
ically accurate, leads to a differ-
ential equation we have hope of
solving. In reality, the amount
of chemical at a specific location
in the container depends bothon
the locationandhow longwehave
been waiting. This dependence
on both space and time leads to
a typeof differential equation called
apartial differential equation. Dif-
ferential equations of this type
are more interesting, but signifi-
cantly harder to study. Instanta-
neous mixing removes any spa-
tial dependence from the prob-
lem, and leaves us with an ordi-
nary differential equation.

Example 8.4.10 Equal Flow Rates.

Suppose a 10 liter tank has 5 liters of salt solution in it. The initial con-
centration of the salt solution is 1 gram per liter. A salt solution with
concentration 3 g

L flows into the tank at a rate of 2
L
min . Suppose the salt

solutionmixes instantaneously with the solution already in the tank, and
that the mixed solution from the tank flows out at a rate of 2 L

min . Find a
function that gives the amount of salt in the tank at time t.
Solution. We use the rate in - rate out setup described above. The
quantity here is the amount (in grams) of salt in the tank at time t. Let
y denote the amount of salt. In words, the differential equation is given
by

dy

dt
= rate in − rate out .

Thinking in terms of units can help fill in the details of the differential
equation. Since y has units of grams, the left hand side of the equation
has units g/min. Both termson the right hand sidemust have these same

https://www.youtube.com/watch?v=vV8Jy231gLk
https://www.youtube.com/watch?v=G3nvU0Jc5pw
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units. Notice that the product of a concentration (with units g/L) and a
flow rate (with units L/min) results in a quantity with units g/min. Both
terms on the right hand side of the equationwill include a concentration
multiplied by a flow rate.
For the rate in, we multiply the inflow concentration by the rate that

fluid is flowing into the bucket. This is
(
3
g
L

)(
2

L
min

)
= 6 g/min.

The rate out is more complicated. The flow rate is still 2 L
min , meaning

that the overall volume of the fluid in the bucket is the constant 5 L. The
salt concentration in the bucket is not constant though,meaning that the
outflow concentration is not constant. In particular, the outflow concen-
tration is not the constant 1 L

min . This is simply the initial concentration.
To find the concentration at any time, we need the amount of salt in the
bucket at that time and the volume of liquid in the bucket at that time.
The volume of liquid is the constant 5 L, and the amount of salt is given
by the dependent variable y. Thus, the outflow concentration is

y

5
g/L,

yielding a rate out given by(y
5

g
L

)(
2

L
min

)
=

2y

5
g/min .

The differential equation we wish to solve is given by

dy

dt
= 6− 2y

5
.

To furnish an initial condition, we must convert the initial salt concentra-
tion into an initial amount of salt. This is

(
1
g
L

)
(5 L ) = 5 g, so y(0) = 5

is our initial condition.
Our differential equation is both separable and linear. We solve using
separation of variables. The separated form of the differential equation
is

5

30− 2y
dy = dt.

Integration yields the implicit solution

−5

2
ln |30− 2y| = t+ C.

Solving for y (and redefining the arbitrary constant C as necessary)
yields the explicit solution

y = 15 + Ce−
2
5 t.

The initial condition y(0) = 5means that C = −10 so that

y = 15− 10e−
2
5 t

is the particular solution to our initial value problem.
This function is plotted in Figure 8.4.11. Notice that in the limit as t → ∞,
y approaches 15. This corresponds to a bucket concentration of 15/5 =
3 g/L. It should not be surprising that salt concentration inside the tank
will move to match the inflow salt concentration.

2 4 6 8 10

5

10

15

t

y

Figure 8.4.11 Salt concentration at
time t, from Example 8.4.10

Video solution

youtu.be/watch?v=Au4n_QP73Ko

https://www.youtube.com/watch?v=Au4n_QP73Ko
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Example 8.4.12 Unequal Flow Rates.

Suppose the setup is identical to the setup in Example 8.4.10 except that
now liquid flows out of the bucket at a rate of 1 L/min. Find a function
that gives the amount of salt in the bucket at time t. What is the salt
concentration when the solution ceases to be valid?
Solution. Because the inflow and outflow rates no longer match, the
volume of liquid in the bucket is not the constant 5 L. In general, we can
find the volume of liquid via the equation

volume = initial volume + (inflow rate - outflow rate) t.

In this example, the volume at time t is 5 + t liters. Because the total
volume of the bucket is only 10 L, it follows that our solution will only be
valid for 0 ≤ t ≤ 5. At that point it is no longer possible to have liquid
flow into a the bucket at a rate of 2 L/min and out of the bucket at a rate
of 1 L/min.
To update the differential equation, we must modify the rate out. Since
the volume is 5+ t, the concentration at time t is given by y

5+t g/L. Thus

for rate out, we must use
(

y
5+t

)
(1) g/min. The initial value problem is

dy

dt
= 6− y

5 + t
, with y(0) = 5.

Unlike Example 8.4.10, where we had equal flow rates, this differential
equation is no longer separable. We must proceed with an integrating
factor. Writing the differential equation in the form

dy

dt
+

1

5 + t
y = 6,

we identify the integrating factor

µ(t) = e
∫

1
5+t dt = eln(5+t) = 5 + t.

Then
d

dt

(
(5 + t)y

)
= 6(5 + t),

yielding the implicit solution

(5 + t)y = 30t+ 3t2 + C.

The initial condition y(0) = 5 impliesC = 25, so the explicit solution to
our initial value problem is given by

y =
3t2 + 30t+ 25

5 + t
.

This solution ceases to be valid at t = 5. At that time, there are 25 g of
salt in the tank. The volume of liquid is 10 L, resulting in a salt concen-
tration of 2.5 g/L.

Video solution

youtu.be/watch?v=P3fkhn-TQEk

Differential equations are powerful tools that can be used to help describe
the world around us. Though relatively simple in concept, the ideas of pro-
portional change and matching rates can serve as building blocks in the devel-
opment of more sophisticated mathematical models. As we saw in this sec-

https://www.youtube.com/watch?v=P3fkhn-TQEk
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tion, some simple mathematical models can be solved analytically using the
techniques developed in this chapter. Most sophisticated mathematical mod-
els don’t allow for analytic solutions. Even so, there are an array of graphical
and numerical techniques that can be used to analyze the model to make pre-
dictions and infer information about real world phenomena.
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8.4.3 Exercises

Problems

Exercise Group. In the following exercises, use the tools in the section to answer the questions presented.
1. Suppose the rate of change of y with respect to

x is proportional to 10− y. Write down and
solve a differential equation for y.

2. A rumor is spreading through a middle school
with 250 students. Suppose the rumor spreads
at a rate proportional to the number of
students who haven’t heard the rumor yet. If 1
person starts the rumor, and 75 students have
heard the rumor 3 days later, how many days
will it take until 80% of the students in the
school have heard the rumor?

3. A rumor is spreading through a middle school
with 250 students. Suppose the rumor spreads
at a rate proportional to the product of number
of students who have heard the rumor and the
number who haven’t heard the rumor. If 1
person starts the rumor, and 75 students have
heard the rumor 3 days later, how many days
will it take until 80% of the students in the
school have heard the rumor?

4. A feature of radioactive decay is that the
amount of a radioactive substance decreases at
a rate proportional to the current amount of
the substance. The half life of a substance is the
amount of time it takes for half of a given
amount of substance to decay. The half life of
carbon-14 is approximately 5730 years. If an
ancient object has a carbon-14 amount that is
20% of the original amount, how old is the
object?

5. Consider a chemical reaction where molecules
of type A combine with molecules of type B to
form molecules of type C. Suppose one
molecule of type A combines with one molecule
of type B to form one molecule of type C, and
that type C is produced at a rate proportional
the product of the remaining number of
molecules of types A and B. Let x denote moles
of molecules of type C. Find a function giving
the number of moles of type C at time t if there
are originally amoles of type A, bmoles of type
B, and zero moles of type C.

6. Suppose an object with a temperature of 100◦
is introduced into a room with an ambient
temperature of 70◦. Suppose the temperature
of the object changes at a rate proportional to
the difference between the temperature of the
object and the temperature of the room
(Newton’s Law of Cooling). If the object has
cooled to 92◦ in 10 minutes, how long until the
object has cooled to 84◦?

7. Suppose an object with a temperature of 100◦
is introduced into a room with an ambient
temperature given by 60 + 20e−

1
4 t degrees.

Suppose the temperature of the object changes
at a rate proportional to the difference between
the temperature of the object and the
temperature of the room (Newton’s Law of
Cooling). If the object is 80◦ after 20 minutes,
find a formula giving the temperature of the
object at time t. (Note: This problem requires a
numerical technique to solve for the unknown
constants.)

8. A tank contains 5 gallons of salt solution with
concentration 0.5 g/gal. Pure water flows into
the tank at a rate of 1 gallon per minute. Salt
solution flows out of the tank at a rate of 1
gallon per minute. (Assume instantaneous
mixing.) Find the concentration of the salt
solution at 10 minutes.
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9. Dead leaves accumulate on the ground at a rate
of 4 grams per square centimeter per year. The
dead leaves on the ground decompose at a rate
of 50% per year. Find a formula giving grams
per square centimeter on the ground if there
are no leaves on the ground at time t = 0.

10. A pond initially contains 10 million gallons of
fresh water. Water containing an undesirable
chemical flows into the pond at a rate of 5
million gallons per year, and fluid from the pond
flows out at the same rate. (Assume
instantaneous mixing.) If the concentration (in
grams per million gallons) of the incoming
chemical varies periodically according to the
expression 2 + sin(2t), find a formula giving the
amount of chemical in the pond at time t.

11. A large tank contains 1 gallon of a salt solution
with concentration 2 g/gal. A salt solution with
concentration 1 g/gal flows into the tank at a
rate of 4 gal/min. Salt solution flows out of the
tank at a rate of 3 gal/min. (Assume
instantaneous mixing.) Find the amount of salt
in the tank at 10 minutes.

12. A stream flows into a pond containing 2 million
gallons of fresh water at a rate of 1 million
gallons per day. The stream flows out of the
first pond and into a second pond containing 3
million gallons of fresh water. The stream then
flows out of the second pond. Suppose the
inflow and outflow rates are the same so that
both ponds maintain their volumes. A factory
upstream of the first pond starts polluting the
stream. Directly below the factory, pollutant has
a concentration of 55 grams per million gallons,
and this concentration starts to flow into the
first pond. Find the concentration of pollutant
in the first and second ponds at 5 days.



Chapter 9

Sequences and Series

This chapter introduces sequences and series, importantmathematical construc-
tions that are useful when solving a large variety ofmathematical problems. The
content of this chapter is considerably different from the content of the chap-
ters before it. While the material we learn here definitely falls under the scope
of “calculus,” we will make very little use of derivatives or integrals. Limits are
extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
information about a function and its derivatives at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximation of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximations
of functions when limited knowledge of the function is available.

9.1 Sequences

We commonly refer to a set of events that occur one after the other as a se-
quence of events. In mathematics, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one after the other.”

youtu.be/watch?v=jW6PMyekBtU

Figure 9.1.1 Video introduction to
Section 9.1

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and often this can be done. For instance, the
sequence above could be described by the function a(n) = 2n, for the values
of n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definition of a sequence.

Definition 9.1.2 Sequence.

A sequence is a function a(n) whose domain is N. The range of a se-
quence is the set of all distinct values of a(n).
The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….
A sequence a(n) is often denoted as {an}.

Notation: We useN to describe
the set of natural numbers, that
is, the positive integers1, 2, 3, . . .Definition 9.1.3

A factorial refers to the product of a descending sequence of natural
numbers. For example, the expression 4! (read as 4 factorial) refers to
the number 4 · 3 · 2 · 1 = 24.

465

https://www.youtube.com/watch?v=jW6PMyekBtU
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In general, n! = n · (n−1) · (n−2) · · · 2 ·1, where n is a natural number.
We define 0! = 1. While this does not immediatelymake sense, it makes
many mathematical formulas work properly.

Example 9.1.4 Listing terms of a sequence.

List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4 + (−1)n}

3. {an} =

{
(−1)n(n+1)/2

n2

}
Solution.

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9

2
; a3 =

33

3!
=

9

2
; a4 =

34

4!
=

27

8
We can plot the terms of a sequence with a scatter plot. The hori-
zontal axis is used for the values of n, and the values of the terms
are plotted on the vertical axis. To visualize this sequence, see
Figure 9.1.5.

an =
3n

n!

1 2 3 4

1

2

3

4

5

n

y

Figure 9.1.5 Plotting the sequence in
Item 1

2. a1 = 4+(−1)1 = 3; a2 = 4+(−1)2 = 5; a3 = 4+(−1)3 =
3; a4 = 4 + (−1)4 = 5 .

Note that the range of this sequence is finite, consisting of only
the values 3 and 5. This sequence is plotted in Figure 9.1.6.

an = 4 + (−1)n

1 2 3 4

1

2

3

4

5

n

y

Figure 9.1.6 Plotting the sequence in
Item 2

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4
;

a3 =
(−1)3(4)/2

32
=

1

9
; a4 =

(−1)4(5)/2

42
=

1

16
; ; a5 =

(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pattern of signs is
“−,−,+,+,−,−, . . .”, due to the fact that the exponent of−1 is
a special quadratic. This sequence is plotted in Figure 9.1.7.

an =
(−1)n(n+1)/2

n2

1 2 3 4 5

−1

1/2

1/4

n

y

Figure 9.1.7 Plotting the sequence in
Item 3

Video solution

youtu.be/watch?v=j-iqXR_bANY

Example 9.1.8 Determining a formula for a sequence.

Find the nth term of the following sequences, i.e., find a function that
describes each of the given sequences.

1. {an} = {2, 5, 8, 11, 14, . . .}

2. {bn} = {2,−5, 10,−17, 26,−37, . . .}

3. {cn} = {1, 1, 2, 6, 24, 120, 720, . . .}

https://www.youtube.com/watch?v=j-iqXR_bANY
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4. {dn} =

{
5

2
,
5

2
,
15

8
,
5

4
,
25

32
, . . .

}
Solution. We should first note that there is never exactly one function
that describes a finite set of numbers as a sequence. There are many
sequences that start with 2, then 5, as our first example does. We are
looking for a simple formula that describes the terms given, knowing
there is possibly more than one answer.

1. Note how each term is 3 more than the previous one. This implies
a linear function would be appropriate: a(n) = an = 3n + b
for some appropriate value of b. If we were to think in terms of
ordered pairs, they would be of the form (n, a(n)). So one such
ordered pair would be (1, 2). As we want a1 = 2, we set b = −1.
Thus an = 3n− 1.

2. First notice how the sign changes from term to term. This is most
commonly accomplished bymultiplying the terms by either (−1)n

or (−1)n+1. Using (−1)n multiplies the odd indexed terms by
(−1). Thus the first term would be negative and the second term
would be positive. Multiplying by (−1)n+1 multiplies the even
indexed terms by (−1). Thus the second term would be negative
and the first termwould bepositive. As this sequence has negative
even indexed terms, we will multiply by (−1)n+1.

After this, we might feel a bit stuck as to how to proceed. At this
point, we are just looking for a pattern of some sort: what do the
numbers 2, 5, 10, 17, etc., have in common? There are many cor-
rect answers, but the one that we’ll use here is that each is one
more than a perfect square. That is, 2 = 12 + 1, 5 = 22 + 1,
10 = 32 + 1, etc. Thus our formula is bn = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial function will readily recog-
nize these numbers. They are 0!, 1!, 2!, 3!, etc. Since our se-
quences start withn = 1, we cannotwrite cn = n!, for thismisses
the 0! term. Instead, we shift by 1, and write cn = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are
the same, but a little “sleuthing” will help. Notice how the terms
in the numerator are always multiples of 5, and the terms in the
denominator are always powers of 2. Does something as simple
as dn = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When
n = 2, we get 10/4 = 5/2. Further checking shows that this
formula indeed matches the other terms of the sequence.

Video solution

youtu.be/watch?v=-Tu12lkQtTs

A common mathematical endeavor is to create a new mathematical object
(for instance, a sequence) and then apply previously knownmathematics to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will investigate what it means to find the limit of a sequence.

https://www.youtube.com/watch?v=-Tu12lkQtTs
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Definition 9.1.9 Limit of a Sequence, Convergent, Divergent.

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
an N can be found such that |an − L| < ε for all n > N , then we say
the limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definition states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjective
terms, but hopefully the intent is clear.

youtu.be/watch?v=kt6A8Fgg22o

Figure 9.1.10 Video presentation of
Definition 9.1.9

This definition is reminiscent of the ε-δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definition; we
do so here as well.

Definition 9.1.11 Limit of Infinity, Divergent Sequence.

Let {an} be a sequence. We say lim
n→∞

an = ∞ if for allM > 0, there
exists a number N such that if n ≥ N , then an > M . In this case, we
say the sequence diverges to∞.

This definition states, informally, that if the limit of an is∞, then you can
guarantee that the terms of an will get arbitrarily large (larger than any value of
M that you think of), by going out far enough in the sequence.

Theorem 9.1.12 Limit of a Sequence.

Let {an} be a sequence, letL be a real number, and let f(x) be a function
whose domain contains the positive real numbers where f(n) = an for
all n in N.

1. If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

2. If lim
x→∞

f(x) = ∞, then lim
n→∞

an = ∞.

Theorem 9.1.12 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not
exist. It may, or may not, exist. For instance, we can define a sequence
{an} = {cos(2πn)}. Let f(x) = cos(2πx). Since the cosine function
oscillates over the real numbers, the limit lim

x→∞
f(x) does not exist. How-

ever, for every positive integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a function f(x)whose domain contains the positive real
numbers where f(n) = an for all n in N, we cannot conclude lim

n→∞
an

does not exist. It may, or may not, exist.

https://www.youtube.com/watch?v=kt6A8Fgg22o
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Example 9.1.13 Determining convergence/divergence of a sequence.

Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1

n2 − 1000

}
2. {bn} = {cos(n)}

3. {cn} =

{
(−1)n

n

}
Solution.

1. Using Theorem1.6.21, we can state that lim
x→∞

3x2−2x+1
x2−1000 = 3. (We

could have also directly applied L’Hospital’s Rule.) Thus the se-
quence {an} converges, and its limit is 3. A scatter plot of every 5
values of an is given in Figure 9.1.14. The values of an vary widely
near n = 30, ranging from about−73 to 125, but as n grows, the
values approach 3.

an =
3n2 − 2n+ 1

n2 − 1000

20 40 60 80 100

−10

−5

5

10

n

y

Figure 9.1.14 Scatter plot for the se-
quence in Item 1

2. The limit lim
x→∞

cos(x) does not exist, as cos(x) oscillates (and
takes on every value in [−1, 1] infinitely many times). Thus we
cannot apply Theorem 9.1.12. The fact that the cosine function
oscillates strongly hints that cos(n), when n is restricted toN, will
also oscillate. Figure 9.1.15, where the sequence is plotted, shows
that this is true. Because only discrete values of cosine are plot-
ted, it does not bear strong resemblance to the familiar cosine
wave. The proof of the following statement is beyond the scope
of this text, but it is true: there are infinitely many integers n that
are arbitrarily (i.e., very) close to an even multiple of π, so that
cosn ≈ 1. Similarly, there are infinitely many integersm that are
arbitrarily close to an odd multiple of π, so that cosm ≈ −1. As
the sequence takes on values near 1 and−1 infinitely many times,
we conclude that lim

n→∞
an does not exist.

20 40 60 80 100

−1

−0.5

0.5

1

n

y
an = cos(n)

Figure 9.1.15 Scatter plot for the se-
quence in Item 2

3. We cannot actually apply Theorem 9.1.12 here, as the function
f(x) = (−1)x/x is not well defined. (What does (−1)

√
2 mean?

In actuality, there is an answer, but it involves complex analysis,
beyond the scope of this text.) Instead, we invoke the definition
of the limit of a sequence. By looking at the plot in Figure 9.1.16,
we would like to conclude that the sequence converges to L = 0.
Let ϵ > 0 be given. We can find a natural number m such that
1/m < ε. Let n > m, and consider |an − L|:

|an − L| =
∣∣∣∣ (−1)n

n
− 0

∣∣∣∣
=

1

n

<
1

m
(since n > m)

< ε.
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We have shown that by picking m large enough, we can ensure
that an is arbitrarily close to our limit, L = 0, hence by the defini-
tion of the limit of a sequence, we can say lim

n→∞
an = 0.

an =
(−1)n

n

5 10 15 20

−1

−0.5

0.5

1

n

y

Figure 9.1.16 Scatter plot for the se-
quence in Item 3

Video solution

youtu.be/watch?v=8xE6Sc8U_gU In the previous example we used the definition of the limit of a sequence to
determine the convergence of a sequence aswe could not apply Theorem9.1.12.
In general, we like to avoid invoking the definition of a limit, and the following
theorem gives us tool that we could use in that example instead.

Theorem 9.1.17 Absolute Value Theorem.

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Proof. Let lim
n→∞

|an| = 0. We start by noting that − |an| ≤ an ≤ |an|. If we
apply limits to this inequality:

lim
n→∞

(− |an|) ≤ lim
n→∞

an ≤ lim
n→∞

|an|

− lim
n→∞

|an| ≤ lim
n→∞

an ≤ lim
n→∞

|an|

Using the fact that lim
n→∞

|an| = 0:

0 ≤ lim
n→∞

an ≤ 0

We conclude that the only possible answer for lim
n→∞

an is 0. ■

Example 9.1.18 Determining the convergence/divergence of a se-
quence.

Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
Solution.

1. This appeared in Example 9.1.13. We want to apply Theo-
rem 9.1.17, so consider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1

n

= 0.

Since this limit is 0, we can apply Theorem 9.1.17 and state that
lim

n→∞
an = 0.

2. Because of the alternating nature of this sequence (i.e., every
other term is multiplied by −1), we cannot simply look at the
limit lim

x→∞
(−1)x(x+1)

x . We can try to apply the techniques of The-

https://www.youtube.com/watch?v=8xE6Sc8U_gU
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orem 9.1.17:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)

n

∣∣∣∣
= lim

n→∞

n+ 1

n

= 1.

We have concluded that when we ignore the alternating sign,
the sequence approaches 1. This means we cannot apply Theo-
rem 9.1.17; it states the the limit must be 0 in order to conclude
anything.

an =
(−1)n(n+ 1)

n

5 10 15 20

−1

−2

1

2

n

y

Figure 9.1.19 A plot of a sequence in
Example 9.1.18, part 2

Since we know that the signs of the terms alternate and we know
that the limit of |an| is 1, we know that as n approaches infinity,
the terms will alternate between values close to 1 and−1, mean-
ing the sequence diverges. A plot of this sequence is given in Fig-
ure 9.1.19.

We continue our study of the limits of sequences by considering some of the
properties of these limits.

Theorem 9.1.20 Properties of the Limits of Sequences.

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K,
and let c be a real number.

1. lim
n→∞

(an ± bn) = L±K

2. lim
n→∞

(an · bn) = L ·K

3. lim
n→∞

(an/bn) = L/K,K ̸=
0

4. lim
n→∞

c · an = c · L

youtu.be/watch?v=93lWvxKvFRw

Figure 9.1.21 Video presentation of
Theorem 9.1.17 and Theorem 9.1.20

Example 9.1.22 Applying properties of limits of sequences.

Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1

n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1 +

1

n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

Solution. We will use Theorem 9.1.20 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an+

bn) = 0 + e = e. So even though we are adding something to
each term of the sequence bn, we are adding something so small
that the final limit is the same as before.

https://www.youtube.com/watch?v=93lWvxKvFRw


472 CHAPTER 9. SEQUENCES AND SERIES

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn ·
cn) = e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does
not matter that we multiply each term by 1000; the sequence still
approaches 0. (It just takes longer to get close to 0.)

Video solution

youtu.be/watch?v=2PVI6iUVYcI

There is more to learn about sequences than just their limits. We will also
study their range and the relationships terms have with the terms that follow.
We start with some definitions describing properties of the range.

Definition 9.1.23 Bounded and Unbounded Sequences.

A sequence {an} is said to be bounded if there exist real numbers m
andM such thatm ≤ an ≤ M for all n in N. The numberm is called
a lower bound for the sequence, and the numberM is called an upper
bound for the sequence.
A sequence {an} is said to be unbounded if it is not bounded.
A sequence {an} is said to be bounded above if there exists anM such
that an < M for all n inN; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definition that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 9.1.24 Determining boundedness of sequences.

Determine the boundedness of the following sequences.

1. {an} =

{
1

n

}
2. {an} = {2n}

Solution.

1. The terms of this sequence are always positive but are decreasing,
so we have 0 < an < 2 for all n. Thus this sequence is bounded.
Figure 9.1.25(a) illustrates this.

2. The terms of this sequence obviously grow without bound. How-
ever, it is also true that these terms are all positive, meaning
0 < an. Thus we can say the sequence is unbounded, but also
bounded below. Figure 9.1.25(b) illustrates this.

https://www.youtube.com/watch?v=2PVI6iUVYcI
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an =
1

n
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(b)

Figure 9.1.25 A plot of {an} = {1/n} and {an} = {2n} from Exam-
ple 9.1.24

Video solution

youtu.be/watch?v=d_C_rw2LXwk

The previous example produces some interesting concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using Definition 9.1.9, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 9.1.26 Convergent Sequences are Bounded.

Let {an} be a convergent sequence. Then {an} is bounded. Keep inmindwhat Theorem9.1.26
does not say. It does not say that
bounded sequencesmust converge,
nor does it say that if a sequence
does not converge, it is not bounded.

youtu.be/watch?v=Ljrqs5azcCI

Figure 9.1.27 Video presentation of
Theorem 9.1.26

In Example 9.1.22 we saw the sequence {bn} = {(1 + 1/n)
n}, where it

was stated that lim
n→∞

bn = e. (Note that this is simply restating part of Theo-
rem 1.3.17. The limit can also be found using logarithms and L’Hospital’s rule.)
Even though it may be difficult to intuitively grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesting concept to come out of Example 9.1.24 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n+ 1. Taking reciprocals flips the inequality: 1/n > 1/(n+ 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Definition 9.1.28 Monotonic Sequences.

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} ismonotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence is monotonic if it is monotonically increasing or mo-
notonically decreasing.

It is sometimes useful to call a
monotonically increasing sequence
strictly increasing if an < an+1

for all n; i.e, we remove the pos-
sibility that subsequent terms are
equal.

A similar statement holds for
strictly decreasing.

youtu.be/watch?v=ZxaUovyGMBI

Figure 9.1.29 Video presentation of
Definition 9.1.28 and Theorem 9.1.32

https://www.youtube.com/watch?v=d_C_rw2LXwk
https://www.youtube.com/watch?v=Ljrqs5azcCI
https://www.youtube.com/watch?v=ZxaUovyGMBI
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Example 9.1.30 Determining monotonicity.

Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1

n

}

2. {an} =

{
n2 + 1

n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}
Solution. In each of the following, we will examine an+1 − an. If
an+1 − an ≥ 0, we conclude that an ≤ an+1 and hence the sequence
is increasing. If an+1 − an ≤ 0, we conclude that an ≥ an+1 and the
sequence is decreasing. Of course, a sequence need not be monotonic
and perhaps neither of the above will apply.
We also give a scatter plot of each sequence. These are useful as they
suggest a pattern of monotonicity, but analytic work should be done to
confirm a graphical trend.

1.

an+1 − an =
n+ 2

n+ 1
− n+ 1

n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)

< 0 for all n.

Since an+1 − an < 0 for all n, we conclude that the sequence is
decreasing.

2.

an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 3n

(n+ 1)(n+ 2)

> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is in-
creasing.

3. We can clearly see in Figure 9.1.31(c), where the sequence is plot-
ted, that it is not monotonic. However, it does seem that after
the first 4 terms it is decreasing. To understand why, perform the
same analysis as done before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8

n2 − 8n+ 17
− n2 − 9

n2 − 10n+ 26
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=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The
denominator is always positive, therefore we are only concerned
with the numerator. For small values of n, the numerator is pos-
itive. As n grows large, the numerator is dominated by −10n2,
meaning the entire fraction will be negative; i.e., for large enough
n, an+1−an < 0. Using the quadratic formula we can determine
that the numerator is negative for n ≥ 5. In short, the sequence
is simply not monotonic, though it is useful to note that for n ≥ 5,
the sequence is monotonically decreasing.

4. Again, the plot in Figure 9.1.31(d) shows that the sequence is not
monotonic, but it suggests that it ismonotonically decreasing after
the first term. We perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!

When n = 1, the above expression is > 0; for n ≥ 2, the above
expression is < 0. Thus this sequence is not monotonic, but it is
monotonically decreasing after the first term.
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Figure 9.1.31 Plots of sequences in Example 9.1.30

Video solution

youtu.be/watch?v=F8mDR0ZnMCM

Knowing that a sequence is monotonic can be useful. Consider, for example,
a sequence that is monotonically decreasing and is bounded below. We know
the sequence is always getting smaller, but that there is a bound to how small it
can become. This is enough to prove that the sequence will converge, as stated
in the following theorem.

Theorem 9.1.32 Bounded Monotonic Sequences are Convergent.

1. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

2. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always positive (i.e., bounded below by
0). Therefore we can conclude by Theorem 9.1.32 that the sequence converges.
We already knew this by other means, but in the following section this theorem
will become very useful.

We can replace Theorem 9.1.32 with the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges; i.e., lim

n→∞
an exists.” We leave it to

the reader in the exercises to show the theorem and the above statement are
equivalent.

youtu.be/watch?v=fRMKbUCIb_4

Figure 9.1.33 Finding the limit of a
bounded, monotonic sequence

Sequences are a great source of mathematical inquiry. The On-Line Ency-
clopedia of Integer Sequences (oeis.org) contains thousands of sequences and
their formulae. (As of this writing, there are 328,977 sequences in the data-
base.) Perusing this database quickly demonstrates that a single sequence can
represent several different “real life” phenomena.

https://www.youtube.com/watch?v=F8mDR0ZnMCM
https://www.youtube.com/watch?v=fRMKbUCIb_4
https://oeis.org
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Interesting as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · ·. Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many times, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to investigate in Section 9.2.
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9.1.1 Exercises

Terms and Concepts

1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems

Exercise Group. In the following exercises, give the first five terms of the given sequence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3

2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} ={

1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)}

Exercise Group. In the following exercises, determine the nth term of the given sequence.
9. 4, 7, 10, 13, 16, . . . 10. 3, −3

2
,
3

4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .
12. 1, 1,

1

2
,
1

6
,
1

24
,

1

120
, . . .

Exercise Group. In the following exercises, use the following information to determine the limit of the given se-
quences.

• {an} =

{
2n − 20

2n

}
; lim
n→∞

an = 1

• {bn} =

{(
1 +

2

n

)n}
; lim
n→∞

bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20

7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1 +

2

n

)n}
16. {an} =

{(
1 +

2

n

)2n
}

Exercise Group. In the following exercises, determine whether the sequence converges or diverges. If convergent,
give the limit of the sequence.

17. {an} =

{
(−1)n

n

n+ 1

}
18. {an} =

{
4n2 − n+ 5

3n2 + 1

}
19. {an} =

{
4n

5n

}
20. {an} =

{
n− 1

n
− n

n− 1

}
, n ≥ 2

21. {an} = {ln(n)}
22. {an} =

{
3n√
n2 + 1

}
23. {an} =

{(
1 +

1

n

)n}
24. {an} =

{
5− 1

n

}
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25. {an} =

{
(−1)n+1

n

}
26. {an} =

{
1.1n

n

}
27. {an} =

{
2n

n+ 1

}
28. {an} =

{
(−1)n

n2

2n − 1

}

Exercise Group. In the following exercises, determine whether the sequence is bounded, bounded above, bounded
below, or none of the above.

29. {an} = {sin(n)} 30. {an} = {tan(n)}

31. {an} =

{
(−1)n

3n− 1

n

}
32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos(n)} 34. {an} = {2n − n!}

Exercise Group. In the following exercises, determine whether the sequence is monotonically increasing or decreas-
ing. If it is not, determine if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}
36. {an} =

{
n2 − 6n+ 9

n

}
37. {an} =

{
(−1)n

1

n3

}
38. {an} =

{
n2

2n

}

Exercise Group. The following exercises explore further the theory of sequences.
39. Prove Theorem 9.1.17; that is, use the

definition of the limit of a sequence to show
that if lim

n→∞
|an| = 0, then lim

n→∞
an = 0.

40. Let {an} and {bn} be sequences such that
lim

n→∞
an = L and lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then
L ≤ K.

(b) Give an example where L = K.
41. Prove the Squeeze Theorem for sequences: Let

{an} and {bn} be such that lim
n→∞

an = L and
lim

n→∞
bn = L, and let {cn} be such that

an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

42. Prove the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges;
i.e., lim

n→∞
an exists.” is equivalent to

Theorem 9.1.32. That is,

(a) Show that if Theorem 9.1.32 is true, then
above statement is true, and

(b) Show that if the above statement is true,
then Theorem 9.1.32 is true.
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9.2 Infinite Series

youtu.be/watch?v=RV9LNPv20TA

Figure 9.2.1 Video introduction to
Section 9.2

Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the
following sums:

a1 = 1/2 =1/2

a1 + a2 = 1/2 + 1/4 =3/4

a1 + a2 + a3 = 1/2 + 1/4 + 1/8 =7/8

a1 + a2 + a3 + a4 = 1/2 + 1/4 + 1/8 + 1/16 =15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1

2n
= 1− 1

2n
.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the
above, we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that
Sn = 1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = limn→∞
(
1− 1/2n

)
= 1. This

limit can be interpreted as saying something amazing: the sum of all the terms
of the sequence {1/2n} is 1.

This example illustrates some interesting concepts that we explore in this
section. We begin this exploration with some definitions.

9.2.1 Convergence of sequences

Definition 9.2.2 Infinite Series, nth Partial Sums, Convergence, Diver-
gence.

Let {an} be a sequence, beginning at some index value n = k.

1. The sum
∞∑

n=k

an is called an infinite series (or, simply series).

2. Let Sn denote the sum of the first n terms in the sequence {an},
known as the nth partial sum of the sequence. We can then de-
fine the sequence {Sn} of partial sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑

n=k

an

converges to L, and we write
∞∑

n=k

an = L.

4. If the sequence {Sn} diverges, the series
∞∑

n=k

an diverges.

Using our new terminology, we can state that the series
∞∑

n=1

1/2n converges,

and
∞∑

n=1

1/2n = 1.

Note that in the definition above, we do not necessarily assume that our
sum begins with n = 1. In fact, it is quite common to have a series beginning
at n = 0, and in some cases we may need to consider other values as well. The

https://www.youtube.com/watch?v=RV9LNPv20TA


9.2. INFINITE SERIES 481

nth partial sum Sn will always denote the sum of the first n terms: For example,∑∞
n=1 1/n has

Sn =

n terms︷ ︸︸ ︷
1 +

1

2
+ · · ·+ 1

n
,

while
∑∞

n=0 3
−n has

Sn =

n terms︷ ︸︸ ︷
1 +

1

3
+ · · ·+ 1

3n−1
,

and
∑∞

n=3
1

n2−2n has

Sn =

n terms︷ ︸︸ ︷
1

3
+

1

8
+ · · ·+ 1

(n+ 2)2 − 2(n+ 2)
.

In general, for the series
∞∑

n=k

an, the nth partial sum will be Sn =

k+n−1∑
i=k

ai.

We will explore a variety of series in this section. We start with two series
that diverge, showing how we might discern divergence.

Example 9.2.3 Showing series diverge.

1. Let {an} = {n2}. Show
∞∑

n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑

n=1

bn diverges.

Solution.

1. Consider Sn, the nth partial sum.

Sn = a1 + a2 + a3 + · · ·+ an

= 12 + 22 + 32 · · ·+ n2.

By Theorem 5.3.9, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑

n=1

n2 diverges.

It is instructive to write
∞∑

n=1

n2 = ∞ for this tells us how the series

diverges: it grows without bound. A scatter plot of the sequences
{an} and {Sn} is given in Figure 9.2.4(a). The terms of {an} are
growing, so the terms of the partial sums {Sn} are growing even
faster, illustrating that the series diverges.

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some
of the partial sums Sn of {bn}:

S1 = 1
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S2 = 0

S3 = 1

S4 = 0

This pattern repeats; we find that Sn =

{
1 n is odd
, 0 n is even

. As

{Sn} oscillates, repeating 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn

does not exist, hence
∞∑

n=1

(−1)n+1 diverges. A scatter plot of

the sequence {bn} and the partial sums {Sn} is given in Fig-
ure 9.2.4(b). When n is odd, bn = Sn so the marks for bn are
drawn oversized to show they coincide.

2 4 6 8 10

100

200

300

n

y

an Sn

(a)

2 4 6 8 10

−1

−0.5

0.5

1

n

y

bn Sn

(b)

Figure 9.2.4 Scatter plots relating to Example 9.2.3

Video solution

youtu.be/watch?v=NLXq_m8S2tw

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this section we will demonstrate
a few general techniques for determining convergence; later sections will delve
deeper into this topic.

9.2.2 Geometric Series
One important type of series is a geometric series.

Definition 9.2.5 Geometric Series.

A geometric series is a series of the form

∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.
youtu.be/watch?v=Js5qK6AecSM

Figure 9.2.6Video presentation of De-
finition 9.2.5 and Theorem 9.2.7

We started this section with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properties.

https://www.youtube.com/watch?v=NLXq_m8S2tw
https://www.youtube.com/watch?v=Js5qK6AecSM
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Theorem 9.2.7 Geometric Series Test.

Consider the geometric series
∞∑

n=0

rn.

1. For r ̸= 1, the nth partial sum is:

Sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
.

When r = 1, Sn = n.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

Proof. We begin by proving the formula for the simplied form for the partial
sums. Consider the nth partial sum of the geometric series, Sn =

∑n
i=0 r

i:

Sn = 1 + r + r2 + · · ·+ rn−2 + rn−1

Multiply both sides by r:

r · Sn = r + r2 + r3 + · · ·+ rn−1 + rn

Now subtract the second line from the first and solve for Sn:

Sn − r · Sn = 1− rn

Sn(1− r) = 1− rn

Sn =
1− rn

1− r
.

We have shown Part 1 of Geometric Series Test.
Now, examining the partial sums, we consider five cases to determine when Sn

converges:

1. If |r| < 1, then rn → 0 as n → ∞, so we have lim
n→∞

Sn = 1−0
1−r = 1

1−r , a
convergent sequence of partial sums.

2. If r > 1, then rn → ∞ as n → ∞, so

Sn =
1− rn

1− r
=

rn

r − 1
− 1

r − 1

diverges to infinity. (Note that r − 1 is a positive constant.)

3. If r < −1, then rn will oscillate between large positive and large negative
values as n increases. The same will be true of Sn, so lim

n→∞
Sn does not

exist.

4. If r = 1, then Sn = 1−1n+1

1−1 is undefined. However, examining Sn =

1+ r+ r2 + · · ·+ rn for r = 1, we can see that the partial sums simplify
to Sn = n, and this sequence diverges to∞.

5. If r = −1, then Sn = 1−(−1)n

2 . For even values of n, the partial sums
are always 0. For odd values of n, the partial sums are always 1. So the
sequence of partial sums diverges.

Therefore, a geometric series converges if and only if |r| < 1. ■



484 CHAPTER 9. SEQUENCES AND SERIES

According to Theorem 9.2.7, the series
∞∑

n=0

1

2n
=

∞∑
n=0

(
1

2

)2

= 1 +
1

2
+

1

4
+ · · ·

converges as r = 1/2 < 1, and
∞∑

n=0

1

2n
=

1

1− 1/2
= 2. This concurs with our

introductory example; while there we got a sum of 1, we skipped the first term
of 1.

Example 9.2.8 Exploring geometric series.

Check the convergence of the following series. If the series converges,
find its sum.

1.
∞∑

n=2

(
3

4

)n

2.
∞∑

n=0

(
−1

2

)n

3.
∞∑

n=0

3n

Solution.

1. Since r = 3/4 < 1, this series converges. By Theorem 9.2.7, we
have that

∞∑
n=0

(
3

4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summation in the given series:
we are to start with n = 2. Therefore we subtract off the first two
terms, giving:

∞∑
n=2

(
3

4

)n

= 4− 1− 3

4
=

9

4
.

This is illustrated in Figure 9.2.9.

2 4 6 8 10

1

2

n

y

an Sn

Figure 9.2.9 Scatter plots for the se-
ries in Item 1

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 9.2.7,

∞∑
n=0

(
−1

2

)n

=
1

1− (−1/2)
=

2

3
.

The partial sums of this series are plotted in Figure 9.2.10. Note
how the partial sums are not purely increasing as some of the
terms of the sequence {(−1/2)n} are negative.

2 4 6 8 10

−1

−0.5

0.5

1

n

y

an Sn

Figure 9.2.10 Scatter plots for the se-
ries in Item 2

3. Since r > 1, the series diverges. (This makes “common sense”;
we expect the sum

1 + 3 + 9 + 27 + 81 + 243 + · · ·

to diverge.) This is illustrated in Figure 9.2.11.

2 4 6

200

400

600

800

1,000

n

y

an Sn

Figure 9.2.11 Scatter plots for the se-
ries in Item 3

Video solution

youtu.be/watch?v=9_AmxyiKVm8

9.2.3 p-Series
Another important type of series is the p-series.

https://www.youtube.com/watch?v=9_AmxyiKVm8
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Definition 9.2.12 p-Series, General p-Series.

1. A p-series is a series of the form

∞∑
n=1

1

np
, where p > 0.

2. A general p-series is a series of the form

∞∑
n=1

1

(an+ b)p
,

where p > 0 and a, b are real numbers such that a ̸= 0 and an +
b > 0 for all n ≥ 1.

Like geometric series, one of the nice things about p-series is that they have
easy to determine convergence properties.

Theorem 9.2.13 p-Series Test.

A general p-series
∞∑

n=1

1

(an+ b)p
will converge if, and only if, p > 1.

We will be able to prove Theo-
rem 9.2.13 in Section 9.3. This
theorem assumes that an+ b >
0 for all n; if an + b < 0, (an +
b)p won’t be defined when p is
not an integer, and if an+ b = 0
for some n, then of course the
series does not converge regard-
less of p as not all of the terms of
the sequence are defined. These
requirements actually force us to
have a > 0, since if a < 0, we’ll
have an + b < 0 for sufficiently
large n.

Example 9.2.14 Determining convergence of series.

Determine the convergence of the following series.

1.
∞∑

n=1

1

n

2.
∞∑

n=1

1

n2

3.
∞∑

n=1

1√
n

4.
∞∑

n=1

(−1)n

n

5.
∞∑

n=11

1

( 12n− 5)3

6.
∞∑

n=1

1

2n

Solution.

1. This is a p-series with p = 1. By Theorem 9.2.13, this series di-
verges. This series is a famous series, called the Harmonic Series,
so named because of its relationship to harmonics in the study of
music and sound.

2. This is a p-series with p = 2. By Theorem 9.2.13, it converges.
Note that the theoremdoes not give a formula bywhichwe cande-
termine what the series converges to; we just know it converges.
A famous, unexpected result is that this series converges to π2/6.

3. This is a p-series with p = 1/2; the theorem states that it diverges.

4. This is not a p-series; the definition does not allow for alternat-
ing signs. Therefore we cannot apply Theorem 9.2.13. (Another
famous result states that this series, the Alternating Harmonic Se-
ries, converges to ln(2).)

5. This is a general p-series with p = 3, therefore it converges.
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6. This is not a p-series, but a geometric series with r = 1/2. It
converges.

Video solution

youtu.be/watch?v=XYW0z0LMaJc Later sections will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 9.2.15 Telescoping series.

Evaluate the sum
∞∑

n=1

(
1

n
− 1

n+ 1

)
.

Solution. It will help to write down some of the first few partial sums
of this series.

S1 =
1

1
− 1

2
= 1− 1

2

S2 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
= 1− 1

3

S3 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
= 1− 1

4

S4 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
= 1− 1

5

Note how most of the terms in each partial sum are canceled out! In
general, we see that Sn = 1 − 1

n+ 1
. The sequence {Sn} converges,

as lim
n→∞

Sn = limn→∞

(
1− 1

n+1

)
= 1, and so we conclude that

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1. Partial sums of the series are plotted in Fig-

ure 9.2.16.
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Figure 9.2.16 Scatter plots relating to
the series of Example 9.2.15

Video solution

youtu.be/watch?v=ckj4xm6ZHgU

The series in Example 9.2.15 is an example of a telescoping series. Informally,
a telescoping series is one in which most terms cancel with preceding or follow-
ing terms, reducing the number of terms in each partial sum. The partial sum
Sn did not contain n terms, but rather just two: 1 and 1/(n+ 1).

When possible, seek a way to write an explicit formula for the nth partial
sum Sn. This makes evaluating the limit lim

n→∞
Sn muchmore approachable. We

do so in the next example.

Example 9.2.17 Evaluating series.

Evaluate each of the following infinite series.

1.
∞∑

n=1

2

n2 + 2n
2.

∞∑
n=1

ln
(
n+ 1

n

)
Solution.
1. We can decompose the fraction 2/(n2 + 2n) as

2

n2 + 2n
=

1

n
− 1

n+ 2
.

https://www.youtube.com/watch?v=XYW0z0LMaJc
https://www.youtube.com/watch?v=ckj4xm6ZHgU
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(See Section 6.4, Partial Fraction Decomposition, to recall how this
is done, if necessary.) Expressing the terms of {Sn} is now more
instructive:

S1 = 1− 1

3

S2 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
= 1 +

1

2
− 1

3
− 1

4

S3 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
= 1 +

1

2
− 1

4
− 1

5

S4 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
= 1 +

1

2
− 1

5
− 1

6

S5 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
+

(
1

5
− 1

7

)
= 1 +

1

2
− 1

6
− 1

7

We again have a telescoping series. In each partial sum, most of

the terms cancel andwe obtain the formulaSn = 1+
1

2
− 1

n+ 1
−

1

n+ 2
. Taking limits allows us to determine the convergence of

the series:

lim
n→∞

Sn = lim
n→∞

(
1 +

1

2
− 1

n+ 1
− 1

n+ 2

)
=

3

2
,

so
∑∞

n=1
1

n2+2n = 3
2 . This is illustrated in Figure 9.2.18(a).

2. We begin by writing the first few partial sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3

2

)
S3 = ln (2) + ln

(
3

2

)
+ ln

(
4

3

)
S4 = ln (2) + ln

(
3

2

)
+ ln

(
4

3

)
+ ln

(
5

4

)
At first, this does not seem helpful, but recall the logarithmic iden-
tity: ln(x) + ln(y) = ln(xy). Applying this to S4 gives:

S4 = ln (2) + ln
(
3

2

)
+ ln

(
4

3

)
+ ln

(
5

4

)
= ln

(
2

1
· 3
2
· 4
3
· 5
4

)
= ln (5) .
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We can conclude that {Sn} =
{
ln(n + 1)

}
. This sequence does

not converge, as lim
n→∞

Sn = ∞. Therefore
∞∑

n=1

ln
(
n+ 1

n

)
= ∞;

the series diverges. Note in Figure 9.2.18(b) how the sequence of
partial sums grows slowly; after 100 terms, it is not yet over 5.
Graphically we may be fooled into thinking the series converges,
but our analysis above shows that it does not.
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Figure 9.2.18 Scatter plots relating to the series in Example 9.2.17

Video solution

youtu.be/watch?v=BMn2QTtTdNQ

We are learning about a new mathematical object, the series. As done be-
fore, we apply “old” mathematics to this new topic.

Theorem 9.2.19 Properties of Infinite Series.

Let
∞∑

n=1

an = L,
∞∑

n=1

bn = K, and let c be a constant.

1. Constant Multiple Rule:
∞∑

n=1

c · an = c ·
∞∑

n=1

an = c · L.

2. Sum/Difference Rule:
∞∑

n=1

(
an± bn

)
=

∞∑
n=1

an±
∞∑

n=1

bn = L±K.

Before using this theorem, we provide a few “famous” series.

Key Idea 9.2.20 Important Series.

1.
∞∑

n=0

1

n!
= e. (Note that the index starts with n = 0.)

2.
∞∑

n=1

1

n2
=

π2

6
.

3.
∞∑

n=1

(−1)n+1

n2
=

π2

12
.

https://www.youtube.com/watch?v=BMn2QTtTdNQ
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4.
∞∑

n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑

n=1

1

n
diverges. (This is called the Harmonic Series.)

6.
∞∑

n=1

(−1)n+1

n
= ln(2). (This is called the Alternating Harmonic

Series.)

Example 9.2.21 Evaluating series.

Evaluate the given series.

1.
∞∑

n=1

(−1)n+1
(
n2 − n

)
n3

2.
∞∑

n=1

1000

n!

3.
1

16
+

1

25
+

1

36
+

1

49
+ · · ·

Solution.

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

=

∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=

∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 9.2.22(a).

2. This looks very similar to the series that involves e in Key
Idea 9.2.20. Note, however, that the series given in this example
starts with n = 1 and not n = 0. The first term of the series in
the Key Idea is 1/0! = 1, so we will subtract this from our result
below:

∞∑
n=1

1000

n!
= 1000 ·

∞∑
n=1

1

n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 9.2.22(b). The graph shows how this
particular series converges very rapidly.
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Figure 9.2.22 Scatter plots relating to the series in Example 9.2.21

3. The denominators in each termare perfect squares; we are adding
∞∑

n=4

1

n2
(note we start with n = 4, not n = 1). This series will

converge. Using the formula from Key Idea 9.2.20, we have the
following:

∞∑
n=1

1

n2
=

3∑
n=1

1

n2
+

∞∑
n=4

1

n2

∞∑
n=1

1

n2
−

3∑
n=1

1

n2
=

∞∑
n=4

1

n2

π2

6
−
(
1

1
+

1

4
+

1

9

)
=

∞∑
n=4

1

n2

π2

6
− 49

36
=

∞∑
n=4

1

n2

0.2838 ≈
∞∑

n=4

1

n2

Video solution

youtu.be/watch?v=BMn2QTtTdNQ

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
section, yet it still may “take some getting used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will still diverge if the first term is removed.
(b) The series will still diverge if the first 10 terms are removed.
(c) The series will still diverge if the first 1, 000, 000 terms are removed.
(d) The series will still diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two theo-
rems.

https://www.youtube.com/watch?v=BMn2QTtTdNQ
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Theorem 9.2.23 nth-Term Test for Divergence.

Consider the series
∞∑

n=1

an. If lim
n→∞

an ̸= 0, then
∞∑

n=1

an diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑

n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 9.2.20. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Se-

ries,
∞∑

n=1

1

n
, diverges.

Looking back, we can apply this theorem to the series in Example 9.2.3. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

One can rewrite Theorem 9.2.23 to state “If a series converges, then the
underlying sequence converges to 0.” While it is important to understand the
truth of this statement, in practice it is rarely used. It is generally far easier to
prove the convergence of a sequence than the convergence of a series.

Theorem 9.2.24 Infinite Nature of Series.

The convergence or divergence of an infinite series remains unchanged
by the addition or subtraction of any finite number of terms. That is:

1. A divergent series will remain divergent with the addition or sub-
traction of any finite number of terms.

2. A convergent series will remain convergent with the addition or
subtraction of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑

n=1

1

n
which diverges; that is, the

sequence of partial sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of
the first 10 million terms of the Harmonic Series is about 16.7. Removing the
first 10 million terms from the Harmonic Series changes the nth partial sums,
effectively subtracting 16.7 from the sum. However, a sequence that is growing
without bound will still grow without bound when 16.7 is subtracted from it.

The equations below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equation shows us subtracting these first 10 mil-
lion terms from both sides. The final equation employs a bit of “psuedo-math”:
subtracting 16.7 from “infinity” still leaves one with “infinity.”

∞∑
n=1

1

n
=

10,000,000∑
n=1

1

n
+

∞∑
n=10,000,001

1

n

∞∑
n=1

1

n
−

10,000,000∑
n=1

1

n
=

∞∑
n=10,000,001

1

n

∞− 16.7 = ∞.

Just for fun, we can show that the Harmonic Series diverges algebraically
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(without the use of p-Series Test).

Divergence of the harmonic series. If you just consider the partial sums

S1, S2, S3, . . . , S1000, S1001, . . . ,

it is not apparent that the partial sums diverge. Indeed they do diverge, but very,
very slowly. (If you graph them on a logarithmic scale however, you can clearly
see the divergence of the partial sums.) Instead, we will consider the partial
sums, indexed by powers of 2. That is, we will consider S2, S4, S8, S16, . . ..

S2 = 1 +
1

2

S4 = 1 +
1

2
+

1

3
+

1

4

S8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

8

Next, we consider grouping together terms in each partial sum. We will use
these groupings to set up inequalities.

S2 = 1 +
1

2

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
S8 = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
In the partial sum S4, we note that since 1/3 > 1/4, we can say

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

(
1

4
+

1

4

)
︸ ︷︷ ︸

1/2

= 1 +
2

2
.

Do the same in S8 and also note that every term in the group
(
1
5 + 1

6 + 1
7 + 1

8

)
is larger than 1/8. So

S8 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1 +

1

2
+

(
1

4
+

1

4

)
︸ ︷︷ ︸

1/2

+

(
1

8
+

1

8
+

1

8
+

1

8

)
︸ ︷︷ ︸

1/2

= 1 +
3

2

Generally, we can see that S2n > 1+ n
2 . (In order to really show this, we should

employ proof by induction.) Since the sequence of partial sums clearly diverges,
so does the series

∑∞
n=1 1/n. ■

This section introduced us to series and defined a few special types of series
whose convergence properties are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are still interested in knowing whether or not
they converge. The next three sections introduce tests that help us determine
whether or not a given series converges.
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9.2.4 Exercises

Terms and Concepts

1. Use your own words to describe how sequences and series are related.
2. Use your own words to define a partial sum.

3. Given a series
∞∑

n=1

an, describe the two sequences related to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑

n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑

n=0

an converges.

Problems

Exercise Group. In the following exercises, a series
∞∑

n=1

an is given.

(a) Give the first 5 partial sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the same axes.

7.
∞∑

n=1

(−1)n

n
8.

∞∑
n=1

1

n2

9.
∞∑

n=1

cos(πn) 10.
∞∑

n=1

n

11.
∞∑

n=1

1

n!
12.

∞∑
n=1

1

3n

13.
∞∑

n=1

(
− 9

10

)n

14.
∞∑

n=1

(
1

10

)n

Exercise Group. In the following exercises, use Theorem 9.2.23 to show the given series diverges.

15.
∞∑

n=1

3n2

n(n+ 2)
16.

∞∑
n=1

2n

n2

17.
∞∑

n=1

n!

10n
18.

∞∑
n=1

5n − n5

5n + n5

19.
∞∑

n=1

2n + 1

2n+1
20.

∞∑
n=1

(
1 +

1

n

)n

Exercise Group. In the following exercises, state whether the given series converges or diverges.

21.
∞∑

n=1

1

n5
22.

∞∑
n=0

1

5n

23.
∞∑

n=0

6n

5n
24.

∞∑
n=1

n−4
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25.
∞∑

n=1

√
n 26.

∞∑
n=1

10

n!

27.
∞∑

n=1

(
1

n!
+

1

n

)
28.

∞∑
n=1

2

(2n+ 8)2

29.
∞∑

n=1

1

2n
30.

∞∑
n=1

1

2n− 1

Exercise Group. In the following exercises, a series is given.

(a) Find a formula for Sn, the nth partial sum of the series.

(b) Determine whether the series converges or diverges. If it converges, state what it converges to.

31.
∞∑

n=0

1

4n
32.

∞∑
n=1

2

33. 13 + 23 + 33 + 43 + · · ·
34.

∞∑
n=1

(−1)nn

35.
∞∑

n=0

5

2n
36.

∞∑
n=0

e−n

37. 1− 1

3
+

1

9
− 1

27
+

1

81
+ · · · 38.

∞∑
n=1

1

n(n+ 1)

39.
∞∑

n=1

3

n(n+ 2)
40.

∞∑
n=1

1

(2n− 1)(2n+ 1)

41.
∞∑

n=1

ln
(

n

n+ 1

)
42.

∞∑
n=1

2n+ 1

n2(n+ 1)2

43.
1

1 · 4
+

1

2 · 5
+

1

3 · 6
+

1

4 · 7
+ · · · 44. 2 +

(
1

2
+

1

3

)
+

(
1

4
+

1

9

)
+

(
1

8
+

1

27

)
+ · · ·

45.
∞∑

n=2

1

n2 − 1
46.

∞∑
n=0

(
sin(1)

)n
47. Break the Harmonic Series into the sum of the odd and even terms:

∞∑
n=1

1

n
=

∞∑
n=1

1

2n− 1
+

∞∑
n=1

1

2n
.

The goal is to show that each of the series on the right diverge.

(a) Show why
∞∑

n=1

1

2n− 1
>

∞∑
n=1

1

2n
.

(Compare each nth partial sum.)

(b) Show why
∞∑

n=1

1

2n− 1
< 1 +

∞∑
n=1

1

2n

(c) Explain why (a) and (b) demonstrate that the series of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both converge or both diverge.)

(d) Explain why knowing the Harmonic Series is divergent determines that the even and odd series are also
divergent.
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48. Show the series
∞∑

n=1

n

(2n− 1)(2n+ 1)
diverges.
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9.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 9.6. Theorems 9.2.7 and 9.2.13 give criteria
for when Geometric and p-series converge, and Theorem 9.2.23 gives a quick
test to determine if a series diverges. There are many important series whose
convergence cannot be determined by these theorems, though, sowe introduce
a set of tests that allow us to handle a broad range of series. We start with the
Integral Test.

9.3.1 Integral Test
We stated in Section 9.1 that a sequence {an} is a function a(n)whose domain
is N, the set of natural numbers. If we can extend a(n) to R, the real numbers,

and it is both positive and decreasing on [1,∞), then the convergence of
∞∑

n=1

an

is the same as
∫ ∞

1

a(x) dx.

Theorem 9.3.1 Integral Test.

Let a sequence {an} be defined by an = a(n), where a(n) is continuous,

positive and decreasing on [1,∞). Then
∞∑

n=1

an converges, if, and only if,∫ ∞

1

a(x) dx converges.

Theorem9.3.1 does not state that
the integral and the summation
have the same value.

youtu.be/watch?v=43DIt-rRclA

Figure 9.3.2 Video presentation of
Theorem 9.3.1

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 9.3.3(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1

a(x) dx <

∞∑
n=1

an. (9.3.1)

1 2 3 4 5

1

2

y = a(x)

x

y

(a)

1 2 3 4 5

1

2

y = a(x)

x

y

(b)

Figure 9.3.3 Illustrating the truth of the Integral Test
In Figure 9.3.3(b), we draw rectangles under y = a(x) with the Right-Hand

rule, starting with n = 2. This time, the area of the rectangles is less than the

area under y = a(x), so
∞∑

n=2

an <

∫ ∞

1

a(x) dx. Note how this summation

https://www.youtube.com/watch?v=43DIt-rRclA
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starts with n = 2; adding a1 to both sides lets us rewrite the summation starting
with n = 1:

∞∑
n=1

an < a1 +

∫ ∞

1

a(x) dx. (9.3.2)

Combining Equations (9.3.1) and (9.3.2), we have

∞∑
n=1

an < a1 +

∫ ∞

1

a(x) dx < a1 +

∞∑
n=1

an. (9.3.3)

From Equation (9.3.3) we can make the following two statements:

1. If
∞∑

n=1

an diverges, so does
∫ ∞

1

a(x) dx (because
∞∑

n=1

an < a1+

∫ ∞

1

a(x) dx)

2. If
∞∑

n=1

an converges, so does
∫ ∞

1

a(x) dx (because
∫ ∞

1

a(x) dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. The-
orem 9.2.24 allows us to extend this theorem to series where a(n) is positive
and decreasing on [b,∞) for some b > 1. A formal proof of the Integral Test is
shown below.

Proof of the Integral Test. Let a(x) = ax be a postive, continuous, decreasing
function on [1,∞). We will consider how the partial sums of

∑∞
n=1 an com-

pare to the integral
∫∞
0

a(x) dx. We first consider the case where
∫∞
1

a(x) dx
diverges.

1. Suppose that
∫∞
1

a(x) dx diverges. Using Figure 9.3.3(a), we can say that
Sn =

∑n
i=1 ai >

∫ n+1

1
a(x) dx. If we let n → ∞ in this inequality, we

know that
∫ n+1

1
a(x) dx will get arbitrarily large as n → ∞ (since a(x) >

0 and
∫∞
1

a(x) dx diverges). Therefore we conclude that Sn =
∑n

i=1 ai
will also get arbitrarily large as n → ∞, and thus

∑∞
n=1 an diverges.

2. Now suppose that
∫∞
1

a(x) dx converges to M , where M is some pos-
itive, finite number. Using Figure 9.3.3(b), we can say that 0 < Sn =∑n

i=1 ai <
∫∞
1

a(x) dx = M . Therefore our sequence of partial sums,
Sn is bounded. Furthermore, Sn is a monotonically increasing sequence
since all of the terms an are positive. Since Sn is both bounded and mo-
notonic, Sn converges by Convergent Sequences are Bounded and by De-
finition 9.2.2, the series

∑∞
n=1 an converges as well.

■

Example 9.3.4 Using the Integral Test.

Determine the convergence of
∞∑

n=1

ln(n)
n2

. (The terms of the sequence

{an} = {ln(n)/n2} and the nth partial sums are given in Figure 9.3.5.)
Solution. Figure 9.3.5 implies that a(n) = (ln(n))/n2 is positive and
decreasing on [2,∞). We can determine this analytically, too. We know
a(n) is positive as both ln(n) and n2 are positive on [2,∞). Treating
a(n) as a continuous function of n defined on [1,∞), consider a′(n) =
(1 − 2 ln(n))/n3, which is negative for n ≥ 2. Since a′(n) is negative,
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a(n) is decreasing for n ≥ 2. We can still use the integral test since a
finite number of terms will not affect convergence of the series.

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

n

y

an Sn

Figure 9.3.5 Plotting the sequence
and series in Example 9.3.4

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln(x)
x2

dx. In-

tegrating this improper integral requires the use of Integration by Parts,
with u = ln(x) and dv = 1/x2 dx.∫ ∞

1

ln(x)
x2

dx = lim
b→∞

∫ b

1

ln(x)
x2

dx

= lim
b→∞

− 1

x
ln(x)

∣∣∣b
1
+

∫ b

1

1

x2
dx

= lim
b→∞

− 1

x
ln(x)− 1

x

∣∣∣b
1

= lim
b→∞

1− 1

b
− ln(b)

b
. Apply L’Hospital’s Rule:

= 1.

Since
∫ ∞

1

ln(x)
x2

dx converges, so does
∞∑

n=1

ln(n)
n2

.

Video solution

youtu.be/watch?v=YuAg9zOh2Hk

Theorem 9.2.13 was given without justification, stating that the general p-

series
∞∑

n=1

1

(an+ b)p
converges if, and only if, p > 1. In the following example,

we prove this to be true by applying the Integral Test.

Example 9.3.6 Using the Integral Test to establish Theorem 9.2.13.

Let a, b be real numbers such that a ̸= 0 and an + b > 0 for all n ≥ 1.

Use the Integral Test to prove that
∞∑

n=1

1

(an+ b)p
converges if, and only

if, p > 1.

Solution. Consider the integral
∫ ∞

1

1

(ax+ b)p
dx; assuming p ̸= 1 and

a ̸= 0,∫ ∞

1

1

(ax+ b)p
dx = lim

c→∞

∫ c

1

1

(ax+ b)p
dx

= lim
c→∞

1

a(1− p)
(ax+ b)1−p

∣∣∣c
1

= lim
c→∞

1

a(1− p)

(
(ac+ b)1−p − (a+ b)1−p

)
.

This limit converges if, and only if, p > 1 so that 1 − p < 0. It is easy to
show that the integral also diverges in the case of p = 1. (This result is
similar to the work preceding Key Idea 6.5.17.)

Therefore
∞∑

n=1

1

(an+ b)p
converges if, and only if, p > 1.

Video solution

youtu.be/watch?v=fBQkA2ntBuM

We consider two more convergence tests in this section, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

https://www.youtube.com/watch?v=YuAg9zOh2Hk
https://www.youtube.com/watch?v=fBQkA2ntBuM
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9.3.2 Direct Comparison Test

Theorem 9.3.7 Direct Comparison Test.

Let {an} and {bn} be positive sequences where an ≤ bn for all n ≥ N ,
for someN ≥ 1.

1. If
∞∑

n=1

bn converges, then
∞∑

n=1

an converges.

2. If
∞∑

n=1

an diverges, then
∞∑

n=1

bn diverges.

Proof. Let 0 < an ≤ bn for all n ≥ N ≥ 1. Note that both partial sums for
both series are positive and increasing since the terms of both sequences are
positive.

1. Suppose that
∞∑

n=1

bn converges, so
∞∑

n=1

bn = S, whereS is a finite, positive

number. (S must be positive since bn > 0.)

Comparing the partial sums, wemust have
n∑

i=N

ai ≤
n∑

i=N

bi since an ≤ bn

for all n ≥ N . Furthermore since
∞∑

n=1

bn converges to S, our partial sums

for an are bounded (note that the partial sums started at i = N , but
a finite number of terms will not affect the boundedness of the partial
sums).

0 <

n∑
i=N

ai ≤
n∑

i=N

bi < S.

Since the sequence of partial sums, sn =
∑n

i=1 ai is both monotonically
increasing and bounded, we can say that sn converges (by Convergent
Sequences are Bounded), and therefore so does

∑∞
n=1 an.

2. Suppose that
∞∑

n=1

an diverges, so
n∑

i=1

an = ∞. (We can say that the series

diverges to∞ since the terms of the series are always positive). Compar-
ing the partial sums, we have

n∑
i=N

ai ≤
n∑

i=N

bi

Then applying limits, we get

lim
n→∞

n∑
i=N

ai ≤ lim
n→∞

n∑
i=N

bi.

Since the limit on the left side diverges to ∞, we can say that
lim

n→∞

∑n
i=N bi also diverges to∞.

■

A sequence {an} is a positive se-
quence if an > 0 for all n.

Because of Theorem 9.2.24,
any theorem that relies on a pos-
itive sequence still holds truewhen
an > 0 for all but a finite num-
ber of values of n.

youtu.be/watch?v=KhPpyQVNR5Y

Figure 9.3.8 Video presentation of
Theorem 9.3.7

https://www.youtube.com/watch?v=KhPpyQVNR5Y
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Example 9.3.9 Applying the Direct Comparison Test.

Determine the convergence of
∞∑

n=1

1

3n + n2
.

Solution. This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger
terms that converges. (Note too that the Integral Test seems difficult to
apply here.)

Since 3n < 3n+n2,
1

3n
>

1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1

3n
is a

convergent geometric series; by Theorem 9.3.7,
∞∑

n=1

1

3n + n2
converges.

Video solution

youtu.be/watch?v=DAfdDWo948U

Example 9.3.10 Applying the Direct Comparison Test.

Determine the convergence of
∞∑

n=1

1

n− ln(n)
.

Solution. We know the Harmonic Series
∞∑

n=1

1

n
diverges, and it seems

that the given series is closely related to it, hence we predict it will di-
verge.

Since n ≥ n− ln(n) for all n ≥ 1,
1

n
≤ 1

n− ln(n)
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑

n=1

1

n− ln(n)
di-

verges as well.

Video solution

youtu.be/watch?v=G1j5JNagVmU

The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑

n=1

1

n+ ln(n)
. It is very similar to the divergent series given in

Example 9.3.10. We suspect that it also diverges, as
1

n
≈ 1

n+ ln(n)
for large

n. However, the inequality that we naturally want to use “goes the wrong way”:

since n ≤ n+ ln(n) for all n ≥ 1,
1

n
≥ 1

n+ ln(n)
for all n ≥ 1. The given series

has terms less than the terms of a divergent series, and we cannot conclude
anything from this.

Fortunately, we can apply another test to the given series to determine its
convergence.

youtu.be/watch?v=bH7U2fgSWXs

Figure 9.3.11 Motivating Theo-
rem 9.3.12

https://www.youtube.com/watch?v=DAfdDWo948U
https://www.youtube.com/watch?v=G1j5JNagVmU
https://www.youtube.com/watch?v=bH7U2fgSWXs
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9.3.3 Limit Comparison Test

Theorem 9.3.12 Limit Comparison Test.

Let {an} and {bn} be positive sequences.

1. If lim
n→∞

an
bn

= L, where L is a positive real number, then
∞∑

n=1

an

and
∞∑

n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑

n=1

bn converges, then so does
∞∑

n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑

n=1

bn diverges, then so does
∞∑

n=1

an.

Theorem9.3.12 ismost useful when the convergence of the series from {bn}
is known and we are trying to determine the convergence of the series from
{an}. youtu.be/watch?v=zGKEPIyXvvY

Figure 9.3.13 Video presentation of
Theorem 9.3.12

We use the Limit Comparison Test in the next example to examine the series
∞∑

n=1

1

n+ ln(n)
which motivated this new test.

Example 9.3.14 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

1

n+ ln(n)
using the Limit Compari-

son Test.

Solution. We compare the terms of
∞∑

n=1

1

n+ ln(n)
to the terms of the

Harmonic Sequence
∞∑

n=1

1

n
:

lim
n→∞

1/(n+ ln(n))
1/n

= lim
n→∞

n

n+ ln(n)
= 1 (after applying L’Hospital’s Rule) .

Since the Harmonic Series diverges, we conclude that
∞∑

n=1

1

n+ ln(n)
di-

verges as well.

Video solution

youtu.be/watch?v=RBeu0Tgsj_c

Example 9.3.15 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

1

3n − n2

Solution. This series is similar to the one in Example 9.3.9, but now we
are considering “3n − n2” instead of “3n + n2.” This difference makes
applying the Direct Comparison Test difficult.

https://www.youtube.com/watch?v=zGKEPIyXvvY
https://www.youtube.com/watch?v=RBeu0Tgsj_c
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Instead, we use the Limit Comparison Test and compare with the series
∞∑

n=1

1

3n
:

lim
n→∞

1/(3n − n2)

1/3n
= lim

n→∞

3n

3n − n2

= 1 (after applying L’Hospital’s Rule twice) .

We know
∞∑

n=1

1

3n
is a convergent geometric series, hence

∞∑
n=1

1

3n − n2

converges as well.

Video solution

youtu.be/watch?v=1qaiCHhP3GE

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponentials, which dominate algebraic func-
tions (e.g., polynomials), which dominate logarithms. In the previous example,

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1

3n
. It

is hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hospital’s Rule to n!.

Example 9.3.16 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

√
n+ 3

n2 − n+ 1
.

Solution. We naïvely attempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2.

Knowing that
∞∑

n=1

1

n2
converges, we attempt to apply the Limit Compar-

ison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1

= ∞ (Apply L’Hospital’s Rule) .

Theorem 9.3.12 part (3) only applies when
∞∑

n=1

bn diverges; in our case,

it converges. Ultimately, our test has not revealed anything about the
convergence of our series.
The problem is thatwe chose a poor series withwhich to compare. Since
the numerator and denominator of the terms of the series are both al-
gebraic functions, we should have compared our series to the dominant
term of the numerator divided by the dominant term of the denomina-
tor.
The dominant term of the numerator is n1/2 and the dominant term of
the denominator is n2. Thus we should compare the terms of the given
series to n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1

https://www.youtube.com/watch?v=1qaiCHhP3GE
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= 1 (Apply L’Hospital’s Rule) .

Since the p-series
∞∑

n=1

1

n3/2
converges, we conclude that

∞∑
n=1

√
n+ 3

n2 − n+ 1
converges as well.

Video solution

youtu.be/watch?v=D-OsPkY8khEWe mentioned earlier that the Integral Test did not work well with series
containing factorial terms. The next section introduces the Ratio Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.

https://www.youtube.com/watch?v=D-OsPkY8khE
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9.3.4 Exercises

Terms and Concepts

1. In order to apply the Integral Test to a sequence {an}, the function a(n) = anmust be , and
.

2. T/F: The Integral Test can be used to determine the sum of a convergent series.
3. What test(s) in this section do not work well with factorials?

4. Suppose
∞∑

n=0

an is convergent, and there are sequences {bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑

n=0

bn and
∞∑

n=0

cn?

Problems

Exercise Group. In the following exercises, use the Integral Test to determine the convergence of the given series.

5.
∞∑

n=1

1

2n
6.

∞∑
n=1

1

n4

7.
∞∑

n=1

n

n2 + 1
8.

∞∑
n=2

1

n ln(n)

9.
∞∑

n=1

1

n2 + 1
10.

∞∑
n=2

1

n(ln(n))2

11.
∞∑

n=1

n

2n
12.

∞∑
n=1

ln(n)
n3

Exercise Group. In the following exercises, use the Direct Comparison Test to determine the convergence of the given
series; state what series is used for comparison.

13.
∞∑

n=1

1

n2 + 3n− 5
14.

∞∑
n=1

1

4n + n2 − n

15.
∞∑

n=1

ln(n)
n

16.
∞∑

n=1

1

n! + n

17.
∞∑

n=2

1√
n2 − 1

18.
∞∑

n=5

1√
n− 2

19.
∞∑

n=1

n2 + n+ 1

n3 − 5
20.

∞∑
n=1

2n

5n + 10

21.
∞∑

n=2

n

n2 − 1
22.

∞∑
n=2

1

n2 ln(n)

Exercise Group. In the following exercises, use the Limit Comparison Test to determine the convergence of the given
series; state what series is used for comparison.

23.
∞∑

n=1

1

n2 − 3n+ 5
24.

∞∑
n=1

1

4n − n2
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25.
∞∑

n=4

ln(n)
n− 3

26.
∞∑

n=1

1√
n2 + n

27.
∞∑

n=1

1

n+
√
n

28.
∞∑

n=1

n− 10

n2 + 10n+ 10

29.
∞∑

n=1

sin
(
1/n

)
30.

∞∑
n=1

n+ 5

n3 − 5

31.
∞∑

n=1

√
n+ 3

n2 + 17
32.

∞∑
n=1

1√
n+ 100

Exercise Group. In the following exercises, determine the convergence of the given series. State the test used; more
than one test may be appropriate.

33.
∞∑

n=1

n2

2n
34.

∞∑
n=1

1

(2n+ 5)3

35.
∞∑

n=1

n!

10n
36.

∞∑
n=1

ln(n)
n!

37.
∞∑

n=1

1

3n + n
38.

∞∑
n=1

n− 2

10n+ 5

39.
∞∑

n=1

3n

n3
40.

∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑

n=1

an converges, state which of the following series converges, may converge, or does not converge.

(a)
∞∑

n=1

an
n

(b)
∞∑

n=1

anan+1

(c)
∞∑

n=1

(an)
2

(d)
∞∑

n=1

nan

(e)
∞∑

n=1

1

an

42. In this exercise, we explore an approximation method for series to which the Integral Test applies.

(a) Let a(x) be a function to which the Integral Test applies, and for which the series
∑∞

n=1 an converges.
Let Rn =

∑∞
n+1 an denote the remainder; that is, the difference between

∑∞
n=1 an and the nth partial

sum. (Note that Rn is the size of the error that results if we approximate the series by the nth partial
sum.) Explain why we must have the following inequality:∫ ∞

n

a(x) dx ≤ Rn ≤
∫ ∞

n+1

a(x) dx

(b) Estimate the error involved in using the first 12 terms to approximate the series
∑∞

n=1 1/n
4. What is the

approximate value of the series?
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(c) How many terms must we take to ensure that the nth partial sum approximation for
∑∞

n=1 1/n
4 is accu-

rate to 5 decimal places?
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9.4 Ratio and Root Tests

The nth-Term Test of Theorem 9.2.23 states that in order for a series
∞∑

n=1

an to

converge, lim
n→∞

an = 0. That is, the terms of {an} must get very small. Not
only must the terms approach 0, they must approach 0 “fast enough”: while

lim
n→∞

1/n = 0, the Harmonic Series
∞∑

n=1

1

n
diverges as the terms of {1/n} do

not approach 0 “fast enough.”
The comparison tests of the previous sectiondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This section introduces the Ratio and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

9.4.1 Ratio Test

Theorem 9.4.1 Ratio Test.

Let {an} be a positive sequence and consider lim
n→∞

an+1

an
.

1. If lim
n→∞

an+1

an
< 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

an+1

an
> 1 or lim

n→∞
an+1

an
= ∞, then

∞∑
n=1

an diverges.

3. If lim
n→∞

an+1

an
= 1, the Ratio Test is inconclusive.

Theorem 9.2.24 allows us to ap-
ply theRatioTest to serieswhere
{an} is positive for all but a fi-
nite number of terms.

youtu.be/watch?v=DlrdbRa-t84

Figure 9.4.2 Video presentation of
Theorem 9.4.1

The principle of the Ratio Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous termwhich is enough
to ensure convergence.

Example 9.4.3 Applying the Ratio Test.

Use the Ratio Test to determine the convergence of the following series:

1.
∞∑

n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1

n2 + 1

Solution.

1.
∞∑

n=1

2n

n!
:

lim
n→∞

an+1

an
= lim

n→∞

2n+1/(n+ 1)!

2n/n!

= lim
n→∞

2n+1n!

2n(n+ 1)!

= lim
n→∞

2

n+ 1

= 0.

https://www.youtube.com/watch?v=DlrdbRa-t84
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Since the limit is 0 < 1, by the Ratio Test
∞∑

n=1

2n

n!
converges. The

fact that lim
n→∞

an+1

an
= 0 can be interpreted to mean that in the

long run, the term an+1 is roughly 0 times as large as an. In other
words, not only is an decreasing to 0, it is decreasing very quickly.
That is, the terms of an decrease to 0 sufficiently fast enough to
guarantee the convergence of

∑∞
n=1 an.

2.
∞∑

n=1

3n

n3
:

lim
n→∞

an+1

an
= lim

n→∞

3n+1/(n+ 1)3

3n/n3

= lim
n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ratio Test
∞∑

n=1

3n

n3
diverges. The

fact that lim
n→∞

an+1

an
= 3 can be interpreted to mean that in the

long run, the term an+1 is roughly 3 times as large as an, so an
is increasing by roughly a factor of 3 in the long run. We could
also use Theorem 9.2.23 to determine that this series diverges.
The exponential will dominate the polynomial in the long run, so
lim

n→∞
3n/n3 = ∞.

3.
∑∞

n=1
1

n2+1 :

lim
n→∞

an+1

an
= lim

n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1

(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ratio Test is inconclusive. We can easily
show this series converges using the Integral Test. We can also
use Direct Comparison Test or Limit Comparison Test, with each

comparing to the series
∞∑

n=1

1

n2
.

Video solution

youtu.be/watch?v=Zpn9qvIGlG0

The Ratio Test is not effective when the terms of a series only contain alge-
braic functions (e.g., polynomials). It is most effective when the terms contain
some factorials or exponentials. The previous example also reinforces our de-
veloping intuition: factorials dominate exponentials, which dominate algebraic
functions, which dominate logarithmic functions. In Part 1 of the example, the
factorial in the denominator dominated the exponential in the numerator, caus-
ing the series to converge. In Part 2, the exponential in the numerator domi-
nated the algebraic function in the denominator, causing the series to diverge.

https://www.youtube.com/watch?v=Zpn9qvIGlG0
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While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 9.4.4 Applying the Ratio Test.

Determine the convergence of
∞∑

n=1

n!n!

(2n)!
.

Solution. Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the latter is 2(4 · 3 · 2 · 1) = 48.
Applying the Ratio Test:

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!

= lim
n→∞

(n+ 1)!(n+ 1)!(2n)!

n!n!(2n+ 2)!

Noting that (n+1)! = (n+1)·n! and (2n+2)! = (2n+2)·(2n+1)·(2n)!,
we have

= lim
n→∞

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the Ratio Test we conclude
∞∑

n=1

n!n!

(2n)!
con-

verges.
To find the limit in the second to last line, recall that we just need to
examine the leading terms of the numerator and denominator, which
are n2 and 4n2 respectively.

Video solution

youtu.be/watch?v=JghEjy4pykA

9.4.2 Root Test
The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Theorem 9.4.5 Root Test.

Let {an} be a positive sequence, and consider lim
n→∞

(an)
1/n.

1. If lim
n→∞

(an)
1/n < 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

(an)
1/n > 1 or lim

n→∞
(an)

1/n = ∞, then
∞∑

n=1

an diverges.

3. If lim
n→∞

(an)
1/n = 1, the Root Test is inconclusive.

youtu.be/watch?v=foE1iRYTXpc

Figure 9.4.6 Video presentation of
Theorem 9.4.5

https://www.youtube.com/watch?v=JghEjy4pykA
https://www.youtube.com/watch?v=foE1iRYTXpc


510 CHAPTER 9. SEQUENCES AND SERIES

Example 9.4.7 Applying the Root Test.

Determine the convergence of the following series using the Root Test:

1.
∞∑

n=1

(
3n+ 1

5n− 2

)n

2.
∞∑

n=1

n4

(ln(n))n
3.

∞∑
n=1

2n

n2

Solution.

1.

lim
n→∞

(an)
1/n

= lim
n→∞

((
3n+ 1

5n− 2

)n)1/n

= lim
n→∞

3n+ 1

5n− 2
=

3

5
.

Since the limit is less than 1, we conclude the series converges.
Note: it is difficult to apply the Ratio Test to this series.

2.

lim
n→∞

(an)
1/n

= lim
n→∞

(
n4

(ln(n))n

)1/n

= lim
n→∞

(
n4/n

)
ln(n)

The limit of the numerator must be found using L’Hospital’s Rule
for indeterminate powers

lim
n→∞

(
n4/n

)
= lim

n→∞
eln(n

4/n)

= lim
n→∞

e4 ln(n)/n

Now apply L’Hospital’s to the expression in the exponent:

by LHR
= lim

n→∞
e4/n

= e0 = 1.

Since the numerator approaches 1 (by L’Hospital’s Rule) and the
denominator grows to infinity, we have

lim
n→∞

(
n4/n

)
ln(n)

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n
= lim

n→∞
2(

n2/n
) = 2. Since this is greater than 1,

we conclude the series diverges. (Note: The Ratio Test is easy to
apply to this series.)

(Also note: The limit in the denominator is found in a similar fash-
ion as was illustrated in Part 2. In general lim

n→∞
(n)b/n = 1 for any

real number b.)

Video solution

youtu.be/watch?v=Y7IaFXjMLlw

https://www.youtube.com/watch?v=Y7IaFXjMLlw
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Each of the tests we have encountered so far has required that we analyze
series from positive sequences. Section 9.5 relaxes this restriction by consider-
ing alternating series, where the underlying sequence has terms that alternate
between being positive and negative.

Theorem 9.2.24 allows us to ap-
ply the Root Test to series where
{an} is positive for all but a fi-
nite number of terms.
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9.4.3 Exercises

Terms and Concepts

1. The Ratio Test is not effective when the terms of a sequence only contain functions.

2. The Ratio Test is most effective when the terms of a sequence contains and/or functions.

3. What three convergence tests do not work well with terms containing factorials?

4. The Root Test works particularly well on series where each term is to a .

Problems

Exercise Group. In the following exercises, determine the convergence of the given series using the Ratio Test. If the
Ratio Test is inconclusive, state so and determine convergence with another test.

5.
∞∑

n=0

2n

n!
6.

∞∑
n=0

5n − 3n

4n

7.
∞∑

n=0

n!10n

(2n)!
8.

∞∑
n=1

5n + n4

7n + n2

9.
∞∑

n=1

1

n
10.

∞∑
n=1

1

3n3 + 7

11.
∞∑

n=1

10 · 5n

7n − 3
12.

∞∑
n=1

n ·
(
3

5

)n

13.
∞∑

n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑

n=1

n!

5 · 10 · 15 · · · (5n)

Exercise Group. In the following exercises, determine the convergence of the given series using the Root Test. If the
Root Test is inconclusive, state so and determine convergence with another test.

15.
∞∑

n=1

(
2n+ 5

3n+ 11

)n

16.
∞∑

n=1

(
0.9n2 − n− 3

n2 + n+ 3

)n

17.
∞∑

n=1

2nn2

3n
18.

∞∑
n=1

1

nn

19.
∞∑

n=1

3n

n22n+1
20.

∞∑
n=1

4n+7

7n

21.
∞∑

n=1

(
n2 − n

n2 + n

)n

22.
∞∑

n=1

(
1

n
− 1

n2

)n

23.
∞∑

n=1

1(
ln(n)

)n 24.
∞∑

n=1

n2(
ln(n)

)n
Exercise Group. In the following exercises, determine the convergence of the given series. State the test used; more
than one test may be appropriate.

25.
∞∑

n=1

n2 + 4n− 2

n3 + 4n2 − 3n+ 7
26.

∞∑
n=1

n44n

n!

27.
∞∑

n=1

n2

3n + n
28.

∞∑
n=1

3n

nn
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29.
∞∑

n=1

n√
n2 + 4n+ 1

30.
∞∑

n=1

n!n!n!

(3n)!

31.
∞∑

n=2

1

ln(n)
32.

∞∑
n=1

(
n+ 2

n+ 1

)n

33.
∞∑

n=2

n3(
ln(n)

)n 34.
∞∑

n=1

(
1

n
− 1

n+ 2

)
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9.5 Alternating Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a positive sequence. (We can relax this with Theorem 9.2.24
and state that there must be anN > 0 such that an > 0 for all n > N ; that is,
{an} is positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 9.5.1 Alternating Series.

Let {an} be a positive sequence. An alternating series is a series of ei-
ther the form

∞∑
n=1

(−1)nan or
∞∑

n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternating series is the Alternating Harmonic Series:

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

Geometric Series can also be alternating series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1

2

)n

= 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
+ · · ·

Theorem 9.2.7 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑

n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1

2

)n

=
1

1− (−1/2)
=

1

3/2
=

2

3
.

A powerful convergence theoremexists for other alternating series thatmeet
a few conditions.

Theorem 9.5.2 Alternating Series Test.

Let {an} be a positive, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑

n=1

(−1)n+1an

converge.

youtu.be/watch?v=-W6wco1HZYo

Figure 9.5.3Video presentation of De-
finition 9.5.1 and Theorem 9.5.2

The basic idea behind Theorem 9.5.2 is illustrated in Figure 9.5.4–9.5.5. A
positive, decreasing sequence {an} is shown along with the partial sums

Sn =

n∑
i=1

(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an.

https://www.youtube.com/watch?v=-W6wco1HZYo
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Because {an} is decreasing, the amount by which Sn bounces up/down
decreases. Moreover, the odd terms of Sn form a decreasing, bounded se-
quence, while the even terms of Sn form an increasing, bounded sequence.
Since bounded, monotonic sequences converge (see Theorem 9.1.32) and the
terms of {an} approach 0, one can show the odd and even terms ofSn converge
to the same common limit L, the sum of the series.

L

2 4 6 8 10

0.5

1

n

y

an Sn

Figure 9.5.4 Illustrating convergence
with the Alternating Series Test

a1

−a2

a3

−a4

a5

−a6

a7

S1S2 S3S4 S5S6 S7L

Figure 9.5.5 A visual representation of adding terms of an alternating series. The
arrows represent the length and direction of each term of the sequence.

Example 9.5.6 Applying the Alternating Series Test.

Determine if the Alternating Series Test applies to each of the following
series.

1.
∞∑

n=1

(−1)n+1 1

n
2.

∞∑
n=1

(−1)n
ln(n)
n

3.
∞∑

n=1

(−1)n+1 |sin(n)|
n2

Solution.

1. This is the Alternating Harmonic Series as seen previously. The un-
derlying sequence is {an} = {1/n}, which is positive, decreasing,
and approaches 0 as n → ∞. Therefore we can apply the Alter-
nating Series Test and conclude this series converges. While the
test does not state what the series converges to, we will see later

that
∞∑

n=1

(−1)n+1 1

n
= ln(2).

2. The underlying sequence is {an} = {ln(n)/n}. This is positive
and approaches 0 as n → ∞ (use L’Hospital’s Rule). However,
the sequence is not decreasing for all n. It is straightforward to
compute a1 = 0, a2 ≈ 0.347, a3 ≈ 0.366, and a4 ≈ 0.347:
the sequence is increasing for at least the first 3 terms. We do not
immediately conclude that we cannot apply the Alternating Series
Test. Rather, consider the long-term behavior of {an}. Treating
an = a(n) as a continuous function of n defined on [1,∞), we
can take its derivative:

a′(n) =
1− ln(n)

n2
.

The derivative is negative for all n ≥ 3 (actually, for all n > e),
meaning a(n) = an is decreasing on [3,∞). We can apply the
Alternating Series Test to the series when we start with n = 3 and

conclude that
∞∑

n=3

(−1)n
ln(n)
n

converges; adding the terms with

n = 1 and n = 2 do not change the convergence (i.e., we apply
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Theorem 9.2.24). The important lesson here is that as before, if
a series fails to meet the criteria of the Alternating Series Test on
only a finite number of terms, we can still apply the test.

3. The underlying sequence is {an} = |sin(n)| /n. This sequence is
positive and approaches 0 as n → ∞. However, it is not a de-
creasing sequence; the value of |sin(n)| oscillates between 0 and
1 as n → ∞. We cannot remove a finite number of terms tomake
{an} decreasing, thereforewe cannot apply the Alternating Series
Test. Keep inmind that this does not meanwe conclude the series
diverges; in fact, it does converge. We are just unable to conclude
this based on Theorem 9.5.2. We will be able to show that this
series converges shortly.

Video solution

youtu.be/watch?v=WmsfSSlc-W0

Key Idea 9.2.20 gives the sum of some important series. Two of these are
∞∑

n=1

1

n2
=

π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places after the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternating structure of an alternating series gives us a powerful tool when
approximating the sum of a convergent series.

Theorem 9.5.7 The Alternating Series Approximation Theorem.

Let {an} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let Sn and L be the nth partial sums and sum, respec-

tively, of either
∞∑

n=1

(−1)nan or
∞∑

n=1

(−1)n+1an. Then

1. En = |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

youtu.be/watch?v=xtsP2Kfy6Bk

Figure 9.5.8 Video presentation of
Theorem 9.5.7

Part 1 of Theorem 9.5.7 states that the nth partial sum of a convergent al-
ternating series will be within an+1 of its total sum. You can see this visually in
Figure 9.5.5. Look at the distance between S6 andL. Clearly this distance is less
than the length of the arrow corresponding to a7.

Also consider the alternating series we looked at before the statement of

the theorem,
∞∑

n=1

(−1)n+1

n2
. Since a14 = 1/142 ≈ 0.0051, we know that S13 is

within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places after the decimal.

Some alternating series converge slowly. In Example 9.5.6 we determined

the series
∞∑

n=1

(−1)n+1 ln(n)
n

converged. With n = 1001, we find ln(n)/n ≈

0.0069, meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places

https://www.youtube.com/watch?v=WmsfSSlc-W0
https://www.youtube.com/watch?v=xtsP2Kfy6Bk
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after the decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤
0.1633.

Example 9.5.9 Approximating the sum of convergent alternating se-
ries.

Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑

n=1

(−1)n+1 1

n3
2.

∞∑
n=1

(−1)n+1 ln(n)
n

Solution.

1. Using Theorem 9.5.7, we want to find n where 1/n3 ≤ 0.001.
That is, we want to find the the first time a term in the sequence
an is smaller than the desired level of error:

1

n3
≤ 0.001 =

1

1000

n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Let L be the sum of this series. By Part 1 of the theorem,
|S9 − L| < a10 = 1/1000. (We found a10 = an+1 < 0.0001,
so n = 9). We can compute S9 = 0.902116, which our theorem
states is within 0.001 of the total sum. We can use Part 2 of the
theorem to obtain an even more accurate result. As we know the
10th term of the series is (−1)n/103 = −1/1000, we can easily
compute S10 = 0.901116. Part 2 of the theorem states that L is
between S9 and S10, so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving
ln(n)/n = 0.001 for n. This cannot be solved algebraically, so we
will use Newton’s Method to approximate a solution. (Note: we
can also use a “Brute Force” technique. That is, we can guess and
check numerically until we find a solution.) Let f(x) = ln(x)/x−
0.001; we want to know where f(x) = 0. We make a guess that
x must be “large,” so our initial guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate solution xn,
our next approximation xn+1 is given by

xn+1 = xn − f(xn)

f ′(xn)
.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to con-
verge to a solution x = 9118.01 after 8 iterations. Taking the
next integer higher, we have n = 9119, where ln(9119)/9119 =
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0.000999903 < 0.001. Again using a computer, we find S9118 =
−0.160369. Part 1 of the theorem states that this is within 0.001
of the actual sum L. Already knowing the 9,119th term, we can
compute S9119 = −0.159369, meaning −0.159369 < L <
−0.160369.

Notice how the first series converged quite quickly, where we needed
only 10 terms to reach the desired accuracy, whereas the second series
took over 9,000 terms.

Video solution

youtu.be/watch?v=f_iiMYNpqXE

One of the famous results ofmathematics is that the Harmonic Series,
∞∑

n=1

1

n

diverges, yet the Alternating Harmonic Series,
∞∑

n=1

(−1)n+1 1

n
, converges. The

notion that alternating the signs of the terms in a series can make a series con-
verge leads us to the following definitions.

Definition 9.5.10 Absolute and Conditional Convergence.

1. A series
∞∑

n=1

an converges absolutely if
∞∑

n=1

|an| converges.

2. A series
∞∑

n=1

an converges conditionally if
∞∑

n=1

an converges but

∞∑
n=1

|an| diverges.

InDefinition9.5.10,
∞∑

n=1

an is not

necessarily an alternating series;
it just may have some negative
terms.

Thus we say the Alternating Harmonic Series converges conditionally.

Example 9.5.11 Determining absolute and conditional convergence.

Determine if the following series converge absolutely, conditionally, or
diverge.

1.
∞∑

n=1

(−1)n
n+ 3

n2 + 2n+ 5

2.
∞∑

n=1

(−1)n
n2 + 2n+ 5

2n

3.
∞∑

n=3

(−1)n
3n− 3

5n− 10

Solution.

1. We can show the series
∞∑

n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3

n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑

n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the Alternating

Series Test; we conclude it converges conditionally.

https://www.youtube.com/watch?v=f_iiMYNpqXE
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2. We can show the series
∞∑

n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5

2n

converges using the Ratio Test. Therefore we conclude
∞∑

n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

3. The series
∞∑

n=3

∣∣∣∣(−1)n
3n− 3

5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3

5n− 10

diverges using the nth Term Test, so it does not converge ab-

solutely. The series
∞∑

n=3

(−1)n
3n− 3

5n− 10
fails the conditions of the

Alternating Series Test as (3n− 3)/(5n− 10) does not approach
0 as n → ∞. We can state further that this series diverges; as
n → ∞, the series effectively adds and subtracts 3/5 over and
over. This causes the sequence of partial sums to oscillate and

not converge. Therefore the series
∞∑

n=1

(−1)n
3n− 3

5n− 10
diverges.

Video solution

youtu.be/watch?v=l02aGt0Ce5M

Knowing that a series converges absolutely allows us tomake two important
statements, given in Theorem 9.5.13 below. The first is that absolute conver-
gence is “stronger” than regular convergence. That is, just because

∑∞
n=1 an

converges, we cannot conclude that
∑∞

n=1 |an| will converge, but knowing a
series converges absolutely tells us that

∑∞
n=1 an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecting
the sum.

youtu.be/watch?v=d0enMDgDON8

Figure 9.5.12 Video presentation of
Definition 9.5.10 and Theorem 9.5.13

Theorem 9.5.13 Absolute Convergence Theorem.

Let
∞∑

n=1

an be a series that converges absolutely.

1.
∞∑

n=1

an converges.

https://www.youtube.com/watch?v=l02aGt0Ce5M
https://www.youtube.com/watch?v=d0enMDgDON8
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2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =

∞∑
n=1

an.

Proof. Wewill provide a proof for Part 1 of Absolute Convergence Theorem. Sup-
pose that

∑∞
n=1 |an| converges. We start by noting that for any sequence an,

we have

− |an| ≤ an ≤ |an|

If we add |an| to all three sides:

0 ≤ an + |an| ≤ 2 |an| .

We are now in a position to apply the Direct Comparison Test to the series∑∞
n=1 (an + |an|). Since

∑∞
n=1 |an| converges by our supposition, so does∑∞

n=1 2 |an| (the scalar multiple of a convergent series also converges by Theo-
rem 9.2.19). Therefore

∑∞
n=1 (an + |an|) converges by the Direct Comparison

Test.
Now we turn our attention to

∑∞
n=1 an. We can say

∞∑
n=1

an =

∞∑
n=1

(an + |an| − |an|)

=

∞∑
n=1

(an + |an|)−
∞∑

n=1

|an| .

The last line is the difference between two convergent series, which is also con-
vergent by Theorem 9.2.19. Therefore

∑∞
n=1 an converges. ■

In Example 9.5.11, we determined the series in Part 2 converges absolutely.
Theorem 9.5.13 tells us the series converges (which we could also determine
using the Alternating Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the Alternating Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
· · · = ln(2),

(see Key Idea 9.2.20 or Example 9.5.6).
Consider the rearrangement where every positive term is followed by two

negative terms:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms
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and simplify:(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · · =

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · =

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
=

1

2
ln(2).

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alternating Harmonic Series does not actually
converge to ln(2), because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to L,
for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The end of this
text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, which we will consider in the next
section. We will use power series to create functions where the output is the
result of an infinite summation.
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9.5.1 Exercises

Terms and Concepts

1. Why is
∞∑

n=1

sin(n) not an alternating series?

2. A series
∞∑

n=1

(−1)nan converges when {an} is , and lim
n→∞

an = .

3. Give an example of a series where
∞∑

n=0

an converges but
∞∑

n=0

|an| does not.

4. The sum of a convergent series can be changed by rearranging the order of its terms.

Problems

Exercise Group. In the following exercises, an alternating series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑

n=0

|an| converges or diverges.

(c) If
∞∑

n=0

an converges, determine if the convergence is conditional or absolute.

5.
∞∑

n=1

(−1)n+1

n2
6.

∞∑
n=1

(−1)n+1

√
n!

7.
∞∑

n=0

(−1)n
n+ 5

3n− 5
8.

∞∑
n=1

(−1)n
2n

n2

9.
∞∑

n=0

(−1)n+1 3n+ 5

n2 − 3n+ 1
10.

∞∑
n=1

(−1)n

ln(n) + 1

11.
∞∑

n=2

(−1)n
n

ln(n)
12.

∞∑
n=1

(−1)n+1

1 + 3 + 5 + · · ·+ (2n− 1)

13.
∞∑

n=1

cos
(
πn
)

14.
∞∑

n=2

sin
(
(n+ 1/2)π

)
n ln(n)

15.
∞∑

n=0

(
−2

3

)n

16.
∞∑

n=0

(−e)−n

17.
∞∑

n=0

(−1)nn2

n!
18.

∞∑
n=0

(−1)n2−n2

19.
∞∑

n=1

(−1)n√
n

20.
∞∑

n=1

(−1000)n

n!

Exercise Group. Let Sn be the nth partial sum of a series. In the following exercises a convergent alternating series
is given and a value of n. Compute Sn and Sn+1 and use these values to find bounds on the sum of the series.
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21.
∞∑

n=1

(−1)n

ln(n+ 1)
, n = 5 22.

∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑

n=0

(−1)n

n!
, n = 6 24.

∞∑
n=0

(
−1

2

)n

, n = 9

Exercise Group. In the following exercises, a convergent alternating series is given along with its sum and a value of
ε. Use Theorem 9.5.7 to find n such that the nth partial sum of the series is within ε of the sum of the series.

25.
∞∑

n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001 26.

∞∑
n=0

(−1)n

n!
=

1

e
, ε = 0.0001

27.
∞∑

n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001 28.

∞∑
n=0

(−1)n

(2n)!
= cos(1), ε = 10−8
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9.6 Power Series

So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

youtu.be/watch?v=y12Zn3QZpbE

Figure 9.6.1 Video introduction to
Section 9.6

Definition 9.6.2 Power Series.

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

2. The power series in x centered at c is the series

∞∑
n=0

an(x− c)n = a0+a1(x− c)+a2(x− c)2+a3(x− c)3+ . . .

Example 9.6.3 Examples of power series.

Write out the first five terms of the following power series:

1.
∞∑

n=0

xn

2.
∞∑

n=1

(−1)n+1 (x+ 1)n

n

3.
∞∑

n=0

(−1)n+1 (x− π)2n

(2n)!

Solution.

1. One of the conventions we adopt is that x0 = 1 regardless of the
value of x. Therefore

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + . . .

This is a geometric series in x with r = x.

2. This series is centered at c = −1. Note how this series starts with
n = 1. We could rewrite this series starting at n = 0 with the
understanding that a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n

= (x+ 1)− (x+ 1)2

2
+

(x+ 1)3

3
− (x+ 1)4

4
+

(x+ 1)5

5
. . .

https://www.youtube.com/watch?v=y12Zn3QZpbE
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3. This series is centered at c = π. Recall that 0! = 1.
∞∑

n=0

(−1)n+1 (x− π)2n

(2n)!

= −1 +
(x− π)2

2
− (x− π)4

24
+

(x− π)6

6!
− (x− π)8

8!
. . .

Video solution

youtu.be/watch?v=NK8i9T-4hSg

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 9.6.3, we recognized the series
∞∑

n=0

xn as a geo-

metric series in x. Theorem 9.2.7 states that this series converges only when
|x| < 1.

This raises the question: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definition.

Theorem 9.6.4 Convergence of Power Series.

Let a power series
∞∑

n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in (c −
R, c+R) and diverges for all x < c−R and x > c+R.

3. The series converges for all x.

youtu.be/watch?v=RRzviD89Phg

Figure 9.6.5 Video presentation of
Theorem 9.6.4 and Definition 9.6.6

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem 9.6.4
makes a statement about the interval (c−R, c+R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Definition 9.6.6 Radius and Interval of Convergence.

1. The numberR given in Theorem9.6.4 is the radius of convergence
of a given series. When a series converges for only x = c, we say
the radius of convergence is 0, i.e., R = 0. When a series con-
verges for all x, we say the series has an infinite radius of conver-
gence, i.e.,R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the interval of convergence, we start by using the ratio test to find
the radius of convergence R. If 0 < R < ∞, we know the series converges on
(c−R, c+R), and it remains to check for convergence at the endpoints.

Given
∑∞

n=0 an(x− c)n we apply the ratio test to
∑∞

n=0 |an(x− c)n| since
the ratio test requires positive terms. We find

lim
n→∞

∣∣an+1(x− c)n+1
∣∣

|an(x− c)n|
= L |x− c| ,

where L = limn→∞
|an+1|
|an| . It follows that the series converges absolutely (and

https://www.youtube.com/watch?v=NK8i9T-4hSg
https://www.youtube.com/watch?v=RRzviD89Phg
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therefore converges) for anyx such thatL |x− c| < 1; that is, forx in
(
c− 1

L , c+
1
L

)
.

On the other hand, suppose for some x that L |x− c| > 1. Then, for suffi-
ciently largen, |an+1| > |an|. Thismeans that the termsof

∑∞
n=0 an(x−c)n are

growing in absolute value, and therefore cannot converge to zero. This means
that the series diverges, by Theorem 9.2.23.

From the above observations, it follows that R = 1
L must be the radius of

convergence.

Key Idea 9.6.7 Determining the Radius and Interval of Convergence.

Given the power series
∞∑

n=0

an(x− c)n, apply the ratio test to the series

∞∑
n=0

|an(xc)
n|. The result will be L |x− c|, where L = lim

n→∞

|an+1|
|an|

.

1. If L = 0, then the power series converges for every x by the ratio
test, since L |x− c| = 0 < 1.

2. If L = ∞, then power series converges only when x = c.

3. If 0 < L < ∞, thenR = 1/L is the radius of convergence: by the
ratio test, the series converges when |x− c| < R.

To determine the interval of convergence, plug the endpoints (x =
c−R and x = c+R) into the power series, and test the resulting
series for convergence. If the series converges, we include the
endpoint. If it diverges, we exclude the endpoint.

Key Idea 9.6.7 allows us to find the radius of convergence R of a series by
applying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.

Example 9.6.8 Determining the radius and interval of convergence.

Find the radius and interval of convergence for each of the following
series:

1.
∞∑

n=0

xn

n!

2.
∞∑

n=1

(−1)n+1x
n

n

3.
∞∑

n=0

2n(x− 3)n

4.
∞∑

n=0

n!xn

Solution.

1. We apply the Ratio Test to the series
∞∑

n=1

∣∣∣∣xn

n!

∣∣∣∣:
lim

n→∞

∣∣xn+1/(n+ 1)!
∣∣

|xn/n!|
= lim

n→∞

∣∣∣∣xn+1

xn
· n!

(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣
= 0 for all x.



9.6. POWER SERIES 527

The Ratio Test shows us that regardless of the choice of x, the
series converges. Therefore the radius of convergence is R = ∞,
and the interval of convergence is (−∞,∞).

2. We apply the Ratio Test to the series
∞∑

n=1

∣∣∣∣(−1)n+1x
n

n

∣∣∣∣ =

∞∑
n=1

∣∣∣∣xn

n

∣∣∣∣:
lim

n→∞

∣∣xn+1/(n+ 1)
∣∣

|xn/n|
= lim

n→∞

∣∣∣∣xn+1

xn
· n

n+ 1

∣∣∣∣
= lim

n→∞
(

n

n+ 1
) |x|

= |x| .

The Ratio Test states a series converges if the limit of |an+1/an| =
L < 1. We found the limit above to be |x|; therefore, the power
series converges when |x| < 1, or when x is in (−1, 1). Thus
the radius of convergence is R = 1. To determine the interval of
convergence, we need to check the endpoints of (−1, 1). When
x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1

n

= −∞.

The series diverges when x = −1. When x = 1, we have the

series
∞∑

n=1

(−1)n+1 (1)
n

n
, which is the AlternatingHarmonic Series,

which converges. Therefore the interval of convergence is (−1, 1].

3. We apply the Ratio Test to the series
∞∑

n=0

|2n(x− 3)n|:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣

|2n(x− 3)n|
= lim

n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞
|2(x− 3)| .

According to the Ratio Test, the series converges when
|2(x− 3)| < 1 =⇒ |x− 3| < 1/2. The series is cen-
tered at 3, and x must be within 1/2 of 3 in order for the series
to converge. Therefore the radius of convergence is R = 1/2,
and we know that the series converges absolutely for all x in
(3− 1/2, 3 + 1/2) = (2.5, 3.5). We check for convergence at the
endpoints to find the interval of convergence. When x = 2.5, we
have:

∞∑
n=0

2n(2.5− 3)n =

∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,
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which diverges. A similar process shows that the series also di-
verges at x = 3.5. Therefore the interval of convergence is
(2.5, 3.5).

4. We apply the Ratio Test to
∞∑

n=0

|n!xn|:

lim
n→∞

∣∣(n+ 1)!xn+1
∣∣

|n!xn|
= lim

n→∞
|(n+ 1)x|

= ∞ for all x, except x = 0.

The Ratio Test shows that the series diverges for all x exceptx = 0.
Therefore the radius of convergence isR = 0.

Video solution

youtu.be/watch?v=1YzPDWYUWO8

We can use a power series to define a function:

f(x) =

∞∑
n=0

anx
n

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Theorem 9.6.9 Derivatives and Indefinite Integrals of Power Series
Functions.

Let f(x) =
∞∑

n=0

an(x− c)n be a function defined by a power series, with

radius of convergenceR.

1. f(x) is continuous and differentiable on (c−R, c+R).

2. f ′(x) =

∞∑
n=1

an · n · (x− c)n−1, with radius of convergenceR.

3.
∫

f(x) dx = C+

∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence

R.

youtu.be/watch?v=qErrT8xRKts

Figure 9.6.10 Video presentation of
Theorem 9.6.9

A few notes about Theorem 9.6.9:

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f ′(x) starts with n = 1. This is because
the constant term a0 of f(x) becomes 0 through differentiation.

3. Differentiation and integration are simply calculated term-by-term using
the Power Rules.

https://www.youtube.com/watch?v=1YzPDWYUWO8
https://www.youtube.com/watch?v=qErrT8xRKts
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Example 9.6.11 Derivatives and indefinite integrals of power series.

Let f(x) =
∞∑

n=0

xn. Find f ′(x) and F (x) =

∫
f(x) dx, along with their

respective intervals of convergence.
Solution. We find the derivative and indefinite integral of f(x), follow-
ing Theorem 9.6.9.

1.

f ′(x) =

∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · ·

=

∞∑
n=0

(n+ 1)xn.

In Example 9.6.3, we recognized that
∞∑

n=0

xn is a geometric series

in x. We know that such a geometric series converges when |x| <
1; that is, the interval of convergence is (−1, 1). To determine
the interval of convergence of f ′(x), we consider the endpoints
of (−1, 1):

f ′(−1) = 1− 2 + 3− 4 + · · · , which diverges.

f ′(1) = 1 + 2 + 3 + 4 + · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F (x) =

∫
f(x) dx = C +

∞∑
n=0

xn+1

n+ 1
= C + x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence ofF (x), we again consider the
endpoints of (−1, 1):

F (−1) = C − 1 + 1/2− 1/3 + 1/4 + · · ·

The value of C is irrelevant; notice that the rest of the series is an
Alternating Series that whose terms converge to 0. By the Alter-
nating Series Test, this series converges. (In fact, we can recognize
that the terms of the series after C are the opposite of the Alter-
natingHarmonic Series. We can thus say thatF (−1) = C−ln(2).)

F (1) = C + 1 + 1/2 + 1/3 + 1/4 + · · ·

Notice that this summation is C + the Harmonic Series, which di-
verges. Since F converges for x = −1 and diverges for x = 1, the
interval of convergence of F (x) is [−1, 1).

Video solution

youtu.be/watch?v=XE6m9CGME5Q

The previous example showed how to take the derivative and indefinite integral
of a power series without motivation for why we care about such operations.
We may care for the sheer mathematical enjoyment “that we can”, which is mo-
tivation enough for many. However, we would be remiss to not recognize that
we can learn a great deal from taking derivatives and indefinite integrals.

https://www.youtube.com/watch?v=XE6m9CGME5Q
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Recall that f(x) =
∞∑

n=0

xn in Example 9.6.11 is a geometric series. According

to Theorem 9.2.7, this series converges to 1/(1−x)when |x| < 1. Thus we can
say

f(x) =

∞∑
n=0

xn =
1

1− x
, on (−1, 1).

Integrating the power series, (as done in Example 9.6.11,) we find

F (x) = C1 +

∞∑
n=0

xn+1

n+ 1
, (9.6.1)

while integrating the function f(x) = 1/(1− x) gives

F (x) = − ln |1− x|+ C2. (9.6.2)

Equating Equations (9.6.1) and (9.6.2), we have

F (x) = C1 +

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Letting x = 0, we have F (0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x| .

We established in Example 9.6.11 that the series on the left converges at
x = −1; substituting x = −1 on both sides of the above equality gives

−1 +
1

2
− 1

3
+

1

4
− 1

5
+ · · · = − ln(2).

On the left we have the opposite of the Alternating Harmonic Series; on the
right, we have− ln(2). We conclude that

1− 1

2
+

1

3
− 1

4
+ · · · = ln(2).

Important: We stated in Key Idea 9.2.20 (in Section 9.2) that the Alternat-
ing Harmonic Series converges to ln(2), and referred to this fact again in Exam-
ple 9.5.6 of Section 9.5. However, we never gave an argument for why this was
the case. The work above finally shows how we conclude that the Alternating
Harmonic Series converges to ln(2).

We use this type of analysis in the next example.

Example 9.6.12 Analyzing power series functions.

Let f(x) =
∞∑

n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze

the behavior of f(x).
Solution. We start by making two notes: first, in Example 9.6.8, we
found the interval of convergence of this power series is (−∞,∞). Sec-
ond, we will find it useful later to have a few terms of the series written
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out:
∞∑

n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+ · · · (9.6.3)

We now find the derivative:

f ′(x) =

∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1 + x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can
re-index the series starting with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivative of f(x) is f(x). The only functions for which
this is true are of the form y = cex for some constant c. As f(0) = 1
(see Equation (9.6.3)), cmust be 1. Therefore we conclude that

f(x) =

∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C +

∞∑
n=0

xn+1

n!(n+ 1)

= C +

∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C +

∞∑
n=0

xn+1

(n+ 1)!
= C + x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicating
that f(x) = ex.

Video solution

youtu.be/watch?v=SQm1BC7bwEw

Example 9.6.12 and the work following Example 9.6.11 established relation-
ships between a power series function and “regular” functions that we have
dealt with in the past. In general, given a power series function, it is difficult (if
not impossible) to express the function in terms of elementary functions. We
chose examples where things worked out nicely.

In this section’s last example, we show how to solve a simple differential
equation with a power series.

https://www.youtube.com/watch?v=SQm1BC7bwEw
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Example 9.6.13 Solving a differential equation with a power series.

Give the first 4 terms of the power series solution to y′ = 2y, where
y(0) = 1.
Solution. The differential equation y′ = 2y describes a function y =
f(x) where the derivative of y is twice y and y(0) = 1. This is a rather
simple differential equation; with a bit of thought one should realize that
if y = Ce2x, then y′ = 2Ce2x, and hence y′ = 2y. By letting C = 1 we
satisfy the initial condition of y(0) = 1.
Let’s ignore the fact that we already know the solution and find a power
series function that satisfies the equation. The solutionwe seekwill have
the form

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 9.6.9:

f ′(x) =

∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x
2 + 4a4x

3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x
2 + 4a4x

3 · · · = 2
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= 2a0 + 2a1x+ 2a2x

2 + 2a3x
3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The initial condition y(0) = f(0) = 1 indicates that a0 = 1; with this,
we can find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;

a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;

a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series solution to the differential
equation y′ = 2y is

f(x) = 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + · · ·

In Section 9.7, as we study Taylor Series, we will learn how to recognize
this series as describing y = e2x.

Our last example illustrates that it can be difficult to recognize an elementary
function by its power series expansion. It is far easier to start with a known func-
tion, expressed in terms of elementary functions, and represent it as a power
series function. One may wonder why we would bother doing so, as the latter
function probably seems more complicated. In the next two sections, we show
both how to do this and why such a process can be beneficial.
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9.6.1 Exercises

Terms and Concepts

1. We adopt the convention that x0 = , regardless of the value of x.

2. What is the difference between the radius of convergence and the interval of convergence?

3. If the radius of convergence of
∞∑

n=0

anx
n is 5, what is the radius of convergence of

∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑

n=0

anx
n is 5, what is the radius of convergence of

∞∑
n=0

(−1)nanx
n?

Problems

Exercise Group. In the following exercises, write out the sum of the first 5 terms of the given power series.

5.
∞∑

n=0

2nxn 6.
∞∑

n=1

1

n2
xn

7.
∞∑

n=0

1

n!
xn 8.

∞∑
n=0

(−1)n

(2n)!
x2n

Exercise Group. In the following exercises, a power series is given.

(a) Find the radius of convergence.

(b) Find the interval of convergence.

9.
∞∑

n=0

(−1)n+1

n!
xn 10.

∞∑
n=0

nxn

11.
∞∑

n=1

(−1)n(x− 3)n

n
12.

∞∑
n=0

(x+ 4)n

n!

13.
∞∑

n=0

xn

2n
14.

∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑

n=0

5n(x− 1)n 16.
∞∑

n=0

(−2)nxn

17.
∞∑

n=0

√
nxn 18.

∞∑
n=0

n

3n
xn

19.
∞∑

n=0

3n

n!
(x− 5)n 20.

∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑

n=1

xn

n2
22.

∞∑
n=1

(x+ 2)n

n3

23.
∞∑

n=0

n!
( x

10

)n
24.

∞∑
n=0

n2

(
x+ 4

4

)n

Exercise Group. In the following exercises, a function f(x) =
∞∑

n=0

anx
n is given.
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(a) Give a power series for f ′(x) and its interval of convergence.

(b) Give a power series for
∫
f(x) dx and its interval of convergence.

25.
∞∑

n=0

nxn 26.
∞∑

n=1

xn

n

27.
∞∑

n=0

(x
2

)n
28.

∞∑
n=0

(−3x)n

29.
∞∑

n=0

(−1)nx2n

(2n)!
30.

∞∑
n=0

(−1)nxn

n!

Exercise Group. In the following exercises, give the first 5 terms of the series that is a solution to the given differential
equation.

31. y ′ = 3y,y(0) = 1 32. y ′ = 5y,y(0) = 5

33. y ′ = y2,y(0) = 1 34. y ′ = y + 1,y(0) = 1

35. y ′′ = −y,y(0) = 0, y ′(0) = 1 36. y ′′ = 2y,y(0) = 1, y ′(0) = 1
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9.7 Taylor Series

In Section 9.6, we showed how certain functions can be represented by a power
series function. In Section 4.5, we showed how we can approximate functions
with polynomials, given that enough derivative information is available. In this
sectionwe combine these concepts: if a function f(x) is infinitely differentiable,
we show how to represent it with a power series function.

youtu.be/watch?v=4RC4SLmEjro

Figure 9.7.1 Video introduction to
Section 9.7

Definition 9.7.2 Taylor and Maclaurin Series.

Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)

n!
(x− c)n.

2. Setting c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)

n!
xn.

If pn(x) is the nth degree Taylor polynomial for f(x) centered at x = c, we
saw how f(x) is approximately equal to pn(x) near x = c. We also saw how
increasing the degree of the polynomial generally reduced the error.

We are now considering series, where we sum an infinite set of terms. Our
ultimate hope is to see the error vanish and claim a function is equal to its Taylor
series.

When creating the Taylor polynomial of degreen for a function f(x) atx = c,
we needed to evaluate f , and the first n derivatives of f , at x = c. When
creating the Taylor series of f , it helps to find a pattern that describes the nth
derivative of f at x = c. We demonstrate this in the next two examples.

Example 9.7.3 The Maclaurin series of f(x) = cos(x).

Find the Maclaurin series of f(x) = cos(x).
Solution. In Example 4.5.19 we found the 8th degreeMaclaurin polyno-
mial of cos(x). In doing so, we created the table shown in Figure 9.7.4.

f(x) = cos(x) f(0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0

f (8)(x) = cos(x) f (8)(0) = 1

f (9)(x) = − sin(x) f (9)(0) = 0

Figure 9.7.4 Derivatives of f(x) =
cos(x) evaluated at x = 0

Notice how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible
by 4, and f (n)(0) = −1 when n is even but not divisible by 4. Thus the
Maclaurin series of cos(x) is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summation. The coefficients al-
ternate between positive and negative. Since we only need the terms
where the power of x is even, we write the power series in terms of
x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

This Maclaurin series is a special type of power series. As such, we
should determine its interval of convergence. Applying the Ratio Test,

https://www.youtube.com/watch?v=4RC4SLmEjro
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we have

lim
n→∞

∣∣∣∣∣(−1)n+1 x2(n+1)(
2(n+ 1)

)
!

∣∣∣∣∣∣∣∣(−1)n x2n

(2n)!

∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ (2n)!

(2n+ 2)!

= lim
n→∞

|x|2

(2n+ 2)(2n+ 1)
.

For any fixed x, this limit is 0. Therefore this power series has an infinite
radius of convergence, converging for all x. It is important to note what
we have, and have not, determined: we have determined theMaclaurin
series for cos(x) along with its interval of convergence. We have not
shown that cos(x) is equal to this power series.

Video solution

youtu.be/watch?v=97x6p1616z0

Example 9.7.3 found the Taylor Series representation of cos(x). We can eas-
ily find the Taylor Series representationof sin(x)by recognizing that

∫
cos(x) dx =

sin(x) and apply Theorem 9.6.9.

Example 9.7.5 The Taylor series of f(x) = ln(x) at x = 1.

Find the Taylor series of f(x) = ln(x) centered at x = 1.
Solution. Figure 9.7.6 shows the nth derivative of ln(x) evaluated at
x = 1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what distinguishes Taylor series from Taylor poly-
nomials; we are very interested in finding a pattern for the nth term, not
just finding a finite set of coefficients for a polynomial.

f(x) = ln(x) f(1) = 0

f ′(x) = 1/x f ′(1) = 1

f ′′(x) = −1/x2 f ′′(1) = −1

f ′′′(x) = 2/x3 f ′′′(1) = 2

f (4)(x) = −6/x4 f (4)(1) = −6

f (5)(x) = 24/x5 f (5)(1) = 24
...

...
f (n)(x) = f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 9.7.6 Derivatives of ln(x) eval-
uated at x = 1

Since f(1) = ln(1) = 0, we skip the first term and start the summation
with n = 1, giving the Taylor series for ln(x), centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1

n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

We now determine the interval of convergence, using the Ratio Test.

lim
n→∞

∣∣∣∣(−1)n+2 (x− 1)n+1

n+ 1

∣∣∣∣∣∣∣∣(−1)n+1
(x− 1)n

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 1)n+1

(x− 1)n

∣∣∣∣ n

n+ 1

= |x− 1| .

By the Ratio Test, we have convergence when |x− 1| < 1: the radius
of convergence is 1, and we have convergence on (0, 2). We now check
the endpoints.
At x = 0, the series is

∞∑
n=1

(−1)n+1 (−1)n

n
= −

∞∑
n=1

1

n
,

which diverges (it is the Harmonic Series times (−1).)

https://www.youtube.com/watch?v=97x6p1616z0
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At x = 2, the series is

∞∑
n=1

(−1)n+1 (1)
n

n
=

∞∑
n=1

(−1)n+1 1

n
,

the Alternating Harmonic Series, which converges.

It can be shown that ln(x) is
equal to this Taylor series on
(0, 2]. From the work in Ex-
ample 9.7.5, this justifies our
previous declaration that the Al-
ternating Harmonic Series con-
verges to ln(2).

We have found the Taylor series of lnx centered at x = 1, and have
determined the series converges on (0, 2]. We cannot (yet) say that lnx
is equal to this Taylor series on (0, 2].

Video solution

youtu.be/watch?v=Bdk4lGCkz7o

It is important to note that Definition 9.7.2 defines a Taylor series given a
function f(x), but makes no claim about their equality. We will find that “most
of the time” they are equal, but we need to consider the conditions that allow
us to conclude this.

Theorem 4.5.16 states that the error between a function f(x) and its nth-
degree Taylor polynomial pn(x) isRn(x), where

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣ .

If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we
conclude that the function is equal to its Taylor series expansion.

Theorem 9.7.7 Function and Taylor Series Equality.

Let f(x) have derivatives of all orders at x = c, let Rn(x) be as stated
in Theorem 4.5.16, and let I be an interval on which the Taylor series of
f(x) converges. If lim

n→∞
Rn(x) = 0 for all x in I , then

f(x) =

∞∑
n=0

f (n)(c)

n!
(x− c)n on I .

youtu.be/watch?v=FF3m792UGiA

Figure 9.7.8 Video presentation of
Theorem 9.7.7

We demonstrate the use of this theorem in an example.

Example 9.7.9 Establishing equality of a function and its Taylor series.

Show that f(x) = cos(x) is equal to its Maclaurin series, as found in
Example 9.7.3, for all x.
Solution. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣xn+1
∣∣ .

Since all derivatives of cos(x) are ± sin(x) or ± cos(x), whose magni-
tudes are bounded by 1, we can state

|Rn(x)| ≤
1

(n+ 1)!

∣∣xn+1
∣∣

which implies

−
∣∣xn+1

∣∣
(n+ 1)!

≤ Rn(x) ≤
∣∣xn+1

∣∣
(n+ 1)!

. (9.7.1)

For any x, lim
n→∞

xn+1

(n+1)! = 0. Applying the Squeeze Theorem to Equa-

https://www.youtube.com/watch?v=Bdk4lGCkz7o
https://www.youtube.com/watch?v=FF3m792UGiA
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tion (9.7.1), we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
for all x .

It is natural to assume that a function is equal to its Taylor series on the series’
interval of convergence, but this is not always the case. In order to properly
establish equality, one must use Theorem 9.7.7. This is a bit disappointing, as
we developed beautiful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be difficult. For instance, it
is not a simple task to show that ln x equals its Taylor series on (0, 2] as found
in Example 9.7.5; in the Exercises, the reader is only asked to show equality on
(1, 2), which is simpler.

There is good news. A function f(x) that is equal to its Taylor series, cen-
tered at any point the domain of f(x), is said to be an analytic function, and
most, if not all, functions that we encounter within this course are analytic func-
tions. Generally speaking, any function that one creates with elementary func-
tions (polynomials, exponentials, trigonometric functions, etc.) that is not piece-
wise defined is probably analytic. For most functions, we assume the function
is equal to its Taylor series on the series’ interval of convergence and only use
Theorem 9.7.7 when we suspect something may not work as expected.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 9.7.10 The Binomial Series.

Find the Maclaurin series of f(x) = (1 + x)k, k ̸= 0.
Solution. When k is a positive integer, theMaclaurin series is finite. For
instance, when k = 4, we have

f(x) = (1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a positive integer are known as the bino-
mial coefficients, giving the series we are developing its name.
When k = 1/2, we have f(x) =

√
1 + x. Knowing a series representa-

tion of this function would give a useful way of approximating
√
1.3, for

instance.
To develop the Maclaurin series for f(x) = (1 + x)k for any value of
k ̸= 0, we consider the derivatives of f evaluated at x = 0:

f(x) = (1 + x)k f(0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)

f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

...
...

For a general n,

f (n)(x) = k(k − 1) · · ·
(
k − (n− 1)

)
(1 + x)k−n,

giving f (n)(0) = k(k − 1) · · ·
(
k − (n− 1)

)
.
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Thus the Maclaurin series for f(x) = (1 + x)k is

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . .

· · ·+
k(k − 1) · · ·

(
k − (n− 1)

)
n!

(x− c)n + . . .

It is important to determine the interval of convergence of this series.
With

an =
k(k − 1) · · ·

(
k − (n− 1)

)
n!

xn,

we apply the Ratio Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k − 1) · · · (k − (n− 1))(k − n)

(n+ 1)!
xn+1

∣∣∣∣∣∣∣∣∣k(k − 1) · · ·
(
k − (n− 1)

)
n!

xn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣k − n

n+ 1
x

∣∣∣∣
= |x| .

The series converges absolutely when the limit of the Ratio Test is less
than 1; therefore, we have absolute convergence when |x| < 1.
While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1].
When −1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1,
the interval of convergence is (−1, 1).

Video solution

youtu.be/watch?v=uQouiDtMuDY

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

Whilewe should not overlook themathematical beauty of Taylor series (which
is reason enough to study them), there are practical uses as well. They provide
a valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 9.7.11 (on the following page) we give a table of the Taylor series
of a number of common functions. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new functions. This allows us to find the Taylor series of functions like
f(x) = ex cos(x) by knowing the Taylor series of ex and cos(x).

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 9.7.11). Knowing that tan−1(1) = π/4, we
can use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

π = 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)
Unfortunately, this particular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not particularly good.

https://www.youtube.com/watch?v=uQouiDtMuDY
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Key Idea 9.7.11 Important Taylor Series Expansions.

Function and Series First Few Terms Interval of
Convergence

ex =

∞∑
n=0

xn

n!
1 + x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1

1− x
=

∞∑
n=0

xn 1 + x+ x2 + x3 + · · · (−1, 1)

tan−1(x) =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

(1 + x)k =

∞∑
n=0

(
k

n

)
xn 1 + kx+

k(k − 1)

2!
x2 + · · · (−1, 1)

Note that for (1 + x)k, the interval of convergence may contain one or both endpoints, de-
pending on the value of k, and we are using the generalized binomial coefficients(

k

n

)
=

k(k − 1) · · · (k − (n− 1))

n!
.

Theorem 9.7.12 Algebra of Power Series.

Let f(x) =

∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n converge absolutely for

|x| < R, and let h(x) be a polynomial function.

1. f(x)± g(x) =

∞∑
n=0

(an ± bn)x
n for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(
a0bn + a1bn−1 +

. . . anb0
)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Note that we require h(x) to be
apolynomial function in Theorem9.7.12.
If we plug a function that is not
polynomial into a power series,
the resultwill no longer be apower
series. If one is very careful about
the centre and radius of conver-
gence, it is technically possible
to substitute the Taylor series for
a general function h(x) into the
Taylor series for f(x), and the re-
sult will be the Taylor series for
f(h(x)).

In practice, h(x) is typically
amonomial functionof the form
h(x) = axn. For anything more
complicated, rearranging thepower
series into a standard form be-
comes a nightmare.

Example 9.7.13 Combining Taylor series.

Write out the first 3 terms of the Taylor Series for f(x) = ex cos(x) using
Key Idea 9.7.11 and Theorem 9.7.12.
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Solution. Key Idea 9.7.11 informs us that

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · and cos(x) = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 9.7.12, we find that

ex cos(x) =
(
1 + x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the left:

ex cos(x) = 1

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

If we distribute again and collect like terms, we find

ex cos(x) = 1 + x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · · .

While this process is a bit tedious, it is much faster than evaluating all
the necessary derivatives of ex cos(x) and computing the Taylor series
directly.
Because the series for ex and cos(x) both converge on (−∞,∞), so
does the series expansion for ex cos(x).

Video solution

youtu.be/watch?v=rUBF6BC201g

youtu.be/watch?v=v-y5IH796gY

Figure 9.7.14 Deriving the Taylor se-
ries for arctan(x) in Key Idea 9.7.11

Example 9.7.15 Creating new Taylor series.

Use Theorem 9.7.12 to create series for y = sin(x2) and y = x3/(3 +
x4).
Solution. Given that

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply substitute x2 for x in the series, giving

sin(x2) =

∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!

∞∑
n=0

(−1)n
(x4n+2

(2n+ 1)!

= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Since the Taylor series for sin(x) has an infinite radius of convergence,
so does the Taylor series for sin(x2).
For y = x3/(3 + x4), we begin with the geometric series expansion

1

1− x
=

∞∑
n=0

xn.

https://www.youtube.com/watch?v=rUBF6BC201g
https://www.youtube.com/watch?v=v-y5IH796gY
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Note that we can write

1

3 + x4
=

1

3
· 1

1 + x4/3
=

1

3
· 1

1− (−x4/3)
.

Substituting−x4/3 into the geometric series expansion, we get

1

3 + x4
=

∞∑
n=0

(−x4/3)n =

∞∑
n=0

(−1n)x4n

3n
.

Finally, we canmultiply both sides of the above equation by x3 to obtain

x3

3 + x4
= x3

∞∑
n=0

(−1n)x4n

3n
=

∞∑
n=0

(−1)nx4n+3

3n
.

Video solution

youtu.be/watch?v=j3eHOO9taNQ

Example 9.7.16 A (somewhat foolish) combination of Taylor series.

Discuss possible methods for obtaining a Taylor series expansion for
f(x) = ln(

√
x).

Solution. Since f(x) is a composition, our first instict might be to ap-
ply Theorem 9.7.12 to the problem. However,

√
x is not a polynomial

function, and neither ln(x) nor
√
x have Maclaurin series expansions.

You might already see a simple way to proceed, but let us first consider
the following:

√
x = (1 + (x − 1))1/2 can be expanded as a binomial

series centered at x = 1. We also know the Taylor series for ln(x) at
x = 1, and note that

√
1 = 1, so when x is near 1, so is

√
x.

What happens if we take the Taylor series

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

and substitute in

√
x =

∞∑
n=0

(
1/2

n

)
(x− 1)n = 1 +

1

2
(x− 1)− 1

4
(x− 1)2 + · · · ,

where
(
1/2
n

)
= 1/2(1/2−1)···(1/2−(n−1))

n! denotes the binomial coeffi-
cient?
Short answer: a mess. We have to replace each occurence of x − 1 in
the power series for ln(x)with

√
x−1 = 1

2 (x−1)− 1
4 (x−1)2+ 1

16 (x−
1)3+ · · ·, and then expand, and collect terms. If we do this, keeping only
terms up to (x− 1)3, we find:

ln(
√
x) =

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)
− 1

2

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)2

+
1

3

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)
+ · · ·

=
1

2
(x− 1)− 1

4
(x− 2)2 +

1

6
(x− 1)3 − · · · .

https://www.youtube.com/watch?v=j3eHOO9taNQ
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But of course, there was a better way all along:

ln(
√
x) = ln(x1/2) =

1

2
ln(x)

using properties of the logarithm, and indeed, the result above is the
same as the one we would have obtained by simply multiplying the Tay-
lor series for ln(x) by 1

2 . Power series manipulation is a powerful tech-
nique, but one should not apply it blindly.

Example 9.7.17 Using Taylor series to approximate a composition.

Use Taylor series to determine a degree 5 Taylor polynomial approxima-
tion to f(x) = esin(x).
Solution. Here we want to apply Theorem 9.7.12, but h(x) = sin(x) is
not a polynomial. However, we are interested in approximation, so we
replace sin(x) by the Maclaurin polynomial

q(x) = x− x3

3!
+

x5

5!
.

The Maclaurin series for f(x) = ex is given by

ex =

∞∑
n=0

xn

n!
.

Next, we substitute q(x) into the series for ex. The algebra gets very
messy, but we can simplify things: since we want the degree 5 approx-
imation, there is no need to write down terms involving x6 or higher
powers.

esin(x) ≈ 1 + q(x) +
1

2!
q(x)2 +

1

3!
q(x)3 +

1

4!
q(x)4 +

1

5!
q(x)5

= 1 +

(
x− x3

6
+

x5

120

)
+

1

2

(
x− x3

6
+

x5

120

)
+

1

6

(
x− x3

6
+

x5

120

)3

+
1

24

(
x− x3

6
+

x5

120

)4

+
1

120

(
x− x3

6
+

x5

120

)5

= 1 + x− x3

6
+

x5

120
+

1

2

(
x2 − 1

3
x4 + · · ·

)
+

1

6

(
x3 − 1

2
x5 + · · ·

)
+

1

24

(
x4 + · · ·

)
+

1

120

(
x5 + · · ·

)
= 1 + x+

1

2
x2 − 1

8
x4 − 1

15
x5 + · · · .

While the algebra is a bit of a mess, it is often less work than computing
the Taylor polynomial directly, as the derivatives of a composite func-
tion quickly get complicated. The function f(x) = esin(x) and its approx-
imation are plotted in Figure 9.7.18 below. Note that our polynomial
approximation is very good on [−1, 1].

y = f(x)

y = p5(x)

−2 −1 1 2

1

2

3

x

y

Figure 9.7.18 A graph of f(x) and its
degree 5 Maclaurin polynomial

In the previous example, the reader might be left wondering why we would
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bother with all that algebra, when the computer could have given us the result
in seconds. One reason is simply that it lets us see how these different pieces fit
together. Computing a Taylor polynomial by combining existing results will give
the same polynomial as computing derivatives. Also we see that we can com-
pute an approximation by replacing both parts of a composition with approxi-
mations. In the last couple of examples in this chapter, we see another reason:
often we have to define functions in terms of power series derived through in-
tegration, or the solution of a differential equation, where there is no known
function we can simply plug into the computer.

Example 9.7.19 Using Taylor series to evaluate definite integrals.

Use the Taylor series of e−x2

to evaluate
∫ 1

0

e−x2

dx.

Solution. We learned, when studying Numerical Integration, that e−x2

does not have an antiderivative expressible in terms of elementary func-
tions. This means any definite integral of this function must have its
value approximated, and not computed exactly.
We can quickly write out the Taylor series for e−x2

using the Taylor series
of ex:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2

=

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

We use Theorem 9.6.9 to integrate:∫
e−x2

dx = C+x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+· · ·+(−1)n

x2n+1

(2n+ 1)n!
+· · ·

This is the antiderivative of e−x2

; while we canwrite it out as a series, we
cannot write it out in terms of elementary functions. We can evaluate

the definite integral
∫ 1

0

e−x2

dx using this antiderivative; substituting 1

and 0 for x and subtracting gives∫ 1

0

e−x2

dx = 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximation of 0.74749.
Since this is an alternating series, we can use the Alternating Series Ap-
proximation Theorem, (Theorem 9.5.7), to determine how accurate this
approximation is. The next termof the series is 1/(11·5!) ≈ 0.00075758.
Thus we know our approximation is within 0.00075758 of the actual
value of the integral. This is arguably much less work than using Simp-
son’s Rule to approximate the value of the integral.

Video solution

youtu.be/watch?v=WhpEci26gUA

https://www.youtube.com/watch?v=WhpEci26gUA
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Example 9.7.20 Using Taylor series to solve differential equations.

Solve the differential equation y′ = 2y in terms of a power series, and
use the theory of Taylor series to recognize the solution in terms of an
elementary function.
Solution. We found the first 5 terms of the power series solution to this
differential equation in Example 9.6.13 in Section 9.6. These are:

a0 = 1, a1 = 2, a2 =
4

2
= 2, a3 =

8

2 · 3
=

4

3
, a4 =

16

2 · 3 · 4
=

2

3
.

We include the “unsimplified” expressions for the coefficients found in
Example 9.6.13 as we are looking for a pattern. It can be shown that
an = 2n/n!. Thus the solution, written as a power series, is

y =

∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 9.7.11 and Theorem 9.7.12, we recognize f(x) = e2x:

ex =

∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

Video solution

youtu.be/watch?v=ojjEGO5H8qQ

Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 9.7.11, can be difficult. What
if the coefficients in the previous examplewere given in their reduced form; how
could we still recover the function y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4

3
, a4 =

2

3
.

Definition 9.7.2 states that each term of the Taylor expansion of a function
includes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4

3
=

b3
3!
, and a4 =

2

3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the pattern we had previously
seen, allowing us to write

f(x) =

∞∑
n=0

anx
n =

∞∑
n=0

bn
n!

xn

= 1 + 2x+
4

2!
x2 +

8

3!
x3 +

16

4!
x4 + · · ·

Fromhere it is easier to recognize that the series is describing an exponential
function.

There are simpler, more direct ways of solving the differential equation y′ =
2y, as discussed in Chapter 8. We applied power series techniques to this equa-
tion to demonstrate its utility, and went on to show how sometimeswe are able
to recover the solution in terms of elementary functions using the theory of Tay-
lor series. Most differential equations faced in real scientific and engineering
situations are much more complicated than this one, but power series can offer
a valuable tool in finding, or at least approximating, the solution.

https://www.youtube.com/watch?v=ojjEGO5H8qQ
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This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
functions based on series. Such “series-defined functions” are a valuable tool in
solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using functions of the form y = f(x). Curves created by these new
methods can be beautiful, useful, and important.
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9.7.1 Exercises

Terms and Concepts

1. What is the difference between a Taylor polynomial and a Taylor series?
2. What theorem must we use to show that a function is equal to its Taylor series?

Problems

Exercise Group. Key Idea 9.7.11 gives the nth term of the Taylor series of common functions. In the following
exercises, verify the formula given in the Key Idea by finding the first few terms of the Taylor series of the given
function and identifying a pattern.

3. f(x) = ex;c = 0 4. f(x) = sin(x);c = 0

5. f(x) = 1/(1− x);c = 0 6. f(x) = tan−1(x);c = 0

Exercise Group. In the following exercises, find a formula for the nth term of the Taylor series of f(x), centered at
c, by finding the coefficients of the first few powers of x and looking for a pattern. (The formulas for several of these
are found in Key Idea 9.7.11; show work verifying these formula.)

7. f(x) = cos(x);c = π/2 8. f(x) = 1/x;c = 1

9. f(x) = e−x;c = 0 10. f(x) = ln(1 + x);c = 0

11. f(x) = x/(x+ 1);c = 1 12. f(x) = sin(x);c = π/4

Exercise Group. In the following exercises, show that the Taylor series for f(x), as given in Key Idea 9.7.11, is equal
to f(x) by applying Theorem 9.7.7; that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex 14. f(x) = sin(x)
15. f(x) = ln(x) (show equality only on (1, 2)) 16. f(x) = 1/(1− x) (show equality only on

(−1, 0))

Exercise Group. In the following exercises, use the Taylor series given in Key Idea 9.7.11 to verify the given identity.
17. cos(−x) = cos(x) 18. sin(−x) = − sin(x)
19. d

dx

(
sin(x)

)
= cos(x) 20. d

dx

(
cos(x)

)
= − sin(x)

Exercise Group. In the following exercises, write out the first 5 terms of the Binomial series with the given k-value.
21. k = 1/2 22. k = −1/2

23. k = 1/3 24. k = 4

Exercise Group. In the following exercises, use the Taylor series given in Key Idea 9.7.11 to create the Taylor series
of the given functions.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1

(
x/2
)

29. f(x) = ex sin(x)(only find the first 4 terms) 30. f(x) = (1 + x)1/2 cos(x)(only find the first 4
terms)

Exercise Group. In the following exercises, approximate the value of the given definite integral by using the first 4
nonzero terms of the integrand’s Taylor series.

31.
∫ √

π

0

sin
(
x2
)
dx 32.

∫ 3
√
π

0

cos
(
x3
)
dx





Chapter 10

Curves in the Plane

We have explored functions of the form y = f(x) closely throughout this text.
We have explored their limits, their derivatives and their antiderivatives; we
have learned to identify key features of their graphs, such as relative maxima
andminima, inflection points and asymptotes; we have found equations of their
tangent lines, the areas between portions of their graphs and the x-axis, and the
volumes of solids generated by revolving portions of their graphs about a hori-
zontal or vertical axis.

Despite all this, the graphs created by functions of the form y = f(x) are
limited. Since each x-value can correspond to only 1 y-value, common shapes
like circles cannot be fully described by a function in this form. Fittingly, the
“vertical line test” excludes vertical lines from being functions of x, even though
these lines are important in mathematics.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
still workwithin the framework of functions, as an inputwill still only correspond
to one output. However, our new techniques of drawing curves will render the
vertical line test pointless, and allow us to create important — and beautiful —
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, continuing to find equations of tangent lines and the areas of enclosed
regions.

10.1 Conic Sections

The ancient Greeks recognized that interesting shapes can be formed by inter-
secting a plane with a double napped cone (i.e., two identical cones placed tip-
to-tip as shown in the following figures). As these shapes are formed as sections
of conics, they have earned the official name “conic sections.”

youtu.be/watch?v=NAPXAQHSgdk

Figure 10.1.1 Video introduction to
Section 10.1

The three “most interesting” conic sections are given in the top row of Fig-
ure 10.1.2. They are the parabola, the ellipse (which includes circles) and the
hyperbola. In each of these cases, the plane does not intersect the tips of the
cones (usually taken to be the origin).

549

https://www.youtube.com/watch?v=NAPXAQHSgdk
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(a) Parabola (b) Ellipse (c) Circle (d) Hyperbola

(e) Point (f) Line (g) Crossed Lines

Figure 10.1.2 Conic Sections
When the plane does contain the origin, three degenerate cones can be

formed as shown the bottom row of Figure 10.1.2: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuitive, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a function. It can be shown that
all conics can be defined by the general second-degree equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

While this algebraic definition has its uses, most find another geometric per-
spective of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
satisfy a certain distance property. These distance properties can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
function.

10.1.1 Parabolas
youtu.be/watch?v=tnyEnnE2AS8

Figure 10.1.3 Video introduction to
the parabola

Definition 10.1.4 Parabola.

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Directrix

Focus

Vertex

}
p}
p

(x, y)d

d

Ax
is
of

Sy
m
m
et
ry

Figure 10.1.5 Illustrating the defini-
tion of the parabola and establishing
an algebraic formula

Figure 10.1.5 illustrates this definition. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the portion of the parabola on one side of
this line is the mirror-image of the portion on the opposite side.

The definition leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d1 between F and P :

d1 =
√
(x− 0)2 + (y − p)2.

https://www.youtube.com/watch?v=tnyEnnE2AS8
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The distance d2 from P to the directrix is more straightforward:

d2 = y − (−p) = y + p.

These two distances are equal. Setting d1 = d2, we can solve for y in terms
of x:

d1 = d2√
x2 + (y − p)2 = y + p

Now square both sides.

x2 + (y − p)2 = (y + p)2

x2 + y2 − 2yp+ p2 = y2 + 2yp+ p2

x2 = 4yp

y =
1

4p
x2.

The geometric definition of the parabola has led us to the familiar quadratic
functionwhose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

Key Idea 10.1.6 General Equation of a Parabola.

1. Vertical Axis of Symmetry: The equation of the parabola with ver-
tex at (h, k) and directrix y = k − p in standard form is

y =
1

4p
(x− h)2 + k.

The focus is at (h, k + p).

2. Horizontal Axis of Symmetry: The equation of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
1

4p
(y − k)2 + h.

The focus is at (h+ p, k).

Note: p is not necessarily a positive number.

Example 10.1.7 Finding the equation of a parabola.

Give the equation of the parabola with focus at (1, 2) and directrix at
y = 3.
Solution. The vertex is located halfway between the focus and directrix,
so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 10.1.6 we have
the equation of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

−2 2 4

−6

−4

−2

2

x

y

Figure 10.1.8 The parabola described
in Example 10.1.7

The parabola is sketched in Figure 10.1.8.

Video solution

youtu.be/watch?v=dk8lrQac8Qg

https://www.youtube.com/watch?v=dk8lrQac8Qg
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Example 10.1.9 Finding the focus and directrix of a parabola.

Find the focus and directrix of the parabola x = 1
8y

2 − y+1. The point
(7, 12) lies on the graph of this parabola; verify that it is equidistant from
the focus and directrix.
Solution. We need to put the equation of the parabola in its general
form. This requires us to complete the square:

x =
1

8
y2 − y + 1

=
1

8

(
y2 − 8y + 8

)
=

1

8

(
y2 − 8y + 16− 16 + 8

)
=

1

8

(
(y − 4)2 − 8

)
=

1

8
(y − 4)2 − 1.

Hence the vertex is located at (−1, 4). We have 1
8 = 1

4p , so p = 2.
We conclude that the focus is located at (1, 4) and the directrix is x =
−3. The parabola is graphed in Figure 10.1.10, along with its focus and
directrix.

−10 −5 5 10

−5

5

10

10

10

x

y

Figure 10.1.10 The parabola de-
scribed in Example 10.1.9. The
distances from a point on the
parabola to the focus and directrix
are given.

The point (7, 12) lies on the graph and is 7− (−3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:√

(7− 1)2 + (12− 4)2 =
√
100 = 10.

Indeed, the point on the parabola is equidistant from the focus and di-
rectrix.

Video solution

youtu.be/watch?v=R8oJdTbZXh4

Reflective Property. One of the fascinating things about the nondegenerate
conic sections is their reflective properties. Parabolas have the following reflec-
tive property:

Any ray emanating from the focus that intersects the parabola re-
flects off along a line perpendicular to the directrix.

This is illustrated in Figure 10.1.11. The following theorem states this more rig-
orously.

Figure 10.1.11 Illustrating the
parabola’s reflective property

Theorem 10.1.12 Reflective Property of the Parabola.

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F , and

2. The line perpendicular to the directrix through P .

Because of this reflective property, paraboloids (the 3D analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effectively approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

https://www.youtube.com/watch?v=R8oJdTbZXh4
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10.1.2 Ellipses

youtu.be/watch?v=eAKfJphIwIE

Figure 10.1.13 Video introduction to
the ellipse

Definition 10.1.14 Ellipse.

An ellipse is the locus of all pointswhose sumof distances from twofixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil tight against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 10.1.15.

d1
d2

d1 + d2 = constant

Figure 10.1.15 Illustrating the con-
struction of an ellipse with pins, pen-
cil and string

We can again find an algebraic equation for an ellipse using this geometric
definition. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled asF1 = (−c, 0) andF2 = (c, 0). LetP = (x, y) be a point
on the ellipse. The sum of distances from F1 to P (d1) and from F2 to P (d2) is
a constant d. That is, d1 + d2 = d. Using the Distance Formula, we have√

(x+ c)2 + y2 +
√
(x− c)2 + y2 = d.

Using a fair amount of algebra can produce the following equation of an
ellipse (note that the equation is an implicitly defined function; it has to be, as
an ellipse fails the Vertical Line Test):

x2(
d
2

)2 +
y2(

d
2

)2 − c2
= 1.

This is not particularly illuminating, but by making the substitution a = d/2
and b =

√
a2 − c2, we can rewrite the above equation as

x2

a2
+

y2

b2
= 1.

This choice of a and b is not without reason; as shown in Figure 10.1.16, the
values of a and b have geometric meaning in the graph of the ellipse.

Major axis Minor axis

Vertices Foci

︸ ︷︷ ︸
a

︸ ︷︷ ︸
c

b



Figure 10.1.16 Labeling the signifi-
cant features of an ellipse

In general, the two foci of an ellipse lie on the major axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shifting of the ellipse gives the following standard equations.

Key Idea 10.1.17 Standard Equation of the Ellipse.

The equation of an ellipse centered at (h, k) with major axis of length
2a and minor axis of length 2b in standard form is:

1. Horizontal major axis:
(x− h)2

a2
+

(y − k)2

b2
= 1.

2. Vertical major axis:
(x− h)2

b2
+

(y − k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

https://www.youtube.com/watch?v=eAKfJphIwIE
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Example 10.1.18 Finding the equation of an ellipse.

Find the general equation of the ellipse graphed in Figure 10.1.19.

−6 −4 −2 2 4 6

−4

−2

2

4

6

x

y

Figure 10.1.19 The ellipse used in Ex-
ample 10.1.18

Solution. The center is located at (−3, 1). The distance from the center
to a vertex is 5 units, hence a = 5. The minor axis seems to have length
4, so b = 2. Thus the equation of the ellipse is

(x+ 3)2

4
+

(y − 1)2

25
= 1.

Video solution

youtu.be/watch?v=NVqlZCWDDnI

Example 10.1.20 Graphing an ellipse.

Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.
Solution. It is simple to graph an ellipse once it is in standard form. In
order to put the given equation in standard form, wemust complete the
square with both the x and y terms. We first rewrite the equation by
regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4

4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y + 4− 4) = −4

4
(
(x− 1)2 − 1

)
+ 9
(
(y − 2)2 − 4

)
= −4

4(x− 1)2 − 4 + 9(y − 2)2 − 36 = −4

4(x− 1)2 + 9(y − 2)2 = 36

(x− 1)2

9
+

(y − 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2;
the major axis is horizontal, so the vertices are located at (−2, 2) and
(4, 2). We find c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along

themajor axis, approximately 2.24 units from the center, at (1±2.24, 2).
This is all graphed in Figure 10.1.21

−2 −1 1 2 3 4

−1

1

2

3

4

x

y

Figure 10.1.21 Graphing the ellipse in
Example 10.1.20

Video solution

youtu.be/watch?v=U3uhopYrG8o

Eccentricity. When a = b, we have a circle. The general equation becomes

(x− h)2

a2
+

(y − k)2

a2
= 1 ⇒ (x− h)2 + (y − k)2 = a2,

the familiar equation of the circle centered at (h, k) with radius a. Since a = b,
c =

√
a2 − b2 = 0. The circle has “two” foci, but they lie on the same point, the

center of the circle.
Consider Figure 10.1.22, where several ellipses are graphed with a = 1. In

Figure 10.1.22(a), we have c = 0 and the ellipse is a circle. As c grows, the
resulting ellipses look less and less circular. A measure of this “noncircularness”
is eccentricity.

https://www.youtube.com/watch?v=NVqlZCWDDnI
https://www.youtube.com/watch?v=U3uhopYrG8o


10.1. CONIC SECTIONS 555
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Figure 10.1.22 Understanding the eccentricity of an ellipse

Definition 10.1.23 Eccentricity of an Ellipse.

The eccentricity e of an ellipse is e =
c

a
.

The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 10.1.22(d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are elliptical. Earth has an eccentricity of 0.0167— it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very
circular.

Reflective Property. The ellipse also possesses an interesting reflective prop-
erty. Any ray emanating from one focus of an ellipse reflects off the ellipse along
a line through the other focus, as illustrated in Figure 10.1.24. This property is
given formally in the following theorem.

F2F1

Figure 10.1.24 Illustrating the reflec-
tive property of an ellipse

Theorem 10.1.25 Reflective Property of an Ellipse.

Let P be a point on a ellipse with foci F1 and F2. The tangent line to the
ellipse at P makes equal angles with the following two lines:

1. The line through F1 and P , and
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2. The line through F2 and P .

This reflective property is useful in optics and is the basis of the phenomena
experienced in whispering halls.

10.1.3 Hyperbolas
youtu.be/watch?v=9aLDYQrTaBo

Figure 10.1.26 Video introduction to
hyperbolas

The definition of a hyperbola is very similar to the definition of an ellipse; we
essentially just change the word “sum” to “difference.”

Definition 10.1.27 Hyperbola.

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

We do not have a convenient way of visualizing the construction of a hyper-
bola as we did for the ellipse. The geometric definition does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of the
line segment joining the foci is the center of the hyperbola. The transverse axis
intersects the hyperbola at two points, each a vertex of the hyperbola. The line
through the center and perpendicular to the transverse axis is the conjugate axis.
This is illustrated in Figure 10.1.28. It is easy to show that the constant difference
of distances used in the definition of the hyperbola is the distance between the
vertices, i.e., 2a.

Transverse
axis

ax
is

Co
nj
ug
at
e

FociVertices

a︷︸︸︷ c︷ ︸︸ ︷

Figure 10.1.28 Labeling the signifi-
cant features of a hyperbola

Key Idea 10.1.29 Standard Equation of a Hyperbola.

The equation of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y − k)2

b2
= 1.

2. Vertical Transverse Axis:
(y − k)2

a2
− (x− h)2

b2
= 1.

The vertices are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas. Consider the hyperbola x2

9 − y2

1 = 1. Solving for y, we
find y = ±

√
x2/9− 1. As x grows large, the “−1” part of the equation for y

becomes less significant and y ≈ ±
√

x2/9 = ±x/3. That is, as x gets large, the
graph of the hyperbola looks very much like the lines y = ±x/3. These lines are
asymptotes of the hyperbola, as shown in Figure 10.1.30.

−8 −6 −4 −2 2 4 6 8

−2

2

x

y

Figure 10.1.30 Graphing the hyper-
bola x2

9 − y2

1 = 1 along with its as-
ymptotes, y = ±x/3

This is a valuable tool in sketching. Given the equation of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 10.1.31 for an example with a horizontal transverse axis.) The diagonals
of the rectangle lie on the asymptotes.

h− a h+ ah

k − b

k

k + b

x

y

Figure 10.1.31 Using the asymptotes
of a hyperbola as a graphing aid

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is vertical, their slopes are±a/b. This
gives equations:

https://www.youtube.com/watch?v=9aLDYQrTaBo
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Horizontal Transverse Axis Vertical Transverse Axis

y = ± b

a
(x− h) + k y = ±a

b
(x− h) + k.

Example 10.1.32 Graphing a hyperbola.

Sketch the hyperbola given by
(y − 2)2

25
− (x− 1)2

4
= 1.

Solution. The hyperbola is centered at (1, 2); a = 5 and b = 2. In Fig-
ure 10.1.33 we draw the prescribed rectangle centered at (1, 2) along
with the asymptotes defined by its diagonals. The hyperbola has a verti-
cal transverse axis, so the vertices are located at (1, 7) and (1,−3). This
is enough to make a good sketch.

−4 −2 2 4 6

−5

5

10

x

y

Figure 10.1.33 Graphing the hyper-
bola in Example 10.1.32

We also find the location of the foci: as c2 = a2 + b2, we have c =√
29 ≈ 5.4. Thus the foci are located at (1, 2 ± 5.4) as shown in the

figure.

Video solution

youtu.be/watch?v=0YVNci7ZOfo

Example 10.1.34 Graphing a hyperbola.

Sketch the hyperbola given by 9x2 − y2 + 2y = 10.
Solution. Wemust complete the square to put the equation in general
form. (We recognize this as a hyperbola since it is a general quadratic
equation and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10

9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y + 1− 1) = 10

9x2 −
(
(y − 1)2 − 1

)
= 10

9x2 − (y − 1)2 = 9

x2 − (y − 1)2

9
= 1

−4 −2 2 4

−10

−5

5

10

x

y

Figure 10.1.35 Graphing the hyper-
bola in Example 10.1.34

We see the hyperbola is centered at (0, 1), with a horizontal transverse
axis, where a = 1 and b = 3. The appropriate rectangle is sketched in
Figure 10.1.35 along with the asymptotes of the hyperbola. The vertices
are located at (±1, 1). We have c =

√
10 ≈ 3.2, so the foci are located

at (±3.2, 1) as shown in the figure.

Video solution

youtu.be/watch?v=b-1_3ATvn9A

Eccentricity.
Definition 10.1.36 Eccentricity of a Hyperbola.

The eccentricity of a hyperbola is e =
c

a
.

https://www.youtube.com/watch?v=0YVNci7ZOfo
https://www.youtube.com/watch?v=b-1_3ATvn9A
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Figure 10.1.37 Understanding the eccentricity of a hyperbola
Note that this is the definition of eccentricity as used for the ellipse. When

c is close in value to a (i.e., e ≈ 1), the hyperbola is very narrow (looking almost
like crossed lines). Figure 10.1.37 shows hyperbolas centered at the origin with
a = 1. The graph in Figure 10.1.37(a) has c = 1.05, giving an eccentricity of
e = 1.05, which is close to 1. As c grows larger, the hyperbola widens and
begins to look like parallel lines, as shown in Figure 10.1.37(d).

ReflectiveProperty. Hyperbolas share a similar reflectivepropertywith ellipses.
However, in the case of a hyperbola, a ray emanating from a focus that inter-
sects the hyperbola reflects along a line containing the other focus, but moving
away from that focus. This is illustrated in Figure 10.1.39 (on the next page).
Hyperbolic mirrors are commonly used in telescopes because of this reflective
property. It is stated formally in the following theorem.

Theorem 10.1.38 Reflective Property of Hyperbolas.

Let P be a point on a hyperbola with foci F1 and F2. The tangent line to
the hyperbola at P makes equal angles with the following two lines:

1. The line through F1 and P , and

2. The line through F2 and P .

LocationDetermination. Determining the location of a known event hasmany
practical uses (locating the epicenter of an earthquake, an airplane crash site,
the position of the person speaking in a large room, etc.).

To determine the location of an earthquake’s epicenter, seismologists use



10.1. CONIC SECTIONS 559

trilateration (not to be confused with triangulation). A seismograph allows one
to determine how far away the epicenter was; using three separate readings,
the location of the epicenter can be approximated.

A key to this method is knowing distances. What if this information is not
available? Consider threemicrophones at positionsA,B andC which all record
a noise (a person’s voice, an explosion, etc.) created at unknown location D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the location be determined in such a situation? F2F1

Figure 10.1.39 Illustrating the reflec-
tive property of a hyperbola

If each location has a clock set to the same time, hyperbolas can be used
to determine the location. Suppose the microphone at position A records the
sound at exactly 12:00, location B records the time exactly 1 second later, and
location C records the noise exactly 2 seconds after that. We are interested
in the difference of times. Since the speed of sound is approximately 340 m/
s, we can conclude quickly that the sound was created 340 meters closer to
positionA than positionB. IfA andB are a known distance apart (as shown in
Figure 10.1.40(a)), then we can determine a hyperbola on whichD must lie.

The “difference of distances” is 340; this is also the distance between vertices
of the hyperbola. So we know 2a = 340. Positions A and B lie on the foci, so
2c = 1000. From this we can find b ≈ 470 and can sketch the hyperbola, given
in Figure 10.1.40(b). We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by positions B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get to C. We still have
2c = 1000, centering this hyperbola at (−500, 500). We find b ≈ 367. This
hyperbola is sketched in Figure 10.1.40(c). The intersection point of the two
graphs is the location of the sound, at approximately (188,−222.5).
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Figure 10.1.40
This chapter explores curves in the plane, in particular curves that cannot

be described by functions of the form y = f(x). In this section, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
sections, we will learn completely new ways of describing curves in the plane,
using parametric equations and polar coordinates, then study these curves using
calculus techniques.



560 CHAPTER 10. CURVES IN THE PLANE

10.1.4 Exercises

Terms and Concepts

1. What is the difference between degenerate and nondegenerate conics?
2. Use your own words to explain what the eccentricity of an ellipse measures.
3. What has the largest eccentricity: an ellipse or a hyperbola?

4. Explain why the following is true: “If the coefficient of the x2 term in the equation of an ellipse in standard form
is smaller than the coefficient of the y2 term, then the ellipse has a horizontal major axis.”

5. Explain how one can quickly look at the equation of a hyperbola in standard form and determine whether the
transverse axis is horizontal or vertical.

6. Fill in the blank: It can be said that ellipses and hyperbolas share the same reflective property: “A ray emanating
from one focus will reflect off the conic along a that contains the other focus.”

Problems

Exercise Group. In the following exercises, find the equation of the parabola defined by the given information. Sketch
the parabola.

7. Focus: (3, 2); directrix: y = 1 8. Focus: (−1,−4); directrix: y = 2

9. Focus: (1, 5); directrix: x = 3 10. Focus: (1/4, 0); directrix: x = −1/4

11. Focus: (1, 1); vertex: (1, 2) 12. Focus: (−3, 0); vertex: (0, 0)
13. Vertex: (0, 0); directrix: y = −1/16 14. Vertex: (2, 3); directrix: x = 4

Exercise Group. In the following exercises, the equation of a parabola and a point on its graph are given. Find the
focus and directrix of the parabola, and verify that the given point is equidistant from the focus and directrix.

15. y = 1
4x

2, P = (2, 1) 16. x = 1
8 (y − 2)2 + 3, P = (11, 10)

Exercise Group. In the following exercises, sketch the ellipse defined by the given equation. Label the center, foci
and vertices.

17.
(x− 1)2

3
+

(y − 2)2

5
= 1 18.

1

25
x2 +

1

9
(y + 3)2 = 1

Exercise Group. In the following exercises, find the equation of the ellipse shown in the graph. Give the location of
the foci and the eccentricity of the ellipse.

19.

−4 −2 2

2

4

x

y
20.

−1 −0.5 0.5 1 1.5 2

−2

2

x

y

Exercise Group. In the following exercises, find the equation of the ellipse defined by the given information. Sketch
the elllipse.
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21. Foci: (±2, 0); vertices: (±3, 0) 22. Foci: (−1, 3) and (5, 3); vertices: (−3, 3) and
(7, 3)

23. Foci: (2,±2); vertices: (2,±7) 24. Focus: (−1, 5); vertex: (−1,−4); center:
(−1, 1)

Exercise Group. In the following exercises, write the equation of the given ellipse in standard form.
25. x2 − 2x+ 2y2 − 8y = −7 26. 5x2 + 3y2 = 15

27. 3x2 + 2y2 − 12y + 6 = 0 28. x2 + y2 − 4x− 4y + 4 = 0

Exercise Group. In the following exercises, find the equation of the hyperbola shown in the graph.
29.

−1 1 2−2

−2

2

x

y
30.

−8 −6 −4 −2 2 4 6 8

−6

−4

−2

2

4

6

x

y

31.

−4 −2 2 4 6

2

4

6

x

y
32.

−4 −2 2 4 6

2

4

6

x

y

Exercise Group. In the following exercises, sketch the hyperbola defined by the given equation. Label the center and
foci.

33.
(x− 1)2

16
− (y + 2)2

9
= 1 34. (y − 4)2 − (x+ 1)2

25
= 1

Exercise Group. In the following exercises, find the equation of the hyperbola defined by the given information.
Sketch the hyperbola.

35. Foci: (±3, 0); vertices: (±2, 0) 36. Foci: (0,±3); vertices: (0,±2)

37. Foci: (−2, 3) and (8, 3); vertices: (−1, 3) and
(7, 3)

38. Foci: (3,−2) and (3, 8); vertices: (3, 0) and
(3, 6)

Exercise Group. In the following exercises, write the equation of the hyperbola in standard form.
39. 3x2 − 4y2 = 12 40. 3x2 − y2 + 2y = 10
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41. x2 − 10y2 + 40y = 30 42. (4y − x)(4y + x) = 4

43. Consider the ellipse given by
(x− 1)2

4
+

(y − 3)2

12
= 1.

(a) Verify that the foci are located at (1, 3± 2
√
2).

(b) The points P1 = (2, 6) and P2 = (1 +
√
2, 3 +

√
6) ≈ (2.414, 5.449) lie on the ellipse. Verify that the

sum of distances from each point to the foci is the same.
44. Johannes Kepler discovered that the planets of our solar system have elliptical orbits with the Sun at one focus.

The Earth’s elliptical orbit is used as a standard unit of distance; the distance from the center of Earth’s elliptical
orbit to one vertex is 1 Astronomical Unit, or A.U.

The following table gives information about the orbits of three planets.

Planet Distance from
center to vertex

Orbit
eccentricity

Mercury 0.387 A.U. 0.2056

Earth 1 A.U. 0.0167

Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing c2 = a2−b2 and e = c/a allows us to find b in terms of a and e. Show b = a
√
1− e2.

(b) For each planet, find equations of their elliptical orbit of the form
x2

a2
+

y2

b2
= 1. (This places the center

at (0, 0), but the Sun is in a different location for each planet.)

(c) Shift the equations so that the Sun lies at the origin. Plot the three elliptical orbits.
45. A loud sound is recorded at three stations that lie on a line as shown in the figure below. Station A recorded

the sound 1 second after Station B, and Station C recorded the sound 3 seconds after B. Using the speed of
sound as 340m/s, determine the location of the sound’s origination.

A

1000m
B

2000m
C



10.2. PARAMETRIC EQUATIONS 563

10.2 Parametric Equations

youtu.be/watch?v=ktYtHfYoWi4

Figure 10.2.1 Video introduction to
Section 10.2

We are familiar with sketching shapes, such as parabolas, by following this
basic procedure:

Choose x Use a function f to find y
(
y = f(x)

)
Plot point (x, y)

Figure 10.2.2 Plotting a graph y = f(x)

The rectangular equation y = f(x)workswell for some shapes like a parabola
with a vertical axis of symmetry, but in the previous section we encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bottom” separately.)

In this section we introduce a new sketching procedure:

Choose t

Use a function f to find x
(
x = f(t)

)

Use a function g to find y
(
y = g(t)

)Plot point (x, y)

Figure 10.2.3 Plotting a curve
(x(t), y(t))

Here, x and y are found separately but then plotted together: for each value
of the input t, we plot the output - the point (x(t), y(t)).

10.2.1 Plotting parametric curves
The procedure outlined in Figure 10.2.3 leads us to a definition.

Definition 10.2.4 Parametric Equations and Curves.

Let f and g be continuous functions on an interval I . The set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I , is the

graph of the parametric equations x = f(t) and y = g(t), where t is
the parameter. A curve is a graph along with the parametric equations
that define it.

This is a formal definition of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is often referred to as a plane curve. Examples
will help us understand the concepts introduced in the definition.

Example 10.2.5 Plotting parametric functions.

Plot the graph of the parametric equations x = t2, y = t + 1 for t in
[−2, 2].
Solution. Weplot the graphs of parametric equations inmuch the same
manner as we plotted graphs of functions like y = f(x): we make a ta-
ble of values, plot points, then connect these points with a “reasonable”
looking curve. Figure 10.2.6(a) shows such a table of values; note how
we have 3 columns.
The points (x, y) from the table are plotted in Figure 10.2.6(b). The
points have been connected with a smooth curve. Each point has been
labeled with its corresponding t-value. These values, along with the two
arrows along the curve, are used to indicate the orientation of the graph.
This information helps us determine the direction in which the graph is
“moving.”

https://www.youtube.com/watch?v=ktYtHfYoWi4
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t x y
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Figure 10.2.6 A table of values of the parametric equations in Exam-
ple 10.2.5 along with a sketch of their graph

Video solution

youtu.be/watch?v=7Ytw9RTrFtM

We often use the letter t as the parameter as we often regard t as represent-
ing time. Certainly there are many contexts in which the parameter is not time,
but it can be helpful to think in terms of time as one makes sense of parametric
plots and their orientation (for instance, “At time t = 0 the position is (1, 2) and
at time t = 3 the position is (5, 1).”).

Example 10.2.7 Plotting parametric functions.

Sketch the graphof the parametric equationsx = cos2(t), y = cos(t)+1
for t in [0, π].
Solution. We again start by making a table of values in Figure 10.2.8(a),
then plot the points (x, y) on the Cartesian plane in Figure 10.2.8(b).

t x y

0 1 2

π/4 1/2 1 +
√
2/2

π/2 0 1

3π/4 1/2 1−
√
2/2

π 1 0

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2 t = 0

t = π/4

t = π/2

t = 3π/4

t = π x

y

(b)

Figure 10.2.8 A table of values of the parametric equations in Exam-
ple 10.2.7 along with a sketch of their graph
It is not difficult to show that the curves in Examples 10.2.5 and 10.2.7
are portions of the same parabola. While the parabola is the same, the
curves are different. In Example 10.2.5, if we let t vary over all real num-
bers, we’d obtain the entire parabola. In this example, letting t vary over
all real numbers would still produce the same graph; this portion of the
parabola would be traced, and re-traced, infinitely many times. The ori-
entation shown in Figure 10.2.8 shows the orientation on [0, π], but this
orientation is reversed on [π, 2π].
These examples begin to illustrate the powerful nature of parametric
equations. Their graphs are far more diverse than the graphs of func-
tions produced by “y = f(x)” functions.

https://www.youtube.com/watch?v=7Ytw9RTrFtM
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Technology Note: Most graphing utilities can graph functions given in para-
metric form. Often the word “parametric” is abbreviated as “PAR” or “PARAM”
in the options. The user usually needs to determine the graphing window (i.e,
the minimum andmaximum x- and y-values), along with the values of t that are
to be plotted. The user is often prompted to give a t minimum, a t maximum,
and a “t-step” or “∆t.” Graphing utilities effectively plot parametric functions
just as we’ve shown here: they plots lots of points. A smaller t-step plots more
points, making for a smoother graph (but may take longer). In Figure 10.2.6, the
t-step is 1; in Figure 10.2.8, the t-step is π/4.

One nice feature of parametric equations is that their graphs are easy to shift.
While this is not too difficult in the “y = f(x)” context, the resulting function
can look rather messy. (Plus, to shift to the right by two, we replace xwith x−2,
which is counter-intuitive.) The following example demonstrates this.

Example 10.2.9 Shifting the graph of parametric functions.

Sketch the graph of the parametric equations x = t2 + t, y = t2 − t.
Find new parametric equations that shift this graph to the right 3 places
and down 2.
Solution. The graph of the parametric equations is given in Fig-
ure 10.2.10(a). It is a parabola with a axis of symmetry along the line
y = x; the vertex is at (0, 0).
In order to shift the graph to the right 3 units, we need to increase the
x-value by 3 for every point. The straightforward way to accomplish this
is simply to add 3 to the function defining x: x = t2 + t + 3. To shift
the graph down by 2 units, we wish to decrease each y-value by 2, so
we subtract 2 from the function defining y: y = t2 − t − 2. Thus our
parametric equations for the shifted graph are x = t2 + t + 3, y =
t2 − t− 2. This is graphed in Figure 10.2.10(a). Notice how the vertex is
now at (3,−2).
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Figure 10.2.10 Illustrating how to shift graphs in Example 10.2.9

Because the x- and y-values of a graph are determined independently, the
graphs of parametric functions often possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 10.2.11 Graphs that cross themselves.

Plot the parametric functions x = t3−5t2+3t+11 and y = t2−2t+3
and determine the t-values where the graph crosses itself.
Solution. Using the methods developed in this section, we again plot
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points and graph the parametric equations as shown in Figure 10.2.12.
It appears that the graph crosses itself at the point (2, 6), but we’ll need
to analytically determine this.

−5 5 10 15

5

10

15 x = t3 − 5t2 + 3t+ 11
y = t2 − 2t+ 3

x

y

Figure 10.2.12 A graph of the
parametric equations from Exam-
ple 10.2.11

We are looking for two different values, say, s and t, where x(s) = x(t)
and y(s) = y(t). That is, the x-values are the same precisely when
the y-values are the same. This gives us a system of 2 equations with 2
unknowns:

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11

s2 − 2s+ 3 = t2 − 2t+ 3

Solving this system is not trivial but involves only algebra. Using the qua-
dratic formula, one can solve for t in the second equation and find that
t = 1 ±

√
s2 − 2s+ 1. This can be substituted into the first equation,

revealing that the graph crosses itself at t = −1 and t = 3. We confirm
our result by computing x(−1) = x(3) = 2 and y(−1) = y(3) = 6.

10.2.2 Convertingbetween rectangular andparametric equations
It is sometimes useful to rewrite equations in rectangular form (i.e., y = f(x))
into parametric form, and vice-versa. Converting from rectangular to parametric
can be very simple: given y = f(x), the parametric equations x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equa-
tions x = t, y = t2 produce the familiar parabola. However, other parametriza-
tions can be used. The following example demonstrates one possible alterna-
tive.

Example 10.2.13 Converting from rectangular to parametric.

Consider y = x2. Find parametric equations x = f(t), y = g(t) for the
parabola where t = dy

dx . That is, t = a corresponds to the point on the
graph whose tangent line has slope a.
Solution. We start by computing dy

dx : y
′ = 2x. Thus we set t = 2x.

We can solve for x and find x = t/2. Knowing that y = x2, we have
y = t2/4. Thus parametric equations for the parabola y = x2 are

x = t/2y = t2/4.

To find the pointwhere the tangent line has a slope of−2, we set t = −2.
This gives the point (−1, 1). We can verify that the slope of the line
tangent to the curve at this point indeed has a slope of−2.

Video solution

youtu.be/watch?v=YsOEEcCXNb8

We sometimes choose the parameter to accurately model physical behavior.

Example 10.2.14 Converting from rectangular to parametric.

An object is fired from a height of 0 feet and lands 6 seconds later, 192
feet away. Assuming ideal projectile motion, the height, in feet, of the
object can be described byh(x) = −x2/64+3x, wherex is the distance
in feet from the initial location. (Thus h(0) = h(192) = 0 feet.) Find
parametric equations x = f(t), y = g(t) for the path of the projectile
where x is the horizontal distance the object has traveled at time t (in

https://www.youtube.com/watch?v=YsOEEcCXNb8
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seconds) and y is the height at time t.
Solution. Physics tells us that the horizontal motion of the projectile is
linear; that is, the horizontal speedof the projectile is constant. Since the
object travels 192 ft in 6 s, we deduce that the object is moving horizon-
tally at a rate of 32 ft

s , giving the equation x = 32t. As y = −x2/64+3x,
we find y = −16t2 + 96t. We can quickly verify that y′′ = −32 ft

ft2 , the
acceleration due to gravity, and that the projectile reaches its maximum
at t = 3, halfway along its path.
These parametric equations make certain determinations about the ob-
ject’s location easy: 2 seconds into the flight the object is at the point(
x(2), y(2)

)
=
(
64, 128

)
. That is, it has traveled horizontally 64 ft and

is at a height of 128 ft, as shown in Figure 10.2.15.
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y = −16t2 + 96t
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Figure 10.2.15 Graphing projectile
motion in Example 10.2.14

It is sometimes necessary to convert given parametric equations into rec-
tangular form. This can be decidedly more difficult, as some “simple” looking
parametric equations can have very “complicated” rectangular equations. This
conversion is often referred to as “eliminating the parameter,” as we are looking
for a relationship between x and y that does not involve the parameter t.

Example 10.2.16 Eliminating the parameter.

Find a rectangular equation for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

Solution. There is not a set way to eliminate a parameter. One method
is to solve for t in one equation and then substitute that value in the sec-
ond. We use that technique here, then show a second, simpler method.
Starting with x = 1/(t2 + 1), solve for t: t = ±

√
1/x− 1. Substitute

this value for t in the equation for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1 + 1

=
1/x− 1

1/x

=

(
1

x
− 1

)
· x

= 1− x.
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t2 + 1

y = 1− x
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Figure 10.2.17 Graphing parametric
and rectangular equations for a graph
in Example 10.2.16

Thus y = 1 − x. One may have recognized this earlier by manipulating
the equation for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

This is a shortcut that is very specific to this problem; sometimes short-
cuts exist and are worth looking for.
We should be careful to limit the domain of the function y = 1 − x.
The parametric equations limit x to values in (0, 1], thus to produce the
same graph we should limit the domain of y = 1− x to the same.
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The graphs of these functions is given in Figure 10.2.17. The portion of
the graph defined by the parametric equations is given in a thick line;
the graph defined by y = 1 − x with unrestricted domain is given in a
thin line.

Video solution

youtu.be/watch?v=8Vgv74zCWFQ

Example 10.2.18 Eliminating the parameter.

Eliminate the parameter in x = 4 cos(t) + 3, y = 2 sin(t) + 1

Solution. Weshould not try to solve for t in this situation as the resulting
algebra/trig would be messy. Rather, we solve for cos(t) and sin(t) in
each equation, respectively. This gives

cos(t) =
x− 3

4
and sin(t) =

y − 1

2
.

The Pythagorean Theorem gives cos2(t) + sin2(t) = 1, so:

cos2(t) + sin2(t) = 1(
x− 3

4

)2

+

(
y − 1

2

)2

= 1

(x− 3)2

16
+

(y − 1)2

4
= 1
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4
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y

Figure 10.2.19 Graphing the paramet-
ric equations x = 4 cos(t) + 3, y =
2 sin(t) + 1 in Example 10.2.18

This final equation should look familiar — it is the equation of an ellipse!
Figure 10.2.19 plots the parametric equations, demonstrating that the
graph is indeed of an ellipse with a horizontal major axis and center at
(3, 1).

Video solution

youtu.be/watch?v=RYkPHhpgnas

The Pythagorean Theorem can also be used to identify parametric equations
for hyperbolas. We give the parametric equations for ellipses and hyperbolas in
the following Key Idea.

Key Idea 10.2.20 Parametric Equations of Ellipses and Hyperbolas.

• The parametric equations

x = a cos(t) + h, y = b sin(t) + k

define an ellipse with horizontal axis of length 2a and vertical axis
of length 2b, centered at (h, k).

• The parametric equations

x = a tan(t) + h, y = ±b sec(t) + k

define a hyperbola with vertical transverse axis centered at (h, k),
and

x = ±a sec(t) + h, y = b tan(t) + k

defines a hyperbola with horizontal transverse axis. Each has as-
ymptotes at y = ±b/a(x− h) + k.

https://www.youtube.com/watch?v=8Vgv74zCWFQ
https://www.youtube.com/watch?v=RYkPHhpgnas
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10.2.3 Special Curves
Figure 10.2.21 gives a small gallery of “interesting” and “famous” curves along
with parametric equations that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
functions are not differentiable at these points. This leads us to a definition.
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(a) Astroid where x = cos3(t) and
y = sin3(t)
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−1

1

x

y

(b) Rose Curve where x =
cos(t) sin(4t) and y = sin(t) sin(4t)
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(c) Hypotrochoid where
x = 2 cos(t) + 5 cos(2t/3) and
y = 2 sin(t)− 5 sin(2t/3)
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y

(d) Epicycloid where x = 4 cos(t) −
cos(4t) and y = 4 sin(t)− sin(4t)

Figure 10.2.21 A gallery of interesting planar curves

Definition 10.2.22 Smooth.

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if
f ′ and g′ are continuous on I and not simultaneously 0 (except possibly
at the endpoints of I). A curve is piecewise smooth on I if I can be
partitioned into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cos3(t), y = sin3(t). Taking derivatives,
we have:

x′ = −3 cos2(t) sin(t) and y′ = 3 sin2(t) cos(t).

It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not
smooth at these points, corresponding to the cusps seen in the figure.

We demonstrate this once more.
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Example 10.2.23 Determine where a curve is not smooth.

Let a curveC be defined by the parametric equations x = t3− 12t+17
and y = t2−4t+8. Determine the points, if any, where it is not smooth.
Solution. We begin by taking derivatives.

x′ = 3t2 − 12, y′ = 2t− 4.

We set each equal to 0:

x′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2

y′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We see at t = 2 both x′ and y′ are 0; thus C is not smooth at t = 2,
corresponding to the point (1, 4). The curve is graphed in Figure 10.2.24,
illustrating the cusp at (1, 4).
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Figure 10.2.24 Graphing the curve
in Example 10.2.23; note it is not
smooth at (1, 4)

Video solution

youtu.be/watch?v=rqhh0McArDM

If a curve is not smooth at t = t0, it means that x′(t0) = y′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equations describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direction, whereas moving objects tend to change
direction in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6

produce the familiar y = x2 parabola. However, in this parametrization, the
curve is not smooth. A particle traveling along the parabola according to the
given parametric equations comes to rest at t = 0, though no sharp point is
created.

Our previous experience with cusps taught us that a function was not differ-
entiable at a cusp. This can lead us to wonder about derivatives in the context
of parametric equations and the application of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec-
tion.

https://www.youtube.com/watch?v=rqhh0McArDM
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10.2.4 Exercises

Terms and Concepts

1. True or False? When sketching the graph of parametric equations, the x- and y-values are found separately,
then plotted together. (□ True □ False)

2. The direction in which a graph is “moving” is called the of the graph.

3. An equation written as y = f(x) is written in form.

4. Create parametric equations x = f(t), y = g(t) and sketch their graph. Explain any interesting features of your
graph based on the functions f and g.

Problems

Exercise Group. In the following exercises, sketch the graph of the given parametric equations by hand, making a
table of points to plot. Be sure to indicate the orientation of the graph.

5. x = t2 + t,y = 1− t2,−3 ≤ t ≤ 3 6. x = 1,y = 5 sin(t),−π/2 ≤ t ≤ π/2

7. x = t2,y = 2,−2 ≤ t ≤ 2 8. x = t3 − t+ 3,y = t2 + 1,−2 ≤ t ≤ 2

Exercise Group. In the following exercises, sketch the graph of the given parametric equations; using a graphing
utility is advisable. Be sure to indicate the orientation of the graph.

9. x = t3 − 2t2,y = t2,−2 ≤ t ≤ 3 10. x = 1/t,y = sin(t),0 < t ≤ 10

11. x = 3 cos(t),y = 5 sin(t),0 ≤ t ≤ 2π 12. x = 3 cos(t) + 2,y = 5 sin(t) + 3,0 ≤ t ≤ 2π

13. x = cos(t),y = cos(2t),0 ≤ t ≤ π 14. x = cos(t),y = sin(2t),0 ≤ t ≤ 2π

15. x = 2 sec(t),y = 3 tan(t),−π/2 < t < π/2 16. x = cosh(t),y = sinh(t),−2 ≤ t ≤ 2

17. x = cos(t) + 1
4 cos(8t),y =

sin(t) + 1
4 sin(8t),0 ≤ t ≤ 2π

18. x = cos(t) + 1
4 sin(8t),y =

sin(t) + 1
4 cos(8t),0 ≤ t ≤ 2π

Exercise Group. In the following exercises, four sets of parametric equations are given. Describe how their graphs
are similar and different. Be sure to discuss orientation and ranges.

19.

(a) x = t y = t2,−∞ < t < ∞

(b) x = sin(t) y = sin2(t),−∞ < t < ∞

(c) x = et y = e2t,−∞ < t < ∞

(d) x = −t y = t2,−∞ < t < ∞

20.

(a) x = cos(t) y = sin(t), 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos(t)) y = sin(cos(t)),
0 ≤ t ≤ 2π

Exercise Group. Eliminate the parameter in the given parametric equations.
21. x = 2t+ 5, y = −3t+ 1 22. x = sec(t), y = tan(t)
23. x = 4 sin(t) + 1, y = 3 cos(t)− 2 24. x = t2, y = t3

25. x = 1
t+1 , y = 3t+5

t+1 26. x = et, y = e3t − 3

27. x = ln(t), y = t2 − 1 28. x = cot(t), y = csc(t)

29. x = cosh(t), y = sinh(t) 30. x = cos(2t), y = sin(t)

Exercise Group. In the following exercises, eliminate the parameter in the given parametric equations. Describe the
curve defined by the parametric equations based on its rectangular form.

31. x = at+ x0, y = bt+ y0 32. x = r cos(t), y = r sin(t)
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33. x = a cos(t) + h, y = b sin(t) + k 34. x = a sec(t) + h, y = b tan(t) + k

Exercise Group. In the following exercises, find parametric equations for the given rectangular equation using the

parameter t =
dy

dx
. Verify that at t = 1, the point on the graph has a tangent line with slope of 1.

35. y = 3x2 − 11x+ 2 36. y = ex

37. y = sin(x) 38. y =
√
x on [0,∞)

Exercise Group. In the following exercises, find the values of t where the graph of the parametric equations crosses
itself.

39. x = t3 − t+ 3, y = t2 − 3 40. x = t3 − 4t2 + t+ 7,y = t2 − t

41. x = cos(t),y = sin(2t) on [0, 2π] 42. x = cos(t) cos(3t),y = sin(t) cos(3t) on [0, π]

Exercise Group. In the following exercises, find the value(s) of twhere the curve defined by the parametric equations
is not smooth.

43. x = t3 + t2 − t,y = t2 + 2t+ 3 44. x = t2 − 4t, y = t3 − 2t2 − 4t

45. x = cos(t),y = 2 cos(t) 46. x = 2 cos(t)− cos(2t), y = 2 sin(t)− sin(2t)

Exercise Group. Find parametric equations that describe the given situation.
47. A projectile is fired from a height of 0 ft, landing

16 ft away in 4 s.
48. A projectile is fired from a height of 0 ft, landing

200 ft away in 4 s.
49. A projectile is fired from a height of 0 ft, landing

200 ft away in 20 s.
50. Find parametric equations that describe a circle

of radius 2, centered at the origin, that is traced
clockwise once at constant speed on [0, 2π].

51. Find parametric equations that describe a circle
of radius 3, centered at (1, 1), that is traced
once counter-clockwise at constant speed on
[0, 1].

52. Find parametric equations that describe an
ellipse centered at (1, 3), with vertical major
axis of length 6 and minor axis of length 2.

53. An ellipse with foci at (±1, 0) and vertices at
(±5, 0).

54. A hyperbola with foci at (5,−3) and (−1,−3),
and with vertices at (1,−3) and (3,−3).

55. A hyperbola with vertices at (0,±6) and
asymptotes y = ±3x.
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10.3 Calculus and Parametric Equations

The previous section defined curves based on parametric equations. In this sec-
tion we’ll employ the techniques of calculus to study these curves.

We are still interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximations, and they indicate instantaneous direction of travel.

youtu.be/watch?v=FIvX66HAaj8

Figure 10.3.1 Video introduction to
Section 10.3

The slope of the tangent line is still dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equations. If x = f(t) and y = g(t), the
Chain Rule states that

dy

dt
=

dy

dx
· dx
dt
.

Solving for dy
dx , we get

dy

dx
=

dy

dt

/
dx

dt
=

g′(t)

f ′(t)
,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

Key Idea 10.3.2 Finding dy
dx with Parametric Equations.

Let x = f(t) and y = g(t), where f and g are differentiable on some
open interval I and f ′(t) ̸= 0 on I . Then

dy

dx
=

g′(t)

f ′(t)
.

We use this to define the tangent line.

Definition 10.3.3 Tangent and Normal Lines.

Let a curve C be parametrized by x = f(t) and y = g(t), where f and
g are differentiable functions on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through

(
f(t0), g(t0)

)
with slope

m = g′(t0)/f
′(t0), provided f ′(t0) ̸= 0.

The normal line to C at t = t0 is the line through
(
f(t0), g(t0)

)
with

slopem = −f ′(t0)/g
′(t0), provided g′(t0) ̸= 0.

The definition leaves two special cases to consider. When the tangent line
is horizontal, the normal line is undefined by the above definition as g′(t0) = 0.
Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definition.

1. If the tangent line at t = t0 has a slope of 0, the normal line toC at t = t0
is the line x = f(t0).

2. If the normal line at t = t0 has a slope of 0, the tangent line toC at t = t0
is the line x = f(t0).

Example 10.3.4 Tangent and Normal Lines to Curves.

Let x = 5t2−6t+4 and y = t2+6t−1, and letC be the curve defined
by these equations.

1. Find the equations of the tangent and normal lines to C at t = 3.

https://www.youtube.com/watch?v=FIvX66HAaj8


574 CHAPTER 10. CURVES IN THE PLANE

2. Find where C has vertical and horizontal tangent lines.

Solution.

1. We start by computing f ′(t) = 10t− 6 and g′(t) = 2t+ 6. Thus

dy

dx
=

2t+ 6

10t− 6
.

Make note of something thatmight seemunusual: dy
dx is a function

of t, not x. Just as points on the curve are found in terms of t, so
are the slopes of the tangent lines. The point on C at t = 3 is
(31, 26). The slope of the tangent line ism = 1/2 and the slope
of the normal line ism = −2. Thus,

• the equation of the tangent line is y =
1

2
(x− 31) + 26, and

• the equation of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 10.3.5.
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Figure 10.3.5 Graphing tangent and
normal lines in Example 10.3.4

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and

solve for t. In this case, this amounts to setting g′(t) = 0 and
solving for t (and making sure that f ′(t) ̸= 0).

g′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point onC corresponding to t = −3 is (67,−10); the tangent
line at that point is horizontal (hence with equation y = −10).
To find where C has a vertical tangent line, we find where it has
a horizontal normal line, and set − f ′(t)

g′(t) = 0. This amounts to
setting f ′(t) = 0 and solving for t (and making sure that g′(t) ̸=
0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tan-
gent line at that point is x = 2.2. The points where the tangent
lines are vertical and horizontal are indicated on the graph in Fig-
ure 10.3.5.

Video solution

youtu.be/watch?v=A62eUDxiOw4

Example 10.3.6 Tangent and Normal Lines to a Circle.

1. Find where the unit circle, defined by x = cos(t) and y = sin(t)
on [0, 2π], has vertical and horizontal tangent lines.

2. Find the equation of the normal line at t = t0.

Solution.

1. We compute the derivative following Key Idea 10.3.2:

dy

dx
=

g′(t)

f ′(t)
= −cos(t)

sin(t)
.

The derivative is 0 when cos(t) = 0; that is, when t = π/2, 3π/2.
These are the points (0, 1) and (0,−1) on the circle. The normal

https://www.youtube.com/watch?v=A62eUDxiOw4
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line is horizontal (and hence, the tangent line is vertical) when
sin(t) = 0; that is, when t = 0, π, 2π, corresponding to the
points (−1, 0) and (0, 1) on the circle. These results should make
intuitive sense.

2. The slope of the normal line at t = t0 ism =
sin(t0)
cos(t0)

= tan(t0).

This normal line goes through the point (cos(t0), sin(t0)), giving
the line

y =
sin(t0)
cos(t0)

(x− cos(t0)) + sin(t0)

= (tan(t0))x,

as long as cos(t0) ̸= 0. It is an important fact to recognize that
the normal lines to a circle pass through its center, as illustrated in
Figure 10.3.7. Stated in another way, any line that passes through
the center of a circle intersects the circle at right angles.

−1 −0.5 0.5 1

−1

1

x

y

Figure 10.3.7 Illustrating how a cir-
cle’s normal lines pass through its cen-
ter

Video solution

youtu.be/watch?v=PpmsaMVJAZI

Example 10.3.8 Tangent lines when dy
dx is not defined.

Find the equation of the tangent line to the astroid x = cos3(t), y =
sin3(t) at t = 0, shown in Figure 10.3.9.
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Figure 10.3.9 A graph of an astroid

Solution. We start by finding x′(t) and y′(t):

x′(t) = −3 sin(t) cos2(t), y′(t) = 3 cos(t) sin2(t).

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0
forming a cusp on the graph. Evaluating dy

dx at this point returns the
indeterminate form of “0/0”.
We can, however, examine the slopes of tangent lines near t = 0, and
take the limit as t → 0.

lim
t→0

y′(t)

x′(t)
= lim

t→0

3 cos(t) sin2(t)
−3 sin(t) cos2(t)

(We can cancel as t ̸= 0.)

= lim
t→0

− sin(t)
cos(t)

= 0.

We have accomplished something significant. When the derivative dy
dx

returns an indeterminate form at t = t0, we can define its value by set-
ting it to be lim

t→t0

dy
dx , if that limit exists. This allows us to find slopes of

tangent lines at cusps, which can be very beneficial.
We found the slope of the tangent line at t = 0 to be 0; therefore the
tangent line is y = 0, the x-axis.

Video solution

youtu.be/watch?v=rb4wEkhcUtE

10.3.1 Concavity
We continue to analyze curves in the plane by considering their concavity; that
is, we are interested in d2y

dx2 , “the second derivative of y with respect to x.” To

https://www.youtube.com/watch?v=PpmsaMVJAZI
https://www.youtube.com/watch?v=rb4wEkhcUtE
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find this, we need to find the derivative of dy
dx with respect to x; that is,

d2y

dx2
=

d

dx

[
dy

dx

]
,

but recall that dy
dx is a function of t, not x, making this computation not straight-

forward.
To make the upcoming notation a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh

dt
=

dh

dx
· dx
dt

⇒ dh

dx
=

dh

dt

/
dx

dt
.

In words, to find d2y
dx2 , we first take the derivative of dy

dx with respect to t, then
divide by x′(t). We restate this as a Key Idea.

Key Idea 10.3.10 Finding d2y
dx2 with Parametric Equations.

Let x = f(t) and y = g(t) be twice differentiable functions on an open
interval I , where f ′(t) ̸= 0 on I . Then

d2y

dx2
=

d

dt

[
dy

dx

]/
dx

dt
=

d

dt

[
dy

dx

]/
f ′(t).

Examples will help us understand this Key Idea.

Example 10.3.11 Concavity of Plane Curves.

Let x = 5t2−6t+4 and y = t2+6t−1 as in Example 10.3.4. Determine
the t-intervals on which the graph is concave up/down.
Solution (a). Concavity is determined by the second derivative of
y with respect to x, d2y

dx2 , so we compute that here following Key
Idea 10.3.10.
In Example 10.3.4, we found

dy

dx
=

2t+ 6

10t− 6
and f ′(t) = 10t− 6. So:

d2y

dx2
=

d

dt

[
2t+ 6

10t− 6

]/
(10t− 6)

= − 72

(10t− 6)2

/
(10t− 6)

= − 72

(10t− 6)3

= − 9

(5t− 3)3
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Figure 10.3.12 Graphing the paramet-
ric equations in Example 10.3.11 to
demonstrate concavity

The graph of the parametric functions is concave up when d2y
dx2 > 0 and

concave down when d2y
dx2 < 0. We determine the intervals when the

second derivative is greater/less than 0 by first finding when it is 0 or
undefined.
As the numerator of − 9

(5t− 3)3
is never 0, d2y

dx2 ̸= 0 for all t. It is un-

defined when 5t − 3 = 0; that is, when t = 3/5. Following the work
established in Section 3.4, we look at values of t greater/less than 3/5
on a number line:
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d2y
dx2 > 0

concave up
d2y
dx2 < 0

concave down

3/5

Reviewing Example 10.3.4, we see that when t = 3/5 = 0.6, the graph
of the parametric equations has a vertical tangent line. This point is also
a point of inflection for the graph, illustrated in Figure 10.3.12.
The video in Figure 10.3.13 shows how this information can be used to
sketch the curve by hand.

youtu.be/watch?v=HSBSVFSVqms

Figure 10.3.13 Sketching the curve in
Example 10.3.11

Video solution

youtu.be/watch?v=ZUN_apodMWw

Example 10.3.14 Concavity of Plane Curves.

Find the points of inflection of the graph of the parametric equations
x =

√
t, y = sin(t), for 0 ≤ t ≤ 16.

Solution. We need to compute dy
dx and

d2y
dx2 .

dy

dx
=

y′(t)

x′(t)
=

cos(t)
1/(2

√
t)

= 2
√
t cos(t).

d2y

dx2
=

d
dt

[
dy
dx

]
x′(t)

=
cos(t)/

√
t− 2

√
t sin(t)

1/(2
√
t)

= 2 cos(t)− 4t sin(t).

The points of inflection are found by setting d2y
dx2 = 0. This is not trivial,

as equations thatmix polynomials and trigonometric functions generally
do not have “nice” solutions.
In Figure 10.3.15(a) we see a plot of the second derivative. It shows that
it has zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These
approximations are not very good, made only by looking at the graph.
Newton’s Method provides more accurate approximations. Accurate to
2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plotted on the graph of the para-
metric equations in Figure 10.3.15(b). Note how most occur near the
x-axis, but not exactly on the axis.

2 4 6 8 10 12 14 16

−40

−20

20

40

y = 2 cos(t)− 4t sin(t)

t

y

(a)

31 2 4

−1

−0.5

0.5

1

x

y

(b)

Figure 10.3.15 In (a), a graph of d2y
dx2 , showing where it is approximately

0. In (b), graph of the parametric equations in Example 10.3.14 along
with the points of inflection

https://www.youtube.com/watch?v=HSBSVFSVqms
https://www.youtube.com/watch?v=ZUN_apodMWw
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10.3.2 Arc Length
We continue our study of the features of the graphs of parametric equations by
computing their arc length.

youtu.be/watch?v=57F7ZspP0lU

Figure 10.3.16 Video introduction to
arc length for parametric curves

Recall in Section 7.4 we found the arc length of the graph of a function, from
x = a to x = b, to be

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

We can use this equation and convert it to the parametric equation context.
Letting x = f(t) and y = g(t), we know that dy

dx = g′(t)/f ′(t). It will also be
useful to calculate the differential of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

Starting with the arc length formula above, consider:

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

=

∫ b

a

√
1 +

g′(t)2

f ′(t)2
dx.

Factor out the f ′(t)2:

=

∫ b

a

√
f ′(t)2 + g′(t)2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

=

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are
found by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is
important, so we restate it as a theorem.

Theorem 10.3.17 Arc Length of Parametric Curves.

Let x = f(t) and y = g(t) be parametric equations with f ′ and g′

continuous on [t1, t2], on which the graph traces itself only once. The
arc length of the graph, from t = t1 to t = t2, is

L =

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note: Theorem 10.3.17 makes
use of differentiability on closed
intervals, just aswas done in Sec-
tion 7.4.

As before, these integrals are often not easy to compute. We start with a
simple example, then give another where we approximate the solution.

Example 10.3.18 Arc Length of a Circle.

Find the arc length of the circle parametrized by x = 3 cos(t), y =
3 sin(t) on [0, 3π/2].

https://www.youtube.com/watch?v=57F7ZspP0lU
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Solution. By direct application of Theorem 10.3.17, we have

L =

∫ 3π/2

0

√
(−3 sin(t))2 + (3 cos(t))2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0

3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This shouldmake sense; we know fromgeometry that the circumference
of a circle with radius 3 is 6π; since we are finding the arc length of 3/4
of a circle, the arc length is 3/4 · 6π = 9π/2.

Video solution

youtu.be/watch?v=It8vHw3RHEw

Example 10.3.19 Arc Length of a Parametric Curve.

The graphof the parametric equationsx = t(t2−1), y = t2−1 crosses it-
self as shown in Figure 10.3.20, forming a “teardrop.” Find the arc length
of the teardrop.

1−1

−1

1

x

y

Figure 10.3.20 A graph of the para-
metric equations in Example 10.3.19,
where the arc length of the teardrop
is calculated

Solution. We can see by the parametrizations of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to
t = 1. Applying Theorem 10.3.17, we have

L =

∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an antiderivative expressible
by elementary functions. We turn to numerical integration to approxi-
mate its value. Using 4 subintervals, Simpson’s Rule approximates the
value of the integral as 2.65051. Using a computer, more subintervals
are easy to employ, and n = 20 gives a value of 2.71559. Increasing n
shows that this value is stable and a good approximation of the actual
value.

Video solution

youtu.be/watch?v=G5U9BVhB3PE

10.3.3 Surface Area of a Solid of Revolution
Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Theorem 7.4.13 from Section 7.4 in a
similar way as done to produce the formula for arc length done before.

Theorem 10.3.21 Surface Area of a Solid of Revolution.

Consider the graph of the parametric equations x = f(t) and y = g(t),
where f ′ and g′ are continuous on an open interval I containing t1 and
t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about

https://www.youtube.com/watch?v=It8vHw3RHEw
https://www.youtube.com/watch?v=G5U9BVhB3PE
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the x-axis is (where g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π

∫ t2

t1

g(t)
√
f ′(t)2 + g′(t)2 dt.

2. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π

∫ t2

t1

f(t)
√

f ′(t)2 + g′(t)2 dt.

Example 10.3.22 Surface Area of a Solid of Revolution.

Consider the teardrop shape formed by the parametric equations x =
t(t2 − 1), y = t2 − 1 as seen in Example 10.3.19. Find the surface area
if this shape is rotated about the x-axis, as shown in Figure 10.3.23.

Figure 10.3.23 Rotating a teardrop
shape about the x-axis in Exam-
ple 10.3.22

Solution. The teardrop shape is formed between t = −1 and t = 1.
Using Theorem 10.3.21, we seewe need for g(t) ≥ 0 on [−1, 1], and this
is not the case. To fix this, we simplify replace g(t) with −g(t), which
flips the whole graph about the x-axis (and does not change the surface
area of the resulting solid). The surface area is:

Area S = 2π

∫ 1

−1

(1− t2)
√

(3t2 − 1)2 + (2t)2 dt

= 2π

∫ 1

−1

(1− t2)
√

9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of
elementary functions. Using Simpson’s Rule with n = 20, we find the
area to be S = 9.44. Using larger values of n shows this is accurate to 2
places after the decimal.

After defining a new way of creating curves in the plane, in this section
we have applied calculus techniques to the parametric equation defining these
curves to study their properties. In the next section, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that identifies points in the plane in a manner different than
from measuring distances from the y- and x- axes.
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10.3.4 Exercises

Terms and Concepts

1. True or False? Given parametric equations x = f(t) and y = g(t), dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

(□ True □ False)

2. Given parametric equations x = f(t) and y = g(t), the derivative dy
dx as given in Key Idea 10.3.2 is a function

of ?

3. True or False? Given parametric equations x = f(t) and y = g(t), to find d2y
dx2 , one simply computes d

dt

(
dy
dx

)
.

(□ True □ False)

4. True or False? If dy
dx = 0 at t = t0, then the normal line to the curve at t = t0 is a vertical line. (□ True

□ False)

Problems

Exercise Group. In the following exercises, parametric equations for a curve are given.

(a) Find
dy

dx
.

(b) Find the equations of the tangent and normal line(s) at the point(s) given.

(c) Sketch the graph of the parametric functions along with the found tangent and normal lines.

5. x = t, y = t2;t = 1 6. x =
√
t, y = 5t+ 2;t = 4

7. x = t2 − t, y = t2 + t;t = 1 8. x = t2 − 1, y = t3 − t;t = 0 and t = 1

9. x = sec(t), y = tan(t) on (−π/2, π/2);t = π/4 10. x = cos(t), y = sin(2t) on [0, 2π];t = π/4

11. x = cos(t) sin(2t), y = sin(t) sin(2t) on [0, 2π];
t = 3π/4

12. x = et/10 cos(t), y = et/10 sin(t); t = π/2

Exercise Group. Find the t-valueswhere the curve defined by the given parametric equations has a horizontal tangent
line. Note: these are the same equations as in Exercises 5–12.

13. x = t, y = t2 14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t 16. x = t2 − 1, y = t3 − t

17. x = sec(t), y = tan(t) on (−π/2, π/2) 18. x = cos(t), y = sin(2t), on [0, 2π)
19. x = cos(t) sin(2t), y = sin(t) sin(2t) on [0, 2π] 20. x = et/10 cos(t), y = et/10 sin(t)

Exercise Group. Find the point t = t0 where the graph of the given parametric equations is not smooth, then find
lim
t→t0

dy
dx .

21. x = 1
t2+1 , y = t3 22. x = −t3+7t2− 16t+13, y = t3− 5t2+8t− 2

23. x = t3 − 3t2 + 3t− 1,y = t2 − 2t+ 1 24. x = cos2(t),y = 1− sin2(t)

Exercise Group. For the given parametric equations for a curve, find d2y
dx2 , then determine the intervals on which the

graph of the curve is concave up/down. Note: these are the same equations as in Exercises 5–12.
25. x = t,y = t2 26. x =

√
t,y = 5t+ 2

27. x = t2 − t, y = t2 + t 28. x = t2 − 1,y = t3 − t

29. x = sec(t),y = tan(t) on (−π/2, π/2) 30. x = cos(t), y = sin(2t), on [0, 2π)
31. x = cos(t) sin(2t),y = sin(t) sin(2t) on

[−π/2, π/2]
32. x = et/10 cos(t),y = et/10 sin(t)
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Exercise Group. Find the arc length of the graph of the parametric equations on the given interval(s).
33. x = −3 sin(2t), y = 3 cos(2t) on [0, π] 34. x = et/10 cos(t), y = et/10 sin(t) on [0, 2π] and

[2π, 4π].
35. x = 5t+ 2, y = 1− 3t on [−1, 1] 36. x = 2t3/2,y = 3t on [0, 1]

Exercise Group. In the following exercises, numerically approximate the given arc length.
37. Approximate the arc length of one petal of the

rose curve x = cos(t) cos(2t),y = sin(t) cos(2t)
using Simpson’s Rule and n = 4.

38. Approximate the arc length of the “bow tie
curve” x = cos(t),y = sin(2t) using Simpson’s
Rule and n = 6.

39. Approximate the arc length of the parabola
x = t2 − t,y = t2 + t on [−1, 1] using
Simpson’s Rule and n = 4.

40. A common approximate of the circumference of
an ellipse given by x = a cos(t),y = b sin(t) is

C ≈ 2π

√
a2 + b2

2
. Use this formula to

approximate the circumference of x = 5 cos(t),
y = 3 sin(t) and compare this to the
approximation given by Simpson’s Rule and
n = 6.

Exercise Group. In the following exercises, a solid of revolution is described. Find or approximate its surface area as
specified.

41. Find the surface area of the sphere formed by
rotating the circle x = 2 cos(t),y = 2 sin(t)
about:

(a) The x-axis.

(b) The y-axis.

42. Find the surface area of the torus (or “donut”)
formed by rotating the circle
x = cos(t) + 2,y = sin(t) about the y-axis.

43. Approximate the surface area of the solid
formed by rotating the “upper right half” of the
bow tie curve x = cos(t),y = sin(2t) on
[0, π/2] about the x-axis, using Simpson’s Rule
and n = 4.

44. Approximate the surface area of the solid
formed by rotating the one petal of the rose
curve x = cos(t) cos(2t),y = sin(t) cos(2t) on
[0, π/4] about the x-axis, using Simpson’s Rule
and n = 4.
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10.4 Introduction to Polar Coordinates

youtu.be/watch?v=pyS8sweaJ9w

Figure 10.4.1 Video introduction to
Section 10.4

We are generally introduced to the idea of graphing curves by relating x-
values to y-values through a function f . That is, we set y = f(x), and plot lots
of point pairs (x, y) to get a good notion of how the curve looks. This method is
useful but has limitations, not least of which is that curves that “fail the vertical
line test” cannot be graphed without using multiple functions.

The previous two sections introduced and studied a new way of plotting
points in the x, y-plane. Using parametric equations, x and y values are com-
puted independently and then plotted together. This method allows us to graph
an extraordinary range of curves. This section introduces yet anotherway to plot
points in the plane: using polar coordinates.

10.4.1 Polar Coordinates
Start with a pointO in the plane called the pole (wewill always identify this point
with the origin). From the pole, draw a ray, called the initial ray (we will always
draw this ray horizontally, identifying it with the positive x-axis). A pointP in the
plane is determined by the distance r that P is fromO, and the angle θ formed
between the initial ray and the segmentOP (measured counter-clockwise). We
record the distance and angle as an ordered pair (r, θ). To avoid confusion with
rectangular coordinates, we will denote polar coordinates with the letter P , as
in P (r, θ). This is illustrated in Figure 10.4.2

O initial ray

r

P = P (r, θ)

θ

Figure 10.4.2 Illustrating polar coordi-
nates

Practice will make this process more clear.

Example 10.4.3 Plotting Polar Coordinates.

Plot the following polar coordinates:

A = P (1, π/4)B = P (1.5, π)C = P (2,−π/3)D = P (−1, π/4)

Solution. To aid in the drawing, a polar grid is provided below. To place
the point A, go out 1 unit along the initial ray (putting you on the inner
circle shown on the grid), then rotate counter-clockwise π/4 radians (or
45◦). Alternately, one can consider the rotation first: think about the ray
from O that forms an angle of π/4 with the initial ray, then move out 1
unit along this ray (again placing you on the inner circle of the grid).

O 1 2 3

To plot B, go out 1.5 units along the initial ray and rotate π radians
(180◦).
To plot C, go out 2 units along the initial ray then rotate clockwise π/3
radians, as the angle given is negative.

O 1 2 3

A

B

C

D

Figure 10.4.4 Plotting polar points in
Example 10.4.3

To plotD, move along the initial ray “−1” units — in other words, “back
up” 1 unit, then rotate counter-clockwise by π/4. The results are given
in Figure 10.4.4.

https://www.youtube.com/watch?v=pyS8sweaJ9w
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Consider the following two points: A = P (1, π) and B = P (−1, 0). To
locate A, go out 1 unit on the initial ray then rotate π radians; to locate B, go
out −1 units on the initial ray and don’t rotate. One should see that A and B
are located at the same point in the plane. We can also consider C = P (1, 3π),
orD = P (1,−π); all four of these points share the same location.

This ability to identify a point in the plane with multiple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beautiful functions that intersect themselves (much like we sawwith parametric
functions). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this section.

10.4.2 Polar to Rectangular Conversion
It is useful to recognize both the rectangular (or, Cartesian) coordinates of a point
in the plane and its polar coordinates. Figure 10.4.5 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P (r, θ). Using
trigonometry, we can make the identities given in the following Key Idea.

x

yr

θ

O

P

Figure 10.4.5 Converting between
rectangular and polar coordinates

Key Idea 10.4.6 Converting Between Rectangular and Polar Coordi-
nates.

Given the polar point P (r, θ), the rectangular coordinates are deter-
mined by

x = r cos(θ) y = r sin(θ).

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan(θ) =
y

x
.

Example 10.4.7 Converting Between Polar and Rectangular Coordi-
nates.

1. Convert the polar coordinates P (2, 2π/3) and P (−1, 5π/4) to
rectangular coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar co-
ordinates.

Solution.

1. (a) We start with P (2, 2π/3). Using Key Idea 10.4.6, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point P (−1, 5π/4) is converted to rectangular
with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈

(0.707, 0.707).
These points are plotted in Figure 10.4.8(a). The rectangular coor-
dinate system is drawn lightly under the polar coordinate system
so that the relationship between the two can be seen.
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O

P (2, 2π
3 )

P (−1, 5π
4 )

(a)

(0, 0)

(1, 2)

(−1, 1)

3π
4
3π
4

−π
4

1.11

(b)

Figure 10.4.8 Plotting rectangular and polar points in Exam-
ple 10.4.7

2. (a) To convert the rectangular point (1, 2) to polar coordinates,
we use the Key Idea to form the following two equations:

12 + 22 = r2 tan(θ) =
2

1
.

The first equation tells us that r =
√
5. Using the inverse

tangent function, we find

tan(θ) = 2 ⇒ θ = tan−1(2) ≈ 1.11 ≈ 63.43◦.

Thus polar coordinates of (1, 2) are P (
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equa-
tions

(−1)2 + 12 = r2 tan(θ) =
1

−1
.

Thus r =
√
2. We need to be careful in computing θ: using

the inverse tangent function, we have

tan(θ) = −1 ⇒ θ = tan−1(−1) = −π/4 = −45◦.

This is not the angle we desire. The range of tan−1(x) is
(−π/2, π/2); that is, it returns angles that lie in the 1st and
4th quadrants. To find locations in the 2nd and 3rd quad-
rants, add π to the result of tan−1(x). So π + (−π/4) puts
the angle at 3π/4. Thus the polar point is P (

√
2, 3π/4). An

alternate method is to use the angle θ given by arctangent,
but change the sign of r. Thus we could also refer to (−1, 1)
as P (−

√
2,−π/4).

These points are plotted in Figure 10.4.8(b). The polar system is
drawn lightly under the rectangular grid with rays to demonstrate
the angles used.

10.4.3 Polar Functions and Polar Graphs
Defining a new coordinate system allows us to create a new kind of function, a
polar function. Rectangular coordinates lent themselves well to creating func-
tions that related x and y, such as y = x2. Polar coordinates allow us to create
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functions that relate r and θ. Normally these functions look like r = f(θ), al-
though we can create functions of the form θ = f(r). The following examples
introduce us to this concept.

Example 10.4.9 Introduction to Graphing Polar Functions.

Describe the graphs of the following polar functions.

1. r = 1.5

2. θ = π/4

Solution.

1. The equation r = 1.5 describes all points that are 1.5 units from
the pole; as the angle is not specified, any θ is allowable. All points
1.5 units from the pole describes a circle of radius 1.5. We can
consider the rectangular equivalent of this equation; using r2 =
x2 + y2, we see that 1.52 = x2 + y2, which we recognize as
the equation of a circle centered at (0, 0) with radius 1.5. This is
sketched in Figure 10.4.10.

2. The equation θ = π/4 describes all points such that the line
through them and the pole make an angle of π/4 with the initial
ray. As the radius r is not specified, it can be any value (even neg-
ative). Thus θ = π/4 describes the line through the pole that
makes an angle of π/4 = 45◦ with the initial ray. We can again
consider the rectangular equivalent of this equation. Combine
tan(θ) = y/x and θ = π/4:

tan(π)/4 = y/x ⇒ x tan(π)/4 = y ⇒ y = x.

This graph is also plotted in Figure 10.4.10.

O 1 2

r = 1.5
θ = π

4

Figure 10.4.10 Plotting standard polar
plots

Video solution

youtu.be/watch?v=HTCbzFnW9KU

The basic rectangular equations of the form x = h and y = k create vertical
and horizontal lines, respectively; the basic polar equations r = h and θ = α
create circles and lines through the pole, respectively. With this as a foundation,
we can createmore complicated polar functions of the form r = f(θ). The input
is an angle; the output is a length, how far in the direction of the angle to go out.

We sketch these functions much like we sketch rectangular and parametric
functions: we plot lots of points and “connect the dots” with curves. We demon-
strate this in the following example.

Example 10.4.11 Sketching Polar Functions.

Sketch the polar function r = 1 + cos(θ) on [0, 2π] by plotting points.
Solution. A common question when sketching curves by plotting points
is “Which points should I plot?” With rectangular equations, we often
choose “easy” values — integers, then add more if needed. When plot-
ting polar equations, start with the “common” angles—multiples of π/6
and π/4. Figure 10.4.12 gives a table of just a few values of θ in [0, π].
Consider the point P (2, 0) determined by the first line of the table. The
angle is 0 radians — we do not rotate from the initial ray — then we go
out 2 units from the pole. When θ = π/6, r = 1.866 (actually, it is

https://www.youtube.com/watch?v=HTCbzFnW9KU
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1 +
√
3/2); so rotate by π/6 radians and go out 1.866 units.

The graph shown uses more points, connected with straight lines. (The
points on the graph that correspond to points in the table are signified
with larger dots.) Such a sketch is likely good enough to give one an idea
of what the graph looks like.

θ r = 1 + cos(θ)
0 2

π/6 1.86603

π/2 1

4π/3 0.5

7π/4 1.70711

(a)

O 1 2

(b)

Figure 10.4.12 Graphing a polar function in Example 10.4.11 by plotting
points

Video solution

youtu.be/watch?v=1omaozpN7wI

Technology Note: Plotting functions in this way can be tedious, just as it was
with rectangular functions. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar functions; in the menu, set the
plottingmode to something like polar or POL, depending on one’s calculator. As
with plotting parametric functions, the viewing “window” no longer determines
the x-values that are plotted, so additional information needs to be provided.
Often with the “window” settings are the settings for the beginning and ending
θ values (often called θmin and θmax ) as well as the θ step — that is, how far
apart the θ values are spaced. The smaller the θ step value, the more accurate
the graph (which also increases plotting time). Using technology, we graphed
the polar function r = 1 + cos(θ) from Example 10.4.11 in Figure 10.4.13.

O 1 2

Figure 10.4.13 Using technology to
graph a polar function

Example 10.4.14 Sketching Polar Functions.

Sketch the polar function r = cos(2θ) on [0, 2π] by plotting points.
Solution. We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 10.4.15. These points are then plotted in
Figure 10.4.16(a). This particular graph “moves” around quite a bit and
one can easily forget which points should be connected to each other.
To help us with this, we numbered each point in the table and on the
graph.

Pt. θ cos(2θ)
1 0 1

2 π/6 0.5

3 π/4 0

4 π/3 −0.5

5 π/2 −1

6 2π/3 −0.5

7 3π/4 0

8 5π/6 0.5

9 π 1

10 7π/6 0.5

11 5π/4 0

12 4π/3 −0.5

13 3π/2 −1

14 5π/3 −0.5

15 7π/4 0

16 11π/6 0.5

17 2π 1

Figure 10.4.15 Table of points for plot-
ting a polar curve in Example 10.4.14

Using more points (and the aid of technology) a smoother plot can be
made as shown in Figure 10.4.16(b). This plot is an example of a rose
curve.

https://www.youtube.com/watch?v=1omaozpN7wI
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15 16 17

(a)

O 1

(b)

Figure 10.4.16 Polar plots from Example 10.4.14

Video solution

youtu.be/watch?v=DSmu6HQXiS4 It is sometimes desirable to refer to a graph via a polar equation, and other
times by a rectangular equation. Therefore it is necessary to be able to convert
between polar and rectangular functions, which we practice in the following
example. We will make frequent use of the identities found in Key Idea 10.4.6.

Example 10.4.17 Converting between rectangular and polar equations.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

1. r =
2

sin(θ)− cos(θ)

2. r = 2 cos(θ)

Solution.

1. Replace y with r sin(θ) and replace x with r cos(θ), giving:

y = x2

r sin(θ) = r2 cos2(θ)
sin(θ)
cos2(θ)

= r

We have found that r = sin(θ)/ cos2(θ) = tan(θ) sec(θ). The
domain of this polar function is (−π/2, π/2); plot a few points to
see how the familiar parabola is traced out by the polar equation.

2. We again replace x and y using the standard identities and work
to solve for r:

xy = 1

r cos(θ) · r sin(θ) = 1

r2 =
1

cos(θ) sin(θ)

r =
1√

cos(θ) sin(θ)

This function is valid only when the product of cos(θ) sin(θ) is pos-
itive. This occurs in the first and third quadrants, meaning the do-
main of this polar function is (0, π/2)∪(π, 3π/2). We can rewrite

https://www.youtube.com/watch?v=DSmu6HQXiS4
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the original rectangular equation xy = 1 as y = 1/x. This is
graphed in Figure 10.4.18; note how it only exists in the first and
third quadrants.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 10.4.18 Graphing xy = 1 from
Example 10.4.17

3. There is no set way to convert from polar to rectangular; in gen-
eral, we look to form the products r cos(θ) and r sin(θ), and then
replace these with x and y, respectively. We start in this problem
by multiplying both sides by sin(θ)− cos(θ):

r =
2

sin(θ)− cos(θ)
r(sin(θ)− cos(θ)) = 2

r sin(θ)− r cos(θ) = 2. Now replace with y and x:
y − x = 2

y = x+ 2.

The original polar equation, r = 2/(sin(θ)−cos(θ)) does not eas-
ily reveal that its graph is simply a line. However, our conversion
shows that it is. The upcoming gallery of polar curves gives the
general equations of lines in polar form.

4. By multiplying both sides by r, we obtain both an r2 term and an
r cos(θ) term, which we replace with x2 + y2 and x, respectively.

r = 2 cos(θ)

r2 = 2r cos(θ)

x2 + y2 = 2x.

We recognize this as a circle; by completing the squarewe can find
its radius and center.

x2 − 2x+ y2 = 0

(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming
gallery of polar curves gives the equations of some circles in po-
lar form; circles with arbitrary centers have a complicated polar
equation that we do not consider here.

Video solution

youtu.be/watch?v=kWnHXtXTzSw

Some curves have very simple polar equations but rather complicated rec-
tangular ones. For instance, the equation r = 1 + cos(θ) describes a cardioid
(a shape important the sensitivity of microphones, among other things; one is
graphed in the gallery in the Limaçon section). It’s rectangular form is not nearly
as simple; it is the implicit equation x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0.
The conversion is not “hard,” but takes several steps, and is left as a problem in
the Exercise section.

Gallery of Polar Curves
There are a number of basic and “classic” polar curves, famous for their

beauty and/or applicability to the sciences. This section endswith a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to investigate with technology other types of polar func-
tions.

https://www.youtube.com/watch?v=kWnHXtXTzSw
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α

(a) Through the origin:
θ = α

a
{

(b) Horizontal line: r =
a csc(θ)

︷︸︸︷a

(c) Vertical line: r =
a sec(θ)

slo
pe
=
m

}
b

(d) Not through origin:

r =
b

sin(θ)−m cos(θ)

Figure 10.4.19 Lines in polar coordinates

︷ ︸︸ ︷a

(a) Centered on x-axis:
r = a cos(θ)

a



(b) Centered on y-axis:
r = a sin(θ)

︷ ︸︸ ︷a

(c) Centered on origin:
r = a

(d) Archimedean spiral:
r = θ

Figure 10.4.20 Circles and Spirals

(a) With inner loop:
a

b
<

1
(b) Cardioid:

a

b
= 1 (c) Dimpled: 1 <

a

b
< 2 (d) Convex:

a

b
> 2

Figure 10.4.21 Limaçons
Symmetric about x-axis: r = a± b cos(θ)
Symmetric about y-axis: r = a± b sin(θ); a, b > 0
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(a) r = a cos(2θ) (b) r = a sin(2θ) (c) r = a cos(3θ) (d) r = a sin(3θ)

Figure 10.4.22 Rose curves
Symmetric about x-axis: r = a cos(nθ)
Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.

(a) Rose curve: r =
a sin(θ/5)

(b) Rose curve: r =
a sin(2θ/5)

(c) Lemniscate: r2 =
a2 cos(2θ)

(d) Eight Curve: r2 =
a2 sec4(θ) cos(2θ)

Figure 10.4.23 Special Curves
Earlier we discussed how each point in the plane does not have a unique

representation in polar form. This can be a “good” thing, as it allows for the
beautiful and interesting curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 10.4.24 Finding points of intersection with polar curves.

Determine where the graphs of the polar equations r = 1 + 3 cos(θ)
and r = cos(θ) intersect.
Solution. As technology is generally readily available, it is usually
a good idea to start with a graph. We have graphed the two func-
tions in Figure 10.4.25(a); to better discern the intersection points, Fig-
ure 10.4.25(b) zooms in around the origin.
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(a)

−0.6 −0.4 −0.2 0.2 0.4 0.6

−0.6

−0.4

−0.2

0.2

0.4

0.6

x

y

0

π/2

(b)

Figure 10.4.25Graphs to help determine the points of intersection of the
polar functions given in Example 10.4.24
We start by setting the two functions equal to each other and solving for
θ:

1 + 3 cos(θ) = cos(θ)
2 cos(θ) = −1

cos(θ) = −1

2

θ =
2π

3
,
4π

3
.

(There are, of course, infinite solutions to the equation cos(θ) = −1/2;
as the limaçon is traced out once on [0, 2π], we restrict our solutions to
this interval.)
We need to analyze this solution. When θ = 2π/3 we obtain the point
of intersection that lies in the 4th quadrant. When θ = 4π/3, we get
the point of intersection that lies in the second quadrant. There is more
to say about this second intersection point, however. The circle defined
by r = cos(θ) is traced out once on [0, π], meaning that this point of
intersection occurs while tracing out the circle a second time. It seems
strange to pass by the point once and then recognize it as a point of
intersection only when arriving there a “second time.” The first time the
circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos(π/3), π/3) and (cos(4π/3), 4π/3).
To summarize what we have done so far, we have found two points of
intersection: when θ = 2π/3 and when θ = 4π/3. When referencing
the circle r = cos(θ), the latter point is better referenced as when θ =
π/3.
There is yet another point of intersection: the pole (or, the origin). We
did not recognize this intersection point using our work above as each
graph arrives at the pole at a different θ value.
A graph intersects the pole when r = 0. Considering the circle r =
cos(θ), r = 0 when θ = π/2 (and odd multiples thereof, as the circle is
repeatedly traced). The limaçon intersects the pole when 1+3 cos(θ) =
0; this occurs when cos(θ) = −1/3, or for θ = cos−1(−1/3). This is a
nonstandard angle, approximately θ = 1.9106 = 109.47◦. The limaçon
intersects the pole twice in [0, 2π]; the other angle at which the limaçon
is at the pole is the reflection of the first angle across the x-axis. That is,
θ = 4.3726 = 250.53◦.

Video solution

youtu.be/watch?v=mI8vfQxub9g

https://www.youtube.com/watch?v=mI8vfQxub9g
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If all one is concerned with is the (x, y) coordinates at which the graphs in-
tersect, much of the abovework is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3 can
give us the needed rectangular coordinates. However, in the next section we ap-
ply calculus concepts to polar functions. When computing the area of a region
bounded by polar curves, understanding the nuances of the points of intersec-
tion becomes important.
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10.4.4 Exercises

Terms and Concepts

1. In your own words, describe how to plot the polar point P (r, θ).

2. True or False? When plotting a point with polar coordinate P (r, θ), r must be positive. (□ True □ False)

3. True or False? Every point in the Cartesian plane can be represented by a polar coordinate. (□ True □ False)
4. True or False? Every point in the Cartesian plane can be represented uniquely by a polar coordinate. (□ True

□ False)

Problems

5. Plot the points with the given polar coordinates.

(a) A = P (2, 0)

(b) B = P (1, π)

(c) C = P (−2, π/2)

(d) D = P (1, π/4)

6. Plot the points with the given polar coordinates.

(a) A = P (2, 3π)

(b) B = P (1,−π)

(c) C = P (1, 2)

(d) D = P (1/2, 5π/6)

7. For each of the given points give two sets of polar coordinates that identify it, where 0 ≤ θ ≤ 2π.

O 1 2 3

A

B

C

D

8. For each of the given points give two sets of polar coordinates that identify it, where−π < θ ≤ π.



10.4. INTRODUCTION TO POLAR COORDINATES 595

O 1 2 3

A

B

C

D

9. Convert each of the following polar coordinates to rectangular, and each of the following rectangular coordinates
to polar.

a. A = P (2, π/4)

(x, y) =

b. B = P (2,−π/4)

(x, y) =

c. C = (2,−1)

P (r, θ) = P

d. D = (−2, 1)

P (r, θ) = P

10. Convert each of the following polar coordinates to rectangular, and each of the followingrectangular coordinates
to polar.

a. A = P (3, π)

(x, y) =

b. B = P (1, 2π/3)

(x, y) =

c. C = (0, 4)

P (r, θ) = P

d. D = (1,−
√
3)

P (r, θ) = P

Exercise Group. In the following exercises, graph the polar function on the given interval.
11. r = 2,0 ≤ θ ≤ π/2 12. θ = π/6,−1 ≤ r ≤ 2

13. r = 1− cos(θ),[0, 2π] 14. r = 2 + sin(θ),[0, 2π]
15. r = 2− sin(θ),[0, 2π] 16. r = 1− 2 sin(θ),[0, 2π]
17. r = 1 + 2 sin(θ),[0, 2π] 18. r = cos(2θ),[0, 2π]
19. r = sin(3θ),[0, π] 20. r = cos(θ/3),[0, 3π]
21. r = cos(2θ/3),[0, 6π] 22. r = θ/2,[0, 4π]
23. r = 3 sin(θ),[0, π] 24. r = 2 cos(θ),[0, π/2]
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25. r = cos(θ) sin(θ),[0, 2π] 26. r = θ2 − (π/2)2,[−π, π]

27. r =
3

5 sin(θ)− cos(θ)
,[0, 2π] 28. r =

−2

3 cos(θ)− 2 sin(θ)
,[0, 2π]

29. r = 3 sec(θ),(−π/2, π/2) 30. r = 3 csc(θ),(0, π)

Exercise Group. In the following exercises, convert the polar equation to a rectangular equation.
31. Convert the polar equation to a rectangular

equation.
r = 6 cos(θ)

32. Convert the polar equation to a rectangular
equation.

r = −4 sin(θ)
33. Convert the polar equation to a rectangular

equation.
r = cos(θ) + sin(θ)

34. Convert the polar equation to a rectangular
equation.

r =
7

5 sin(θ)− 2 cos(θ)
35. Convert the polar equation to a rectangular

equation.
r =

3

cos(θ)

36. Convert the polar equation to a rectangular
equation.

r =
4

sin(θ)
37. r = tan(θ) 38. r = cot θ
39. Convert the polar equation to a rectangular

equation.
r = 2

40. Convert the polar equation to a rectangular
equation.

θ = π/6

Exercise Group. In the following exercises, convert the rectangular equation to a polar equation.
41. Convert the rectangular equation to a polar

equation. Type ‘theta’ for θ.
y = x

42. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

y = 4x+ 7

43. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x = 5

44. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

y = 5

45. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x = y2

46. x2y = 1

47. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x2 + y2 = 7

48. (x+ 1)2 + y2 = 1

Exercise Group. In the following exercises, find the points of intersection of the polar graphs.
49. Find the points where r = sin(2θ) intersects

r = cos(θ) on [0, π], expressed in polar
coordinates with notation P (r, θ).

50. r = cos(2θ) and r = cos(θ) on [0, π]

51. Find the points where r = 2 cos(θ) intersects
r = 2 sin(θ) on [0, π], expressed in polar
coordinates with notation P (r, θ).

52. r = sin(θ) and r =
√
3 + 3 sin(θ) on [0, 2π]

53. r = sin(3θ) and r = cos(3θ) on [0, π] 54. Find the points where r = 3 cos(θ) intersects
r = 1 + cos(θ) on [−π, π], expressed in polar
coordinates with notation P (r, θ).

55. r = 1 and r = 2 sin(2θ) on [0, 2π] 56. r = 1− cos(θ) and r = 1 + sin(θ) on [0, 2π]

57. Pick a integer value for n, where n ̸= 2, 3, and use technology to plot r = sin
(m
n
θ
)
for three different integer

values ofm. Sketch these and determine a minimal interval on which the entire graph is shown.
58. Create your own polar function, r = f(θ) and sketch it. Describe why the graph looks as it does.
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10.5 Calculus and Polar Functions

youtu.be/watch?v=rj1KoMXvhKw

Figure 10.5.1 Video introduction to
Section 10.5

The previous section defined polar coordinates, leading to polar functions.
We investigated plotting these functions and solving a fundamental question
about their graphs, namely, where do two polar graphs intersect?

We now turn our attention to answering other questions, whose solutions
require the use of calculus. A basis for much of what is done in this section is
the ability to turn a polar function r = f(θ) into a set of parametric equations.
Using the identities x = r cos(θ) and y = r sin(θ), we can create the para-
metric equations x = f(θ) cos(θ), y = f(θ) sin(θ) and apply the concepts of
Section 10.3.

10.5.1 Polar Functions and dy/dx
We are interested in the lines tangent to a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equations. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concernedwith r ′ = f ′(θ); that describes how fast r changeswith
respect to θ. Instead, we will use x = f(θ) cos(θ), y = f(θ) sin(θ) to compute
dy
dx .

Using Key Idea 10.3.2 we have

dy

dx
=

dy

dθ

/dx

dθ
.

Each of the two derivatives on the right hand side of the equality requires
the use of the Product Rule. We state the important result as a Key Idea.

Key Idea 10.5.2 Finding dy
dx with Polar Functions.

Let r = f(θ) be a polar function. With x = f(θ) cos(θ) and y =
f(θ) sin(θ),

dy

dx
=

f ′(θ) sin(θ) + f(θ) cos(θ)
f ′(θ) cos(θ)− f(θ) sin(θ)

.

Example 10.5.3 Finding dy
dx with polar functions.

Consider the limaçon r = 1 + 2 sin(θ) on [0, 2π].

1. Find the equations of the tangent and normal lines to the graph
at θ = π/4.

2. Find where the graph has vertical and horizontal tangent lines.

Solution.

1. We start by computing dy
dx . With f

′(θ) = 2 cos(θ), we have

dy

dx
=

2 cos(θ) sin(θ) + cos(θ)(1 + 2 sin(θ))
2 cos2(θ)− sin(θ)(1 + 2 sin(θ))

=
cos(θ)(4 sin(θ) + 1)

2(cos2(θ)− sin2(θ))− sin(θ)
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simpli-

fication). In rectangular coordinates, the point on the graph at

https://www.youtube.com/watch?v=rj1KoMXvhKw
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θ = π/4 is (1+
√
2/2, 1+

√
2/2). Thus the rectangular equation

of the line tangent to the limaçon at θ = π/4 is

y = (−2
√
2−1)

(
x− (1+

√
2/2)

)
+1+

√
2/2 ≈ −3.83x+8.24.

The limaçon and the tangent line are graphed in Figure 10.5.4. The
normal line has the opposite-reciprocal slope as the tangent line,
so its equation is

y ≈ 1

3.83
x+ 1.26.

−2 −1 1 2

1

2

3

x

y

0

π/2

Figure 10.5.4 The limaçon in Exam-
ple 10.5.3 with its tangent line at θ =
π/4 and points of vertical and hori-
zontal tangency

2. To find the horizontal lines of tangency, we find where dy
dx = 0;

thus we find where the numerator of our equation for dy
dx is 0.

cos(θ)(4 sin(θ) + 1) = 0 ⇒ cos(θ) = 0 or 4 sin(θ) + 1 = 0.

On [0, 2π], cos(θ) = 0 when θ = π/2, 3π/2. Setting 4 sin(θ) +
1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦. We want
the results in [0, 2π]; we also recognize there are two solutions,
one in the third quadrant and one in the fourth. Using reference
angles, we have our two solutions as θ = 3.39 and 6.03 radians.
The four points we obtained where the limaçon has a horizontal
tangent line are given in Figure 10.5.4 with black-filled dots. To
find the vertical lines of tangency, we set the denominator of dydx =
0.

2(cos2(θ)− sin2(θ))− sin(θ) = 0.

Convert the cos2(θ) term to 1− sin2(θ):

2(1− sin2(θ)− sin2(θ))− sin(θ) = 0

4 sin2(θ) + sin(θ)− 2 = 0.

Recognize this as a quadratic in the variable sin(θ). Using the qua-
dratic formula, we have

sin(θ) =
−1±

√
33

8
.

We solve sin(θ) = −1+
√
33

8 and sin(θ) = −1−
√
33

8 :

sin(θ) =
−1 +

√
33

8
sin(θ) =

−1−
√
33

8

θ = sin−1

(
−1 +

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ = 0.6349 θ = −1.0030

In each of the solutions above, we only get one of the possible
two solutions as sin−1(x) only returns solutions in [−π/2, π/2],
the 4th and 1st quadrants. Again using reference angles, we have:

sin θ =
−1 +

√
33

8
⇒ θ = 0.6349, 2.5067 radians

and

sin(θ) =
−1−

√
33

8
⇒ θ = 4.1446, 5.2802 radians.

These points are also shown in Figure 10.5.4 with white-filled dots.

Video solution

youtu.be/watch?v=QLsLabLb6I4

https://www.youtube.com/watch?v=QLsLabLb6I4
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When the graph of the polar function r = f(θ) intersects the pole, it means
that f(α) = 0 for some angle α. Thus the formula for dy

dx in such instances is
very simple, reducing simply to

dy

dx
= tanα.

This equation makes an interesting point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Exam-
ple 10.4.9) shows us that the line through the pole with slope tanα has polar
equation θ = α. Thus when a polar graph touches the pole at θ = α, the
equation of the tangent line at the pole is θ = α.

Example 10.5.5 Finding tangent lines at the pole.

Let r = 1 + 2 sin(θ), a limaçon. Find the equations of the lines tangent
to the graph at the pole.
Solution. We need to know when r = 0.

1 + 2 sin(θ) = 0

sin(θ) = −1/2

θ =
7π

6
,
11π

6
.

Thus the equations of the tangent lines, in polar, are θ = 7π/6 and
θ = 11π/6. In rectangular form, the tangent lines are y = tan(7π/6)x
and y = tan(11π/6)x. The full limaçon can be seen in Figure 10.5.4; we
zoom in on the tangent lines in Figure 10.5.6.

−1 −0.5 0.5 1

−0.5

0.5

1

x

y

0

π/2

Figure 10.5.6 Graphing the tangent
lines at the pole in Example 10.5.5

Video solution

youtu.be/watch?v=1bAf6kE9F1Y

10.5.2 Area
When using rectangular coordinates, the equations x = h and y = k defined
vertical and horizontal lines, respectively, and combinations of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equations θ = α and r = c form lines
through the origin and circles centered at the origin, respectively, and combi-
nations of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar functions by first approximating
with sectors of circles.

Consider Figure 10.5.7(a) where a region defined by r = f(θ) on [α, β] is
given. (Note how the “sides” of the region are the lines θ = α and θ = β,
whereas in rectangular coordinates the “sides” of regionswere often the vertical
lines x = a and x = b.)

Recall that the area of a sector
of a circlewith radius r subtended
by an angle θ is A = 1

2θr
2.

r

θ

Partition the interval [α, β] into n equally spaced subintervals as α = θ0 <
θ1 < · · · < θn = β. The length of each subinterval is ∆θ = (β − α)/n,
representing a small change in angle. The area of the region defined by the ith
subinterval [θi−1, θi] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi−1, θi]. The area of this sector is 1

2f(ci)
2∆θ. This is

shown in Figure 10.5.7(b), where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ≈
n∑

i=1

1

2
f(ci)

2∆θ.

https://www.youtube.com/watch?v=1bAf6kE9F1Y
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This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the
exact area of the region in the form of a definite integral.
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x

y

0
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(b)

Figure 10.5.7 Computing the area of a polar region

youtu.be/watch?v=dYEMKbxRxpY

Figure 10.5.8 Video presentation of
Theorem 10.5.9

Theorem 10.5.9 Area of a Polar Region.

Let f be continuous and non-negative on [α, β], where 0 ≤ β −α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1

2

∫ β

α

f(θ)2 dθ =
1

2

∫ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 10.5.10 Area of a polar region.

Find the area of the circle defined by r = cos(θ). (Recall this circle has
radius 1/2.)
Solution. This is a direct application of Theorem 10.5.9. The circle is
traced out on [0, π], leading to the integral

Area =
1

2

∫ π

0

cos2(θ) dθ

=
1

2

∫ π

0

1 + cos(2θ)
2

dθ

=
1

4

(
θ +

1

2
sin(2θ)

)∣∣∣∣∣
π

0

=
1

4
π.

Of course, we already knew the area of a circle with radius 1/2. We did
this example to demonstrate that the area formula is correct.

Video solution

youtu.be/watch?v=T_z8FNS3Whs

Example 10.5.10 requires the use

of the integral
∫
cos2(θ) dθ. This

is handledwell by using the power
reducing formula as found in Sub-
section B.3.2 of the Quick Refer-
ence Appendix. Due to the na-
ture of the area formula, integrat-
ing cos2(θ) and sin2(θ) is required
often. We offer here these in-
definite integrals as a time-saving
measure.∫

cos2 θ dθ =

1

2
θ +

1

4
sin(2θ) + C∫

sin2 θ dθ =

1

2
θ − 1

4
sin(2θ) + C

https://www.youtube.com/watch?v=dYEMKbxRxpY
https://www.youtube.com/watch?v=T_z8FNS3Whs
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Example 10.5.11 Area of a polar region.

Find the area of the cardioid r = 1 + cos(θ) bound between θ = π/6
and θ = π/3, as shown in Figure 10.5.12.

−0.5 0.5 1 1.5 2

1

θ =
π/
6

θ
=
π
/3

x

y

0

π/2

Figure 10.5.12 Finding the area of the
shaded region of a cardioid in Exam-
ple 10.5.11

Solution. This is again a direct application of Theorem 10.5.9.

Area =
1

2

∫ π/3

π/6

(1 + cos(θ))2 dθ

=
1

2

∫ π/3

π/6

(1 + 2 cos(θ) + cos2(θ)) dθ

=
1

2

(
θ + 2 sin(θ) +

1

2
θ +

1

4
sin(2θ)

) ∣∣∣∣∣
π/3

π/6

=
1

8

(
π + 4

√
3− 4

)
≈ 0.7587.

Video solution

youtu.be/watch?v=yZpBCQnB7r8

Area Between Curves. Our study of area in the context of rectangular func-
tions led naturally to finding area bounded between curves. We consider the
same in the context of polar functions.

Consider the shaded region shown in Figure 10.5.13. We can find the area
of this region by computing the area bounded by r2 = f2(θ) and subtracting
the area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1

2

∫ β

α

r 2
2 dθ − 1

2

∫ β

α

r 2
1 dθ =

1

2

∫ β

α

(
r 2
2 − r 2

1

)
dθ.
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Figure 10.5.13 Illustrating area bound
between two polar curves

Key Idea 10.5.14 Area Between Polar Curves.

The areaA of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where f1(θ) ≤ f2(θ) on [α, β], is

A =
1

2

∫ β

α

(
r 2
2 − r 2

1

)
dθ.

Example 10.5.15 Area between polar curves.

Find the area bounded between the curves r = 1 + cos(θ) and r =
3 cos(θ), as shown in Figure 10.5.16.

1 2 3

−1

1

x

y

0

π/2

Figure 10.5.16 Finding the area
between polar curves in Exam-
ple 10.5.15

Solution. Weneed to find the points of intersection between these two
functions. Setting them equal to each other, we find:

1 + cos(θ) = 3 cos(θ)
cos(θ) = 1/2

θ = ±π/3

Thus we integrate 1
2

(
(3 cos(θ))2 − (1 + cos(θ))2

)
on [−π/3, π/3].

Area =
1

2

∫ π/3

−π/3

(
(3 cos(θ))2 − (1 + cos(θ))2

)
dθ

=
1

2

∫ π/3

−π/3

(
8 cos2(θ)− 2 cos(θ)− 1

)
dθ

https://www.youtube.com/watch?v=yZpBCQnB7r8
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=
1

2

(
2 sin(2θ)− 2 sin(θ) + 3θ

)∣∣∣∣∣
π/3

−π/3

= π.

Amazingly enough, the area between these curves has a “nice” value.

Video solution

youtu.be/watch?v=CM7XsZRRqSI Example 10.5.17 Area defined by polar curves.

Find the area bounded between the polar curves r = 1 and r =
2 cos(2θ), as shown in Figure 10.5.18.

−0.5 0.5 1 1.5 2

−1

−0.5

0.5

1

x

y

0

π/2

Figure 10.5.18 The region bounded
by the functions in Example 10.5.17

Solution. We need to find the point of intersection between the two
curves. Setting the two functions equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1

2
⇒ 2θ = π/3 ⇒ θ = π/6.

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

x

y

0
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Figure 10.5.19 Breaking the region
bounded by the functions in Exam-
ple 10.5.17 into its component parts

In Figure 10.5.19, we zoom in on the region and note that it is not re-
ally bounded between two polar curves, but rather by two polar curves,
along with θ = 0. The dashed line breaks the region into its component
parts. Below the dashed line, the region is defined by r = 1, θ = 0
and θ = π/6. (Note: the dashed line lies on the line θ = π/6.) Above
the dashed line the region is bounded by r = 2 cos(2θ) and θ = π/6.
Since we have two separate regions, we find the area using two separate
integrals.
Call the area below the dashed line A1 and the area above the dashed
line A2. They are determined by the following integrals:

A1 =
1

2

∫ π/6

0

(1)2 dθ A2 =
1

2

∫ π/4

π/6

(
2 cos(2θ)

)2
dθ.

(The upper bound of the integral computing A2 is π/4 as r = 2 cos(2θ)
is at the pole when θ = π/4.)
We omit the integration details and let the reader verify thatA1 = π/12
and A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8.

Video solution

youtu.be/watch?v=5MHcrQVTjjU

10.5.3 Arc Length
As we have already considered the arc length of curves defined by rectangular
and parametric equations, we now consider it in the context of polar equations.
Recall that the arc length L of the graph defined by the parametric equations
x = f(t), y = g(t) on [a, b] is

L =

∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt. (10.5.1)

Now consider the polar function r = f(θ). We again use the identities x =
f(θ) cos(θ) and y = f(θ) sin(θ) to create parametric equations based on the
polar function. We compute x′(θ) and y′(θ) as done before when computing
dy
dx , then apply Equation (10.5.1).

The expression x′(θ)2 + y′(θ)2 can be simplified a great deal; we leave this
as an exercise and state that

x′(θ)2 + y′(θ)2 = f ′(θ)2 + f(θ)2.

https://www.youtube.com/watch?v=CM7XsZRRqSI
https://www.youtube.com/watch?v=5MHcrQVTjjU
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This leads us to the arc length formula.

Theorem 10.5.20 Arc Length of Polar Curves.

Let r = f(θ) be a polar function with f ′ continuous on [α, β], on which
the graph traces itself only once. The arc length L of the graph on [α, β]
is

L =

∫ β

α

√
f ′(θ)2 + f(θ)2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

Example 10.5.21 Arc length of a limaçon.

Find the arc length of the limaçon r = 1 + 2 sin(θ).
Solution. With r = 1+2 sin(θ), we have r ′ = 2 cos(θ). The limaçon is
traced out once on [0, 2π], giving us our bounds of integration. Applying
Theorem 10.5.20, we have

L =

∫ 2π

0

√
(2 cos θ)2 + (1 + 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

−2 −1 1 2

1

2

3

x

y

0

π/2

Figure 10.5.22 The limaçon in Exam-
ple 10.5.21 whose arc length is mea-
sured

The final integral cannot be solved in terms of elementary functions, so
we resorted to a numerical approximation. (Simpson’s Rule, with n = 4,
approximates the value with 13.0608. Using n = 22 gives the value
above, which is accurate to 4 places after the decimal.)

Video solution

youtu.be/watch?v=o-cetriP4Ms

10.5.4 Surface Area
The formula for arc length leads us to a formula for surface area. The following
Theorem is based on Theorem 10.3.21.

Theorem 10.5.23 Surface Area of a Solid of Revolution.

Consider the graph of the polar equation r = f(θ), where f ′ is continu-
ous on [α, β], on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the initial ray (θ = 0) is:

Surface Area = 2π

∫ β

α

f(θ) sin(θ)
√
f ′(θ)2 + f(θ)2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π

∫ β

α

f(θ) cos(θ)
√
f ′(θ)2 + f(θ)2 dθ.

https://www.youtube.com/watch?v=o-cetriP4Ms
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Example 10.5.24 Surface area determined by a polar curve.

Find the surface area formed by revolving one petal of the rose curve
r = cos(2θ) about its central axis, as shown in Figure 10.5.25.

−1 1

−1

1

x

y

0

π/2

(a) (b)

Figure 10.5.25 Finding the surface area of a rose-curve petal that is re-
volved around its central axis

Solution. We choose, as implied by the figure, to revolve the por-
tion of the curve that lies on [0, π/4] about the initial ray. Using The-
orem 10.5.23 and the fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π

∫ π/4

0

cos(2θ) sin(θ)
√(

− 2 sin(2θ)
)2

+
(
cos(2θ)

)2
dθ

≈ 1.36707.

The integral is another that cannot be evaluated in terms of elemen-
tary functions. Simpson’s Rule, with n = 4, approximates the value at
1.36751.

This chapter has been about curves in the plane. While there is great math-
ematics to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathematics in 3D —
that is, in space. The next chapter begins our exploration into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathematical
objects.
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10.5.5 Exercises

Terms and Concepts

1. Given polar equation r = f(θ), how can one create parametric equations of the same curve?

2. With rectangular coordinates, it is natural to approximate area with ; with polar coordinates, it is
natural to approximate area with .

Problems

Exercise Group. Find dy
dx (in terms of θ). Then find the equations of the tangent and normal lines to the curve at the

indicated θ-value.
3. r = 1, θ = π/4 4. r = cos(θ), θ = π/4

5. r = 1 + sin(θ), θ = π/6 6. r = 1− 3 cos(θ), θ = 3π/4

7. r = θ, θ = π/2 8. r = cos(3θ), θ = π/6

9. r = sin(4θ), θ = π/3 10. r =
1

sin(θ)− cos(θ)
;θ = π

Exercise Group. Find the values of θ in the given interval where the graph of the polar function has horizontal and
vertical tangent lines.

11. r = 3; [0, 2π] 12. r = 2 sin(θ); [0, π]
13. r = cos(2θ); [0, 2π] 14. r = 1 + cos(θ); [0, 2π)

Exercise Group. Find the equation of the lines tangent to the graph at the pole.
15. r = sin(θ);[0, π] 16. r = sin(3θ);[0, π]

Exercise Group. Find the area of the described region.
17. Enclosed by the circle: r = 4 sin(θ) 18. Enclosed by the circle r = 5

19. Find the area enclosed by one petal of
r = sin(3θ).

20. Enclosed by one petal of the rose curve
r = cos(n θ), where n is a positive integer.

21. Find the area enclosed by the cardioid
r = 1− sin(θ).

22. Enclosed by the inner loop of the limaçon
r = 1 + 2 cos(θ)

23. Find the area enclosed by the outer loop of the
limaçon r = 1 + 2 cos(θ) (including area
enclosed by the inner loop).

24. Find the area enclosed between the inner and
outer loop of the limaçon r = 1 + 2 cos(θ).



606 CHAPTER 10. CURVES IN THE PLANE

25. Find the area enclosed by r = 2 cos(θ),
r = 2 sin(θ), and the x-axis, as shown:

−1 1 2

−1

1

2

x

y

The area is .

26. Find the area enclosed by r = cos(θ) and
r = sin(2θ), as shown:

1

1

x

y

The area is .

27. Enclosed by r = cos(3θ) and r = sin(3θ), as
shown:

1

0.5

x

y

28. Enclosed by r = cos(θ) and r = 1− cos(θ), as
shown:

−2 −1.5 −1 −0.5 0.5 1
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−0.5

0.5

1

x

y

Exercise Group. In the following exercises, answer the questions involving arc length.
29. Use the arc length formula to compute the arc

length of the circle r = 2.
30. Use the arc length formula to compute the arc

length of the circle r = 4 sin(θ).
31. Use the arc length formula to compute the arc

length of r = cos θ + sin θ.
32. Use the arc length formula to compute the arc

length of the cardioid r = 1 + cos θ. (Hint:
apply the formula, simplify, then use a
Power-Reducing Formula to convert 1 + cos θ
into a square.)

33. Approximate the arc length of one petal of the
rose curve r = sin(3θ) with Simpson’s Rule and
n = 4.

34. Let x(θ) = f(θ) cos(θ) and y(θ) = f(θ) sin(θ).
Show, as suggested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

Exercise Group. In the following exercises, answer the questions involving surface area.
35. Use Theorem 10.5.23 to find the surface area of

the sphere formed by revolving the circle r = 2
about the initial ray.

36. Use Theorem 10.5.23 to find the surface area of
the sphere formed by revolving the circle
r = 2 cos(θ) about the initial ray.

37. Find the surface area of the solid formed by
revolving the cardioid r = 1 + cos(θ) about the
initial ray.

38. Find the surface area of the solid formed by
revolving the circle r = 2 cos(θ) about the line
θ = π/2.
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39. Find the surface area of the solid formed by
revolving the line r = 3 sec(θ),
−π/4 ≤ θ ≤ π/4, about the line θ = π/2.

40. Find the surface area of the solid formed by
revolving the line r = 3 sec θ, 0 ≤ θ ≤ π/4,
about the initial ray.





Chapter 11

Introduction to Functionsof Sev-
eral Variables

A function of the form y = f(x) is a function of a single variable; given a value
of x, we can find a value y. Even the vector-valued functions of Chapter 13 are
single-variable functions; the input is a single variable though the output is a
vector.

There are many situations where a desired quantity is a function of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s batting average, one
needs to know the number of hits and the number of at-bats.

This chapter introducesmultivariable functions, that is, functions with more
than one input. A more detailed study of differential calculus for multivariable
functions continues in Chapter 14.

11.1 Introduction to Multivariable Functions

Definition 11.1.1 Function of Two Variables.

Let D be a subset of R2. A function f of two variables is a rule that
assigns each pair (x, y) inD a value z = f(x, y) in R. D is the domain
of f ; the set of all outputs of f is the range.

The videos in the last three chap-
ters were actually the first to be
recorded. At thetime, the intent
was simply to provide video con-
tent for a course: Math 2580, Cal-
culus IV, at theUniversity of Leth-
bridge. Theproject to create videos
directly aligned toAPEX Calculus
came later.

As a result, the videos included
here do not align perfectly with
the textbook. In particular, ex-
amples done in the videos are not
the sameas examples done in the
book.

youtu.be/watch?v=w4K2L9-OPk8

Figure 11.1.2 Video introduction to
multivariable function notation

Example 11.1.3 Understanding a function of two variables.

Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find
the domain and range of f .
Solution. Using the definition f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1

f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2

for which f is defined. In this example, f is defined for all pairs (x, y),
so the domainD of f is R2.

609

https://www.youtube.com/watch?v=w4K2L9-OPk8


610 CHAPTER 11. INTRODUCTION TO FUNCTIONS OF SEVERAL VARIABLES

The output of f can be made as large or small as possible; any real num-
ber r can be the output. (In fact, given any real number r, f(0,−r) = r.)
So the rangeR of f is R.

Example 11.1.4 Understanding a function of two variables.

Let f(x, y) =
√
1− x2

9 − y2

4 . Find the domain and range of f .

Solution. The domain is all pairs (x, y) allowable as input in f . Because
of the square root, we need (x, y) such that 0 ≤ 1− x2

9 − y2

4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equation describes an ellipse and its interior as shown in Fig-
ure 11.1.5. We can represent the domainD graphically with the figure;
in set notation, we can writeD = {(x, y)| x2

9 + y2

4 ≤ 1}.
x2

9
+

y2

4
= 1

−4 −2 2 4

−4

−2

2

4

x

y

Figure 11.1.5 Illustrating the domain
of f(x, y) in Example 11.1.4

The range is the set of all possible output values. The square root en-
sures that all output is ≥ 0. Since the x and y terms are squared, then
subtracted, inside the square root, the largest output value comes at
x = 0, y = 0: f(0, 0) = 1. Thus the rangeR is the interval [0, 1].

11.1.1 Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f . This creates a surface in space.

(a) (b)

Figure 11.1.6 Graphing a function of two variables
One can begin sketching a graph by plotting points, but this has limitations.

Consider Figure 11.1.6(a)where 25points havebeenplottedof f(x, y) = 1
x2+y2+1 .

More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 11.1.6(b) which does a far better job of illustrating
the behavior of f .
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While technology is readily available to help us graph functions of two vari-
ables, there is still a paper-and-pencil approach that is useful to understand and
master as it, combined with high-quality graphics, gives one great insight into
the behavior of a function. This technique is known as sketching level curves.

11.1.2 Level Curves
It may be surprising to find that the problemof representing a three dimensional
surface on paper is familiar to most people (they just don’t realize it). Topo-
graphical maps, like the one shown in Figure 11.1.7, represent the surface of
Earth by indicating points with the same elevation with contour lines. The ele-
vations marked are equally spaced; in this example, each thin line indicates an
elevation change in 50ft increments and each thick line indicates a change of
200ft. When lines are drawn close together, elevation changes rapidly (as one
does not have to travel far to rise 50ft). When lines are far apart, such as near
“Aspen Campground,” elevation changes more gradually as one has to walk far-
ther to rise 50ft.

Figure 11.1.7 A topographical map displays elevation by drawing contour lines,
along with the elevation is constant. USGS 1:24000-scale Quadrangle for
Chrome Mountain, MT 1987.

Given a function f(x, y), we can draw a “topographical map” of the graph
z = f(x, y) by drawing level curves (or, contour lines). A level curve at z = c is
a curve in the xy-plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing. Ex-
amples will help one understand this concept.

Example 11.1.8 Drawing Level Curves.

Let f(x, y) =
√

1− x2

9 − y2

4 . Find the level curves of f for c = 0, 0.2,
0.4, 0.6, 0.8 and 1.
Solution. Consider first c = 0. The level curve for c = 0 is the set of all
points (x, y) such that 0 =

√
1− x2

9 − y2

4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0) with horizontal major axis of length 6 and
minor axis of length 4. Thus for any point (x, y) on this curve, f(x, y) =
0.
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Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =

√
1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when
c = 1; there the ellipse is just the point (0, 0).
The level curves are shown in Figure 11.1.9(a). Note how the level curves
for c = 0 and c = 0.2 are very, very close together: this indicates that f
is growing rapidly along those curves.

−1 1 2−2 3−3

−1

1

−2

2

c = 1

c = 0.6

x

y

(a) (b)

Figure 11.1.9 Graphing the level curves in Example 11.1.8
In Figure 11.1.9(b), the curves are drawn on a graph of f in space. Note
how the elevations are evenly spaced. Near the level curves of c = 0
and c = 0.2 we can see that f indeed is growing quickly.

Example 11.1.10 Analyzing Level Curves.

Let f(x, y) = x+y
x2+y2+1 . Find the level curves for z = c.

Solution. We begin by setting f(x, y) = c for an arbitrary c and seeing
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if algebraic manipulation of the equation reveals anything significant.

x+ y

x2 + y2 + 1
= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet
clear. By completing the square, we can obtain:(

x− 1

2c

)2

+

(
y − 1

2c

)2

=
1

2c2
− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where

|c| < 1/
√
2. The level curves for c = ±0.2, ±0.4 and±0.6 are sketched

in Figure 11.1.11(a). To help illustrate “elevation,” we use thicker lines
for c values near 0, and dashed lines indicate where c < 0.
There is one special level curve, when c = 0. The level curve in this
situation is x+ y = 0, the line y = −x.
In Figure 11.1.11(b) we see a graph of the surface. Note how the y-axis is
pointing away from the viewer to more closely resemble the orientation
of the level curves in Figure 11.1.11(a).

c = 0

c = 0.2

c = 0.4

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(a)

(b)

Figure 11.1.11 Graphing the level curves in Example 11.1.10
Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x
without elevation change, though the level curve does.

11.1.3 Functions of Three Variables
We extend our study of multivariable functions to functions of three variables.
(One can make a function of as many variables as one likes; we limit our study
to three variables.)

Definition 11.1.12 Function of Three Variables.

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) in D a value w = f(x, y, z) in R. D is the
domain of f ; the set of all outputs of f is the range.

Note how this definition closely resembles that of Definition 11.1.1.
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Example 11.1.13 Understanding a function of three variables.

Let f(x, y, z) = x2+z+3 sin(y)
x+2y−z . Evaluate f at the point (3, 0, 2) and find

the domain and range of f .
Solution. To evaluate the function we simply set x = 3, y = 0, and
z = 3 in the definition of f :

f(3, 0, 2) =
32 + 2 + 3 sin(0)
3 + 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples
(x, y, z) for which f(x, y, z) is defined. As we cannot divide by 0, we
find the domainD is

D = {(x, y, z) |x+ 2y − z ̸= 0}.

We recognize that the set of all points inR3 thatare not inD formaplane
in space that passes through the origin (with normal vector ⟨1, 2,−1⟩).
We determine the range R is R; that is, all real numbers are possible
outputs of f . There is no set way of establishing this. Rather, to get
numbers near 0 we can let y = 0 and choose z ≈ −x2. To get numbers
of arbitrarily large magnitude, we can let z ≈ x+ 2y.

11.1.4 Level Surfaces
It is very difficult to produce a meaningful graph of a function of three variables.
A function of one variable is a curve drawn in 2 dimensions; a function of two
variables is a surface drawn in 3 dimensions; a function of three variables is a
hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface atw = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 11.1.14 Finding level surfaces.

If a point source S is radiating energy, the intensity I at a given point P
in space is inversely proportional to the square of the distance between
S and P . That is, when S = (0, 0, 0), I(x, y, z) = k

x2+y2+z2 for some
constant k.
Let k = 1; find the level surfaces of I .
Solution. We can (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its inten-
sity will be the same at all points equidistant from the origin. That is, at
any point on the surface of a sphere centered at the origin, the intensity
should be the same. Therefore, the level surfaces are spheres.
We now find this mathematically. The level surface at I = c is defined
by

c =
1

x2 + y2 + z2
.
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A small amount of algebra reveals

x2 + y2 + z2 =
1

c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c,

centered at the origin.

c r

16 0.25
8 0.35
4 0.5
2 0.71
1 1
0.5 1.41
0.25 2
0.125 2.83
0.0625 4

Figure 11.1.15 A table of c values
and the corresponding radius r of the
spheres of constant value in Exam-
ple 11.1.14

Figure 11.1.15 gives a table of the radii of the spheres for given c values.
Normally one would use equally spaced c values, but these values have
been chosen purposefully. At a distance of 0.25 from the point source,
the intensity is 16; to move to a point of half that intensity, one just
moves out 0.1 to 0.35 — not much at all. To again halve the intensity,
one moves 0.15, a little more than before.
Note how each time the intensity if halved, the distance required to
move away grows. We conclude that the closer one is to the source,
the more rapidly the intensity changes.

In the next section we apply the concepts of limits to functions of two or
more variables.
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11.1.5 Exercises

Terms and Concepts

1. Give two examples (other than those given in the text) of “real world” functions that require more than one
input.

2. The graph of a function of two variables is a .

3. Most people are familiar with the concept of level curves in the context of maps.

4. T/F: Along a level curve, the output of a function does not change.

5. The analogue of a level curve for functions of three variables is a level .

6. What does it mean when level curves are close together? Far apart?

Problems

Exercise Group. In the following exercises, give the domain and range of the multivariable function.
7. f(x, y) = x2 + y2 + 2 8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y 10. f(x, y) =
1

x+ 2y

11. f(x, y) =
1

x2 + y2 + 1

12. f(x, y) = sin(x) cos(y)

13. f(x, y) =
√
9− x2 − y2 14. f(x, y) =

1√
x2 + y2 − 9

Exercise Group. In the following exercises, describe in words and sketch the level curves for the function and given
c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2 16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2 18. f(x, y) =
1− x2 − y2

2y − 2x
; c = −2, 0, 2

19. f(x, y) =
2x− 2y

x2 + y2 + 1
; c = −1, 0, 1 20. f(x, y) =

y − x3 − 1

x
; c = −3,−1, 0, 1, 3

21. f(x, y) =
√
x2 + 4y2; c = 1, 2, 3, 4 22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

Exercise Group. In the following exercises, give the domain and range of the functions of three variables.

23. f(x, y, z) =
x

x+ 2y − 4z 24. f(x, y, z) =
1

1− x2 − y2 − z2

25. f(x, y, z) =
√
z − x2 + y2 26. f(x, y, z) = z2 sin(x) cos(y)

Exercise Group. In the following exercises, describe the level surfaces of the given functions of three variables.
27. f(x, y, z) = x2 + y2 + z2 28. f(x, y, z) = z − x2 + y2

29. f(x, y, z) =
x2 + y2

z
30. f(x, y, z) =

z

x− y

31. Compare the level curves of Exercises 21 and 22.
How are they similar, and how are they
different? Each surface is a quadric surface;
describe how the level curves are consistent
with what we know about each surface.
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11.2 Limits and Continuity of Multivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definitions for open and closed sets in the xy-plane.

youtu.be/watch?v=GIamhgb3Ilk

Figure 11.2.1 Introducing limits and
continuity for functions of several
variables

11.2.1 Open and Closed Subsets in Higher Dimensions

Definition 11.2.2 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets.

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y − y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in
S.
A point P in S is an interior point of S if there is an open disk centered
at P that contains only points in S.
A set S is open if every point in S is an interior point.
A set S is closed if it contains all of its boundary points.
A setS isbounded if there is anM > 0 such that the open disk, centered
at the origin with radius M , contains S. A set that is not bounded is
unbounded.

Figure 11.2.3 shows several sets in the xy-plane. In each set, point P1 lies
on the boundary of the set as all open disks centered there contain both points
in, and not in, the set. In contrast, point P2 is an interior point for there is an
open disk centered there that lies entirely within the set.

P1

P2

x

y

(a)

P1

P2

x

y

(b)

P1

P2

x

y

(c)

Figure 11.2.3 Illustrating open and closed sets in the xy-plane
The set depicted in Figure 11.2.3(a) is a closed set as it contains all of its

boundary points. The set in Figure 11.2.3(b) is open, for all of its points are
interior points (or, equivalently, it does not contain any of its boundary points).
The set in Figure 11.2.3(c) is neither open nor closed as it contains some of its
boundary points.

Example 11.2.4 Determining open/closed, bounded/unbounded.

Determine if the domain of the function f(x, y) =
√
1− x2/9− y2/4

is open, closed, or neither, and if it is bounded.

https://www.youtube.com/watch?v=GIamhgb3Ilk
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Solution. This domain of this function was found in Example 11.1.4
to be D = {(x, y) | x2

9 + y2

4 ≤ 1}, the region bounded by the ellipse
x2

9 + y2

4 = 1. Since the region includes the boundary (indicated by
the use of “≤”), the set contains all of its boundary points and hence
is closed. The region is bounded as a disk of radius 4, centered at the
origin, containsD.

Example 11.2.5 Determining open/closed, bounded/unbounded.

Determine if the domain of f(x, y) = 1
x−y is open, closed, or neither.

Solution. As we cannot divide by 0, we find the domain to be D =
{(x, y) |x − y ̸= 0}. In other words, the domain is the set of all points
(x, y) not on the line y = x.

x

y

Figure 11.2.6 Sketching the domain of
the function in Example 11.2.5

The domain is sketched in Figure 11.2.6. Note howwe can draw an open
disk around any point in the domain that lies entirely inside the domain,
and also note how the only boundary points of the domain are the points
on the line y = x. We conclude the domain is an open set. The set is
unbounded.

11.2.2 Limits
Recall a pseudo-definition of the limit of a function of one variable:

“ lim
x→c

f(x) = L”
means that if x is “really close” to c, then f(x) is “really close” toL. A similar

pseudo-definition holds for functions of two variables. We’ll say that
“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is
really close to L.” The formal definition is given below.

While our first limit definition
was defined over an open inter-
val, we now define limits over a
setS in the plane (whereS does
not have to be open). As planar
sets canbe farmore complicated
than intervals, our definition adds
the restriction “. . . where every
opendisk centered atP contains
points inS other thanP .” In this
text, all sets we’ll consider will
satisfy this condition andwewon’t
bother to check; it is included in
the definition for completeness.

Definition 11.2.7 Limit of a Function of Two Variables.

Let S be a set containing P = (x0, y0) where every open disk centered
at P contains points in S other than P , let f be a function of two vari-
ables defined on S, except possibly at P , and let L be a real number.
The limit of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y)
in S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centered at
(x0, y0) with radius δ, then |f(x, y)− L| < ε.

The concept behind Definition 11.2.7 is sketched in Figure 11.2.8. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0)
in the xy-plane with radius δ, then f(x, y) should be within ε of L.

Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Figure 11.2.8 Illustrating the defini-
tion of a limit. The open disk in the
xy-plane has radius δ. Let (x, y) be
any point in this disk; f(x, y) is within
ε of L.
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Theorem 11.2.9 Basic Limit Properties of Functions of Two Variables.

Let b, x0, y0, L and K be real numbers, let n be a positive integer, and
let f and g be functions with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. Identity lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L±K

4. Scalar Multiples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. Quotients: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combinedwith Theorems1.3.4 and 1.3.7 of Section1.3, allows
us to evaluate many limits.

Example 11.2.10 Evaluating a limit.

Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy

x2 + y2

Solution.

1. The aforementioned theorems allow us to simply evaluate y/x +
cos(xy) when x = 1 and y = π. If an indeterminate form is
returned, we must do more work to evaluate the limit; otherwise,
the result is the limit. Therefore

lim
(x,y)→(1,π)

y

x
+ cos(xy) =

π

1
+ cos(π)

= π − 1.

2. We attempt to evaluate the limit by substituting 0 in for x and y,
but the result is the indeterminate form “0/0.” To evaluate this
limit, we must “do more work,” but we have not yet learned what
“kind” of work to do. Therefore we cannot yet evaluate this limit.

When dealing with functions of a single variable we also considered one-
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sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c
from either direction, the left or the right.

In the plane, there are infinitely many directions from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a particular direction, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiting val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the left and right hand

limits of single variable functions not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 11.2.11 Showing limits do not exist.

1. Show lim
(x,y)→(0,0)

3xy
x2+y2 does not exist by finding the limits along

the lines y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+y does not exist by finding the limit along

the path y = − sin(x).

Solution.

1. Evaluating lim
(x,y)→(0,0)

3xy
x2+y2 along the lines y = mx means re-

place all y’s withmx and evaluating the resulting limit:

lim
(x,mx)→(0,0)

3x(mx)

x2 + (mx)2
= lim

x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m

m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit
for each choice ofm. That is, along different lines we get differing
limiting values, meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does

not exist by finding the limit along the path y = − sin(x). First,
however, consider the limits found along the lines y = mx as
done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)

x(m+ 1)

= lim
x→0

sin(mx2)

x
· 1

m+ 1
.
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By applying L’Hospital’s Rule, we can show this limit is 0 except
whenm = −1, that is, along the line y = −x. This line is not in
the domain of f , so we have found the following fact: along every
line y = mx in the domain of f , lim

(x,y)→(0,0)
f(x, y) = 0. Now

consider the limit along the path y = − sin(x):

lim
(x,− sin(x))→(0,0)

sin
(
− x sin(x)

)
x− sin(x)

= lim
x→0

sin
(
− x sin(x)

)
x− sin(x)

Now apply L’Hospital’s Rule twice:

= lim
x→0

cos
(
− x sin(x)

)
(− sin(x)− x cos(x))

1− cos(x)
(0/0)

= lim
x→0

− sin
(
− x sin(x)

)
(− sin(x)− x cos(x))2 + cos

(
− x sin(x)

)
(−2 cos(x) + x sin(x))

sin(x)
.

This last limit is of the form “2/0”, which suggests that the limit
does not exist. Step back and consider what we have just dis-
covered. Along any line y = mx in the domain of the f(x, y),
the limit is 0. However, along the path y = − sin(x), which lies
in the domain of f(x, y) for all x ̸= 0, the limit does not exist.
Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+y does not exist.

Example 11.2.12 Finding a limit.

Let f(x, y) = 5x2y2

x2+y2 . Find lim
(x,y)→(0,0)

f(x, y).

Solution. It is relatively easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demon-
strated in the previous example, but it tells us that if the limit does exist
then it must be 0.
To prove the limit is 0, we apply Definition 11.2.7. Let ε > 0 be given.
We want to find δ > 0 such that if

√
(x− 0)2 + (y − 0)2 < δ, then

|f(x, y)− 0| < ε.
Set δ <

√
ε/5. Note that

∣∣∣ 5y2

x2+y2

∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.

Let
√
(x− 0)2 + (y − 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2

x2 + y2
− 0

∣∣∣∣
=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√

(x− 0)2 + (y − 0)2 < δ then |f(x, y)− 0| < ε, which is what
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we wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2+y2 = 0.

11.2.3 Continuity
Definition 1.5.1 defines what it means for a function of one variable to be contin-
uous. In brief, it meant that the graph of the function did not have breaks, holes,
jumps, etc. We define continuity for functions of two variables in a similar way
as we did for functions of one variable.

Definition 11.2.13 Continuous.

Let a function f(x, y) be defined on a setS containing the point (x0, y0).

1. f is continuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is continuous on S if f is continuous at all points in S. If f is
continuous at all points in R2, we say that f is continuous every-
where.

Example 11.2.14 Continuity of a function of two variables.

Let f(x, y) =

{
cos(y) sin(x)

x x ̸= 0

cos(y) x = 0
. Is f continuous at (0, 0)? Is f

continuous everywhere?
Solution. To determine if f is continuous at (0, 0), we need to compare

lim
(x,y)→(0,0)

f(x, y) to f(0, 0).

Applying the definition of f , we see that f(0, 0) = cos(0) = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). Substituting 0 for x and y

in (cos(y) sin(x))/x returns the indeterminate form “0/0”, so we need
to do more work to evaluate this limit.
Consider two related limits: lim

(x,y)→(0,0)
cos(y) and lim

(x,y)→(0,0)

sin(x)
x . The

first limit does not contain x, and since cos(y) is continuous,

lim
(x,y)→(0,0)

cos(y) = lim
y→0

cos(y) = cos(0) = 1.

The second limit does not contain y. By Theorem 1.3.17 we can say

lim
(x,y)→(0,0)

sin(x)
x

= lim
x→0

sin(x)
x

= 1.

Finally, Theorem 11.2.9 of this section states that we can combine these
two limits as follows:

lim
(x,y)→(0,0)

cos(y) sin(x)
x

= lim
(x,y)→(0,0)

(cos(y))
(
sin(x)
x

)
=

(
lim

(x,y)→(0,0)
cos(y)

)(
lim

(x,y)→(0,0)

sin(x)
x

)
= (1)(1)

= 1.



11.2. LIMITS AND CONTINUITY OF MULTIVARIABLE FUNCTIONS 623

We have found that lim
(x,y)→(0,0)

cos(y) sin(x)
x = f(0, 0), so f is continuous

at (0, 0).
A similar analysis shows that f is continuous at all points in R2. As long
as x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analy-
sis shows that the limit is cos(y). Thus we can say that f is continuous
everywhere. A graph of f is given in Figure 11.2.15. Notice how it has
no breaks, jumps, etc.

Figure 11.2.15 A graph of f(x, y) in
Example 11.2.14

The following theorem is very similar to Theorem 1.5.10, giving us ways to
combine continuous functions to create other continuous functions.

Theorem 11.2.16 Properties of Continuous Functions.

Let f and g be continuous on a set S, let c be a real number, and let n be
a positive integer. The following functions are continuous on S.

1. Sums/Differences: f ± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g { (as longs as g ̸= 0 on S)}

5. Powers: fn

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd, then true for

all values of f on S.)

7. Compositions:Adjust the definitions of f and g to: Let f be continu-
ous on S, where the range of f on S is J , and let g be a single vari-
able function that is continuous on J . Then g ◦ f , i.e., g(f(x, y)),
is continuous on S.

Example 11.2.17 Establishing continuity of a function.

Let f(x, y) = sin(x2 cos(y)). Show f is continuous everywhere.
Solution. We will apply both Theorems 1.5.10 and 11.2.16. Let
f1(x, y) = x2. Since y is not actually used in the function, and polyno-
mials are continuous (by Theorem 1.5.10), we conclude f1 is continuous
everywhere. A similar statement can be made about f2(x, y) = cos(y).
Part 3 of Theorem 11.2.16 states that f3 = f1 · f2 is continuous every-
where, and Part 7 of the theorem states the composition of sine with
f3 is continuous: that is, sin(f3) = sin(x2 cos(y)) is continuous every-
where.

11.2.4 Functions of Three Variables
The definitions and theorems given in this section can be extended in a natural
way to definitions and theorems about functions of three (or more) variables.
We cover the key concepts here; some terms fromDefinitions 11.2.2 and 11.2.13
are not redefined but their analogous meanings should be clear to the reader.
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Definition 11.2.18 Open Balls, Limit, Continuous.

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set
of all points (x, y, z) such that√

(x− x0)2 + (y − y0)2 + (z − z0)2 = r.

2. Let D be a set in R3 containing (x0, y0, z0) where every open
ball centered at (x0, y0, z0) contains points of D other than
(x0, y0, z0), and let f(x, y, z) be a function of three variables de-
fined on D, except possibly at (x0, y0, z0). The limit of f(x, y, z)
as (x, y, z) approaches (x0, y0, z0) is L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all
(x, y, z) inD, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball
centered at (x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). We
say f is continuous at (x0, y0, z0) if

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = f(x0, y0, z0).

If f is continuous at all points inD, we say f is continuous onD.

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 11.2.16 also applies to function of three or more
variables, allowing us to say that the function

f(x, y, z) =
ex

2+y
√
y2 + z2 + 3

sin(xyz) + 5

is continuous everywhere.
When considering single variable functions, we studied limits, then continu-

ity, then the derivative. In our current study of multivariable functions, we have
studied limits and continuity. In the next section we study derivation, which
takes on a slight twist as we are in a multivariable context.
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11.2.5 Exercises

Terms and Concepts

1. Describe in your own words the difference between the boundary and interior points of a set.
2. Use your own words to describe (informally) what lim

(x,y)→(1,2)
f(x, y) = 17means.

3. Give an example of a closed, bounded set.
4. Give an example of a closed, unbounded set.
5. Give an example of a open, bounded set.
6. Give an example of a open, unbounded set.

Problems

Exercise Group. A set S is given.

(a) Give one boundary point and one interior point, when possible, of S.

(b) State whether S is open, closed, or neither.

(c) State whether S is bounded or unbounded.

7. S =

{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y − 3)2

9
≤ 1

}
8. S =

{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) |x2 + y2 = 1

}
10. S = {(x, y) | y > sin(x)}.

Exercise Group. In the following exercises:

(a) Find the domainD of the given function.

(b) State whetherD is an open or closed set.

(c) State whetherD is bounded or unbounded.

11. f(x, y) =
√
9− x2 − y2 12. f(x, y) =

√
y − x2

13. f(x, y) =
1√

y − x2
14. f(x, y) =

x2 − y2

x2 + y2

Exercise Group. In the following exercises, a limit is given. Evaluate the limit along the paths given, then state why
these results show the given limit does not exist.

15. lim
(x,y)→(0,0)

x2−y2

x2+y2

(a) Along the path y = 0.

(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+y
x−y

Along the path y = mx.

17. lim
(x,y)→(0,0)

xy−y2

y2+x

(a) Along the path y = mx.

(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.

(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+y−3
x2−1

(a) Along the path y = 2.

(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin(x)
cos(y)

(a) Along the path x = π.

(b) Along the path y = x− π/2.
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11.3 Partial Derivatives

Let y be a function of x. We have studied in great detail the derivative of y
with respect to x, that is, dy

dx , which measures the rate at which y changes with
respect to x. Consider now z = f(x, y). It makes sense to want to know how
z changes with respect to x and/or y. This section begins our investigation into
these rates of change.

youtu.be/watch?v=uApAQNSb5TQ

Figure 11.3.1Motivating the concept
of the partial derivative

11.3.1 First-order partial derivatives

Consider the function f(x, y) = x2 + 2y2, as graphed in Figure 11.3.2(a). By
fixing y = 2, we focus our attention to all points on the surface where the y-
value is 2, shown in both Figure 11.3.2(a) and Figure 11.3.2(b). These points
form a curve in the plane y = 2: z = f(x, 2) = x2 + 8 which defines z as a
function of just one variable. We can take the derivative of z with respect to x
along this curve and find equations of tangent lines, etc.

(a) (b)

Figure 11.3.2 By fixing y = 2, the surface z = f(x, y) = x2 + 2y2 is a curve in
space

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit-based definition first, then show how to compute these partial derivatives
without directly taking limits.

Alternate notations for fx(x, y)
include:

∂

∂x
f(x, y),

∂f

∂x
,
∂z

∂x
, and zx,

with similar notations for fy(x, y).
For ease of notation, fx(x, y) is
often abbreviated fx.

Definition 11.3.3 Partial Derivative.

Let z = f(x, y) be a continuous function on a set S in R2.

1. The partial derivative of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
.

2. The partial derivative of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

https://www.youtube.com/watch?v=uApAQNSb5TQ


11.3. PARTIAL DERIVATIVES 627

Example 11.3.4 Computing partial derivatives with the limit definition.

Let f(x, y) = x2y + 2x+ y3. Find fx(x, y) using the limit definition.
Solution. Using Definition 11.3.3, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2y + 2(x+ h) + y3 − (x2y + 2x+ y3)

h

= lim
h→0

x2y + 2xhy + h2y + 2x+ 2h+ y3 − (x2y + 2x+ y3)

h

= lim
h→0

2xhy + h2y + 2h

h

= lim
h→0

2xy + hy + 2

= 2xy + 2.

We have found fx(x, y) = 2xy + 2.

Example 11.3.4 found a partial derivative using the formal, limit-based de-
finition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x, y), we hold y fixed — it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treating

y as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treating y as a

constant. More examples will help make this clear.

Example 11.3.5 Finding partial derivatives.

Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin(x)

3. f(x, y) = ex
2y3
√
x2 + 1

Solution.

1. We have f(x, y) = x3y2+5y2−x+7. Begin with fx(x, y). Keep
y fixed, treating it as a constant or coefficient, as appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero. To compute fy(x, y),
we hold x fixed:

fy(x, y) = 2x3y + 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin(x). Begin with fx(x, y). We
need to apply the Chain Rule with the cosine term; y2 is the coef-
ficient of the x-term inside the cosine function.

fx(x, y) = − sin(xy2)(y2) + cos(x) = −y2 sin(xy2) + cos(x).
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To find fy(x, y), note that x is the coefficient of the y2 term inside
of the cosine term; also note that since x is fixed, sin(x) is also
fixed, and we treat it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3√

x2 + 1. Beginning with fx(x, y), note
how we need to apply the Product Rule.

fx(x, y) = ex
2y3

(2xy3)
√
x2 + 1 + ex

2y3 1

2

(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√
x2 + 1 +

xex
2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Prod-
uct Rule; since

√
x2 + 1 does not contain y, we treat it as fixed

and hence becomes a coefficient of the ex
2y3

term.

fy(x, y) = ex
2y3

(3x2y2)
√

x2 + 1 = 3x2y2ex
2y3
√

x2 + 1.
youtu.be/watch?v=R3PXGwjOmtw

Figure 11.3.6 Additional partial deriv-
ative computation examples

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivativemeans. Given z = f(x, y), fx(x, y)measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar tomeasuring zx: you aremoving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

youtu.be/watch?v=jvnTNe4hHL8

Figure 11.3.7 Interpreting partial de-
rivatives

The following example helps us visualize this more.

Example 11.3.8 Evaluating partial derivatives.

Let z = f(x, y) = −x2− 1
2y

2+xy+10. Find fx(2, 1) and fy(2, 1) and
interpret their meaning.
Solution. We begin by computing fx(x, y) = −2x+ y and fy(x, y) =
−y + x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these
numbers mean?
Consider fx(2, 1) = −3, along with Figure 11.3.9(a). If one “stands”
on the surface at the point (2, 1, 7.5) and moves parallel to the x-axis
(i.e., only the x-value changes, not the y-value), then the instantaneous
rate of change is −3. Increasing the x-value will decrease the z-value;
decreasing the x-value will increase the z-value.

https://www.youtube.com/watch?v=R3PXGwjOmtw
https://www.youtube.com/watch?v=jvnTNe4hHL8
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(a) (b)

Figure 11.3.9 Illustrating the meaning of partial derivatives
Now consider fy(2, 1) = 1, illustrated in Figure 11.3.9(b). Moving along
the curve drawn on the surface, i.e., parallel to the y-axis and not chang-
ing the x-values, increases the z-value instantaneously at a rate of 1.
Increasing the y-value by 1 would increase the z-value by approximately
1.
Since the magnitude of fx is greater than the magnitude of fy at (2, 1),
it is “steeper” in the x-direction than in the y-direction.

11.3.2 Tangent Planes
Anotherway to interpret partial derivatives is in terms of the tangent plane. Con-
sider the graph of a function f(x, y), such as the one in Figure 11.3.2. Setting
x = a, y = b defines a point (a, b, f(a, b)) on the graph. Through the point
(a, b), we have the lines x = a+ s, y = b, and x = a, y = b+ t, parallel to the
x and y axes, respectively (where s, t are parameters).

Using the function f(x, y) we define two vector-valued functions:

r⃗1(s) = ⟨a+ s, b, f(a+ s, b)⟩
r⃗2(t) = ⟨a, b+ t, f(a, b+ t)⟩ .

Both vector-valued functions define space curves that lie on the surface z =
f(x, y), and these curves intersect at the point (a, b, f(a, b)), when s = t = 0.

Now consider computing r⃗′1(s). The first two components of this derivative
are found in a straightforwardmanner: they are 1 and 0, respectively. To find the
third component of the derivative, notice that in r⃗1(s)we vary thex-component
of f while holding the y-component constant. Using the Chain Rule and Defin-
ition 11.3.3, we find that the third component is fx(a + s, b). Altogether, we
have

r⃗′1(s) = ⟨1, 0, fx(a+ s, b)⟩ .
Evaluating this at s = 0 gives

v⃗ = r⃗′1(0) = ⟨1, 0, fx(a, b)⟩ .

We can perform a similar process with r⃗2(t), ultimately leading to

w⃗ = r⃗′2(0) = ⟨0, 1, fy(a, b)⟩ .

From Section 13.2, we know that r⃗′1(0) defines a tangent vector to the curve
r⃗1(s) when s = 0, and similarly, r⃗′2(0) defines a tangent vector to the curve
r⃗2(t) when t = 0.
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It seems reasonable that any vector that is tangent to these curves, which lie
on our surface, should also be considered tangent to that surface. The vectors v⃗
and w⃗ are therefore tangent to z = f(x, y) at (a, b, f(a, b)), and they are defi-
nitely not parallel. From Section 12.6 we know that any two non-parallel vectors
at a point define a plane through that point. We also know that taking the cross
product of these two vectors gives us a normal vector: the cross product gives
us

n⃗ = v⃗ × w⃗ = ⟨−fx(a, b),−fy(a, b), 1⟩ .

The equation of the plane through (a, b, f(a, b)) with normal vector n⃗ =
⟨−fx(a, b),−fy(a, b), 1⟩ is

−fx(a, b)(x− a)− fy(a, b)(y − b) + (z − f(a, b)) = 0.

It is customary to solve for z in this equation and make the following definition.

Definition 11.3.10

Let f(x, y) be a function whose first-order partial derivatives exist at
(a, b). The tangent plane to the surface z = f(x, y) at the point
(a, b, f(a, b)) is the plane defined by the equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Example 11.3.11 Finding a tangent plane equation.

Find the equation of tangent plane to the surface z = x2 + 3y2 at
(x, y) = (1,−1).
Solution. Our function is f(x, y) = x2 + 3y2, and we have f(1,−1) =
4, so the point on the surface is (1,−1, 4). The partial derivatives are
fx(x, y) = 2x and fy(x, y) = 6y, so fx(1,−1) = 2, fy(1,−1) = −6.
Using Definition 11.3.10, our plane is given by

z = 4 + 2(x− 1)− 6(y + 1).

Notice the similarity between the tangent plane equation inDefinition11.3.10
and the single variable tangent line equation y = f(c) + f ′(c)(x− c). As with
functions of one variable, this suggests a connection between derivatives and
linear approximation. We explore this connection in Section 14.1, where we’ll
see that Definition 11.3.10 should be strengthed to require that the partial de-
rivatives of f be continuous.

11.3.3 Second-order partial derivatives
Let z = f(x, y). We have learned to find the partial derivatives fx(x, y) and
fy(x, y), which are each functions of x and y. Therefore we can take partial
derivatives of them, each with respect to x and y. We define these “second
partials” along with the notation, give examples, then discuss their meaning.

Definition 11.3.12 Second Partial Derivative, Mixed Partial Derivative.

Let z = f(x, y) be continuous on a set S.
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1. The second partial derivative of f with respect to x then x is

∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
=
(
fx
)
x
= fxx

2. The second partial derivative of f with respect to x then y is

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=
(
fx
)
y
= fxy

Similar definitions hold for ∂2f
∂y2 = fyy and ∂2f

∂x∂y = fyx.
The second partial derivatives fxy and fyx aremixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-
tion of the second derivative of a function of a single variable. If y = f(x), then
f ′′(x) = d2y

dx2 . The “d2y” portion means “take the derivative of y twice,” while
“dx2”means “with respect to x both times.” Whenwe only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to. The terms in Definition 11.3.12

all depend on limits, so each def-
inition comeswith the caveat “where
the limit exists.”

Example 11.3.13 Second partial derivatives.

For each of the following, find all six first and second partial derivatives.
That is, find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos(x)

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

Solution. In each, we give fx and fy immediately and then spend time
deriving the second partial derivatives.

1.

f(x, y) = x3y2 + 2xy3 + cos(x)

fx(x, y) = 3x2y2 + 2y3 − sin(x)

fy(x, y) = 2x3y + 6xy2

fxx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
3x2y2 + 2y3 − sin(x)

)
= 6xy2 − cos(x)

fyy(x, y) =
∂

∂y

(
fy
)
=

∂

∂y

(
2x3y + 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y

(
fx
)
=

∂

∂y

(
3x2y2 + 2y3 − sin(x)

)
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= 6x2y + 6y2

fyx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
2x3y + 6xy2

)
= 6x2y + 6y2

2.

f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(3x2

y2
)

=
6x

y2

fyy(x, y) =
∂

∂y

(
fy
)
=

∂

∂y

(
− 2x3

y3
)

=
6x3

y4

fxy(x, y) =
∂

∂y

(
fx
)
=

∂

∂y

(3x2

y2
)

= −6x2

y3

fyx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
− 2x3

y3
)

= −6x2

y3

3. f(x, y) = ex sin(x2y) Because the following partial derivatives
get rather long, we omit the extra notation and just give the re-
sults. In several cases, multiple applications of the Product and
Chain Rules will be necessary, followed by some basic combina-
tion of like terms.

fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)

fy(x, y) = x2ex cos(x2y)

fxx(x, y) = ex sin(x2y) + 4xyex cos(x2y) + 2yex cos(x2y)− 4x2y2ex sin(x2y)

fyy(x, y) = −x4ex sin(x2y)

fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

youtu.be/watch?v=H81s72zLfI8

Figure 11.3.14 Second order par-
tial derivatives and differentiability
classes

Notice how in each of the three functions in Example 11.3.13, fxy = fyx.
Due to the complexity of the examples, this likely is not a coincidence. The fol-
lowing theorem states that it is not.

https://www.youtube.com/watch?v=H81s72zLfI8
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Theorem 11.3.15 Mixed Partial Derivatives.

Let f be defined such that fxy and fyx are continuous on a set S. Then
for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

11.3.4 Understanding Second Partial Derivatives
Now that we know how to find second partials, we investigatewhat they tell us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of f is “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f ′′(x) < 0, then the derivative is getting smaller (so the graph of
f is concave down); if f ′′(x) > 0, then the derivative is growing, making the
graph of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and
fyy as could be made about f ′′(x) above. When taking derivatives with respect
tox twice, wemeasure howmuch fx changeswith respect tox. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, fxx measures whether one’s path is concave up/
down when walking due east.

Similarly, fyy measures the concavity in the y-direction. If fyy(x, y) > 0,
then fy is increasing with respect to y and the graph of f will be concave up in
the y-direction. Appealing to the rolling meadow analogy again, fyy measures
whether one’s path is concave up/down when walking due north.

We now consider the mixed partials fxy and fyx. The mixed partial fxy
measures how much fx changes with respect to y. Once again using the rolling
meadow analogy, fx measures the slope if one walks due east. Looking east, be-
gin walking north (side-stepping). Is the path towards the east getting steeper?
If so, fxy > 0. Is the path towards the east not changing in steepness? If so,
then fxy = 0. A similar thing can be said about fyx: consider the steepness of
paths heading north while side-stepping to the east.

The following example examines these ideas with concrete numbers and
graphs.

Example 11.3.16 Understanding second partial derivatives.

Let z = x2− y2+xy. Evaluate the 6 first and second partial derivatives
at (−1/2, 1/2) and interpret what each of these numbers mean.
Solution. We find that:
fx(x, y) = 2x + y,fy(x, y) = −2y + x,fxx(x, y) = 2, fyy(x, y) = −2
and fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direction of x
is−1/2: if onemoves from that point parallel to the x-axis, the instanta-
neous rate of change will be−1/2. The slope of the tangent line at this
point in the direction of y is −3/2: if one moves from this point paral-
lel to the y-axis, the instantaneous rate of change will be −3/2. These
tangents lines are graphed in Figure 11.3.17(a) and Figure 11.3.17(b), re-
spectively, where the tangent lines are drawn in a solid line.
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(a) (b)

Figure 11.3.17 Understanding the second partial derivatives in Exam-
ple 11.3.16
Now consider only Figure 11.3.17(a). Three directed tangent lines are
drawn (two are dashed), each in the direction of x; that is, each has a
slope determined by fx. Note how as y increases, the slope of these
lines get closer to 0. Since the slopes are all negative, getting closer to 0
means the slopes are increasing. The slopes given by fx are increasing
as y increases, meaning fxy must be positive.
Since fxy = fyx, we also expect fy to increase as x increases. Consider
Figure 11.3.17(b) where again three directed tangent lines are drawn,
this time each in the direction of y with slopes determined by fy. As x
increases, the slopes become less steep (closer to 0). Since these are
negative slopes, this means the slopes are increasing.
Thus far we have a visual understanding of fx, fy , and fxy = fyx. We
now interpret fxx and fyy . In Figure 11.3.17(a), we see a curve drawn
where x is held constant at x = −1/2: only y varies. This curve is
clearly concave down, corresponding to the fact that fyy < 0. In part
Figure 11.3.17(b) of the figure, we see a similar curve where y is con-
stant and only x varies. This curve is concave up, corresponding to the
fact that fxx > 0.

11.3.5 Partial Derivatives and Functions of Three Variables
The concepts underlying partial derivatives can be easily extend to more than
two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables
if needed.

Definition 11.3.18 Partial Derivatives with Three Variables.

Let w = f(x, y, z) be a continuous function on a setD in R3.
The partial derivative of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)

h
.

Similar definitions hold for fy(x, y, z) and fz(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial
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derivatives of f with respect to z then y, for instance, just as before.

Example 11.3.19 Partial derivatives of functions of three variables.

For each of the following, find fx, fy , fz , fxz , fyz , and fzz .

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

Solution.

1.

fx(x, y, z) = 2xy3z4 + 2xy2 + 3x2z3

fy(x, y, z) = 3x2y2z4 + 2x2y + 4y3z4

fz(x, y, z) = 4x2y3z3 + 3x3z2 + 4y4z3

fxz(x, y, z) = 8xy3z3 + 9x2z2

fyz(x, y, z) = 12x2y2z3 + 16y3z3

fzz(x, y, z) = 12x2y3z2 + 6x3z + 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz), and

fxz(x, y, z) = y cos(yz)
fyz(x, y, z) = x cos(yz)− xyz sin(yz)

fzz(x, y, z) = −xy2 sin(yz)

11.3.6 Higher Order Partial Derivatives
We can continue taking partial derivatives of partial derivatives of partial deriva-
tives of …; we do not have to stop with second partial derivatives. These higher
order partial derivatives do not have a tidy graphical interpretation; neverthe-
less they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f

∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f

∂x

))
.

Example 11.3.20 Higher order partial derivatives.

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz .

Solution.

1. To find fxxy , we first find fx, then fxx, then fxxy:

fx(x, y) = 2xy2 + y cos(xy)

fxx(x, y) = 2y2 − y2 sin(xy)
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fxxy(x, y) = 4y − 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy , then fyx, then fyxx:

fy(x, y) = 2x2y + x cos(xy)
fyx(x, y) = 4xy + cos(xy)− xy sin(xy)

fyxx(x, y) = 4y − y sin(xy)−
(
y sin(xy) + xy2 cos(xy)

)
= 4y − 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz , we find fx, then fxy , then fxyz :

fx(x, y, z) = 3x2exy + x3yexy

fxy(x, y, z) = 3x3exy + x3exy + x4yexy

= 4x3exy + x4yexy

fxyz(x, y, z) = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at times. Had we known this, the second part of Exam-
ple 11.3.20 would have been much simpler to compute. Instead of computing
fxyz in the x, y then z orders, we could have applied the z, then x then y order
(as fxyz = fzxy). It is easy to see that fz = − sin(z); then fzx and fzxy are
clearly 0 as fz does not contain an x or y.

A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x, y), the partial derivatives fx and fy measure the instantaneous rate
of change of z when moving parallel to the x- and y-axes, respectively. How do
we measure the rate of change at a point when we do not move parallel to one
of these axes? What if we move in the direction given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of Section 14.3. First, we need to define what it means for a function
of two variables to be differentiable.
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11.3.7 Exercises

Terms and Concepts

1. What is the difference between a constant and a coefficient?
2. Given a function f(x, y), explain in your own words how to compute fx.

3. In the mixed partial fraction fxy , which is computed first, fx or fy?

• fx

• fy

4. In the mixed partial fraction ∂2f
∂x∂y , which is computed first, fx or fy?

• fx

• fy

Problems

Exercise Group. In the following exercises, evaluate fx(x, y) and fy(x, y) at the indicated point.

5. f(x, y) = x2y − x+ 2y + 3 at (1, 2) 6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3).
7. f(x, y) = sin(y) cos(x) at (π/3, π/3) 8. f(x, y) = ln(xy) at (−2,−3) Find:

Exercise Group. In the following exercises, find fx, fy , fxx, fyy , fxy and fyx.

9. f(x, y) = x2y + 3x2 + 4y − 5 10. f(x, y) = y3 + 3xy2 + 3x2y + x3

11. f(x, y) =
x

y
12. f(x, y) = 4

xy

13. f(x, y) = ex
2+y2 14. f(x, y) = ex+2y

15. f(x, y) = sin(x) cos(y) 16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3) 18. f(x, y) = sin
(
5x2 + 2y3

)
19. f(x, y) =

√
4xy2 + 1 20. f(x, y) = (2x+ 5y)

√
y

21. f(x, y) =
1

x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1 24. f(x, y) = ln(x2 + y)

25. f(x, y) =
ln(x)
4y

26. f(x, y) = 5ex sin(y) + 9

Exercise Group. In the following exercises, form a function f(x, y) such that fx and fy match those given.
27. fx = sin(y) + 1,fy = x cos(y) 28. fx = x+ y and fy = x+ y

29. fx = 6xy − 4y2,fy = 3x2 − 8xy + 2 30. fx = 2x
x2+y2 and fy = 2y

x2+y2

Exercise Group. In the following exercises, find fx, fy , fz , fyz and fzy .

31. f(x, y, z) = x2e2y−3z 32. f(x, y, z) = x3y2 + x3z + y2z

33. f(x, y, z) =
3x

7y2z

34. f(x, y, z) = ln(xyz)





Appendices

1005





Appendix A

Answers to Selected Exercises

1007



1038 APPENDIX A. ANSWERS TO SELECTED EXERCISES

II · Math 2565: Accelerated Calculus II
6 · Techniques of Antidifferentiation
6.1 · Integration by Parts
6.1 · Exercises

Terms and Concepts

6.1.1. True
6.1.2. False
6.1.4. False

Problems

6.1.5. sin(x)− x cos(x) + C 6.1.6. −e−x(x+ 1) + C

6.1.7. −x2 cos(x) + 2x sin(x) + 2 cos(x) + C 6.1.8.
−x3 cos(x) + 3x2 sin(x) + 6x cos(x)− 6 sin(x) + C

6.1.9. 1
2e

x2

+ C 6.1.10. ex
(
x3 − 3x2 + 6x− 6

)
+ C

6.1.11. − 1
2xe

−2x − e−2x

4 + C 6.1.12. 1
2e

x(sin(x)− cos(x)) + C

6.1.13. 1
5e

2x(sin(x) + 2 cos(x)) + C 6.1.14.
(

1
58

)
e7x(7 sin(3x)− 3 cos(3x)) + C

6.1.15.
(

1
16

)
e8x(sin(8x) + cos(8x)) + C 6.1.16. 0.5 sin2(x) + C

6.1.17.
√
1− x2 + x sin−1(x) + C 6.1.18. x tan−1(3x)− 0.166667 ln

(
9x2 + 1

)
+ C

6.1.19. 0.5x2 tan−1(x)− x
2 + 0.5 tan−1(x) + C 6.1.20. −

√
1− x2 + x cos−1(x) + C

6.1.21. 0.5x2 ln(x)− x2

4 + C 6.1.22. 1
2x

2 ln(x)− x2

4 + 2x ln(x)− 2x+ C

6.1.23.
1
2x

2 ln(x− 4)− 1
4 (x− 4)

2 − 4x− 8 ln(x− 4) + C
6.1.24. 0.5x2 ln

(
x2
)
− x2

2 + C

6.1.25. 0.333333x3 ln(x)− x3

9 + C 6.1.26. 2x+ x ln2(x)− 2x ln(x) + C

6.1.27. 2(x− 7) + (x− 7) (ln(x− 7))
2 −

2(x− 7) ln(x− 7) + C

6.1.28. x tan(x) + ln(|cos(x)|) + C

6.1.29. ln(|sin(x)|)− x cot(x) + C 6.1.30.
(

2
5 (x+ 2)

2 −
(
4
3

)
(x+ 2)

)√
x+ 2 + C

6.1.31. 1
3

(
x2 − 6

)( 3
2 ) + C

6.1.32. sec(x) + C

6.1.33. x sec(x)− ln(|sec(x) + tan(x)|) + C 6.1.34. −x csc(x)− ln(|csc(x) + cot(x)|) + C

6.1.35. x
2 (sin(ln(x))− cos(ln(x))) + C 6.1.36. sin(ex)− ex cos(ex) + C

6.1.37. 2 sin(
√
x)− 2

√
x cos(

√
x) + C 6.1.38. x ln(

√
x)− x

2 + C

6.1.39. 2
√
xe

√
x − 2e

√
x + C 6.1.40. x2

2 + C

6.1.41. −1 6.1.42. −3 1
e2

6.1.43. 0 6.1.44. π2

12 − 1.73205π3

216 + 1.73205π − 6

6.1.45. 1 6.1.46. 0.563436
6.1.47.

(
− 9

4

)
e−8 −

(
− 5

4

)
e−4 6.1.48. 0.5eπ + 0.5

6.1.49. 0.2
(
−e3π − e−3π

)
6.2 · Trigonometric Integrals
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6.2 · Exercises

Terms and Concepts

6.2.1. False
6.2.2. False
6.2.3. False
6.2.4. False

Problems

6.2.5. −0.2 cos5(x) + C 6.2.6. 0.25 sin4(x) + C

6.2.7. 1
7 (cos(x))

7 − 1
5 (cos(x))

5
+ C 6.2.8. 1

8 (cos(x))
8 − 1

6 (cos(x))
6
+ C

6.2.9. 1
11 (sin(x))

11 − 2
9 (sin(x))

9
+ 1

7 (sin(x))
7
+ C 6.2.10. −0.111111 sin9(x) + 0.428571 sin7(x)−

0.6 sin5(x) + 0.333333 sin3(x) + C

6.2.11. x
8 − 0.03125 sin(4x) + C 6.2.12. 0.5(−0.125 cos(8x)− 0.5 cos(2x)) + C

6.2.13. C −
((

1
10

)
cos(5x) +

(
1
14

)
cos(7x)

)
6.2.14.

(
1
2

)
sin(x)−

(
1
14

)
sin(7x) + C

6.2.15. 1
14π sin(7πx)−

1
18π sin(9πx) + C 6.2.16. 0.5(sin(x) + 0.333333 sin(3x)) + C

6.2.17. 3
π cos

(
π
6πx

)
+ 1

π cos
(
π
2πx

)
+ C 6.2.18. tan

5(x)
5 + C

6.2.19. tan
5(x)
5 + tan3(x)

3 + C 6.2.20. 1
11 (tan(x))

11
+ 1

9 (tan(x))
9
+ C

6.2.21. 1
10 (tan(x))

10
+ C 6.2.22. 1

4 (sec(x))
4 − 1

2 (sec(x))
2
+ C

6.2.23. 1
7 (sec(x))

7 − 2
5 (sec(x))

5
+ 1

3 (sec(x))
3
+ C 6.2.24. tan

3(x)
3 − tan(x) + x+ C

6.2.25. 0.25 tan(x) sec3(x) +
0.375(sec(x) tan(x) + ln(|sec(x) + tan(x)|)) + C

6.2.26.
0.5(sec(x) tan(x)− ln(|sec(x) + tan(x)|)) + C

6.2.27. 0.25 tan(x) sec3(x)−
0.125(sec(x) tan(x) + ln(|sec(x) + tan(x)|)) + C

6.2.28. 1
5

6.2.29. 0

6.2.30. 0 6.2.31. 21.3333333333333
85.3333333333333

6.2.32. 2
3 6.2.33. 1

5

6.2.34. 8
15

6.3 · Trigonometric Substitution
6.3 · Exercises

Terms and Concepts

6.3.1. backward
6.3.2. 6 sin(θ) or 6 cos(θ)

6.3.3. (a). tan2(θ) + 1 = sec2(θ)
(b). 7 sec2(θ)
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Problems

6.3.5. 1
2

(
x
√
x2 + 1 + ln

(√
x2 + 1 + x

))
+ C 6.3.6. x

2

√
x2 + 4 + 2 ln

(√
x2+4
2 + x

2

)
+ C

6.3.7. 1
2 sin

−1(x) + x
2

√
1− x2 + C 6.3.8. 9

2 sin
−1
(
x
3

)
+ x

2

√
9− x2 + C

6.3.9. 1
2x

√
x2 − 1− 1

2 ln
(∣∣x+

√
x2 − 1

∣∣)+ C 6.3.10. 1
2x

√
x2 − 16− 8 ln

(∣∣∣x4 +
√
x2−16
4

∣∣∣)+ C

6.3.11. x
2

√
36x2 + 1 + 1

12 ln
(
6x+

√
36x2 + 1

)
+ C 6.3.12. x

2

√
1− 49x2 + 1

14 sin
−1(7x) + C

6.3.13. x
2

√
64x2 − 1− 1

16 ln
(∣∣8x+

√
64x2 − 1

∣∣)+C 6.3.14. 9 ln
(

x
2.44949 +

√
x2

6 + 1

)
+ C

6.3.15. 2 sin−1
(

x
3.87298

)
+ C 6.3.16. 3 ln

(∣∣∣∣ x
3.31662 +

√
x2

11 − 1

∣∣∣∣)+ C

6.3.17.
√
x2 − 5− 2.23607 sec−1

(
x

2.23607

)
+ C 6.3.18. 1

2 tan
−1(x) + x

2(x2+1) + C

6.3.19.
√
x2 − 7 + C 6.3.20. 1

8 sin
−1(x) + x

8

√
1− x2

(
2x2 − 1

)
+ C

6.3.21. C − 1√
x2+49

6.3.22.
4x

√
x2 − 10 + 40 ln

(∣∣∣∣ x
3.16228 +

√
x2

10 − 1

∣∣∣∣)+ C

6.3.23.
(
1
8

)
x−8

x2−16x+68 +
(

1
16

)
tan−1

(
x−8
2

)
+ C 6.3.24. x√

1−x2
− sin−1(x) + C

6.3.25. C −
(√

10−x2

3x + 1
3 sin

−1
(

x
3.16228

)) 6.3.26.
x
2

√
x2 + 5−

(
5
2

)
ln
(

x
1.73205 +

√
x2

5 + 1

)
+ C

6.3.27. π
2 6.3.28.

(
7
2

)√
33− 8 ln

(∣∣( 7
4

)
+
(
1
4

)√
33
∣∣)

6.3.29. 6
√
10 + 2 ln

(
3 + 1

√
10
)

6.3.30. tan−1(7) +
(

7
50

)
6.3.31. 9 sin−1

((
2
3

))
+ 2

√
5 6.3.32. π

8

6.4 · Partial Fraction Decomposition
6.4 · Exercises

Terms and Concepts

6.4.1. rational
6.4.2. True

6.4.3. A
x + B

x−5 6.4.4. A
x−4 + B

x+4

6.4.5. A
x−

√
7
+ B

x+
√
7

6.4.6. A
x + Bx+C

x2+6

Problems

6.4.7. 2 ln(|x− 2|) + 3 ln(|x− 4|) + C 6.4.8. 3 ln(|x|)− 4 ln(|x− 5|) + C

6.4.9.
(
9
5

)
ln(|x− 1|)−

(
9
5

)
ln(|x+ 1|) + C 6.4.10. ln(|x+ 9|) + ln(|3x+ 1|) + C

6.4.11. 3 ln(|x+ 7|)− 8
x+7 + C 6.4.12. 9 ln(|x+ 5|)− 3

x+5 + C

6.4.13. 6 ln(|x|) + 7 ln(|x+ 3|) + 4
x+3 + C 6.4.14. C −

(7 ln(|− (8x+ 5)|) + 5 ln(|x+ 1|) + 6 ln(|x+ 6|))
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6.4.15.
C −

((
1
2

)
ln(|6x+ 2|) +

(
1
9

)
ln(|9x− 1|) + ( 2

5 )
5x−4

) 6.4.16. x+ 3 ln(|x− 4|) + ln(|x+ 1|) + C

6.4.17.
1
2x

2 − x+
(
216
13

)
ln(|x− 6|) +

(
343
13

)
ln(|x+ 7|) + C

6.4.18. 4x+ C

6.4.19.
(

1
19

)
ln(|x|)−

(
1
38

)
ln
(
x2 + 8x+ 19

)
−

0.121547 tan−1
(

x+4
1.73205

)
+ C

6.4.20.
x+ ln

(
x2 + 6x+ 11

)
− 3.53553 tan−1

(
x+3

1.41421

)
+ C

6.4.21. ln
(∣∣3x2 + 5x− 9

∣∣)− 5 ln(|x+ 4|) + C 6.4.22.
3 ln(|x+ 1|)+2 ln

(
x2 + 2x+ 2

)
−5 tan−1(x+ 1)+C

6.4.23.
(
463
73

)
ln(|x+ 8|) +

(
121
146

)
ln
(
x2 + 9

)
−(

201
73

)
tan−1

(
x
3

)
+ C

6.4.24.
3 ln
(
x2 − 2x+ 26

)
−5 ln(|x+ 4|)−2 tan−1

(
x−1
5

)
+C

6.4.25. 5 ln
(
x2 − 4x+ 10

)
− 4 ln(|x− 4|) +

0.816497 tan−1
(

x−2
2.44949

)
+ C

6.4.26. 4 ln(|x+ 7|) +
(
5
2

)
ln
(
x2 − 10x+ 27

)
−

7.77817 tan−1
(

x−5
1.41421

)
+ C

6.4.27. ln
((

6144
117649

))
6.4.28. 0.536267

6.4.29. ln
((

9
11

))
+ tan−1(4)− tan−1(2) 6.4.30. 1

8

6.5 · Improper Integration
6.5 · Exercises

Terms and Concepts

6.5.4. p > 1

6.5.5. p > 1

6.5.6. p < 1

Problems

6.5.7. e5

2
6.5.8. 1

2

6.5.9. 1
3

6.5.10. π
3

6.5.11. 1
ln(2)

6.5.12. ∞

6.5.13. ∞ 6.5.14. ∞
6.5.15. 1 6.5.16. ∞
6.5.17. ∞ 6.5.18. ∞
6.5.19. ∞ 6.5.20. ∞
6.5.21. ∞ 6.5.22. 2 + 2

√
2

6.5.23. 1 6.5.24. 1
2

6.5.25. 0 6.5.26. π
2

6.5.27. −1
4 6.5.28. −1

9

6.5.29. ∞ 6.5.30. −1

6.5.31. 1 6.5.32. ∞
6.5.33. 1

2 6.5.34. 1
2

6.5.35. (a). Limit Comparison Test
(b). diverges
(c). 1

x

6.5.36. (a). Limit Comparison Test
(b). converges
(c). 1

x1.5
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6.5.37. (a). Limit Comparison Test
(b). diverges
(c). 1

x

6.5.38. (a). Direct Comparison Test
(b). converges
(c). xe−x

6.5.39. (a). Direct Comparison Test
(b). converges
(c). e−x

6.5.40. (a). Direct Comparison Test
(b). converges
(c). xe−x

6.5.41. (a). Direct Comparison Test
(b). converges
(c). 1

x2−1

6.5.42. (a). Direct Comparison Test
(b). diverges
(c). x

x2+1

6.5.43. (a). Direct Comparison Test
(b). converges
(c). 1

ex

6.5.44. (a). Limit Comparison Test
(b). converges
(c). 1

ex

7 · Applications of Integration
7.1 · Area Between Curves
7.1 · Exercises

Terms and Concepts

7.1.1. True
7.1.2. True

Problems

7.1.5. 22.436 7.1.6. 5.33333
7.1.7. 3.14159 7.1.8. 3.14159
7.1.9. 0.5 7.1.10. 2.82843
7.1.11. 0.721354 7.1.12. 4/3

7.1.13. 4.5 7.1.14. 1.33333
7.1.15. 0.429204 7.1.16. 8
7.1.17. 0.166667 7.1.18. 3.08333

7.1.19. All enclosed regions have the same area, with regions being the reflection of adjacent regions. One region is
formed on [π/4, 5π/4], with area 2

√
2.

7.1.20. 3.89711
7.1.21. 1 7.1.22. 1.66667
7.1.23. 4.5 7.1.24. 2.25
7.1.25. 0.514298 7.1.26. 4/3

7.1.27. 1 7.1.28. 5
7.1.29. 4 7.1.30. 10.5

7.1.31. 262800 ft2

7.1.32. 623333 ft2

7.2 · Volume by Cross-Sectional Area; Disk and Washer Methods
7.2 · Exercises
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Terms and Concepts

7.2.1. T
7.2.2. Answers will vary.

Problems

7.2.4. 48π
√
3/5 units3 7.2.5. 175π/3 units3

7.2.6. π2/4 units3 7.2.7. π/6 units3

7.2.8. 9π/2 units3 7.2.9. 35π/3 units3

7.2.10. π2 − 2π units3 7.2.11. 2π/15 units3

7.2.12.

(a) π/2

(b) 5π/6

(c) 4π/5

(d) 8π/15

7.2.13.

(a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

7.2.14.

(a) 4π/3

(b) 2π/3

(c) 4π/3

(d) π/3

7.2.15.

(a) 104π/15

(b) 64π/15

(c) 32π/5

7.2.16.

(a) π2/2

(b) π2/2− 4π sinh−1(1)

(c) π2/2 + 4π sinh−1(1)

7.2.17.

(a) 8π

(b) 8π

(c) 16π/3

(d) 8π/3

7.2.18. 250π/3 7.2.19. 250π/3
7.2.20. 80/3 7.2.21. 187.5

7.3 · The Shell Method
7.3 · Exercises

Terms and Concepts

7.3.1. T
7.3.2. F
7.3.3. F
7.3.4. T
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Problems

7.3.5. 9π/2 units3 7.3.6. 70π/3 units3

7.3.7. π2 − 2π units3 7.3.8. 2π/15 units3

7.3.9. 48π
√
3/5 units3 7.3.10. 350π/3 units3

7.3.11. π2/4 units3 7.3.12. π/6 units3

7.3.13.

(a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

7.3.14.

(a) 128π/3

(b) 128π/3

(c) 512π/15

(d) 256π/5

7.3.15.

(a) 4π/3

(b) π/3

(c) 4π/3

(d) 2π/3

7.3.16.

(a) 16π/3

(b) 8π/3

(c) 8π

7.3.17.

(a) 2π(
√
2− 1)

(b) 2π(1−
√
2 + sinh−1(1))

7.3.18.

(a) 16π/3

(b) 8π/3

(c) 8π

(d) 8π

7.4 · Arc Length and Surface Area
7.4 · Exercises

Problems

7.4.3.
√
2 7.4.4. 6

7.4.5. 10
3

7.4.6. 6

7.4.7. 157
3 7.4.8. 3

2

7.4.9. 12
5 7.4.10. 7.99533×107

400000

7.4.11. − ln(2−
√
3) ≈ 1.31696 7.4.12. sinh−1(1)

7.4.13.
∫ 1

0

√
1 + 4x2 dx 7.4.14.

∫ 1

0

√
1 + 100x18 dx

7.4.15.
∫ e

1

√
1 + 1

x2 dx 7.4.16.
∫ 2

1

√
1 + 1

x4 dx

7.4.17.
∫ π/2

0

√
1 + sin2(x) dx 7.4.18.

∫ π/4

−π/4

√
1 + sec2(x) tan2(x) dx

7.4.19. 1.4790 7.4.20. 1.8377
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7.4.21. 2.1300 7.4.22. 1.3254
7.4.23. 1.00013 7.4.24. 1.7625

7.4.25. 2π
∫ 1

0
2x

√
5 dx = 2π

√
5 7.4.26. 2π

∫ 1

0
x
√
5 dx = π

√
5

7.4.27. 2π
∫ 1

0
x
√
1 + 4x2 dx = π/6(5

√
5− 1) 7.4.28. 2π

∫ 1

0
x3

√
1 + 9x4 dx = π/27(10

√
10− 1)

7.4.29.
∫ 1

0

√
1 + 1

4x dx 7.4.30.
∫ 1

−1

√
1 + x2

1−x2 dx

7.4.31.
∫ 3

−3

√
1 + x2

81−9x2 dx 7.4.32. 2π
∫ 1

0

√
x
√
1 + 1/(4x) dx = π/6(5

√
5− 1)

7.4.33. 2π
∫ 1

0

√
1− x2

√
1 + x/(1− x2) dx = 4π

7.5 · Work
7.5 · Exercises

Terms and Concepts

7.5.1. In SI units, it is one joule, i.e., one newton–meter, or kg·ms2 m In Imperial Units, it is ft–lb.

7.5.2. The same.
7.5.3. Smaller.
7.5.4. force; distance

Problems

7.5.5.

(a) 500 ft–lb

(b) 100− 50
√
2 ≈ 29.29 ft

7.5.6.

(a) 2450 J

(b) 1568 J
7.5.7.

(a) 1
2 · d · l2 ft–lb

(b) 75 %

(c) ℓ(1−
√
2/2) ≈ 0.2929ℓ

7.5.8. 735 J
7.5.9.

(a) 756 ft–lb

(b) 60,000 ft–lb

(c) Yes, for the cable accounts for about 1% of the total work.
7.5.10. 11,100 ft–lb
7.5.11. 575 ft–lb
7.5.12. 125 ft–lb
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7.5.13. 0.05 J
7.5.14. 12.5 ft–lb
7.5.15. 5/3 ft–lb
7.5.16. 0.2625 = 21/80 J
7.5.17. f · d/2 J
7.5.18. 45 ft–lb
7.5.19. 5 ft–lb
7.5.20. 953, 284 J
7.5.21.

(a) 52,929.6 ft–lb

(b) 18,525.3 ft–lb

(c) When 3.83 ft of water have been pumped from the tank, leaving about 2.17 ft in the tank.
7.5.22. 192,767 ft–lb. Note that the tank is oriented horizontally. Let the origin be the center of one of the circular
ends of the tank. Since the radius is 3.75 ft, the fluid is being pumped to y = 4.75; thus the distance the gas travels
is h(y) = 4.75 − y. A differential element of water is a rectangle, with length 20 and width 2

√
3.752 − y2. Thus

the force required to move that slab of gas is F (y) = 40 · 45.93 ·
√
3.752 − y2dy. Total work is

∫ 3.75

−3.75
40 · 45.93 ·

(4.75− y)
√
3.752 − y2 dy. This can be evaluated without actual integration; split the integral into

∫ 3.75

−3.75
40 · 45.93 ·

(4.75)
√
3.752 − y2 dy +

∫ 3.75

−3.75
40 · 45.93 · (−y)

√
3.752 − y2 dy. The first integral can be evaluated as measuring

half the area of a circle; the latter integral can be shown to be 0 without much difficulty. (Use substitution and realize
the bounds are both 0.)
7.5.23. 212,135 ft–lb
7.5.24.

(a) approx. 577,000 J

(b) approx. 399,000 J

(c) approx 110,000 J (By volume, half of the water is between the base of the cone and a height of 3.9685 m. If
one rounds this to 4m, the work is approx 104,000 J.)

7.5.25. 187,214 ft–lb
7.5.26. 617,400 J
7.5.27. 4,917,150 J

7.6 · Fluid Forces
7.6 · Exercises

Terms and Concepts

7.6.1. Answers will vary.
7.6.2. Answers will vary.

Problems

7.6.3. 499.2 lb 7.6.4. 249.6 lb
7.6.5. 6739.2 lb 7.6.6. 5241.6 lb
7.6.7. 3920.7 lb 7.6.8. 15682.8 lb
7.6.9. 2496 lb 7.6.10. 2496 lb
7.6.11. 602.59 lb 7.6.12. 291.2 lb
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7.6.13.

(a) 2340 lb

(b) 5625 lb

7.6.14.

(a) 1064.96 lb

(b) 2560 lb
7.6.15.

(a) 1597.44 lb

(b) 3840 lb

7.6.16.

(a) 41.6 lb

(b) 100 lb
7.6.17.

(a) 56.42 lb

(b) 135.62 lb

7.6.18.

(a) 1123.2 lb

(b) 2700 lb

7.6.19. 5.1 ft
7.6.20. 4.1 ft

8 · Differential Equations
8.1 · Graphical and Numerical Solutions to Differential Equations
8.1 · Exercises

Terms and Concepts

8.1.1. An initial value problems is a differential equation that is pairedwith one ormore initial conditions. A differential
equation is simply the equation without the initial conditions.
8.1.2. Answers will vary.
8.1.3. Substitute the proposed function into the differential equation, and show the the statement is satisfied.
8.1.4. A particular solution is one specifica member of a family of solutions, and has no arbitrary constants. A general
solution is a family of solutions, includes all possible solutions to the differential equation, and typically includes one
or more arbitrary constants.
8.1.5. Many differential equations are impossible to solve analytically.
8.1.6. A smaller h value leads to a numerical solution that is closer to the true solution, but decreasing the h value
leads to more computational effort.

Problems

8.1.7. Answers will vary. 8.1.8. Answers will vary.
8.1.9. Answers will vary. 8.1.10. Answers will vary.

8.1.11. C = 2 8.1.12. C = 6

8.1.13.

x

y

8.1.14.

x

y
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8.1.15.

x

y

8.1.16.

x

y

8.1.17. b 8.1.18. c
8.1.19. d 8.1.20. a

8.1.21.

x

y

8.1.22.

x

y

8.1.23.

x

y

8.1.24.

x

y

8.1.25.

xi yi

0.00 1.0000

0.25 1.5000

0.50 2.3125

0.75 3.5938

1.00 5.5781

8.1.26.

xi yi

0.0 1.0000

0.1 1.0000

0.2 1.0037

0.3 1.0110

0.4 1.0219

0.5 1.0363

8.1.27.

xi yi

0.0 2.0000

0.2 2.4000

0.4 2.9197

0.6 3.5816

0.8 4.4108

1.0 5.4364

8.1.28.

xi yi

0.0 0.0000

0.5 0.5000

1.0 1.8591

1.5 10.5824

2.0 88378.1190

8.1.29.
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x 0.0 0.2 0.4 0.6 0.8 1.0

y(x) 1.0000 1.0204 1.0870 1.2195 1.4706 2.0000
h = 0.2 1.0000 1.0000 1.0400 1.1265 1.2788 1.5405
h = 0.1 1.0000 1.0100 1.0623 1.1687 1.3601 1.7129

8.1.30.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x) 0.5000 0.5412 0.6806 0.9747 1.5551 2.7183
h = 0.2 0.5000 0.5000 0.5816 0.7686 1.1250 1.7885
h = 0.1 0.5000 0.5201 0.6282 0.8622 1.3132 2.1788

8.2 · Separable Differential Equations
8.2 · Exercises

Problems

8.2.1. Separable.
1

y2 − y
dy = dx

8.2.2. Not separable.

8.2.3. Not separable. 8.2.4. Separable.
1

cos y − y
dy = (x2 + 1) dx

8.2.5.
{
y =

1 + Ce2x

1− Ce2x
, y = −1

} 8.2.6. y = 2 + Cex

8.2.7. y = Cx4 8.2.8. y2 − 4x2 = C

8.2.9. (y − 1)ey = −e−x − 1

3
e−3x + C 8.2.10. (y − 1)2 = ln(x2 + 1) + C

8.2.11.
{
arcsin 2y − arctan(x2 + 1) = C, y = ±1

2

}
8.2.12.

{
y =

1

C − arctanx
, y = 0

}

8.2.13. sin y + cos(x) = 2 8.2.14. −x3 + 3y − y3 = 2

8.2.15. 1
2y

2 − ln(1 + x2) = 8 8.2.16. y2 + 2xex − 2ex = 2

8.2.17.
1

2
y2 − y =

1

2

(
(x2 + 1) ln(x2 + 1)− (x2 + 1)

)
+

1

2

8.2.18. sin(y2)− (arcsinx)2 = − 1
2

8.2.19. 2 tan 2y = 2x+ sin 2x
8.2.20. x = exp

(
−
√
1− y2

y

)

8.3 · First Order Linear Differential Equations
8.3 · Exercises

Problems

8.3.1. y =
3

2
+ Ce2x 8.3.2. y =

ln |x|+ C

x

8.3.3. y = − 1

2x
+ Cx 8.3.4. y =

x3

7
− x

5
+

C

x4

8.3.5. y = secx+ C(cscx) 8.3.6. y =
1

2
+ Ce−x2
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8.3.7. y = Ce3x − (x+ 1)e2x 8.3.8. y = sin(2x)− 2 cos(2x) + Ce−x

8.3.9. y = (x2 + 2)ex 8.3.10. y =
1

4
x2 − 1

3
x+

1

2
+

7

12x2

8.3.11. y = 1− 2

x
+

2− e1−x

x2

8.3.12. y = 3e−2x

8.3.13. y =
x2 + 1

x+ 1
e−x 8.3.14. y = sin(x)− 3 cos(x)

8.3.15. y =
(x− 2)(x+ 1)

x− 1
8.3.16. y = x2

(
arctanx− π

4

)

8.3.17. Both; y = −5ex+
1
3x

3 8.3.18. separable; ey = sin(x)− x cos(x) + 1

8.3.19. linear; y =
x3 − 3x− 6

3(x− 1)

8.3.20. separable; y = 1

8.3.21.

x

y

The solution will increase and begin to follow the
line y = x− 1.

y = x− 1 + e−x

8.3.22.

x

y

The solution will decrease and approach y = 0.

y =
2 + ln(x+ 1)

x+ 1

8.4 · Modeling with Differential Equations
8.4 · Exercises

Problems

8.4.1. y = 10 + Ce−kx 8.4.2. 13.66 days
8.4.3. 4.43 days 8.4.4. 13,304.65 years old

8.4.5. x =


ab(1− e(a−b)kt)

b− ae(a−b)kt
if a ̸= b

a2kt

1 + akt
if a = b

8.4.6. 24.57 minutes

8.4.7. y = 60− 3.69858e−
1
4 t + 43.69858e−0.0390169t 8.4.8. 0.06767 g/gal

8.4.9. y = 8(1− e−
1
2 t) g/cm2 8.4.10.

y = 20− 10

17
(4 cos(2t)− sin(2t))− 300

17
e−

1
2 t g

8.4.11. 11.00075 g 8.4.12. pond 1: 50.4853 grams per million gallons
pond 2: 32.8649 grams per million gallons

9 · Sequences and Series
9.1 · Sequences
9.1 · Exercises
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Terms and Concepts

9.1.1. Answers will vary.
9.1.2. natural
9.1.3. Answers will vary.
9.1.4. Answers will vary.

Problems

9.1.5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45 9.1.6. − 3

2 ,
9
4 ,−

27
8 , 81

16 ,−
243
32

9.1.7. − 1
3 ,−2,− 81

5 ,− 512
3 ,− 15625

7
9.1.8. 1, 1, 2, 3, 5

9.1.9. an = 3n+ 1 9.1.10. an = (−1)n+1 3
2n−1

9.1.11. an = 10 · 2n−1 9.1.12. an = 1/(n− 1)!

9.1.13. 1/7 9.1.14. 3e2 − 1

9.1.15. 0 9.1.16. e4

9.1.17. diverges 9.1.18. converges to 4/3
9.1.19. converges to 0 9.1.20. converges to 0
9.1.21. diverges 9.1.22. converges to 3
9.1.23. converges to e 9.1.24. converges to 5
9.1.25. converges to 0 9.1.26. diverges
9.1.27. converges to 2 9.1.28. converges to 0

9.1.29. bounded 9.1.30. neither bounded above or below
9.1.31. bounded 9.1.32. bounded below
9.1.33. neither bounded above or below 9.1.34. bounded above

9.1.35. monotonically increasing 9.1.36. monotonically increasing for n ≥ 3

9.1.37. never monotonic 9.1.38. monotonically decreasing for n ≥ 3

9.1.40.

(b) an = 1/3n and bn = 1/2n

9.2 · Infinite Series
9.2 · Exercises

Terms and Concepts

9.2.1. Answers will vary.
9.2.2. Answers will vary.
9.2.4. Answers will vary.
9.2.5. F
9.2.6. F

9.3 · Integral and Comparison Tests
9.3 · Exercises
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Terms and Concepts

9.3.1. continuous, positive and decreasing
9.3.2. F

Problems

9.3.5. Converges 9.3.6. Converges
9.3.7. Diverges 9.3.8. Diverges
9.3.9. Converges 9.3.10. Converges
9.3.11. Converges 9.3.12. Converges

9.4 · Ratio and Root Tests
9.4 · Exercises

Terms and Concepts

9.4.1. algebraic, or polynomial.
9.4.2. factorial and/or exponential
9.4.3. Integral Test, Limit Comparison Test, and Root Test
9.4.4. raised to a power

Problems

9.4.5. Converges 9.4.6. Diverges
9.4.7. Converges 9.4.8. Converges
9.4.9. The Ratio Test is inconclusive; the p-Series Test
states it diverges.

9.4.10. The Ratio Test is inconclusive; the Direct
Comparison Test with 1/n3 shows it converges.

9.4.11. Converges 9.4.12. Converges
9.4.13. Converges; note the summation can be

rewritten as
∞∑

n=1

2nn!

3nn!
, from which the Ratio Test or

Geometric Series Test can be applied.

9.4.14. Converges; rewrite the summation as
∞∑

n=1

n!

5nn!
then apply the Ratio Test or Geometric

Series Test.

9.4.15. Converges 9.4.16. Converges
9.4.17. Converges 9.4.18. Converges
9.4.19. Diverges 9.4.20. Converges
9.4.21. Diverges. The Root Test is inconclusive, but
the nth-Term Test shows divergence. (The terms of
the sequence approach e−2, not 0, as n → ∞.)

9.4.22. Converges

9.4.23. Converges 9.4.24. Converges

9.5 · Alternating Series and Absolute Convergence
9.5 · Exercises
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Terms and Concepts

9.5.2. postive, decreasing, 0
9.5.3. Many examples exist; one common example is an = (−1)n/n.

9.5.4. conditionally

10 · Curves in the Plane
10.1 · Conic Sections
10.1 · Exercises

Terms and Concepts

10.1.6. line

Problems

10.1.19. (x+1)2

9 + (y−2)2

4 = 1; foci at (−1±
√
5, 2);

e =
√
5/3

10.1.20. (x−1)2

1/4 + y2

9 = 1; foci at (1,±
√
8.75);

e =
√
8.75/3 ≈ 0.99

10.1.29. x2 − y2

3 = 1 10.1.30. y2 − x2

24 = 1

10.1.31. (y−3)2

4 − (x−1)2

9 = 1 10.1.32. (x−1)2

9 − (y−3)2

4 = 1

10.1.45. The sound originated from a point approximately 31m to the right ofB and 1390m above or below it. (Since
the three points are collinear, we cannot distinguish whether the sound originated above/below the line containing
the points.)

10.2 · Parametric Equations
10.2 · Exercises

Terms and Concepts

10.2.1. True
10.2.2. orientation
10.2.3. rectangular
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Problems

10.2.5.

2 4 6 8 10 12

−8

−6

−4

−2

2

x

y

10.2.6.

−0.5 0.5 1 1.5

−4

−2

2

4

x

y

10.2.7.

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

10.2.8.

1 2 3 4 5

1

2

3

4

x

y

10.2.9.

−10 −5 5 10

2

4

6

8

x

y

10.2.10.

−0.5 0.5 1 1.5

−1

−0.5

0.5

1

x

y
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10.2.11.

−4 −2 2 4

−4

−2

2

4

x

y

10.2.12.

−4 −2 2 4 6

−5

5

x

y

10.2.13.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

10.2.14.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

10.2.15.

2 4 6 8 10

−10

10

x

y

10.2.16.

1 2 3 4

−4

−2

2

4

x

y
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10.2.17.

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

y

10.2.18.

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

y

10.2.19.

(a) Traces the parabola y = x2, moves from left to
right.

(b) Traces the parabola y = x2, but only from
−1 ≤ x ≤ 1; traces this portion back and forth
infinitely.

(c) Traces the parabola y = x2, but only for 0 < x.
Moves left to right.

(d) Traces the parabola y = x2, moves from right
to left.

10.2.20.

(a) Traces a circle of radius 1 counterclockwise
once.

(b) Traces a circle of radius 1 counterclockwise over
6 times.

(c) Traces a circle of radius 1 clockwise infinite
times.

(d) Traces an arc of a circle of radius 1, from an
angle of -1 radians to 1 radian, twice.

10.2.21. 3x+ 2y = 17 10.2.25. y − 2x = 3

10.2.30. x = 1− 2y2

10.2.35. (a). t+11
6

(b). t2−97
12

(c). (2,−8)

(d). 6x− 11

(e). 1

10.2.36. (a). ln(t)
(b). t

(c). (0, 1)

(d). ex

(e). 1

10.2.37. (a). cos−1(t)

(b).
√
1− t2

(c). (0, 0)

(d). cos(x)
(e). 1

10.2.39. (a). −1, 1

(b). (3,−2)

10.2.44. (a). 2

(b). (−4,−8)

10.2.46. (a). 0

(b). (1, 0)

10.2.50. 2 cos(t) ; −2 sin(t) 10.2.51. 3 cos(2πt) + 1; 3 sin(2πt) + 1

10.2.52. 3 cos(2πt) + 1; 3 sin(2πt) + 1
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10.3 · Calculus and Parametric Equations
10.3 · Exercises

Terms and Concepts

10.3.1. False
10.3.3. False
10.3.4. True

Problems

10.3.15. (a). −0.5

(b). (0.75,−0.25)

10.3.18. (a). π
4 ,

3π
4 , 5π

4 , 7π
4

(b).
(√

2
2 , 1

)
,
(

−
√
2

2 ,−1
)
,
(

−
√
2

2 , 1
)
,
(√

2
2 ,−1

)
10.3.21. (a). 0

(b). 0

10.3.22. (a). 2

(b). 1

10.3.27. (a). − 4
(2t−1)3

(b). (−∞, 0.5]

(c). [0.5,∞)

10.3.30. (a). 2(sin(t)(−2) sin(2t)−cos(2t) cos(t))
sin3(t)

(b).
[
π
2 , π

]
,
[
3π
2 , 2π

]
(c).

[
0, π

2

]
,
[
π, 3π

2

]
10.3.33. 6π 10.3.34. (a).

√
101
(
e

π
5 − 1

)
(b).

√
101
(
e

2π
5 − e

π
5

)
10.3.35. 2

√
34

10.4 · Introduction to Polar Coordinates
10.4 · Exercises

Terms and Concepts

10.4.1. Answers will vary.
10.4.2. False
10.4.3. True
10.4.4. False

Problems

10.4.5.
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1 2O

A
B

C

D

10.4.6.

1 2O

A B

C

D

10.4.7. A = P (2.5, π/4) and P (−2.5, 5π/4);
B = P (−1, 5π/6) and P (1, 11π/6);
C = P (3, 4π/3) and P (−3, π/3);
D = P (1.5, 2π/3) and P (−1.5, 5π/3);

10.4.8. (a). (2, 0.523599) , (−2,−2.61799)

(b). (1,−1.0472) , (−1, 2.0944)

(c). (2, 2.35619) , (−2,−0.785398)

(d). (2.5, 3.14159) , (2.5,−3.14159)

10.4.9. (a).
(√

2,
√
2
)

(b).
(√

2,−
√
2
)

(c).
(√

5, tan−1
(−1

2

))
(d).

(√
5, π + tan−1

(−1
2

))
10.4.10. (a). (−3, 0)

(b).
(

−1
2 ,

√
3
2

)
(c).

(
4, π

2

)
(d).

(
2, −π

3

)



1059

10.4.11.

−0.5 0.5 1 1.5 2 2.5

−0.5

0.5

1

1.5

2

x

y

10.4.12.

1 2−1−2

−2

−1

1

2

x

y

10.4.13.

−2 −1 1 2

−2

−1

1

2

x

y

10.4.14.

−3 −2 −1 1 2 3

−2

2

x

y

10.4.15.

−3 −2 −1 1 2 3

−2

2

x

y

10.4.16.

−3 −2 −1 1 2 3

−2

2

x

y
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10.4.17.

−3 −2 −1 1 2 3

−2

2

x

y

10.4.18.

−1 −0.5 0.5 1

−1

1

x

y

10.4.19.

−1 −0.5 0.5 1

−1

1

x

y

10.4.20.

−1 −0.5 0.5 1

−1

1

x

y

10.4.21.

−1 −0.5 0.5 1

−1

1

x

y

10.4.22.

−6 −4 −2 2 4 6

−4

−2

2

4

x

y
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10.4.23.

−2 −1 1 2

2

3

1

x

y

10.4.24.

−2 −1 1 2

−2

−1

1

2

x

y

10.4.25.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

10.4.26.

−8 −6 −4 −2

−2

2

x

y

10.4.27.

−4 −2 2 4

−4

−2

2

4

x

y

10.4.28.

−4 −2 2 4

−4

−2

2

4

x

y
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10.4.29.

−4 −2 2 4

−4

−2

2

4

x

y

10.4.30.

−4 −2 2 4

−4

−2

2

4

x

y

10.4.31. (x− 3)
2
+ y2 = 9 10.4.32. x2 + (y + 2)

2
= 4

10.4.33. (x− 0.5)
2
+ (y − 0.5)

2
= 0.5 10.4.34. y = 0.4x+ 1.4

10.4.35. x = 3 10.4.36. y = 4

10.4.38. y4 + x2y2 − x2 = 0 10.4.39. x2 + y2 = 4

10.4.40. y = x
1.73205

10.4.41. θ = π
4 10.4.42. r = 7

sin(θ)−4 cos(θ)

10.4.43. r = 5 sec(θ) 10.4.44. r = 5 csc(θ)

10.4.45. r = cos(θ)
sin2(θ)

10.4.47. r =
√
7

10.4.49. P
(√

3
2 , π

6

)
, P
(
0, π

2

)
, P
(

−
√
3

2 , 5π
6

)
10.4.51. P (0, 0) , P

(√
2, π

4

)
10.4.54. P

(
3
2 ,

π
3

)
, P
(
3
2 ,

−π
3

)
, P (0, π)

10.5 · Calculus and Polar Functions
10.5 · Exercises

Problems

10.5.3. (a). − cot(θ)

(b). y = −
(
x−

√
2
2

)
+

√
2
2

(c). y = x

10.5.4. (a). 0.5(tan(θ)− cot(θ))
(b). y = 1

2

(c). x = 1
2

10.5.7. (a). θ cos(θ)+sin(θ)
cos(θ)−θ sin(θ)

(b). y = −2
π x+ π

2

(c). y = π
2x+ π

2

10.5.8. (a). cos(θ) cos(3θ)−3 sin(θ) sin(3θ)
− cos(3θ) sin(θ)−3 cos(θ) sin(3θ)

(b). y = x√
3

(c). y = −
√
3x

10.5.9. (a). 4 sin(θ) cos(4θ)+sin(4θ) cos(θ)
4 cos(θ) cos(4θ)−sin(θ) sin(4θ)

(b). y = 5
√
3
(
x+

√
3
4

)
− 3

4

(c). y = −1
5
√
3

(
x+

√
3
4

)
− 3

4
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10.5.14. (a). π
3 , π,

5π
3

(b). 0, 2π
3 , 4π

3

10.5.19. π
12 10.5.20. area = π/(4n)

10.5.21. 3π
2 10.5.23. 2π + 3·1.73205

2

10.5.24. π + 3 · 1.73205 10.5.25. 1
10.5.26. 1

32 (4π − 3 · 1.73205)

10.5.29. 4π 10.5.30. 4π
10.5.31.

√
2π 10.5.32. 8

10.5.33. 2.2592 or 2.22748

10.5.40. SA = 9π

11 · Introduction to Functions of Several Variables
11.2 · Limits and Continuity of Multivariable Functions
11.2 · Exercises

Problems

11.2.7.

(a) Answers will vary. interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set

(c) S is bounded

11.2.8.

(a) Answers will vary. Interior point: (1, 0) (any
point with y ̸= x2 will do). Boundary point:
(1, 1) (any point with y = x2 will do).

(b) S is an open set.

(c) S is unbounded.

11.2.11.

(a) D =
{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.

(c) D is bounded.

11.2.12.

(a) D =
{
(x, y) | y ≥ x2

}
.

(b) D is a closed set.

(c) D is unbounded.
11.2.13.

(a) D =
{
(x, y) | y > x2

}
.

(b) D is an open set.

(c) D is unbounded.

11.2.14.

(a) D = {(x, y) | (x, y) ̸= (0, 0)}.

(b) D is an open set.

(c) D is unbounded.

11.3 · Partial Derivatives
11.3 · Exercises

Terms and Concepts

11.3.3. f_x
11.3.4. f_y
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Problems

11.3.6. (a). 0

(b). 0

11.3.8. (a). − 1
2

(b). − 1
3

11.3.10. (a). 3x2 + 6xy + 3y2

(b). 3x2 + 6xy + 3y2

(c). 6x+ 6y

(d). 6x+ 6y

(e). 6x+ 6y

(f). 6x+ 6y

11.3.12. (a). −4
x2y

(b). −4
xy2

(c). 8
x3y

(d). 4
x2y2

(e). 4
x2y2

(f). 8
xy3

11.3.14. (a). ex+2y

(b). 2ex+2y

(c). ex+2y

(d). 2ex+2y

(e). 2ex+2y

(f). 4ex+2y

11.3.16. (a). 3(x+ y)
2

(b). 3(x+ y)
2

(c). 6(x+ y)

(d). 6(x+ y)

(e). 6(x+ y)

(f). 6(x+ y)

11.3.18. (a). 10x cos
(
5x2 + 2y3

)
(b). 6y2 cos

(
5x2 + 2y3

)
(c). 10 cos

(
5x2 + 2y3

)
− 100x2 sin

(
5x2 + 2y3

)
(d). −60xy2 sin

(
5x2 + 2y3

)
(e). −60xy2 sin

(
5x2 + 2y3

)
(f). 12y cos

(
5x2 + 2y3

)
− 36y4 sin

(
5x2 + 2y3

)

11.3.19. (a). 2y2√
4xy2+1

(b). 4xy√
4xy2+1

(c). −4y4(√
4xy2+1

)3

(d). −8xy3(√
4xy2+1

)3 + 4y√
4xy2+1

(e). −8xy3(√
4xy2+1

)3 + 4y√
4xy2+1

(f). −16x2y2(√
4xy2+1

)3 + 4x√
4xy2+1

11.3.22. (a). 5

(b). −17

(c). 0

(d). 0

(e). 0

(f). 0

11.3.24. (a). 2x
x2+y

(b). 1
x2+y

(c). −4x2

(x2+y)2
+ 2

x2+y

(d). −2x
(x2+y)2

(e). −2x
(x2+y)2

(f). −1
(x2+y)2

11.3.26. (a). 5ex sin(y)
(b). 5ex cos(y)
(c). 5ex sin(y)
(d). 5ex cos(y)
(e). 5ex cos(y)
(f). −5ex sin(y)

11.3.28. 1
2x

2 + xy + 1
2y

2 11.3.30. ln
(
x2 + y2

)
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11.3.32. (a). 3x2y2 + 3x2z

(b). 2x3y + 2yz

(c). x3 + y2

(d). 2y

(e). 2y

11.3.34. (a). 1
x

(b). 1
y

(c). 1
z

(d). 0

(e). 0





Appendix B

Quick Reference

B.1 Differentiation Formulas

List B.1.1 Derivative Rules

1.
d

dx
(cx) = c

2.
d

dx
(u± v) = u′ ± v′

3.
d

dx
(u · v) = uv′ + u′v

4.
d

dx
(
u

v
) =

vu′ − uv′

v2

5.
d

dx
(u(v)) = u′(v)v′

6.
d

dx
(c) = 0

7.
d

dx
(x) = 1

List B.1.2 Derivatives of Elementary Functions

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ex) = ex

3.
d

dx
(ax) = ln a · ax

4.
d

dx
(lnx) =

1

x

5.
d

dx
(loga x) =

1

ln a
· 1
x

6.
d

dx
(sinx) = cosx

7.
d

dx
(cosx) = − sinx

8.
d

dx
(cscx) = − cscx cotx

9.
d

dx
(secx) = secx tanx

10.
d

dx
(tanx) = sec2 x

11.
d

dx
(cotx) = − csc2 x

12.
d

dx
(coshx) = sinhx

13.
d

dx
(sinhx) = coshx

14.
d

dx
(sechx) = − sechx tanhx

15.
d

dx
(tanhx) = sech2 x

16.
d

dx
(cschx) = − cschx cothx

17.
d

dx
(cothx) = − csch2 x

1093
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List B.1.3 Derivatives of Inverse Functions

1.
d

dx
(sin−1 x) =

1√
1− x2

2.
d

dx
(cos−1 x) =

−1√
1− x2

3.
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

4.
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

5.
d

dx
(tan−1 x) =

1

1 + x2

6.
d

dx
(cot−1 x) =

−1

1 + x2

7.
d

dx
(cosh−1 x) =

1√
x2 − 1

8.
d

dx
(sinh−1 x) =

1√
x2 + 1

9.
d

dx
(sech−1 x) =

−1

x
√
1− x2

10.
d

dx
(csch−1 x) =

−1

|x|
√
1 + x2

11.
d

dx
(tanh−1 x) =

1

1− x2

12.
d

dx
(coth−1 x) =

1

1− x2

B.2 Integration Formulas

List B.2.1 Basic Rules

1.
∫

c · f(x) dx = c

∫
f(x) dx

2.
∫ (

f(x)±g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

List B.2.2 Integrals of Elementary (non-Trig) Functions

1.
∫

ex dx = ex + C

2.
∫
lnx dx = x lnx− x+ C

3.
∫

ax dx =
1

ln a
· ax + C

4.
∫

1

x
dx = ln |x|+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

List B.2.3 Integrals Involving Trigonometric Functions

1.
∫
cosx dx = sinx+ C

2.
∫
sinx dx = − cosx+ C

3.
∫
tanx dx = − ln |cosx|+ C

4.
∫
secx dx = ln |secx+ tanx|+ C

5.
∫
cscx dx = − ln |cscx+ cotx|+ C
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6.
∫
cotx dx = ln |sinx|+ C

7.
∫
sec2 x dx = tanx+ C

8.
∫
csc2 x dx = − cotx+ C

9.
∫
secx tanx dx = secx+ C

10.
∫
cscx cotx dx = − cscx+ C

11.
∫
cos2 x dx =

1

2
x+

1

4
sin
(
2x
)
+ C

12.
∫
sin2 x dx =

1

2
x− 1

4
sin
(
2x
)
+ C

13.
∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ C

14.
∫

1√
a2 − x2

= sin−1
(x
a

)
+ C

15.
∫

1

x
√
x2 − a2

=
1

a
sec−1

(
|x|
a

)
+ C

List B.2.4 Integrals Involving Hyperbolic Functions

1.
∫
coshx dx = sinhx+ C

2.
∫
sinhx dx = coshx+ C

3.
∫
tanhx dx = ln(coshx) + C

4.
∫
cothx dx = ln |sinhx|+ C

5.
∫

1√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C

6.
∫

1√
x2 + a2

dx = ln
∣∣∣x+

√
x2 + a2

∣∣∣+ C

7.
∫

1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

8.
∫

1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

9.
∫

1

x
√
x2 + a2

=
1

a
ln
∣∣∣∣ x

a+
√
x2 + a2

∣∣∣∣+ C
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B.3 Trigonometry Reference

The Unit Circle.

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2
, 1
2

)
45◦

π/4

(√
2

2
,
√

2
2

)
60◦

π/3

(
1
2
,
√
3
2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2
,
√

3
2

)

135◦
3π/4

(
−

√
2

2
,
√
2
2

)

150◦
5π/6

(
−

√
3

2
, 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.3.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y
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Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.3.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.3.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.3.2 Double Angle Formulas

1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.3.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.3.4 Even/Odd Identities
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1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.3.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.3.6 Sum to Product Formulas

List B.3.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)
List B.3.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y

B.4 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r
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Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A

B.5 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)
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(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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B.6 Additional Formulas

Summation Formulas:.

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

Trapezoidal Rule:.∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
with Error≤ (b− a)3

12n2

[
max |f ′′(x)|

]
Simpson’s Rule:.

∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

]
with Error≤ (b− a)5

180n4

[
max

∣∣∣f (4)(x)
∣∣∣ ]

Arc Length:.

L =

∫ b

a

√
1 + f ′(x)2 dx

Surface of Revolution:.

2π

∫ b

a

f(x)
√
1 + f ′(x)2dx

(where f(x) ≥ 0)

S = 2π

∫ b

a

x
√
1 + f ′(x)2dx

(where a, b ≥ 0)

Work Done by a Variable Force:.

W =

∫ b

a

F (x)dx
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Force Exerted by a Fluid:.

F =

∫ b

a

w d(y) ℓ(y)dy

Taylor Series Expansion for f(x):.

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

Maclaurin Series Expansion for f(x), where c = 0:.

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

B.7 Summary of Tests for Series

Table B.7.1

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑

n=1

an lim
n→∞

an ̸= 0
Cannot be used to show
convergence.

Geometric Series
∞∑

n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑

n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑

n=1

1

(an+ b)p
p > 1 p ≤ 1

Integral Test
∞∑

n=0

an

∫ ∞

1

a(n) dn

converges

∫ ∞

1

a(n) dn diverges
an = a(n)must be
continuous

Direct Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

0 ≤ an ≤ bn

∞∑
n=0

bn diverges and

0 ≤ bn ≤ an

Limit Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

lim
n→∞

an

bn
≥ 0

∞∑
n=0

bn diverges and

lim
n→∞

an

bn
> 0

Also diverges if
lim

n→∞
an

bn
= ∞

Ratio Test
∞∑

n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1 {an}must be positive

Also diverges if lim
n→∞

an+1

an
= ∞

Root Test
∞∑

n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1 {an}must be positive

Also diverges if lim
n→∞

(an)
1/n = ∞
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!, 465
Absolute Convergence Theorem,

519
absolute maximum, 133
absolute minimum, 133
Absolute Value Theorem, 470
acceleration, 81, 727
accumulated error

using Euler’s method, 437
Alternating Harmonic Series, 489,

518, 530
Alternating Series Test, 514
aN, 744, 755
analytic function, 538
angle of elevation, 732
antiderivative, 225

of vector-valued function, 722
approximation

linear, 196
tangent line, 196

arc length, 401, 578, 602, 724, 749
arc length parameter, 749, 751
asymptote

horizontal, 54
vertical, 53

aT, 744, 755
average rate of change, 713
average value of a function, 843
average value of function, 271
average velocity, 8

bacterial growth, 455
Binomial Series, 538
Bisection Method, 46
boundary point, 617
bounded

interval, 41
bounded sequence, 472

convergence, 473
bounded set, 617

carrying capacity, 435
center of mass, 858, 859, 861, 862,

890
Chain Rule, 105

multivariable, 769, 772
notation, 111

chain rule
as matrix multiplication, 812

change of variables, 908
circle of curvature, 753
circulation, 961
closed, 617
closed disk, 617
concave down, 156
concave up, 156
concavity, 156, 576

inflection point, 158
test for, 158

conic sections, 550
degenerate, 550
ellipse, 553
hyperbola, 556
parabola, 550

connected, 955
simply, 956

conservative field, 956, 957, 959
Constant Multiple Rule

of derivatives, 88
of integration, 229
of series, 488

constrained optimization, 801
continuity

of exponential functions, 21
of logarithmic functions, 21
of polynomial functions, 20
of rational functions, 20
of trigonometric functions, 21

continuous
at a point, 40
everywhere, 40

1103
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on an interval, 40
continuous function, 40, 622

properties, 43, 623
vector-valued, 716

continuously differentiable, 761
contour lines, 611
convergence

absolute, 518, 519
Alternating Series Test, 514
conditional, 518
Direct Comparison Test, 499
for integration, 366

Integral Test, 496
interval of, 525
Limit Comparison Test, 501
for integration, 367

nth-term test, 491
of geometric series, 483
of improper int., 361, 366,

367
of monotonic sequences, 476
of p-series, 485
of power series, 525
of sequence, 468, 473
of series, 480
radius of, 525
Ratio Comparison Test, 507
Root Comparison Test, 509

coordinates
cylindrical, 896
polar, 583
spherical, 899

critical number, 135
critical point, 135, 797, 799
critical value

of a function of two variables,
817

cross product
and derivatives, 719
applications, 685
area of parallelogram, 686
torque, 688
volume of parallelepiped,
688

definition, 682
properties, 684

curl, 945
of conservative fields, 959

curvature, 751
and motion, 755
equations for, 752
of circle, 753
radius of, 753

curve

parametrically defined, 563
rectangular equation, 563
smooth, 569

curve sketching, 165
cusp, 569
cycloid, 712
cylinder, 644
cylindrical coordinates, 896

decreasing function, 148
finding intervals, 149

definite integral, 236
and substitution, 301
of vector-valued function, 722
properties, 237

del operator, 944
derivative

acceleration, 81
as a function, 69
at a point, 65
basic rules, 86
Chain Rule, 105, 111, 769, 772
Constant Multiple Rule, 88
Constant Rule, 86
differential, 196
directional, 778, 779, 781, 784
exponential functions, 111
First Deriv. Test, 151
general, 811
Generalized Power Rule, 106
higher order, 89
interpretation, 90

hyperbolic funct., 310
implicit, 114, 773
interpretation, 79
inverse function, 125
inverse hyper., 314
inverse trig., 128
logarithmic, 120
Mean Value Theorem, 143
mixed partial, 631
motion, 81
multivariable differentiability,

760, 765
normal line, 67
notation, 69, 89
parametric equations, 573
partial, 626, 634
Power Rule, 86, 100, 119
power series, 528
Product Rule, 94
Quotient Rule, 97
Second Deriv. Test, 161
Sum/Difference Rule, 87
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tangent line, 65
trigonometric functions, 98
vector-valued functions, 717,

719
velocity, 81

difference quotient, 8
differentiability

functions of several variables,
809

differentiable, 65, 760, 765
general functions, 807
on a closed interval, 74

differential, 196
notation, 196

differential equation
definition, 429
first order linear, 447
general solution, 430
graphical solution, 433
implicit soution, 432
integrating factor, 448
logistic, 434, 458
modeling, 455
numerical solution, 435
order of, 429
particular solution, 430
separable, 441

Direct Comparison Test
for integration, 366
for series, 499

direction field, see slope field
directional derivative, 778, 779,

781, 784
directrix, 550, 644
discontinuity

infinite, 44
jump, 44
removable, 44

Disk Method, 382
displacement, 265, 712, 724
distance

between lines, 697
between point and line, 697
between point and plane, 705
between points in space, 642
traveled, 734

divergence, 944, 945
Alternating Series Test, 514
Direct Comparison Test, 499
for integration, 366

Integral Test, 496
Limit Comparison Test, 501
for integration, 367

nth-term test, 491

of geometric series, 483
of improper int., 361, 366,

367
of p-series, 485
of sequence, 468
of series, 480
Ratio Comparison Test, 507
Root Comparison Test, 509

Divergence Theorem
in space, 990
in the plane, 967

dot product
and derivatives, 719
definition, 670
properties, 670, 671

double integral, 837, 838
in polar, 848
properties, 840

eccentricity, 555, 557
elementary function, 275
ellipse

definition, 553
eccentricity, 555
parametric equations, 568
reflective property, 555
standard equation, 553

Euler’s Method, 436
Euler’s method

accumulated error, 437
everywhere continuous, 40
exponential function

continuity of, 21
extrema

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
finding, 136
relative, 134, 797

Extreme Value Theorem, 134, 801
extreme values, 133

factorial, 465
First Derivative Test, 151
first octant, 642
floor function, 40
flow, 961, 962
fluid pressure/force, 420, 421
flux, 961, 962, 984, 985
focus, 550, 553, 556
Fubini’s Theorem, 838
function

continuous, 40
floor, 40
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of three variables, 613
of two variables, 609
vector-valued, 709

Fundamental Theorem of Calculus,
262, 263

and Chain Rule, 267
Fundamental Theorem of Line

Integrals, 955, 957

Gabriel’s Horn, 406
Gauss’s Law, 993
general solution

of a differential equation, 430
Generalized Power Rule, 106
geometric series, 482, 483
gradient, 779, 781, 784, 794

and level curves, 781
and level surfaces, 794

Green’s Theorem, 964, 965

half life, 463
Harmonic Series, 489
Head To Tail Rule, 660
Hooke’s Law, 413
hyperbola

definition, 556
eccentricity, 557
parametric equations, 568
reflective property, 558
standard equation, 556

hyperbolic function
definition, 307
derivatives, 310
identities, 310
integrals, 310
inverse, 312
derivative, 314
integration, 315
logarithmic def., 313

image
of a point, 910
of a subset, 910

implicit differentiation, 114, 773
improper integration, 361, 364
incompressible vector field, 944
increasing function, 148

finding intervals, 149
indefinite integral, 225

of vector-valued function, 722
indeterminate form, 4, 53, 217,

219
inflection point, 158
initial condition, 430
initial point, 657

initial value problem, 230
for differential equations, 430

Integral Test, 496
integration

arc length, 401
area, 236, 830
area between curves, 268,

373
average value, 271
by parts, 324
by substitution, 290
definite, 236
and substitution, 301
properties, 237
Riemann Sums, 257

displacement, 265
distance traveled, 734
double, 837
fluid force, 420, 421
Fun. Thm. of Calc., 262, 263
general application technique,

371
hyperbolic funct., 310
improper, 361, 364, 366, 367
indefinite, 225
inverse hyperbolic, 315
iterated, 829
Mean Value Theorem, 270
multiple, 829
notation, 226, 236, 263, 829
numerical, 275
Left/Right Hand Rule, 275,
283

Simpson’s Rule, 281, 283,
284

Trapezoidal Rule, 278, 283,
284

of multivariable functions,
827

of power series, 528
of trig. functions, 295
of trig. powers, 334, 338
of vector-valued function, 722
of vector-valued functions,

722
partial fraction decomp., 353
Power Rule, 229
Sum/Difference Rule, 229
surface area, 404, 579, 603
trig. subst., 345
triple, 876, 887, 889
volume
cross-sectional area, 381
Disk Method, 382
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Shell Method, 392, 396
Washer Method, 385, 396

with cylindrical coordinates,
897

with spherical coordinates,
901

work, 410
interior point, 617
Intermediate Value Theorem, 45
interval of convergence, 525
inverse

of a transformation, 921
iterated integration, 829, 837, 838,

876, 887, 889
changing order, 832
properties, 840, 882

Jacobian
of a transformation, 912

Jacobian matrix, 811

l’Hospital’s Rule
infinity over infinity, 216
zero over zero, 215

Lagrange multipliers, 816
lamina, 855
Left Hand Rule, 246, 250, 275
Left/Right Hand Rule, 283
level curves, 611, 781
level surface, 614, 794
limit

Absolute Value Theorem, 470
at infinity, 54
definition, 12
difference quotient, 8
does not exist, 6, 33
indeterminate form, 4, 25, 53,

217, 219
l’Hospital’s Rule, 215, 216
left-handed, 31
of exponential functions, 21
of infinity, 51
of logarithmic functions, 21
of multivariable function, 618,

619, 624
of polynomial functions, 20
of rational functions, 20
of sequence, 468
of trigonometric functions, 21
of vector-valued functions,

715
one-sided, 31
properties, 19, 619
pseudo-definition, 4

right-handed, 31
Squeeze Theorem, 23

Limit Comparison Test
for integration, 367
for series, 501

line integral
Fundamental Theorem, 955,

957
over scalar field, 933, 934,

951
over vector field, 952
path independent, 956, 957
properties over a scalar field,

938
properties over a vector field,

954
linear function, 807
linearization, 196, 806

functions of several variables,
808

lines, 692
distances between, 697
equations for, 693
intersecting, 694
parallel, 694
skew, 694

logarithmic differentiation, 120
logarithmic function

continuity of, 21

Maclaurin Polynomial
definition, 205

Maclaurin Polynomial|see{Taylor
Polynomial}, 205

Maclaurin Series
definition, 535

Maclaurin Series|see{Taylor
Series}, 535

magnitude of vector, 657
mass, 855, 856, 890, 938

center of, 858, 938
matrix

Jacobian, 811
maximum

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
relative/local, 134, 797, 800

Mean Value Theorem
of differentiation, 143
of integration, 270

Midpoint Rule, 246, 250
minimum

absolute, 133, 797
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and First Deriv. Test, 151, 161
relative/local, 134, 797, 800

moment, 860, 862, 890
monotonic sequence, 473
multi-index notation, 823
multiple integration|see{iterated

integration}, 829
multivariable function, 609, 613

continuity, 622–624, 761, 766
differentiability, 760, 761,

765, 766
domain, 609, 613
level curves, 611
level surface, 614
limit, 618, 619, 624
range, 609, 613

Möbius band, 971

Newton’s Law of Cooling, 456
Newton’s Method, 174
norm, 657
normal line, 67, 573, 790
normal vector, 701
nth-term test, 491
numerical integration, 275

Left/Right Hand Rule, 275,
283

Simpson’s Rule, 281, 283
error bounds, 284

Trapezoidal Rule, 278, 283
error bounds, 284

octant
first, 642

one to one, 971
one-to-one, 910
onto, 910
open, 617
open ball, 624
open disk, 617
optimization, 188

constrained, 801
with Lagrange multipliers, 816

order
of a differential equation, 429

orientable, 971
orientation, 916
orthogonal, 673, 790

decomposition, 677
orthogonal decomposition of

vectors, 677
orthogonal projection, 675
osculating circle, 753
outer unit normal vector, 990

p-series, 485
parabola

definition, 550
general equation, 551
reflective property, 552

parallel vectors, 663
Parallelogram Law, 660
parametric equations

arc length, 578
concavity, 576
definition, 563
finding d2y

dx2 , 576
finding dy

dx , 573
normal line, 573
of a surface, 971
surface area, 579
tangent line, 573

parametrized surface, 971
partial derivative, 626, 634

high order, 635
meaning, 628
mixed, 631
second derivative, 631
total differential, 759, 765

partition, 252
size of, 252

path independent, 956, 957
perpendicular|see{orthogonal},

673
piecewise smooth curve, 937
planes

coordinate plane, 643
distance between point and

plane, 705
equations of, 701
introduction, 643
normal vector, 701
tangent, 793

point of inflection, 158
polar

coordinates, 583
function
arc length, 602
gallery of graphs, 589
surface area, 603

functions, 586
area, 599
area between curves, 601
finding dy

dx , 597
graphing, 586

polar coordinates, 583
plotting points, 583

polynomial function
continuity of, 20
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potential function, 949, 957
Power Rule

differentiation, 86, 94, 100,
119

integration, 229
power series, 524

algebra of, 540
convergence, 525
derivatives and integrals, 528

projectile motion, 732, 745

quadric surface
definition, 648
ellipsoid, 650
elliptic cone, 650
elliptic paraboloid, 649
gallery, 649, 651
hyperbolic paraboloid, 651
hyperboloid of one sheet, 650
hyperboloid of two sheets,

651
sphere, 650
trace, 648

Quotient Rule, 97

R, 657
radius of convergence, 525
radius of curvature, 753
Ratio Comparison Test

for series, 507
rational function

continuity of, 20
rearrangements of series, 519
reduction formula

trigonometric integral, 341
regular value, 817
Related Rates, 179
related rates, 179
Riemann Sum, 246, 249, 252

and definite integral, 257
Right Hand Rule, 246, 250, 275
right hand rule

of Cartesian coordinates, 641
of the cross product, 685

Rolle’s Theorem, 143
Root Comparison Test

for series, 509

saddle point, 799, 800
Second Derivative Test, 161, 800
sensitivity analysis, 764
separation of variables, 441
sequence

Absolute Value Theorem, 470
positive, 499

sequences
boundedness, 472
convergent, 468, 473, 476
definition, 465
divergent, 468
limit, 468
limit properties, 471
monotonic, 473

series
absolute convergence, 518
Absolute Convergence

Theorem, 519
alternating, 514
Approximation Theorem,
516

Alternating Series Test, 514
Binomial, 538
conditional convergence, 518
convergent, 480
definition, 480
Direct Comparison Test, 499
divergent, 480
geometric, 482, 483
Integral Test, 496
interval of convergence, 525
Limit Comparison Test, 501
Maclaurin, 535
nth-term test, 491
p-series, 485
partial sums, 480
power, 524, 525
derivatives and integrals,
528

properties, 488
radius of convergence, 525
Ratio Comparison Test, 507
rearrangements, 519
Root Comparison Test, 509
Taylor, 535
telescoping, 486

Shell Method, 392, 396
signed area, 236
signed volume, 837, 838
simple curve, 956
simply connected, 956
Simpson’s Rule, 281, 283

error bounds, 284
slope field, 434
smooth, 719

curve, 569
surface, 971

smooth curve
piecewise, 937

speed, 727
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sphere, 642
spherical coordinates, 899
Squeeze Theorem, 23
Stokes’ Theorem, 995
Sum/Difference Rule

of derivatives, 87
of integration, 229
of series, 488

summation
notation, 247
properties, 249

surface, 971
smooth, 971

surface area, 868
of parametrized surface, 977,

978
solid of revolution, 404, 579,

603
surface integral, 983
surface of revolution, 646, 647

tangent line, 65, 573, 597, 718
directional, 788

tangent plane, 630, 793
to a graph, 630

Taylor polynimial
of several variables, 823

Taylor Polynomial
definition, 205
Taylor’s Theorem, 208

Taylor Series
common series, 540
definition, 535
equality with generating

function, 537
Taylor’s Theorem, 208

in several variables, 823
telescoping series, 486
terminal point, 657
theorem

Intermediate Value, 45
torque, 688
total differential, 759, 765

sensitivity analysis, 764
total signed area, 236
trace, 648
transformation, 908, 914
Trapezoidal Rule, 278, 283

error bounds, 284
trigonometric function

continuity of, 21
triple integral, 876, 887, 889

properties, 882

unbounded sequence, 472

unbounded set, 617
unit normal vector

aN, 744
and acceleration, 743, 744
and curvature, 755
definition, 741
in R2, 743

unit tangent vector
and acceleration, 743, 744
and curvature, 751, 755
aT, 744
definition, 740
in R2, 743

unit vector, 661
properties, 663
standard unit vector, 664
unit normal vector, 741
unit tangent vector, 740

vector field, 942
conservative, 956, 957
curl of, 945
divergence of, 944, 945
over vector field, 952
potential function of, 949, 957

vector-valued function
algebra of, 711
arc length, 724
average rate of change, 713
continuity, 716
definition, 709
derivatives, 717, 719
describing motion, 727
displacement, 712
distance traveled, 734
graphing, 709
integration, 722
limits, 715
of constant length, 721, 731,

732, 741
projectile motion, 732
smooth, 719
tangent line, 718

vectors, 657
algebra of, 659
algebraic properties, 661
component form, 658
cross product, 682, 684
definition, 657
dot product, 670, 671
Head To Tail Rule, 660
magnitude, 657
norm, 657
normal vector, 701
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orthogonal, 673
orthogonal decomposition,

677
orthogonal projection, 675
parallel, 663
Parallelogram Law, 660
resultant, 660
standard unit vector, 664

unit vector, 661, 663
zero vector, 660

velocity, 81, 727
average velocity, 8

volume, 837, 838, 874

Washer Method, 385, 396
work, 410, 679
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