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Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that youmay better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com², and HTML versions of the book can be found at opentext.uleth.ca³.

These three texts are intended towork together andmake one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com⁴.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—level top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just—learned material helps address future problems.

• Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

²apexcalculus.com
³opentext.uleth.ca/calculus.html
⁴amazon.com
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• You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

• Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theoremmeans and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX – Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculuswould not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
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need. The source files can be found at github.com/APEXCalculus⁵.
You can learn more at www.vmi.edu/APEX⁶.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

• The underlying source code has been completely rewritten, to use the
PreTeXt⁷ language, instead of the original LATEX .

• Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is bothmore accessible andmore interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca⁸.

• The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

• In the html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com⁹ for more information.

• More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

⁵github.com/APEXCalculus
⁶www.vmi.edu/APEX
⁷pretextbook.org
⁸opentext.uleth.ca/calculus.html
⁹apexcalculus.com
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A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate × time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

xi
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Chapter 10

Sequences and Series

This chapter introduces sequences and series, importantmathematical construc-
tions that are useful when solving a large variety ofmathematical problems. The
content of this chapter is considerably different from the content of the chap-
ters before it. While the material we learn here definitely falls under the scope
of “calculus,” we will make very little use of derivatives or integrals. Limits are
extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
information about a function and its derivatives at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximation of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximations
of functions when limited knowledge of the function is available.

10.1 Sequences

We commonly refer to a set of events that occur one after the other as a se-
quence of events. In mathematics, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one after the other.”

youtu.be/watch?v=jW6PMyekBtU

Figure 10.1.1 Video introduction to
Section 10.1

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and often this can be done. For instance, the
sequence above could be described by the function a(n) = 2n, for the values
of n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definition of a sequence.

Definition 10.1.2 Sequence.

A sequence is a function a(n) whose domain is N. The range of a se-
quence is the set of all distinct values of a(n).
The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….
A sequence a(n) is often denoted as {an}.

Notation: We useN to describe
the set of natural numbers, that
is, the positive integers1, 2, 3, . . .Definition 10.1.3

A factorial refers to the product of a descending sequence of natural
numbers. For example, the expression 4! (read as 4 factorial) refers to

525
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526 CHAPTER 10. SEQUENCES AND SERIES

the number 4 · 3 · 2 · 1 = 24.
In general, n! = n · (n−1) · (n−2) · · · 2 ·1, where n is a natural number.
We define 0! = 1. While this does not immediatelymake sense, it makes
many mathematical formulas work properly.

Example 10.1.4 Listing terms of a sequence.

List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4 + (−1)n}

3. {an} =

{
(−1)n(n+1)/2

n2

}
Solution.

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9

2
; a3 =

33

3!
=

9

2
; a4 =

34

4!
=

27

8
We can plot the terms of a sequence with a scatter plot. The hori-
zontal axis is used for the values of n, and the values of the terms
are plotted on the vertical axis. To visualize this sequence, see
Figure 10.1.5.

an =
3n

n!

1 2 3 4

1

2

3

4

5

n

y

Figure 10.1.5 Plotting the sequence in
Item 1

2. a1 = 4+(−1)1 = 3; a2 = 4+(−1)2 = 5; a3 = 4+(−1)3 =
3; a4 = 4 + (−1)4 = 5 .

Note that the range of this sequence is finite, consisting of only
the values 3 and 5. This sequence is plotted in Figure 10.1.6.

an = 4 + (−1)n

1 2 3 4

1

2

3

4

5

n

y

Figure 10.1.6 Plotting the sequence in
Item 2

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4
;

a3 =
(−1)3(4)/2

32
=

1

9
; a4 =

(−1)4(5)/2

42
=

1

16
; ; a5 =

(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pattern of signs is
“−,−,+,+,−,−, . . .”, due to the fact that the exponent of−1 is
a special quadratic. This sequence is plotted in Figure 10.1.7.

an =
(−1)n(n+1)/2

n2

1 2 3 4 5

−1

1/2

1/4

n

y

Figure 10.1.7 Plotting the sequence in
Item 3

Video solution

youtu.be/watch?v=j-iqXR_bANY

Example 10.1.8 Determining a formula for a sequence.

Find the nth term of the following sequences, i.e., find a function that
describes each of the given sequences.

1. {an} = {2, 5, 8, 11, 14, . . .}

2. {bn} = {2,−5, 10,−17, 26,−37, . . .}

3. {cn} = {1, 1, 2, 6, 24, 120, 720, . . .}

https://www.youtube.com/watch?v=j-iqXR_bANY
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4. {dn} =

{
5

2
,
5

2
,
15

8
,
5

4
,
25

32
, . . .

}
Solution. We should first note that there is never exactly one function
that describes a finite set of numbers as a sequence. There are many
sequences that start with 2, then 5, as our first example does. We are
looking for a simple formula that describes the terms given, knowing
there is possibly more than one answer.

1. Note how each term is 3 more than the previous one. This implies
a linear function would be appropriate: a(n) = an = 3n + b
for some appropriate value of b. If we were to think in terms of
ordered pairs, they would be of the form (n, a(n)). So one such
ordered pair would be (1, 2). As we want a1 = 2, we set b = −1.
Thus an = 3n− 1.

2. First notice how the sign changes from term to term. This is most
commonly accomplished bymultiplying the terms by either (−1)n

or (−1)n+1. Using (−1)n multiplies the odd indexed terms by
(−1). Thus the first term would be negative and the second term
would be positive. Multiplying by (−1)n+1 multiplies the even
indexed terms by (−1). Thus the second term would be negative
and the first termwould bepositive. As this sequence has negative
even indexed terms, we will multiply by (−1)n+1.

After this, we might feel a bit stuck as to how to proceed. At this
point, we are just looking for a pattern of some sort: what do the
numbers 2, 5, 10, 17, etc., have in common? There are many cor-
rect answers, but the one that we’ll use here is that each is one
more than a perfect square. That is, 2 = 12 + 1, 5 = 22 + 1,
10 = 32 + 1, etc. Thus our formula is bn = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial function will readily recog-
nize these numbers. They are 0!, 1!, 2!, 3!, etc. Since our se-
quences start withn = 1, we cannotwrite cn = n!, for thismisses
the 0! term. Instead, we shift by 1, and write cn = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are
the same, but a little “sleuthing” will help. Notice how the terms
in the numerator are always multiples of 5, and the terms in the
denominator are always powers of 2. Does something as simple
as dn = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When
n = 2, we get 10/4 = 5/2. Further checking shows that this
formula indeed matches the other terms of the sequence.

Video solution

youtu.be/watch?v=-Tu12lkQtTs

A common mathematical endeavor is to create a new mathematical object
(for instance, a sequence) and then apply previously knownmathematics to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will investigate what it means to find the limit of a sequence.

https://www.youtube.com/watch?v=-Tu12lkQtTs
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Definition 10.1.9 Limit of a Sequence, Convergent, Divergent.

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
an N can be found such that |an − L| < ε for all n > N , then we say
the limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definition states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjective
terms, but hopefully the intent is clear.

youtu.be/watch?v=kt6A8Fgg22o

Figure 10.1.10 Video presentation of
Definition 10.1.9

This definition is reminiscent of the ε-δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definition; we
do so here as well.

Definition 10.1.11 Limit of Infinity, Divergent Sequence.

Let {an} be a sequence. We say lim
n→∞

an = ∞ if for allM > 0, there
exists a number N such that if n ≥ N , then an > M . In this case, we
say the sequence diverges to∞.

This definition states, informally, that if the limit of an is∞, then you can
guarantee that the terms of an will get arbitrarily large (larger than any value of
M that you think of), by going out far enough in the sequence.

Theorem 10.1.12 Limit of a Sequence.

Let {an} be a sequence, letL be a real number, and let f(x) be a function
whose domain contains the positive real numbers where f(n) = an for
all n in N.

1. If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

2. If lim
x→∞

f(x) = ∞, then lim
n→∞

an = ∞.

Theorem 10.1.12 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not
exist. It may, or may not, exist. For instance, we can define a sequence
{an} = {cos(2πn)}. Let f(x) = cos(2πx). Since the cosine function
oscillates over the real numbers, the limit lim

x→∞
f(x) does not exist. How-

ever, for every positive integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a function f(x)whose domain contains the positive real
numbers where f(n) = an for all n in N, we cannot conclude lim

n→∞
an

does not exist. It may, or may not, exist.

https://www.youtube.com/watch?v=kt6A8Fgg22o


10.1. SEQUENCES 529

Example 10.1.13 Determining convergence/divergence of a sequence.

Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1

n2 − 1000

}
2. {bn} = {cos(n)}

3. {cn} =

{
(−1)n

n

}
Solution.

1. Using Theorem1.6.21, we can state that lim
x→∞

3x2−2x+1
x2−1000 = 3. (We

could have also directly applied L’Hospital’s Rule.) Thus the se-
quence {an} converges, and its limit is 3. A scatter plot of every 5
values of an is given in Figure 10.1.14. The values of an varywidely
near n = 30, ranging from about−73 to 125, but as n grows, the
values approach 3.

an =
3n2 − 2n+ 1

n2 − 1000

20 40 60 80 100

−10

−5

5

10

n

y

Figure 10.1.14 Scatter plot for the se-
quence in Item 1

2. The limit lim
x→∞

cos(x) does not exist, as cos(x) oscillates (and
takes on every value in [−1, 1] infinitelymany times). Thuswe can-
not apply Theorem 10.1.12. The fact that the cosine function oscil-
lates strongly hints that cos(n), when n is restricted toN, will also
oscillate. Figure 10.1.15, where the sequence is plotted, shows
that this is true. Because only discrete values of cosine are plot-
ted, it does not bear strong resemblance to the familiar cosine
wave. The proof of the following statement is beyond the scope
of this text, but it is true: there are infinitely many integers n that
are arbitrarily (i.e., very) close to an even multiple of π, so that
cosn ≈ 1. Similarly, there are infinitely many integersm that are
arbitrarily close to an odd multiple of π, so that cosm ≈ −1. As
the sequence takes on values near 1 and−1 infinitely many times,
we conclude that lim

n→∞
an does not exist.

20 40 60 80 100

−1

−0.5

0.5

1

n

y
an = cos(n)

Figure 10.1.15 Scatter plot for the se-
quence in Item 2

3. We cannot actually apply Theorem 10.1.12 here, as the function
f(x) = (−1)x/x is not well defined. (What does (−1)

√
2 mean?

In actuality, there is an answer, but it involves complex analysis,
beyond the scope of this text.) Instead, we invoke the definition
of the limit of a sequence. By looking at the plot in Figure 10.1.16,
we would like to conclude that the sequence converges to L = 0.
Let ϵ > 0 be given. We can find a natural number m such that
1/m < ε. Let n > m, and consider |an − L|:

|an − L| =
∣∣∣∣ (−1)n

n
− 0

∣∣∣∣
=

1

n

<
1

m
(since n > m)

< ε.
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We have shown that by picking m large enough, we can ensure
that an is arbitrarily close to our limit, L = 0, hence by the defini-
tion of the limit of a sequence, we can say lim

n→∞
an = 0.

an =
(−1)n

n

5 10 15 20

−1

−0.5

0.5

1

n

y

Figure 10.1.16 Scatter plot for the se-
quence in Item 3

Video solution

youtu.be/watch?v=8xE6Sc8U_gU In the previous example we used the definition of the limit of a sequence to de-
termine the convergence of a sequence as we could not apply Theorem 10.1.12.
In general, we like to avoid invoking the definition of a limit, and the following
theorem gives us tool that we could use in that example instead.

Theorem 10.1.17 Absolute Value Theorem.

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Proof. Let lim
n→∞

|an| = 0. We start by noting that − |an| ≤ an ≤ |an|. If we
apply limits to this inequality:

lim
n→∞

(− |an|) ≤ lim
n→∞

an ≤ lim
n→∞

|an|

− lim
n→∞

|an| ≤ lim
n→∞

an ≤ lim
n→∞

|an|

Using the fact that lim
n→∞

|an| = 0:

0 ≤ lim
n→∞

an ≤ 0

We conclude that the only possible answer for lim
n→∞

an is 0. ■

Example 10.1.18 Determining the convergence/divergence of a se-
quence.

Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
Solution.

1. This appeared in Example 10.1.13. We want to apply Theo-
rem 10.1.17, so consider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1

n

= 0.

Since this limit is 0, we can apply Theorem 10.1.17 and state that
lim

n→∞
an = 0.

2. Because of the alternating nature of this sequence (i.e., every
other term is multiplied by −1), we cannot simply look at the
limit lim

x→∞
(−1)x(x+1)

x . We can try to apply the techniques of The-

https://www.youtube.com/watch?v=8xE6Sc8U_gU
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orem 10.1.17:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)

n

∣∣∣∣
= lim

n→∞

n+ 1

n

= 1.

We have concluded that when we ignore the alternating sign,
the sequence approaches 1. This means we cannot apply Theo-
rem 10.1.17; it states the the limit must be 0 in order to conclude
anything.

an =
(−1)n(n+ 1)

n

5 10 15 20

−1

−2

1

2

n

y

Figure 10.1.19 A plot of a sequence in
Example 10.1.18, part 2

Since we know that the signs of the terms alternate and we know
that the limit of |an| is 1, we know that as n approaches infinity,
the terms will alternate between values close to 1 and−1, mean-
ing the sequence diverges. A plot of this sequence is given in Fig-
ure 10.1.19.

We continue our study of the limits of sequences by considering some of the
properties of these limits.

Theorem 10.1.20 Properties of the Limits of Sequences.

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K,
and let c be a real number.

1. lim
n→∞

(an ± bn) = L±K

2. lim
n→∞

(an · bn) = L ·K

3. lim
n→∞

(an/bn) = L/K,K ̸=
0

4. lim
n→∞

c · an = c · L

youtu.be/watch?v=93lWvxKvFRw

Figure 10.1.21 Video presentation
of Theorem 10.1.17 and Theo-
rem 10.1.20

Example 10.1.22 Applying properties of limits of sequences.

Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1

n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1 +

1

n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

Solution. We will use Theorem 10.1.20 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an+

bn) = 0 + e = e. So even though we are adding something to
each term of the sequence bn, we are adding something so small
that the final limit is the same as before.

https://www.youtube.com/watch?v=93lWvxKvFRw
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2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn ·
cn) = e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does
not matter that we multiply each term by 1000; the sequence still
approaches 0. (It just takes longer to get close to 0.)

Video solution

youtu.be/watch?v=2PVI6iUVYcI

There is more to learn about sequences than just their limits. We will also
study their range and the relationships terms have with the terms that follow.
We start with some definitions describing properties of the range.

Definition 10.1.23 Bounded and Unbounded Sequences.

A sequence {an} is said to be bounded if there exist real numbers m
andM such thatm ≤ an ≤ M for all n in N. The numberm is called
a lower bound for the sequence, and the numberM is called an upper
bound for the sequence.
A sequence {an} is said to be unbounded if it is not bounded.
A sequence {an} is said to be bounded above if there exists anM such
that an < M for all n inN; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definition that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 10.1.24 Determining boundedness of sequences.

Determine the boundedness of the following sequences.

1. {an} =

{
1

n

}
2. {an} = {2n}

Solution.

1. The terms of this sequence are always positive but are decreasing,
so we have 0 < an < 2 for all n. Thus this sequence is bounded.
Figure 10.1.25(a) illustrates this.

2. The terms of this sequence obviously grow without bound. How-
ever, it is also true that these terms are all positive, meaning
0 < an. Thus we can say the sequence is unbounded, but also
bounded below. Figure 10.1.25(b) illustrates this.

https://www.youtube.com/watch?v=2PVI6iUVYcI
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an =
1

n
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(b)

Figure 10.1.25 A plot of {an} = {1/n} and {an} = {2n} from Exam-
ple 10.1.24

Video solution

youtu.be/watch?v=d_C_rw2LXwk

The previous example produces some interesting concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using Definition 10.1.9, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 10.1.26 Convergent Sequences are Bounded.

Let {an} be a convergent sequence. Then {an} is bounded. Keep inmindwhat Theorem10.1.26
does not say. It does not say that
bounded sequencesmust converge,
nor does it say that if a sequence
does not converge, it is not bounded.

youtu.be/watch?v=Ljrqs5azcCI

Figure 10.1.27 Video presentation of
Theorem 10.1.26

In Example 10.1.22 we saw the sequence {bn} = {(1 + 1/n)
n}, where it

was stated that lim
n→∞

bn = e. (Note that this is simply restating part of Theo-
rem 1.3.17. The limit can also be found using logarithms and L’Hospital’s rule.)
Even though it may be difficult to intuitively grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesting concept to come out of Example 10.1.24 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n+ 1. Taking reciprocals flips the inequality: 1/n > 1/(n+ 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Definition 10.1.28 Monotonic Sequences.

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} ismonotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence is monotonic if it is monotonically increasing or mo-
notonically decreasing.

It is sometimes useful to call a
monotonically increasing sequence
strictly increasing if an < an+1

for all n; i.e, we remove the pos-
sibility that subsequent terms are
equal.

A similar statement holds for
strictly decreasing.

youtu.be/watch?v=ZxaUovyGMBI

Figure 10.1.29 Video presentation
of Definition 10.1.28 and Theo-
rem 10.1.32

https://www.youtube.com/watch?v=d_C_rw2LXwk
https://www.youtube.com/watch?v=Ljrqs5azcCI
https://www.youtube.com/watch?v=ZxaUovyGMBI
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Example 10.1.30 Determining monotonicity.

Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1

n

}

2. {an} =

{
n2 + 1

n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}
Solution. In each of the following, we will examine an+1 − an. If
an+1 − an ≥ 0, we conclude that an ≤ an+1 and hence the sequence
is increasing. If an+1 − an ≤ 0, we conclude that an ≥ an+1 and the
sequence is decreasing. Of course, a sequence need not be monotonic
and perhaps neither of the above will apply.
We also give a scatter plot of each sequence. These are useful as they
suggest a pattern of monotonicity, but analytic work should be done to
confirm a graphical trend.

1.

an+1 − an =
n+ 2

n+ 1
− n+ 1

n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)

< 0 for all n.

Since an+1 − an < 0 for all n, we conclude that the sequence is
decreasing.

2.

an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 3n

(n+ 1)(n+ 2)

> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is in-
creasing.

3. We can clearly see in Figure 10.1.31(c), where the sequence is plot-
ted, that it is not monotonic. However, it does seem that after
the first 4 terms it is decreasing. To understand why, perform the
same analysis as done before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8

n2 − 8n+ 17
− n2 − 9

n2 − 10n+ 26
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=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The
denominator is always positive, therefore we are only concerned
with the numerator. For small values of n, the numerator is pos-
itive. As n grows large, the numerator is dominated by −10n2,
meaning the entire fraction will be negative; i.e., for large enough
n, an+1−an < 0. Using the quadratic formula we can determine
that the numerator is negative for n ≥ 5. In short, the sequence
is simply not monotonic, though it is useful to note that for n ≥ 5,
the sequence is monotonically decreasing.

4. Again, the plot in Figure 10.1.31(d) shows that the sequence is
not monotonic, but it suggests that it is monotonically decreasing
after the first term. We perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!

When n = 1, the above expression is > 0; for n ≥ 2, the above
expression is < 0. Thus this sequence is not monotonic, but it is
monotonically decreasing after the first term.
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Figure 10.1.31 Plots of sequences in Example 10.1.30

Video solution

youtu.be/watch?v=F8mDR0ZnMCM

Knowing that a sequence is monotonic can be useful. Consider, for example,
a sequence that is monotonically decreasing and is bounded below. We know
the sequence is always getting smaller, but that there is a bound to how small it
can become. This is enough to prove that the sequence will converge, as stated
in the following theorem.

Theorem 10.1.32 Bounded Monotonic Sequences are Convergent.

1. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

2. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always positive (i.e., bounded below by
0). Thereforewe can conclude by Theorem10.1.32 that the sequence converges.
We already knew this by other means, but in the following section this theorem
will become very useful.

We can replace Theorem10.1.32with the statement “Let {an}be abounded,
monotonic sequence. Then {an} converges; i.e., lim

n→∞
an exists.” We leave it to

the reader in the exercises to show the theorem and the above statement are
equivalent.

youtu.be/watch?v=fRMKbUCIb_4

Figure 10.1.33 Finding the limit of a
bounded, monotonic sequence

Sequences are a great source of mathematical inquiry. The On-Line Ency-
clopedia of Integer Sequences (oeis.org) contains thousands of sequences and
their formulae. (As of this writing, there are 328,977 sequences in the data-
base.) Perusing this database quickly demonstrates that a single sequence can
represent several different “real life” phenomena.

https://www.youtube.com/watch?v=F8mDR0ZnMCM
https://www.youtube.com/watch?v=fRMKbUCIb_4
https://oeis.org
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Interesting as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · ·. Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many times, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to investigate in Section 10.2.
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10.1.1 Exercises

Terms and Concepts

1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems

Exercise Group. In the following exercises, give the first five terms of the given sequence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3

2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} ={

1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)}

Exercise Group. In the following exercises, determine the nth term of the given sequence.
9. 4, 7, 10, 13, 16, . . . 10. 3, −3

2
,
3

4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .
12. 1, 1,

1

2
,
1

6
,
1

24
,

1

120
, . . .

Exercise Group. In the following exercises, use the following information to determine the limit of the given se-
quences.

• {an} =

{
2n − 20

2n

}
; lim
n→∞

an = 1

• {bn} =

{(
1 +

2

n

)n}
; lim
n→∞

bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20

7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1 +

2

n

)n}
16. {an} =

{(
1 +

2

n

)2n
}

Exercise Group. In the following exercises, determine whether the sequence converges or diverges. If convergent,
give the limit of the sequence.

17. {an} =

{
(−1)n

n

n+ 1

}
18. {an} =

{
4n2 − n+ 5

3n2 + 1

}
19. {an} =

{
4n

5n

}
20. {an} =

{
n− 1

n
− n

n− 1

}
, n ≥ 2

21. {an} = {ln(n)}
22. {an} =

{
3n√
n2 + 1

}
23. {an} =

{(
1 +

1

n

)n}
24. {an} =

{
5− 1

n

}
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25. {an} =

{
(−1)n+1

n

}
26. {an} =

{
1.1n

n

}
27. {an} =

{
2n

n+ 1

}
28. {an} =

{
(−1)n

n2

2n − 1

}

Exercise Group. In the following exercises, determine whether the sequence is bounded, bounded above, bounded
below, or none of the above.

29. {an} = {sin(n)} 30. {an} = {tan(n)}

31. {an} =

{
(−1)n

3n− 1

n

}
32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos(n)} 34. {an} = {2n − n!}

Exercise Group. In the following exercises, determine whether the sequence is monotonically increasing or decreas-
ing. If it is not, determine if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}
36. {an} =

{
n2 − 6n+ 9

n

}
37. {an} =

{
(−1)n

1

n3

}
38. {an} =

{
n2

2n

}

Exercise Group. The following exercises explore further the theory of sequences.
39. Prove Theorem 10.1.17; that is, use the

definition of the limit of a sequence to show
that if lim

n→∞
|an| = 0, then lim

n→∞
an = 0.

40. Let {an} and {bn} be sequences such that
lim

n→∞
an = L and lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then
L ≤ K.

(b) Give an example where L = K.
41. Prove the Squeeze Theorem for sequences: Let

{an} and {bn} be such that lim
n→∞

an = L and
lim

n→∞
bn = L, and let {cn} be such that

an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

42. Prove the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges;
i.e., lim

n→∞
an exists.” is equivalent to

Theorem 10.1.32. That is,

(a) Show that if Theorem 10.1.32 is true,
then above statement is true, and

(b) Show that if the above statement is true,
then Theorem 10.1.32 is true.
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10.2 Infinite Series

youtu.be/watch?v=RV9LNPv20TA

Figure 10.2.1 Video introduction to
Section 10.2

Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the
following sums:

a1 = 1/2 =1/2

a1 + a2 = 1/2 + 1/4 =3/4

a1 + a2 + a3 = 1/2 + 1/4 + 1/8 =7/8

a1 + a2 + a3 + a4 = 1/2 + 1/4 + 1/8 + 1/16 =15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1

2n
= 1− 1

2n
.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the
above, we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that
Sn = 1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = limn→∞
(
1− 1/2n

)
= 1. This

limit can be interpreted as saying something amazing: the sum of all the terms
of the sequence {1/2n} is 1.

This example illustrates some interesting concepts that we explore in this
section. We begin this exploration with some definitions.

10.2.1 Convergence of sequences

Definition 10.2.2 Infinite Series, nth Partial Sums, Convergence, Diver-
gence.

Let {an} be a sequence, beginning at some index value n = k.

1. The sum
∞∑

n=k

an is called an infinite series (or, simply series).

2. Let Sn denote the sum of the first n terms in the sequence {an},
known as the nth partial sum of the sequence. We can then de-
fine the sequence {Sn} of partial sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑

n=k

an

converges to L, and we write
∞∑

n=k

an = L.

4. If the sequence {Sn} diverges, the series
∞∑

n=k

an diverges.

Using our new terminology, we can state that the series
∞∑

n=1

1/2n converges,

and
∞∑

n=1

1/2n = 1.

Note that in the definition above, we do not necessarily assume that our
sum begins with n = 1. In fact, it is quite common to have a series beginning
at n = 0, and in some cases we may need to consider other values as well. The

https://www.youtube.com/watch?v=RV9LNPv20TA
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nth partial sum Sn will always denote the sum of the first n terms: For example,∑∞
n=1 1/n has

Sn =

n terms︷ ︸︸ ︷
1 +

1

2
+ · · ·+ 1

n
,

while
∑∞

n=0 3
−n has

Sn =

n terms︷ ︸︸ ︷
1 +

1

3
+ · · ·+ 1

3n−1
,

and
∑∞

n=3
1

n2−2n has

Sn =

n terms︷ ︸︸ ︷
1

3
+

1

8
+ · · ·+ 1

(n+ 2)2 − 2(n+ 2)
.

In general, for the series
∞∑

n=k

an, the nth partial sum will be Sn =

k+n−1∑
i=k

ai.

We will explore a variety of series in this section. We start with two series
that diverge, showing how we might discern divergence.

Example 10.2.3 Showing series diverge.

1. Let {an} = {n2}. Show
∞∑

n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑

n=1

bn diverges.

Solution.

1. Consider Sn, the nth partial sum.

Sn = a1 + a2 + a3 + · · ·+ an

= 12 + 22 + 32 · · ·+ n2.

By Theorem 5.3.9, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑

n=1

n2 diverges.

It is instructive to write
∞∑

n=1

n2 = ∞ for this tells us how the series

diverges: it grows without bound. A scatter plot of the sequences
{an} and {Sn} is given in Figure 10.2.4(a). The terms of {an} are
growing, so the terms of the partial sums {Sn} are growing even
faster, illustrating that the series diverges.

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some
of the partial sums Sn of {bn}:

S1 = 1
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S2 = 0

S3 = 1

S4 = 0

This pattern repeats; we find that Sn =

{
1 n is odd
, 0 n is even

. As

{Sn} oscillates, repeating 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn

does not exist, hence
∞∑

n=1

(−1)n+1 diverges. A scatter plot of

the sequence {bn} and the partial sums {Sn} is given in Fig-
ure 10.2.4(b). When n is odd, bn = Sn so the marks for bn are
drawn oversized to show they coincide.

2 4 6 8 10

100

200

300

n

y

an Sn

(a)

2 4 6 8 10

−1

−0.5

0.5

1

n

y

bn Sn

(b)

Figure 10.2.4 Scatter plots relating to Example 10.2.3

Video solution

youtu.be/watch?v=NLXq_m8S2tw

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this section we will demonstrate
a few general techniques for determining convergence; later sections will delve
deeper into this topic.

10.2.2 Geometric Series
One important type of series is a geometric series.

Definition 10.2.5 Geometric Series.

A geometric series is a series of the form

∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.
youtu.be/watch?v=Js5qK6AecSM

Figure 10.2.6 Video presentation of
Definition 10.2.5 and Theorem 10.2.7

We started this section with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properties.

https://www.youtube.com/watch?v=NLXq_m8S2tw
https://www.youtube.com/watch?v=Js5qK6AecSM
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Theorem 10.2.7 Geometric Series Test.

Consider the geometric series
∞∑

n=0

rn.

1. For r ̸= 1, the nth partial sum is:

Sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
.

When r = 1, Sn = n.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

Proof. We begin by proving the formula for the simplied form for the partial
sums. Consider the nth partial sum of the geometric series, Sn =

∑n
i=0 r

i:

Sn = 1 + r + r2 + · · ·+ rn−2 + rn−1

Multiply both sides by r:

r · Sn = r + r2 + r3 + · · ·+ rn−1 + rn

Now subtract the second line from the first and solve for Sn:

Sn − r · Sn = 1− rn

Sn(1− r) = 1− rn

Sn =
1− rn

1− r
.

We have shown Part 1 of Geometric Series Test.
Now, examining the partial sums, we consider five cases to determine when Sn

converges:

1. If |r| < 1, then rn → 0 as n → ∞, so we have lim
n→∞

Sn = 1−0
1−r = 1

1−r , a
convergent sequence of partial sums.

2. If r > 1, then rn → ∞ as n → ∞, so

Sn =
1− rn

1− r
=

rn

r − 1
− 1

r − 1

diverges to infinity. (Note that r − 1 is a positive constant.)

3. If r < −1, then rn will oscillate between large positive and large negative
values as n increases. The same will be true of Sn, so lim

n→∞
Sn does not

exist.

4. If r = 1, then Sn = 1−1n+1

1−1 is undefined. However, examining Sn =

1+ r+ r2 + · · ·+ rn for r = 1, we can see that the partial sums simplify
to Sn = n, and this sequence diverges to∞.

5. If r = −1, then Sn = 1−(−1)n

2 . For even values of n, the partial sums
are always 0. For odd values of n, the partial sums are always 1. So the
sequence of partial sums diverges.

Therefore, a geometric series converges if and only if |r| < 1. ■
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According to Theorem 10.2.7, the series

∞∑
n=0

1

2n
=

∞∑
n=0

(
1

2

)2

= 1 +
1

2
+

1

4
+ · · ·

converges as r = 1/2 < 1, and
∞∑

n=0

1

2n
=

1

1− 1/2
= 2. This concurs with our

introductory example; while there we got a sum of 1, we skipped the first term
of 1.

Example 10.2.8 Exploring geometric series.

Check the convergence of the following series. If the series converges,
find its sum.

1.
∞∑

n=2

(
3

4

)n

2.
∞∑

n=0

(
−1

2

)n

3.
∞∑

n=0

3n

Solution.

1. Since r = 3/4 < 1, this series converges. By Theorem 10.2.7, we
have that

∞∑
n=0

(
3

4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summation in the given series:
we are to start with n = 2. Therefore we subtract off the first two
terms, giving:

∞∑
n=2

(
3

4

)n

= 4− 1− 3

4
=

9

4
.

This is illustrated in Figure 10.2.9.

2 4 6 8 10

1

2

n

y

an Sn

Figure 10.2.9 Scatter plots for the se-
ries in Item 1

2. Since |r| = 1/2 < 1, this series converges, and by Theo-
rem 10.2.7,

∞∑
n=0

(
−1

2

)n

=
1

1− (−1/2)
=

2

3
.

The partial sums of this series are plotted in Figure 10.2.10. Note
how the partial sums are not purely increasing as some of the
terms of the sequence {(−1/2)n} are negative.

2 4 6 8 10

−1

−0.5

0.5

1

n

y

an Sn

Figure 10.2.10 Scatter plots for the se-
ries in Item 2

3. Since r > 1, the series diverges. (This makes “common sense”;
we expect the sum

1 + 3 + 9 + 27 + 81 + 243 + · · ·

to diverge.) This is illustrated in Figure 10.2.11.

2 4 6

200

400

600

800

1,000

n

y

an Sn

Figure 10.2.11 Scatter plots for the se-
ries in Item 3

Video solution

youtu.be/watch?v=9_AmxyiKVm8

https://www.youtube.com/watch?v=9_AmxyiKVm8
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10.2.3 p-Series
Another important type of series is the p-series.

Definition 10.2.12 p-Series, General p-Series.

1. A p-series is a series of the form

∞∑
n=1

1

np
, where p > 0.

2. A general p-series is a series of the form

∞∑
n=1

1

(an+ b)p
,

where p > 0 and a, b are real numbers such that a ̸= 0 and an +
b > 0 for all n ≥ 1.

Like geometric series, one of the nice things about p-series is that they have
easy to determine convergence properties.

Theorem 10.2.13 p-Series Test.

A general p-series
∞∑

n=1

1

(an+ b)p
will converge if, and only if, p > 1.

We will be able to prove Theo-
rem10.2.13 in Section10.3. This
theorem assumes that an+ b >
0 for all n; if an + b < 0, (an +
b)p won’t be defined when p is
not an integer, and if an+ b = 0
for some n, then of course the
series does not converge regard-
less of p as not all of the terms of
the sequence are defined. These
requirements actually force us to
have a > 0, since if a < 0, we’ll
have an + b < 0 for sufficiently
large n.

Example 10.2.14 Determining convergence of series.

Determine the convergence of the following series.

1.
∞∑

n=1

1

n

2.
∞∑

n=1

1

n2

3.
∞∑

n=1

1√
n

4.
∞∑

n=1

(−1)n

n

5.
∞∑

n=11

1

( 12n− 5)3

6.
∞∑

n=1

1

2n

Solution.

1. This is a p-series with p = 1. By Theorem 10.2.13, this series di-
verges. This series is a famous series, called the Harmonic Series,
so named because of its relationship to harmonics in the study of
music and sound.

2. This is a p-series with p = 2. By Theorem 10.2.13, it converges.
Note that the theoremdoes not give a formula bywhichwe cande-
termine what the series converges to; we just know it converges.
A famous, unexpected result is that this series converges to π2/6.

3. This is a p-series with p = 1/2; the theorem states that it diverges.

4. This is not a p-series; the definition does not allow for alternat-
ing signs. Therefore we cannot apply Theorem 10.2.13. (Another
famous result states that this series, the Alternating Harmonic Se-
ries, converges to ln(2).)
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5. This is a general p-series with p = 3, therefore it converges.

6. This is not a p-series, but a geometric series with r = 1/2. It
converges.

Video solution

youtu.be/watch?v=XYW0z0LMaJc Later sections will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 10.2.15 Telescoping series.

Evaluate the sum
∞∑

n=1

(
1

n
− 1

n+ 1

)
.

Solution. It will help to write down some of the first few partial sums
of this series.

S1 =
1

1
− 1

2
= 1− 1

2

S2 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
= 1− 1

3

S3 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
= 1− 1

4

S4 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
= 1− 1

5

Note how most of the terms in each partial sum are canceled out! In
general, we see that Sn = 1 − 1

n+ 1
. The sequence {Sn} converges,

as lim
n→∞

Sn = limn→∞

(
1− 1

n+1

)
= 1, and so we conclude that

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1. Partial sums of the series are plotted in Fig-

ure 10.2.16.
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Figure 10.2.16 Scatter plots relating
to the series of Example 10.2.15

Video solution

youtu.be/watch?v=ckj4xm6ZHgU

The series in Example 10.2.15 is an example of a telescoping series. Infor-
mally, a telescoping series is one in which most terms cancel with preceding or
following terms, reducing the number of terms in each partial sum. The partial
sum Sn did not contain n terms, but rather just two: 1 and 1/(n+ 1).

When possible, seek a way to write an explicit formula for the nth partial
sum Sn. This makes evaluating the limit lim

n→∞
Sn muchmore approachable. We

do so in the next example.

Example 10.2.17 Evaluating series.

Evaluate each of the following infinite series.

1.
∞∑

n=1

2

n2 + 2n
2.

∞∑
n=1

ln
(
n+ 1

n

)

Solution.

https://www.youtube.com/watch?v=XYW0z0LMaJc
https://www.youtube.com/watch?v=ckj4xm6ZHgU
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1. We can decompose the fraction 2/(n2 + 2n) as

2

n2 + 2n
=

1

n
− 1

n+ 2
.

(See Section 6.5, Partial Fraction Decomposition, to recall how this
is done, if necessary.) Expressing the terms of {Sn} is now more
instructive:

S1 = 1− 1

3

S2 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
= 1 +

1

2
− 1

3
− 1

4

S3 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
= 1 +

1

2
− 1

4
− 1

5

S4 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
= 1 +

1

2
− 1

5
− 1

6

S5 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
+

(
1

5
− 1

7

)
= 1 +

1

2
− 1

6
− 1

7

We again have a telescoping series. In each partial sum, most of

the terms cancel andwe obtain the formulaSn = 1+
1

2
− 1

n+ 1
−

1

n+ 2
. Taking limits allows us to determine the convergence of

the series:

lim
n→∞

Sn = lim
n→∞

(
1 +

1

2
− 1

n+ 1
− 1

n+ 2

)
=

3

2
,

so
∑∞

n=1
1

n2+2n = 3
2 . This is illustrated in Figure 10.2.18(a).

2. We begin by writing the first few partial sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3

2

)
S3 = ln (2) + ln

(
3

2

)
+ ln

(
4

3

)
S4 = ln (2) + ln

(
3

2

)
+ ln

(
4

3

)
+ ln

(
5

4

)
At first, this does not seem helpful, but recall the logarithmic iden-
tity: ln(x) + ln(y) = ln(xy). Applying this to S4 gives:

S4 = ln (2) + ln
(
3

2

)
+ ln

(
4

3

)
+ ln

(
5

4

)
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= ln
(
2

1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n + 1)

}
. This sequence does

not converge, as lim
n→∞

Sn = ∞. Therefore
∞∑

n=1

ln
(
n+ 1

n

)
= ∞;

the series diverges. Note in Figure 10.2.18(b) how the sequence
of partial sums grows slowly; after 100 terms, it is not yet over 5.
Graphically we may be fooled into thinking the series converges,
but our analysis above shows that it does not.
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Figure 10.2.18 Scatter plots relating to the series in Example 10.2.17

Video solution

youtu.be/watch?v=BMn2QTtTdNQ

We are learning about a new mathematical object, the series. As done be-
fore, we apply “old” mathematics to this new topic.

Theorem 10.2.19 Properties of Infinite Series.

Let
∞∑

n=1

an = L,
∞∑

n=1

bn = K, and let c be a constant.

1. Constant Multiple Rule:
∞∑

n=1

c · an = c ·
∞∑

n=1

an = c · L.

2. Sum/Difference Rule:
∞∑

n=1

(
an± bn

)
=

∞∑
n=1

an±
∞∑

n=1

bn = L±K.

Before using this theorem, we provide a few “famous” series.

Key Idea 10.2.20 Important Series.

1.
∞∑

n=0

1

n!
= e. (Note that the index starts with n = 0.)

2.
∞∑

n=1

1

n2
=

π2

6
.

https://www.youtube.com/watch?v=BMn2QTtTdNQ
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3.
∞∑

n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑

n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑

n=1

1

n
diverges. (This is called the Harmonic Series.)

6.
∞∑

n=1

(−1)n+1

n
= ln(2). (This is called the Alternating Harmonic

Series.)

Example 10.2.21 Evaluating series.

Evaluate the given series.

1.
∞∑

n=1

(−1)n+1
(
n2 − n

)
n3

2.
∞∑

n=1

1000

n!

3.
1

16
+

1

25
+

1

36
+

1

49
+ · · ·

Solution.

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

=

∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=

∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 10.2.22(a).

2. This looks very similar to the series that involves e in Key
Idea 10.2.20. Note, however, that the series given in this exam-
ple starts with n = 1 and not n = 0. The first term of the series
in the Key Idea is 1/0! = 1, so we will subtract this from our result
below:

∞∑
n=1

1000

n!
= 1000 ·

∞∑
n=1

1

n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 10.2.22(b). The graph shows how this
particular series converges very rapidly.
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Figure 10.2.22 Scatter plots relating to the series in Exam-
ple 10.2.21

3. The denominators in each termare perfect squares; we are adding
∞∑

n=4

1

n2
(note we start with n = 4, not n = 1). This series will

converge. Using the formula from Key Idea 10.2.20, we have the
following:

∞∑
n=1

1

n2
=

3∑
n=1

1

n2
+

∞∑
n=4

1

n2

∞∑
n=1

1

n2
−

3∑
n=1

1

n2
=

∞∑
n=4

1

n2

π2

6
−
(
1

1
+

1

4
+

1

9

)
=

∞∑
n=4

1

n2

π2

6
− 49

36
=

∞∑
n=4

1

n2

0.2838 ≈
∞∑

n=4

1

n2

Video solution

youtu.be/watch?v=BMn2QTtTdNQ

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
section, yet it still may “take some getting used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will still diverge if the first term is removed.

(b) The series will still diverge if the first 10 terms are removed.

(c) The series will still diverge if the first 1, 000, 000 terms are removed.

(d) The series will still diverge if any finite number of terms from any-
where in the series are removed.

https://www.youtube.com/watch?v=BMn2QTtTdNQ
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These concepts are very important and lie at the heart of the next two theo-
rems.

Theorem 10.2.23 nth-Term Test for Divergence.

Consider the series
∞∑

n=1

an. If lim
n→∞

an ̸= 0, then
∞∑

n=1

an diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑

n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 10.2.20. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic

Series,
∞∑

n=1

1

n
, diverges.

Looking back, we can apply this theorem to the series in Example 10.2.3. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

One can rewrite Theorem 10.2.23 to state “If a series converges, then the
underlying sequence converges to 0.” While it is important to understand the
truth of this statement, in practice it is rarely used. It is generally far easier to
prove the convergence of a sequence than the convergence of a series.

Theorem 10.2.24 Infinite Nature of Series.

The convergence or divergence of an infinite series remains unchanged
by the addition or subtraction of any finite number of terms. That is:

1. A divergent series will remain divergent with the addition or sub-
traction of any finite number of terms.

2. A convergent series will remain convergent with the addition or
subtraction of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑

n=1

1

n
which diverges; that is, the

sequence of partial sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of
the first 10 million terms of the Harmonic Series is about 16.7. Removing the
first 10 million terms from the Harmonic Series changes the nth partial sums,
effectively subtracting 16.7 from the sum. However, a sequence that is growing
without bound will still grow without bound when 16.7 is subtracted from it.

The equations below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equation shows us subtracting these first 10 mil-
lion terms from both sides. The final equation employs a bit of “psuedo-math”:
subtracting 16.7 from “infinity” still leaves one with “infinity.”

∞∑
n=1

1

n
=

10,000,000∑
n=1

1

n
+

∞∑
n=10,000,001

1

n

∞∑
n=1

1

n
−

10,000,000∑
n=1

1

n
=

∞∑
n=10,000,001

1

n
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∞− 16.7 = ∞.

Just for fun, we can show that the Harmonic Series diverges algebraically
(without the use of p-Series Test).

Divergence of the harmonic series. If you just consider the partial sums

S1, S2, S3, . . . , S1000, S1001, . . . ,

it is not apparent that the partial sums diverge. Indeed they do diverge, but very,
very slowly. (If you graph them on a logarithmic scale however, you can clearly
see the divergence of the partial sums.) Instead, we will consider the partial
sums, indexed by powers of 2. That is, we will consider S2, S4, S8, S16, . . ..

S2 = 1 +
1

2

S4 = 1 +
1

2
+

1

3
+

1

4

S8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

8

Next, we consider grouping together terms in each partial sum. We will use
these groupings to set up inequalities.

S2 = 1 +
1

2

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
S8 = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
In the partial sum S4, we note that since 1/3 > 1/4, we can say

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

(
1

4
+

1

4

)
︸ ︷︷ ︸

1/2

= 1 +
2

2
.

Do the same in S8 and also note that every term in the group
(
1
5 + 1

6 + 1
7 + 1

8

)
is larger than 1/8. So

S8 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1 +

1

2
+

(
1

4
+

1

4

)
︸ ︷︷ ︸

1/2

+

(
1

8
+

1

8
+

1

8
+

1

8

)
︸ ︷︷ ︸

1/2

= 1 +
3

2

Generally, we can see that S2n > 1+ n
2 . (In order to really show this, we should

employ proof by induction.) Since the sequence of partial sums clearly diverges,
so does the series

∑∞
n=1 1/n. ■

This section introduced us to series and defined a few special types of series
whose convergence properties are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are still interested in knowing whether or not
they converge. The next three sections introduce tests that help us determine
whether or not a given series converges.
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10.2.4 Exercises

Terms and Concepts

1. Use your own words to describe how sequences and series are related.
2. Use your own words to define a partial sum.

3. Given a series
∞∑

n=1

an, describe the two sequences related to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑

n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑

n=0

an converges.

Problems

Exercise Group. In the following exercises, a series
∞∑

n=1

an is given.

(a) Give the first 5 partial sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the same axes.

7.
∞∑

n=1

(−1)n

n
8.

∞∑
n=1

1

n2

9.
∞∑

n=1

cos(πn) 10.
∞∑

n=1

n

11.
∞∑

n=1

1

n!
12.

∞∑
n=1

1

3n

13.
∞∑

n=1

(
− 9

10

)n

14.
∞∑

n=1

(
1

10

)n

Exercise Group. In the following exercises, use Theorem 10.2.23 to show the given series diverges.

15.
∞∑

n=1

3n2

n(n+ 2)
16.

∞∑
n=1

2n

n2

17.
∞∑

n=1

n!

10n
18.

∞∑
n=1

5n − n5

5n + n5

19.
∞∑

n=1

2n + 1

2n+1
20.

∞∑
n=1

(
1 +

1

n

)n

Exercise Group. In the following exercises, state whether the given series converges or diverges.

21.
∞∑

n=1

1

n5
22.

∞∑
n=0

1

5n

23.
∞∑

n=0

6n

5n
24.

∞∑
n=1

n−4
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25.
∞∑

n=1

√
n 26.

∞∑
n=1

10

n!

27.
∞∑

n=1

(
1

n!
+

1

n

)
28.

∞∑
n=1

2

(2n+ 8)2

29.
∞∑

n=1

1

2n
30.

∞∑
n=1

1

2n− 1

Exercise Group. In the following exercises, a series is given.

(a) Find a formula for Sn, the nth partial sum of the series.

(b) Determine whether the series converges or diverges. If it converges, state what it converges to.

31.
∞∑

n=0

1

4n
32.

∞∑
n=1

2

33. 13 + 23 + 33 + 43 + · · ·
34.

∞∑
n=1

(−1)nn

35.
∞∑

n=0

5

2n
36.

∞∑
n=0

e−n

37. 1− 1

3
+

1

9
− 1

27
+

1

81
+ · · · 38.

∞∑
n=1

1

n(n+ 1)

39.
∞∑

n=1

3

n(n+ 2)
40.

∞∑
n=1

1

(2n− 1)(2n+ 1)

41.
∞∑

n=1

ln
(

n

n+ 1

)
42.

∞∑
n=1

2n+ 1

n2(n+ 1)2

43.
1

1 · 4
+

1

2 · 5
+

1

3 · 6
+

1

4 · 7
+ · · · 44. 2 +

(
1

2
+

1

3

)
+

(
1

4
+

1

9

)
+

(
1

8
+

1

27

)
+ · · ·

45.
∞∑

n=2

1

n2 − 1
46.

∞∑
n=0

(
sin(1)

)n
47. Break the Harmonic Series into the sum of the odd and even terms:

∞∑
n=1

1

n
=

∞∑
n=1

1

2n− 1
+

∞∑
n=1

1

2n
.

The goal is to show that each of the series on the right diverge.

(a) Show why
∞∑

n=1

1

2n− 1
>

∞∑
n=1

1

2n
.

(Compare each nth partial sum.)

(b) Show why
∞∑

n=1

1

2n− 1
< 1 +

∞∑
n=1

1

2n

(c) Explain why (a) and (b) demonstrate that the series of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both converge or both diverge.)

(d) Explain why knowing the Harmonic Series is divergent determines that the even and odd series are also
divergent.
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48. Show the series
∞∑

n=1

n

(2n− 1)(2n+ 1)
diverges.
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10.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 10.6. Theorems 10.2.7 and 10.2.13 give cri-
teria for when Geometric and p-series converge, and Theorem 10.2.23 gives a
quick test to determine if a series diverges. There are many important series
whose convergence cannot be determined by these theorems, though, so we
introduce a set of tests that allow us to handle a broad range of series. We start
with the Integral Test.

10.3.1 Integral Test
We stated in Section 10.1 that a sequence {an} is a function a(n)whose domain
is N, the set of natural numbers. If we can extend a(n) to R, the real numbers,

and it is both positive and decreasing on [1,∞), then the convergence of
∞∑

n=1

an

is the same as
∫ ∞

1

a(x) dx.

Theorem 10.3.1 Integral Test.

Let a sequence {an} be defined by an = a(n), where a(n) is continuous,

positive and decreasing on [1,∞). Then
∞∑

n=1

an converges, if, and only if,∫ ∞

1

a(x) dx converges.

Theorem 10.3.1 does not state
that the integral and the summa-
tion have the same value.

youtu.be/watch?v=43DIt-rRclA

Figure 10.3.2 Video presentation of
Theorem 10.3.1

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 10.3.3(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1

a(x) dx <

∞∑
n=1

an. (10.3.1)

1 2 3 4 5

1

2

y = a(x)

x

y

(a)

1 2 3 4 5

1

2

y = a(x)

x

y

(b)

Figure 10.3.3 Illustrating the truth of the Integral Test
In Figure 10.3.3(b), we draw rectangles under y = a(x)with the Right-Hand

rule, starting with n = 2. This time, the area of the rectangles is less than the

area under y = a(x), so
∞∑

n=2

an <

∫ ∞

1

a(x) dx. Note how this summation

https://www.youtube.com/watch?v=43DIt-rRclA
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starts with n = 2; adding a1 to both sides lets us rewrite the summation starting
with n = 1:

∞∑
n=1

an < a1 +

∫ ∞

1

a(x) dx. (10.3.2)

Combining Equations (10.3.1) and (10.3.2), we have

∞∑
n=1

an < a1 +

∫ ∞

1

a(x) dx < a1 +

∞∑
n=1

an. (10.3.3)

From Equation (10.3.3) we can make the following two statements:

1. If
∞∑

n=1

an diverges, so does
∫ ∞

1

a(x) dx (because
∞∑

n=1

an < a1+

∫ ∞

1

a(x) dx)

2. If
∞∑

n=1

an converges, so does
∫ ∞

1

a(x) dx (because
∫ ∞

1

a(x) dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. The-
orem 10.2.24 allows us to extend this theorem to series where a(n) is positive
and decreasing on [b,∞) for some b > 1. A formal proof of the Integral Test is
shown below.

Proof of the Integral Test. Let a(x) = ax be a postive, continuous, decreasing
function on [1,∞). We will consider how the partial sums of

∑∞
n=1 an com-

pare to the integral
∫∞
0

a(x) dx. We first consider the case where
∫∞
1

a(x) dx
diverges.

1. Suppose that
∫∞
1

a(x) dx diverges. Using Figure 10.3.3(a), we can say that
Sn =

∑n
i=1 ai >

∫ n+1

1
a(x) dx. If we let n → ∞ in this inequality, we

know that
∫ n+1

1
a(x) dx will get arbitrarily large as n → ∞ (since a(x) >

0 and
∫∞
1

a(x) dx diverges). Therefore we conclude that Sn =
∑n

i=1 ai
will also get arbitrarily large as n → ∞, and thus

∑∞
n=1 an diverges.

2. Now suppose that
∫∞
1

a(x) dx converges to M , where M is some posi-
tive, finite number. Using Figure 10.3.3(b), we can say that 0 < Sn =∑n

i=1 ai <
∫∞
1

a(x) dx = M . Therefore our sequence of partial sums,
Sn is bounded. Furthermore, Sn is a monotonically increasing sequence
since all of the terms an are positive. Since Sn is both bounded and mo-
notonic, Sn converges by Convergent Sequences are Bounded and by De-
finition 10.2.2, the series

∑∞
n=1 an converges as well.

■

Example 10.3.4 Using the Integral Test.

Determine the convergence of
∞∑

n=1

ln(n)
n2

. (The terms of the sequence

{an} = {ln(n)/n2} and the nth partial sums are given in Figure 10.3.5.)
Solution. Figure 10.3.5 implies that a(n) = (ln(n))/n2 is positive and
decreasing on [2,∞). We can determine this analytically, too. We know
a(n) is positive as both ln(n) and n2 are positive on [2,∞). Treating
a(n) as a continuous function of n defined on [1,∞), consider a′(n) =
(1 − 2 ln(n))/n3, which is negative for n ≥ 2. Since a′(n) is negative,
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a(n) is decreasing for n ≥ 2. We can still use the integral test since a
finite number of terms will not affect convergence of the series.

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

n

y

an Sn

Figure 10.3.5 Plotting the sequence
and series in Example 10.3.4

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln(x)
x2

dx. In-

tegrating this improper integral requires the use of Integration by Parts,
with u = ln(x) and dv = 1/x2 dx.∫ ∞

1

ln(x)
x2

dx = lim
b→∞

∫ b

1

ln(x)
x2

dx

= lim
b→∞

− 1

x
ln(x)

∣∣∣b
1
+

∫ b

1

1

x2
dx

= lim
b→∞

− 1

x
ln(x)− 1

x

∣∣∣b
1

= lim
b→∞

1− 1

b
− ln(b)

b
. Apply L’Hospital’s Rule:

= 1.

Since
∫ ∞

1

ln(x)
x2

dx converges, so does
∞∑

n=1

ln(n)
n2

.

Video solution

youtu.be/watch?v=YuAg9zOh2Hk

Theorem 10.2.13 was given without justification, stating that the general p-

series
∞∑

n=1

1

(an+ b)p
converges if, and only if, p > 1. In the following example,

we prove this to be true by applying the Integral Test.

Example 10.3.6 Using the Integral Test to establish Theorem 10.2.13.

Let a, b be real numbers such that a ̸= 0 and an + b > 0 for all n ≥ 1.

Use the Integral Test to prove that
∞∑

n=1

1

(an+ b)p
converges if, and only

if, p > 1.

Solution. Consider the integral
∫ ∞

1

1

(ax+ b)p
dx; assuming p ̸= 1 and

a ̸= 0,∫ ∞

1

1

(ax+ b)p
dx = lim

c→∞

∫ c

1

1

(ax+ b)p
dx

= lim
c→∞

1

a(1− p)
(ax+ b)1−p

∣∣∣c
1

= lim
c→∞

1

a(1− p)

(
(ac+ b)1−p − (a+ b)1−p

)
.

This limit converges if, and only if, p > 1 so that 1 − p < 0. It is easy to
show that the integral also diverges in the case of p = 1. (This result is
similar to the work preceding Key Idea 6.8.17.)

Therefore
∞∑

n=1

1

(an+ b)p
converges if, and only if, p > 1.

Video solution

youtu.be/watch?v=fBQkA2ntBuM

We consider two more convergence tests in this section, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

https://www.youtube.com/watch?v=YuAg9zOh2Hk
https://www.youtube.com/watch?v=fBQkA2ntBuM
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10.3.2 Direct Comparison Test

Theorem 10.3.7 Direct Comparison Test.

Let {an} and {bn} be positive sequences where an ≤ bn for all n ≥ N ,
for someN ≥ 1.

1. If
∞∑

n=1

bn converges, then
∞∑

n=1

an converges.

2. If
∞∑

n=1

an diverges, then
∞∑

n=1

bn diverges.

Proof. Let 0 < an ≤ bn for all n ≥ N ≥ 1. Note that both partial sums for
both series are positive and increasing since the terms of both sequences are
positive.

1. Suppose that
∞∑

n=1

bn converges, so
∞∑

n=1

bn = S, whereS is a finite, positive

number. (S must be positive since bn > 0.)

Comparing the partial sums, wemust have
n∑

i=N

ai ≤
n∑

i=N

bi since an ≤ bn

for all n ≥ N . Furthermore since
∞∑

n=1

bn converges to S, our partial sums

for an are bounded (note that the partial sums started at i = N , but
a finite number of terms will not affect the boundedness of the partial
sums).

0 <

n∑
i=N

ai ≤
n∑

i=N

bi < S.

Since the sequence of partial sums, sn =
∑n

i=1 ai is both monotonically
increasing and bounded, we can say that sn converges (by Convergent
Sequences are Bounded), and therefore so does

∑∞
n=1 an.

2. Suppose that
∞∑

n=1

an diverges, so
n∑

i=1

an = ∞. (We can say that the series

diverges to∞ since the terms of the series are always positive). Compar-
ing the partial sums, we have

n∑
i=N

ai ≤
n∑

i=N

bi

Then applying limits, we get

lim
n→∞

n∑
i=N

ai ≤ lim
n→∞

n∑
i=N

bi.

Since the limit on the left side diverges to ∞, we can say that
lim

n→∞

∑n
i=N bi also diverges to∞.

■

A sequence {an} is a positive se-
quence if an > 0 for all n.

Because of Theorem10.2.24,
any theorem that relies on a pos-
itive sequence still holds truewhen
an > 0 for all but a finite num-
ber of values of n.

youtu.be/watch?v=KhPpyQVNR5Y

Figure 10.3.8 Video presentation of
Theorem 10.3.7

https://www.youtube.com/watch?v=KhPpyQVNR5Y
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Example 10.3.9 Applying the Direct Comparison Test.

Determine the convergence of
∞∑

n=1

1

3n + n2
.

Solution. This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger
terms that converges. (Note too that the Integral Test seems difficult to
apply here.)

Since 3n < 3n + n2,
1

3n
>

1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1

3n

is a convergent geometric series; by Theorem 10.3.7,
∞∑

n=1

1

3n + n2
con-

verges.

Video solution

youtu.be/watch?v=DAfdDWo948U

Example 10.3.10 Applying the Direct Comparison Test.

Determine the convergence of
∞∑

n=1

1

n− ln(n)
.

Solution. We know the Harmonic Series
∞∑

n=1

1

n
diverges, and it seems

that the given series is closely related to it, hence we predict it will di-
verge.

Since n ≥ n− ln(n) for all n ≥ 1,
1

n
≤ 1

n− ln(n)
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑

n=1

1

n− ln(n)
di-

verges as well.

Video solution

youtu.be/watch?v=G1j5JNagVmU

The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑

n=1

1

n+ ln(n)
. It is very similar to the divergent series given in

Example 10.3.10. We suspect that it also diverges, as
1

n
≈ 1

n+ ln(n)
for large

n. However, the inequality that we naturally want to use “goes the wrong way”:

since n ≤ n+ ln(n) for all n ≥ 1,
1

n
≥ 1

n+ ln(n)
for all n ≥ 1. The given series

has terms less than the terms of a divergent series, and we cannot conclude
anything from this.

Fortunately, we can apply another test to the given series to determine its
convergence.

youtu.be/watch?v=bH7U2fgSWXs

Figure 10.3.11 Motivating Theo-
rem 10.3.12

https://www.youtube.com/watch?v=DAfdDWo948U
https://www.youtube.com/watch?v=G1j5JNagVmU
https://www.youtube.com/watch?v=bH7U2fgSWXs
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10.3.3 Limit Comparison Test

Theorem 10.3.12 Limit Comparison Test.

Let {an} and {bn} be positive sequences.

1. If lim
n→∞

an
bn

= L, where L is a positive real number, then
∞∑

n=1

an

and
∞∑

n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑

n=1

bn converges, then so does
∞∑

n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑

n=1

bn diverges, then so does
∞∑

n=1

an.

Theorem 10.3.12 is most useful when the convergence of the series from
{bn} is known and we are trying to determine the convergence of the series
from {an}. youtu.be/watch?v=zGKEPIyXvvY

Figure 10.3.13 Video presentation of
Theorem 10.3.12

We use the Limit Comparison Test in the next example to examine the series
∞∑

n=1

1

n+ ln(n)
which motivated this new test.

Example 10.3.14 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

1

n+ ln(n)
using the Limit Compari-

son Test.

Solution. We compare the terms of
∞∑

n=1

1

n+ ln(n)
to the terms of the

Harmonic Sequence
∞∑

n=1

1

n
:

lim
n→∞

1/(n+ ln(n))
1/n

= lim
n→∞

n

n+ ln(n)
= 1 (after applying L’Hospital’s Rule) .

Since the Harmonic Series diverges, we conclude that
∞∑

n=1

1

n+ ln(n)
di-

verges as well.

Video solution

youtu.be/watch?v=RBeu0Tgsj_c

Example 10.3.15 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

1

3n − n2

Solution. This series is similar to the one in Example 10.3.9, but nowwe
are considering “3n − n2” instead of “3n + n2.” This difference makes
applying the Direct Comparison Test difficult.

https://www.youtube.com/watch?v=zGKEPIyXvvY
https://www.youtube.com/watch?v=RBeu0Tgsj_c
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Instead, we use the Limit Comparison Test and compare with the series
∞∑

n=1

1

3n
:

lim
n→∞

1/(3n − n2)

1/3n
= lim

n→∞

3n

3n − n2

= 1 (after applying L’Hospital’s Rule twice) .

We know
∞∑

n=1

1

3n
is a convergent geometric series, hence

∞∑
n=1

1

3n − n2

converges as well.

Video solution

youtu.be/watch?v=1qaiCHhP3GE

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponentials, which dominate algebraic func-
tions (e.g., polynomials), which dominate logarithms. In the previous example,

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1

3n
. It

is hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hospital’s Rule to n!.

Example 10.3.16 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

√
n+ 3

n2 − n+ 1
.

Solution. We naïvely attempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2.

Knowing that
∞∑

n=1

1

n2
converges, we attempt to apply the Limit Compar-

ison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1

= ∞ (Apply L’Hospital’s Rule) .

Theorem 10.3.12 part (3) only applies when
∞∑

n=1

bn diverges; in our case,

it converges. Ultimately, our test has not revealed anything about the
convergence of our series.
The problem is thatwe chose a poor series withwhich to compare. Since
the numerator and denominator of the terms of the series are both al-
gebraic functions, we should have compared our series to the dominant
term of the numerator divided by the dominant term of the denomina-
tor.
The dominant term of the numerator is n1/2 and the dominant term of
the denominator is n2. Thus we should compare the terms of the given
series to n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1

https://www.youtube.com/watch?v=1qaiCHhP3GE
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= 1 (Apply L’Hospital’s Rule) .

Since the p-series
∞∑

n=1

1

n3/2
converges, we conclude that

∞∑
n=1

√
n+ 3

n2 − n+ 1
converges as well.

Video solution

youtu.be/watch?v=D-OsPkY8khEWe mentioned earlier that the Integral Test did not work well with series
containing factorial terms. The next section introduces the Ratio Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.

https://www.youtube.com/watch?v=D-OsPkY8khE
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10.3.4 Exercises

Terms and Concepts

1. In order to apply the Integral Test to a sequence {an}, the function a(n) = anmust be , and
.

2. T/F: The Integral Test can be used to determine the sum of a convergent series.
3. What test(s) in this section do not work well with factorials?

4. Suppose
∞∑

n=0

an is convergent, and there are sequences {bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑

n=0

bn and
∞∑

n=0

cn?

Problems

Exercise Group. In the following exercises, use the Integral Test to determine the convergence of the given series.

5.
∞∑

n=1

1

2n
6.

∞∑
n=1

1

n4

7.
∞∑

n=1

n

n2 + 1
8.

∞∑
n=2

1

n ln(n)

9.
∞∑

n=1

1

n2 + 1
10.

∞∑
n=2

1

n(ln(n))2

11.
∞∑

n=1

n

2n
12.

∞∑
n=1

ln(n)
n3

Exercise Group. In the following exercises, use the Direct Comparison Test to determine the convergence of the given
series; state what series is used for comparison.

13.
∞∑

n=1

1

n2 + 3n− 5
14.

∞∑
n=1

1

4n + n2 − n

15.
∞∑

n=1

ln(n)
n

16.
∞∑

n=1

1

n! + n

17.
∞∑

n=2

1√
n2 − 1

18.
∞∑

n=5

1√
n− 2

19.
∞∑

n=1

n2 + n+ 1

n3 − 5
20.

∞∑
n=1

2n

5n + 10

21.
∞∑

n=2

n

n2 − 1
22.

∞∑
n=2

1

n2 ln(n)

Exercise Group. In the following exercises, use the Limit Comparison Test to determine the convergence of the given
series; state what series is used for comparison.

23.
∞∑

n=1

1

n2 − 3n+ 5
24.

∞∑
n=1

1

4n − n2
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25.
∞∑

n=4

ln(n)
n− 3

26.
∞∑

n=1

1√
n2 + n

27.
∞∑

n=1

1

n+
√
n

28.
∞∑

n=1

n− 10

n2 + 10n+ 10

29.
∞∑

n=1

sin
(
1/n

)
30.

∞∑
n=1

n+ 5

n3 − 5

31.
∞∑

n=1

√
n+ 3

n2 + 17
32.

∞∑
n=1

1√
n+ 100

Exercise Group. In the following exercises, determine the convergence of the given series. State the test used; more
than one test may be appropriate.

33.
∞∑

n=1

n2

2n
34.

∞∑
n=1

1

(2n+ 5)3

35.
∞∑

n=1

n!

10n
36.

∞∑
n=1

ln(n)
n!

37.
∞∑

n=1

1

3n + n
38.

∞∑
n=1

n− 2

10n+ 5

39.
∞∑

n=1

3n

n3
40.

∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑

n=1

an converges, state which of the following series converges, may converge, or does not converge.

(a)
∞∑

n=1

an
n

(b)
∞∑

n=1

anan+1

(c)
∞∑

n=1

(an)
2

(d)
∞∑

n=1

nan

(e)
∞∑

n=1

1

an

42. In this exercise, we explore an approximation method for series to which the Integral Test applies.

(a) Let a(x) be a function to which the Integral Test applies, and for which the series
∑∞

n=1 an converges.
Let Rn =

∑∞
n+1 an denote the remainder; that is, the difference between

∑∞
n=1 an and the nth partial

sum. (Note that Rn is the size of the error that results if we approximate the series by the nth partial
sum.) Explain why we must have the following inequality:∫ ∞

n

a(x) dx ≤ Rn ≤
∫ ∞

n+1

a(x) dx

(b) Estimate the error involved in using the first 12 terms to approximate the series
∑∞

n=1 1/n
4. What is the

approximate value of the series?
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(c) How many terms must we take to ensure that the nth partial sum approximation for
∑∞

n=1 1/n
4 is accu-

rate to 5 decimal places?
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10.4 Ratio and Root Tests

The nth-Term Test of Theorem 10.2.23 states that in order for a series
∞∑

n=1

an

to converge, lim
n→∞

an = 0. That is, the terms of {an} must get very small. Not
only must the terms approach 0, they must approach 0 “fast enough”: while

lim
n→∞

1/n = 0, the Harmonic Series
∞∑

n=1

1

n
diverges as the terms of {1/n} do

not approach 0 “fast enough.”
The comparison tests of the previous sectiondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This section introduces the Ratio and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

10.4.1 Ratio Test

Theorem 10.4.1 Ratio Test.

Let {an} be a positive sequence and consider lim
n→∞

an+1

an
.

1. If lim
n→∞

an+1

an
< 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

an+1

an
> 1 or lim

n→∞
an+1

an
= ∞, then

∞∑
n=1

an diverges.

3. If lim
n→∞

an+1

an
= 1, the Ratio Test is inconclusive.

Theorem10.2.24 allowsus to ap-
ply theRatioTest to serieswhere
{an} is positive for all but a fi-
nite number of terms.

youtu.be/watch?v=DlrdbRa-t84

Figure 10.4.2 Video presentation of
Theorem 10.4.1

The principle of the Ratio Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous termwhich is enough
to ensure convergence.

Example 10.4.3 Applying the Ratio Test.

Use the Ratio Test to determine the convergence of the following series:

1.
∞∑

n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1

n2 + 1

Solution.

1.
∞∑

n=1

2n

n!
:

lim
n→∞

an+1

an
= lim

n→∞

2n+1/(n+ 1)!

2n/n!

= lim
n→∞

2n+1n!

2n(n+ 1)!

= lim
n→∞

2

n+ 1

= 0.

https://www.youtube.com/watch?v=DlrdbRa-t84
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Since the limit is 0 < 1, by the Ratio Test
∞∑

n=1

2n

n!
converges. The

fact that lim
n→∞

an+1

an
= 0 can be interpreted to mean that in the

long run, the term an+1 is roughly 0 times as large as an. In other
words, not only is an decreasing to 0, it is decreasing very quickly.
That is, the terms of an decrease to 0 sufficiently fast enough to
guarantee the convergence of

∑∞
n=1 an.

2.
∞∑

n=1

3n

n3
:

lim
n→∞

an+1

an
= lim

n→∞

3n+1/(n+ 1)3

3n/n3

= lim
n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ratio Test
∞∑

n=1

3n

n3
diverges. The

fact that lim
n→∞

an+1

an
= 3 can be interpreted to mean that in the

long run, the term an+1 is roughly 3 times as large as an, so an
is increasing by roughly a factor of 3 in the long run. We could
also use Theorem 10.2.23 to determine that this series diverges.
The exponential will dominate the polynomial in the long run, so
lim

n→∞
3n/n3 = ∞.

3.
∑∞

n=1
1

n2+1 :

lim
n→∞

an+1

an
= lim

n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1

(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ratio Test is inconclusive. We can easily
show this series converges using the Integral Test. We can also
use Direct Comparison Test or Limit Comparison Test, with each

comparing to the series
∞∑

n=1

1

n2
.

Video solution

youtu.be/watch?v=Zpn9qvIGlG0

The Ratio Test is not effective when the terms of a series only contain alge-
braic functions (e.g., polynomials). It is most effective when the terms contain
some factorials or exponentials. The previous example also reinforces our de-
veloping intuition: factorials dominate exponentials, which dominate algebraic
functions, which dominate logarithmic functions. In Part 1 of the example, the
factorial in the denominator dominated the exponential in the numerator, caus-
ing the series to converge. In Part 2, the exponential in the numerator domi-
nated the algebraic function in the denominator, causing the series to diverge.

https://www.youtube.com/watch?v=Zpn9qvIGlG0
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While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 10.4.4 Applying the Ratio Test.

Determine the convergence of
∞∑

n=1

n!n!

(2n)!
.

Solution. Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the latter is 2(4 · 3 · 2 · 1) = 48.
Applying the Ratio Test:

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!

= lim
n→∞

(n+ 1)!(n+ 1)!(2n)!

n!n!(2n+ 2)!

Noting that (n+1)! = (n+1)·n! and (2n+2)! = (2n+2)·(2n+1)·(2n)!,
we have

= lim
n→∞

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the Ratio Test we conclude
∞∑

n=1

n!n!

(2n)!
con-

verges.
To find the limit in the second to last line, recall that we just need to
examine the leading terms of the numerator and denominator, which
are n2 and 4n2 respectively.

Video solution

youtu.be/watch?v=JghEjy4pykA

10.4.2 Root Test
The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Theorem 10.4.5 Root Test.

Let {an} be a positive sequence, and consider lim
n→∞

(an)
1/n.

1. If lim
n→∞

(an)
1/n < 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

(an)
1/n > 1 or lim

n→∞
(an)

1/n = ∞, then
∞∑

n=1

an diverges.

3. If lim
n→∞

(an)
1/n = 1, the Root Test is inconclusive.

youtu.be/watch?v=foE1iRYTXpc

Figure 10.4.6 Video presentation of
Theorem 10.4.5

https://www.youtube.com/watch?v=JghEjy4pykA
https://www.youtube.com/watch?v=foE1iRYTXpc
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Example 10.4.7 Applying the Root Test.

Determine the convergence of the following series using the Root Test:

1.
∞∑

n=1

(
3n+ 1

5n− 2

)n

2.
∞∑

n=1

n4

(ln(n))n
3.

∞∑
n=1

2n

n2

Solution.

1.

lim
n→∞

(an)
1/n

= lim
n→∞

((
3n+ 1

5n− 2

)n)1/n

= lim
n→∞

3n+ 1

5n− 2
=

3

5
.

Since the limit is less than 1, we conclude the series converges.
Note: it is difficult to apply the Ratio Test to this series.

2.

lim
n→∞

(an)
1/n

= lim
n→∞

(
n4

(ln(n))n

)1/n

= lim
n→∞

(
n4/n

)
ln(n)

The limit of the numerator must be found using L’Hospital’s Rule
for indeterminate powers

lim
n→∞

(
n4/n

)
= lim

n→∞
eln(n

4/n)

= lim
n→∞

e4 ln(n)/n

Now apply L’Hospital’s to the expression in the exponent:

by LHR
= lim

n→∞
e4/n

= e0 = 1.

Since the numerator approaches 1 (by L’Hospital’s Rule) and the
denominator grows to infinity, we have

lim
n→∞

(
n4/n

)
ln(n)

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n
= lim

n→∞
2(

n2/n
) = 2. Since this is greater than 1,

we conclude the series diverges. (Note: The Ratio Test is easy to
apply to this series.)

(Also note: The limit in the denominator is found in a similar fash-
ion as was illustrated in Part 2. In general lim

n→∞
(n)b/n = 1 for any

real number b.)

Video solution

youtu.be/watch?v=Y7IaFXjMLlw

https://www.youtube.com/watch?v=Y7IaFXjMLlw
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Each of the tests we have encountered so far has required that we analyze
series from positive sequences. Section 10.5 relaxes this restriction by consider-
ing alternating series, where the underlying sequence has terms that alternate
between being positive and negative.

Theorem10.2.24 allowsus to ap-
ply the Root Test to series where
{an} is positive for all but a fi-
nite number of terms.
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10.4.3 Exercises

Terms and Concepts

1. The Ratio Test is not effective when the terms of a sequence only contain functions.

2. The Ratio Test is most effective when the terms of a sequence contains and/or functions.

3. What three convergence tests do not work well with terms containing factorials?

4. The Root Test works particularly well on series where each term is to a .

Problems

Exercise Group. In the following exercises, determine the convergence of the given series using the Ratio Test. If the
Ratio Test is inconclusive, state so and determine convergence with another test.

5.
∞∑

n=0

2n

n!
6.

∞∑
n=0

5n − 3n

4n

7.
∞∑

n=0

n!10n

(2n)!
8.

∞∑
n=1

5n + n4

7n + n2

9.
∞∑

n=1

1

n
10.

∞∑
n=1

1

3n3 + 7

11.
∞∑

n=1

10 · 5n

7n − 3
12.

∞∑
n=1

n ·
(
3

5

)n

13.
∞∑

n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑

n=1

n!

5 · 10 · 15 · · · (5n)

Exercise Group. In the following exercises, determine the convergence of the given series using the Root Test. If the
Root Test is inconclusive, state so and determine convergence with another test.

15.
∞∑

n=1

(
2n+ 5

3n+ 11

)n

16.
∞∑

n=1

(
0.9n2 − n− 3

n2 + n+ 3

)n

17.
∞∑

n=1

2nn2

3n
18.

∞∑
n=1

1

nn

19.
∞∑

n=1

3n

n22n+1
20.

∞∑
n=1

4n+7

7n

21.
∞∑

n=1

(
n2 − n

n2 + n

)n

22.
∞∑

n=1

(
1

n
− 1

n2

)n

23.
∞∑

n=1

1(
ln(n)

)n 24.
∞∑

n=1

n2(
ln(n)

)n
Exercise Group. In the following exercises, determine the convergence of the given series. State the test used; more
than one test may be appropriate.

25.
∞∑

n=1

n2 + 4n− 2

n3 + 4n2 − 3n+ 7
26.

∞∑
n=1

n44n

n!

27.
∞∑

n=1

n2

3n + n
28.

∞∑
n=1

3n

nn
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29.
∞∑

n=1

n√
n2 + 4n+ 1

30.
∞∑

n=1

n!n!n!

(3n)!

31.
∞∑

n=2

1

ln(n)
32.

∞∑
n=1

(
n+ 2

n+ 1

)n

33.
∞∑

n=2

n3(
ln(n)

)n 34.
∞∑

n=1

(
1

n
− 1

n+ 2

)
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10.5 Alternating Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a positive sequence. (We can relax this with Theorem 10.2.24
and state that there must be anN > 0 such that an > 0 for all n > N ; that is,
{an} is positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 10.5.1 Alternating Series.

Let {an} be a positive sequence. An alternating series is a series of ei-
ther the form

∞∑
n=1

(−1)nan or
∞∑

n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternating series is the Alternating Harmonic Series:

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

Geometric Series can also be alternating series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1

2

)n

= 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
+ · · ·

Theorem 10.2.7 states that geometric series converge when |r| < 1 and

gives the sum:
∞∑

n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1

2

)n

=
1

1− (−1/2)
=

1

3/2
=

2

3
.

A powerful convergence theoremexists for other alternating series thatmeet
a few conditions.

Theorem 10.5.2 Alternating Series Test.

Let {an} be a positive, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑

n=1

(−1)n+1an

converge.

youtu.be/watch?v=-W6wco1HZYo

Figure 10.5.3 Video presentation of
Definition 10.5.1 and Theorem 10.5.2

The basic idea behind Theorem 10.5.2 is illustrated in Figure 10.5.4–10.5.5.
A positive, decreasing sequence {an} is shown along with the partial sums

Sn =

n∑
i=1

(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an.

https://www.youtube.com/watch?v=-W6wco1HZYo
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Because {an} is decreasing, the amount by which Sn bounces up/down
decreases. Moreover, the odd terms of Sn form a decreasing, bounded se-
quence, while the even terms of Sn form an increasing, bounded sequence.
Since bounded, monotonic sequences converge (see Theorem 10.1.32) and the
terms of {an} approach 0, one can show the odd and even terms ofSn converge
to the same common limit L, the sum of the series.

L

2 4 6 8 10

0.5

1

n

y

an Sn

Figure 10.5.4 Illustrating convergence
with the Alternating Series Test

a1

−a2

a3

−a4

a5

−a6

a7

S1S2 S3S4 S5S6 S7L

Figure 10.5.5 A visual representation of adding terms of an alternating series.
The arrows represent the length and direction of each term of the sequence.

Example 10.5.6 Applying the Alternating Series Test.

Determine if the Alternating Series Test applies to each of the following
series.

1.
∞∑

n=1

(−1)n+1 1

n
2.

∞∑
n=1

(−1)n
ln(n)
n

3.
∞∑

n=1

(−1)n+1 |sin(n)|
n2

Solution.

1. This is the Alternating Harmonic Series as seen previously. The un-
derlying sequence is {an} = {1/n}, which is positive, decreasing,
and approaches 0 as n → ∞. Therefore we can apply the Alter-
nating Series Test and conclude this series converges. While the
test does not state what the series converges to, we will see later

that
∞∑

n=1

(−1)n+1 1

n
= ln(2).

2. The underlying sequence is {an} = {ln(n)/n}. This is positive
and approaches 0 as n → ∞ (use L’Hospital’s Rule). However,
the sequence is not decreasing for all n. It is straightforward to
compute a1 = 0, a2 ≈ 0.347, a3 ≈ 0.366, and a4 ≈ 0.347:
the sequence is increasing for at least the first 3 terms. We do not
immediately conclude that we cannot apply the Alternating Series
Test. Rather, consider the long-term behavior of {an}. Treating
an = a(n) as a continuous function of n defined on [1,∞), we
can take its derivative:

a′(n) =
1− ln(n)

n2
.

The derivative is negative for all n ≥ 3 (actually, for all n > e),
meaning a(n) = an is decreasing on [3,∞). We can apply the
Alternating Series Test to the series when we start with n = 3 and

conclude that
∞∑

n=3

(−1)n
ln(n)
n

converges; adding the terms with

n = 1 and n = 2 do not change the convergence (i.e., we apply
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Theorem 10.2.24). The important lesson here is that as before, if
a series fails to meet the criteria of the Alternating Series Test on
only a finite number of terms, we can still apply the test.

3. The underlying sequence is {an} = |sin(n)| /n. This sequence is
positive and approaches 0 as n → ∞. However, it is not a de-
creasing sequence; the value of |sin(n)| oscillates between 0 and
1 as n → ∞. We cannot remove a finite number of terms tomake
{an} decreasing, thereforewe cannot apply the Alternating Series
Test. Keep inmind that this does not meanwe conclude the series
diverges; in fact, it does converge. We are just unable to conclude
this based on Theorem 10.5.2. We will be able to show that this
series converges shortly.

Video solution

youtu.be/watch?v=WmsfSSlc-W0

Key Idea 10.2.20 gives the sum of some important series. Two of these are
∞∑

n=1

1

n2
=

π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places after the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternating structure of an alternating series gives us a powerful tool when
approximating the sum of a convergent series.

Theorem 10.5.7 The Alternating Series Approximation Theorem.

Let {an} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let Sn and L be the nth partial sums and sum, respec-

tively, of either
∞∑

n=1

(−1)nan or
∞∑

n=1

(−1)n+1an. Then

1. En = |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

youtu.be/watch?v=xtsP2Kfy6Bk

Figure 10.5.8 Video presentation of
Theorem 10.5.7

Part 1 of Theorem 10.5.7 states that the nth partial sum of a convergent
alternating series will be within an+1 of its total sum. You can see this visually
in Figure 10.5.5. Look at the distance between S6 and L. Clearly this distance is
less than the length of the arrow corresponding to a7.

Also consider the alternating series we looked at before the statement of

the theorem,
∞∑

n=1

(−1)n+1

n2
. Since a14 = 1/142 ≈ 0.0051, we know that S13 is

within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places after the decimal.

Some alternating series converge slowly. In Example 10.5.6 we determined

the series
∞∑

n=1

(−1)n+1 ln(n)
n

converged. With n = 1001, we find ln(n)/n ≈

0.0069, meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places

https://www.youtube.com/watch?v=WmsfSSlc-W0
https://www.youtube.com/watch?v=xtsP2Kfy6Bk
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after the decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤
0.1633.

Example 10.5.9 Approximating the sum of convergent alternating se-
ries.

Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑

n=1

(−1)n+1 1

n3
2.

∞∑
n=1

(−1)n+1 ln(n)
n

Solution.

1. Using Theorem 10.5.7, we want to find n where 1/n3 ≤ 0.001.
That is, we want to find the the first time a term in the sequence
an is smaller than the desired level of error:

1

n3
≤ 0.001 =

1

1000

n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Let L be the sum of this series. By Part 1 of the theorem,
|S9 − L| < a10 = 1/1000. (We found a10 = an+1 < 0.0001,
so n = 9). We can compute S9 = 0.902116, which our theorem
states is within 0.001 of the total sum. We can use Part 2 of the
theorem to obtain an even more accurate result. As we know the
10th term of the series is (−1)n/103 = −1/1000, we can easily
compute S10 = 0.901116. Part 2 of the theorem states that L is
between S9 and S10, so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving
ln(n)/n = 0.001 for n. This cannot be solved algebraically, so we
will use Newton’s Method to approximate a solution. (Note: we
can also use a “Brute Force” technique. That is, we can guess and
check numerically until we find a solution.) Let f(x) = ln(x)/x−
0.001; we want to know where f(x) = 0. We make a guess that
x must be “large,” so our initial guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate solution xn,
our next approximation xn+1 is given by

xn+1 = xn − f(xn)

f ′(xn)
.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to con-
verge to a solution x = 9118.01 after 8 iterations. Taking the
next integer higher, we have n = 9119, where ln(9119)/9119 =
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0.000999903 < 0.001. Again using a computer, we find S9118 =
−0.160369. Part 1 of the theorem states that this is within 0.001
of the actual sum L. Already knowing the 9,119th term, we can
compute S9119 = −0.159369, meaning −0.159369 < L <
−0.160369.

Notice how the first series converged quite quickly, where we needed
only 10 terms to reach the desired accuracy, whereas the second series
took over 9,000 terms.

Video solution

youtu.be/watch?v=f_iiMYNpqXE

One of the famous results ofmathematics is that the Harmonic Series,
∞∑

n=1

1

n

diverges, yet the Alternating Harmonic Series,
∞∑

n=1

(−1)n+1 1

n
, converges. The

notion that alternating the signs of the terms in a series can make a series con-
verge leads us to the following definitions.

Definition 10.5.10 Absolute and Conditional Convergence.

1. A series
∞∑

n=1

an converges absolutely if
∞∑

n=1

|an| converges.

2. A series
∞∑

n=1

an converges conditionally if
∞∑

n=1

an converges but

∞∑
n=1

|an| diverges.

In Definition 10.5.10,
∞∑

n=1

an is

not necessarily an alternating se-
ries; it just may have some neg-
ative terms.

Thus we say the Alternating Harmonic Series converges conditionally.

Example 10.5.11 Determining absolute and conditional convergence.

Determine if the following series converge absolutely, conditionally, or
diverge.

1.
∞∑

n=1

(−1)n
n+ 3

n2 + 2n+ 5

2.
∞∑

n=1

(−1)n
n2 + 2n+ 5

2n

3.
∞∑

n=3

(−1)n
3n− 3

5n− 10

Solution.

1. We can show the series
∞∑

n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3

n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑

n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the Alternating

Series Test; we conclude it converges conditionally.

https://www.youtube.com/watch?v=f_iiMYNpqXE
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2. We can show the series
∞∑

n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5

2n

converges using the Ratio Test. Therefore we conclude
∞∑

n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

3. The series
∞∑

n=3

∣∣∣∣(−1)n
3n− 3

5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3

5n− 10

diverges using the nth Term Test, so it does not converge ab-

solutely. The series
∞∑

n=3

(−1)n
3n− 3

5n− 10
fails the conditions of the

Alternating Series Test as (3n− 3)/(5n− 10) does not approach
0 as n → ∞. We can state further that this series diverges; as
n → ∞, the series effectively adds and subtracts 3/5 over and
over. This causes the sequence of partial sums to oscillate and

not converge. Therefore the series
∞∑

n=1

(−1)n
3n− 3

5n− 10
diverges.

Video solution

youtu.be/watch?v=l02aGt0Ce5M

Knowing that a series converges absolutely allows us tomake two important
statements, given in Theorem 10.5.13 below. The first is that absolute conver-
gence is “stronger” than regular convergence. That is, just because

∑∞
n=1 an

converges, we cannot conclude that
∑∞

n=1 |an| will converge, but knowing a
series converges absolutely tells us that

∑∞
n=1 an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecting
the sum.

youtu.be/watch?v=d0enMDgDON8

Figure 10.5.12 Video presentation
of Definition 10.5.10 and Theo-
rem 10.5.13

Theorem 10.5.13 Absolute Convergence Theorem.

Let
∞∑

n=1

an be a series that converges absolutely.

1.
∞∑

n=1

an converges.

https://www.youtube.com/watch?v=l02aGt0Ce5M
https://www.youtube.com/watch?v=d0enMDgDON8
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2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =

∞∑
n=1

an.

Proof. Wewill provide a proof for Part 1 of Absolute Convergence Theorem. Sup-
pose that

∑∞
n=1 |an| converges. We start by noting that for any sequence an,

we have

− |an| ≤ an ≤ |an|

If we add |an| to all three sides:

0 ≤ an + |an| ≤ 2 |an| .

We are now in a position to apply the Direct Comparison Test to the series∑∞
n=1 (an + |an|). Since

∑∞
n=1 |an| converges by our supposition, so does∑∞

n=1 2 |an| (the scalar multiple of a convergent series also converges by Theo-
rem 10.2.19). Therefore

∑∞
n=1 (an + |an|) converges by the Direct Comparison

Test.
Now we turn our attention to

∑∞
n=1 an. We can say

∞∑
n=1

an =

∞∑
n=1

(an + |an| − |an|)

=

∞∑
n=1

(an + |an|)−
∞∑

n=1

|an| .

The last line is the difference between two convergent series, which is also con-
vergent by Theorem 10.2.19. Therefore

∑∞
n=1 an converges. ■

In Example 10.5.11, we determined the series in Part 2 converges absolutely.
Theorem 10.5.13 tells us the series converges (which we could also determine
using the Alternating Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the Alternating Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
· · · = ln(2),

(see Key Idea 10.2.20 or Example 10.5.6).
Consider the rearrangement where every positive term is followed by two

negative terms:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms
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and simplify:(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · · =

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · =

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
=

1

2
ln(2).

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alternating Harmonic Series does not actually
converge to ln(2), because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to L,
for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The end of this
text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, which we will consider in the next
section. We will use power series to create functions where the output is the
result of an infinite summation.
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10.5.1 Exercises

Terms and Concepts

1. Why is
∞∑

n=1

sin(n) not an alternating series?

2. A series
∞∑

n=1

(−1)nan converges when {an} is , and lim
n→∞

an = .

3. Give an example of a series where
∞∑

n=0

an converges but
∞∑

n=0

|an| does not.

4. The sum of a convergent series can be changed by rearranging the order of its terms.

Problems

Exercise Group. In the following exercises, an alternating series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑

n=0

|an| converges or diverges.

(c) If
∞∑

n=0

an converges, determine if the convergence is conditional or absolute.

5.
∞∑

n=1

(−1)n+1

n2
6.

∞∑
n=1

(−1)n+1

√
n!

7.
∞∑

n=0

(−1)n
n+ 5

3n− 5
8.

∞∑
n=1

(−1)n
2n

n2

9.
∞∑

n=0

(−1)n+1 3n+ 5

n2 − 3n+ 1
10.

∞∑
n=1

(−1)n

ln(n) + 1

11.
∞∑

n=2

(−1)n
n

ln(n)
12.

∞∑
n=1

(−1)n+1

1 + 3 + 5 + · · ·+ (2n− 1)

13.
∞∑

n=1

cos
(
πn
)

14.
∞∑

n=2

sin
(
(n+ 1/2)π

)
n ln(n)

15.
∞∑

n=0

(
−2

3

)n

16.
∞∑

n=0

(−e)−n

17.
∞∑

n=0

(−1)nn2

n!
18.

∞∑
n=0

(−1)n2−n2

19.
∞∑

n=1

(−1)n√
n

20.
∞∑

n=1

(−1000)n

n!

Exercise Group. Let Sn be the nth partial sum of a series. In the following exercises a convergent alternating series
is given and a value of n. Compute Sn and Sn+1 and use these values to find bounds on the sum of the series.
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21.
∞∑

n=1

(−1)n

ln(n+ 1)
, n = 5 22.

∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑

n=0

(−1)n

n!
, n = 6 24.

∞∑
n=0

(
−1

2

)n

, n = 9

Exercise Group. In the following exercises, a convergent alternating series is given along with its sum and a value of
ε. Use Theorem 10.5.7 to find n such that the nth partial sum of the series is within ε of the sum of the series.

25.
∞∑

n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001 26.

∞∑
n=0

(−1)n

n!
=

1

e
, ε = 0.0001

27.
∞∑

n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001 28.

∞∑
n=0

(−1)n

(2n)!
= cos(1), ε = 10−8
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10.6 Power Series

So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

youtu.be/watch?v=y12Zn3QZpbE

Figure 10.6.1 Video introduction to
Section 10.6

Definition 10.6.2 Power Series.

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

2. The power series in x centered at c is the series

∞∑
n=0

an(x− c)n = a0+a1(x− c)+a2(x− c)2+a3(x− c)3+ . . .

Example 10.6.3 Examples of power series.

Write out the first five terms of the following power series:

1.
∞∑

n=0

xn

2.
∞∑

n=1

(−1)n+1 (x+ 1)n

n

3.
∞∑

n=0

(−1)n+1 (x− π)2n

(2n)!

Solution.

1. One of the conventions we adopt is that x0 = 1 regardless of the
value of x. Therefore

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + . . .

This is a geometric series in x with r = x.

2. This series is centered at c = −1. Note how this series starts with
n = 1. We could rewrite this series starting at n = 0 with the
understanding that a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n

= (x+ 1)− (x+ 1)2

2
+

(x+ 1)3

3
− (x+ 1)4

4
+

(x+ 1)5

5
. . .

https://www.youtube.com/watch?v=y12Zn3QZpbE
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3. This series is centered at c = π. Recall that 0! = 1.
∞∑

n=0

(−1)n+1 (x− π)2n

(2n)!

= −1 +
(x− π)2

2
− (x− π)4

24
+

(x− π)6

6!
− (x− π)8

8!
. . .

Video solution

youtu.be/watch?v=NK8i9T-4hSg

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 10.6.3, we recognized the series
∞∑

n=0

xn as a geo-

metric series in x. Theorem 10.2.7 states that this series converges only when
|x| < 1.

This raises the question: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definition.

Theorem 10.6.4 Convergence of Power Series.

Let a power series
∞∑

n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in (c −
R, c+R) and diverges for all x < c−R and x > c+R.

3. The series converges for all x.

youtu.be/watch?v=RRzviD89Phg

Figure 10.6.5 Video presentation of
Theorem 10.6.4 and Definition 10.6.6

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem10.6.4
makes a statement about the interval (c−R, c+R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Definition 10.6.6 Radius and Interval of Convergence.

1. The number R given in Theorem 10.6.4 is the radius of conver-
gence of a given series. When a series converges for only x = c,
we say the radius of convergence is 0, i.e., R = 0. When a se-
ries converges for all x, we say the series has an infinite radius of
convergence, i.e.,R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the interval of convergence, we start by using the ratio test to find
the radius of convergence R. If 0 < R < ∞, we know the series converges on
(c−R, c+R), and it remains to check for convergence at the endpoints.

Given
∑∞

n=0 an(x− c)n we apply the ratio test to
∑∞

n=0 |an(x− c)n| since
the ratio test requires positive terms. We find

lim
n→∞

∣∣an+1(x− c)n+1
∣∣

|an(x− c)n|
= L |x− c| ,

where L = limn→∞
|an+1|
|an| . It follows that the series converges absolutely (and

https://www.youtube.com/watch?v=NK8i9T-4hSg
https://www.youtube.com/watch?v=RRzviD89Phg
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therefore converges) for anyx such thatL |x− c| < 1; that is, forx in
(
c− 1

L , c+
1
L

)
.

On the other hand, suppose for some x that L |x− c| > 1. Then, for suffi-
ciently largen, |an+1| > |an|. Thismeans that the termsof

∑∞
n=0 an(x−c)n are

growing in absolute value, and therefore cannot converge to zero. This means
that the series diverges, by Theorem 10.2.23.

From the above observations, it follows that R = 1
L must be the radius of

convergence.

Key Idea 10.6.7 Determining the Radius and Interval of Convergence.

Given the power series
∞∑

n=0

an(x− c)n, apply the ratio test to the series

∞∑
n=0

|an(xc)
n|. The result will be L |x− c|, where L = lim

n→∞

|an+1|
|an|

.

1. If L = 0, then the power series converges for every x by the ratio
test, since L |x− c| = 0 < 1.

2. If L = ∞, then power series converges only when x = c.

3. If 0 < L < ∞, thenR = 1/L is the radius of convergence: by the
ratio test, the series converges when |x− c| < R.

To determine the interval of convergence, plug the endpoints (x =
c−R and x = c+R) into the power series, and test the resulting
series for convergence. If the series converges, we include the
endpoint. If it diverges, we exclude the endpoint.

Key Idea 10.6.7 allows us to find the radius of convergence R of a series by
applying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.

Example 10.6.8 Determining the radius and interval of convergence.

Find the radius and interval of convergence for each of the following
series:

1.
∞∑

n=0

xn

n!

2.
∞∑

n=1

(−1)n+1x
n

n

3.
∞∑

n=0

2n(x− 3)n

4.
∞∑

n=0

n!xn

Solution.

1. We apply the Ratio Test to the series
∞∑

n=1

∣∣∣∣xn

n!

∣∣∣∣:
lim

n→∞

∣∣xn+1/(n+ 1)!
∣∣

|xn/n!|
= lim

n→∞

∣∣∣∣xn+1

xn
· n!

(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣
= 0 for all x.
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The Ratio Test shows us that regardless of the choice of x, the
series converges. Therefore the radius of convergence is R = ∞,
and the interval of convergence is (−∞,∞).

2. We apply the Ratio Test to the series
∞∑

n=1

∣∣∣∣(−1)n+1x
n

n

∣∣∣∣ =

∞∑
n=1

∣∣∣∣xn

n

∣∣∣∣:
lim

n→∞

∣∣xn+1/(n+ 1)
∣∣

|xn/n|
= lim

n→∞

∣∣∣∣xn+1

xn
· n

n+ 1

∣∣∣∣
= lim

n→∞
(

n

n+ 1
) |x|

= |x| .

The Ratio Test states a series converges if the limit of |an+1/an| =
L < 1. We found the limit above to be |x|; therefore, the power
series converges when |x| < 1, or when x is in (−1, 1). Thus
the radius of convergence is R = 1. To determine the interval of
convergence, we need to check the endpoints of (−1, 1). When
x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1

n

= −∞.

The series diverges when x = −1. When x = 1, we have the

series
∞∑

n=1

(−1)n+1 (1)
n

n
, which is the AlternatingHarmonic Series,

which converges. Therefore the interval of convergence is (−1, 1].

3. We apply the Ratio Test to the series
∞∑

n=0

|2n(x− 3)n|:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣

|2n(x− 3)n|
= lim

n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞
|2(x− 3)| .

According to the Ratio Test, the series converges when
|2(x− 3)| < 1 =⇒ |x− 3| < 1/2. The series is cen-
tered at 3, and x must be within 1/2 of 3 in order for the series
to converge. Therefore the radius of convergence is R = 1/2,
and we know that the series converges absolutely for all x in
(3− 1/2, 3 + 1/2) = (2.5, 3.5). We check for convergence at the
endpoints to find the interval of convergence. When x = 2.5, we
have:

∞∑
n=0

2n(2.5− 3)n =

∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,
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which diverges. A similar process shows that the series also di-
verges at x = 3.5. Therefore the interval of convergence is
(2.5, 3.5).

4. We apply the Ratio Test to
∞∑

n=0

|n!xn|:

lim
n→∞

∣∣(n+ 1)!xn+1
∣∣

|n!xn|
= lim

n→∞
|(n+ 1)x|

= ∞ for all x, except x = 0.

The Ratio Test shows that the series diverges for all x exceptx = 0.
Therefore the radius of convergence isR = 0.

Video solution

youtu.be/watch?v=1YzPDWYUWO8

We can use a power series to define a function:

f(x) =

∞∑
n=0

anx
n

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Theorem 10.6.9 Derivatives and Indefinite Integrals of Power Series
Functions.

Let f(x) =
∞∑

n=0

an(x− c)n be a function defined by a power series, with

radius of convergenceR.

1. f(x) is continuous and differentiable on (c−R, c+R).

2. f ′(x) =

∞∑
n=1

an · n · (x− c)n−1, with radius of convergenceR.

3.
∫

f(x) dx = C+

∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence

R.

youtu.be/watch?v=qErrT8xRKts

Figure 10.6.10 Video presentation of
Theorem 10.6.9

A few notes about Theorem 10.6.9:

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f ′(x) starts with n = 1. This is because
the constant term a0 of f(x) becomes 0 through differentiation.

3. Differentiation and integration are simply calculated term-by-term using
the Power Rules.

https://www.youtube.com/watch?v=1YzPDWYUWO8
https://www.youtube.com/watch?v=qErrT8xRKts
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Example 10.6.11 Derivatives and indefinite integrals of power series.

Let f(x) =
∞∑

n=0

xn. Find f ′(x) and F (x) =

∫
f(x) dx, along with their

respective intervals of convergence.
Solution. We find the derivative and indefinite integral of f(x), follow-
ing Theorem 10.6.9.

1.

f ′(x) =

∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · ·

=

∞∑
n=0

(n+ 1)xn.

In Example 10.6.3, we recognized that
∞∑

n=0

xn is a geometric series

in x. We know that such a geometric series converges when |x| <
1; that is, the interval of convergence is (−1, 1). To determine
the interval of convergence of f ′(x), we consider the endpoints
of (−1, 1):

f ′(−1) = 1− 2 + 3− 4 + · · · , which diverges.

f ′(1) = 1 + 2 + 3 + 4 + · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F (x) =

∫
f(x) dx = C +

∞∑
n=0

xn+1

n+ 1
= C + x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence ofF (x), we again consider the
endpoints of (−1, 1):

F (−1) = C − 1 + 1/2− 1/3 + 1/4 + · · ·

The value of C is irrelevant; notice that the rest of the series is an
Alternating Series that whose terms converge to 0. By the Alter-
nating Series Test, this series converges. (In fact, we can recognize
that the terms of the series after C are the opposite of the Alter-
natingHarmonic Series. We can thus say thatF (−1) = C−ln(2).)

F (1) = C + 1 + 1/2 + 1/3 + 1/4 + · · ·

Notice that this summation is C + the Harmonic Series, which di-
verges. Since F converges for x = −1 and diverges for x = 1, the
interval of convergence of F (x) is [−1, 1).

Video solution

youtu.be/watch?v=XE6m9CGME5Q

The previous example showed how to take the derivative and indefinite integral
of a power series without motivation for why we care about such operations.
We may care for the sheer mathematical enjoyment “that we can”, which is mo-
tivation enough for many. However, we would be remiss to not recognize that
we can learn a great deal from taking derivatives and indefinite integrals.

https://www.youtube.com/watch?v=XE6m9CGME5Q
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Recall that f(x) =
∞∑

n=0

xn in Example 10.6.11 is a geometric series. Accord-

ing to Theorem 10.2.7, this series converges to 1/(1 − x) when |x| < 1. Thus
we can say

f(x) =

∞∑
n=0

xn =
1

1− x
, on (−1, 1).

Integrating the power series, (as done in Example 10.6.11,) we find

F (x) = C1 +

∞∑
n=0

xn+1

n+ 1
, (10.6.1)

while integrating the function f(x) = 1/(1− x) gives

F (x) = − ln |1− x|+ C2. (10.6.2)

Equating Equations (10.6.1) and (10.6.2), we have

F (x) = C1 +

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Letting x = 0, we have F (0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x| .

We established in Example 10.6.11 that the series on the left converges at
x = −1; substituting x = −1 on both sides of the above equality gives

−1 +
1

2
− 1

3
+

1

4
− 1

5
+ · · · = − ln(2).

On the left we have the opposite of the Alternating Harmonic Series; on the
right, we have− ln(2). We conclude that

1− 1

2
+

1

3
− 1

4
+ · · · = ln(2).

Important: We stated in Key Idea 10.2.20 (in Section 10.2) that the Alternat-
ing Harmonic Series converges to ln(2), and referred to this fact again in Exam-
ple 10.5.6 of Section 10.5. However, we never gave an argument for why this
was the case. The work above finally shows how we conclude that the Alternat-
ing Harmonic Series converges to ln(2).

We use this type of analysis in the next example.

Example 10.6.12 Analyzing power series functions.

Let f(x) =
∞∑

n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze

the behavior of f(x).
Solution. We start by making two notes: first, in Example 10.6.8, we
found the interval of convergence of this power series is (−∞,∞). Sec-
ond, we will find it useful later to have a few terms of the series written
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out:
∞∑

n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+ · · · (10.6.3)

We now find the derivative:

f ′(x) =

∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1 + x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can
re-index the series starting with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivative of f(x) is f(x). The only functions for which
this is true are of the form y = cex for some constant c. As f(0) = 1
(see Equation (10.6.3)), cmust be 1. Therefore we conclude that

f(x) =

∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C +

∞∑
n=0

xn+1

n!(n+ 1)

= C +

∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C +

∞∑
n=0

xn+1

(n+ 1)!
= C + x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicating
that f(x) = ex.

Video solution

youtu.be/watch?v=SQm1BC7bwEw

Example 10.6.12 and the work following Example 10.6.11 established rela-
tionships between a power series function and “regular” functions that we have
dealt with in the past. In general, given a power series function, it is difficult (if
not impossible) to express the function in terms of elementary functions. We
chose examples where things worked out nicely.

In this section’s last example, we show how to solve a simple differential
equation with a power series.

https://www.youtube.com/watch?v=SQm1BC7bwEw
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Example 10.6.13 Solving a differential equation with a power series.

Give the first 4 terms of the power series solution to y′ = 2y, where
y(0) = 1.
Solution. The differential equation y′ = 2y describes a function y =
f(x) where the derivative of y is twice y and y(0) = 1. This is a rather
simple differential equation; with a bit of thought one should realize that
if y = Ce2x, then y′ = 2Ce2x, and hence y′ = 2y. By letting C = 1 we
satisfy the initial condition of y(0) = 1.
Let’s ignore the fact that we already know the solution and find a power
series function that satisfies the equation. The solutionwe seekwill have
the form

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 10.6.9:

f ′(x) =

∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x
2 + 4a4x

3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x
2 + 4a4x

3 · · · = 2
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= 2a0 + 2a1x+ 2a2x

2 + 2a3x
3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The initial condition y(0) = f(0) = 1 indicates that a0 = 1; with this,
we can find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;

a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;

a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series solution to the differential
equation y′ = 2y is

f(x) = 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + · · ·

In Section 10.7, as we study Taylor Series, we will learn how to recognize
this series as describing y = e2x.

Our last example illustrates that it can be difficult to recognize an elementary
function by its power series expansion. It is far easier to start with a known func-
tion, expressed in terms of elementary functions, and represent it as a power
series function. One may wonder why we would bother doing so, as the latter
function probably seems more complicated. In the next two sections, we show
both how to do this and why such a process can be beneficial.
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10.6.1 Exercises

Terms and Concepts

1. We adopt the convention that x0 = , regardless of the value of x.

2. What is the difference between the radius of convergence and the interval of convergence?

3. If the radius of convergence of
∞∑

n=0

anx
n is 5, what is the radius of convergence of

∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑

n=0

anx
n is 5, what is the radius of convergence of

∞∑
n=0

(−1)nanx
n?

Problems

Exercise Group. In the following exercises, write out the sum of the first 5 terms of the given power series.

5.
∞∑

n=0

2nxn 6.
∞∑

n=1

1

n2
xn

7.
∞∑

n=0

1

n!
xn 8.

∞∑
n=0

(−1)n

(2n)!
x2n

Exercise Group. In the following exercises, a power series is given.

(a) Find the radius of convergence.

(b) Find the interval of convergence.

9.
∞∑

n=0

(−1)n+1

n!
xn 10.

∞∑
n=0

nxn

11.
∞∑

n=1

(−1)n(x− 3)n

n
12.

∞∑
n=0

(x+ 4)n

n!

13.
∞∑

n=0

xn

2n
14.

∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑

n=0

5n(x− 1)n 16.
∞∑

n=0

(−2)nxn

17.
∞∑

n=0

√
nxn 18.

∞∑
n=0

n

3n
xn

19.
∞∑

n=0

3n

n!
(x− 5)n 20.

∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑

n=1

xn

n2
22.

∞∑
n=1

(x+ 2)n

n3

23.
∞∑

n=0

n!
( x

10

)n
24.

∞∑
n=0

n2

(
x+ 4

4

)n

Exercise Group. In the following exercises, a function f(x) =
∞∑

n=0

anx
n is given.
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(a) Give a power series for f ′(x) and its interval of convergence.

(b) Give a power series for
∫
f(x) dx and its interval of convergence.

25.
∞∑

n=0

nxn 26.
∞∑

n=1

xn

n

27.
∞∑

n=0

(x
2

)n
28.

∞∑
n=0

(−3x)n

29.
∞∑

n=0

(−1)nx2n

(2n)!
30.

∞∑
n=0

(−1)nxn

n!

Exercise Group. In the following exercises, give the first 5 terms of the series that is a solution to the given differential
equation.

31. y ′ = 3y,y(0) = 1 32. y ′ = 5y,y(0) = 5

33. y ′ = y2,y(0) = 1 34. y ′ = y + 1,y(0) = 1

35. y ′′ = −y,y(0) = 0, y ′(0) = 1 36. y ′′ = 2y,y(0) = 1, y ′(0) = 1



10.7. TAYLOR SERIES 595

10.7 Taylor Series

In Section 10.6, we showedhowcertain functions can be represented by a power
series function. In Section 4.5, we showed how we can approximate functions
with polynomials, given that enough derivative information is available. In this
sectionwe combine these concepts: if a function f(x) is infinitely differentiable,
we show how to represent it with a power series function.

youtu.be/watch?v=4RC4SLmEjro

Figure 10.7.1 Video introduction to
Section 10.7

Definition 10.7.2 Taylor and Maclaurin Series.

Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)

n!
(x− c)n.

2. Setting c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)

n!
xn.

If pn(x) is the nth degree Taylor polynomial for f(x) centered at x = c, we
saw how f(x) is approximately equal to pn(x) near x = c. We also saw how
increasing the degree of the polynomial generally reduced the error.

We are now considering series, where we sum an infinite set of terms. Our
ultimate hope is to see the error vanish and claim a function is equal to its Taylor
series.

When creating the Taylor polynomial of degreen for a function f(x) atx = c,
we needed to evaluate f , and the first n derivatives of f , at x = c. When
creating the Taylor series of f , it helps to find a pattern that describes the nth
derivative of f at x = c. We demonstrate this in the next two examples.

Example 10.7.3 The Maclaurin series of f(x) = cos(x).

Find the Maclaurin series of f(x) = cos(x).
Solution. In Example 4.5.19 we found the 8th degreeMaclaurin polyno-
mial of cos(x). In doing so, we created the table shown in Figure 10.7.4.

f(x) = cos(x) f(0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0

f (8)(x) = cos(x) f (8)(0) = 1

f (9)(x) = − sin(x) f (9)(0) = 0

Figure 10.7.4 Derivatives of f(x) =
cos(x) evaluated at x = 0

Notice how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible
by 4, and f (n)(0) = −1 when n is even but not divisible by 4. Thus the
Maclaurin series of cos(x) is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summation. The coefficients al-
ternate between positive and negative. Since we only need the terms
where the power of x is even, we write the power series in terms of
x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

This Maclaurin series is a special type of power series. As such, we
should determine its interval of convergence. Applying the Ratio Test,

https://www.youtube.com/watch?v=4RC4SLmEjro
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we have

lim
n→∞

∣∣∣∣∣(−1)n+1 x2(n+1)(
2(n+ 1)

)
!

∣∣∣∣∣∣∣∣(−1)n x2n

(2n)!

∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ (2n)!

(2n+ 2)!

= lim
n→∞

|x|2

(2n+ 2)(2n+ 1)
.

For any fixed x, this limit is 0. Therefore this power series has an infinite
radius of convergence, converging for all x. It is important to note what
we have, and have not, determined: we have determined theMaclaurin
series for cos(x) along with its interval of convergence. We have not
shown that cos(x) is equal to this power series.

Video solution

youtu.be/watch?v=97x6p1616z0

Example 10.7.3 found the Taylor Series representation of cos(x). We can eas-
ily find the Taylor Series representationof sin(x)by recognizing that

∫
cos(x) dx =

sin(x) and apply Theorem 10.6.9.

Example 10.7.5 The Taylor series of f(x) = ln(x) at x = 1.

Find the Taylor series of f(x) = ln(x) centered at x = 1.
Solution. Figure 10.7.6 shows the nth derivative of ln(x) evaluated at
x = 1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what distinguishes Taylor series from Taylor poly-
nomials; we are very interested in finding a pattern for the nth term, not
just finding a finite set of coefficients for a polynomial.

f(x) = ln(x) f(1) = 0

f ′(x) = 1/x f ′(1) = 1

f ′′(x) = −1/x2 f ′′(1) = −1

f ′′′(x) = 2/x3 f ′′′(1) = 2

f (4)(x) = −6/x4 f (4)(1) = −6

f (5)(x) = 24/x5 f (5)(1) = 24
...

...
f (n)(x) = f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 10.7.6 Derivatives of ln(x)
evaluated at x = 1

Since f(1) = ln(1) = 0, we skip the first term and start the summation
with n = 1, giving the Taylor series for ln(x), centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1

n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

We now determine the interval of convergence, using the Ratio Test.

lim
n→∞

∣∣∣∣(−1)n+2 (x− 1)n+1

n+ 1

∣∣∣∣∣∣∣∣(−1)n+1
(x− 1)n

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 1)n+1

(x− 1)n

∣∣∣∣ n

n+ 1

= |x− 1| .

By the Ratio Test, we have convergence when |x− 1| < 1: the radius
of convergence is 1, and we have convergence on (0, 2). We now check
the endpoints.
At x = 0, the series is

∞∑
n=1

(−1)n+1 (−1)n

n
= −

∞∑
n=1

1

n
,

which diverges (it is the Harmonic Series times (−1).)

https://www.youtube.com/watch?v=97x6p1616z0
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At x = 2, the series is

∞∑
n=1

(−1)n+1 (1)
n

n
=

∞∑
n=1

(−1)n+1 1

n
,

the Alternating Harmonic Series, which converges.

It can be shown that ln(x) is
equal to this Taylor series on
(0, 2]. From the work in Ex-
ample 10.7.5, this justifies our
previous declaration that the Al-
ternating Harmonic Series con-
verges to ln(2).

We have found the Taylor series of lnx centered at x = 1, and have
determined the series converges on (0, 2]. We cannot (yet) say that lnx
is equal to this Taylor series on (0, 2].

Video solution

youtu.be/watch?v=Bdk4lGCkz7o

It is important to note that Definition 10.7.2 defines a Taylor series given a
function f(x), but makes no claim about their equality. We will find that “most
of the time” they are equal, but we need to consider the conditions that allow
us to conclude this.

Theorem 4.5.16 states that the error between a function f(x) and its nth-
degree Taylor polynomial pn(x) isRn(x), where

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣ .

If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we
conclude that the function is equal to its Taylor series expansion.

Theorem 10.7.7 Function and Taylor Series Equality.

Let f(x) have derivatives of all orders at x = c, let Rn(x) be as stated
in Theorem 4.5.16, and let I be an interval on which the Taylor series of
f(x) converges. If lim

n→∞
Rn(x) = 0 for all x in I , then

f(x) =

∞∑
n=0

f (n)(c)

n!
(x− c)n on I .

youtu.be/watch?v=FF3m792UGiA

Figure 10.7.8 Video presentation of
Theorem 10.7.7

We demonstrate the use of this theorem in an example.

Example 10.7.9 Establishing equality of a function and its Taylor series.

Show that f(x) = cos(x) is equal to its Maclaurin series, as found in
Example 10.7.3, for all x.
Solution. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣xn+1
∣∣ .

Since all derivatives of cos(x) are ± sin(x) or ± cos(x), whose magni-
tudes are bounded by 1, we can state

|Rn(x)| ≤
1

(n+ 1)!

∣∣xn+1
∣∣

which implies

−
∣∣xn+1

∣∣
(n+ 1)!

≤ Rn(x) ≤
∣∣xn+1

∣∣
(n+ 1)!

. (10.7.1)

For any x, lim
n→∞

xn+1

(n+1)! = 0. Applying the Squeeze Theorem to Equa-

https://www.youtube.com/watch?v=Bdk4lGCkz7o
https://www.youtube.com/watch?v=FF3m792UGiA
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tion (10.7.1), we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
for all x .

It is natural to assume that a function is equal to its Taylor series on the series’
interval of convergence, but this is not always the case. In order to properly
establish equality, one must use Theorem 10.7.7. This is a bit disappointing, as
we developed beautiful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be difficult. For instance, it
is not a simple task to show that ln x equals its Taylor series on (0, 2] as found
in Example 10.7.5; in the Exercises, the reader is only asked to show equality on
(1, 2), which is simpler.

There is good news. A function f(x) that is equal to its Taylor series, cen-
tered at any point the domain of f(x), is said to be an analytic function, and
most, if not all, functions that we encounter within this course are analytic func-
tions. Generally speaking, any function that one creates with elementary func-
tions (polynomials, exponentials, trigonometric functions, etc.) that is not piece-
wise defined is probably analytic. For most functions, we assume the function
is equal to its Taylor series on the series’ interval of convergence and only use
Theorem 10.7.7 when we suspect something may not work as expected.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 10.7.10 The Binomial Series.

Find the Maclaurin series of f(x) = (1 + x)k, k ̸= 0.
Solution. When k is a positive integer, theMaclaurin series is finite. For
instance, when k = 4, we have

f(x) = (1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a positive integer are known as the bino-
mial coefficients, giving the series we are developing its name.
When k = 1/2, we have f(x) =

√
1 + x. Knowing a series representa-

tion of this function would give a useful way of approximating
√
1.3, for

instance.
To develop the Maclaurin series for f(x) = (1 + x)k for any value of
k ̸= 0, we consider the derivatives of f evaluated at x = 0:

f(x) = (1 + x)k f(0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)

f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

...
...

For a general n,

f (n)(x) = k(k − 1) · · ·
(
k − (n− 1)

)
(1 + x)k−n,

giving f (n)(0) = k(k − 1) · · ·
(
k − (n− 1)

)
.
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Thus the Maclaurin series for f(x) = (1 + x)k is

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . .

· · ·+
k(k − 1) · · ·

(
k − (n− 1)

)
n!

(x− c)n + . . .

It is important to determine the interval of convergence of this series.
With

an =
k(k − 1) · · ·

(
k − (n− 1)

)
n!

xn,

we apply the Ratio Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k − 1) · · · (k − (n− 1))(k − n)

(n+ 1)!
xn+1

∣∣∣∣∣∣∣∣∣k(k − 1) · · ·
(
k − (n− 1)

)
n!

xn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣k − n

n+ 1
x

∣∣∣∣
= |x| .

The series converges absolutely when the limit of the Ratio Test is less
than 1; therefore, we have absolute convergence when |x| < 1.
While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1].
When −1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1,
the interval of convergence is (−1, 1).

Video solution

youtu.be/watch?v=uQouiDtMuDY

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

Whilewe should not overlook themathematical beauty of Taylor series (which
is reason enough to study them), there are practical uses as well. They provide
a valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 10.7.11 (on the following page)we give a table of the Taylor series
of a number of common functions. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new functions. This allows us to find the Taylor series of functions like
f(x) = ex cos(x) by knowing the Taylor series of ex and cos(x).

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 10.7.11). Knowing that tan−1(1) = π/4, we
can use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

π = 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)
Unfortunately, this particular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not particularly good.

https://www.youtube.com/watch?v=uQouiDtMuDY
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Key Idea 10.7.11 Important Taylor Series Expansions.

Function and Series First Few Terms Interval of
Convergence

ex =

∞∑
n=0

xn

n!
1 + x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1

1− x
=

∞∑
n=0

xn 1 + x+ x2 + x3 + · · · (−1, 1)

tan−1(x) =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

(1 + x)k =

∞∑
n=0

(
k

n

)
xn 1 + kx+

k(k − 1)

2!
x2 + · · · (−1, 1)

Note that for (1 + x)k, the interval of convergence may contain one or both endpoints, de-
pending on the value of k, and we are using the generalized binomial coefficients(

k

n

)
=

k(k − 1) · · · (k − (n− 1))

n!
.

Theorem 10.7.12 Algebra of Power Series.

Let f(x) =

∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n converge absolutely for

|x| < R, and let h(x) be a polynomial function.

1. f(x)± g(x) =

∞∑
n=0

(an ± bn)x
n for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(
a0bn + a1bn−1 +

. . . anb0
)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Note that we require h(x) to be
apolynomial function in Theorem
10.7.12. Ifweplug a function that
is not polynomial into a power
series, the result will no longer
be a power series. If one is very
careful about the centre and ra-
dius of convergence, it is techni-
cally possible to substitute the Tay-
lor series for a general function
h(x) into the Taylor series for f(x),
and the result will be the Taylor
series for f(h(x)).

In practice, h(x) is typically
amonomial functionof the form
h(x) = axn. For anything more
complicated, rearranging thepower
series into a standard form be-
comes a nightmare.

Example 10.7.13 Combining Taylor series.

Write out the first 3 terms of the Taylor Series for f(x) = ex cos(x) using
Key Idea 10.7.11 and Theorem 10.7.12.
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Solution. Key Idea 10.7.11 informs us that

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · and cos(x) = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 10.7.12, we find that

ex cos(x) =
(
1 + x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the left:

ex cos(x) = 1

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

If we distribute again and collect like terms, we find

ex cos(x) = 1 + x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · · .

While this process is a bit tedious, it is much faster than evaluating all
the necessary derivatives of ex cos(x) and computing the Taylor series
directly.
Because the series for ex and cos(x) both converge on (−∞,∞), so
does the series expansion for ex cos(x).

Video solution

youtu.be/watch?v=rUBF6BC201g

youtu.be/watch?v=v-y5IH796gY

Figure 10.7.14 Deriving the Taylor se-
ries for arctan(x) in Key Idea 10.7.11

Example 10.7.15 Creating new Taylor series.

Use Theorem 10.7.12 to create series for y = sin(x2) and y = x3/(3 +
x4).
Solution. Given that

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply substitute x2 for x in the series, giving

sin(x2) =

∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!

∞∑
n=0

(−1)n
(x4n+2

(2n+ 1)!

= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Since the Taylor series for sin(x) has an infinite radius of convergence,
so does the Taylor series for sin(x2).
For y = x3/(3 + x4), we begin with the geometric series expansion

1

1− x
=

∞∑
n=0

xn.

https://www.youtube.com/watch?v=rUBF6BC201g
https://www.youtube.com/watch?v=v-y5IH796gY
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Note that we can write

1

3 + x4
=

1

3
· 1

1 + x4/3
=

1

3
· 1

1− (−x4/3)
.

Substituting−x4/3 into the geometric series expansion, we get

1

3 + x4
=

∞∑
n=0

(−x4/3)n =

∞∑
n=0

(−1n)x4n

3n
.

Finally, we canmultiply both sides of the above equation by x3 to obtain

x3

3 + x4
= x3

∞∑
n=0

(−1n)x4n

3n
=

∞∑
n=0

(−1)nx4n+3

3n
.

Video solution

youtu.be/watch?v=j3eHOO9taNQ

Example 10.7.16 A (somewhat foolish) combination of Taylor series.

Discuss possible methods for obtaining a Taylor series expansion for
f(x) = ln(

√
x).

Solution. Since f(x) is a composition, our first instict might be to ap-
ply Theorem 10.7.12 to the problem. However,

√
x is not a polynomial

function, and neither ln(x) nor
√
x have Maclaurin series expansions.

You might already see a simple way to proceed, but let us first consider
the following:

√
x = (1 + (x − 1))1/2 can be expanded as a binomial

series centered at x = 1. We also know the Taylor series for ln(x) at
x = 1, and note that

√
1 = 1, so when x is near 1, so is

√
x.

What happens if we take the Taylor series

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

and substitute in

√
x =

∞∑
n=0

(
1/2

n

)
(x− 1)n = 1 +

1

2
(x− 1)− 1

4
(x− 1)2 + · · · ,

where
(
1/2
n

)
= 1/2(1/2−1)···(1/2−(n−1))

n! denotes the binomial coeffi-
cient?
Short answer: a mess. We have to replace each occurence of x − 1 in
the power series for ln(x)with

√
x−1 = 1

2 (x−1)− 1
4 (x−1)2+ 1

16 (x−
1)3+ · · ·, and then expand, and collect terms. If we do this, keeping only
terms up to (x− 1)3, we find:

ln(
√
x) =

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)
− 1

2

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)2

+
1

3

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)
+ · · ·

=
1

2
(x− 1)− 1

4
(x− 2)2 +

1

6
(x− 1)3 − · · · .

https://www.youtube.com/watch?v=j3eHOO9taNQ
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But of course, there was a better way all along:

ln(
√
x) = ln(x1/2) =

1

2
ln(x)

using properties of the logarithm, and indeed, the result above is the
same as the one we would have obtained by simply multiplying the Tay-
lor series for ln(x) by 1

2 . Power series manipulation is a powerful tech-
nique, but one should not apply it blindly.

Example 10.7.17 Using Taylor series to approximate a composition.

Use Taylor series to determine a degree 5 Taylor polynomial approxima-
tion to f(x) = esin(x).
Solution. Here we want to apply Theorem 10.7.12, but h(x) = sin(x)
is not a polynomial. However, we are interested in approximation, so we
replace sin(x) by the Maclaurin polynomial

q(x) = x− x3

3!
+

x5

5!
.

The Maclaurin series for f(x) = ex is given by

ex =

∞∑
n=0

xn

n!
.

Next, we substitute q(x) into the series for ex. The algebra gets very
messy, but we can simplify things: since we want the degree 5 approx-
imation, there is no need to write down terms involving x6 or higher
powers.

esin(x) ≈ 1 + q(x) +
1

2!
q(x)2 +

1

3!
q(x)3 +

1

4!
q(x)4 +

1

5!
q(x)5

= 1 +

(
x− x3

6
+

x5

120

)
+

1

2

(
x− x3

6
+

x5

120

)
+

1

6

(
x− x3

6
+

x5

120

)3

+
1

24

(
x− x3

6
+

x5

120

)4

+
1

120

(
x− x3

6
+

x5

120

)5

= 1 + x− x3

6
+

x5

120
+

1

2

(
x2 − 1

3
x4 + · · ·

)
+

1

6

(
x3 − 1

2
x5 + · · ·

)
+

1

24

(
x4 + · · ·

)
+

1

120

(
x5 + · · ·

)
= 1 + x+

1

2
x2 − 1

8
x4 − 1

15
x5 + · · · .

While the algebra is a bit of a mess, it is often less work than computing
the Taylor polynomial directly, as the derivatives of a composite func-
tion quickly get complicated. The function f(x) = esin(x) and its approx-
imation are plotted in Figure 10.7.18 below. Note that our polynomial
approximation is very good on [−1, 1].

y = f(x)

y = p5(x)

−2 −1 1 2

1

2

3

x

y

Figure 10.7.18 A graph of f(x) and its
degree 5 Maclaurin polynomial

In the previous example, the reader might be left wondering why we would
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bother with all that algebra, when the computer could have given us the result
in seconds. One reason is simply that it lets us see how these different pieces fit
together. Computing a Taylor polynomial by combining existing results will give
the same polynomial as computing derivatives. Also we see that we can com-
pute an approximation by replacing both parts of a composition with approxi-
mations. In the last couple of examples in this chapter, we see another reason:
often we have to define functions in terms of power series derived through in-
tegration, or the solution of a differential equation, where there is no known
function we can simply plug into the computer.

Example 10.7.19 Using Taylor series to evaluate definite integrals.

Use the Taylor series of e−x2

to evaluate
∫ 1

0

e−x2

dx.

Solution. We learned, when studying Numerical Integration, that e−x2

does not have an antiderivative expressible in terms of elementary func-
tions. This means any definite integral of this function must have its
value approximated, and not computed exactly.
We can quickly write out the Taylor series for e−x2

using the Taylor series
of ex:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2

=

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

We use Theorem 10.6.9 to integrate:∫
e−x2

dx = C+x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+· · ·+(−1)n

x2n+1

(2n+ 1)n!
+· · ·

This is the antiderivative of e−x2

; while we canwrite it out as a series, we
cannot write it out in terms of elementary functions. We can evaluate

the definite integral
∫ 1

0

e−x2

dx using this antiderivative; substituting 1

and 0 for x and subtracting gives∫ 1

0

e−x2

dx = 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximation of 0.74749.
Since this is an alternating series, we can use the Alternating Series Ap-
proximation Theorem, (Theorem 10.5.7), to determine how accurate
this approximation is. The next term of the series is 1/(11 · 5!) ≈
0.00075758. Thus we know our approximation is within 0.00075758 of
the actual value of the integral. This is arguably much less work than
using Simpson’s Rule to approximate the value of the integral.

Video solution

youtu.be/watch?v=WhpEci26gUA

https://www.youtube.com/watch?v=WhpEci26gUA
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Example 10.7.20 Using Taylor series to solve differential equations.

Solve the differential equation y′ = 2y in terms of a power series, and
use the theory of Taylor series to recognize the solution in terms of an
elementary function.
Solution. We found the first 5 terms of the power series solution to this
differential equation in Example 10.6.13 in Section 10.6. These are:

a0 = 1, a1 = 2, a2 =
4

2
= 2, a3 =

8

2 · 3
=

4

3
, a4 =

16

2 · 3 · 4
=

2

3
.

We include the “unsimplified” expressions for the coefficients found in
Example 10.6.13 as we are looking for a pattern. It can be shown that
an = 2n/n!. Thus the solution, written as a power series, is

y =

∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 10.7.11 and Theorem 10.7.12, we recognize f(x) = e2x:

ex =

∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

Video solution

youtu.be/watch?v=ojjEGO5H8qQ

Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 10.7.11, can be difficult. What
if the coefficients in the previous examplewere given in their reduced form; how
could we still recover the function y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4

3
, a4 =

2

3
.

Definition 10.7.2 states that each term of the Taylor expansion of a function
includes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4

3
=

b3
3!
, and a4 =

2

3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the pattern we had previously
seen, allowing us to write

f(x) =

∞∑
n=0

anx
n =

∞∑
n=0

bn
n!

xn

= 1 + 2x+
4

2!
x2 +

8

3!
x3 +

16

4!
x4 + · · ·

Fromhere it is easier to recognize that the series is describing an exponential
function.

There are simpler, more direct ways of solving the differential equation y′ =
2y, as discussed in Chapter 8. We applied power series techniques to this equa-
tion to demonstrate its utility, and went on to show how sometimeswe are able
to recover the solution in terms of elementary functions using the theory of Tay-
lor series. Most differential equations faced in real scientific and engineering
situations are much more complicated than this one, but power series can offer
a valuable tool in finding, or at least approximating, the solution.

https://www.youtube.com/watch?v=ojjEGO5H8qQ
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This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
functions based on series. Such “series-defined functions” are a valuable tool in
solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using functions of the form y = f(x). Curves created by these new
methods can be beautiful, useful, and important.
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10.7.1 Exercises

Terms and Concepts

1. What is the difference between a Taylor polynomial and a Taylor series?
2. What theorem must we use to show that a function is equal to its Taylor series?

Problems

Exercise Group. Key Idea 10.7.11 gives the nth term of the Taylor series of common functions. In the following
exercises, verify the formula given in the Key Idea by finding the first few terms of the Taylor series of the given
function and identifying a pattern.

3. f(x) = ex;c = 0 4. f(x) = sin(x);c = 0

5. f(x) = 1/(1− x);c = 0 6. f(x) = tan−1(x);c = 0

Exercise Group. In the following exercises, find a formula for the nth term of the Taylor series of f(x), centered at
c, by finding the coefficients of the first few powers of x and looking for a pattern. (The formulas for several of these
are found in Key Idea 10.7.11; show work verifying these formula.)

7. f(x) = cos(x);c = π/2 8. f(x) = 1/x;c = 1

9. f(x) = e−x;c = 0 10. f(x) = ln(1 + x);c = 0

11. f(x) = x/(x+ 1);c = 1 12. f(x) = sin(x);c = π/4

Exercise Group. In the following exercises, show that the Taylor series for f(x), as given in Key Idea 10.7.11, is equal
to f(x) by applying Theorem 10.7.7; that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex 14. f(x) = sin(x)
15. f(x) = ln(x) (show equality only on (1, 2)) 16. f(x) = 1/(1− x) (show equality only on

(−1, 0))

Exercise Group. In the following exercises, use the Taylor series given in Key Idea 10.7.11 to verify the given identity.
17. cos(−x) = cos(x) 18. sin(−x) = − sin(x)
19. d

dx

(
sin(x)

)
= cos(x) 20. d

dx

(
cos(x)

)
= − sin(x)

Exercise Group. In the following exercises, write out the first 5 terms of the Binomial series with the given k-value.
21. k = 1/2 22. k = −1/2

23. k = 1/3 24. k = 4

Exercise Group. In the following exercises, use the Taylor series given in Key Idea 10.7.11 to create the Taylor series
of the given functions.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1

(
x/2
)

29. f(x) = ex sin(x)(only find the first 4 terms) 30. f(x) = (1 + x)1/2 cos(x)(only find the first 4
terms)

Exercise Group. In the following exercises, approximate the value of the given definite integral by using the first 4
nonzero terms of the integrand’s Taylor series.

31.
∫ √

π

0

sin
(
x2
)
dx 32.

∫ 3
√
π

0

cos
(
x3
)
dx





Chapter 11

Vectors

This chapter begins with moving our mathematics out of the plane and into
“space.” That is, we begin to think mathematically not only in two dimensions,
but in three. With this foundation, we can explore vectors both in the plane and
in space.

11.1 Introduction to Cartesian Coordinates in Space

Up to this point in this text we have considered mathematics in a 2-dimensional
world. We have plotted graphs on the xy-plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properties of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotating it out of the plane.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

youtu.be/watch?v=zqaTPul--ZU

Figure 11.1.1 Video introduction to
Section 11.1

EachpointP in space canbe representedwith anordered triple,P = (a, b, c),
where a, b and c represent the relative position of P along the x-, y- and z-axes,
respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2-dimensional medium. We cannot
draw three lines representing the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conventions exist for plotting
shapes in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y-axis, then the extended thumb
will point in the direction of the positive z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

Figure 11.1.2 Plotting the point P =
(2, 1, 3) in space

In Figure 11.1.2 we see the point P = (2, 1, 3) plotted on a set of axes. The
basic convention here is that the xy-plane is drawn in its standard way, with

609

https://www.youtube.com/watch?v=zqaTPul--ZU
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the z-axis down to the left. The perspective is that the paper represents the xy-
plane and the positive z axis is coming up, off the page. This method is preferred
by many engineers. Because it can be hard to tell where a single point lies in
relation to all the axes, dashed lines have been added to let one see how far
along each axis the point lies.

One can also consider the xy-plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 11.1.3. The same
point P is drawn, again with dashed lines. This point of view is preferred by
most mathematicians, and is the convention adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y,
and z are positive is called the first octant. We do not name the other seven
octants in this text.

Figure 11.1.3 Plotting the point P =
(2, 1, 3) in space with a perspective
used in this text

11.1.1 Measuring Distances
It is of critical importance to know how to measure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 11.1.4 Distance In Space.

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The dis-
tanceD between P andQ is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P andQ in space as PQ,
and refer to the length of this segment as

∥∥PQ
∥∥. The above distance formula

allows us to compute the length of this segment.

youtu.be/watch?v=zNUbi5ahC0Y

Figure 11.1.5 Video presentation of
Definition 11.1.4

Example 11.1.6 Length of a line segment.

Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ
and find its length.
Solution. The points P and Q are plotted in Figure 11.1.7; no special
consideration need be made to draw the line segment connecting these
two points; simply connect them with a straight line. One cannot actu-
ally measure this line on the page and deduce anything meaningful; its
true length must be measured analytically. Applying Definition 11.1.4,
we have∥∥PQ

∥∥ =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

Figure 11.1.7 Plotting points P andQ
in Example 11.1.6

Video solution

youtu.be/watch?v=EF-aTKoAQsU

11.1.2 Spheres
Just as a circle is the set of all points in the plane equidistant from a given point
(its center), a sphere is the set of all points in space that are equidistant from a
given point. Definition 11.1.4 allows us to write an equation of the sphere.

We start with a pointC = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C;

https://www.youtube.com/watch?v=zNUbi5ahC0Y
https://www.youtube.com/watch?v=EF-aTKoAQsU
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that is, ∥∥PC
∥∥ =

√
(x− a)2 + (y − b)2 + (z − c)2 = r.

Squaring both sides, we get the standard equation of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea 11.1.8 Standard Equation of a Sphere in Space.

The standard equation of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y − b)2 + (z − c)2 = r2.

youtu.be/watch?v=Xzs2ita0nI0

Figure 11.1.9 Video presentation of
Key Idea 11.1.8

Example 11.1.10 Equation of a sphere.

Find the center and radius of the sphere defined by x2+2x+ y2− 4y+
z2 − 6z = 2.
Solution. To determine the center and radius, wemust put the equation
in standard form. This requires us to complete the square (three times).

x2 + 2x+ y2 − 4y + z2 − 6z = 2

(x2 + 2x+ 1) + (y2 − 4y + 4) + (z2 − 6z + 9)− 14 = 2

(x+ 1)2 + (y − 2)2 + (z − 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4.

Video solution

youtu.be/watch?v=O0VtyYNXeig

The equation of a sphere is an example of an implicit function defining a
surface in space. In the case of a sphere, the variables x, y and z are all used.
We now consider situations where surfaces are defined where one or two of
these variables are absent.

11.1.3 Introduction to Planes in Space
The coordinate axes naturally define three planes (shown in Figure 11.1.12), the
coordinate planes: the xy-plane, the yz-plane and the xz-plane. The xy-plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equation that describes this plane: z = 0. Likewise, the
xz-plane is all points where the y-value is 0, characterized by y = 0.

youtu.be/watch?v=8yImf_yW-Ys

Figure 11.1.11 Video introduction to
Subsection 11.1.3

(a) (b) (c)

Figure 11.1.12 The xy-plane in (a), the yz-plane in (b) and the xz-plane in (c)
The equation x = 2 describes all points in space where the x-value is 2. This

is a plane, parallel to the yz-coordinate plane, shown in Figure 11.1.13.

Figure 11.1.13 The plane x = 2

https://www.youtube.com/watch?v=Xzs2ita0nI0
https://www.youtube.com/watch?v=O0VtyYNXeig
https://www.youtube.com/watch?v=8yImf_yW-Ys
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Example 11.1.14 Regions defined by planes.

Sketch the region defined by the inequalities−1 ≤ y ≤ 2.
Solution. The region is all points between the planes y = −1 and y = 2.
These planes are sketched in Figure 11.1.15, which are parallel to the xz-
plane. Thus the region extends infinitely in the x and z directions, and
is bounded by planes in the y direction.

Figure 11.1.15 Sketching the bound-
aries of a region in Example 11.1.14

Video solution

youtu.be/watch?v=-9luj-GlMqA

11.1.4 Cylinders
The equation x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equation x2 + y2 = 1 in space. In the plane, this equation describes a circle of
radius 1, centered at the origin. In space, the z coordinate is not specified, mean-
ing it can take on any value. In Figure 11.1.17(a), we show part of the graph of
the equation x2 + y2 = 1 by sketching 3 circles: the bottom one has a con-
stant z-value of −1.5, the middle one has a z-value of 0 and the top circle has
a z-value of 1. By plotting all possible z-values, we get the surface shown in Fig-
ure 11.1.17(b). This surface looks like a “tube,” or a “cylinder”; mathematicians
call this surface a cylinder for an entirely different reason.

youtu.be/watch?v=9wusVjjItyY

Figure 11.1.16 Video introduction to
Subsection 11.1.4

(a) (b)

Figure 11.1.17 Sketching x2 + y2 = 1

Definition 11.1.18 Cylinder.

LetC be a curve in a plane and letL be a line not parallel toC. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is
the directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equations involving 2
variables, and the rulings will be parallel to the axis of the third variable.

In the example preceding the definition, the curve x2 + y2 = 1 in the xy-
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 11.1.17 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in Figure 11.1.17(b). More
examples will help us understand this definition.

https://www.youtube.com/watch?v=-9luj-GlMqA
https://www.youtube.com/watch?v=9wusVjjItyY


11.1. INTRODUCTION TO CARTESIAN COORDINATES IN SPACE 613

Example 11.1.19 Graphing cylinders.

Graph the following cylinders.

1. z = y2 2. x = sin(z)

Solution.

1. We can view the equation z = y2 as a parabola in the yz-plane,
as illustrated in Figure 11.1.20(a). As x does not appear in the
equation, the rulings are lines through this parabola parallel to the
x-axis, shown in Figure 11.1.20(b). These rulings give a general
idea as to what the surface looks like, drawn in Figure 11.1.20(c).

(a) (b) (c)

Figure 11.1.20 Sketching the cylinder defined by z = y2

2. We can view the equation x = sin(z) as a sine curve that exists in
the xz-plane, as shown in Figure 11.1.21(a). The rules are parallel
to the y axis as the variable y does not appear in the equation
x = sin(z); some of these are shown in Figure 11.1.21(b). The
surface is shown in Figure 11.1.21(c).

(a) (b) (c)

Figure 11.1.21 Sketching the cylinder defined by x = sin(z)

Video solution

youtu.be/watch?v=n7Yp4aWqeFc

11.1.5 Surfaces of Revolution
One of the applications of integration we learned previously was to find the vol-
ume of solids of revolution — solids formed by revolving a curve about a hori-
zontal or vertical axis. We now consider how to find the equation of the surface
of such a solid.

youtu.be/watch?v=gxnpRE0b68U

Figure 11.1.22 Video presentation of
Subsection 11.1.5

Consider the surface formed by revolving y =
√
x about the x-axis. Cross-

sections of this surface parallel to the yz-plane are circles, as shown in Figure 11.1.23(a).
Each circle has equation of the form y2 + z2 = r2 for some radius r. The radius
is a function of x; in fact, it is r(x) =

√
x. Thus the equation of the surface

shown in Figure 11.1.23(b) is y2 + z2 = (
√
x)2.

https://www.youtube.com/watch?v=n7Yp4aWqeFc
https://www.youtube.com/watch?v=gxnpRE0b68U
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(a) (b)

Figure 11.1.23 Introducing surfaces of revolution
We generalize the above principles to give the equations of surfaces formed

by revolving curves about the coordinate axes.

Key Idea 11.1.24 Surfaces of Revolution, Part 1.

Let r be a radius function.

1. The equation of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equation of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equation of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Example 11.1.25 Finding equation of a surface of revolution.

Let y = sin(z) on [0, π]. Find the equation of the surface of revolution
formed by revolving y = sin(z) about the z-axis.
Solution. Using Key Idea 11.1.24, we find the surface has equation
x2 + y2 = sin2(z). The curve is sketched in Figure 11.1.26(a) and the
surface is drawn in Figure 11.1.26(b).
Note how the surface (and hence the resulting equation) is the same
if we began with the curve x = sin(z), which is also drawn in Fig-
ure 11.1.26(a).
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(a) (b)

Figure 11.1.26 Revolving y = sin(z) about the z-axis in Example 11.1.25

Video solution

youtu.be/watch?v=jrJXSnHU-0o

This particular method of creating surfaces of revolution is limited. For in-
stance, in Example 7.3.11 of Section 7.3we found the volumeof the solid formed
by revolving y = sin(x) about the y-axis. Our current method of forming sur-
faces can only rotate y = sin(x) about the x-axis. Trying to rewrite y = sin(x)
as a function of y is not trivial, as simply writing x = sin−1(y) only gives part of
the region we desire.

What we desire is a way of writing the surface of revolution formed by rotat-
ing y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural
way of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance
r, we plot a z-height of f(r). When rotating f(x) about the z-axis, we want
all points a distance of r from the z-axis in the xy-plane to have a z-height of
f(r). All such points satisfy the equation r2 = x2 + y2; hence r =

√
x2 + y2.

Replacing rwith
√
x2 + y2 in f(r) gives z = f(

√
x2 + y2). This is the equation

of the surface.

Key Idea 11.1.27 Surfaces of Revolution, Part 2.

Let z = f(x), x ≥ 0, be a curve in the xz-plane. The surface formed by
revolving this curve about the z-axis has equation z = f

(√
x2 + y2

)
.

Example 11.1.28 Finding equation of surface of revolution.

Find the equation of the surface found by revolving z = sin(x) about
the z-axis.
Solution. Using Key Idea 11.1.27, the surface has equation z =
sin
(√

x2 + y2
)
. The curve and surface are graphed in Figure 11.1.29.

https://www.youtube.com/watch?v=jrJXSnHU-0o
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(a) (b)

Figure 11.1.29 Revolving z = sin(x) about the z-axis in Example 11.1.28

11.1.6 Quadric Surfaces
Spheres, planes and cylinders are important surfaces to understand. We now
consider one last type of surface, a quadric surface. The definition may look
intimidating, but we will show how to analyze these surfaces in an illuminating
way.

youtu.be/watch?v=Ax_QfsRTwrc

Figure 11.1.30 Video introduction to
Subsection 11.1.6

Definition 11.1.31 Quadric Surface.

A quadric surface is the graph of the general second-degree equation in
three variables:

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0.

When the coefficientsD,E orF are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; we will not consider rotations. There are six basic quadric sur-
faces: the elliptic paraboloid, elliptic cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

Figure 11.1.32 The elliptic paraboloid
z = x2/4 + y2

We study each shape by considering traces, that is, intersections of each
surface with a plane parallel to a coordinate plane. For instance, consider the
elliptic paraboloid z = x2/4 + y2, shown in Figure 11.1.32. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equation:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse — so cross sections parallel to the xy-coordinate
plane are ellipses. This ellipse is drawn in the figure.

Now consider cross sections parallel to the xz-plane. For instance, letting
y = 0 gives the equation z = x2/4, clearly a parabola. Intersecting with the
plane x = 0 gives a cross section defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the elliptic paraboloid gets its name: some cross sections
are ellipses, and others are parabolas.

https://www.youtube.com/watch?v=Ax_QfsRTwrc
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Such an analysis can be made with each of the quadric surfaces. We give a
sample equation of each, provide a sketch with representative traces, and de-
scribe these traces.

Elliptic Paraboloid
z =

x2

a2
+

y2

b2

Plane Trace

x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equation of the elliptic paraboloid will be raised to the
first power; above, this is the z variable. The paraboloid will “open” in the di-
rection of this variable’s axis. Thus x = y2/a2 + z2/b2 is an elliptic paraboloid
that opens along the x-axis. Multiplying the right hand side by (−1) defines an
elliptic paraboloid that “opens” in the opposite direction.

Elliptic Cone
z2 =

x2

a2
+

y2

b2

Plane Trace

x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse
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One can rewrite the equation as z2 − x2/a2 − y2/b2 = 0. The one variable
with a positive coefficient corresponds to the axis that the cones “open” along.

Ellipsoid x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace

x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key
Idea 11.1.8.

Hyperboloid of One
Sheet

x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negative coefficient corresponds to the axis that the
hyperboloid “opens” along.

Hyperboloid of Two
Sheets

z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a positive coefficient corresponds to the axis that the
hyperboloid “opens” along. In the case illustrated, when |d| < |c|, there is no
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trace.

Hyperbolic
Paraboloid z =

x2

a2
− y2

b2

Plane Trace

x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised
to the first power.

Example 11.1.33 Sketching quadric surfaces.

Sketch the quadric surface defined by the given equation.

1. y =
x2

4
+

z2

16

2. x2 +
y2

9
+

z2

4
= 1

3. z = y2 − x2

Solution.

1. y =
x2

4
+

z2

16
: We first identify the quadric by pattern-matching

with the equations given previously. Only two surfaces have equa-
tions where one variable is raised to the first power, the ellip-
tic paraboloid and the hyperbolic paraboloid. In the latter case,
the other variables have different signs, so we conclude that this
describes a hyperbolic paraboloid. As the variable with the first
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power is y, we note the paraboloid opens along the y-axis. To
make a decent sketch by hand, we need only draw a few traces. In
this case, the traces x = 0 and z = 0 form parabolas that outline
the shape.

x = 0: The trace is the parabola y = z2/16

z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respective plane creates a sketch as
shown in Figure 11.1.34(a). This is enough to give an idea of
what the paraboloid looks like. The surface is filled in in Fig-
ure 11.1.34(b).

(a) (b)

Figure 11.1.34 Sketching an elliptic paraboloid

2. x2 +
y2

9
+

z2

4
= 1 : This is an ellipsoid. We can get a good idea

of its shape by drawing the traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is

along the y-axis with length 6 (as b = 3, the length of the axis is
6); the minor axis is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is

along the z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along

the y-axis.

Graphing each trace in the respective plane creates a sketch
as shown in Figure 11.1.35(a). Filling in the surface gives Fig-
ure 11.1.35(b).
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(a) (b)

Figure 11.1.35 Sketching an ellipsoid

3. z = y2 − x2: This defines a hyperbolic paraboloid, very similar
to the one shown in the gallery of quadric sections. Consider the
traces in the y − z and x− z planes:

x = 0: The trace is z = y2, a parabola opening up in the y − z
plane.

y = 0: The trace is z = −x2, a parabola opening down in the
x− z plane.

Sketching these two parabolas gives a sketch like that in Fig-
ure 11.1.36(a), and filling in the surface gives a sketch like Fig-
ure 11.1.36(b).

(a) (b)

Figure 11.1.36 Sketching a hyperbolic paraboloid

Video solution

youtu.be/watch?v=7BPClg70Lmg

Example 11.1.37 Identifying quadric surfaces.

Consider the quadric surface shown in Figure 11.1.38. Which of the fol-
lowing equations best fits this surface?

(a) x2 − y2 − z2

9
= 0

(b) x2 − y2 − z2 = 1

(c) z2 − x2 − y2 = 1

(d) 4x2 − y2 − z2

9
= 1

Figure 11.1.38 A possible equation of
this quadric surface is found in Exam-
ple 11.1.37

Solution. The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equationwill have a form similar to z2

c2 −
x2

a2 −

https://www.youtube.com/watch?v=7BPClg70Lmg
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y2

b2 = 1.
We can immediately eliminate option (a), as the constant in that equa-
tion is not 1.
The hyperboloid “opens” along the x-axis, meaning x must be the only
variable with a positive coefficient, eliminating (c).
The hyperboloid is wider in the z-direction than in the y-direction, so we
need an equation where c > b. This eliminates (b), leaving us with (d).
We should verify that the equation given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equationdescribes a hyperboloid of two
sheets that opens in the x-direction and is wider in the z-direction than
in the y. Now note the coefficient of the x-term. Rewriting 4x2 in stan-

dard form, we have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x

must be 1/2; i.e., each hyperboloid “starts” at x = 1/2. This matches
our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

This section has introduced points in space and shown how equations can
describe surfaces. The next sections explore vectors, an importantmathematical
object that we’ll use to explore curves in space.
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11.1.7 Exercises

Terms and Concepts

1. Axes drawn in space must conform to the rule.

2. In the plane, the equation x = 2 defines a ; in space, x = 2 defines a .

3. In the plane, the equation y = x2 defines a ; in space, y = x2 defines a .

4. PTX:ERROR: WeBWorK problem webwork-TaC-space-coordinates-4 with seed 1297 is either empty or failed to
compile Use -a to halt with full PG and returned content

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this hyperbola is rotated about the x-axis, what quadric
surface is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this hyperbola is rotated about the y-axis, what quadric
surface is formed?

Problems

7. PTX:ERROR: WeBWorK problem webwork-ex-space-coordinates-distance with seed 1298 is either empty or
failed to compile Use -a to halt with full PG and returned content

8. The pointsA = (1, 1, 3),B = (3, 2, 7), C = (2, 0, 8) andD = (0,−1, 4) form a quadrilateralABCD in space.
Is this a parallelogram?

9. Find the center and radius of the sphere defined by

x2 − 8x+ y2 + 2y + z2 + 8 = 0 :

10. Find the center and radius of the sphere defined by

x2 + y2 + z2 + 4x− 2y − 4z + 4 = 0 :

Exercise Group. In the following exercises, describe the region in space defined by the inequalities.
11. x2 + y2 + z2 < 1 12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0 14. y ≥ 3

Exercise Group. In the following exercises, sketch the cylinder in space.
15. z = x3 16. y = cos(z)

17.
x2

4
+

y2

9
= 1 18. y =

1

x

Exercise Group. In the following exercises, give the equation of the surface of revolution described.
19. Give the equation of the surface formed by

revolving z = 1
1+y2 in the yz-plane about the

y-axis.

20. Give the equation of the surface formed by
revolving y = x2 in the xy-plane about the
x-axis.

21. Give the equation of the surface formed by
revolving z = x2 in the xz-plane about the
z-axis.

22. Give the equation of the surface formed by
revolving z = 1/x in the xz-plane about the
z-axis.

Exercise Group. In the following exercises, a quadric surface is sketched. Determine which of the given equations
best fits the graph.
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23.

(a) x = y2 +
z2

9
(b) x = y2 +

z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 +
y2

3
+

z2

2
= 1 (b) x2 +

y2

9
+

z2

4
= 1

26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

Exercise Group. In the following exercises, sketch the quadric surface.
27. z − y2 + x2 = 0 28. z2 = x2 +

y2

4

29. x = −y2 − z2 30. 16x2 − 16y2 − 16z2 = 1

31.
x2

9
− y2 +

z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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11.2 An Introduction to Vectors

Many quantities we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster often describes wind with its speed and its direction (“. . .
with winds from the southeast gusting up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direction of that force. In
both of these examples, direction is important. Because of this, we study vectors,
mathematical objects that convey both magnitude and direction information.

youtu.be/watch?v=_1mYILsTF2U

Figure 11.2.1 Video introduction to
Section 11.2

One “bare-bones” definition of a vector is based on what we wrote above:
“a vector is a mathematical object with magnitude and direction parameters.”
This definition leaves much to be desired, as it gives no indication as to how
such an object is to be used. Several other definitions exist; we choose here a
definition rooted in a geometric visualization of vectors. It is very simplistic but
readily permits further investigation.

Definition 11.2.2 Vector.

A vector is a directed line segment.
Given points P and Q (either in the plane or in space), we denote with−−→
PQ the vector from P to Q. The point P is said to be the initial point
of the vector, and the pointQ is the terminal point.
Themagnitude, length or norm of

−−→
PQ is the length of the line segment

PQ:
∥∥∥−−→PQ

∥∥∥ =
∥∥PQ

∥∥.
Two vectors are equal if they have the same magnitude and direction.

Figure 11.2.3 shows multiple instances of the same vector. Each directed
line segment has the same direction and length (magnitude), hence each is the
same vector.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 11.2.3 Drawing the same vec-
tor with different initial points

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

P

QR

S

−4 −2 2 4

−4

−2

2

4

x

y

Figure 11.2.4 Illustrating how equal
vectors have the same displacement

Consider the vectors
−−→
PQ and

−→
RS as shown in Figure 11.2.4. The vectors look

to be equal; that is, they seem to have the same length and direction. Indeed,
they are. Both vectors move 2 units to the right and 1 unit up from the initial
point to reach the terminal point. One can analyze this movement to measure
the magnitude of the vector, and the movement itself gives direction informa-
tion (one could also measure the slope of the line passing through P and Q or
R and S). Since they have the same length and direction, these two vectors are
equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z directions the terminal point is from the initial
point. Both the vectors

−−→
PQ and

−→
RS in Figure 11.2.4 have an x-displacement of

2 and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the initial point is the origin, (0, 0). This
leads us to a definition of a standard and concise way of referring to vectors.

Definition 11.2.5 Component Form of a Vector.

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its initial point is (0, 0), is ⟨a, b⟩.

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its initial point is (0, 0, 0), is ⟨a, b, c⟩.

https://www.youtube.com/watch?v=_1mYILsTF2U
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The numbers a, b (and c, respectively) are the components of v⃗.

It follows from the definition that the component form of the vector
−−→
PQ,

where P = (x1, y1) andQ = (x2, y2) is
−−→
PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) andQ = (x2, y2, z2), the component form of
−−→
PQ is −−→

PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .
We practice using this notation in the following example.

Example 11.2.6 Using component form notation for vectors.

1. Sketch the vector v⃗ = ⟨2,−1⟩ starting at P = (3, 2) and find its
magnitude.

2. Find the component form of the vector w⃗ whose initial point is
R = (−3,−2) and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starting at the pointQ = (1, 1, 1)
and find its magnitude.

Solution.

1. Using P as the initial point, we move 2 units in the positive x-
direction and −1 units in the positive y-direction to arrive at the
terminal pointP ′ = (5, 1), as drawn in Figure 11.2.7(a). Themag-
nitude of v⃗ is determined directly from the component form:

∥v⃗∥ =
√
22 + (−1)2 =

√
5.

P

P ′

R

S

−4 −2 2 4

−4

−2

2

4

x

y

(a) (b)

Figure 11.2.7 Graphing vectors in Example 11.2.6

2. Using the note following Definition 11.2.5, we have
−→
RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 11.2.7(a) that the x- and y-
displacement of

−→
RS is 2 and 4, respectively, as the component

form suggests.

3. Using Q as the initial point, we move 2 units in the positive x-
direction, −1 unit in the positive y-direction, and 3 units in the
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positive z-direction to arrive at the terminal point Q′ = (3, 0, 4),
illustrated in Figure 11.2.7(b). The magnitude of u⃗ is:

∥u⃗∥ =
√
22 + (−1)2 + 32 =

√
14.

Video solution

youtu.be/watch?v=w1MzWJzoyGg
Now thatwehave defined vectors, and have created a nice notationbywhich

to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Definition 11.2.8 Vector Algebra.

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The multiplication of a scalar c and a vector v⃗ is the vector

cv⃗ = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors inR3, and let
c be a scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The multiplication of a scalar c and a vector v⃗ is the vector

cv⃗ = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addition and scalarmultiplication are computed “component-
wise.”

youtu.be/watch?v=tOpeq-_K0ME

Figure 11.2.9 Video presentation of
Definition 11.2.8 (2 videos)

Example 11.2.10 Adding vectors.

Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with initial point
at the origin.
Solution. We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

u⃗

v⃗

u⃗
+
v⃗

1 2 3 4

1

2

3

4

x

y

Figure 11.2.11 Graphing the sum of
vectors in Example 11.2.10

These are all sketched in Figure 11.2.11.

Video solution

youtu.be/watch?v=3MSwQJq_3s0

As vectors convey magnitude and direction information, the sum of vectors
also convey length and magnitude information. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

“Starting at an initial point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure 11.2.12, where the initial point of v⃗ is the terminal
point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector

https://www.youtube.com/watch?v=w1MzWJzoyGg
https://www.youtube.com/watch?v=tOpeq-_K0ME
https://www.youtube.com/watch?v=3MSwQJq_3s0
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addition is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acting on a body, the sum u⃗ + v⃗ gives the resulting force. Because of various
physical applications of vector addition, the sum u⃗+ v⃗ is often referred to as the
resultant vector, or just the “resultant.”u⃗

v⃗

v⃗

u⃗

u⃗
+
v⃗

1 2 3 4

1

2

3

4

x

y

Figure 11.2.12 Illustrating how to add
vectors using the Head to Tail Rule
and Parallelogram Law

Analytically, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 11.2.12 also gives
a graphical representation of this, using gray vectors. Note that the vectors u⃗
and v⃗, when arranged as in the figure, form a parallelogram. Because of this,
the Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗+ v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the initial
point of u⃗ + v⃗ is the common initial point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properties of the real numbers and Definition 11.2.8 that

u⃗− v⃗ = u⃗+ (−1)v⃗.

The Parallelogram Law gives us a good way to visualize this subtraction. We
demonstrate this in the following example.

Example 11.2.13 Vector Subtraction.

Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩. Compute and sketch u⃗− v⃗.
Solution. The computation of u⃗− v⃗ is straightforward, and we show all
steps below. Usually the formal step of multiplying by (−1) is omitted
and we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)v⃗

= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

u⃗

v⃗

u⃗− v⃗ −v⃗

u⃗− v⃗

1 2 3 4

−1

1

2

3

x

y

Figure 11.2.14 Illustrating how to sub-
tract vectors graphically

Figure 11.2.14 illustrates, using the Head to Tail Rule, how the subtrac-
tion can be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how
u⃗− v⃗ can be obtained by looking only at the terminal points of u⃗ and v⃗
(when their initial points are the same).

Video solution

youtu.be/watch?v=a_qRwTkQXYQ

Example 11.2.15 Scaling vectors.

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2v⃗ with initial point at the origin.

2. Compute the magnitudes of v⃗ and 2v⃗.

Solution.

1. We compute 2v⃗:

2v⃗ = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

2v⃗

v⃗

1 2 3 4

1

2

3

x

y

Figure 11.2.16 Graphing vectors v⃗
and 2v⃗ in Example 11.2.15

Both v⃗ and 2v⃗ are sketched in Figure 11.2.16. Make note that 2v⃗
does not start at the terminal point of v⃗; rather, its initial point is
also the origin.

2. The figure suggests that 2v⃗ is twice as long as v⃗. We compute their

https://www.youtube.com/watch?v=a_qRwTkQXYQ
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magnitudes to confirm this.

∥v⃗∥ =
√
22 + 12

=
√
5.

∥2v⃗∥ =
√
42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2v⃗ is twice as long as v⃗.

Video solution

youtu.be/watch?v=-zvqs7hveXc

The zero vector is the vector whose initial point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to multiply vectors by a scalar. The following the-
orem states formally the properties of these operations.

Theorem 11.2.17 Properties of Vector Operations.

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗ + u⃗ Commutative Property

2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) Associative Property

3. v⃗ + 0⃗ = v⃗ Additive Identity

4. (cd)v⃗ = c(dv⃗)

5. c(u⃗+ v⃗) = cu⃗+ cv⃗ Distributive Property

6. (c+ d)v⃗ = cv⃗ + dv⃗ Distributive Property

7. 0v⃗ = 0⃗

8. ∥cv⃗∥ = |c| · ∥v⃗∥

9. ∥u⃗∥ = 0 if, and only if, u⃗ = 0⃗.

youtu.be/watch?v=oixzQ2EGYPM

Figure 11.2.18 Video presentation of
Part 9 of Theorem 11.2.17

As stated before, each nonzero vector v⃗ conveys magnitude and direction
information. We have a method of extracting the magnitude, which we write as
∥v⃗∥. Unit vectors are a way of extracting just the direction information from a
vector.

Definition 11.2.19 Unit Vector.

A unit vector is a vector v⃗ with a magnitude of 1; that is,

∥v⃗∥ = 1.

youtu.be/watch?v=6kKUB3OSurs

Figure 11.2.20 Video presentation of
Definition 11.2.19

Consider this scenario: you are given a vector v⃗ and are told to create a
vector of length 10 in the direction of v⃗. How does one do that? If we knew that
u⃗ was the unit vector in the direction of v⃗, the answer would be easy: 10u⃗. So

https://www.youtube.com/watch?v=-zvqs7hveXc
https://www.youtube.com/watch?v=oixzQ2EGYPM
https://www.youtube.com/watch?v=6kKUB3OSurs
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how do we find u⃗?
Property 8 of Theorem 11.2.17 holds the key. If we divide v⃗ by its magnitude,

it becomes a vector of length 1. Consider:∣∣∣∣∣∣∣∣ 1

∥v⃗∥
v⃗

∣∣∣∣∣∣∣∣ = 1

∥v⃗∥
∥v⃗∥ (we can pull out

1

∥v⃗∥
as it is a positive scalar)

= 1.

So the vector of length 10 in the direction of v⃗ is 10
1

∥v⃗∥
v⃗. An example will

make this more clear.

Example 11.2.21 Using Unit Vectors.

Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direction of v⃗.

2. Find the unit vector in the direction of w⃗.

3. Find the vector in the direction of v⃗ with magnitude 5.

Solution.

1. We find ∥v⃗∥ =
√
10. So the unit vector u⃗ in the direction of v⃗ is

u⃗ =
1√
10

v⃗ =

〈
3√
10

,
1√
10

〉
.

2. We find ∥w⃗∥ = 3, so the unit vector z⃗ in the direction of w⃗ is

u⃗ =
1

3
w⃗ =

〈
1

3
,
2

3
,
2

3

〉
.

3. To create a vector with magnitude 5 in the direction of v⃗, we mul-
tiply the unit vector u⃗ by 5. Thus 5u⃗ =

〈
15/

√
10, 5/

√
10
〉
is the

vector we seek. This is sketched in Figure 11.2.22.

5u⃗

v⃗

u⃗

1 2 3 4 5

1

2

3

x

y

Figure 11.2.22 Graphing vectors in Ex-
ample 11.2.21. All vectors shown
have their initial point at the origin

Video solution

youtu.be/watch?v=B9OV0Dja6IY

The basic formation of the unit vector u⃗ in the direction of a vector v⃗ leads
to a interesting equation. It is:

v⃗ = ∥v⃗∥ 1

∥v⃗∥
v⃗.

We rewrite the equation with parentheses to make a point:

v⃗ = ∥v⃗∥︸︷︷︸
magnitude

·
(

1

∥v⃗∥
v⃗

)
︸ ︷︷ ︸
direction

.

This equation illustrates the fact that a nonzero vector has both magnitude
and direction, where we view a unit vector as supplying only direction informa-
tion. Identifying unit vectors with direction allows us to define parallel vectors.

https://www.youtube.com/watch?v=B9OV0Dja6IY
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Definition 11.2.23 Parallel Vectors.

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respective unit vec-
tors are parallel.

youtu.be/watch?v=TZxf7vV1iuk

Figure 11.2.24 Video presentation of
Definition 11.2.23

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = cv⃗2 (see marginal note).

Direction and the zero vector. 0⃗
is directionless; because

∥∥∥0⃗∥∥∥ =

0, there is no unit vector in the
“direction” of 0⃗.

Some texts define twovectors
as being parallel if one is a scalar
multiple of the other. By this de-
finition, 0⃗ is parallel to all vectors
as 0⃗ = 0v⃗ for all v⃗.

We define what it means for
two vectors to be perpendicular
inDefinition11.3.14, which iswrit-
ten to exclude 0⃗. It could bewrit-
ten to include 0⃗; by such a defi-
nition, 0⃗ is perpendicular to all
vectors. While counter-intuitive,
it is mathematically sound to al-
low 0⃗ to be both parallel and per-
pendicular to all vectors.

Weprefer the givendefinition
of parallel as it is grounded in the
fact that unit vectors provide di-
rection information. Onemay adopt
the convention that 0⃗ is parallel
to all vectors if they desire. (See
also the aside in Section 11.4.)

If one graphed all unit vectors in R2 with the initial point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos(θ), sin(θ)⟩ for some angle θ.
A similar construction inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a particular component form, but its derivation
is not as straightforward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 11.2.25 Unit Vectors.

1. The unit vector in the direction of a nonzero vector v⃗ is

u⃗ =
1

∥v⃗∥
v⃗.

2. A vector u⃗ inR2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ inR3 is a unit vector if, and only if, its component form
is ⟨sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situations, especially the
formula for unit vectors in the plane.

Example 11.2.26 Finding Component Forces.

Consider a weight of 50lb hanging from two chains, as shown in Fig-
ure 11.2.27. One chain makes an angle of 30◦ with the vertical, and the
other an angle of 45◦. Find the force applied to each chain.

50lb

45◦
30◦

Figure 11.2.27 A diagram of a
weight hanging from 2 chains in
Example 11.2.26

Solution. Knowing that gravity is pulling the 50lb weight straight down,
we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” the weight up, preventing it from
falling. We can represent the force from each chain with a vector. Let
F⃗1 represent the force from the chain making an angle of 30◦ with the
vertical, and let F⃗2 represent the force form the other chain. Convert all
angles to be measured from the horizontal (as shown in Figure 11.2.28),
and apply Key Idea 11.2.25. As we do not yet know the magnitudes of
these vectors, (that is the problem at hand), we usem1 andm2 to rep-
resent them.

F⃗1 = m1 ⟨cos(120◦), sin(120◦)⟩

F⃗2 = m2 ⟨cos(45◦), sin(45◦)⟩

https://www.youtube.com/watch?v=TZxf7vV1iuk
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As the weight is not moving, we know the sum of the forces is 0⃗. This
gives:

F⃗ + F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos(120◦), sin(120◦)⟩+m2 ⟨cos(45◦), sin(45◦)⟩ = 0⃗

F⃗1 F⃗2

F⃗

120◦ 45◦

Figure 11.2.28 A diagram of the force
vectors from Example 11.2.26

The sum of the entries in the first component is 0, and the sum of the
entries in the second component is also 0. This leads us to the following
two equations:

m1 cos(120◦) +m2 cos(45◦) = 0

m1 sin(120◦) +m2 sin(45◦) = 50

This is a simple 2-equation, 2-unknown system of linear equations. We
leave it to the reader to verify that the solution is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1 +
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is
more than 50lb. We leave it to a physics class to discuss the full de-
tails, but offer this short explanation. Our equations were established so
that the vertical components of each force sums to 50lb, thus support-
ing the weight. Since the chains are at an angle, they also pull against
each other, creating an “additional” horizontal force while holding the
weight in place.

Video solution

youtu.be/watch?v=XxSQSU4Nvig Unit vectorswere very important in the previous calculation; they allowed us
to define a vector in the proper direction but with an unknown magnitude. Our
computationswere then computed component-wise. Because such calculations
are often necessary, the standard unit vectors can be useful.

Definition 11.2.29 Standard Unit Vectors.

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example 11.2.30 Using standard unit vectors.

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j + 2k⃗ in component form.

Solution.

https://www.youtube.com/watch?v=XxSQSU4Nvig
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1.

v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2.
w⃗ = 4⃗i− 5⃗j + 2k⃗

= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These two examples demonstrate that converting between component
formand the standard unit vectors is rather straightforward. Manymath-
ematicians prefer component form, and it is the preferred notation in
this text. Many engineers prefer using the standard unit vectors, and
many engineering text use that notation.

Example 11.2.31 Finding Component Force.

A weight of 25lb is suspended from a chain of length 2ft while a wind
pushes the weight to the right with constant force of 5lb as shown in
Figure 11.2.32. What angle will the chain make with the vertical as a
result of the wind’s pushing? How much higher will the weight be?

2ft


25lb

φ

θ

F⃗w

Figure 11.2.32 A figure of a weight
being pushed by the wind in Exam-
ple 11.2.31

Solution. The force of the wind is represented by the vector F⃗w =
5⃗i. The force of gravity on the weight is represented by F⃗g = −25⃗j.
The direction andmagnitude of the vector representing the force on the
chain are both unknown. We represent this force with

F⃗c = m ⟨cos(φ), sin(φ)⟩ = m cos(φ) i⃗+m sin(φ) j⃗

for some magnitudem and some angle with the horizontal φ. (Note: θ
is the angle the chain makes with the vertical; φ is the angle with the
horizontal.)
As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cos(φ) i⃗+m sin(φ) j⃗ + 5⃗i− 25⃗j = 0⃗

Thus the sumof the i⃗ and j⃗ components are 0, leading us to the following
system of equations:

5 +m cosφ = 0

−25 +m sinφ = 0
(11.2.1)

This is enough to determine F⃗c already, as we know m cos(φ) = −5
and m sin(φ) = 25. Thus Fc = ⟨−5, 25⟩. We can use this to find the
magnitudem:

m =
√
(−5)2 + 252 = 5

√
26 ≈ 25.5 lb .

We can then use either equality from Equation (11.2.1) to solve for φ.
We choose the first equality as using arccosine will return an angle in
the 2nd quadrant:

5 + 5
√
26 cos(φ) = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.
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Subtracting 90◦ from this angle gives us an angle of 11.31◦ with the ver-
tical.
We can now use trigonometry to find out how high the weight is lifted.
The diagram shows that a right triangle is formed with the 2ft chain as
the hypotenuse with an interior angle of 11.31◦. The length of the ad-
jacent side (in the diagram, the dashed vertical line) is 2 cos(11.31◦) ≈
1.96ft. Thus the weight is lifted by about 0.04ft, almost 1/2in.

The algebra we have applied to vectors is already demonstrating itself to be
very useful. There are two more fundamental operations we can perform with
vectors, the dot product and the cross product. The next two sections explore
each in turn.
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11.2.1 Exercises

Terms and Concepts

1. Name two different things that cannot be described with just one number, but rather need 2 or more numbers
to fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?
3. What is a unit vector?
4. Unit vectors can be thought of as conveying what type of information?
5. What does it mean for two vectors to be parallel?
6. What effect does multiplying a vector by−2 have?

Problems

Exercise Group. In the following exercises, points P and Q are given. Write the vector
−−→
PQ in component form and

using the standard unit vectors.
7. If P = (2,−1) andQ = (3, 5), write the vector

−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

8. If P = (3, 2) andQ = (7,−2), write the vector
−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.
9. If P = (0, 3,−1) andQ = (6, 2, 5), write the

vector
−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

10. If P = (2, 1, 2) andQ = (4, 3, 2), write the
vector

−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

11. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, 2u⃗− 3v⃗.

(b) Sketch the above vectors on the same axes, along with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2v⃗ − x⃗.
12. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−
√
2v⃗.

(b) Sketch the above vectors on the same axes, along with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗ + 2x⃗.

Exercise Group. In the following exercises, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same axes.
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13.

u⃗

v⃗

x

y
14.

u⃗

v⃗

x

y

15.

u⃗

v⃗

x y

z

16.

u⃗

v⃗x y

z

Exercise Group. In the following exercises, find ∥u⃗∥, ∥v⃗∥, ∥u⃗+ v⃗∥ and ∥u⃗− v⃗∥.
17. u⃗ = ⟨2, 1⟩ , v⃗ = ⟨3,−2⟩ . 18. u⃗ = ⟨−3, 2, 2⟩ , v⃗ = ⟨1,−1, 1⟩ .
19. u⃗ = ⟨1, 2⟩ , v⃗ = ⟨−3,−6⟩ . 20. u⃗ = ⟨2,−3, 6⟩ , v⃗ = ⟨10,−15, 30⟩ .

21. Under what conditions is ∥u⃗∥+ ∥v⃗∥ = ∥u⃗+ v⃗∥?

Exercise Group. In the following exercises, find the unit vector u⃗ in the direction of v⃗.
22. Find the unit vector u⃗ in the direction of

v⃗ = ⟨3, 7⟩ .
23. Find the unit vector u⃗ in the direction of

v⃗ = ⟨6, 8⟩ .
24. Find the unit vector u⃗ in the direction of

v⃗ = ⟨1,−2, 2⟩ .
25. Find the unit vector u⃗ in the direction of

v⃗ = ⟨2,−2, 2⟩ .

26. Find the unit vector in the first quadrant of R2 that makes a 50◦ angle with the x-axis.

27. Find the unit vector in the second quadrant of R2 that makes a 30◦ angle with the y-axis.
28. Verify, from Key Idea 11.2.25, that

u⃗ = ⟨sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)⟩

is a unit vector for all angles θ and φ.

Exercise Group. Aweight of 100lb is suspended from two chains, making angles with the vertical of θ andφ as shown
in the figure below.
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100lb

θ
φ

In the following exercises, the angles θ and φ are given. Find the magnitude of the force applied to each chain.
29. θ = 30◦,φ = 30◦ 30. θ = 60◦,φ = 60◦

31. θ = 20◦,φ = 15◦ 32. θ = 0◦,φ = 0◦

Exercise Group. Aweight of plb is suspended from a chain of length ℓwhile a constant force of F⃗w pushes the weight
to the right, making an angle of θ with the vertical, as shown in the figure below.

ℓ ft


p lb

θ

F⃗w

In the following exercises, a force F⃗w and length ℓ are given. Find the angle θ and the height the weight is lifted
as it moves to the right.

33. F⃗w = 1lb, ℓ = 1ft, p = 1lb 34. F⃗w = 1lb, ℓ = 1ft, p = 10lb

35. F⃗w = 1lb, ℓ = 10ft, p = 1lb 36. F⃗w = 10lb, ℓ = 10ft, p = 1lb
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11.3 The Dot Product

The previous section introduced vectors and described how to add them to-
gether and how to multiply them by scalars. This section introduces a multi-
plication on vectors called the dot product.

youtu.be/watch?v=I996h2jxUhw

Figure 11.3.1 Video introduction to
Section 11.3

Definition 11.3.2 Dot Product.

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ inR2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product
of u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
practice evaluating a dot product in the following example, then we will discuss
why this product is useful.

Example 11.3.3 Evaluating dot products.

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

Solution.

1. Using Definition 11.3.2, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definition, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

Video solution

youtu.be/watch?v=NXZz_TGvFZ0

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definition gives no hint as to why
we would care about this operation, there is an amazing connection between
the dot product and angles formed by the vectors. Before stating this connec-
tion, we give a theorem stating some of the properties of the dot product.

Theorem 11.3.4 Properties of the Dot Product.

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ {Commutative Property}

2. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ {Distributive Property}

3. c(u⃗ · v⃗) = (cu⃗) · v⃗ = u⃗ · (cv⃗)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = ∥v⃗∥2

https://www.youtube.com/watch?v=I996h2jxUhw
https://www.youtube.com/watch?v=NXZz_TGvFZ0
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The last statement of the theorem makes a handy connection between the
magnitude of a vector and the dot product with itself. Our definition and theo-
rem give properties of the dot product, but we are still likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

youtu.be/watch?v=7mZ-eK8fBCk

Figure 11.3.5 Video presentation of
Theorem 11.3.4

The next theorem extends this understanding by connecting the dot product
to magnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is
clearly formed when u⃗ and v⃗ are drawn with the same initial point as illustrated
in Figure 11.3.6(a). (We always take θ to be the angle in [0, π] as two angles are
actually created.)

u⃗

v⃗

θ

(a) (b)

Figure 11.3.6 Illustrating the angle formed by two vectors with the same initial
point

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with the
same initial point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle θ between them (and again, 0 ≤ θ ≤ π). This
is illustrated in Figure 11.3.6(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Theorem 11.3.7 The Dot Product and Angles.

Let u⃗ and v⃗ be nonzero vectors in R2 or R3. Then

u⃗ · v⃗ = ∥u⃗∥ ∥v⃗∥ cos(θ),

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

youtu.be/watch?v=d8mzoznYsJo

Figure 11.3.8 Video presentation of
Theorem 11.3.7

Using Theorem 11.3.4, we can rewrite this theorem as

u⃗

∥u⃗∥
· v⃗

∥v⃗∥
= cos(θ).

Note how on the left hand side of the equation, we are computing the dot
product of two unit vectors. Recalling that unit vectors essentially only provide
direction information, we can informally restate Theorem 11.3.7 as saying “The
dot product of two directions gives the cosine of the angle between them.”

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos(θ) is positive; when
θ = π/2, cos(θ) = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos(θ) is
negative. Thus the sign of the dot product gives a general indication of the angle
between the vectors, illustrated in Figure 11.3.9.

https://www.youtube.com/watch?v=7mZ-eK8fBCk
https://www.youtube.com/watch?v=d8mzoznYsJo


640 CHAPTER 11. VECTORS

u⃗ · v⃗ > 0
u⃗

v⃗

θ

u⃗ · v⃗ = 0
u⃗

v⃗

θ = π/2

u⃗ · v⃗ < 0
u⃗

v⃗

θ

Figure 11.3.9 Illustrating the relationship between the angle between vectors
and the sign of their dot product

We can use Theorem 11.3.7 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equation
as

cos(θ) =
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥
⇔ θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
.

We practice using this theorem in the following example.

Example 11.3.10 Using the dot product to find angles.

Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 11.3.11.
Find the angles α, β and θ.

u⃗

v⃗

w⃗

αβ

θ

−4 −2 2 4

2

4

6

x

y

Figure 11.3.11 Vectors used in Exam-
ple 11.3.10

Solution. We start by computing the magnitude of each vector.

∥u⃗∥ =
√
10; ∥v⃗∥ = 2

√
10; ∥w⃗∥ = 5.

We now apply Theorem 11.3.7 to find the angles.

α = cos−1

(
u⃗ · v⃗

(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1

(
v⃗ · w⃗

(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1

(
u⃗ · w⃗

(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

Video solution

youtu.be/watch?v=7bkKYObUxFo

We see from our computation thatα+β = θ, as indicated by Figure 11.3.11.
While we knew this should be the case, it is nice to see that this non-intuitive
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example 11.3.12 Using the dot product to find angles.

Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in
Figure 11.3.13. Find the angle between each pair of vectors.

https://www.youtube.com/watch?v=7bkKYObUxFo
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Figure 11.3.13 Vectors used in Exam-
ple 11.3.12

Solution.

1. Between u⃗ and v⃗:

θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
= cos−1

(
0√
3
√
14

)
=

π

2
.

2. Between u⃗ and w⃗:

θ = cos−1

(
u⃗ · w⃗

∥u⃗∥ ∥w⃗∥

)
= cos−1

(
0√
3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1

(
v⃗ · w⃗

∥v⃗∥ ∥w⃗∥

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these
angles looks to be a right angle in Figure 11.3.13. Such is the case when
drawing three-dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. Notice the common
feature in each calculation (and also the calculation ofα in Example 11.3.10): the
dot products of each pair of angles was 0. We use this as a basis for a definition
of the term orthogonal, which is essentially synonymous to perpendicular.

Definition 11.3.14 Orthogonal.

Nonzero vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

The termperpendicular originally
referred to lines. As mathemat-
ics progressed, the concept of “be-
ing at right angles to”was applied
to other objects, such as vectors
andplanes, and the termorthog-
onal was introduced. It is espe-
cially used when discussing ob-
jects that are hard, or impossi-
ble, to visualize: two vectors in
5-dimensional space are orthog-
onal if their dot product is 0. It
is not wrong to say they are per-
pendicular, but commonconven-
tion gives preference to theword
orthogonal.

Example 11.3.15 Finding orthogonal vectors.

Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non-parallel vectors in R3 that are orthogonal to v⃗.

Solution.

1. Recall that a line perpendicular to a line with slope m has slope
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−1/m, the “opposite reciprocal slope.” We can think of the slope
of u⃗ as 5/3, its “rise over run.” A vector orthogonal to u⃗ will have
slope−3/5. There are many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinitely many directions in space orthogonal to any
given direction, so there are an infinite number of non-parallel
vectors orthogonal to v⃗. Since there are so many, we have great
leeway in finding some. Oneway is to arbitrarily pick values for the
first two components, leaving the third unknown. For instance, let
v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal to v⃗, then v⃗1 · v⃗ = 0, so

2 + 14 + 3z = 0 ⇒ z =
−16

3
.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a simi-
lar technique by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what
we did in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first
two components of v⃗, changing the sign of one of them (similar to
the “opposite reciprocal” concept before). Letting the third com-
ponent be 0 effectively ignores the third component of v⃗, and it is
easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

Video solution

youtu.be/watch?v=eXkGPeTjohM

An important construction is illustrated in Figure 11.3.16, where vectors u⃗
and v⃗ are sketched. In Figure 11.3.16(a), a dotted line is drawn from the tip
of u⃗ to the line containing v⃗, where the dotted line is orthogonal to v⃗. In Fig-
ure 11.3.16(b), the dotted line is replaced with the vector z⃗ and w⃗ is formed,
parallel to v⃗. It is clear by the diagram that u⃗ = w⃗ + z⃗. What is important
about this construction is this: u⃗ is decomposed as the sum of two vectors, one
of which is parallel to v⃗ and one that is perpendicular to v⃗. It is hard to overstate
the importance of this construction (as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 11.3.16(b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

∥w⃗∥ = ∥u⃗∥ cos(θ). (11.3.1)

v⃗

u⃗

θ

(a)

v⃗

u⃗

w⃗

z⃗

θ

(b)

Figure 11.3.16 Developing the construction of the orthogonal projection

https://www.youtube.com/watch?v=eXkGPeTjohM
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We also know that w⃗ is parallel to to v⃗; that is, the direction of w⃗ is the
direction of v⃗, described by the unit vector v⃗/ ∥v⃗∥. The vector w⃗ is the vector in
the direction v⃗/ ∥v⃗∥ with magnitude ∥u⃗∥ cos(θ):

w⃗ =
(
∥u⃗∥ cos(θ)

) 1

∥v⃗∥
v⃗

=

(
∥u⃗∥ u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
1

∥v⃗∥
v⃗ (Replacing cos(θ) using Theorem 11.3.7)

=
u⃗ · v⃗
∥v⃗∥2

v⃗

=
u⃗ · v⃗
v⃗ · v⃗

v⃗ (Applying Theorem 11.3.4).

Since this construction is so important, it is given a special name.

Definition 11.3.17 Orthogonal Projection.

Let nonzero vectors u⃗ and v⃗ be given. The orthogonal projection of u⃗
onto v⃗, denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.
youtu.be/watch?v=h8FnrYGOpMg

Figure 11.3.18 Video presentation of
Definition 11.3.17

Example 11.3.19 Computing the orthogonal projection.

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three
vectors with initial points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all
three vectors with initial points at the origin.

Solution.

1. Applying Definition 11.3.17, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5

10
⟨3, 1⟩

=

〈
−3

2
,−1

2

〉
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 11.3.20. Note
how the projection is parallel to v⃗; that is, it lies on the same line
through the origin as v⃗, although it points in the opposite direc-
tion. That is because the angle between u⃗ and v⃗ is obtuse (i.e.,
greater than 90◦).

u⃗ v⃗

proj v⃗ u⃗
−2 −1 1 2 3

1

2

−1

−2

x

y

Figure 11.3.20 Sketching the three
vectors in Part 1 of Example 11.3.19

2. Apply the definition:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6

3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

https://www.youtube.com/watch?v=h8FnrYGOpMg
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These vectors are sketched in Figure 11.3.21(a), and again in Fig-
ure 11.3.21(b) from a different perspective. Because of the nature
of graphing these vectors, the sketch in Figure 11.3.21(a) makes it
difficult to recognize that the drawn projection has the geometric
properties it should. The graph shown in Figure 11.3.21(b) illus-
trates these properties better.

(a) (b)

Figure 11.3.21 Sketching the three vectors in Part 2 of Exam-
ple 11.3.19

Video solution

youtu.be/watch?v=Pcd-bORHB7o

We can use the properties of the dot product found in Theorem 11.3.4 to
rearrange the formula found in Definition 11.3.17:

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
u⃗ · v⃗
∥v⃗∥2

v⃗

=

(
u⃗ · v⃗

∥v⃗∥

)
v⃗

∥v⃗∥
.

The above formula shows that the orthogonal projection of u⃗ onto v⃗ is only
concerned with the direction of v⃗, as both instances of v⃗ in the formula come in
the form v⃗/ ∥v⃗∥, the unit vector in the direction of v⃗.

A special case of orthogonal projection occurs when v⃗ is a unit vector. In this
situation, the formula for the orthogonal projection of a vector u⃗ onto v⃗ reduces
to just proj v⃗ u⃗ = (u⃗ · v⃗)v⃗, as v⃗ · v⃗ = 1.

This gives us a newunderstanding of the dot product. When v⃗ is a unit vector,
essentially providing only direction information, the dot product of u⃗ and v⃗ gives
“how much of u⃗ is in the direction of v⃗.” This use of the dot product will be very
useful in future sections.v⃗

u⃗

proj v⃗ u⃗

z⃗

Figure 11.3.22 Illustrating the orthog-
onal projection

Nowconsider Figure 11.3.22where the concept of the orthogonal projection
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (11.3.2)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite Equation (11.3.2) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (u⃗− proj v⃗ u⃗).

https://www.youtube.com/watch?v=Pcd-bORHB7o
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This is not nonsense, as pointed out in the following Key Idea. (Notation
note: the expression “∥ y⃗” means “is parallel to y⃗.” We can use this notation to
state “x⃗ ∥ y⃗” which means “x⃗ is parallel to y⃗.” The expression “⊥ y⃗” means “is
orthogonal to y⃗,” and is used similarly.)

Key Idea 11.3.23 Orthogonal Decomposition of Vectors.

Let nonzero vectors u⃗ and v⃗ be given. Then u⃗ canbewritten as the sumof
two vectors, one of which is parallel to v⃗, and one of which is orthogonal
to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (u⃗− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 11.3.24 Orthogonal decomposition of vectors.

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 11.3.19. Decompose
u⃗ as the sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 11.3.19. Decom-
pose w⃗ as the sumof a vector parallel to x⃗ and a vector orthogonal
to x⃗.

Solution.

1. In Example 11.3.19, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗? (i.e., is z⃗ ⊥ v⃗ ?) We check for orthogonality
with the dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (u⃗− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 11.3.19 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying
the Key Idea, we have:

z⃗ = w⃗ − proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogo-
nal. We now write w⃗ as the sum of two vectors, one parallel and
one orthogonal to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗ − proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

Video solution

youtu.be/watch?v=9IxUaJ1M4Jk

https://www.youtube.com/watch?v=9IxUaJ1M4Jk
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We give an example of where this decomposition is useful.

Example 11.3.25 Orthogonally decomposing a force vector.

Consider Figure 11.3.26(a), showing a box weighing 50lb on a ramp that
rises 5ft over a span of 20ft. Find the components of force, and their
magnitudes, acting on the box (as sketched in Figure 11.3.26(b)):

5

20

r⃗

g⃗

(a)

5

20

r⃗

g⃗

z⃗

proj r⃗ g⃗

(b)

Figure 11.3.26 Sketching the ramp and box in Example 11.3.25. Note:
The vectors are not drawn to scale.

1. in the direction of the ramp, and

2. orthogonal to the ramp.

Solution. As the ramp rises 5ft over a horizontal distance of 20ft, we can
represent the direction of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity
pulls down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direction of the ramp, we com-
pute proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250

425
⟨20, 5⟩

=

〈
−200

17
,−50

17

〉
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is ∥proj r⃗ g⃗∥ = 50/
√
17 ≈ 12.13 lb .

Though the box weighs 50lb, a force of about 12lb is enough to
keep the box from sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use
Key Idea 11.3.23.

z⃗ = g⃗ − proj r⃗ g⃗

=

〈
200

17
,−800

17

〉
≈ ⟨11.76,−47.06⟩ .

The magnitude of this force is ∥z⃗∥ ≈ 48.51lb. In physics and engi-
neering, knowing this force is important when computing things
like static frictional force. (For instance, we could easily compute
if the static frictional force alonewas enough to keep the box from
sliding down the ramp.)

Video solution

youtu.be/watch?v=85RquaXgutc

https://www.youtube.com/watch?v=85RquaXgutc
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11.3.1 Application to Work
In physics, the application of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in
the direction of travel). The orthogonal projection allows us to compute work
when the force is not in the direction of travel.

d⃗

F⃗

proj d⃗ F⃗

Figure 11.3.27 Findingworkwhen the
force and direction of travel are given
as vectors

Consider Figure 11.3.27, where a force F⃗ is being applied to an object mov-
ing in the direction of d⃗. (The distance the object travels is the magnitude of d⃗.)
The work done is the amount of force in the direction of d⃗,

∥∥∥proj d⃗ F⃗∥∥∥, times∥∥∥d⃗∥∥∥:
∥∥∥proj d⃗ F⃗∥∥∥ · ∥∥∥d⃗∥∥∥ =

∥∥∥∥∥ F⃗ · d⃗
d⃗ · d⃗

d⃗

∥∥∥∥∥ · ∥∥∥d⃗∥∥∥
=

∣∣∣∣∣∣∣
F⃗ · d⃗∥∥∥d⃗∥∥∥2

∣∣∣∣∣∣∣ ·
∥∥∥d⃗∥∥∥ · ∥∥∥d⃗∥∥∥

=

∣∣∣F⃗ · d⃗
∣∣∣∥∥∥d⃗∥∥∥2
∥∥∥d⃗∥∥∥2

=
∣∣∣F⃗ · d⃗

∣∣∣ .
The expression F⃗ · d⃗ will be positive if the angle between F⃗ and d⃗ is acute;

when the angle is obtuse (hence F⃗ · d⃗ is negative), the force is causing motion
in the opposite direction of d⃗, resulting in “negative work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

Definition 11.3.28 Work.

Let F⃗ be a constant force that moves an object in a straight line from
point P to point Q. Let d⃗ =

−−→
PQ. The work W done by F⃗ along d⃗ is

W = F⃗ · d⃗.

Example 11.3.29 Computing work.

A man slides a box along a ramp that rises 3ft over a distance of 15ft by
applying 50lb of force as shown in Figure 11.3.30. Compute the work
done.

15

3

F⃗

30◦

Figure 11.3.30 Computingworkwhen
sliding a box up a ramp in Exam-
ple 11.3.29

Solution. The figure indicates that the force applied makes a 30◦ angle
with the horizontal, so F⃗ = 50 ⟨cos(30◦), sin(30◦)⟩ ≈ ⟨43.3, 25⟩. The
ramp is represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos(30◦), sin(30◦)⟩ · ⟨15, 3⟩ ≈ 724.5 ft–lb .

Note how we did not actually compute the distance the object traveled,
nor the magnitude of the force in the direction of travel; this is all inher-
ently computed by the dot product!

The dot product is a powerful way of evaluating computations that depend
onangleswithout actually using angles. Thenext sectionexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.
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11.3.2 Exercises

Terms and Concepts

1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector magnitude related?
3. How can one quickly tell if the angle between two vectors is acute or obtuse?
4. Give a synonym for “orthogonal.”

Problems

Exercise Group. In the following exercises, find the dot product of the given vectors.
5. u⃗ = ⟨2,−4⟩ , v⃗ = ⟨3, 7⟩ 6. u⃗ = ⟨5, 3⟩ , v⃗ = ⟨6, 1⟩
7. u⃗ = ⟨1,−1, 2⟩ , v⃗ = ⟨2, 5, 3⟩ 8. u⃗ = ⟨3, 5,−1⟩ , v⃗ = ⟨4,−1, 7⟩
9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩ 10. u⃗ = ⟨1, 2, 3⟩ , v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ in R3 and scalar c and show that c(u⃗ · v⃗) = u⃗ · (cv⃗).

Exercise Group. In the following exercises, find the measure of the angle between the two vectors in radians.
13. u⃗ = ⟨1, 1⟩ and v⃗ = ⟨1, 2⟩ . 14. u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 5⟩ .
15. u⃗ = ⟨8, 1,−4⟩ and v⃗ = ⟨2, 2, 0⟩ . 16. u⃗ = ⟨1, 7, 2⟩ and v⃗ = ⟨4,−2, 5⟩ .

Exercise Group. In the following exercises, a vector v⃗ is given. Give two vectors that are orthogonal to v⃗.
17. Find two nonzero vectors orthogonal to

v⃗ = ⟨4, 7⟩ .
18. Find two nonzero vectors orthogonal to

v⃗ = ⟨−3, 5⟩ .
19. Find two nonzero vectors orthogonal to

v⃗ = ⟨1, 1, 1⟩ .
20. Find two nonzero vectors orthogonal to

v⃗ = ⟨1,−2, 3⟩ .

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗, the orthogonal projection of u⃗
onto v⃗, and sketch all three vectors with the same initial point.

21. u⃗ = ⟨1, 2⟩ and v⃗ = ⟨−1, 3⟩ . 22. u⃗ = ⟨5, 5⟩ and v⃗ = ⟨1, 3⟩ .
23. u⃗ = ⟨−3, 2⟩ and v⃗ = ⟨1, 1⟩ 24. u⃗ = ⟨−3, 2⟩ and v⃗ = ⟨2, 3⟩ .
25. u⃗ = ⟨1, 5, 1⟩ and v⃗ = ⟨1, 2, 3⟩ . 26. u⃗ = ⟨3,−1, 2⟩ and v⃗ = ⟨2, 2, 1⟩ .

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Write u⃗ as the sum of two vectors, one of which
is parallel to v⃗ (or is zero) and one of which is orthogonal to v⃗. Note: these are the same pairs of vectors as found in
Exercises 21–26.

27. Write u⃗ = ⟨1, 2⟩ as the sum of two vectors, one
parallel to v⃗ = ⟨−1, 3⟩ (or zero) and the other
perpendicular.

u⃗ = +

28. Write u⃗ = ⟨5, 5⟩ as the sum of two vectors, one
parallel to v⃗ = ⟨1, 3⟩ (or zero) and the other
perpendicular.

u⃗ = +

29. Write u⃗ = ⟨−3, 2⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨1, 1⟩ (or zero) and the
other perpendicular.

u⃗ = +

30. Write u⃗ = ⟨−3, 2⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨2, 3⟩ (or zero) and the
other perpendicular.

u⃗ = +

31. Write u⃗ = ⟨1, 5, 1⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨1, 2, 3⟩ (or zero) and the
other perpendicular.

u⃗ = +

32. Write u⃗ = ⟨3,−1, 2⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨2, 2, 1⟩ (or zero) and the
other perpendicular.

u⃗ = +
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33. A 10lb box sits on a ramp that rises 4ft over a distance of 20ft. Howmuch force is required to keep the box from
sliding down the ramp?

34. A 10lb box sits on a 15ft ramp that makes a 30◦ angle with the horizontal. How much force is required to keep
the box from sliding down the ramp?

35. How much work is performed in moving a box horizontally 10ft with a force of 20lb applied at an angle of 45◦
to the horizontal?

36. How much work is performed in moving a box horizontally 10ft with a force of 20lb applied at an angle of 10◦
to the horizontal?

37. Howmuch work is performed in moving a box up the length of a ramp that rises 2ft over a distance of 10ft, with
a force of 50lb applied horizontally?

38. Howmuch work is performed in moving a box up the length of a ramp that rises 2ft over a distance of 10ft, with
a force of 50lb applied at an angle of 45◦ to the horizontal?

39. How much work is performed in moving a box up the length of a 10ft ramp that makes a 5◦ angle with the
horizontal, with 50lb of force applied in the direction of the ramp?
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11.4 The Cross Product

“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

youtu.be/watch?v=63syRlBjyh0

Figure 11.4.1 Video introduction to
Section 11.4

Given two non-parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is an operation,
called the cross product, that creates such a vector. This section defines the cross
product, then explores its properties and applications.

Definition 11.4.2 Cross Product.

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definition can be a bit cumbersome to remember. After an example we
will give a convenient method for computing the cross product. For now, careful
examination of the products and differences given in the definition should reveal
a pattern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s practice using this definition by computing a cross product.

Example 11.4.3 Computing a cross product.

Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is
orthogonal to both u⃗ and v⃗.
Solution. Using Definition 11.4.2, we have

u⃗×v⃗ =
〈
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

〉
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then
verify their result.)
We test whether or not u⃗ × v⃗ is orthogonal to u⃗ and v⃗ using the dot
product: (

u⃗× v⃗
)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(

u⃗× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗ × v⃗ is indeed orthogonal to both u⃗
and v⃗.

Video solution

youtu.be/watch?v=kFpmnYBVQt4

A convenient method of computing the cross product starts with forming a
particular 3×3matrix, or rectangular array. The first row comprises the standard
unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respectively. Using u⃗ and v⃗ from Example 11.4.3, we begin with:

i⃗ j⃗ k⃗

2 −1 4

3 2 5

https://www.youtube.com/watch?v=63syRlBjyh0
https://www.youtube.com/watch?v=kFpmnYBVQt4
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Now repeat the first two columns after the original three:

i⃗ j⃗ k⃗ i⃗ j⃗

2 −1 4 2 −1

3 2 5 3 2

This gives three full “upper left to lower right” diagonals, and three full “upper
right to lower left” diagonals, as shown. Compute the products along each di-
agonal, then add the products on the right and subtract the products on the
left:

i⃗ j⃗ k⃗ i⃗ j⃗

2 −1 4 2 −1

3 2 5 3 2

−5⃗i 12⃗j 4k⃗−3k⃗ 8⃗i 10⃗j

u⃗×v⃗ =
(
−5⃗i+12⃗j+4k⃗

)
−
(
−3k⃗+8⃗i+10⃗j

)
= −13⃗i+2⃗j+7k⃗ = ⟨−13, 2, 7⟩ .

youtu.be/watch?v=geWK0Qpl6_Y

Figure 11.4.4 Video presentation of
the determinant formula for the cross
productWe practice using this method.

Example 11.4.5 Computing a cross product.

Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗ × u⃗.
Solution. To compute u⃗ × v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗

1 3 6 1 3

−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the
result:

u⃗× v⃗ =
(
3⃗i− 6⃗j + 2k⃗

)
−
(
− 3k⃗ + 12⃗i+ j⃗

)
= ⟨−9,−7, 5⟩ .

To compute v⃗ × u⃗, we switch the second and third rows of the above
matrix, then multiply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗

−1 2 1 −1 2

1 3 6 1 3

Note how with the rows being switched, the products that once ap-
peared on the right now appear on the left, and vice-versa. Thus the
result is:

v⃗ × u⃗ =
(
12⃗i+ j⃗ − 3k⃗

)
−
(
2k⃗ + 3⃗i− 6⃗j

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that
each of these vectors is orthogonal to u⃗ and v⃗.

Video solution

youtu.be/watch?v=6-PGDOhhYbg

https://www.youtube.com/watch?v=geWK0Qpl6_Y
https://www.youtube.com/watch?v=6-PGDOhhYbg
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11.4.1 Properties of the Cross Product
It is not coincidence that v⃗ × u⃗ = −(u⃗ × v⃗) in the preceding example; one
can show using Definition 11.4.2 that this will always be the case. The following
theorem states several useful properties of the cross product, each of which can
be verified by referring to the definition.

Theorem 11.4.6 Properties of the Cross Product.

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following iden-
tities hold:

1. u⃗× v⃗ = −(v⃗ × u⃗) Anticommutative Property

2. (a) (u⃗+ v⃗)× w⃗ = u⃗× w⃗ + v⃗ × w⃗ Distributive Properties

(b) u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗

3. c(u⃗× v⃗) = (cu⃗)× v⃗ = u⃗× (cv⃗)

4. (a) (u⃗× v⃗) · u⃗ = 0 Orthogonality Properties

(b) (u⃗× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗ Triple Scalar Product
youtu.be/watch?v=QOCSD4qA_Wg

Figure 11.4.7 Video presentation of
Theorem 11.4.6

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construction given in
Definition 11.4.2 satisfies this property. Theorem 11.4.6 asserts this property
holds; we leave it as a problem in the Exercise section to verify this.

Property 5 from the theorem is also left to the reader to prove in the Exercise
section, but it reveals something more interesting than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = cu⃗. Consider their cross product:

u⃗× v⃗ = u⃗× (cu⃗)

= c(u⃗× u⃗) (by Property 3 of Theorem 11.4.6)

= 0⃗ (by Property 5 of Theorem 11.4.6).

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 11.3.7 related the angle between two vectors
and their dot product; there is a similar relationship relating the cross product
of two vectors and the angle between them, given by the following theorem.

Theorem 11.4.8 The Cross Product and Angles.

Let u⃗ and v⃗ be nonzero vectors in R3. Then

∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin(θ),

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Parallel vectors and the cross prod-
uct. Wecould rewriteDefinition11.3.14
and Theorem 11.4.8 to include
0⃗, then define that u⃗ and v⃗ are
parallel if u⃗ × v⃗ = 0⃗. Since 0⃗ ·
v⃗ = 0 and 0⃗× v⃗ = 0⃗, this would
mean that 0⃗ is both parallel and
orthogonal to all vectors. Appar-
ent paradoxes such as this are not
uncommon in mathematics and
can be very useful. (See also the
aside in Section 11.2.)

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of

https://www.youtube.com/watch?v=QOCSD4qA_Wg
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0 is 0⃗ (see Property 9 of Theorem 11.2.17), hence the cross product of parallel
vectors is 0⃗.

youtu.be/watch?v=_DjAuiDG2kA

Figure 11.4.9 Video presentation of
Theorem 11.4.8 and Example 11.4.10

We demonstrate the truth of this theorem in the following example.

Example 11.4.10 The cross product and angles.

Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 11.4.5. Verify Theo-
rem 11.4.8 by finding θ, the angle between u⃗ and v⃗, and the magnitude
of u⃗× v⃗.
Solution. We use Theorem 11.3.7 to find the angle between u⃗ and v⃗.

θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
= cos−1

(
11√
46
√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 11.4.5 showed that u⃗ × v⃗ = ⟨−9,−7, 5⟩, hence
∥u⃗× v⃗∥ =

√
155. Is ∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin(θ)? Using numerical ap-

proximations, we find:

∥u⃗× v⃗∥ =
√
155 ∥u⃗∥ ∥v⃗∥ sin(θ) =

√
46
√
6 sin(0.8471)

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46
√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly.

Right Hand Rule. The anticommutative property of the cross product demon-
strates that u⃗× v⃗ and v⃗× u⃗ differ only by a sign — these vectors have the same
magnitude but point in the opposite direction. When seeking a vector perpen-
dicular to u⃗ and v⃗, we essentially have two directions to choose from, one in the
direction of u⃗ × v⃗ and one in the direction of v⃗ × u⃗. Does it matter which we
choose? How can we tell which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same initial point, point
the index finger of your right hand in the direction of u⃗ and let your middle fin-
ger point in the direction of v⃗ (much as we did when establishing the right hand
rule for the 3-dimensional coordinate system). Your thumb will naturally extend
in the direction of u⃗ × v⃗. One can “practice” this using Figure 11.4.11. If you
switch, and point the index finder in the direction of v⃗ and the middle finger in
the direction of u⃗, your thumb will now point in the opposite direction, allowing
you to “visualize” the anticommutative property of the cross product.

Figure 11.4.11 Illustrating the Right
Hand Rule of the cross product

11.4.2 Applications of the Cross Product
There are a number of ways in which the cross product is useful in mathematics,
physics and other areas of science beyond “just” finding a vector perpendicular
to two others. We highlight a few here.

https://www.youtube.com/watch?v=_DjAuiDG2kA
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Area of a Parallelogram. It is a standard geometry fact that the area of a par-
allelogram is A = bh, where b is the length of the base and h is the height of
the parallelogram, as illustrated in Figure 11.4.12(a). As shown when defining
the Parallelogram Law of vector addition, two vectors u⃗ and v⃗ define a parallelo-
gram when drawn from the same initial point, as illustrated in Figure 11.4.12(b).
Trigonometry tells us that h = ∥u⃗∥ sin(θ), hence the area of the parallelogram
is

A = ∥u⃗∥ ∥v⃗∥ sin(θ) = ∥u⃗× v⃗∥ , (11.4.1)

where the second equality comes from Theorem 11.4.8.

b

h

(a)

v⃗
θ

u⃗

h

(b)

Figure 11.4.12 Using the cross product to find the area of a parallelogram
We illustrate using Equation (11.4.1) in the following example.

Example 11.4.13 Finding the area of a parallelogram.

1. Find the area of the parallelogram defined by the vectors u⃗ =
⟨2, 1⟩ and v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3)
and D = (3, 3, 2) are the vertices of a parallelogram. Find the
area of the parallelogram.

Solution.

1. Figure 11.4.14(a) sketches the parallelogram defined by the vec-
tors u⃗ and v⃗. We have a slight problem in that our vectors ex-
ist in R2, not R3, and the cross product is only defined on vec-
tors in R3. We skirt this issue by viewing u⃗ and v⃗ as vectors in
the x − y plane of R3, and rewrite them as u⃗ = ⟨2, 1, 0⟩ and
v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is easy
to show that u⃗ × v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallel-
ogram is A = ∥u⃗× v⃗∥ = 5.
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u⃗

v⃗

1 2 3 4

1

2

3

4

5

x

y

(a) (b)

Figure 11.4.14 Sketching the parallelograms in Example 11.4.13

2. To show that the quadrilateral ABCD is a parallelogram (shown
in Figure 11.4.14(b)), we need to show that the opposite sides are
parallel. We can quickly show that

−−→
AB =

−−→
DC = ⟨1, 2, 1⟩ and

−−→
BC =

−−→
AD = ⟨2, 2, 1⟩. We find the area by computing the mag-

nitude of the cross product of
−−→
AB and

−−→
BC:

−−→
AB ×

−−→
BC = ⟨0, 1,−2⟩ ⇒

∥∥∥−−→AB ×
−−→
BC

∥∥∥ =
√
5 ≈ 2.236.

Video solution

youtu.be/watch?v=CYboFA8zYBs

This application is perhaps more useful in finding the area of a triangle (in
short, triangles are used more often than parallelograms). We illustrate this in
the following example.

Example 11.4.15 Area of a triangle.

Find the area of the triangle with vertices A = (1, 2), B = (2, 3) and
C = (3, 1), as pictured in Figure 11.4.16.

A

B

C

1 2 3

1

2

3

x

y

Figure 11.4.16 Finding the area of a
triangle in Example 11.4.15

Solution. We found the area of this triangle in Example 7.1.11 to be
1.5 using integration. There we discussed the fact that finding the area
of a triangle can be inconvenient using the “ 12bh” formula as one has to
compute the height, which generally involves finding angles, etc. Using
a cross product is much more direct.
We can choose any two sides of the triangle to use to form vectors; we
choose

−−→
AB = ⟨1, 1⟩ and

−→
AC = ⟨2,−1⟩. As in the previous example,

we will rewrite these vectors with a third component of 0 so that we can
apply the cross product. The area of the triangle is

1

2

∥∥∥−−→AB ×
−→
AC
∥∥∥ =

1

2
∥⟨1, 1, 0⟩ × ⟨2,−1, 0⟩∥ =

1

2
∥⟨0, 0,−3⟩∥ =

3

2
.

We arrive at the same answer as before with less work.

Video solution

youtu.be/watch?v=GuEn2qOey2U

Volume of a Parallelepiped. The three dimensional analogue to the parallel-
ogram is the parallelepiped. Each face is parallel to the opposite face, as illus-
trated in Figure 11.4.17. By crossing v⃗ and w⃗, one gets a vectorwhosemagnitude
is the area of the base. Dotting this vector with u⃗ computes the volume of the
parallelepiped! (Up to a sign; take the absolute value.)

Theword “parallelepiped” is pro-
nounced “parallel-eh-pipe-ed.”

Figure 11.4.17 A parallelepiped is the
three dimensional analogue to the
parallelogram

https://www.youtube.com/watch?v=CYboFA8zYBs
https://www.youtube.com/watch?v=GuEn2qOey2U
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Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |u⃗ · (v⃗ × w⃗)| . (11.4.2)

Note how this is the Triple Scalar Product, first seen in Theorem 11.4.6. Ap-
plying the identities given in the theorem shows that we can apply the Triple
Scalar Product in any “order” we choose to find the volume. That is,

V = |u⃗ · (v⃗ × w⃗)| = |u⃗ · (w⃗ × v⃗)| = |(u⃗× v⃗) · w⃗| , etc.

Example 11.4.18 Finding the volume of parallelepiped.

Find the volume of the parallelepiped defined by the vectors u⃗ =
⟨1, 1, 0⟩, v⃗ = ⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.
Solution. We apply Equation (11.4.2). We first find v⃗ × w⃗ = ⟨1, 1,−1⟩.
Then

|u⃗ · (v⃗ × w⃗)| = |⟨1, 1, 0⟩ · ⟨1, 1,−1⟩| = 2.

So the volume of the parallelepiped is 2 cubic units.

Figure 11.4.19 A parallelepiped in Ex-
ample 11.4.18

Video solution

youtu.be/watch?v=r2_dGc1KWEc

While this application of the Triple Scalar Product is interesting, it is not used
all that often: parallelepipeds are not a common shape in physics and engineer-
ing. The last application of the cross product is very applicable in engineering.

Torque. Torque is a measure of the turning force applied to an object. A classic
scenario involving torque is the application of awrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in
a direction orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek
letter τ , or tau, and has units of N·m, a Newton–meter, or ft·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulting torque is

τ⃗ = ℓ⃗× F⃗ . (11.4.3)

Example 11.4.20 Computing torque.

A lever of length 2ft makes an angle with the horizontal of 45◦. Find the
resulting torque when a force of 10lb is applied to the end of the level
where:

ℓ⃗

90◦

F⃗

ℓ⃗

60◦

F⃗

Figure 11.4.21 Showing a force being
applied to a lever in Example 11.4.20

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Fig-
ure 11.4.21.

Solution.

1. We start by determining vectors for the force and lever arm. Since
the lever armmakes a 45◦ angle with the horizontal and is 2ft long,
we can state that ℓ⃗ = 2 ⟨cos(45◦), sin(45◦)⟩ =

〈√
2,
√
2
〉
. Since

the force vector is perpendicular to the lever arm (as seen in the
left hand side of Figure 11.4.21), we can conclude it is making an
angle of −45◦ with the horizontal. As it has a magnitude of 10lb,
we can state F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

〈
5
√
2,−5

√
2
〉
.

https://www.youtube.com/watch?v=r2_dGc1KWEc
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Using Equation (11.4.3) to find the torque requires a cross product.
We again let the third component of each vector be 0 and compute
the cross product:

τ⃗ = ℓ⃗× F⃗

=
〈√

2,
√
2, 0
〉
×
〈
5
√
2,−5

√
2, 0
〉

= ⟨0, 0,−20⟩

This clearly has a magnitude of 20 ft-lb. We can view the force
and lever arm vectors as lying “on the page”; our computation of τ⃗
shows that the torque goes “into the page.” This follows the Right
Hand Rule of the cross product, and it also matches well with the
example of the wrench turning the bolt. Turning a bolt clockwise
moves it in.

2. Our lever arm can still be represented by ℓ⃗ =
〈√

2,
√
2
〉
. As our

force vector makes a 60◦ angle with ℓ⃗, we can see (referencing the
right hand side of the figure) that F⃗ makes a−15◦ angle with the
horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =

〈
5(1 +

√
3)√

2
,
5(−1 +

√
3)√

2

〉
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product
to find the torque:

τ⃗ = ℓ⃗× F⃗

=
〈√

2,
√
2, 0
〉
×

〈
5(1 +

√
3)√

2
,
5(−1 +

√
3)√

2
, 0

〉
=
〈
0, 0,−10

√
3
〉

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are or-
thogonal, themagnitude of force is greater than when the vectors
are not orthogonal.

While the cross product has a variety of applications (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equations of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
matics. We study lines and planes in the next two sections.



658 CHAPTER 11. VECTORS

11.4.3 Exercises

Terms and Concepts

1. The cross product of two vectors is a , not a scalar.

2. One can visualize the direction of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”
4. True or False? A fundamental principle of the cross product is that u⃗ × v⃗ is orthogonal to u⃗ and v⃗. (□ True

□ False)

5. is a measure of the turning force applied to an object.

6. T/F: If u⃗ and v⃗ are parallel, then u⃗× v⃗ = 0⃗.

Problems

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Compute u⃗ × v⃗ and check that this vector is
orthogonal to both u⃗ and v⃗.

7. Let u⃗ = ⟨3, 2,−2⟩ , v⃗ = ⟨0, 1, 5⟩ . 8. Let u⃗ = ⟨5,−4, 3⟩ , v⃗ = ⟨2,−5, 1⟩ .
9. Let u⃗ = ⟨4,−5,−5⟩ , v⃗ = ⟨3, 3, 4⟩ . 10. Let u⃗ = ⟨−4, 7,−10⟩ , v⃗ = ⟨4, 4, 1⟩ .
11. Let u⃗ = ⟨1, 0, 1⟩ , v⃗ = ⟨5, 0, 7⟩ . 12. Let u⃗ = ⟨1, 5,−4⟩ , v⃗ = ⟨−2,−10, 8⟩ .
13. u⃗ = ⟨a, b, 0⟩, v⃗ = ⟨c, d, 0⟩ 14. u⃗ = ı̂, v⃗ = ȷ̂.

Check this is orthogonal to both u⃗ and v⃗.

15. u⃗ = ı̂, v⃗ = k̂. 16. u⃗ = ȷ̂, v⃗ = k̂.
u⃗× v⃗ =

17. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗.

18. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗.

Exercise Group. In the following exercises, the magnitudes of vectors u⃗ and v⃗ in R3 are given, along with the angle
θ between them. Use this information to find the magnitude of u⃗× v⃗.

19. If ∥u⃗∥ = 2, ∥v⃗∥ = 5, and θ = 30◦ is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

20. If ∥u⃗∥ = 3, ∥v⃗∥ = 7, and θ = π/2 is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

21. If ∥u⃗∥ = 3, ∥v⃗∥ = 4, and θ = π is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

22. If ∥u⃗∥ = 2, ∥v⃗∥ = 5, and θ = 5π/6 is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

Exercise Group. In the following exercises, find the area of the parallelogram defined by the given vectors.
23. Find the area of the parallelogram defined by

u⃗ = ⟨1, 1, 2⟩ , and v⃗ = ⟨2, 0, 3⟩ .
24. Find the area of the parallelogram defined by

u⃗ = ⟨−2, 1, 5⟩ , and v⃗ = ⟨−1, 3, 1⟩ .
25. Find the area of the parallelogram defined by

u⃗ = ⟨1, 2⟩ , and v⃗ = ⟨2, 1⟩ .
26. Find the area of the parallelogram defined by

u⃗ = ⟨2, 0⟩ , and v⃗ = ⟨0, 3⟩ .

Exercise Group. In the following exercises, find the area of the triangle with the given vertices.
27. Find the area of the triangle with vertices

(0, 0, 0), (1, 3,−1) and (2, 1, 1).
28. Find the area of the triangle with vertices

(5, 2,−1), (3, 6, 2) and (1, 0, 4).
29. Find the area of the triangle with vertices (1, 1),

(1, 3) and (2, 2).
30. Find the area of the triangle with vertices (3, 1),

(1, 2) and (4, 3).

Exercise Group. In the following exercises, find the area of the quadrilateral with the given vertices. (Hint: break the
quadrilateral into two triangles.)
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31. Find the area of the quadrilateral with vertices
(0, 0), (1, 2), (3, 0), and (4, 3).

32. Find the area of the quadrilateral with vertices
(0, 0, 0), (2, 1, 1), (−1, 2,−8), and (1,−1, 5).

Exercise Group. In the following exercises, find the volume of the parallelepiped defined by the given vectors.
33. Find the volume of the parallelepiped defined

by u⃗ = ⟨1, 1, 1⟩ , v⃗ = ⟨1, 2, 3⟩ , and
w⃗ = ⟨1, 0, 1⟩ .

34. Find the volume of the parallelepiped defined
by u⃗ = ⟨−1, 2, 1⟩ , v⃗ = ⟨2, 2, 1⟩ , and
w⃗ = ⟨3, 1, 3⟩ .

Exercise Group. In the following exercises, find a unit vector orthogonal to both u⃗ and v⃗.
35. Find a unit vector orthogonal to both

u⃗ = ⟨1, 1, 1⟩ , and v⃗ = ⟨2, 0, 1⟩ .
36. Find a unit vector orthogonal to both

u⃗ = ⟨1,−2, 1⟩ , and v⃗ = ⟨3, 2, 1⟩ .
37. Find a unit vector orthogonal to both

u⃗ = ⟨5, 0, 2⟩ , and v⃗ = ⟨−3, 0, 7⟩ .
38. Find a unit vector orthogonal to both

u⃗ = ⟨1,−2, 1⟩ , and v⃗ = ⟨−2, 4,−2⟩ .

39. A bicycle rider applies 150lb of force, straight down, onto a pedal that extends 7in horizontally from the crank-
shaft. Find the magnitude of the torque applied to the crankshaft.

40. A bicycle rider applies 150lb of force, straight down, onto a pedal that extends 7in from the crankshaft, making
a 30◦ angle with the horizontal. Find the magnitude of the torque applied to the crankshaft.

41. To turn a stubborn bolt, 80lb of force is applied to a 10in wrench. What is the maximum amount of torque that
can be applied to the bolt?

42. To turn a stubborn bolt, 80lb of force is applied to a 10in wrench in a confined space, where the direction of
applied force makes a 10◦ angle with the wrench. How much torque is subsequently applied to the wrench?

43. Show, using the definition of the Cross Product, that u⃗ · (u⃗ × v⃗) = 0; that is, that u⃗ is orthogonal to the cross
product of u⃗ and v⃗.

44. Show, using the definition of the Cross Product, that u⃗× u⃗ = 0⃗.
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11.5 Lines

To find the equation of a line in the xy-plane, we need two pieces of information:
a point and the slope. The slope conveys direction information. As vertical lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direction of the line.
This holds true for lines in space.youtu.be/watch?v=rA3i_j9MGEM

Figure 11.5.1 Video introduction to
Section 11.5 11.5.1 Lines in space

Let P be a point in space, let p⃗ be the vector with initial point at the origin and
terminal point at P (i.e., p⃗ “points” to P ), and let d⃗ be a vector. Consider the
points on the line through P in the direction of d⃗.

Clearly one point on the line is P ; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direction parallel to d⃗. For instance, starting at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 11.5.2 where certain
points along the line are indicated.

Figure 11.5.2 Defining a line in space

The figure illustrates how every point on the line can be obtained by starting
with p⃗ and moving a certain distance in the direction of d⃗. That is, we can define
the line as a function of t:

ℓ⃗(t) = p⃗+ t d⃗. (11.5.1)

In many ways, this is not a new concept. Compare Equation (11.5.1) to the
familiar “y = mx+ b” equation of a line:

y = b + mx ℓ⃗(t) = p⃗ + td⃗

Starting Point Direction

How Far To Go In That Direction

Figure 11.5.3 Understanding the vec-
tor equation of a line

The equations exhibit the same structure: they give a starting point, define
a direction, and state how far in that direction to travel.

Equation (11.5.1) is an example of a vector-valued function; the input of the
function is a real number and the output is a vector. Wewill cover vector-valued
functions extensively in the next chapter.

There are otherways to represent a line. LetP = (x0, y0, z0), p⃗ = ⟨x0, y0, z0⟩,
and let d⃗ = ⟨a, b, c⟩. Then the equation of the line through P in the direction of
d⃗ is:

ℓ⃗(t) = p⃗+ td⃗

= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states that the x values of the line are given by x = x0+at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equations, taken together, are the parametric equations of the line
through p⃗ in the direction of d⃗.

Finally, each of the equations for x, y and z above contain the variable t. We
can solve for t in each equation:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y − y0

b
,

z = z0 + ct ⇒ t =
z − z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equations of the line through
p⃗ in the direction of d⃗:

x− x0

a
=

y − y0
b

=
z − z0

c
.

https://www.youtube.com/watch?v=rA3i_j9MGEM
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Each representation has its own advantages, depending on the context. We
summarize these three forms in the following definition, then give examples of
their use.

Definition 11.5.4 Equations of Lines in Space.

Let P = (x0, y0, z0) and let p⃗ = ⟨x0, y0, z0⟩. Consider the line in space
that passes through P in the direction of d⃗ = ⟨a, b, c⟩.

1. The vector equation of the line is

ℓ⃗(t) = p⃗+ td⃗.

2. The parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equations of the line are

x− x0

a
=

y − y0
b

=
z − z0

c
.

Example 11.5.5 Finding the equation of a line.

Give all three equations, as given in Definition 11.5.4, of the line through
P = (2, 3, 1) in the direction of d⃗ = ⟨−1, 1, 2⟩. Does the point Q =
(−1, 6, 6) lie on this line?
Solution. We identify the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definition, we have

• the vector equation of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equations of the line are

x = 2− t, y = 3 + t, z = 1 + 2t; and

• the symmetric equations of the line are

x− 2

−1
=

y − 3

1
=

z − 1

2
.

Figure 11.5.6 Graphing a line in Exam-
ple 11.5.5

The first two equations of the line are useful when a t value is given:
one can immediately find the corresponding point on the line. These
forms are good when calculating with a computer; most software pro-
grams easily handle equations in these formats. (For instance, the
graphics program that made Figure 11.5.6 can be given the input
“(2-t,3+t,1+2*t)” for−1 ≤ t ≤ 3.).
Does the pointQ = (−1, 6, 6) lie on the line? The graph in Figure 11.5.6
makes it clear that it does not. We can answer this question without the
graphusing any of the three equation forms. Of the three, the symmetric
equations are probably best suited for this task. Simply plug in the values
of x, y and z and see if equality is maintained:

−1− 2

−1

?
=

6− 3

1

?
=

6− 1

2
⇒ 3 = 3 ̸= 2.5.
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We see thatQ does not lie on the line as it did not satisfy the symmetric
equations.

Video solution

youtu.be/watch?v=i307pfanflE

Example 11.5.7 Finding the equation of a line through two points.

Find the parametric equations of the line through the points P =
(2,−1, 2) andQ = (1, 3,−1).
Solution. Recall the statementmade at the beginning of this section: to
find the equation of a line, we need a point and a direction. We have two
points; either one will suffice. The direction of the line can be found by
the vector with initial point P and terminal pointQ:

−−→
PQ = ⟨−1, 4,−3⟩.

The parametric equations of the line ℓ through P in the direction of
−−→
PQ

are:
ℓ : x = 2− ty = −1 + 4tz = 2− 3t.

Figure 11.5.8 A graph of the line in Ex-
ample 11.5.7

A graph of the points and line are given in Figure 11.5.8. Note how in the
given parametrization of the line, t = 0 corresponds to the point P , and
t = 1 corresponds to the point Q. This relates to the understanding of
the vector equation of a line described in Figure 11.5.3. The parametric
equations “start” at the point P , and t determines how far in the direc-
tion of

−−→
PQ to travel. When t = 0, we travel 0 lengths of

−−→
PQ; when

t = 1, we travel one length of
−−→
PQ, resulting in the pointQ.

Video solution

youtu.be/watch?v=3ROgMsmz0J0

11.5.2 Parallel, Intersecting and Skew Lines
In the plane, two distinct lines can either be parallel or they will intersect at
exactly one point. In space, given equations of two lines, it can sometimes be
difficult to tell whether the lines are distinct or not (i.e., the same line can be
represented in differentways). Given lines ℓ⃗1(t) = p⃗1+td⃗1 and ℓ⃗2(t) = p⃗2+td⃗2,
we have four possibilities: ℓ⃗1 and ℓ⃗2 are

the same line they share all points
intersecting lines they share only 1 point;

parallel lines d⃗1 ∥ d⃗2, no points in common;

skew lines d⃗1 ∦ d⃗2, no points in common.

The next two examples investigate these possibilities.

Example 11.5.9 Comparing lines.

Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :

x = 1 + 3t

y = 2− t

z = t

ℓ2 :

x = −2 + 4s

y = 3 + s

z = 5 + 2s

.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel,
or skew.
Solution. We start by looking at the directions of each line. Line ℓ1 has
the direction given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direction given
by d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence

https://www.youtube.com/watch?v=i307pfanflE
https://www.youtube.com/watch?v=3ROgMsmz0J0
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ℓ1 and ℓ2 are not the same line, nor are they parallel. Figure 11.5.10 veri-
fies this fact (where the points and directions indicated by the equations
of each line are identified).

Figure 11.5.10 Sketching the lines
from Example 11.5.9

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respec-
tive x, y and z values are the same. That is, we want s and t such that:

1 + 3t = −2 + 4s

2− t = 3 + s

t = 5 + 2s

.

This is a relatively simple system of linear equations. Since the last equa-
tion is already solved for t, substitute that value of t into the equation
above it:

2− (5 + 2s) = 3 + s ⇒ s = −2, t = 1.

A key to remember is that we have three equations; we need to check if
s = −2, t = 1 satisfies the first equation as well:

1 + 3(1) ̸= −2 + 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Video solution

youtu.be/watch?v=hEYfincwMX0Example 11.5.11 Comparing lines.

Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :

x = −0.7 + 1.6t

y = 4.2 + 2.72t

z = 2.3− 3.36t

ℓ2 :

x = 2.8− 2.9s

y = 10.15− 4.93s

z = −5.05 + 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel,
or skew.
Solution. It is obviously very difficult to simply look at these equations
and discern anything. This is done intentionally. In the “real world,”
most equations that are used do not have nice, integer coefficients.
Rather, there are lots of digits after the decimal and the equations can
look “messy.”
We again start by deciding whether or not each line has the same direc-
tion. The direction of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the
direction of ℓ2 is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not
clear through observation whether two vectors are parallel or not, the
standard way of determining this is by comparing their respective unit
vectors. Using a calculator, we find:

u⃗1 =
d⃗1∥∥∥d⃗1∥∥∥ = ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2∥∥∥d⃗2∥∥∥ = ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal
to 4 decimal places). In most situations, it would suffice to conclude that

https://www.youtube.com/watch?v=hEYfincwMX0
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the lines are at least parallel, if not the same. One way to be sure is to
rewrite d⃗1 and d⃗2 in terms of fractions, not decimals. We have

d⃗1 =

〈
16

10
,
272

100
,−336

100

〉
d⃗2 =

〈
−29

10
,−493

100
,
609

100

〉
.

One can then find the magnitudes of each vector in terms of fractions,
then compute the unit vectors likewise. After a lot of manual arithmetic
(or after briefly using a computer algebra system), one finds that

u⃗1 =

〈√
10

83
,

17√
830

,− 21√
830

〉
u⃗2 =

〈
−
√

10

83
,− 17√

830
,

21√
830

〉
.

We can now say without equivocation that these lines are parallel.
Are they the same line? The parametric equations for a line describe
one point that lies on the line, so we know that the point P1 =
(−0.7, 4.2, 2.3) lies on ℓ1. To determine if this point also lies on ℓ2, plug
in the x, y and z values of P1 into the symmetric equations for ℓ2:

(−0.7)− 2.8

−2.9

?
=

(4.2)− 10.15

−4.93

?
=

(2.3)− (−5.05)

6.09

1.2069 = 1.2069 = 1.2069.

Figure 11.5.12 Graphing the lines in
Example 11.5.11

The point P1 lies on both lines, so we conclude they are the same line,
just parametrized differently. Figure 11.5.12 graphs this line along with
the points and vectors described by the parametric equations. Note how
d⃗1 and d⃗2 are parallel, though point in opposite directions (as indicated
by their unit vectors above).

11.5.3 Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + td⃗ in space, it is often useful to know
the distance from the point to the line. (Here we use the standard definition
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Identifying p⃗ with the point P , Figure 11.5.13 will help establish a general
method of computing this distance h.

d⃗

Q

P

h−−→
PQ

θ

Figure 11.5.13 Establishing the dis-
tance from a point to a line

From trigonometry, we know h =
∥∥∥−−→PQ

∥∥∥ sin(θ). We have a similar identity
involving the cross product:

∥∥∥−−→PQ× d⃗
∥∥∥ =

∥∥∥−−→PQ
∥∥∥ ∥∥∥d⃗∥∥∥ sin(θ). Divide both sides

of this latter equation by
∥∥∥d⃗∥∥∥ to obtain h:

h =

∥∥∥−−→PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥ . (11.5.2)

youtu.be/watch?v=ZJ_e_0s2s2M

Figure 11.5.14 Determining distance
from a line to a point

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1+ td⃗1 and ℓ⃗2(t) = p⃗2+ td⃗2 be given, as shown in Figure 11.5.15.
To find the direction orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projection of

−−−→
P1P2 onto c⃗ is the

distance h we seek:

h =
∥∥∥proj⃗c −−−→P1P2

∥∥∥

https://www.youtube.com/watch?v=ZJ_e_0s2s2M
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=

∥∥∥∥∥
−−−→
P1P2 · c⃗
c⃗ · c⃗

c⃗

∥∥∥∥∥
=

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥2
∥c⃗∥

=

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥
.

Figure 11.5.15 Establishing the dis-
tance between lines

A problem in the Exercise section is to show that this distance is 0 when the
lines intersect. Note the use of the Triple Scalar Product:

−−−→
P1P2 · c⃗ =

−−−→
P1P2 ·(d⃗1×

d⃗2).

youtu.be/watch?v=h0x9SfUVGVc

Figure 11.5.16 Determining distance
between skew lines

The following Key Idea restates these two distance formulas.

Key Idea 11.5.17 Distances to Lines.

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h
from a pointQ to the line ℓ is:

h =

∥∥∥−−→PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥ .

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥
.

Example 11.5.18 Finding the distance from a point to a line.

Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) =
⟨1,−1, 1⟩+ t ⟨2, 3, 1⟩.
Solution. The equation of the line gives us the point P = (1,−1, 1)

that lies on the line, hence
−−→
PQ = ⟨0, 2, 2⟩. The equation also gives

d⃗ = ⟨2, 3, 1⟩. Following Key Idea 11.5.17, we have the distance as

h =

∥∥∥−−→PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥

=
∥⟨−4, 4,−4⟩∥√

14

=
4
√
3√

14
≈ 1.852.

The pointQ is approximately 1.852 units from the line ℓ⃗(t).

Video solution

youtu.be/watch?v=xDB7li9crEs

https://www.youtube.com/watch?v=h0x9SfUVGVc
https://www.youtube.com/watch?v=xDB7li9crEs
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Example 11.5.19 Finding the distance between lines.

Find the distance between the lines

ℓ1 :

x = 1 + 3t

y = 2− t

z = t

ℓ2 :

x = −2 + 4s

y = 3 + s

z = 5 + 2s.

Solution. These are the sames lines as given in Example 11.5.9, where
we showed them to be skew. The equations allow us to identify the
following points and vectors:

P1 = (1, 2, 0)P2 = (−2, 3, 5) ⇒
−−−→
P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 11.5.17 we have the distance h between the two lines is

h =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart.

Video solution

youtu.be/watch?v=h0x9SfUVGVc

One of the key points to understand from this section is this: to describe a
line, we need a point and a direction. Whenever a problem is posed concern-
ing a line, one needs to take whatever information is offered and glean point
and direction information. Many questions can be asked (and are asked in the
Exercise section) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next section. Many
complex three dimensional objects are studied by approximating their surfaces
with lines and planes.

https://www.youtube.com/watch?v=h0x9SfUVGVc
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11.5.4 Exercises

Terms and Concepts

1. To find an equation of a line, what two pieces of information are needed?

2. Two distinct lines in the plane can intersect or be .

3. Two distinct lines in space can intersect, be or be .

4. Use your own words to describe what it means for two lines in space to be skew.

Problems

Exercise Group. Write the vector, parametric and symmetric equations of the lines described.
5. Passes through P = (2,−4, 1), parallel to

d⃗ = ⟨9, 2, 5⟩.
6. ℓ is a line that passes through P = (6, 1, 7),

parallel to d⃗ = ⟨−3, 2, 5⟩ .
7. Passes through P = (2, 1, 5) and

Q = (7,−2, 4).
8. ℓ is a line that passes through P = (1,−2, 3)

andQ = (5, 5, 5).
9. Passes through P = (0, 1, 2) and orthogonal to

both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. ℓ is a line that passes through P = (5, 1, 9) and
is orthogonal to both d⃗1 = ⟨1, 0, 1⟩ and
d⃗2 = ⟨2, 0, 3⟩ .

11. ℓ is a line that passes through the intersection
of ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩ , and is
orthogonal to both lines.

12. ℓ is a line that passes through the intersection

of ℓ⃗1(t) =


x = t

y = −2 + 2t

z = 1 + t

and

ℓ⃗2(t) =


x = 2 + t

y = 2− t

z = 3 + 2t

, and is orthogonal to

both lines.
13. Passes through P = (1, 1), parallel to

d⃗ = ⟨2, 3⟩.
14. ℓ is a line that passes through P = (−2, 5),

parallel to d⃗ = ⟨0, 1⟩ .

Exercise Group. Determine if the described lines are the same line, parallel lines, intersecting or skew lines. If
intersecting, give the point of intersection.

15. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩ and
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩ .

16. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩ and
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩ .

17. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩ and
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩ .

19. ℓ⃗1(t) =


x = 1 + 2t

y = 3− 2t

z = t

and

ℓ⃗2(t) =


x = 3− t

y = 3 + 5t

z = 2 + 7t

.

20. ℓ⃗1(t) =


x = 1.1 + 0.6t

y = 3.77 + 0.9t

z = −2.3 + 1.5t

and

ℓ⃗2(t) =


x = 3.11 + 3.4t

y = 2 + 5.1t

z = 2.5 + 8.5t

.
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21. ℓ1 =


x = 0.2 + 0.6t

y = 1.33− 0.45t

z = −4.2 + 1.05t

and

ℓ2 =


x = 0.86 + 9.2t

y = 0.835− 6.9t

z = −3.045 + 16.1t

22. ℓ⃗1(t) =


x = 0.1 + 1.1t

y = 2.9− 1.5t

z = 3.2 + 1.6t

and

ℓ⃗2(t) =


x = 4− 2.1t

y = 1.8 + 7.2t

z = 3.1 + 1.1t

.

Exercise Group. Find the distance from the point to the line.

23. Q = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩ 24. Find the distance from the pointQ = (2, 5, 6)

to the line ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩ .

25. Q = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩ 26. Find the distance from the pointQ = (1, 1) to
the line ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩ .

Exercise Group. Find the distance between the two lines.

27. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. Find the distance between the line
ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩ and the line
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩ .

Exercise Group. The following exercises explore special cases of the distance formulas found in Key Idea 11.5.17.

29. LetQ be a point on the line ℓ⃗(t). Show why the
distance formula correctly gives the distance
from the point to the line as 0.

30. Let lines ℓ⃗1(t) and ℓ⃗2(t) be intersecting lines.
Show why the distance formula correctly gives
the distance between these lines as 0.

31. Let lines ℓ⃗1(t) and ℓ⃗2(t) be parallel.

(a) Show why the distance formula for
distance between lines cannot be used as
stated to find the distance between the
lines.

(b) Show why letting c⃗ = (
−−−→
P1P2 × d⃗2)× d⃗2

allows one to the use the formula.

(c) Show how one can use the formula for
the distance between a point and a line to
find the distance between parallel lines.
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11.6 Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and stick it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 11.6.1.

Figure 11.6.1 Illustrating defining a
plane with a sheet of cardboard and
a nail

This nail provides a “handle” for the cardboard. Moving the cardboard around
movesP to different locations in space. Tilting the nail (but keepingP fixed) tilts
the cardboard. Both moving and tilting the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the location of P in space, and 2)
the direction of the nail.

youtu.be/watch?v=aP-fcbArvtA

Figure 11.6.2 Video inroduction to
Section 11.6

The previous section showed that one can define a line given a point on the
line and the direction of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direction the plane “faces” (using the description above, the
direction of the nail). Once again, the direction information will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane” mean? Choose any two points
P andQ in the plane, and consider the vector

−−→
PQ. We say a vector n⃗ is orthog-

onal to the plane if n⃗ is perpendicular to
−−→
PQ for all choices of P andQ; that is,

if n⃗ ·
−−→
PQ = 0 for all P andQ.
This gives us way of writing an equation describing the plane. Let P =

(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A pointQ = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if,
−−→
PQ is orthogonal to n⃗. Knowing

−−→
PQ = ⟨x− x0, y − y0, z − z0⟩, consider:

−−→
PQ · n⃗ = 0

⟨x− x0, y − y0, z − z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0. (11.6.1)

Equation (11.6.1) defines an implicit functiondescribing the plane. More algebra
produces:

ax+ by + cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by + cz = d. (11.6.2)

As long as c ̸= 0, we can solve for z:

z =
1

c
(d− ax− by). (11.6.3)

Equation (11.6.3) is especially useful as many computer programs can graph
functions in this form. Equations (11.6.1) and (11.6.2) have specific names, given
next.

Definition 11.6.3 Equations of a Plane in Standard and General Forms.

The plane passing through the pointP = (x0, y0, z0)with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equation with standard form

a(x− x0) + b(y − y0) + c(z − z0) = 0;

the equation’s general form is

ax+ by + cz = d.

https://www.youtube.com/watch?v=aP-fcbArvtA
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A key to remember throughout this section is this: to find the equation of a
plane, we need a point and a normal vector. We will give several examples of
finding the equation of a plane, and in each one different types of information
are given. In each case, we need to use the given information to find a point on
the plane and a normal vector.

Example 11.6.4 Finding the equation of a plane.

Write the equation of the plane that passes through the points P =
(1, 1, 0),Q = (1, 2,−1) andR = (0, 1, 2) in standard form.
Solution. We need a vector n⃗ that is orthogonal to the plane. Since P ,
Q and R are in the plane, so are the vectors

−−→
PQ and

−→
PR;

−−→
PQ×

−→
PR is

orthogonal to
−−→
PQ and

−→
PR and hence the plane itself.

It is straightforward to compute n⃗ =
−−→
PQ ×

−→
PR = ⟨2, 1, 1⟩. We can

use any point we wish in the plane (any of P , Q or R will do) and we
arbitrarily choose P . Following Definition 11.6.3, the equation of the
plane in standard form is

2(x− 1) + (y − 1) + z = 0.

The plane is sketched in Figure 11.6.5.

Figure 11.6.5 Sketching the plane in
Example 11.6.4

Video solution

youtu.be/watch?v=oc77R0am1vk

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 11.6.6 Finding the equation of a plane.

Verify that lines ℓ1 and ℓ2, whose parametric equations are given below,
intersect, then give the equation of the plane that contains these two
lines in general form.

ℓ1 :

x = −5 + 2s

y = 1 + s

z = −4 + 2s

ℓ2 :

x = 2 + 3t

y = 1− 2t

z = 1 + t

Solution. The lines clearly are not parallel. If they do not intersect, they
are skew, meaning there is not a plane that contains them both. If they
do intersect, there is such a plane.
To find their point of intersection, we set the x, y and z equations equal
to each other and solve for s and t:

−5 + 2s = 2 + 3t

1 + s = 1− 2t

−4 + 2s = 1 + t

⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the directions of lines ℓ1 and
ℓ2, respectively. A normal vector to the plane containing these the two
lines will also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector
n⃗ by computing n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.
We can pick any point in the plane with which to write our equation;
each line gives us infinite choices of points. We choose P , the point of

https://www.youtube.com/watch?v=oc77R0am1vk
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intersection. We follow Definition 11.6.3 to write the plane’s equation
in general form:

5(x+ 1) + 4(y − 3)− 7z = 0

5x+ 5 + 4y − 12− 7z = 0

5x+ 4y − 7z = 7.

The plane’s equation in general form is 5x+ 4y − 7z = 7; it is sketched
in Figure 11.6.7.

Figure 11.6.7 Sketching the plane in
Example 11.6.6

Example 11.6.8 Finding the equation of a plane.

Give the equation, in standard form, of the plane that passes through the
point P = (−1, 0, 1) and is orthogonal to the line with vector equation
ℓ⃗(t) = ⟨−1, 0, 1⟩+ t ⟨1, 2, 2⟩.
Solution. As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direction of the line given by d⃗ = ⟨1, 2, 2⟩. We use
this as our normal vector. Thus the plane’s equation, in standard form,
is

(x+ 1) + 2y + 2(z − 1) = 0.

The line and plane are sketched in Figure 11.6.9.

Figure 11.6.9 The line and plane in Ex-
ample 11.6.8

Video solution

youtu.be/watch?v=2diP-H-QLoI

Example 11.6.10 Finding the intersection of two planes.

Give the parametric equations of the line that is the intersection of the
planes p1 and p2, where:

p1 : x− (y − 2) + (z − 1) = 0

p2 : −2(x− 2) + (y + 1) + (z − 3) = 0

Solution. To find an equation of a line, we need a point on the line and
the direction of the line.
We can find a point on the line by solving each equation of the planes
for z:

p1 : z = −x+ y − 1

p2 : z = 2x− y − 2

We can now set these two equations equal to each other (i.e., we are
finding values of x and y where the planes have the same z value):

−x+ y − 1 = 2x− y − 2

2y = 3x− 1

y =
1

2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that
y = 1. We can now use the equations of either plane to find z: when
x = 1 and y = 1, z = −1 on both planes. We have found a point P on
the line: P = (1, 1,−1).

https://www.youtube.com/watch?v=2diP-H-QLoI


672 CHAPTER 11. VECTORS

We now need the direction of the line. Since the line lies in each plane,
its direction is orthogonal to a normal vector for each plane. Consid-
ering the equations for p1 and p2, we can quickly determine their nor-
mal vectors. For p1, n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩. A
direction orthogonal to both of these directions is their cross product:
d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩.
The parametric equations of the line through P = (1, 1,−1) in the di-
rection of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1y = −3t+ 1z = −t− 1.

The planes and line are graphed in Figure 11.6.11.

Figure 11.6.11 Graphing the planes
and their line of intersection in Exam-
ple 11.6.10

Video solution

youtu.be/watch?v=x2HB6huEEmQ

Example 11.6.12 Finding the intersection of a plane and a line.

Find the point of intersection, if any, of the line ℓ(t) = ⟨3,−3,−1⟩ +
t ⟨−1, 2, 1⟩ and the plane with equation in general form 2x+ y+ z = 4.
Solution. The equation of the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equation of the line shows that
the linemoves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal,
we know there is a point of intersection. (If there were orthogonal, it
would mean that the plane and line were parallel to each other, either
never intersecting or the line was in the plane itself.)
To find the point of intersection, we need to find a t value such that ℓ(t)
satisfies the equation of the plane. Rewriting the equation of the line
with parametric equations will help:

ℓ(t) =


x = 3− t

y = −3 + 2t

z = −1 + t

.

Replacing x, y and z in the equation of the plane with the expressions
containing t found in the equation of the line allows us to determine a t
value that indicates the point of intersection:

2x+ y + z = 4

2(3− t) + (−3 + 2t) + (−1 + t) = 4

t = 2.

When t = 2, the point on the line satisfies the equation of the plane;
that point is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of
intersection between the plane and the line, illustrated in Figure 11.6.13.

Figure 11.6.13 Illustrating the inter-
section of a line and a plane in Exam-
ple 11.6.12

Video solution

youtu.be/watch?v=DjuaixH0ayo

11.6.1 Distances
Just as it was useful to find distances between points and lines in the previous
section, it is also often necessary to find the distance from a point to a plane.

Consider Figure 11.6.15, where a plane with normal vector n⃗ is sketched
containing a point P and a pointQ, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projection of

−−→
PQ

https://www.youtube.com/watch?v=x2HB6huEEmQ
https://www.youtube.com/watch?v=DjuaixH0ayo
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onto n⃗. That is, we want:

∣∣∣∣∣∣ proj n⃗ −−→PQ
∣∣∣∣∣∣ = ∣∣∣∣∣

∣∣∣∣∣ n⃗ ·
−−→
PQ

∥n⃗∥2
n⃗

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥
(11.6.4)

youtu.be/watch?v=DT4JMy5Ak54

Figure 11.6.14 Video introduction to
Subsection 11.6.1

Equation (11.6.4) is important as it does more than just give the distance
between a point and a plane. We will see how it allows us to find several other
distances as well: the distance between parallel planes and the distance from a
line and a plane. Because Equation (11.6.4) is important, we restate it as a Key
Idea.

Figure 11.6.15 Illustrating finding the
distance from a point to a plane

Key Idea 11.6.16 Distance from a Point to a Plane.

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h fromQ to the plane is

h =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥
,

where P is any point in the plane.

Example 11.6.17 Distance between a point and a plane.

Find the distance between the point Q = (2, 1, 4) and the plane with
equation 2x− 5y + 6z = 9.
Solution. Using the equation of the plane, we find the normal vec-
tor n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y
be anything we choose, then let z be whatever satisfies the equation.
Letting x and y be 0 seems simple; this makes z = 1.5. Thus we let
P = ⟨0, 0, 1.5⟩, and

−−→
PQ = ⟨2, 1, 2.5⟩.

The distance h fromQ to the plane is given by Key Idea 11.6.16:

h =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥

=
|⟨2,−5, 6⟩ · ⟨2, 1, 2.5⟩|

∥⟨2,−5, 6⟩∥

=
|14|√
65

≈ 1.74.

Video solution

youtu.be/watch?v=SqA4OLUmoFk

We can use Key Idea 11.6.16 to find other distances. Given two parallel
planes, we can find the distance between these planes by letting P be a point
on one plane and Q a point on the other. If ℓ is a line parallel to a plane, we
can use the Key Idea to find the distance between them as well: again, let P be
a point in the plane and let Q be any point on the line. (One can also use Key
Idea 11.5.17.) The Exercise section contains problems of these types.

These past two sections have not explored lines and planes in space as an ex-
ercise of mathematical curiosity. However, there are many, many applications
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraft may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air friction. Many

https://www.youtube.com/watch?v=DT4JMy5Ak54
https://www.youtube.com/watch?v=SqA4OLUmoFk
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equations that help determine air flow and heat dissipation are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximating a surface
withmillions of small planes one canmore readilymodel the needed behavior.
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11.6.2 Exercises

Terms and Concepts

1. In order to find the equation of a plane, what two pieces of information must one have?
2. What is the relationship between a plane and one of its normal vectors?

Problems

Exercise Group. In the following exercises, give any two points in the given plane.
3. 2x− 4y + 7z = 2 4. List any two points in the plane with equation

3(x+ 2) + 5(y − 9)− 4z = 0.
5. x = 2 6. List any two points in the plane with equation

4(y + 2)− (z − 6) = 0.

Exercise Group. In the following exercises, give the equation of the described plane in standard and general forms.
7. Passes through (2, 3, 4) and has normal vector

n⃗ = ⟨3,−1, 7⟩.
8. A plane passes through (1, 3, 5) and has normal

vector n⃗ = ⟨0, 2, 4⟩ .
9. Passes through the points (1, 2, 3), (3,−1, 4)

and (1, 0, 1).
10. A plane passes through the points (5, 3, 8),

(6, 4, 9) and (3, 3, 3).
11. Contains the intersecting lines

ℓ⃗1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. A plane contains the intersecting lines
ℓ⃗1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ⃗2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩ .

13. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. A plane contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ⃗2(t) = ⟨2, 2, 2⟩+ t ⟨4, 1, 3⟩ .

15. Contains the point (2,−6, 1) and the line

ℓ⃗(t) =


x = 2 + 5t

y = 2 + 2t

z = −1 + 2t

16. A plane contains the point (5, 7, 3) and the line

ℓ⃗(t) =


x = t

y = t

z = t

.

17. A plane contains the point (5, 7, 3) and is
orthogonal to the line
ℓ⃗(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩ .

18. A plane contains the point (4, 1, 1) and is

orthogonal to the line


x = 4 + 4t

y = 1 + t

z = 1 + t

.

19. A plane contains the point (−4, 7, 2) and is
parallel to the plane
3(x− 2) + 8(y + 1)− 10z = 0.

20. A plane contains the point (1, 2, 3) and is
parallel to the plane x = 5.

Exercise Group. In the following exercises, give the equation of the line that is the intersection of the given planes.
21. p1 : 3(x− 2) + (y − 1) + 4z = 0, and

p2 : 2(x− 1)− 2(y + 3) + 6(z − 1) = 0.
22. Give the equation of the line (in vector form)

that is the intersection of the planes
5(x− 5) + 2(y + 2) + 4(z − 1) = 0, and
3x− 4(y − 1) + 2(z − 1) = 0.

Exercise Group. Find the point of intersection between the line and the plane.
23.

line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩

plane: 5x− y − z = −3

24.

• line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩

• plane: 3x+ y − 2z = 8
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25.

line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩

plane: 3x− 2y − z = 4

26.

• line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩

• plane: 3x− 2y − z = −4

Exercise Group. Find the indicated distance.
27. The distance from the point (1, 2, 3) to the

plane
3(x− 1) + (y − 2) + 5(z − 2) = 0.

28. Find the distance from the point (2, 6, 2) to the
plane 2(x− 1)− y + 4(z + 1) = 0.

29. The distance between the parallel planes
x+ y + z = 0 and
(x− 2) + (y − 3) + (z + 4) = 0

30. Find the distance between the parallel planes
2(x− 1) + 2(y + 1) + (z − 2) = 0 and
2(x− 3) + 2(y − 1) + (z − 3) = 0.

31. Show why if the pointQ lies in a plane, then the distance formula correctly gives the distance from the point to
the plane as 0.

32. How is Exercise 11.5.30 in Section 11.5 easier to answer once we have an understanding of planes?



Chapter 12

Vector Valued Functions

In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathematics. In this chapter, we’ll build on this foun-
dation to define functions whose input is a real number and whose output is a
vector. We’ll see how to graph these functions and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beautiful applications to the study of moving objects.

12.1 Vector-Valued Functions

We are very familiar with real valued functions, that is, functions whose output
is a real number. This section introduces vector-valued functions — functions
whose output is a vector.

youtu.be/watch?v=MJBP_8ZxiwM

Figure 12.1.1 Video introduction to
Section 12.1

Definition 12.1.2 Vector-Valued Functions.

A vector-valued function is a function of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f , g and h are real valued functions.
The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

12.1.1 Evaluating and Graphing Vector-Valued Functions
Evaluating a vector-valued function at a specific value of t is straightforward;
simply evaluate each component function at that value of t. For instance, if
r⃗(t) =

〈
t2, t2 + t− 1

〉
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 12.1.3(a). Plotting lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector-valued function is the set of all terminal points of r⃗(t), where the
initial point of each vector is always the origin. In Figure 12.1.3(b) we sketch the
graph of r⃗; we can indicate individual points on the graph with their respective
vector, as shown.

677

https://www.youtube.com/watch?v=MJBP_8ZxiwM


678 CHAPTER 12. VECTOR VALUED FUNCTIONS
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Figure 12.1.3 Sketching the graph of a vector-valued function
Vector-valued functions are closely related to parametric equations of graphs.

While in both methods we plot points
(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to pro-

duce a graph, in the context of vector-valued functions each such point repre-
sents a vector. The implications of this will be more fully realized in the next
section as we apply calculus ideas to these functions.

Example 12.1.4 Graphing vector-valued functions.

Graph r⃗(t) =

〈
t3 − t,

1

t2 + 1

〉
, for −2 ≤ t ≤ 2. Sketch r⃗(−1) and

r⃗(2).
Solution. We start by making a table of t, x and y values as shown in
Figure 12.1.5(a). Plotting these points gives an indication of what the
graph looks like. In Figure 12.1.5(b), we indicate these points and sketch
the full graph. We also highlight r⃗(−1) and r⃗(2) on the graph.

t t3 − t
1

t2 + 1

−2 −6 1/5
−1 0 1/2
0 0 1

1 0 1/2
2 6 1/5

(a)

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

r⃗(
−
1)

r⃗(2)

x

y

(b)

Figure 12.1.5 Sketching the vector-valued function of Example 12.1.4

Video solution

youtu.be/watch?v=wXzQo0ce3Us

Example 12.1.6 Graphing vector-valued functions.

Graph r⃗(t) = ⟨cos(t), sin(t), t⟩ for 0 ≤ t ≤ 4π.
Solution. We can again plot points, but careful consideration of this
function is very revealing. Momentarily ignoring the third component,
we see the x and y components trace out a circle of radius 1 centered
at the origin. Noticing that the z component is t, we see that as the
graph winds around the z-axis, it is also increasing at a constant rate in
the positive z direction, forming a spiral. This is graphed in Figure 12.1.7.

https://www.youtube.com/watch?v=wXzQo0ce3Us
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In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498) is highlighted to help us
understand the graph.

Figure 12.1.7 The graph of r⃗(t) in Ex-
ample 12.1.6

Video solution

youtu.be/watch?v=N1qqqHWR6yw
12.1.2 Algebra of Vector-Valued Functions

Definition 12.1.8 Operations on Vector-Valued Functions.

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector-valued
functions in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. cr⃗1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definition holds for vector-valued functions in R3.

This definition states that we add, subtract and scale vector-valued functions
component-wise. Combining vector-valued functions in this way can be very
useful (as well as create interesting graphs).

youtu.be/watch?v=5jygsmDFjZw

Figure 12.1.9 Video presentation of
Definition 12.1.8

Example 12.1.10 Adding and scaling vector-valued functions.

Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos(t), sin(t) ⟩ and r⃗(t) = r⃗1(t) +
r⃗2(t). Graph r⃗1(t), r⃗2(t), r⃗(t) and 5r⃗(t) on−10 ≤ t ≤ 10.
Solution. We can graph r⃗1 and r⃗2 easily by plotting points (or just using
technology). Let’s think about each for a moment to better understand
how vector-valued functions work.
We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is,
the function r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector
produces a line in the direction of ⟨0.2, 0.3⟩.
We are familiar with r⃗2(t) = ⟨ cos(t), sin(t) ⟩; it traces out a circle, cen-
tered at the origin, of radius 1. Figure 12.1.11(a) graphs r⃗1(t) and r⃗2(t).
Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos(t) + 0.2t, sin(t) + 0.3t ⟩,
graphed in Figure 12.1.11(b). The linear movement of the line combines
with the circle to create loops that move in the direction of ⟨0.2, 0.3⟩.
(We encourage the reader to experiment by changing r⃗1(t) to ⟨2t, 3t⟩,
etc., and observe the effects on the loops.)
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Figure 12.1.11 Graphing the functions in Example 12.1.10
Multiplying r⃗(t) by 5 scales the function by 5, producing 5r⃗(t) =
⟨5 cos(t)+ t, 5 sin(t)+1.5t⟩, which is graphed in Figure 12.1.11(c) along
with r⃗(t). The new function is “5 times bigger” than r⃗(t). Note how the
graph of 5r⃗(t) in Figure 12.1.11(c) looks identical to the graph of r⃗(t) in
Figure 12.1.11(b). This is due to the fact that the x and y bounds of the

https://www.youtube.com/watch?v=N1qqqHWR6yw
https://www.youtube.com/watch?v=5jygsmDFjZw
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plot in Figure 12.1.11(c) are exactly 5 times larger than the bounds in
Figure 12.1.11(b).

Video solution

youtu.be/watch?v=6A3op7KYppw Example 12.1.12 Adding and scaling vector-valued functions.

A cycloid is a graph traced by a point p on a rolling circle, as shown in
Figure 12.1.13. Find an equation describing the cycloid, where the circle
has radius 1.

p

Figure 12.1.13 Tracing a cycloid
Solution. This problem is not very difficult if we approach it in a clever
way. We start by letting p⃗(t) describe the position of the point p on the
circle, where the circle is centered at the origin and only rotates clock-
wise (i.e., it does not roll). This is relatively simple given our previous
experiences with parametric equations; p⃗(t) = ⟨cos(t),− sin(t)⟩.
We now want the circle to roll. We represent this by letting c⃗(t) repre-
sent the location of the center of the circle. It should be clear that the y
component of c⃗(t) should be 1; the center of the circle is always going
to be 1 if it rolls on a horizontal surface.
The x component of c⃗(t) is a linear function of t: f(t) = mt for some
scalarm. When t = 0, f(t) = 0 (the circle starts centered on the y-axis).
When t = 2π, the circle has made one complete revolution, traveling a
distance equal to its circumference, which is also 2π. This gives us a point
on our line f(t) = mt, the point (2π, 2π). It should be clear thatm = 1
and f(t) = t. So c⃗(t) = ⟨t, 1⟩.
We now combine p⃗ and c⃗ together to form the equation of the cycloid:
r⃗(t) = p⃗(t) + c⃗(t) = ⟨cos(t) + t,− sin(t) + 1⟩, which is graphed in
Figure 12.1.14.

2 4 6 8 10 12 14 16

5

10

x

y

Figure 12.1.14 The cycloid in Exam-
ple 12.1.12

Video solution

youtu.be/watch?v=BH9FZMTdgQw

12.1.3 Displacement
A vector-valued function r⃗(t) is often used to describe the position of a moving
object at time t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locations r⃗(t0) and r⃗(t1) give no indication of the path taken
between them, but often we only care about the difference of the locations,
r⃗(t1)− r⃗(t0), the displacement.

Definition 12.1.15 Displacement.

Let r⃗(t) be a vector-valued function and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

youtu.be/watch?v=LfOpC91t7H8

Figure 12.1.16 Video presentation of
Definition 12.1.15

When the displacement vector is drawn with initial point at r⃗(t0), its ter-
minal point is r⃗(t1). We think of it as the vector which points from a starting
position to an ending position.

Example 12.1.17 Finding and graphing displacement vectors.

Let r⃗(t) =
〈
cos(π2 t), sin(

π
2 t)
〉
. Graph r⃗(t) on −1 ≤ t ≤ 1, and find the

displacement of r⃗(t) on this interval.
Solution. The function r⃗(t) traces out the unit circle, though at a differ-
ent rate than the “usual” ⟨cos(t), sin(t)⟩ parametrization. At t0 = −1,

https://www.youtube.com/watch?v=6A3op7KYppw
https://www.youtube.com/watch?v=BH9FZMTdgQw
https://www.youtube.com/watch?v=LfOpC91t7H8
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we have r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The dis-
placement of r⃗(t) on [−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩.

−1 −0.5 0.5 1

−1

1

d⃗

x

y

Figure 12.1.18 Graphing the displace-
ment of a position function in Exam-
ple 12.1.17

A graph of r⃗(t) on [−1, 1] is given in Figure 12.1.18, along with the dis-
placement vector d⃗ on this interval.

Video solution

youtu.be/watch?v=eGsIv3hYlak
Measuring displacement makes us contemplate related, yet very different,

concepts. Considering the semi-circular path the object in Example 12.1.17 took,
we can quickly verify that the object ended up a distance of 2 units from its initial
location. That is, we can compute

∥∥∥d⃗∥∥∥ = 2. However, measuring distance from
the starting point is different from measuring distance traveled. Being a semi-
circle, we can measure the distance traveled by this object as π ≈ 3.14 units.
Knowing distance from the starting point allows us to compute average rate of
change.

Definition 12.1.19 Average Rate of Change.

Let r⃗(t) be a vector-valued function, where each of its component func-
tions is continuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

Example 12.1.20 Average rate of change.

Let r⃗(t) =
〈
cos(π2 t), sin(

π
2 t)
〉
as in Example 12.1.17. Find the average

rate of change of r⃗(t) on [−1, 1] and on [−1, 5].
Solution. We computed in Example 12.1.17 that the displacement of
r⃗(t) on [−1, 1] was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t)
on [−1, 1] is:

r⃗(1)− r⃗(−1)

1− (−1)
=

⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi-circular path,
meaning it moved towards the right then moved back to the left, while
climbing slowly, then quickly, then slowly again. On average, however,
it progressed straight up at a constant rate of ⟨0, 1⟩ per unit of time.
We can quickly see that the displacement on [−1, 5] is the same as on
[−1, 1], so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)

5− (−1)
=

⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 times as long” to arrive at the same place, this average rate
of change on [−1, 5] is 1/3 the average rate of change on [−1, 1].

Video solution

youtu.be/watch?v=REA-v1g68bo

We considered average rates of change in Sections 1.1 and 2.1 as we studied
limits and derivatives. The same is true here; in the following section we apply
calculus concepts to vector-valued functions as we find limits, derivatives, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivative; displacement gives us one application of integration.

https://www.youtube.com/watch?v=eGsIv3hYlak
https://www.youtube.com/watch?v=REA-v1g68bo
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12.1.4 Exercises

Terms and Concepts

1. Vector-valued functions are closely related to of graphs.

2. When sketching vector-valued functions, technically one isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points from a starting position to an ending position.

4. In the context of vector-valued functions, average rate of change is divided by time.

Problems

Exercise Group. In the following exercises, sketch the vector-valued function on the given interval.
5. r⃗(t) =

〈
t2, t2 − 1

〉
, for−2 ≤ t ≤ 2. 6. r⃗(t) =

〈
t2, t3

〉
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
〈
1/t, 1/t2

〉
, for−2 ≤ t ≤ 2. 8. r⃗(t) =

〈
1
10 t

2, sin(t)
〉
, for−2π ≤ t ≤ 2π.

9. r⃗(t) =
〈

1
10 t

2, sin(t)
〉
, for−2π ≤ t ≤ 2π. 10. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

11. r⃗(t) = ⟨3 cos(t), 2 sin(2t)⟩, on [0, 2π]. 12. r⃗(t) = ⟨2 sec(t), tan(t)⟩, on [−π, π].

Exercise Group. In the following exercises, sketch the vector-valued function on the given interval inR3. Technology
may be useful in creating the sketch.

13. r⃗(t) = ⟨2 cos(t), t, 2 sin(t)⟩, on [0, 2π]. 14. r⃗(t) = ⟨3 cos(t), sin(t), t/π⟩ on [0, 2π].
15. r⃗(t) = ⟨cos(t), sin(t), sin(t)⟩ on [0, 2π]. 16. r⃗(t) = ⟨cos(t), sin(t), sin(2t)⟩ on [0, 2π].

Exercise Group. In the following exercises, find ∥r⃗(t)∥.
17. If r⃗(t) =

〈
t, t2

〉
, then

∥r⃗(t)∥ = .
18. r⃗(t) = ⟨5 cos(t), 3 sin(t)⟩.

19. If r⃗(t) = ⟨2 cos(t), 2 sin(t), t⟩ , then
∥r⃗(t)∥ = .

20. r⃗(t) =
〈
cos(t), t, t2

〉
.

Exercise Group. Create a vector-valued function whose graph matches the given description.
21. A circle of radius 2, centered at (1, 2), traced

counter-clockwise once at constant speed on
[0, 2π).

22. A circle of radius 3, centered at (5, 5), traced
clockwise once on [0, 2π].

23. An ellipse, centered at (0, 0) with vertical major
axis of length 10 and minor axis of length 3,
traced once counter-clockwise on [0, 2π].

24. An ellipse, centered at (3,−2) with horizontal
major axis of length 6 and minor axis of length
4, traced once clockwise on [0, 2π].

25. A line through (2, 3) with a slope of 5. 26. A line through (1, 5) with a slope of−1/2.
27. The line through points (1, 2, 3) and (4, 5, 6),

where
r⃗(0) = ⟨1, 2, 3⟩ and r⃗(1) = ⟨4, 5, 6⟩.

28. The line through points (1, 2) and (4, 4), where
r⃗(0) = ⟨1, 2⟩ and r⃗(1) = ⟨4, 4⟩.

29. A vertically oriented helix with radius of 2 that
starts at (2, 0, 0) and ends at (2, 0, 4π) after one
revolution on [0, 2π].

30. A vertically oriented helix with radius of 3 that
starts at (3, 0, 0) and ends at (3, 0, 3) after 2
revolutions on [0, 1].

Exercise Group. Find the average rate of change of r⃗(t) on the given interval.

31. r⃗(t) =
〈
t, t2

〉
on [−2, 2]. 32. r⃗(t) = ⟨t, t+ sin(t)⟩ on [0, 2π].

33. r⃗(t) = ⟨3 cos(t), 2 sin(t), t⟩ on [0, 2π]. 34. r⃗(t) =
〈
t, t2, t3

〉
on [−1, 3].
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12.2 Calculus and Vector-Valued Functions

The previous section introduced us to a new mathematical object, the vector-
valued function. We now apply calculus concepts to these functions. We start
with the limit, then work our way through derivatives to integrals.

12.2.1 Limits of Vector-Valued Functions
The initial definition of the limit of a vector-valued function is a bit intimidating,
as was the definition of the limit in Definition 1.2.2. The theorem following the
definition shows that in practice, taking limits of vector-valued functions is no
more difficult than taking limits of real-valued functions. We can define one-sided limits

in a manner very similar to Defi-
nition 12.2.1.Definition 12.2.1 Limits of Vector-Valued Functions.

Let I be an open interval containing c, and let r⃗(t) be a vector-valued
function defined on I , except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that for all t ̸= c,
if |t− c| < δ, we have

∥∥∥r⃗(t)− L⃗
∥∥∥ < ε.

Note how the measurement of distance between real numbers is the ab-
solute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem12.2.2 states thatwe can compute limits of vector-valued functions
component-wise.

Theorem 12.2.2 Limits of Vector-Valued Functions.

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector-valued function in R2 defined
on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
〈
lim
t→c

f(t) , lim
t→c

g(t)
〉
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector-valued function in R3

defined on an open interval I containing c, except possibly at c.
Then

lim
t→c

r⃗(t) =
〈
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
〉

youtu.be/watch?v=MS6iGW1AQ2c

Figure 12.2.3 Video presentation of
Definition 12.2.1 and Theorem 12.2.2

Example 12.2.4 Finding limits of vector-valued functions.

Let r⃗(t) =
〈
sin(t)
t

, t2 − 3t+ 3, cos(t)
〉
. Find lim

t→0
r⃗(t).

Solution. We apply the theorem and compute limits component-wise.

lim
t→0

r⃗(t) =

〈
lim
t→0

sin(t)
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos(t)
〉

= ⟨1, 3, 1⟩ .

Video solution

youtu.be/watch?v=FCFNyv2V8yk

https://www.youtube.com/watch?v=MS6iGW1AQ2c
https://www.youtube.com/watch?v=FCFNyv2V8yk
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12.2.2 Continuity

Definition 12.2.5 Continuity of Vector-Valued Functions.

Let r⃗(t) be a vector-valued function defined on an open interval I con-
taining c.

1. r⃗(t) is continuous at c if lim
t→c

r⃗(t) = r(c).

2. If r⃗(t) is continuous at all c in I , then r⃗(t) is continuous on I .

Using one-sided limits, we can
also define continuity on closed
intervals as done before.

We again have a theorem that lets us evaluate continuity component-wise.

Theorem 12.2.6 Continuity of Vector-Valued Functions.

Let r⃗(t) be a vector-valued functiondefined onanopen interval I contain-
ing c. Then r⃗(t) is continuous at c if, and only if, each of its component
functions is continuous at c.

youtu.be/watch?v=5sX-TKcgnA0

Figure 12.2.7 Video presentation of
Subsection 12.2.2

Example 12.2.8 Evaluating continuity of vector-valued functions.

Let r⃗(t) =
〈
sin(t)
t

, t2 − 3t+ 3, cos(t)
〉
. Determine whether r⃗ is con-

tinuous at t = 0 and t = 1.
Solution. While the second and third components of r⃗(t) are defined at
t = 0, the first component, (sin(t))/t, is not. Since the first component
is not even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is
not continuous at t = 0.
At t = 1 each of the component functions is continuous. Therefore r⃗(t)
is continuous at t = 1.

12.2.3 Derivatives
Consider a vector-valued function r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Fig-
ure 12.2.9(a). Recall that dividing the displacement vector by t1 − t0 gives the
average rate of change on [t0, t1], as shown in Figure 12.2.9(b).

r⃗(t0) r⃗(t1)

r⃗(t1)− r⃗(t0)

(a)

r⃗(t0) r⃗(t1)

r⃗(t1)− r⃗(t0)

t1 − t0
r⃗ ′(t0)

(b)

Figure 12.2.9 Illustrating displacement, leading to an understanding of the de-
rivative of vector-valued functions

The derivative of a vector-valued function is a measure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)

h

https://www.youtube.com/watch?v=5sX-TKcgnA0
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for any value of h ̸= 0. We take the limit ash → 0 tomeasure the instantaneous
rate of change; this is the derivative of r⃗.

Definition 12.2.10 Derivative of a Vector-Valued Function.

Let r⃗(t) be continuous on an open interval I containing c.

1. The derivative of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)

h
.

2. The derivative of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)

h
.

Alternate notations for the de-
rivative of r⃗ include:

r⃗ ′(t) =
d

dt

(
r⃗(t)

)
=

dr⃗

dt
.

If a vector-valued function has a derivative for all c in an open interval I , we
say that r⃗(t) is differentiable on I .

Once again we might view this definition as intimidating, but recall that we
can evaluate limits component-wise. The following theorem verifies that this
means we can compute derivatives component-wise as well, making the task
not too difficult. Again, using one-sided limits, we

candefinedifferentiability on closed
intervals. We’ll make use of this
a few times in this chapter.

Theorem 12.2.11 Derivatives of Vector-Valued Functions.

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t), h′(t) ⟩ .

youtu.be/watch?v=-o7FIEjwkQs

Figure 12.2.12 Video presentation
of Definition 12.2.10 and Theo-
rem 12.2.11

Example 12.2.13 Derivatives of vector-valued functions.

Let r⃗(t) =
〈
t2, t

〉
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its initial point at the
origin and at r⃗(1).

Solution.

1. Theorem 12.2.11 allows us to compute derivatives component-
wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 12.2.14(a). Note how
plotting the two of these together, in this way, is not very illuminat-
ing. When dealing with real-valued functions, plotting f(x) with
f ′(x) gave us useful information as we were able to compare f
and f ′ at the same x-values. When dealing with vector-valued
functions, it is hard to tell which points on the graph of r⃗ ′ corre-
spond to which points on the graph of r⃗.

https://www.youtube.com/watch?v=-o7FIEjwkQs
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2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Fig-
ure 12.2.14 with its initial point at the origin, as well as at r⃗(1) =
⟨1, 1⟩. These are sketched in Figure 12.2.14(b).

−4 −2 2 4

−2

−1

1

2
r⃗(t)

r⃗ ′(t)

x

y

(a)

−4 −2 2 4

−2

−1

1

2

r⃗ ′(1)

r⃗ ′(1)

x

y

(b)

Figure 12.2.14Graphing the derivative of a vector-valued function
in Example 12.2.13

Video solution

youtu.be/watch?v=vcTn9uy2Fi8

Example 12.2.15 Derivatives of vector-valued functions.

Let r⃗(t) = ⟨cos(t), sin(t), t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch
r⃗ ′(π/2) with its initial point at the origin and at r⃗(π/2).
Solution. We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin(t), cos(t), 1⟩. At t = π/2,
we have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 12.2.16 shows a graph of r⃗(t),
with r⃗ ′(π/2) plotted with its initial point at the origin and at r⃗(π/2).Figure 12.2.16 Viewing a vector-

valued function and its derivative at
one point In Examples 12.2.13 and 12.2.15, sketching a particular derivative with its

initial point at the origin did not seem to reveal anything significant. However,
when we sketched the vector with its initial point on the corresponding point on
the graph, we did see something significant: the vector appeared to be tangent
to the graph. We have not yet defined what “tangent” means in terms of curves
in space; in fact, we use the derivative to define this term.

Definition 12.2.17 Tangent Vector, Tangent Line.

Let r⃗(t) be a differentiable vector-valued function on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direction parallel to r⃗ ′(c). An equation of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

youtu.be/watch?v=WwKvTWkgetI

Figure 12.2.18 Video presentation of
Definition 12.2.17

Example 12.2.19 Finding tangent lines to curves in space.

Let r⃗(t) =
〈
t, t2, t3

〉
on [−1.5, 1.5]. Find the vector equation of the line

tangent to the graph of r⃗ at t = −1.

Video solution

youtu.be/watch?v=mG-r7_uCzSk

Solution. To find the equation of a line, we need a point on the line and
the line’s direction. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be

https://www.youtube.com/watch?v=vcTn9uy2Fi8
https://www.youtube.com/watch?v=WwKvTWkgetI
https://www.youtube.com/watch?v=mG-r7_uCzSk
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clear, ⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed
to” by this vector.)
The direction comes from r⃗ ′(−1). We compute, component-wise,
r⃗ ′(t) =

〈
1, 2t, 3t2

〉
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

Figure 12.2.20 Graphing a curve in
space with its tangent line

The vector equation of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This
line and r⃗(t) are sketched in Figure 12.2.20.

Example 12.2.21 Finding tangent lines to curves.

Find the equations of the lines tangent to r⃗(t) =
〈
t3, t2

〉
at t = −1 and

t = 0.
Solution. We find that r⃗ ′(t) =

〈
3t2, 2t

〉
. At t = −1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(−1) = ⟨3,−2⟩ ,

so the equation of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 12.2.22.

−3 −2 −1 1 2 3

−2

−1

1

2 r⃗(t)

ℓ⃗(t)

x

y

Figure 12.2.22 Graphing r⃗(t) and its
tangent line in Example 12.2.21

At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line
“has no direction.” We cannot apply Definition 12.2.17, hence cannot
find the equation of the tangent line.

Video solution

youtu.be/watch?v=czvJ5AtLpa4

We were unable to compute the equation of the tangent line to r⃗(t) =〈
t3, t2

〉
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 12.2.22 shows that

there is a cusp at this point. This leads us to another definition of smooth, pre-
viously defined by Definition 9.2.22 in Section 9.2.

Definition 12.2.23 Smooth Vector-Valued Functions.

Let r⃗(t) be a differentiable vector-valued function on an open interval I
where r⃗ ′(t) is continuous on I . r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I .

youtu.be/watch?v=sSPWKKcGno4

Figure 12.2.24 Video presentation of
Definition 12.2.23

Having established derivatives of vector-valued functions, we now explore
the relationships between the derivative and other vector operations. The fol-
lowing theorem states how the derivative interacts with vector addition and the
various vector products.

Theorem 12.2.25 Properties of Derivatives of Vector-Valued Functions.

Let r⃗ and s⃗ be differentiable vector-valued functions, let f be a differen-
tiable real-valued function, and let c be a real number.

1.
d

dt

(
r⃗(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d

dt

(
cr⃗(t)

)
= cr⃗ ′(t)

3.
d

dt

(
f(t)r⃗(t)

)
= f ′(t)r⃗(t) + f(t)r⃗ ′(t) Product Rule

4.
d

dt

(
r⃗(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

https://www.youtube.com/watch?v=czvJ5AtLpa4
https://www.youtube.com/watch?v=sSPWKKcGno4
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5.
d

dt

(
r⃗(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6.
d

dt

(
r⃗
(
f(t)

))
= r⃗ ′

(
f(t)

)
f ′(t) Chain Rule

youtu.be/watch?v=8ulgeUUc0rY

Figure 12.2.26 Video presentation of
Theorem 12.2.25

Example 12.2.27 Using derivative properties of vector-valued func-
tions.

Let r⃗(t) =
〈
t, t2 − 1

〉
and let u⃗(t) be the unit vector that points in the

direction of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each
with initial point the corresponding point on the graph of u⃗.

Solution.

1. To form the unit vector that points in the direction of r⃗, we need
to divide r⃗(t) by its magnitude.

∥r⃗(t)∥ =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2

〈
t, t2 − 1

〉
.

r⃗(t) and u⃗(t) are graphed in Figure 12.2.28. Note how the graph
of u⃗(t) forms part of a circle; this must be the case, as the length
of u⃗(t) is 1 for all t.

−2 −1 1 2

−1

1

2

3

r⃗(t)

u⃗(t)

x

y

Figure 12.2.28 Graphing r⃗(t) and u⃗(t)
in Example 12.2.27

2. To compute u⃗ ′(t), we use Theorem 12.2.25, writing

u⃗(t) = f(t)r⃗(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2.

(We could write

u⃗(t) =

〈
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

〉

and then take the derivative. It is amatter of preference; this latter
method requires two applications of the Quotient Rule where our
method uses the Product and Chain Rules.) We find f ′(t) using
the Chain Rule:

f ′(t) = −1

2

(
t2 + (t2 − 1)2

)−3/2(
2t+ 2(t2 − 1)(2t)

)
= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 12.2.25:

u⃗ ′(t) = f ′(t)u⃗(t) + f(t)u⃗ ′(t)

= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3 〈t, t2 − 1

〉
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

https://www.youtube.com/watch?v=8ulgeUUc0rY
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This is admittedly very “messy;” such is usually the case when
we deal with unit vectors. We can use this formula to compute
u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0):

u⃗ ′(−2) =

〈
− 15

13
√
13

,− 10

13
√
13

〉
≈ ⟨−0.320,−0.213⟩

u⃗ ′(−1) = ⟨0,−2⟩
u⃗ ′(0) = ⟨1, 0⟩

−1 1

−2

−1

1

u⃗(t)

x

y

Figure 12.2.29 Graphing some of the
derivatives of u⃗(t) in Example 12.2.27

Each of these is sketched in Figure 12.2.29. Note how the length
of the vector gives an indication of how quickly the circle is being
traced at that point. When t = −2, the circle is being drawn rel-
atively slow; when t = −1, the circle is being traced much more
quickly.

Video solution

youtu.be/watch?v=sD1mgVOWQFo

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P . This is
illustrated in Figure 12.2.29; each tangent vector is perpendicular to the line
that passes through its initial point and the center of the circle. Since the center
of the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to
u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector-valued function that has a constant length, that is,
that traces out part of a circle. It has important implications later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem 12.2.30 Vector-Valued Functions of Constant Length.

Let r⃗(t) be a vector-valued function of constant length that is differen-
tiable on an open interval I . That is, ∥r⃗(t)∥ = c for all t in I; equivalently,
r⃗(t) · r⃗(t) = c2 for all t in I . Then r⃗(t) · r⃗ ′(t) = 0 for all t in I .

12.2.4 Integration
Before formally defining integrals of vector-valued functions, consider the fol-
lowing equation that our calculus experience tells us should be true:∫ b

a

r⃗ ′(t) dt = r⃗(b)− r⃗(a).

That is, the integral of a rate of change function should give total change. In
the context of vector-valued functions, this total change is displacement. The
above equation is true; we now develop the theory to show why.

We can define antiderivatives and the indefinite integral of vector-valued
functions in the same manner we defined indefinite integrals in Definition 5.1.2.
However, we cannot define the definite integral of a vector-valued function as
we did in Definition 5.2.6. That definitionwas based on the signed area between
a function y = f(x) and thex-axis. An area-based definitionwill not be useful in
the context of vector-valued functions. Instead, wedefine the definite integral of
a vector-valued function in a manner similar to that of Theorem 5.3.26, utilizing
Riemann sums.

https://www.youtube.com/watch?v=sD1mgVOWQFo
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Definition 12.2.31 Antiderivatives, Indefinite and Definite Integrals of
Vector-Valued Functions.

Let r⃗(t) be a continuous vector-valued function on [a, b]. An antideriva-
tive of r⃗(t) is a function R⃗(t) such that R⃗′(t) = r⃗(t).
The set of all antiderivatives of r⃗(t) is the indefinite integral of r⃗(t), de-
noted by ∫

r⃗(t) dt.

The definite integral of r⃗(t) on [a, b] is∫ b

a

r⃗(t) dt = lim
∥∆t∥→0

n∑
i=1

r⃗(ci)∆ti,

where∆ti is the length of the ith subinterval of a partition of [a, b], ∥∆t∥
is the length of the largest subinterval in the partition, and ci is any value
in the ith subinterval of the partition.

It is probably difficult to infer meaning from the definition of the definite
integral. The important thing to realize from the definition is that it is built upon
limits, which we can evaluate component-wise.

The following theorem simplifies the computation of definite integrals; the
rest of this section and the following section will give meaning and application
to these integrals.

Theorem 12.2.32 Indefinite and Definite Integrals of Vector-Valued
Functions.

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector-valued function in R2 that is continu-
ous on [a, b].

1.
∫

r⃗(t) dt =

〈∫
f(t) dt,

∫
g(t) dt

〉

2.
∫ b

a

r⃗(t) dt =

〈∫ b

a

f(t) dt,

∫ b

a

g(t) dt

〉

A similar statement holds for vector-valued functions in R3.

youtu.be/watch?v=GQTMVNKQusc

Figure 12.2.33 Video presentation
of Definition 12.2.31 and Theo-
rem 12.2.32

Example 12.2.34 Evaluating a definite integral of a vector-valued func-
tion.

Let r⃗(t) =
〈
e2t, sin(t)

〉
. Evaluate

∫ 1

0

r⃗(t) dt.

Solution. We follow Theorem 12.2.32.∫ 1

0

r⃗(t) dt =

∫ 1

0

〈
e2t, sin(t)

〉
dt

=

〈∫ 1

0

e2t dt ,

∫ 1

0

sin(t) dt
〉

=

〈
1

2
e2t
∣∣∣1
0
,− cos(t)

∣∣∣1
0

〉

https://www.youtube.com/watch?v=GQTMVNKQusc
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=

〈
1

2
(e2 − 1) ,− cos(1) + 1

〉
≈ ⟨3.19, 0.460⟩ .

Video solution

youtu.be/watch?v=57pkOzkF7TEExample 12.2.35 Solving an initial value problem.

Let r⃗ ′′(t) = ⟨2, cos(t), 12t⟩. Find r⃗(t) where:

• r⃗(0) = ⟨−7,−1, 2⟩ and

• r⃗ ′(0) = ⟨5, 3, 0⟩.

Solution. Knowing r⃗ ′′(t) = ⟨2, cos(t), 12t⟩, we find r⃗ ′(t) by evaluating
the indefinite integral.∫

r⃗ ′′(t) dt =

〈∫
2 dt ,

∫
cos(t) dt ,

∫
12t dt

〉
=
〈
2t+ C1, sin(t) + C2, 6t

2 + C3

〉
=
〈
2t, sin(t), 6t2

〉
+ ⟨C1, C2, C3⟩

=
〈
2t, sin(t), 6t2

〉
+ C⃗.

Note how each indefinite integral creates its own constant which we col-
lect as one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to
solve for C⃗:

r⃗ ′(t) =
〈
2t, sin(t), 6t2

〉
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗.

So r⃗ ′(t) =
〈
2t, sin(t), 6t2

〉
+ ⟨5, 3, 0⟩ =

〈
2t+ 5, sin(t) + 3, 6t2

〉
. To

find r⃗(t), we integrate once more.∫
r⃗ ′(t) dt =

〈∫
2t+ 5 dt,

∫
sin(t) + 3 dt,

∫
6t2 dt

〉
=
〈
t2 + 5t,− cos(t) + 3t, 2t3

〉
+ C⃗.

With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
〈
t2 + 5t,− cos(t) + 3t, 2t3

〉
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So

r⃗(t) =
〈
t2 + 5t,− cos(t) + 3t, 2t3

〉
+ ⟨−7, 0, 2⟩

=
〈
t2 + 5t− 7,− cos(t) + 3t, 2t3 + 2

〉
.

Video solution

youtu.be/watch?v=0-1B6C9jj9k

https://www.youtube.com/watch?v=57pkOzkF7TE
https://www.youtube.com/watch?v=0-1B6C9jj9k
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What does the integration of a vector-valued function mean? There are
many applications, but none as direct as “the area under the curve” that we
used in understanding the integral of a real-valued function.

A key understanding for us comes from considering the integral of a deriva-
tive: ∫ b

a

r⃗ ′(t) dt = r⃗(t)
∣∣∣b
a
= r⃗(b)− r⃗(a).

Integrating a rate of change function gives displacement.
Noting that vector-valued functions are closely related to parametric equa-

tions, we can describe the arc length of the graph of a vector-valued function as
an integral. Given parametric equations x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g′(t)2 dt,

as stated in Theorem 9.3.17 in Section 9.3. If r⃗(t) = ⟨f(t), g(t)⟩, note that√
f ′(t)2 + g′(t)2 = ∥r⃗ ′(t)∥. Therefore we can express the arc length of the

graph of a vector-valued function as an integral of the magnitude of its deriva-
tive.

Theorem 12.2.36 Arc Length of a Vector-Valued Function.

Let r⃗(t) be a vector-valued function where r⃗ ′(t) is continuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =

∫ b

a

∥r⃗ ′(t)∥ dt.

Note that we are actually integrating a scalar-function here, not a vector-
valued function.

The next section takes what we have established thus far and applies it to
objects in motion. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the information provided by r⃗ ′(t) and r⃗ ′′(t).
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12.2.5 Exercises

Terms and Concepts

1. Limits, derivatives and integrals of vector-valued functions are all evaluated -wise.

2. The definite integral of a rate of change function gives .

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t) on the same axes?

4. Theorem 12.2.25 contains three product rules. What are the three different types of products used in these
rules?

Problems

Exercise Group. Evaluate the given limit.
5. lim

t→5

〈
2t+ 1, 3t2 − 1, sin(t)

〉
6. lim

t→3

〈
et, t2−9

t+3

〉
7. lim

t→0

〈
t

sin(t) , (1 + t)
1
t

〉
8. lim

h→0

r⃗(t+h)−r⃗(t)
h , where r⃗(t) =

〈
t2, t, 1

〉
.

Exercise Group. Identify the interval or union of intervals on which r⃗(t) is continuous.

9. r⃗(t) =
〈
t2, 1/t

〉
10. r⃗(t) = ⟨cos(t), et, ln(t)⟩

Exercise Group. Find the derivative of the given function.
11. r⃗(t) = ⟨cos(t), et, ln(t)⟩

12. r⃗(t) =

〈
1

t
,
2t− 1

3t+ 1
, tan(t)

〉
13. r⃗(t) = (t2) ⟨sin(t), 2t+ 5⟩ 14. r⃗(t) =

〈
t2 + 1, t− 1

〉
· ⟨sin(t), 2t+ 5⟩

15. r⃗(t) =
〈
t2 + 1, t− 1, 1

〉
× ⟨sin(t), 2t+ 5, 1⟩ 16. r⃗(t) = ⟨cosh t, sinh t⟩

Exercise Group. First, find r⃗ ′(t). Then sketch r⃗(t) and r⃗ ′(1), with the initial point of r⃗ ′(1) at r⃗(1).

17. r⃗(t) =
〈
t2 + t, t2 − t

〉
18. r⃗(t) =

〈
t2 − 2t+ 2, t3 − 3t2 + 2t

〉
19. r⃗(t) =

〈
t2 + 1, t3 − t

〉
20. r⃗(t) =

〈
t2 − 4t+ 5, t3 − 6t2 + 11t− 6

〉
Exercise Group. Give the equation of the line tangent to the graph of r⃗(t) at the given t value.

21. r⃗(t) =
〈
t2 + t, t2 − t

〉
, at t = 1 22. r⃗(t) = ⟨3 cos(t), sin(t)⟩ , at t = π/4

23. r⃗(t) = ⟨3 cos(t), 3 sin(t), t⟩ at t = π. 24. r⃗(t) = ⟨et, tan(t), t⟩ , at t = 0.

Exercise Group. Find the value(s) of t for which r⃗(t) is not smooth.
25. r⃗(t) = ⟨cos(t), sin(t)− t⟩ 26. r⃗(t) =

〈
t2 − 2t+ 1, t3 + t2 − 5t+ 3

〉
27. r⃗(t) =

⟨cos(t)− sin(t), sin(t)− cos(t), cos(4t)⟩
28. r⃗(t) =

〈
t3 − 3t+ 2,− cos(πt), sin2(πt)

〉

Exercise Group. The following exercises ask you to verify parts of Theorem 12.2.25. In each let f(t) = t3, r⃗(t) =〈
t2, t− 1, 1

〉
and s⃗(t) = ⟨sin(t), et, t⟩. Compute the various derivatives as indicated.

29. Simplify f(t)r⃗(t), then find its derivative; show
this is the same as f ′(t)r⃗(t) + f(t)r⃗ ′(t).

30. Simplify r⃗(t) · s⃗(t), then find its derivative; show
this is the same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

31. Simplify r⃗(t)× s⃗(t), then find its derivative;
show this is the same as
r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

32. Simplify r⃗
(
f(t)

)
, then find its derivative; show

this is the same as r⃗ ′
(
f(t)

)
f ′(t).
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Exercise Group. In the following exercises, evaluate the given definite or indefinite integral.

33.
∫ 〈

t3, cos(t), tet
〉
dt 34.

∫ 〈
1

1 + t2
, sec2(t)

〉
dt

35.
∫ π

0

⟨− sin(t), cos(t)⟩ dt = .36.
∫ 2

−2

⟨2t+ 1, 2t− 1⟩ dt

Exercise Group. Solve the given initial value problems.
37. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin(t)⟩ and

r⃗(0) = ⟨2, 2⟩ .
r⃗(t) =

38. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan(t)⟩
and

r⃗(0) = ⟨1, 2⟩.

39. Find r⃗(t), given that r⃗ ′′(t) =
〈
t2, t, 1

〉
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩ .
r⃗(t) =

40. Find r⃗(t), given that r⃗ ′′(t) = ⟨cos(t), sin(t), et⟩,
r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

Exercise Group. Find the arc length of r⃗(t) on the indicated interval.
41. r⃗(t) = ⟨2 cos(t), 2 sin(t), 3t⟩ on [0, 2π]. 42. r⃗(t) = ⟨5 cos(t), 3 sin(t), 4 sin(t)⟩ on [0, 2π].
43. r⃗(t) =

〈
t3, t2, t3

〉
on [0, 1]. 44. r⃗(t) = ⟨e−t cos(t), e−t sin(t)⟩ on [0, 1].

45. Prove Theorem 12.2.30; that is, show if r⃗(t) has constant length and is differentiable, then r⃗(t) · r⃗ ′(t) = 0. (Hint:
use the Product Rule to compute d

dt

(
r⃗(t) · r⃗(t)

)
.)
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12.3 The Calculus of Motion

A common use of vector-valued functions is to describe the motion of an object
in the plane or in space. A position function r⃗(t) gives the position of an object
at time t. More formally, letO = 0⃗ (either in the plane or in space) and suppose
an object is at point Pc at time t = tc. Then r⃗

(
tc
)
=

−−→
OPc; that is, the vector

r⃗
(
tc
)
“points” to the location of the object at a given time. This section explores

how derivatives and integrals are used to study the motion described by such a
function.

youtu.be/watch?v=UAGqV-r6jBI

Figure 12.3.1 Video introduction to
Section 12.3

Definition 12.3.2 Velocity, Speed and Acceleration.

Let r⃗(t) be a position function in R2 or R3.

Velocity The instantaneous rate of position change, denoted v⃗(t);
that is, v⃗(t) = r⃗ ′(t).

Speed The magnitude of velocity: ∥v⃗(t)∥.
Acceleration The instantaneous rate of velocity change, denoted a⃗(t);

that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Example 12.3.3 Finding velocity and acceleration.

An object is moving with position function r⃗(t) =
〈
t2 − t, t2 + t

〉
,−3 ≤

t ≤ 3, where distances are measured in feet and time is measured in
seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their
initial point at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

Solution.

1. Taking derivatives, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleration is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are plotted with r⃗(t) in Figure 12.3.4(a). We can think of
acceleration as “pulling” the velocity vector in a certain direction.
At t = −1, the velocity vector points down and to the left; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direction
and is now pointing up and to the right. In Figure 12.3.4(b) we plot
more velocity/acceleration vectors, making more clear the effect
acceleration has on velocity.

https://www.youtube.com/watch?v=UAGqV-r6jBI
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Figure 12.3.4 Graphing the position, velocity and acceleration of
an object in Example 12.3.3
Since a⃗(t) is constant in this example, as t grows large v⃗(t) be-
comes almost parallel to a⃗(t). For instance, when t = 10, v⃗(10) =
⟨19, 21⟩, which is nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

∥v⃗(t)∥ =
√

(2t− 1)2 + (2t+ 1)2 =
√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques
(such as set the derivative equal to 0 and solve for t, etc.) but
we can find it by inspection. Inside the square root we have a
quadratic which is minimized when t = 0. Thus the speed is
minimized at t = 0, with a speed of

√
2 ft

s . The graph in Fig-
ure 12.3.4(b) also implies speed is minimized here. The filled dots
on the graph are located at integer values of t between−3 and 3.
Dots that are far apart imply the object traveled a far distance in 1
second, indicating high speed; dots that are close together imply
the object did not travel far in 1 second, indicating a low speed.
The dots are closest together near t = 0, implying the speed is
minimized near that value.

Video solution

youtu.be/watch?v=qpQidOR7TQQ

Example 12.3.5 Analyzing Motion.

Two objects follow an identical path at different rates on [−1, 1]. The
position function for Object 1 is r⃗1(t) =

〈
t, t2

〉
; the position function

for Object 2 is r⃗2(t) =
〈
t3, t6

〉
, where distances are measured in feet

and time is measured in seconds. Compare the velocity, speed and ac-
celeration of the two objects on the path.
Solution. Webegin by computing the velocity and acceleration function
for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
〈
3t2, 6t5

〉
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

〈
6t, 30t4

〉
We immediately see that Object 1 has constant acceleration, whereas
Object 2 does not.
At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the
velocity of Object 2 is three times that of Object 1 and so it follows that
the speed of Object 2 is three times that of Object 1 (3

√
5 ft/s compared

https://www.youtube.com/watch?v=qpQidOR7TQQ
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to
√
5 ft/s.)

−2 −1 1 2

−1

1

2

3

x

y

Figure 12.3.6 Plotting velocity and ac-
celeration vectors for Object 1 in Ex-
ample 12.3.5

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of
Object 2 is 0⃗! This tells us that Object 2 comes to a complete stop at
t = 0.
In Figure 12.3.6, we see the velocity and acceleration vectors for Object
1 plotted for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the
constant acceleration vector seems to “pull” the velocity vector from
pointing down, right to up, right. We could plot the analogous picture
for Object 2, but the velocity and acceleration vectors are rather large
(⃗a2(−1) = ⟨−6, 30⟩!)
Instead, we simply plot the locations of Object 1 and 2 on intervals
of 1/10 th of a second, shown in Figure 12.3.7(a) and Figure 12.3.7(b).
Note how the x-values of Object 1 increase at a steady rate. This is be-
cause the x-component of a⃗(t) is 0; there is no acceleration in the x-
component. The dots are not evenly spaced; the object is moving faster
near t = −1 and t = 1 than near t = 0.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

r⃗1(t)

x

y

(a)

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

r⃗2(t)

x

y

(b)

Figure 12.3.7 Comparing the positions of Objects 1 and 2 in Exam-
ple 12.3.5
In Figure 12.3.7(b), we see the points plotted for Object 2. Note the large
change in position from t = −1 to t = −0.8; the object starts moving
very quickly. However, it slows considerably at it approaches the origin,
and comes to a complete stop at t = 0. While it looks like there are 3
points near the origin, there are in reality 5 points there.
Since the objects begin and end at the same location, they have the same
displacement. Since they begin and end at the same time, with the same
displacement, they have the same average rate of change (i.e., they have
the same average velocity). Since they follow the same path, they have
the same distance traveled. Even though these threemeasurements are
the same, the objects obviously travel the path in very different ways.

Example 12.3.8 Analyzing the motion of a whirling ball on a string.

A young boy whirls a ball, attached to a string, above his head in a
counter-clockwise circle. The ball follows a circular path and makes 2
revolutions per second. The string has length 2 ft.

1. Find the position function r⃗(t) that describes this situation.

2. Find the acceleration of the ball and give a physical interpretation
of it.
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3. A tree stands 10 ft in front of the boy. At what t-values should the
boy release the string so that the ball hits the tree?

Solution.

1. The ball whirls in a circle. Since the string is 2ft long, the radius
of the circle is 2. The position function r⃗(t) = ⟨2 cos(t), 2 sin(t)⟩
describes a circle with radius 2, centered at the origin, but makes
a full revolution every 2π seconds, not two revolutions per second.
We modify the period of the trigonometric functions to be 1/2 by
multiplying t by 4π. The final position function is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revolution is made in
1/2 a second.)

2. To find a⃗(t), we take the derivative of r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

〈
−32π2 cos(4πt),−32π2 sin(4πt)

〉
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude
and points in the opposite direction. Why is this?

Recall the classic physics equation, “Force = mass × accelera-
tion.” A force acting on a mass induces acceleration (i.e., the
mass moves); a mass that is accelerating is being acted upon by
a force. Thus force and acceleration are closely related. A moving
ball “wants” to travel in a straight line. Why does the ball in our
example move in a circle? It is attached to the boy’s hand by a
string. The string applies a force to the ball, affecting its motion:
the string accelerates the ball. This is not acceleration in the sense
of “it travels faster;” rather, this acceleration is changing the ve-
locity of the ball. In what direction is this force/acceleration being
applied? In the direction of the string, towards the boy’s hand.

Themagnitude of the acceleration is related to the speed at which
the ball is traveling. A ball whirling quickly is rapidly changing direc-
tion/velocity. When velocity is changing rapidly, the acceleration
must be “large.”

3. When the boy releases the string, the string no longer applies a
force to the ball, meaning acceleration is 0⃗ and the ball can now
move in a straight line in the direction of v⃗(t).

Let t = t0 be the time when the boy lets go of the string. The ball
will be at r⃗(t0), traveling in the direction of v⃗(t0). We want to find
t0 so that this line contains the point (0, 10) (since the tree is 10 ft
directly in front of the boy).

2 ft

⟨0, 10⟩ −
r⃗(t

0 )

Figure 12.3.9Modeling the flight of a
ball in Example 12.3.8

There are many ways to find this time value. We choose one that
is relatively simple computationally. As shown in Figure 12.3.9,
the vector from the release point to the tree is ⟨0, 10⟩ − r⃗(t0).
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This line segment is tangent to the circle, which means it is also
perpendicular to r⃗(t0) itself, so their dot product is 0.

r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0

− 4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0

20 sin(4πt0)− 4 = 0

sin(4πt0) = 1/5

4πt0 = sin−1(1/5)

4πt0 ≈ 0.2 + 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016 + n/2

This is a wonderful formula. Every 1/2 second after t = 0.016 s
the boy can release the string (since the ball makes 2 revolutions
per second, he has two chances each second to release the ball).

Video solution

youtu.be/watch?v=qrNYh5hmyLE

Example 12.3.10 Analyzing motion in space.

An object moves in a helix with position function r⃗(t) =
⟨cos(t), sin(t), t⟩, where distances are measured in meters and
time is in minutes. Describe the object’s speed and acceleration at time
t.
Solution. With r⃗(t) = ⟨cos(t), sin(t), t⟩, we have:

v⃗(t) = ⟨− sin(t), cos(t), 1⟩ and
a⃗(t) = ⟨− cos(t),− sin(t), 0⟩ .

The speed of the object is ∥v⃗(t)∥ =
√

(− sin(t))2 + cos2(t) + 1 =
√
2

m
min ; it moves at a constant speed. Note that the object does not accel-
erate in the z-direction, but rather moves up at a constant rate of 1 m

min .

The objects in Examples 12.3.8 and 12.3.10 traveled at a constant speed.
That is, ∥v⃗(t)∥ = c for some constant c. Recall Theorem 12.2.30, which states
that if a vector-valued function r⃗(t) has constant length, then r⃗(t) is perpendicu-
lar to its derivative: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity function has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleration: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuitive understanding of this. If acceleration is parallel to veloc-
ity, then it is only affecting the object’s speed; it does not change the direction
of travel. (For example, consider a dropped stone. Acceleration and velocity are
parallel — straight down— and the direction of velocity never changes, though
speed does increase.) If acceleration is not perpendicular to velocity, then there
is some acceleration in the direction of travel, influencing the speed. If speed
is constant, then acceleration must be orthogonal to velocity, as it then only
affects direction, and not speed.

https://www.youtube.com/watch?v=qrNYh5hmyLE
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Key Idea 12.3.11 Objects With Constant Speed.

If an object moves with constant speed, then its velocity and accelera-
tion vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

12.3.1 Projectile Motion
An important application of vector-valued position functions is projectilemotion:
the motion of objects under only the influence of gravity. We will measure time
in seconds, and distances will either be in meters or feet. We will show that we
can completely describe the path of such an object knowing its initial position
and initial velocity (i.e., where it is and where it is going.)

youtu.be/watch?v=-n1VJ3ngrTw

Figure 12.3.12 Video presentation of
Subsection 12.3.1

Suppose an object has initial position r⃗(0) = ⟨x0, y0⟩ and initial velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direction u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be written
as ⟨cos(θ), sin(θ)⟩, where θ is an angle measure counter-clockwise from the x-
axis. (We refer to θ as the angle of elevation.) Thus v⃗(0) = v0 ⟨cos(θ), sin(θ)⟩.

Since the acceleration of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitational constant, we can find r⃗(t) knowing our two initial condi-
tions. We first find v⃗(t):This text takes g to be 32 ft

s2 when
using Imperial units, and 9.8 m

s2
when using SI units.

v⃗(t) =

∫
a⃗(t) dt

v⃗(t) =

∫
⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos(θ), sin(θ)⟩, we have C⃗ = v0 ⟨cos(t), sin(t)⟩ and so

v⃗(t) = ⟨v0 cos(θ),−gt+ v0 sin(θ)⟩ .

We integrate once more to find r⃗(t):

r⃗(t) =

∫
v⃗(t) dt

r⃗(t) =

∫
⟨v0 cos(θ),−gt+ v0 sin(θ)⟩ dt

r⃗(t) =

〈(
v0 cos(θ)

)
t,−1

2
gt2 +

(
v0 sin(θ)

)
t

〉
+ C⃗.

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =

〈(
v0 cos(θ)

)
t+ x0 ,−

1

2
gt2 +

(
v0 sin(θ)

)
t+ y0

〉
.

Key Idea 12.3.13 Projectile Motion.

The position function of a projectile propelled from an initial position
of r⃗0 = ⟨x0, y0⟩, with initial speed v0, with angle of elevation θ and
neglecting all accelerations but gravity is

r⃗(t) =

〈(
v0 cos(θ)

)
t+ x0 ,−

1

2
gt2 +

(
v0 sin(θ)

)
t+ y0

〉
.

https://www.youtube.com/watch?v=-n1VJ3ngrTw
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Letting v⃗0 = v0 ⟨cos(θ), sin(θ)⟩, r⃗(t) can be written as

r⃗(t) =

〈
0,−1

2
gt2
〉
+ v⃗0t+ r⃗0.

We demonstrate how to use this position function in the next two examples.

Example 12.3.14 Projectile Motion.

Sydney shoots her Red Ryder® bb gun across level ground from an el-
evation of 4 ft, where the barrel of the gun makes a 5◦ angle with the
horizontal. Find how far the bb travels before landing, assuming the bb
is fired at the advertised rate of 350 ft

s and ignoring air resistance.
Solution. A direct application of Key Idea 12.3.13 gives

r⃗(t) =
〈
(350 cos(5◦))t,−16t2 + (350 sin(5◦))t+ 4

〉
≈
〈
346.67t,−16t2 + 30.50t+ 4

〉
,

where we set her initial position to be ⟨0, 4⟩. We need to find when the
bb lands, then we can find where. We accomplish this by setting the
y-component equal to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)

−32

t ≈ 2.03 s.

(We discarded a negative solution that resulted from our quadratic equa-
tion.)
Wehave found that the bb lands 2.03 s after firing; with t = 2.03, we find
the x-component of our position function is 346.67(2.03) = 703.74ft.
The bb lands about 704 feet away.

Video solution

youtu.be/watch?v=9_Ev_uu0Y74

Example 12.3.15 Projectile Motion.

Alex holds his sister’s bb gun at a height of 3 ft and wants to shoot a
target that is 6 ft above the ground, 25 ft away. At what angle should he
hold the gun to hit his target? (We still assume the muzzle velocity is
350 ft

s .)
Solution. The position function for the path of Alex’s bb is

r⃗(t) =
〈
(350 cos(θ))t,−16t2 + (350 sin(θ))t+ 3

〉
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we
want to find θ and t such that

(350 cos(θ))t = 25 and − 16t2 + (350 sin(θ))t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equation
for cos(θ) and sin(θ), respectively.

cos(θ) =
25

350t
and sin(θ) =

3 + 16t2

350t
.

https://www.youtube.com/watch?v=9_Ev_uu0Y74


702 CHAPTER 12. VECTOR VALUED FUNCTIONS

Using the Pythagorean Identity cos2(θ) + sin2(θ) = 1, we have(
25

350t

)2

+

(
3 + 16t2

350t

)2

= 1

Multiply both sides by (350t)2:

252 + (3 + 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0.

This is a quadratic in t2. That is, we can apply the quadratic formula to
find t2, then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512

t2 = 0.0052, 478.135

t = ±0.072, ±21.866

Clearly the negative t values do not fit our context, so we have t = 0.072
and t = 21.866. Using cos(θ) = 25/(350t), we can solve for θ:

θ = cos−1

(
25

350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about
7◦ with the horizontal and hit his target 0.07 s after firing, or he can hold
his rifle almost straight up, with an angle of 89.8◦, where he’ll hit his
target about 22 s later. The first option is clearly the option he should
choose.

12.3.2 Distance Traveled
Consider a driverwho sets her cruise-control to 60mph, and travels at this speed
for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starting position is the driver?

The first is easy to answer: she traveled 60miles. The second is impossible to
answer with the given information. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly-winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by ∥v⃗(t)∥.

Theorem 12.3.16 Distance Traveled.

Let v⃗(t) be a velocity function for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a

∥v⃗(t)∥ dt.
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Note that this is just a restatement of Theorem 12.2.36: arc length is the
same as distance traveled, just viewed in a different context.

youtu.be/watch?v=vTtjBp2SC1I

Figure 12.3.17 Video presentation of
Theorem 12.3.16

Example 12.3.18 Distance Traveled, Displacement, and Average Speed.

A particle moves in space with position function r⃗(t) =
〈
t, t2, sin(πt)

〉
on [−2, 2], where t is measured in seconds and distances are in meters.
Find:

1. The distance traveled by the particle on [−2, 2].

2. The displacement of the particle on [−2, 2].

3. The particle’s average speed.

Solution.

1. We use Theorem 12.3.16 to establish the integral:

distance traveled =

∫ 2

−2

∥v⃗(t)∥ dt

=

∫ 2

−2

√
1 + (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary functions so we turn
to numerical integration, finding the distance to be 12.88m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the particle ends with an x-value increased by 4 and with
y- and z-values the same (see Figure 12.3.19).

3. We found above that the particle traveled 12.88mover 4 seconds.
We can compute average speed by dividing: 12.88/4 = 3.22m/s.

Figure 12.3.19 The path of the parti-
cle in Example 12.3.18

We should also consider Definition 5.4.34 of Section 5.4, which
says that the average value of a function f on [a, b] is
1

b−a

∫ b

a
f(x) dx. In our context, the average value of the speed

is

average speed =
1

2− (−2)

∫ 2

−2

∥v⃗(t)∥ dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a particle traveling givesmeaning
to a more abstract concept learned earlier.

Video solution

youtu.be/watch?v=vLSocZ7XLQM

In Definition 5.4.34 of Chapter 5 we defined the average value of a function
f(x) on [a, b] to be

1

b− a

∫ b

a

f(x) dx.

Note how in Example 12.3.18 we computed the average speed as

distance traveled
travel time

=
1

2− (−2)

∫ 2

−2

∥v⃗(t)∥ dt;

https://www.youtube.com/watch?v=vTtjBp2SC1I
https://www.youtube.com/watch?v=vLSocZ7XLQM
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that is, we just found the average value of ∥v⃗(t)∥ on [−2, 2].
Likewise, given position function r⃗(t), the average velocity on [a, b] is

displacement
travel time

=
1

b− a

∫ b

a

r⃗ ′(t) dt =
r⃗(b)− r⃗(a)

b− a
;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

Key Idea 12.3.20 Average Speed, Average Velocity.

Let r⃗(t) be a differentiable position function on [a, b].
The average speed is:

distance traveled
travel time

=

∫ b

a
∥r⃗ ′(t)∥ dt

b− a
=

1

b− a

∫ b

a

∥v⃗(t)∥ dt.

The average velocity is:

displacement
travel time

=

∫ b

a
r⃗ ′(t) dt

b− a
=

1

b− a

∫ b

a

r⃗ ′(t) dt.

The next two sections investigate more properties of the graphs of vector-
valued functions and we’ll apply these new ideas to what we just learned about
motion.
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12.3.3 Exercises

Terms and Concepts

1. How is velocity different from speed?
2. What is the difference between displacement and distance traveled?
3. What is the difference between average velocity and average speed?

4. Distance traveled is the same as , just viewed in a different context.

5. Describe a scenariowhere an object’s average speed is a large number, but themagnitude of the average velocity
is not a large number.

6. Explain why it is not possible to have an average velocity with a large magnitude but a small average speed.

Problems

Exercise Group. In the following exercises, a position function r⃗(t) is given. Find v⃗(t) and a⃗(t).
7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩ 8. r⃗(t) =

〈
3t2 − 2t+ 1,−t2 + t+ 14

〉
9. r⃗(t) = ⟨cos(t), sin(t)⟩ 10. r⃗(t) = ⟨t/10,− cos(t), sin(t)⟩

Exercise Group. In the following exercises, a position function r⃗(t) is given. Sketch r⃗(t) on the indicated interval.
Find v⃗(t) and a⃗(t), then add v⃗(t0) and a⃗(t0) to your sketch, with their initial points at r⃗(t0), for the given value of t0.

11. r⃗(t) = ⟨t, sin(t)⟩ on [0, π/2]; t0 = π/4 12. r⃗(t) =
〈
t2, sin(t2)

〉
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
〈
t2 + t,−t2 + 2t

〉
on [−2, 2]; t0 = 1 14. r⃗(t) =

〈
2t+ 3

t2 + 1
, t2
〉
on [−1, 1]; t0 = 0

Exercise Group. In the following exercises, a position function r⃗(t) of an object is given. Find the speed of the object
in terms of t, and find where the speed is minimized/maximized on the indicated interval.

15. r⃗(t) =
〈
t2, t

〉
on [−1, 1] 16. r⃗(t) =

〈
t2, t2 − t3

〉
on [−1, 1]

17. r⃗(t) = ⟨5 cos(t), 5 sin(t)⟩ on [0, 2π] 18. r⃗(t) = ⟨2 cos(t), 5 sin(t)⟩ on [0, 2π]
19. r⃗(t) = ⟨sec(t), tan(t)⟩ on [0, π/4]. 20. r⃗(t) = ⟨t+ cos(t), 1− sin(t)⟩ on [0, 2π]
21. r⃗(t) = ⟨12t, 5 cos(t), 5 sin(t)⟩ on [0, 4π] 22. r⃗(t) =

〈
t2 − t, t2 + t, t

〉
on [0, 1].

23. r⃗(t) =
〈
t, t2,

√
1− t2

〉
on [−1, 1] 24. Projectile Motion:

r⃗(t) =

〈
(v0 cos(θ))t,−

1

2
gt2 + (v0 sin(θ))t

〉
on
[
0,

2v0 sin(θ)
g

]

Exercise Group. In the following exercises, position functions r⃗1(t) and r⃗2(s) for two objects are given that follow
the same path on the respective intervals.

(a) Show that the positions are the same at the indicated t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleration of the two objects at t0 and s0, respectively.

25. r⃗1(t) =
〈
t, t2

〉
on [0, 1]; t0 = 1

r⃗2(s) =
〈
s2, s4

〉
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos(t), 3 sin(t)⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2];

s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6s− 6, 4s− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
〈
t,
√
t
〉
on [0, 1]; t0 = 1

r⃗2(s) =
〈
sin(s),

√
sin(s)

〉
on [0, π/2];

s0 = π/2
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Exercise Group. In the following exercises, find the position function of an object given its acceleration and initial
velocity and position.

29. a⃗(t) = ⟨2, 3⟩;v⃗(0) = ⟨1, 2⟩,r⃗(0) = ⟨5,−2⟩ 30. Given a⃗(t) = ⟨2, 3⟩ , v⃗(1) = ⟨1, 2⟩ , and
r⃗(1) = ⟨5,−2⟩ , find the position function r⃗(t).

31. a⃗(t) = ⟨cos(t),− sin(t)⟩;v⃗(0) = ⟨0, 1⟩,r⃗(0) =
⟨0, 0⟩

32. Given a⃗(t) = ⟨0,−32⟩ , v⃗(0) = ⟨10, 50⟩ , and
r⃗(0) = ⟨0, 0⟩ , find the position function r⃗(t).

Exercise Group. In the following exercises, find the displacement, distance traveled, average velocity and average
speed of the described object on the given interval.

33. An object with position function
r⃗(t) = ⟨2 cos(t), 2 sin(t), 3t⟩, where distances
are measured in feet and time is in seconds, on
[0, 2π].

34. An object has position function
r⃗(t) = ⟨5 cos(t),−5 sin(t)⟩ , where distances
are measured in feet and time is in seconds.
Over [0, π].

35. An object with velocity function
v⃗(t) = ⟨cos(t), sin(t)⟩, where distances are
measured in feet and time is in seconds, on
[0, 2π].

36. An object has velocity function
v⃗(t) = ⟨1, 2,−1⟩ , where distances are
measured in feet and time is in seconds. Over
[0, 10].

Exercise Group. The following exercises ask you to solve a variety of problems based on the principles of projectile
motion.

37. A boy whirls a ball, attached to a 3 ft string,
above his head in a counter-clockwise circle.
The ball makes 2 revolutions per second.

At what t-values should the boy release the
string so that the ball heads directly for a tree
standing 10 ft in front of him?

38. David faces Goliath with only a stone in a 3 ft
sling, which he whirls above his head at 4
revolutions per second. They stand 20 ft apart.

(a) At what t-values must David release the
stone in his sling in order to hit Goliath?

(b) What is the speed at which the stone is
traveling when released?

(c) Assume David releases the stone from a
height of 6ft and Goliath’s forehead is 9 ft
above the ground. What angle of
elevation must David apply to the stone
to hit Goliath’s head?

39. A hunter aims at a deer which is 40 yards away.
Her crossbow is at a height of 5 ft, and she aims
for a spot on the deer 4 ft above the ground.
The crossbow fires her arrows at 300 ft/s.

(a) At what angle of elevation should she
hold the crossbow to hit her target?

(b) If the deer is moving perpendicularly to
her line of sight at a rate of 20mph, by
approximately how much should she lead
the deer in order to hit it in the desired
location? (How far ahead of the deer
should she aim?)

40. A baseball player hits a ball at 100 mph, with an
initial height of 3 ft and an angle of elevation of
20◦, at Boston’s Fenway Park. The ball flies
towards the famed “Green Monster,” a wall 37
ft high located 310 ft from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevation is 21◦,
the ball clears the Green Monster.
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41. A Cessna flies at 1000 ft at 150 mph and drops a
box of supplies to the professor (and his wife)
on an island. Ignoring wind resistance, how far
horizontally will the supplies travel before they
land?

42. A football quarterback throws a pass from a
height of 6 ft, intending to hit his receiver 20
yds away at a height of 5 ft.

(a) If the ball is thrown at a rate of 50mph,
what angle of elevation is needed to hit
his intended target?

(b) If the ball is thrown at with an angle of
elevation of 8◦, what initial ball speed is
needed to hit his target?
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12.4 Unit Tangent and Normal Vectors

12.4.1 Unit Tangent Vector
Given a smooth vector-valued function r⃗(t), we defined in Definition 12.2.17
that any vector parallel to r⃗ ′(t0) is tangent to the graph of r⃗(t) at t = t0. It is
often useful to consider just the direction of r⃗ ′(t) and not its magnitude. There-
fore we are interested in the unit vector in the direction of r⃗ ′(t). This leads to a
definition.

Definition 12.4.1 Unit Tangent Vector.

Let r⃗(t) be a smooth function on an open interval I . The unit tangent
vector T⃗ (t) is

T⃗ (t) =
1

∥r⃗ ′(t)∥
r⃗ ′(t).

youtu.be/watch?v=tmKmAKUdSZ8

Figure 12.4.2 Video presentation of
Definition 12.4.1

Example 12.4.3 Computing the unit tangent vector.

Let r⃗(t) = ⟨3 cos(t), 3 sin(t), 4t⟩. Find T⃗ (t) and compute T⃗ (0) and
T⃗ (1).

Solution. We apply Definition 12.4.1 to find T⃗ (t).

T⃗ (t) =
1

∥r⃗ ′(t)∥
r⃗ ′(t)

=
1√(

− 3 sin(t)
)2

+
(
3 cos(t)

)2
+ 42

⟨−3 sin(t), 3 cos(t), 4⟩

=

〈
−3

5
sin(t),

3

5
cos(t),

4

5

〉
.

We can now easily compute T⃗ (0) and T⃗ (1):

T⃗ (0) =

〈
0,

3

5
,
4

5

〉
; T⃗ (1) =

〈
−3

5
sin(1),

3

5
cos(1),

4

5

〉
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are plotted in Figure 12.4.4 with their initial points at r⃗(0) and
r⃗(1), respectively. (They look rather “short” since they are only length
1.)

Figure 12.4.4 Plotting unit tangent
vectors in Example 12.4.3

The unit tangent vector T⃗ (t) always has a magnitude of 1, though it is
sometimes easy to doubt that is true. We can help solidify this thought
in our minds by computing

∥∥∥T⃗ (1)∥∥∥:∥∥∥T⃗ (1)∥∥∥ ≈
√
(−0.505)2 + 0.3242 + 0.82 = 1.000001.

We have rounded in our computation of T⃗ (1), so we don’t get 1 exactly.
We leave it to the reader to use the exact representation of T⃗ (1) to verify
it has length 1.

Video solution

youtu.be/watch?v=aGEMbQrBpPI

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leaving
us with a formula that is not as clean.

https://www.youtube.com/watch?v=tmKmAKUdSZ8
https://www.youtube.com/watch?v=aGEMbQrBpPI
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Example 12.4.5 Computing the unit tangent vector.

Let r⃗(t) =
〈
t2 − t, t2 + t

〉
. Find T⃗ (t) and compute T⃗ (0) and T⃗ (1).

Solution. We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

∥r⃗ ′(t)∥ =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

Therefore

T⃗ (t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

〈
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

〉
.

When t = 0, we have T⃗ (0) =
〈
−1/

√
2, 1/

√
2
〉
; when t = 1, we have

T⃗ (1) =
〈
1/
√
10, 3/

√
10
〉
. We leave it to the reader to verify each of

these is a unit vector. They are plotted in Figure 12.4.6

−2 2 4 6

2

4

6

x

y

Figure 12.4.6 Plotting unit tangent
vectors in Example 12.4.5

Video solution

youtu.be/watch?v=zdfMTWdXzJs

12.4.2 Unit Normal Vector
Just as knowing the direction tangent to a path is important, knowing a direction
orthogonal to a path is important. When dealing with real-valued functions, we
defined the normal line at a point to the be the line through the point that was
perpendicular to the tangent line at that point. We can do a similar thing with
vector-valued functions. Given r⃗(t) in R2, we have 2 directions perpendicular
to the tangent vector, as shown in Figure 12.4.7. It is good to wonder “Is one of
these two directions preferable over the other?”

0.5 1 1.5 2

x

y

Figure 12.4.7 Given a direction in the
plane, there are always two direc-
tions orthogonal to it

Given r⃗(t) inR3, there are infinitely many vectors orthogonal to the tangent
vector at a given point. Again, we might wonder “Is one out of this infinite num-
ber of choices preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 12.2.30, which states
that if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗ (t), the unit tangent vector, has constant length. Therefore T⃗ (t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direction, we define this newly found vector to be a unit vector.

T⃗ (t) is a unit vector, by defin-
ition. This does not imply that
T⃗ ′(t) is also a unit vector.

Definition 12.4.8 Unit Normal Vector.

Let r⃗(t) be a vector-valued function where the unit tangent vector, T⃗ (t),
is smooth on an open interval I . The unit normal vector N⃗(t) is

N⃗(t) =
1∥∥∥T⃗ ′(t)
∥∥∥ T⃗ ′(t).

youtu.be/watch?v=HWX5uPUCFJs

Figure 12.4.9 Video presentation of
Definition 12.4.8

Example 12.4.10 Computing the unit normal vector.

Let r⃗(t) = ⟨3 cos(t), 3 sin(t), 4t⟩ as in Example 12.4.3. Sketch both
T⃗ (π/2) and N⃗(π/2) with initial points at r⃗(π/2).

https://www.youtube.com/watch?v=zdfMTWdXzJs
https://www.youtube.com/watch?v=HWX5uPUCFJs
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Solution. In Example 12.4.3, we found

T⃗ (t) = ⟨(−3/5) sin(t), (3/5) cos(t), 4/5⟩ .

Therefore

T⃗ ′(t) =

〈
−3

5
cos(t),−3

5
sin(t), 0

〉
and

∥∥∥T⃗ ′(t)
∥∥∥ =

3

5
.

Thus

N⃗(t) =
T⃗ ′(t)

3/5
= ⟨− cos(t),− sin(t), 0⟩ .

We compute T⃗ (π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩.
These are sketched in Figure 12.4.11.

Figure 12.4.11 Plotting unit tangent
and normal vectors in Figure 12.4.11

Video solution

youtu.be/watch?v=cZkvyF0t5P4

There is one flaw in our defini-
tion of N⃗(t): it is possible that
we could have T⃗ ′(t) = 0! In-
deed, this is the case for any line
of the form ℓ⃗(t) = r⃗0 + tv⃗. For
straight lines in the plane, it is
most common to orient the nor-
mal vector90◦ counterclockwise
from the tangent vector, but for
lines in three dimensions, there
is no preferred choice of normal
vector.

The previous example was once again “too nice.” In general, the expression
for T⃗ (t) contains fractions of square roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example 12.4.12 Computing the unit normal vector.

Let r⃗(t) =
〈
t2 − t, t2 + t

〉
as in Example 12.4.5. Find N⃗(t) and sketch

r⃗(t) with the unit tangent and normal vectors at t = −1, 0 and 1.
Solution. In Example 12.4.5, we found

T⃗ (t) =

〈
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

〉
.

Finding T⃗ ′(t) requires two applications of the Quotient Rule:

T ′(t) =

〈√
8t2 + 2(2)− (2t− 1)

(
1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

(
1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

〉

=

〈
4(2t+ 1)

(8t2 + 2)
3/2

,
4(1− 2t)

(8t2 + 2)
3/2

〉

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by its
magnitude. ∥∥∥T⃗ ′(t)

∥∥∥ =

√
16(2t+ 1)2

(8t2 + 2)3
+

16(1− 2t)2

(8t2 + 2)3

=

√
16(8t2 + 2)

(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

〈
4(2t+ 1)

(8t2 + 2)
3/2

,
4(1− 2t)

(8t2 + 2)
3/2

〉

https://www.youtube.com/watch?v=cZkvyF0t5P4
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=

〈
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

〉
.

Using this formula for N⃗(t), we compute the unit tangent and normal
vectors for t = −1, 0 and 1 and sketch them in Figure 12.4.13.

−2 2 4 6

2

4

6

x

y

Figure 12.4.13 Plotting unit tan-
gent and normal vectors in Exam-
ple 12.4.12

Video solution

youtu.be/watch?v=VExazWvgGlQThe final result for N⃗(t) in Example 12.4.12 is suspiciously similar to T⃗ (t).
There is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the
only unit vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗ (t), we
can quickly determine N⃗(t) if we know which term to multiply by (−1).

Consider again Figure 12.4.13, wherewe have plotted some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direction that r⃗(t) “turns” allows us to quickly find N⃗(t).

Theorem 12.4.14 Unit Normal Vectors in R2.

Let r⃗(t) be a vector-valued function in R2 where T⃗ ′(t) is smooth on an
open interval I . Let t0 be in I and T⃗ (t0) = ⟨t1, t2⟩ Then N⃗(t0) is either

N⃗(t0) = ⟨−t2, t1⟩ or N⃗(t0) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

12.4.3 Application to Acceleration
Let r⃗(t) be a position function. It is a fact (stated later in Theorem 12.4.15) that
acceleration, a⃗(t), lies in the plane defined by T⃗ and N⃗ . That is, there are scalar
functions aT(t) and aN(t) such that

a⃗(t) = aT(t)T⃗ (t) + aN(t)N⃗(t).

We generally drop the “of t” part of the notation and just write aT and aN.
The scalar aT measures “howmuch” acceleration is in the direction of travel,

that is, it measures the component of acceleration that affects the speed. The
scalar aN measures “how much” acceleration is perpendicular to the direction
of travel, that is, it measures the component of acceleration that affects the
direction of travel.

We can find aT using the orthogonal projection of a⃗(t) onto T⃗ (t) (review
Definition 11.3.17 in Section 11.3 if needed). Recalling that since T⃗ (t) is a unit
vector, T⃗ (t) · T⃗ (t) = 1, so we have

proj T⃗ (t) a⃗(t) =
a⃗(t) · T⃗ (t)
T⃗ (t) · T⃗ (t)

T⃗ (t) =
(
a⃗(t) · T⃗ (t)

)︸ ︷︷ ︸
aT

T⃗ (t).

Thus the amount of a⃗(t) in the direction of T⃗ (t) is aT = a⃗(t) · T⃗ (t). The
same logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of computing aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Keep in mind that both aT and
aN are functions of t; that is, the
scalar changes depending on t.
It is convention to drop the “(t)”
notation from aT(t) and simply
write aT.

https://www.youtube.com/watch?v=VExazWvgGlQ
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Theorem 12.4.15 Acceleration in the Plane Defined by T⃗ and N⃗ .

Let r⃗(t) be a position function with acceleration a⃗(t) and unit tangent
and normal vectors T⃗ (t) and N⃗(t). Then a⃗(t) lies in the plane defined
by T⃗ (t) and N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗ (t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗ (t) = d

dt

(
∥v⃗(t)∥

)
aN = a⃗(t) · N⃗(t) =

√
∥a⃗(t)∥2 − a2T =

∥a⃗(t)× v⃗(t)∥
∥v⃗(t)∥

= ∥v⃗(t)∥
∥∥∥T⃗ ′(t)

∥∥∥
Note the second formula for aT:

d

dt

(
∥v⃗(t)∥

)
. This measures the rate of

change of speed, which again is the amount of acceleration in the direction of
travel.

youtu.be/watch?v=mRKDo_rot7Y

Figure 12.4.16 Video presentation of
Theorem 12.4.15

Example 12.4.17 Computing aT and aN .

Let r⃗(t) = ⟨3 cos(t), 3 sin(t), 4t⟩ as in Examples 12.4.3 and 12.4.10. Find
aT and aN.
Solution. The previous examples give a⃗(t) = ⟨−3 cos(t),−3 sin(t), 0⟩
and

T⃗ (t) =

〈
−3

5
sin(t),

3

5
cos(t),

4

5

〉
and N⃗(t) = ⟨− cos(t),− sin(t), 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗ (t) = 9

5
cos(t) sin(t)− 9

5
cos(t) sin(t) + 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2(t) + 3 sin2(t) + 0 = 3.

Thus a⃗(t) = 0T⃗ (t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the practical interpretationof these numbers? aT = 0means the
object is moving at a constant speed, and hence all acceleration comes
in the form of direction change.

Video solution

youtu.be/watch?v=qA776vEHYM0

Example 12.4.18 Computing aT and aN .

Let r⃗(t) =
〈
t2 − t, t2 + t

〉
as in Examples 12.4.5 and 12.4.12. Find aT

and aN.
Solution. The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗ (t) =

〈
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

〉
and N⃗(t) =

〈
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

〉
.

While we can compute aN using N⃗(t), we instead demonstrate using
another formula from Theorem 12.4.15.

aT = a⃗(t) · T⃗ (t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

https://www.youtube.com/watch?v=mRKDo_rot7Y
https://www.youtube.com/watch?v=qA776vEHYM0


12.4. UNIT TANGENT AND NORMAL VECTORS 713

aN =

√
∥a⃗(t)∥2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret

this to mean that at t = 2, the particle is accelerating mostly by increas-
ing speed, not by changing direction. As the path near t = 2 is relatively
straight, this should make intuitive sense. Figure 12.4.19 gives a graph
of the path for reference.

−2 2 4 6

2

4

6
t = 2

t = 0

r⃗(t)

x

y

Figure 12.4.19 Graphing r⃗(t) in Exam-
ple 12.4.18

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here

the particle’s speed is not changing and all acceleration is in the form of
direction change.

Video solution

youtu.be/watch?v=8LTqjQPvh-A

Example 12.4.20 Analyzing projectile motion.

A ball is thrown from a height of 240 ft with an initial speed of 64 ft
s and

an angle of elevation of 30◦. Find the position function r⃗(t) of the ball
and analyze aT and aN.
Solution. Using Key Idea 12.3.13 of Section 12.3 we form the position
function of the ball:

r⃗(t) =
〈(
64 cos(30◦)

)
t,−16t2 +

(
64 sin(30◦)

)
t+ 240

〉
,

which we plot in Figure 12.4.21.
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y
t = 1

t = 5

Figure 12.4.21 Plotting the position
of a thrown ball, with 1s increments
shown

From this we find v⃗(t) = ⟨64 cos(30◦),−32t+ 64 sin(30◦)⟩ and a⃗(t) =
⟨0,−32⟩. Computing T⃗ (t) is not difficult, and with some simplification
we find

T⃗ (t) =

〈 √
3√

t2 − 2t+ 4
,

1− t√
t2 − 2t+ 4

〉
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗ (t) = 32t− 32√
t2 − 2t+ 4

.

We choose to not find N⃗(t) and find aN through the formula aN =√
∥a⃗(t)∥2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32
√
3√

t2 − 2t+ 4
.

Figure 12.4.22 gives a table of values of aT and aN. When t = 0, we
see the ball’s speed is decreasing; when t = 1 the speed of the ball is
unchanged. This corresponds to the fact that at t = 1 the ball reaches
its highest point.
After t = 1 we see that aN is decreasing in value. This is because as the
ball falls, its path becomes straighter and most of the acceleration is in
the form of speeding up the ball, and not in changing its direction.

t aT aN

0 −16 27.7

1 0 32

2 16 27.7

3 24.2 20.9

4 27.7 16

5 29.4 12.7

Figure 12.4.22 A table of values of aT
and aN in Example 12.4.20

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of motion. The work in Example 12.4.20 gave quantitative analysis
of what we intuitively knew.

https://www.youtube.com/watch?v=8LTqjQPvh-A
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The next section provides two more important steps towards this analysis.
We currently describe position only in terms of time. In everyday life, though,
we often describe position in terms of distance (“The gas station is about 2miles
ahead, on the left.”). The arc length parameter allows us to reference position
in terms of distance traveled.

We also intuitively know that some paths are straighter than others — and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quantitative
measurement of how curvy a curve is.
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12.4.4 Exercises

Terms and Concepts

1. If T⃗ (t) is a unit tangent vector, what is
∥∥∥T⃗ (t)∥∥∥ ?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?
3. The acceleration vector a⃗(t) lies in the plane defined by what two vectors?

4. aT measures how much the acceleration is affecting the of an object.

Problems

Exercise Group. Given r⃗(t), find T⃗ (t) and evaluate it at the indicated value of t.

5. r⃗(t) =
〈
2t2, t2 − t

〉
,t = 1 6. r⃗(t) = ⟨t, cos(t)⟩ , t = π/4.

7. r⃗(t) =
〈
cos3(t), sin3(t)

〉
,t = π/4 8. r⃗(t) = ⟨cos(t), sin(t)⟩ , t = π.

Exercise Group. Find the equation of the line tangent to the curve at the indicated t-value using the unit tangent
vector. Note: these are the same problems as in Exercises 5–8.

9. Find the vector equation of the line tangent to
r⃗(t) =

〈
2t2, t2 − t

〉
at t = 1 using the unit

tangent vector.

10. Find the vector equation of the line tangent to
r⃗(t) = ⟨t, cos(t)⟩ at t = π/4 using the unit
tangent vector.

11. r⃗(t) =
〈
cos3(t), sin3(t)

〉
,t = π/4 12. Find the vector equation of the line tangent to

r⃗(t) = ⟨cos(t), sin(t)⟩ at t = π using the unit
tangent vector.

ExerciseGroup. In the following exercises, find N⃗(t)usingDefinition12.4.8. Confirm the result using Theorem12.4.14.
13. r⃗(t) = ⟨3 cos(t), 3 sin(t)⟩ 14. r⃗(t) =

〈
t, t2

〉
15. r⃗(t) = ⟨cos(t), 2 sin(t)⟩ 16. r⃗(t) = ⟨et, e−t⟩

Exercise Group. In the following exercises, a position function r⃗(t) is given along with its unit tangent vector T⃗ (t)
evaluated at t = a, for some value of a.

(a) Confirm that T⃗ (a) is as stated.

(b) Using a graph of r⃗(t) and Theorem 12.4.14, find N⃗(a).

17. r⃗(t) = ⟨3 cos(t), 5 sin(t)⟩;T⃗ (π/4) =〈
− 3√

34
,

5√
34

〉
.

18. r⃗(t) =

〈
t,

1

t2 + 1

〉
;T⃗ (1) =

〈
2√
5
,− 1√

5

〉
.

19. r⃗(t) = (1 + 2 sin(t)) ⟨cos(t), sin(t)⟩;T⃗ (0) =〈
2√
5
,
1√
5

〉
.

20. r⃗(t) =
〈
cos3(t), sin3(t)

〉
;T⃗ (π/4) =〈

− 1√
2
,
1√
2

〉
.

Exercise Group. In the following exercises, find N⃗(t).
21. r⃗(t) = ⟨4t, 2 sin(t), 2 cos(t)⟩ 22. If r⃗(t) = ⟨5 cos(t), 3 sin(t), 4 sin(t)⟩ , find N⃗(t).
23. r⃗(t) = ⟨a cos(t), a sin(t), bt⟩; a > 0 24. If r⃗(t) = ⟨cos(at), sin(at), t⟩ , find N⃗(t).

Exercise Group. In the following exercises, find aT and aN given r⃗(t). Be sure you can sketch r⃗(t) on the indicated
interval, and comment on the relative sizes of aT and aN at the indicated t values.
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25. r⃗(t) =
〈
t, t2

〉
on [−1, 1]; consider t = 0 and

t = 1.
26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and

t = 2.
27. r⃗(t) = ⟨2 cos(t), 2 sin(t)⟩ on [0, 2π]; consider

t = 0 and t = π/2.
28. r⃗(t) =

〈
cos(t2), sin(t2)

〉
on (0, 2π]; consider

t = π/2 and t = π.
29. r⃗(t) = ⟨a cos(t), a sin(t), bt⟩ on [0, 2π], where

a, b > 0; consider t = 0 and t = π/2.
30. r⃗(t) = ⟨5 cos(t), 4 sin(t), 3 sin(t)⟩ on [0, 2π];

consider t = 0 and t = π/2.
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12.5 The Arc Length Parameter and Curvature

12.5.1 The Arc Length Parametrization
In normal conversation we describe position in terms of both time and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you are,
youmight answer “I am 20minutes from your house,” or youmight say “I am 10
miles from your house.” Both answers provide your friend with a general idea
of where you are.

youtu.be/watch?v=VHcu7bcQjsk

Figure 12.5.1 Video introduction to
Section 12.5

Currently, our vector-valued functions have defined points with a parame-
ter t, which we often take to represent time. Consider Figure 12.5.2(a), where
r⃗(t) =

〈
t2 − t, t2 + t

〉
is graphed and the points corresponding to t = 0, 1 and

2 are shown. Note how the arc length between t = 0 and t = 1 is smaller than
the arc length between t = 1 and t = 2; if the parameter t is time and r⃗ is
position, we can say that the particle traveled faster on [1, 2] than on [0, 1].

−2 2 4 6

2

4

6

t = 0

t = 1

t = 2
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(a)
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(b)

Figure 12.5.2 Introducing the arc length parameter
Now consider Figure 12.5.2(b), where the same graph is parametrized by a

different variable s. Points corresponding to s = 0 through s = 6 are plotted.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an initial location (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrization of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0

∥r⃗ ′(u)∥ du.

We can turn this into a function: as t varies, we find the arc length s from 0
to t. This function is

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du. (12.5.1)

This establishes a relationship between s and t. Knowing this relationship
explicitly, we can rewrite r⃗(t) as a function of s: r⃗(s). We demonstrate this in
an example.

Example 12.5.3 Finding the arc length parameter.

Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗with the arc length parameter
s.

https://www.youtube.com/watch?v=VHcu7bcQjsk


718 CHAPTER 12. VECTOR VALUED FUNCTIONS

Solution. Using Equation (12.5.1), we write

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du.

We can integrate this, explicitly finding a relationship between s and t:

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du

=

∫ t

0

√
32 + 42 du

=

∫ t

0

5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
〈
3

5
s− 1,

4

5
s+ 2

〉
.

Clearly, as shown in Figure 12.5.4, the graph of r⃗ is a line, where t = 0
corresponds to the point (−1, 2). What point on the line is 2 units away
from this initial point? We find it with r⃗(2) = ⟨1/5, 18/5⟩.

1 2−1−2

2

4

6

t = 0

t = 1

s = 1

s = 2

s = 3

s = 4

s = 5

s = 0

x

y

Figure 12.5.4 Graphing r⃗ in Exam-
ple 12.5.3 with parameters t and s

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the
Distance Formula to check:

d =

√(
1

5
− (−1)

)2

+

(
18

5
− 2

)2

=

√
36

25
+

64

25
=

√
4 = 2.

Yes, r⃗(2) is indeed 2 units away, in the direction of travel, from the initial
point.

Video solution

youtu.be/watch?v=UZkbOv5zW1U

Things worked out very nicely in Example 12.5.3; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in termsof t, a result of integrating a square root. There are a number of
things that we can learn about the arc length parameter from Equation (12.5.1),
though, that are incredibly useful.

First, take the derivative of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 5.4.7) states that

ds

dt
= s ′(t) = ∥r⃗ ′(t)∥ . (12.5.2)

Letting t represent time and r⃗(t) represent position, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuition.

The Chain Rule states that

dr⃗

dt
=

dr⃗

ds
· ds
dt

r⃗ ′(t) = r⃗ ′(s) · ∥r⃗ ′(t)∥ .

Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

∥r⃗ ′(t)∥
= T⃗ (t), (12.5.3)

https://www.youtube.com/watch?v=UZkbOv5zW1U
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where T⃗ (t) is the unit tangent vector. Equation (12.5.3) is often misinterpreted,
as one is tempted to think it states r⃗ ′(t) = T⃗ (t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 12.5.5 Arc Length Parameter.

Let r⃗(s) be a vector-valued function. The parameter s is the arc length
parameter if, and only if, ∥r⃗ ′(s)∥ = 1.

youtu.be/watch?v=FLydDuy3r2I

Figure 12.5.6 Video presentation of
Theorem 12.5.5

12.5.2 Curvature
Consider points A and B on the curve graphed in Figure 12.5.7(a). One can
readily argue that the curve curves more sharply at A than at B. It is useful
to use a number to describe how sharply the curve bends; that number is the
curvature of the curve.

0.5 1 1.5 2 2.5 3 3.5

1
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B

x

y

(a)

0.5 1 1.5 2 2.5 3 3.5

1

2

A
B

x

y

(b)

Figure 12.5.7 Establishing the concept of curvature
Wederive this number in the followingway. Consider Figure 12.5.7(b), where

unit tangent vectors are graphed around pointsA andB. Notice how the direc-
tion of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Definition 12.5.8 Curvature.

Let r⃗(s) be a vector-valued function where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣∣∣∣∣
∣∣∣∣∣ dT⃗ds

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣∣∣∣ T⃗ ′(s)

∣∣∣∣∣∣ .

youtu.be/watch?v=sjz_eHxgbLg

Figure 12.5.9 Video presentation of
Definition 12.5.8

If r⃗(s) is parametrized by the arc length parameter, then

T⃗ (s) =
r⃗ ′(s)

∥r⃗ ′(s)∥
and N⃗(s) =

T⃗ ′(s)∥∥∥T⃗ ′(s)
∥∥∥ .

Having defined
∥∥∥T⃗ ′(s)

∥∥∥ = κ, we can rewrite the second equation as

T⃗ ′(s) = κN⃗(s). (12.5.4)

https://www.youtube.com/watch?v=FLydDuy3r2I
https://www.youtube.com/watch?v=sjz_eHxgbLg
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We already knew that T⃗ ′(s) is in the same direction as N⃗(s); that is, we can
think of T⃗ (s) as being “pulled” in the direction of N⃗(s). How “hard” is it being
pulled? By a factor of κ. When the curvature is large, T⃗ (s) is being “pulled
hard” and the direction of T⃗ (s) changes rapidly. When κ is small, T (s) is not
being pulled hard and hence its direction is not changing rapidly.

We use Definition 12.5.8 to find the curvature of the line in Example 12.5.3.

Example 12.5.10 Finding the curvature of a line.

Use Definition 12.5.8 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.
Solution. In Example 12.5.3, we found that the arc length parameter
was defined by s = 5t, so r⃗(s) = ⟨3s/5− 1, 4s/5 + 2⟩ parametrized r⃗
with the arc length parameter. To find κ, we need to find T⃗ ′(s).

T⃗ (s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∣∣∣∣∣∣ T⃗ ′(s)

∣∣∣∣∣∣ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How
“curvy” is a line? It is not curvy at all.)

Video solution

youtu.be/watch?v=SZigON0uhqU

While the definition of curvature is a beautiful mathematical concept, it is
nearly impossible to use most of the time; writing r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of calcu-
lating this value that are much easier. There is a tradeoff: the definition is “easy”
to understand though hard to compute, whereas these other formulas are easy
to compute though it may be hard to understand why they work.

Theorem 12.5.11 Formulas for Curvature.

Let C be a smooth curve in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1 +
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector-valued function in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x′y′′ − x′′y′|(

(x′)2 + (y′)2
)3/2 .

3. If C is defined in space by a vector-valued function r⃗(t), then

κ =

∥∥∥T⃗ ′(t)
∥∥∥

∥r⃗ ′(t)∥
=

∥r⃗ ′(t)× r⃗ ′′(t)∥
∥r⃗ ′(t)∥3

=
a⃗(t) · N⃗(t)

∥v⃗(t)∥2
.

https://www.youtube.com/watch?v=SZigON0uhqU
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We practice using these formulas.

Example 12.5.12 Finding the curvature of a circle.

Find the curvature of a circle with radius r, defined by c⃗(t) =
⟨r cos(t), r sin(t)⟩.
Solution. Before we start, we should expect the curvature of a circle to
be constant, and not dependent on t. (Why?)
We compute κ using the second part of Theorem 12.5.11.

κ =
|(−r sin(t))(−r sin(t))− (−r cos(t))(r cos(t))|(

(−r sin(t))2 + (r cos(t))2
)3/2

=
r2(sin2(t) + cos2(t))(

r2(sin2(t) + cos2(t))
)3/2

=
r2

r3
=

1

r
.

We have found that a circle with radius r has curvature κ = 1/r.

Video solution

youtu.be/watch?v=NgffyzJBrTc

Example 12.5.12 gives a great result. Before this example, if we were told
“The curve has a curvature of 5 at point A,” we would have no idea what this
really meant. Is 5 “big” — does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of
the curve at P . A circle that:

• passes through P ,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the osculating circle, or circle of curvature, to C at P , and r is the radius
of curvature. Figure 12.5.13 shows the graph of the curve seen earlier in Fig-
ure 12.5.7 and its osculating circles at A and B. A sharp turn corresponds to
a circle with a small radius; a gradual turn corresponds to a circle with a large
radius. Being able to think of curvature in terms of the radius of a circle is very
useful.

0.5 1 1.5 2 2.5 3 3.5

1

2

A
B

x

y

Figure 12.5.13 Illustrating the osculat-
ing circles for the curve seen in Fig-
ure 12.5.7

youtu.be/watch?v=x8TWhPo42QE

Figure 12.5.14 The osculating circle

(The word “osculating” comes from a Latin word related to kissing; an os-
culating circle “kisses” the graph at a particular point. Many beautiful ideas in
mathematics have come from studying the osculating circles to a curve.)

Example 12.5.15 Finding curvature.

Find the curvature of the parabola defined by y = x2 at the vertex and
at x = 1.
Solution. We use the first formula found in Theorem 12.5.11.

κ(x) =
|2|(

1 + (2x)2
)3/2

https://www.youtube.com/watch?v=NgffyzJBrTc
https://www.youtube.com/watch?v=x8TWhPo42QE
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=
2(

1 + 4x2
)3/2 .
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Figure 12.5.16 Examining the curva-
ture of y = x2

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature is
κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of a
circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 12.5.16. At x = 3, the
curvature is 0.009; the graph is nearly straight as the curvature is very
close to 0.

Example 12.5.17 Finding curvature.

Find where the curvature of r⃗(t) =
〈
t, t2, 2t3

〉
is maximized.

Solution. Weuse the third formula in Theorem12.5.11 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
〈
1, 2t, 6t2

〉
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×r⃗ ′′(t) =

〈
12t2,−12t, 2

〉
.
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Figure 12.5.18 Understanding the curvature of a curve in space
Thus

κ(t) =
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3

=

∥∥〈12t2,−12t, 2
〉∥∥

∥⟨1, 2t, 6t2⟩∥3

=

√
144t4 + 144t2 + 4(√
1 + 4t2 + 36t4

)3
While this is not a particularly “nice” formula, it does explicitly tell us
what the curvature is at a given t value. To maximize κ(t), we should
solve κ′(t) = 0 for t. This is doable, but very time consuming. Instead,
consider the graph of κ(t) as given in Figure 12.5.18(a). We see that
κ is maximized at two t values; using a numerical solver, we find these
values are t ≈ ±0.189. In Figure 12.5.18(b) we graph r⃗(t) and indicate
the points where curvature is maximized.
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12.5.3 Curvature and Motion
Let r⃗(t) be a position function of an object, with velocity v⃗(t) = r⃗ ′(t) and ac-
celeration a⃗(t) = r⃗ ′′(t). In Section 12.4 we established that acceleration is in
the plane formed by T⃗ (t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗ (t) + aNN⃗(t).

Theorem 12.4.15 gives formulas for aT and aN:

aT =
d

dt

(
∥v⃗(t)∥

)
and aN =

∥v⃗(t)× a⃗(t)∥
∥v⃗(t)∥

.

We understood that the amount of acceleration in the direction of T⃗ relates
only to how the speed of the object is changing, and that the amount of acceler-
ation in the direction of N⃗ relates to how the direction of travel of the object is
changing. (That is, if the object travels at constant speed, aT = 0; if the object
travels in a constant direction, aN = 0.)

In Equation (12.5.2) at the beginning of this section, we found s ′(t) = ∥v⃗(t)∥.
We can combine this fact with the above formula for aT to write

aT =
d

dt

(
∥v⃗(t)∥

)
=

d

dt

(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect
to time. We see once more that the component of acceleration in the direction
of travel relates only to speed, not to a change in direction.

Now compare the formula for aN above to the formula for curvature in The-
orem 12.5.11:

aN =
∥v⃗(t)× a⃗(t)∥

∥v⃗(t)∥
and κ =

∥r⃗ ′(t)× r⃗ ′′(t)∥
∥r⃗ ′(t)∥3

=
∥v⃗(t)× a⃗(t)∥

∥v⃗(t)∥3
.

Thus

aN = κ ∥v⃗(t)∥2

= κ
(
s ′(t)

)2
This last equation shows that the component of acceleration that changes

the object’s direction is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but tighten the
turn (i.e., increase κ), once again the door will push harder against you.

Putting our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)T⃗ (t) + κ ∥v⃗(t)∥2 N⃗(t).

This is not a particularly practicalway of finding aT andaN, but it reveals some
great concepts about how acceleration interacts with speed and the shape of a
curve.
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Example 12.5.19 Curvature and road design.

The minimum radius of the curve in a highway cloverleaf is determined
by the operating speed, as given in the table in Table 12.5.20. For each
curve and speed, compute aN.
Solution.

Table 12.5.20 Operating speed and minimum radius in highway clover-
leaf design

Operating
Speed (mph)

Minimum
Radius (ft)

35 310
40 430
45 540

Using Equation (12.5.4), we can compute the acceleration normal to the
curve in each case. We start by converting each speed from “miles per
hour” to “feet per second” by multiplying by 5280/3600.

35 mph, 310 ft⇒ 51.33ft/s, κ = 1/310

aN = κ ∥v⃗(t)∥2

=
1

310

(
51.33

)2
= 8.50ft/s2.

40 mph, 430 ft⇒ 58.67ft/s, κ = 1/430

aN =
1

430

(
58.67

)2
= 8.00ft/s2.

45 mph, 540 ft⇒ 66ft/s, κ = 1/540

aN =
1

540

(
66
)2

= 8.07ft/s2.

Note that each acceleration is similar; this is by design. Considering the
classic “Force=mass × acceleration” formula, this acceleration must be
kept small in order for the tires of a vehicle to keep a “grip” on the road. If
one travels on a turn of radius 310 ft at a rate of 50mph, the acceleration
is double, at 17.35 ft

s2 . If the acceleration is too high, the frictional force
created by the tiresmay not be enough to keep the car from sliding. Civil
engineers routinely compute a “safe” design speed, then subtract 5-10
mph to create the posted speed limit for additional safety.

We end this chapter with a reflection on what we’ve covered. We started
with vector-valued functions, which may have seemed at the time to be just an-
other way of writing parametric equations. However, we have seen that the
vector perspective has given us great insight into the behavior of functions and
the study of motion. Vector-valued position functions convey displacement, dis-
tance traveled, speed, velocity, acceleration and curvature information, each of
which has great importance in science and engineering.
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12.5.4 Exercises

Terms and Concepts

1. It is common to describe position in terms of both and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.
4. Describe in your own words what an “osculating circle” is.

5. Complete the identity: T⃗ ′(s) = N⃗(s).

6. Given a position function r⃗(t), how are aT and aN affected by the curvature?

Problems

Exercise Group. In the following exercises, a position function r⃗(t) is given, where t = 0 corresponds to the initial
position. Find the arc length parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩ 8. r⃗(t) = ⟨7 cos(t), 7 sin(t)⟩ .
9. r⃗(t) = ⟨3 cos(t), 3 sin(t), 2t⟩ 10. r⃗(t) = r⃗(t) = ⟨5 cos(t), 13 sin(t), 12 cos(t)⟩ .

Exercise Group. In the following exercises, a curve C is described along with 2 points on C.

(a) Using a sketch, determine at which of these points the curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the 2 given points.

11. C is defined by y = x3 − x; points given at
x = 0 and x = 1/2.

12. C is defined by y = 1
x2+1 ; points given at x = 0

and x = 2.
The curvature at x = 0 is (□ greater than

□ equal to □ less than) the curvature at
x = 2.

κ(0) =

13. C is defined by y = cos(x); points given at
x = 0 and x = π/2.

14. C is defined by y =
√

1− x2 on (−1, 1); points
given at x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos(t), sin(2t)⟩ ; points
given at t = 0 and t = π/4.

The curvature at t = 0 is (□ greater than
□ equal to □ less than) the curvature at
t = π/4.

κ(0) =

16. C is defined by r⃗(t) =
〈
cos2(t), sin(t) cos(t)

〉
;

points given at t = 0 and t = π/3.

17. C is defined by r⃗(t) =
〈
t2 − 1, t3 − t

〉
; points

given at t = 0 and t = 5.
18. C is defined by r⃗(t) = ⟨tan(t), sec(t)⟩ ; points

given at t = 0 and t = π/6.
The curvature at t = 0 is (□ greater than

□ equal to □ less than) the curvature at
t = π/6.

κ(0) =

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩;
points given at t = 0 and t = 1.

20. C is defined by r⃗(t) =
〈
t3 − t, t3 − 4, t2 − 1

〉
;

points given at t = 0 and t = 1.
The curvature at t = 0 is (□ greater than

□ equal to □ less than) the curvature at
t = 1.

κ(0) =
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21. C is defined by r⃗(t) = ⟨3 cos(t), 3 sin(t), 2t⟩;
points given at t = 0 and t = π/2.

22. C is defined by
r⃗(t) = ⟨5 cos(t), 13 sin(t), 12 cos(t)⟩ . Points
given at t = 0 and t = π/2.

The curvature at t = 0 is (□ greater than
□ equal to □ less than) the curvature at
t = π/2.

κ(0) =

Exercise Group. Find the value of x or t where curvature is maximized.
23. y = 1

6x
3 24. y = sin(x)

25. r⃗(t) =
〈
t2 + 2t, 3t− t2

〉
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

Exercise Group. Find the radius of curvature at the indicated value.
27. y = tan(x), at x = π/4 28. y = x2 + x− 3 at x = 1

29. r⃗(t) = ⟨cos(t), sin(3t)⟩, at t = 0 30. r⃗(t) = ⟨5 cos(3t), t⟩ at t = 0

Exercise Group. Find the equation of the osculating circle to the curve at the indicated t-value.
31. r⃗(t) =

〈
t, t2

〉
, at t = 0 32. r⃗(t) = ⟨3 cos(t), sin(t)⟩ at t = 0

33. r⃗(t) = ⟨3 cos(t), sin(t)⟩, at t = π/2 34. r⃗(t) =
〈
t2 − t, t2 + t

〉
at t = 0



Chapter 13

Introduction to Functionsof Sev-
eral Variables

A function of the form y = f(x) is a function of a single variable; given a value
of x, we can find a value y. Even the vector-valued functions of Chapter 12 are
single-variable functions; the input is a single variable though the output is a
vector.

There are many situations where a desired quantity is a function of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s batting average, one
needs to know the number of hits and the number of at-bats.

This chapter introducesmultivariable functions, that is, functions with more
than one input. A more detailed study of differential calculus for multivariable
functions continues in Chapter 14.

13.1 Introduction to Multivariable Functions

Definition 13.1.1 Function of Two Variables.

Let D be a subset of R2. A function f of two variables is a rule that
assigns each pair (x, y) inD a value z = f(x, y) in R. D is the domain
of f ; the set of all outputs of f is the range.

The videos in the last three chap-
ters were actually the first to be
recorded. At thetime, the intent
was simply to provide video con-
tent for a course: Math 2580, Cal-
culus IV, at theUniversity of Leth-
bridge. Theproject to create videos
directly aligned toAPEX Calculus
came later.

As a result, the videos included
here do not align perfectly with
the textbook. In particular, ex-
amples done in the videos are not
the sameas examples done in the
book.

youtu.be/watch?v=w4K2L9-OPk8

Figure 13.1.2 Video introduction to
multivariable function notation

Example 13.1.3 Understanding a function of two variables.

Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find
the domain and range of f .
Solution. Using the definition f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1

f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2

for which f is defined. In this example, f is defined for all pairs (x, y),
so the domainD of f is R2.
The output of f can be made as large or small as possible; any real num-

727

https://www.youtube.com/watch?v=w4K2L9-OPk8
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ber r can be the output. (In fact, given any real number r, f(0,−r) = r.)
So the rangeR of f is R.

Example 13.1.4 Understanding a function of two variables.

Let f(x, y) =
√
1− x2

9 − y2

4 . Find the domain and range of f .

Solution. The domain is all pairs (x, y) allowable as input in f . Because
of the square root, we need (x, y) such that 0 ≤ 1− x2

9 − y2

4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equation describes an ellipse and its interior as shown in Fig-
ure 13.1.5. We can represent the domainD graphically with the figure;
in set notation, we can writeD = {(x, y)| x2

9 + y2

4 ≤ 1}.
x2

9
+

y2

4
= 1

−4 −2 2 4

−4

−2

2

4

x

y

Figure 13.1.5 Illustrating the domain
of f(x, y) in Example 13.1.4

The range is the set of all possible output values. The square root en-
sures that all output is ≥ 0. Since the x and y terms are squared, then
subtracted, inside the square root, the largest output value comes at
x = 0, y = 0: f(0, 0) = 1. Thus the rangeR is the interval [0, 1].

13.1.1 Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f . This creates a surface in space.

(a) (b)

Figure 13.1.6 Graphing a function of two variables
One can begin sketching a graph by plotting points, but this has limitations.

Consider Figure 13.1.6(a)where 25points havebeenplottedof f(x, y) = 1
x2+y2+1 .

More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 13.1.6(b) which does a far better job of illustrating
the behavior of f .
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While technology is readily available to help us graph functions of two vari-
ables, there is still a paper-and-pencil approach that is useful to understand and
master as it, combined with high-quality graphics, gives one great insight into
the behavior of a function. This technique is known as sketching level curves.

13.1.2 Level Curves
It may be surprising to find that the problemof representing a three dimensional
surface on paper is familiar to most people (they just don’t realize it). Topo-
graphical maps, like the one shown in Figure 13.1.7, represent the surface of
Earth by indicating points with the same elevation with contour lines. The ele-
vations marked are equally spaced; in this example, each thin line indicates an
elevation change in 50ft increments and each thick line indicates a change of
200ft. When lines are drawn close together, elevation changes rapidly (as one
does not have to travel far to rise 50ft). When lines are far apart, such as near
“Aspen Campground,” elevation changes more gradually as one has to walk far-
ther to rise 50ft.

Figure 13.1.7 A topographical map displays elevation by drawing contour lines,
along with the elevation is constant. USGS 1:24000-scale Quadrangle for
Chrome Mountain, MT 1987.

Given a function f(x, y), we can draw a “topographical map” of the graph
z = f(x, y) by drawing level curves (or, contour lines). A level curve at z = c is
a curve in the xy-plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing. Ex-
amples will help one understand this concept.

Example 13.1.8 Drawing Level Curves.

Let f(x, y) =
√

1− x2

9 − y2

4 . Find the level curves of f for c = 0, 0.2,
0.4, 0.6, 0.8 and 1.
Solution. Consider first c = 0. The level curve for c = 0 is the set of all
points (x, y) such that 0 =

√
1− x2

9 − y2

4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0) with horizontal major axis of length 6 and
minor axis of length 4. Thus for any point (x, y) on this curve, f(x, y) =
0.
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Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =

√
1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when
c = 1; there the ellipse is just the point (0, 0).
The level curves are shown in Figure 13.1.9(a). Note how the level curves
for c = 0 and c = 0.2 are very, very close together: this indicates that f
is growing rapidly along those curves.

−1 1 2−2 3−3

−1

1

−2

2

c = 1

c = 0.6

x

y

(a) (b)

Figure 13.1.9 Graphing the level curves in Example 13.1.8
In Figure 13.1.9(b), the curves are drawn on a graph of f in space. Note
how the elevations are evenly spaced. Near the level curves of c = 0
and c = 0.2 we can see that f indeed is growing quickly.

Example 13.1.10 Analyzing Level Curves.

Let f(x, y) = x+y
x2+y2+1 . Find the level curves for z = c.

Solution. We begin by setting f(x, y) = c for an arbitrary c and seeing
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if algebraic manipulation of the equation reveals anything significant.

x+ y

x2 + y2 + 1
= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet
clear. By completing the square, we can obtain:(

x− 1

2c

)2

+

(
y − 1

2c

)2

=
1

2c2
− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where

|c| < 1/
√
2. The level curves for c = ±0.2, ±0.4 and±0.6 are sketched

in Figure 13.1.11(a). To help illustrate “elevation,” we use thicker lines
for c values near 0, and dashed lines indicate where c < 0.
There is one special level curve, when c = 0. The level curve in this
situation is x+ y = 0, the line y = −x.
In Figure 13.1.11(b) we see a graph of the surface. Note how the y-axis is
pointing away from the viewer to more closely resemble the orientation
of the level curves in Figure 13.1.11(a).

c = 0

c = 0.2

c = 0.4

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(a)

(b)

Figure 13.1.11 Graphing the level curves in Example 13.1.10
Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x
without elevation change, though the level curve does.

13.1.3 Functions of Three Variables
We extend our study of multivariable functions to functions of three variables.
(One can make a function of as many variables as one likes; we limit our study
to three variables.)

Definition 13.1.12 Function of Three Variables.

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) in D a value w = f(x, y, z) in R. D is the
domain of f ; the set of all outputs of f is the range.

Note how this definition closely resembles that of Definition 13.1.1.
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Example 13.1.13 Understanding a function of three variables.

Let f(x, y, z) = x2+z+3 sin(y)
x+2y−z . Evaluate f at the point (3, 0, 2) and find

the domain and range of f .
Solution. To evaluate the function we simply set x = 3, y = 0, and
z = 3 in the definition of f :

f(3, 0, 2) =
32 + 2 + 3 sin(0)
3 + 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples
(x, y, z) for which f(x, y, z) is defined. As we cannot divide by 0, we
find the domainD is

D = {(x, y, z) |x+ 2y − z ̸= 0}.

We recognize that the set of all points inR3 thatare not inD formaplane
in space that passes through the origin (with normal vector ⟨1, 2,−1⟩).
We determine the range R is R; that is, all real numbers are possible
outputs of f . There is no set way of establishing this. Rather, to get
numbers near 0 we can let y = 0 and choose z ≈ −x2. To get numbers
of arbitrarily large magnitude, we can let z ≈ x+ 2y.

13.1.4 Level Surfaces
It is very difficult to produce a meaningful graph of a function of three variables.
A function of one variable is a curve drawn in 2 dimensions; a function of two
variables is a surface drawn in 3 dimensions; a function of three variables is a
hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface atw = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 13.1.14 Finding level surfaces.

If a point source S is radiating energy, the intensity I at a given point P
in space is inversely proportional to the square of the distance between
S and P . That is, when S = (0, 0, 0), I(x, y, z) = k

x2+y2+z2 for some
constant k.
Let k = 1; find the level surfaces of I .
Solution. We can (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its inten-
sity will be the same at all points equidistant from the origin. That is, at
any point on the surface of a sphere centered at the origin, the intensity
should be the same. Therefore, the level surfaces are spheres.
We now find this mathematically. The level surface at I = c is defined
by

c =
1

x2 + y2 + z2
.
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A small amount of algebra reveals

x2 + y2 + z2 =
1

c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c,

centered at the origin.

c r

16 0.25
8 0.35
4 0.5
2 0.71
1 1
0.5 1.41
0.25 2
0.125 2.83
0.0625 4

Figure 13.1.15 A table of c values
and the corresponding radius r of the
spheres of constant value in Exam-
ple 13.1.14

Figure 13.1.15 gives a table of the radii of the spheres for given c values.
Normally one would use equally spaced c values, but these values have
been chosen purposefully. At a distance of 0.25 from the point source,
the intensity is 16; to move to a point of half that intensity, one just
moves out 0.1 to 0.35 — not much at all. To again halve the intensity,
one moves 0.15, a little more than before.
Note how each time the intensity if halved, the distance required to
move away grows. We conclude that the closer one is to the source,
the more rapidly the intensity changes.

In the next section we apply the concepts of limits to functions of two or
more variables.
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13.1.5 Exercises

Terms and Concepts

1. Give two examples (other than those given in the text) of “real world” functions that require more than one
input.

2. The graph of a function of two variables is a .

3. Most people are familiar with the concept of level curves in the context of maps.

4. T/F: Along a level curve, the output of a function does not change.

5. The analogue of a level curve for functions of three variables is a level .

6. What does it mean when level curves are close together? Far apart?

Problems

Exercise Group. In the following exercises, give the domain and range of the multivariable function.
7. f(x, y) = x2 + y2 + 2 8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y 10. f(x, y) =
1

x+ 2y

11. f(x, y) =
1

x2 + y2 + 1

12. f(x, y) = sin(x) cos(y)

13. f(x, y) =
√
9− x2 − y2 14. f(x, y) =

1√
x2 + y2 − 9

Exercise Group. In the following exercises, describe in words and sketch the level curves for the function and given
c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2 16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2 18. f(x, y) =
1− x2 − y2

2y − 2x
; c = −2, 0, 2

19. f(x, y) =
2x− 2y

x2 + y2 + 1
; c = −1, 0, 1 20. f(x, y) =

y − x3 − 1

x
; c = −3,−1, 0, 1, 3

21. f(x, y) =
√
x2 + 4y2; c = 1, 2, 3, 4 22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

Exercise Group. In the following exercises, give the domain and range of the functions of three variables.

23. f(x, y, z) =
x

x+ 2y − 4z 24. f(x, y, z) =
1

1− x2 − y2 − z2

25. f(x, y, z) =
√
z − x2 + y2 26. f(x, y, z) = z2 sin(x) cos(y)

Exercise Group. In the following exercises, describe the level surfaces of the given functions of three variables.
27. f(x, y, z) = x2 + y2 + z2 28. f(x, y, z) = z − x2 + y2

29. f(x, y, z) =
x2 + y2

z
30. f(x, y, z) =

z

x− y

31. Compare the level curves of Exercises 21 and 22.
How are they similar, and how are they
different? Each surface is a quadric surface;
describe how the level curves are consistent
with what we know about each surface.



13.2. LIMITS AND CONTINUITY OF MULTIVARIABLE FUNCTIONS 735

13.2 Limits and Continuity of Multivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definitions for open and closed sets in the xy-plane.

youtu.be/watch?v=GIamhgb3Ilk

Figure 13.2.1 Introducing limits and
continuity for functions of several
variables

13.2.1 Open and Closed Subsets in Higher Dimensions

Definition 13.2.2 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets.

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y − y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in
S.
A point P in S is an interior point of S if there is an open disk centered
at P that contains only points in S.
A set S is open if every point in S is an interior point.
A set S is closed if it contains all of its boundary points.
A setS isbounded if there is anM > 0 such that the open disk, centered
at the origin with radius M , contains S. A set that is not bounded is
unbounded.

Figure 13.2.3 shows several sets in the xy-plane. In each set, point P1 lies
on the boundary of the set as all open disks centered there contain both points
in, and not in, the set. In contrast, point P2 is an interior point for there is an
open disk centered there that lies entirely within the set.

P1

P2

x

y

(a)

P1

P2

x

y

(b)

P1

P2

x

y

(c)

Figure 13.2.3 Illustrating open and closed sets in the xy-plane
The set depicted in Figure 13.2.3(a) is a closed set as it contains all of its

boundary points. The set in Figure 13.2.3(b) is open, for all of its points are
interior points (or, equivalently, it does not contain any of its boundary points).
The set in Figure 13.2.3(c) is neither open nor closed as it contains some of its
boundary points.

Example 13.2.4 Determining open/closed, bounded/unbounded.

Determine if the domain of the function f(x, y) =
√
1− x2/9− y2/4

is open, closed, or neither, and if it is bounded.

https://www.youtube.com/watch?v=GIamhgb3Ilk
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Solution. This domain of this function was found in Example 13.1.4
to be D = {(x, y) | x2

9 + y2

4 ≤ 1}, the region bounded by the ellipse
x2

9 + y2

4 = 1. Since the region includes the boundary (indicated by
the use of “≤”), the set contains all of its boundary points and hence
is closed. The region is bounded as a disk of radius 4, centered at the
origin, containsD.

Example 13.2.5 Determining open/closed, bounded/unbounded.

Determine if the domain of f(x, y) = 1
x−y is open, closed, or neither.

Solution. As we cannot divide by 0, we find the domain to be D =
{(x, y) |x − y ̸= 0}. In other words, the domain is the set of all points
(x, y) not on the line y = x.

x

y

Figure 13.2.6 Sketching the domain of
the function in Example 13.2.5

The domain is sketched in Figure 13.2.6. Note howwe can draw an open
disk around any point in the domain that lies entirely inside the domain,
and also note how the only boundary points of the domain are the points
on the line y = x. We conclude the domain is an open set. The set is
unbounded.

13.2.2 Limits
Recall a pseudo-definition of the limit of a function of one variable:

“ lim
x→c

f(x) = L”
means that if x is “really close” to c, then f(x) is “really close” toL. A similar

pseudo-definition holds for functions of two variables. We’ll say that
“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is
really close to L.” The formal definition is given below.

While our first limit definition
was defined over an open inter-
val, we now define limits over a
setS in the plane (whereS does
not have to be open). As planar
sets canbe farmore complicated
than intervals, our definition adds
the restriction “. . . where every
opendisk centered atP contains
points inS other thanP .” In this
text, all sets we’ll consider will
satisfy this condition andwewon’t
bother to check; it is included in
the definition for completeness.

Definition 13.2.7 Limit of a Function of Two Variables.

Let S be a set containing P = (x0, y0) where every open disk centered
at P contains points in S other than P , let f be a function of two vari-
ables defined on S, except possibly at P , and let L be a real number.
The limit of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y)
in S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centered at
(x0, y0) with radius δ, then |f(x, y)− L| < ε.

The concept behind Definition 13.2.7 is sketched in Figure 13.2.8. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0)
in the xy-plane with radius δ, then f(x, y) should be within ε of L.

Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Figure 13.2.8 Illustrating the defini-
tion of a limit. The open disk in the
xy-plane has radius δ. Let (x, y) be
any point in this disk; f(x, y) is within
ε of L.
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Theorem 13.2.9 Basic Limit Properties of Functions of Two Variables.

Let b, x0, y0, L and K be real numbers, let n be a positive integer, and
let f and g be functions with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. Identity lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L±K

4. Scalar Multiples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. Quotients: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combinedwith Theorems1.3.4 and 1.3.7 of Section1.3, allows
us to evaluate many limits.

Example 13.2.10 Evaluating a limit.

Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy

x2 + y2

Solution.

1. The aforementioned theorems allow us to simply evaluate y/x +
cos(xy) when x = 1 and y = π. If an indeterminate form is
returned, we must do more work to evaluate the limit; otherwise,
the result is the limit. Therefore

lim
(x,y)→(1,π)

y

x
+ cos(xy) =

π

1
+ cos(π)

= π − 1.

2. We attempt to evaluate the limit by substituting 0 in for x and y,
but the result is the indeterminate form “0/0.” To evaluate this
limit, we must “do more work,” but we have not yet learned what
“kind” of work to do. Therefore we cannot yet evaluate this limit.

When dealing with functions of a single variable we also considered one-
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sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c
from either direction, the left or the right.

In the plane, there are infinitely many directions from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a particular direction, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiting val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the left and right hand

limits of single variable functions not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 13.2.11 Showing limits do not exist.

1. Show lim
(x,y)→(0,0)

3xy
x2+y2 does not exist by finding the limits along

the lines y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+y does not exist by finding the limit along

the path y = − sin(x).

Solution.

1. Evaluating lim
(x,y)→(0,0)

3xy
x2+y2 along the lines y = mx means re-

place all y’s withmx and evaluating the resulting limit:

lim
(x,mx)→(0,0)

3x(mx)

x2 + (mx)2
= lim

x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m

m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit
for each choice ofm. That is, along different lines we get differing
limiting values, meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does

not exist by finding the limit along the path y = − sin(x). First,
however, consider the limits found along the lines y = mx as
done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)

x(m+ 1)

= lim
x→0

sin(mx2)

x
· 1

m+ 1
.
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By applying L’Hospital’s Rule, we can show this limit is 0 except
whenm = −1, that is, along the line y = −x. This line is not in
the domain of f , so we have found the following fact: along every
line y = mx in the domain of f , lim

(x,y)→(0,0)
f(x, y) = 0. Now

consider the limit along the path y = − sin(x):

lim
(x,− sin(x))→(0,0)

sin
(
− x sin(x)

)
x− sin(x)

= lim
x→0

sin
(
− x sin(x)

)
x− sin(x)

Now apply L’Hospital’s Rule twice:

= lim
x→0

cos
(
− x sin(x)

)
(− sin(x)− x cos(x))

1− cos(x)
(0/0)

= lim
x→0

− sin
(
− x sin(x)

)
(− sin(x)− x cos(x))2 + cos

(
− x sin(x)

)
(−2 cos(x) + x sin(x))

sin(x)
.

This last limit is of the form “2/0”, which suggests that the limit
does not exist. Step back and consider what we have just dis-
covered. Along any line y = mx in the domain of the f(x, y),
the limit is 0. However, along the path y = − sin(x), which lies
in the domain of f(x, y) for all x ̸= 0, the limit does not exist.
Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+y does not exist.

Example 13.2.12 Finding a limit.

Let f(x, y) = 5x2y2

x2+y2 . Find lim
(x,y)→(0,0)

f(x, y).

Solution. It is relatively easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demon-
strated in the previous example, but it tells us that if the limit does exist
then it must be 0.
To prove the limit is 0, we apply Definition 13.2.7. Let ε > 0 be given.
We want to find δ > 0 such that if

√
(x− 0)2 + (y − 0)2 < δ, then

|f(x, y)− 0| < ε.
Set δ <

√
ε/5. Note that

∣∣∣ 5y2

x2+y2

∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.

Let
√
(x− 0)2 + (y − 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2

x2 + y2
− 0

∣∣∣∣
=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√

(x− 0)2 + (y − 0)2 < δ then |f(x, y)− 0| < ε, which is what
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we wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2+y2 = 0.

13.2.3 Continuity
Definition 1.5.1 defines what it means for a function of one variable to be contin-
uous. In brief, it meant that the graph of the function did not have breaks, holes,
jumps, etc. We define continuity for functions of two variables in a similar way
as we did for functions of one variable.

Definition 13.2.13 Continuous.

Let a function f(x, y) be defined on a setS containing the point (x0, y0).

1. f is continuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is continuous on S if f is continuous at all points in S. If f is
continuous at all points in R2, we say that f is continuous every-
where.

Example 13.2.14 Continuity of a function of two variables.

Let f(x, y) =

{
cos(y) sin(x)

x x ̸= 0

cos(y) x = 0
. Is f continuous at (0, 0)? Is f

continuous everywhere?
Solution. To determine if f is continuous at (0, 0), we need to compare

lim
(x,y)→(0,0)

f(x, y) to f(0, 0).

Applying the definition of f , we see that f(0, 0) = cos(0) = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). Substituting 0 for x and y

in (cos(y) sin(x))/x returns the indeterminate form “0/0”, so we need
to do more work to evaluate this limit.
Consider two related limits: lim

(x,y)→(0,0)
cos(y) and lim

(x,y)→(0,0)

sin(x)
x . The

first limit does not contain x, and since cos(y) is continuous,

lim
(x,y)→(0,0)

cos(y) = lim
y→0

cos(y) = cos(0) = 1.

The second limit does not contain y. By Theorem 1.3.17 we can say

lim
(x,y)→(0,0)

sin(x)
x

= lim
x→0

sin(x)
x

= 1.

Finally, Theorem 13.2.9 of this section states that we can combine these
two limits as follows:

lim
(x,y)→(0,0)

cos(y) sin(x)
x

= lim
(x,y)→(0,0)

(cos(y))
(
sin(x)
x

)
=

(
lim

(x,y)→(0,0)
cos(y)

)(
lim

(x,y)→(0,0)

sin(x)
x

)
= (1)(1)

= 1.
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We have found that lim
(x,y)→(0,0)

cos(y) sin(x)
x = f(0, 0), so f is continuous

at (0, 0).
A similar analysis shows that f is continuous at all points in R2. As long
as x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analy-
sis shows that the limit is cos(y). Thus we can say that f is continuous
everywhere. A graph of f is given in Figure 13.2.15. Notice how it has
no breaks, jumps, etc.

Figure 13.2.15 A graph of f(x, y) in
Example 13.2.14

The following theorem is very similar to Theorem 1.5.10, giving us ways to
combine continuous functions to create other continuous functions.

Theorem 13.2.16 Properties of Continuous Functions.

Let f and g be continuous on a set S, let c be a real number, and let n be
a positive integer. The following functions are continuous on S.

1. Sums/Differences: f ± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g { (as longs as g ̸= 0 on S)}

5. Powers: fn

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd, then true for

all values of f on S.)

7. Compositions:Adjust the definitions of f and g to: Let f be continu-
ous on S, where the range of f on S is J , and let g be a single vari-
able function that is continuous on J . Then g ◦ f , i.e., g(f(x, y)),
is continuous on S.

Example 13.2.17 Establishing continuity of a function.

Let f(x, y) = sin(x2 cos(y)). Show f is continuous everywhere.
Solution. We will apply both Theorems 1.5.10 and 13.2.16. Let
f1(x, y) = x2. Since y is not actually used in the function, and polyno-
mials are continuous (by Theorem 1.5.10), we conclude f1 is continuous
everywhere. A similar statement can be made about f2(x, y) = cos(y).
Part 3 of Theorem 13.2.16 states that f3 = f1 · f2 is continuous every-
where, and Part 7 of the theorem states the composition of sine with
f3 is continuous: that is, sin(f3) = sin(x2 cos(y)) is continuous every-
where.

13.2.4 Functions of Three Variables
The definitions and theorems given in this section can be extended in a natural
way to definitions and theorems about functions of three (or more) variables.
We cover the key concepts here; some terms fromDefinitions 13.2.2 and 13.2.13
are not redefined but their analogous meanings should be clear to the reader.
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Definition 13.2.18 Open Balls, Limit, Continuous.

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set
of all points (x, y, z) such that√

(x− x0)2 + (y − y0)2 + (z − z0)2 = r.

2. Let D be a set in R3 containing (x0, y0, z0) where every open
ball centered at (x0, y0, z0) contains points of D other than
(x0, y0, z0), and let f(x, y, z) be a function of three variables de-
fined on D, except possibly at (x0, y0, z0). The limit of f(x, y, z)
as (x, y, z) approaches (x0, y0, z0) is L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all
(x, y, z) inD, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball
centered at (x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). We
say f is continuous at (x0, y0, z0) if

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = f(x0, y0, z0).

If f is continuous at all points inD, we say f is continuous onD.

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 13.2.16 also applies to function of three or more
variables, allowing us to say that the function

f(x, y, z) =
ex

2+y
√
y2 + z2 + 3

sin(xyz) + 5

is continuous everywhere.
When considering single variable functions, we studied limits, then continu-

ity, then the derivative. In our current study of multivariable functions, we have
studied limits and continuity. In the next section we study derivation, which
takes on a slight twist as we are in a multivariable context.
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13.2.5 Exercises

Terms and Concepts

1. Describe in your own words the difference between the boundary and interior points of a set.
2. Use your own words to describe (informally) what lim

(x,y)→(1,2)
f(x, y) = 17means.

3. Give an example of a closed, bounded set.
4. Give an example of a closed, unbounded set.
5. Give an example of a open, bounded set.
6. Give an example of a open, unbounded set.

Problems

Exercise Group. A set S is given.

(a) Give one boundary point and one interior point, when possible, of S.

(b) State whether S is open, closed, or neither.

(c) State whether S is bounded or unbounded.

7. S =

{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y − 3)2

9
≤ 1

}
8. S =

{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) |x2 + y2 = 1

}
10. S = {(x, y) | y > sin(x)}.

Exercise Group. In the following exercises:

(a) Find the domainD of the given function.

(b) State whetherD is an open or closed set.

(c) State whetherD is bounded or unbounded.

11. f(x, y) =
√
9− x2 − y2 12. f(x, y) =

√
y − x2

13. f(x, y) =
1√

y − x2
14. f(x, y) =

x2 − y2

x2 + y2

Exercise Group. In the following exercises, a limit is given. Evaluate the limit along the paths given, then state why
these results show the given limit does not exist.

15. lim
(x,y)→(0,0)

x2−y2

x2+y2

(a) Along the path y = 0.

(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+y
x−y

Along the path y = mx.

17. lim
(x,y)→(0,0)

xy−y2

y2+x

(a) Along the path y = mx.

(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.

(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+y−3
x2−1

(a) Along the path y = 2.

(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin(x)
cos(y)

(a) Along the path x = π.

(b) Along the path y = x− π/2.
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13.3 Partial Derivatives

Let y be a function of x. We have studied in great detail the derivative of y
with respect to x, that is, dy

dx , which measures the rate at which y changes with
respect to x. Consider now z = f(x, y). It makes sense to want to know how
z changes with respect to x and/or y. This section begins our investigation into
these rates of change.

youtu.be/watch?v=uApAQNSb5TQ

Figure 13.3.1Motivating the concept
of the partial derivative

13.3.1 First-order partial derivatives

Consider the function f(x, y) = x2 + 2y2, as graphed in Figure 13.3.2(a). By
fixing y = 2, we focus our attention to all points on the surface where the y-
value is 2, shown in both Figure 13.3.2(a) and Figure 13.3.2(b). These points
form a curve in the plane y = 2: z = f(x, 2) = x2 + 8 which defines z as a
function of just one variable. We can take the derivative of z with respect to x
along this curve and find equations of tangent lines, etc.

(a) (b)

Figure 13.3.2 By fixing y = 2, the surface z = f(x, y) = x2 + 2y2 is a curve in
space

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit-based definition first, then show how to compute these partial derivatives
without directly taking limits.

Alternate notations for fx(x, y)
include:

∂

∂x
f(x, y),

∂f

∂x
,
∂z

∂x
, and zx,

with similar notations for fy(x, y).
For ease of notation, fx(x, y) is
often abbreviated fx.

Definition 13.3.3 Partial Derivative.

Let z = f(x, y) be a continuous function on a set S in R2.

1. The partial derivative of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
.

2. The partial derivative of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

https://www.youtube.com/watch?v=uApAQNSb5TQ
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Example 13.3.4 Computing partial derivatives with the limit definition.

Let f(x, y) = x2y + 2x+ y3. Find fx(x, y) using the limit definition.
Solution. Using Definition 13.3.3, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2y + 2(x+ h) + y3 − (x2y + 2x+ y3)

h

= lim
h→0

x2y + 2xhy + h2y + 2x+ 2h+ y3 − (x2y + 2x+ y3)

h

= lim
h→0

2xhy + h2y + 2h

h

= lim
h→0

2xy + hy + 2

= 2xy + 2.

We have found fx(x, y) = 2xy + 2.

Example 13.3.4 found a partial derivative using the formal, limit-based de-
finition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x, y), we hold y fixed — it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treating

y as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treating y as a

constant. More examples will help make this clear.

Example 13.3.5 Finding partial derivatives.

Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin(x)

3. f(x, y) = ex
2y3
√
x2 + 1

Solution.

1. We have f(x, y) = x3y2+5y2−x+7. Begin with fx(x, y). Keep
y fixed, treating it as a constant or coefficient, as appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero. To compute fy(x, y),
we hold x fixed:

fy(x, y) = 2x3y + 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin(x). Begin with fx(x, y). We
need to apply the Chain Rule with the cosine term; y2 is the coef-
ficient of the x-term inside the cosine function.

fx(x, y) = − sin(xy2)(y2) + cos(x) = −y2 sin(xy2) + cos(x).
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To find fy(x, y), note that x is the coefficient of the y2 term inside
of the cosine term; also note that since x is fixed, sin(x) is also
fixed, and we treat it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3√

x2 + 1. Beginning with fx(x, y), note
how we need to apply the Product Rule.

fx(x, y) = ex
2y3

(2xy3)
√
x2 + 1 + ex

2y3 1

2

(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√
x2 + 1 +

xex
2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Prod-
uct Rule; since

√
x2 + 1 does not contain y, we treat it as fixed

and hence becomes a coefficient of the ex
2y3

term.

fy(x, y) = ex
2y3

(3x2y2)
√

x2 + 1 = 3x2y2ex
2y3
√

x2 + 1.
youtu.be/watch?v=R3PXGwjOmtw

Figure 13.3.6 Additional partial deriv-
ative computation examples

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivativemeans. Given z = f(x, y), fx(x, y)measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar tomeasuring zx: you aremoving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

youtu.be/watch?v=jvnTNe4hHL8

Figure 13.3.7 Interpreting partial de-
rivatives

The following example helps us visualize this more.

Example 13.3.8 Evaluating partial derivatives.

Let z = f(x, y) = −x2− 1
2y

2+xy+10. Find fx(2, 1) and fy(2, 1) and
interpret their meaning.
Solution. We begin by computing fx(x, y) = −2x+ y and fy(x, y) =
−y + x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these
numbers mean?
Consider fx(2, 1) = −3, along with Figure 13.3.9(a). If one “stands”
on the surface at the point (2, 1, 7.5) and moves parallel to the x-axis
(i.e., only the x-value changes, not the y-value), then the instantaneous
rate of change is −3. Increasing the x-value will decrease the z-value;
decreasing the x-value will increase the z-value.

https://www.youtube.com/watch?v=R3PXGwjOmtw
https://www.youtube.com/watch?v=jvnTNe4hHL8
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(a) (b)

Figure 13.3.9 Illustrating the meaning of partial derivatives
Now consider fy(2, 1) = 1, illustrated in Figure 13.3.9(b). Moving along
the curve drawn on the surface, i.e., parallel to the y-axis and not chang-
ing the x-values, increases the z-value instantaneously at a rate of 1.
Increasing the y-value by 1 would increase the z-value by approximately
1.
Since the magnitude of fx is greater than the magnitude of fy at (2, 1),
it is “steeper” in the x-direction than in the y-direction.

13.3.2 Tangent Planes
Anotherway to interpret partial derivatives is in terms of the tangent plane. Con-
sider the graph of a function f(x, y), such as the one in Figure 13.3.2. Setting
x = a, y = b defines a point (a, b, f(a, b)) on the graph. Through the point
(a, b), we have the lines x = a+ s, y = b, and x = a, y = b+ t, parallel to the
x and y axes, respectively (where s, t are parameters).

Using the function f(x, y) we define two vector-valued functions:

r⃗1(s) = ⟨a+ s, b, f(a+ s, b)⟩
r⃗2(t) = ⟨a, b+ t, f(a, b+ t)⟩ .

Both vector-valued functions define space curves that lie on the surface z =
f(x, y), and these curves intersect at the point (a, b, f(a, b)), when s = t = 0.

Now consider computing r⃗′1(s). The first two components of this derivative
are found in a straightforwardmanner: they are 1 and 0, respectively. To find the
third component of the derivative, notice that in r⃗1(s)we vary thex-component
of f while holding the y-component constant. Using the Chain Rule and Defin-
ition 13.3.3, we find that the third component is fx(a + s, b). Altogether, we
have

r⃗′1(s) = ⟨1, 0, fx(a+ s, b)⟩ .
Evaluating this at s = 0 gives

v⃗ = r⃗′1(0) = ⟨1, 0, fx(a, b)⟩ .

We can perform a similar process with r⃗2(t), ultimately leading to

w⃗ = r⃗′2(0) = ⟨0, 1, fy(a, b)⟩ .

From Section 12.2, we know that r⃗′1(0) defines a tangent vector to the curve
r⃗1(s) when s = 0, and similarly, r⃗′2(0) defines a tangent vector to the curve
r⃗2(t) when t = 0.
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It seems reasonable that any vector that is tangent to these curves, which lie
on our surface, should also be considered tangent to that surface. The vectors v⃗
and w⃗ are therefore tangent to z = f(x, y) at (a, b, f(a, b)), and they are defi-
nitely not parallel. From Section 11.6 we know that any two non-parallel vectors
at a point define a plane through that point. We also know that taking the cross
product of these two vectors gives us a normal vector: the cross product gives
us

n⃗ = v⃗ × w⃗ = ⟨−fx(a, b),−fy(a, b), 1⟩ .

The equation of the plane through (a, b, f(a, b)) with normal vector n⃗ =
⟨−fx(a, b),−fy(a, b), 1⟩ is

−fx(a, b)(x− a)− fy(a, b)(y − b) + (z − f(a, b)) = 0.

It is customary to solve for z in this equation and make the following definition.

Definition 13.3.10

Let f(x, y) be a function whose first-order partial derivatives exist at
(a, b). The tangent plane to the surface z = f(x, y) at the point
(a, b, f(a, b)) is the plane defined by the equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Example 13.3.11 Finding a tangent plane equation.

Find the equation of tangent plane to the surface z = x2 + 3y2 at
(x, y) = (1,−1).
Solution. Our function is f(x, y) = x2 + 3y2, and we have f(1,−1) =
4, so the point on the surface is (1,−1, 4). The partial derivatives are
fx(x, y) = 2x and fy(x, y) = 6y, so fx(1,−1) = 2, fy(1,−1) = −6.
Using Definition 13.3.10, our plane is given by

z = 4 + 2(x− 1)− 6(y + 1).

Notice the similarity between the tangent plane equation inDefinition13.3.10
and the single variable tangent line equation y = f(c) + f ′(c)(x− c). As with
functions of one variable, this suggests a connection between derivatives and
linear approximation. We explore this connection in Section 14.1, where we’ll
see that Definition 13.3.10 should be strengthed to require that the partial de-
rivatives of f be continuous.

13.3.3 Second-order partial derivatives
Let z = f(x, y). We have learned to find the partial derivatives fx(x, y) and
fy(x, y), which are each functions of x and y. Therefore we can take partial
derivatives of them, each with respect to x and y. We define these “second
partials” along with the notation, give examples, then discuss their meaning.

Definition 13.3.12 Second Partial Derivative, Mixed Partial Derivative.

Let z = f(x, y) be continuous on a set S.
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1. The second partial derivative of f with respect to x then x is

∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
=
(
fx
)
x
= fxx

2. The second partial derivative of f with respect to x then y is

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=
(
fx
)
y
= fxy

Similar definitions hold for ∂2f
∂y2 = fyy and ∂2f

∂x∂y = fyx.
The second partial derivatives fxy and fyx aremixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-
tion of the second derivative of a function of a single variable. If y = f(x), then
f ′′(x) = d2y

dx2 . The “d2y” portion means “take the derivative of y twice,” while
“dx2”means “with respect to x both times.” Whenwe only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to. The terms in Definition 13.3.12

all depend on limits, so each def-
inition comeswith the caveat “where
the limit exists.”

Example 13.3.13 Second partial derivatives.

For each of the following, find all six first and second partial derivatives.
That is, find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos(x)

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

Solution. In each, we give fx and fy immediately and then spend time
deriving the second partial derivatives.

1.

f(x, y) = x3y2 + 2xy3 + cos(x)

fx(x, y) = 3x2y2 + 2y3 − sin(x)

fy(x, y) = 2x3y + 6xy2

fxx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
3x2y2 + 2y3 − sin(x)

)
= 6xy2 − cos(x)

fyy(x, y) =
∂

∂y

(
fy
)
=

∂

∂y

(
2x3y + 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y

(
fx
)
=

∂

∂y

(
3x2y2 + 2y3 − sin(x)

)
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= 6x2y + 6y2

fyx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
2x3y + 6xy2

)
= 6x2y + 6y2

2.

f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(3x2

y2
)

=
6x

y2

fyy(x, y) =
∂

∂y

(
fy
)
=

∂

∂y

(
− 2x3

y3
)

=
6x3

y4

fxy(x, y) =
∂

∂y

(
fx
)
=

∂

∂y

(3x2

y2
)

= −6x2

y3

fyx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
− 2x3

y3
)

= −6x2

y3

3. f(x, y) = ex sin(x2y) Because the following partial derivatives
get rather long, we omit the extra notation and just give the re-
sults. In several cases, multiple applications of the Product and
Chain Rules will be necessary, followed by some basic combina-
tion of like terms.

fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)

fy(x, y) = x2ex cos(x2y)

fxx(x, y) = ex sin(x2y) + 4xyex cos(x2y) + 2yex cos(x2y)− 4x2y2ex sin(x2y)

fyy(x, y) = −x4ex sin(x2y)

fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

youtu.be/watch?v=H81s72zLfI8

Figure 13.3.14 Second order par-
tial derivatives and differentiability
classes

Notice how in each of the three functions in Example 13.3.13, fxy = fyx.
Due to the complexity of the examples, this likely is not a coincidence. The fol-
lowing theorem states that it is not.

https://www.youtube.com/watch?v=H81s72zLfI8
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Theorem 13.3.15 Mixed Partial Derivatives.

Let f be defined such that fxy and fyx are continuous on a set S. Then
for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

13.3.4 Understanding Second Partial Derivatives
Now that we know how to find second partials, we investigatewhat they tell us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of f is “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f ′′(x) < 0, then the derivative is getting smaller (so the graph of
f is concave down); if f ′′(x) > 0, then the derivative is growing, making the
graph of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and
fyy as could be made about f ′′(x) above. When taking derivatives with respect
tox twice, wemeasure howmuch fx changeswith respect tox. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, fxx measures whether one’s path is concave up/
down when walking due east.

Similarly, fyy measures the concavity in the y-direction. If fyy(x, y) > 0,
then fy is increasing with respect to y and the graph of f will be concave up in
the y-direction. Appealing to the rolling meadow analogy again, fyy measures
whether one’s path is concave up/down when walking due north.

We now consider the mixed partials fxy and fyx. The mixed partial fxy
measures how much fx changes with respect to y. Once again using the rolling
meadow analogy, fx measures the slope if one walks due east. Looking east, be-
gin walking north (side-stepping). Is the path towards the east getting steeper?
If so, fxy > 0. Is the path towards the east not changing in steepness? If so,
then fxy = 0. A similar thing can be said about fyx: consider the steepness of
paths heading north while side-stepping to the east.

The following example examines these ideas with concrete numbers and
graphs.

Example 13.3.16 Understanding second partial derivatives.

Let z = x2− y2+xy. Evaluate the 6 first and second partial derivatives
at (−1/2, 1/2) and interpret what each of these numbers mean.
Solution. We find that:
fx(x, y) = 2x + y,fy(x, y) = −2y + x,fxx(x, y) = 2, fyy(x, y) = −2
and fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direction of x
is−1/2: if onemoves from that point parallel to the x-axis, the instanta-
neous rate of change will be−1/2. The slope of the tangent line at this
point in the direction of y is −3/2: if one moves from this point paral-
lel to the y-axis, the instantaneous rate of change will be −3/2. These
tangents lines are graphed in Figure 13.3.17(a) and Figure 13.3.17(b), re-
spectively, where the tangent lines are drawn in a solid line.
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(a) (b)

Figure 13.3.17 Understanding the second partial derivatives in Exam-
ple 13.3.16
Now consider only Figure 13.3.17(a). Three directed tangent lines are
drawn (two are dashed), each in the direction of x; that is, each has a
slope determined by fx. Note how as y increases, the slope of these
lines get closer to 0. Since the slopes are all negative, getting closer to 0
means the slopes are increasing. The slopes given by fx are increasing
as y increases, meaning fxy must be positive.
Since fxy = fyx, we also expect fy to increase as x increases. Consider
Figure 13.3.17(b) where again three directed tangent lines are drawn,
this time each in the direction of y with slopes determined by fy. As x
increases, the slopes become less steep (closer to 0). Since these are
negative slopes, this means the slopes are increasing.
Thus far we have a visual understanding of fx, fy , and fxy = fyx. We
now interpret fxx and fyy . In Figure 13.3.17(a), we see a curve drawn
where x is held constant at x = −1/2: only y varies. This curve is
clearly concave down, corresponding to the fact that fyy < 0. In part
Figure 13.3.17(b) of the figure, we see a similar curve where y is con-
stant and only x varies. This curve is concave up, corresponding to the
fact that fxx > 0.

13.3.5 Partial Derivatives and Functions of Three Variables
The concepts underlying partial derivatives can be easily extend to more than
two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables
if needed.

Definition 13.3.18 Partial Derivatives with Three Variables.

Let w = f(x, y, z) be a continuous function on a setD in R3.
The partial derivative of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)

h
.

Similar definitions hold for fy(x, y, z) and fz(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial
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derivatives of f with respect to z then y, for instance, just as before.

Example 13.3.19 Partial derivatives of functions of three variables.

For each of the following, find fx, fy , fz , fxz , fyz , and fzz .

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

Solution.

1.

fx(x, y, z) = 2xy3z4 + 2xy2 + 3x2z3

fy(x, y, z) = 3x2y2z4 + 2x2y + 4y3z4

fz(x, y, z) = 4x2y3z3 + 3x3z2 + 4y4z3

fxz(x, y, z) = 8xy3z3 + 9x2z2

fyz(x, y, z) = 12x2y2z3 + 16y3z3

fzz(x, y, z) = 12x2y3z2 + 6x3z + 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz), and

fxz(x, y, z) = y cos(yz)
fyz(x, y, z) = x cos(yz)− xyz sin(yz)

fzz(x, y, z) = −xy2 sin(yz)

13.3.6 Higher Order Partial Derivatives
We can continue taking partial derivatives of partial derivatives of partial deriva-
tives of …; we do not have to stop with second partial derivatives. These higher
order partial derivatives do not have a tidy graphical interpretation; neverthe-
less they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f

∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f

∂x

))
.

Example 13.3.20 Higher order partial derivatives.

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz .

Solution.

1. To find fxxy , we first find fx, then fxx, then fxxy:

fx(x, y) = 2xy2 + y cos(xy)

fxx(x, y) = 2y2 − y2 sin(xy)
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fxxy(x, y) = 4y − 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy , then fyx, then fyxx:

fy(x, y) = 2x2y + x cos(xy)
fyx(x, y) = 4xy + cos(xy)− xy sin(xy)

fyxx(x, y) = 4y − y sin(xy)−
(
y sin(xy) + xy2 cos(xy)

)
= 4y − 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz , we find fx, then fxy , then fxyz :

fx(x, y, z) = 3x2exy + x3yexy

fxy(x, y, z) = 3x3exy + x3exy + x4yexy

= 4x3exy + x4yexy

fxyz(x, y, z) = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at times. Had we known this, the second part of Exam-
ple 13.3.20 would have been much simpler to compute. Instead of computing
fxyz in the x, y then z orders, we could have applied the z, then x then y order
(as fxyz = fzxy). It is easy to see that fz = − sin(z); then fzx and fzxy are
clearly 0 as fz does not contain an x or y.

A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x, y), the partial derivatives fx and fy measure the instantaneous rate
of change of z when moving parallel to the x- and y-axes, respectively. How do
we measure the rate of change at a point when we do not move parallel to one
of these axes? What if we move in the direction given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of Section 14.3. First, we need to define what it means for a function
of two variables to be differentiable.
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13.3.7 Exercises

Terms and Concepts

1. What is the difference between a constant and a coefficient?
2. Given a function f(x, y), explain in your own words how to compute fx.

3. In the mixed partial fraction fxy , which is computed first, fx or fy?

• fx

• fy

4. In the mixed partial fraction ∂2f
∂x∂y , which is computed first, fx or fy?

• fx

• fy

Problems

Exercise Group. In the following exercises, evaluate fx(x, y) and fy(x, y) at the indicated point.

5. f(x, y) = x2y − x+ 2y + 3 at (1, 2) 6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3).
7. f(x, y) = sin(y) cos(x) at (π/3, π/3) 8. f(x, y) = ln(xy) at (−2,−3) Find:

Exercise Group. In the following exercises, find fx, fy , fxx, fyy , fxy and fyx.

9. f(x, y) = x2y + 3x2 + 4y − 5 10. f(x, y) = y3 + 3xy2 + 3x2y + x3

11. f(x, y) =
x

y
12. f(x, y) = 4

xy

13. f(x, y) = ex
2+y2 14. f(x, y) = ex+2y

15. f(x, y) = sin(x) cos(y) 16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3) 18. f(x, y) = sin
(
5x2 + 2y3

)
19. f(x, y) =

√
4xy2 + 1 20. f(x, y) = (2x+ 5y)

√
y

21. f(x, y) =
1

x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1 24. f(x, y) = ln(x2 + y)

25. f(x, y) =
ln(x)
4y

26. f(x, y) = 5ex sin(y) + 9

Exercise Group. In the following exercises, form a function f(x, y) such that fx and fy match those given.
27. fx = sin(y) + 1,fy = x cos(y) 28. fx = x+ y and fy = x+ y

29. fx = 6xy − 4y2,fy = 3x2 − 8xy + 2 30. fx = 2x
x2+y2 and fy = 2y

x2+y2

Exercise Group. In the following exercises, find fx, fy , fz , fyz and fzy .

31. f(x, y, z) = x2e2y−3z 32. f(x, y, z) = x3y2 + x3z + y2z

33. f(x, y, z) =
3x

7y2z

34. f(x, y, z) = ln(xyz)
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1062 APPENDIX A. ANSWERS TO SELECTED EXERCISES

III · Math 2570: Calculus III
10 · Sequences and Series
10.1 · Sequences
10.1 · Exercises

Terms and Concepts

10.1.1. Answers will vary.
10.1.2. natural
10.1.3. Answers will vary.
10.1.4. Answers will vary.

Problems

10.1.5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45 10.1.6. − 3

2 ,
9
4 ,−

27
8 , 81

16 ,−
243
32

10.1.7. − 1
3 ,−2,− 81

5 ,− 512
3 ,− 15625

7
10.1.8. 1, 1, 2, 3, 5

10.1.9. an = 3n+ 1 10.1.10. an = (−1)n+1 3
2n−1

10.1.11. an = 10 · 2n−1 10.1.12. an = 1/(n− 1)!

10.1.13. 1/7 10.1.14. 3e2 − 1

10.1.15. 0 10.1.16. e4

10.1.17. diverges 10.1.18. converges to 4/3
10.1.19. converges to 0 10.1.20. converges to 0
10.1.21. diverges 10.1.22. converges to 3
10.1.23. converges to e 10.1.24. converges to 5
10.1.25. converges to 0 10.1.26. diverges
10.1.27. converges to 2 10.1.28. converges to 0

10.1.29. bounded 10.1.30. neither bounded above or below
10.1.31. bounded 10.1.32. bounded below
10.1.33. neither bounded above or below 10.1.34. bounded above

10.1.35. monotonically increasing 10.1.36. monotonically increasing for n ≥ 3

10.1.37. never monotonic 10.1.38. monotonically decreasing for n ≥ 3

10.1.40.

(b) an = 1/3n and bn = 1/2n

10.2 · Infinite Series
10.2 · Exercises

Terms and Concepts

10.2.1. Answers will vary.
10.2.2. Answers will vary.
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10.2.4. Answers will vary.
10.2.5. F
10.2.6. F

10.3 · Integral and Comparison Tests
10.3 · Exercises

Terms and Concepts

10.3.1. continuous, positive and decreasing
10.3.2. F

Problems

10.3.5. Converges 10.3.6. Converges
10.3.7. Diverges 10.3.8. Diverges
10.3.9. Converges 10.3.10. Converges
10.3.11. Converges 10.3.12. Converges

10.4 · Ratio and Root Tests
10.4 · Exercises

Terms and Concepts

10.4.1. algebraic, or polynomial.
10.4.2. factorial and/or exponential
10.4.3. Integral Test, Limit Comparison Test, and Root Test
10.4.4. raised to a power

Problems

10.4.5. Converges 10.4.6. Diverges
10.4.7. Converges 10.4.8. Converges
10.4.9. The Ratio Test is inconclusive; the p-Series
Test states it diverges.

10.4.10. The Ratio Test is inconclusive; the Direct
Comparison Test with 1/n3 shows it converges.

10.4.11. Converges 10.4.12. Converges
10.4.13. Converges; note the summation can be

rewritten as
∞∑

n=1

2nn!

3nn!
, from which the Ratio Test or

Geometric Series Test can be applied.

10.4.14. Converges; rewrite the summation as
∞∑

n=1

n!

5nn!
then apply the Ratio Test or Geometric

Series Test.

10.4.15. Converges 10.4.16. Converges
10.4.17. Converges 10.4.18. Converges
10.4.19. Diverges 10.4.20. Converges
10.4.21. Diverges. The Root Test is inconclusive, but
the nth-Term Test shows divergence. (The terms of
the sequence approach e−2, not 0, as n → ∞.)

10.4.22. Converges
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10.4.23. Converges 10.4.24. Converges

10.5 · Alternating Series and Absolute Convergence
10.5 · Exercises

Terms and Concepts

10.5.2. postive, decreasing, 0
10.5.3. Many examples exist; one common example is an = (−1)n/n.

10.5.4. conditionally

11 · Vectors
11.1 · Introduction to Cartesian Coordinates in Space
11.1 · Exercises

Terms and Concepts

11.1.2. (a). line
(b). plane

Problems

11.1.9. (a). (4,−1, 0)

(b). 3

11.1.10. (a). (−2, 1, 2)

(b).
√
5

11.1.15. 11.1.16.
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11.1.17. 11.1.18.

11.1.19. x2 + z2 =
(

1
1+y2

)2 11.1.20. y2 + z2 = x4

11.1.21. x2 + y2 = z 11.1.22. x2 + y2 = 1
z2

11.1.23. (a)x = y2 +
z2

9

11.1.24. (b) x2 − y2 + z2 = 0

11.1.25. (b) x2 +
y2

9
+

z2

4
= 1

11.1.26. (a) y2 − x2 − z2 = 1

11.1.27. 11.1.28.
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11.1.29. 11.1.30.

11.1.31. 11.1.32.

11.2 · An Introduction to Vectors
11.2 · Exercises

Terms and Concepts

11.2.4. Direction



1067

Problems

11.2.7.

(a) ⟨1, 6⟩

(b) i+ 6j

11.2.8.

(a) ⟨4,−4⟩

(b) 4i− 4j

11.2.9.

(a) ⟨6,−1, 6⟩

(b) 6i− j + 6k

11.2.10.

(a) ⟨2, 2, 0⟩

(b) 2i+ 2j

11.2.11.

(a) u⃗+ v⃗ = ⟨2,−1⟩; u⃗− v⃗ = ⟨0,−3⟩; 2u⃗− 3v⃗ = ⟨−1,−7⟩.

(c) x⃗ = ⟨1/2, 2⟩.
11.2.12.

(a) u⃗+ v⃗ = ⟨3, 2, 1⟩; u⃗− v⃗ = ⟨−1, 0,−3⟩; πu⃗−
√
2v⃗ =

〈
π − 2

√
2, π −

√
2,−π − 2

√
2
〉
.

(c) x⃗ = ⟨−1, 0,−3⟩.
11.2.17. (a).

√
5

(b).
√
13

(c).
√
26

(d).
√
10

11.2.18. (a).
√
17

(b).
√
3

(c).
√
14

(d).
√
26

11.2.19. (a).
√
5

(b). 3
√
5

(c). 2
√
5

(d). 4
√
5

11.2.20. (a). 7

(b). 35

(c). 42

(d). 28

11.2.22.
〈

3√
58
, 7√

58

〉
11.2.23. ⟨0.6, 0.8⟩

11.2.24.
〈
1
3 ,

−2
3 , 2

3

〉
11.2.25.

〈
1√
3
, −1√

3
, 1√

3

〉
11.2.26.

〈
cos
(
50π
180

)
, sin

(
50π
180

)〉
11.2.27.

〈
−1
2 ,

√
3
2

〉
11.3 · The Dot Product
11.3 · Exercises

Terms and Concepts

11.3.1. Scalar

Problems

11.3.5. −22 11.3.6. 33
11.3.7. 3 11.3.8. 0
11.3.9. not defined 11.3.10. 0
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11.3.11. Answers will vary.
11.3.12. Answers will vary.

11.3.13. cos−1
(

3√
10

)
11.3.14. cos−1

(
−1√
170

)
11.3.15. π

4 11.3.16. π
2

11.3.17. (a). ⟨−7, 4⟩
(b). ⟨4, 7⟩

11.3.18. (a). ⟨5, 3⟩
(b). ⟨−3, 5⟩

11.3.19. (a). ⟨1, 0,−1⟩
(b). ⟨1, 1, 1⟩

11.3.20. (a). ⟨2, 1, 0⟩
(b). ⟨1,−2, 3⟩

11.3.21.
〈−5

10 ,
15
10

〉
11.3.22.

〈
20
10 ,

60
10

〉
11.3.23.

〈−1
2 , −1

2

〉
11.3.24.

〈
0
13 ,

0
13

〉
11.3.25.

〈
14
14 ,

28
14 ,

42
14

〉
11.3.26.

〈
12
9 , 12

9 , 6
9

〉
11.3.27. (a).

〈−5
10 ,

15
10

〉
(b).

〈
15
10 ,

5
10

〉 11.3.28. (a).
〈
20
10 ,

60
10

〉
(b).

〈
30
10 ,

−10
10

〉
11.3.29. (a).

〈−1
2 , −1

2

〉
(b).

〈−5
2 , 5

2

〉 11.3.30. (a).
〈

0
13 ,

0
13

〉
(b).

〈−39
13 , 26

13

〉
11.3.31. (a).

〈
14
14 ,

28
14 ,

42
14

〉
(b).

〈
0
14 ,

42
14 ,

−28
14

〉 11.3.32. (a).
〈
12
9 , 12

9 , 6
9

〉
(b).

〈
15
9 , −21

9 , 12
9

〉
11.3.33. 1.96lb
11.3.34. 5lb
11.3.35. 141.42ft–lb
11.3.36. 196.96ft–lb
11.3.37. 500ft–lb
11.3.39. 500ft–lb

11.4 · The Cross Product
11.4 · Exercises

Terms and Concepts

11.4.1. vector
11.4.2. right hand rule
11.4.3. “Perpendicular” is one answer.
11.4.4. True
11.4.5. Torque
11.4.6. T

Problems

11.4.7. ⟨12,−15, 3⟩ 11.4.8. ⟨11, 1,−17⟩
11.4.9. ⟨−5,−31, 27⟩ 11.4.10. ⟨47,−36,−44⟩
11.4.11. ⟨0,−2, 0⟩ 11.4.12. ⟨0, 0, 0⟩
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11.4.13. u⃗× v⃗ = ⟨0, 0, ad− bc⟩ 11.4.14. k
11.4.15. −j 11.4.16. i

11.4.17. Answers will vary.
11.4.18. Answers will vary.

11.4.19. 5 11.4.20. 21
11.4.21. 0 11.4.22. 5

11.4.23.
√
14 11.4.24.

√
230

11.4.25. 3 11.4.26. 6

11.4.27. 5
√
2

2
11.4.28. 3

√
30

11.4.29. 1 11.4.30. 5
2

11.4.31. 7 11.4.32. 4
√
14

11.4.33. 2 11.4.34. 15

11.4.35. ⟨0.408248, 0.408248,−0.816497⟩ or ⟨−0.408248,−0.408248, 0.816497⟩
11.4.36. ⟨−0.436436, 0.218218, 0.872872⟩ or ⟨0.436436,−0.218218,−0.872872⟩

11.4.37. ⟨0, 1, 0⟩ or ⟨0,−1, 0⟩ 11.4.38.
〈

2√
5
, 1√

5
, 0
〉

11.4.39. 87.5ft–lb
11.4.40. 43.75

√
3 ≈ 75.78ft–lb

11.4.41. 200/3 ≈ 66.67ft–lb

11.4.42. 11.58ft–lb

11.5 · Lines
11.5 · Exercises

Terms and Concepts

11.5.1. A point on the line and the direction of the line.
11.5.2. parallel
11.5.3. parallel, skew
11.5.4. Answers will vary

Problems

11.5.6. (a). (6, 1, 7) + t⟨−3, 2, 5⟩
(b). x = 6− 3t, y = 1 + 2t, z = 7 + 5t

(c). x−6
−3 = y−1

2 = z−7
5

11.5.8. (a). (1,−2, 3) + t⟨4, 7, 2⟩
(b). x = 1 + 4t, y = −2 + 7t, z = 3 + 2t

(c). x−1
4 = y+2

7 = z−3
2

11.5.10. (a). (5, 1, 9) + t⟨0,−1, 0⟩
(b). x = 5, y = 1− t, z = 9

(c). DNE

11.5.11. (a). (7, 2,−1) + t⟨1,−1, 2⟩
(b). x = 7 + t, y = 2− t, z = −1 + 2t

(c). x− 7 = 2− y = z+1
2
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11.5.12. (a). (2, 2, 3) + t⟨5,−1,−3⟩
(b). x = 2 + 5t, y = 2− t, z = 3− 3t

(c). x−2
5 = − (y − 2) = −(z−3)

3

11.5.14. (a). (−2, 5) + t⟨0, 1⟩
(b). x = −2, y = 5 + t

(c). DNE

11.5.15. parallel 11.5.16. (12, 3, 7)
11.5.18. same 11.5.19. skew
11.5.20. parallel 11.5.22. skew

11.5.23.
√
41/3 11.5.24. 3

√
2

11.5.25. 5
√
2/2 11.5.26. 5

11.5.27. 3/
√
2 11.5.28. 2

11.6 · Planes
11.6 · Exercises

Terms and Concepts

11.6.1. A point in the plane and a normal vector (i.e., a direction orthogonal to the plane).
11.6.2. A normal vector is orthogonal to the plane.

Problems

11.6.3. Answers will vary. 11.6.4. (−2, 9, 0) , (2, 9, 3)

11.6.5. Answers will vary. 11.6.6. (0,−2, 6) , (1,−2, 6)

11.6.8. (a). 2(y − 3) + 4(z − 5) = 0

(b). 2y + 4z = 26

11.6.10. (a). −5(x− 5) + 3(y − 3) + 2(z − 8) = 0

(b). −5x+ 3y + 2z = 0

11.6.12. (a). 3(x− 5) + 3(z − 3) = 0

(b). 3x+ 3z = 24

11.6.14. (a). 2(x− 1) + y − 1− 3(z − 1) = 0

(b). 2x+ y − 3z = 0

11.6.16. (a). 4(x− 5)− 2(y − 7)− 2(z − 3) = 0

(b). 4x− 2y − 2z = 0

11.6.17. (a). x− 5 + y − 7 + z − 3 = 0

(b). x+ y + z = 15

11.6.18. (a). 4(x− 4) + y − 1 + z − 1 = 0

(b). 4x+ y + z = 18

11.6.19. (a). 3(x+ 4) + 8(y − 7)− 10(z − 2) = 0

(b). 3x+ 8y − 10z = 24

11.6.20. (a). x− 1 = 0

(b). x = 1

11.6.22. (1, 3, 3.5) + t⟨20, 2,−26⟩

11.6.24. (3, 1, 1) 11.6.26. the entire line

11.6.27.
√
5/7 11.6.28. 8√

21

11.6.29. 1/
√
3 11.6.30. 3

12 · Vector Valued Functions
12.1 · Vector-Valued Functions
12.1 · Exercises
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Terms and Concepts

12.1.1. parametric equations
12.1.2. vectors
12.1.3. displacement
12.1.4. displacement

Problems

12.1.14.

−2

2

−1

1

1

2

x y

z

12.1.15.

−1−0.5

0.5
1

−1

1

−1

1

x y

z

12.1.16.

−1−0.5
0.5

1

−1

1

−1

1

x
y

z

12.1.17. |t|
√
1 + t2 12.1.19.

√
4 + t2

12.1.21. ⟨2 cos(t) + 1, 2 sin(t) + 2⟩ 12.1.25. ⟨t+ 2, 5t+ 3⟩
12.1.27. Specific forms may vary, though most direct
solutions are

r⃗(t) = ⟨1, 2, 3⟩+ t ⟨3, 3, 3⟩ and
r⃗(t) = ⟨3t+ 1, 3t+ 2, 3t+ 3⟩.

12.1.28. Specific forms may vary, though most direct
solutions are

r⃗(t) = ⟨1, 2⟩+ t ⟨3, 2⟩ and
r⃗(t) = ⟨3t+ 1, 2t+ 2⟩.

12.1.29. ⟨2 cos(t) , 2 sin(t) , 2t⟩
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12.1.31. ⟨1, 0⟩ 12.1.33. ⟨0, 0, 1⟩

12.2 · Calculus and Vector-Valued Functions
12.2 · Exercises

Terms and Concepts

12.2.1. component
12.2.2. displacement
12.2.4. A scalar-vector product, a dot product and a cross product.

Problems

12.2.5. ⟨11, 74, sin(5)⟩ 12.2.6.
〈
e3, 0

〉
12.2.7. ⟨1, e⟩ 12.2.8. ⟨2t, 1, 0⟩

12.2.9. (−∞, 0) ∪ (0,∞) 12.2.10. (0,∞)

12.2.11.
〈
− sin(t) , et, 1

t

〉
12.2.12. r⃗ ′(t) =

〈
−1/t2, 5/(3t+ 1)2, sec2(t)

〉
12.2.13.

〈
2t sin(t) + t2 cos(t) , 6t2 + 10t

〉
12.2.14.

(
t2 + 1

)
cos(t) + 2t sin(t) + 4t+ 3

12.2.15.〈
−1, cos(t)− 2t, 6t2 + 10t+ 2 + cos(t)− sin(t)− t cos(t)

〉12.2.16. r⃗ ′(t) = ⟨sinh t, cosh t⟩

12.2.21. ⟨2 + 3t, t⟩ 12.2.22.
(

3
√
2

2 ,
√
2
2

)
+ t
〈

−3
√
2

2 ,
√
2
2

〉
12.2.23. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩ 12.2.24. (1, 0, 0) + t⟨1, 1, 1⟩

12.2.26. 1 12.2.28. 1,−1

12.2.32. Both derivatives return
〈
6t5, 3t2, 0

〉
12.2.33.

〈
1
4 t

4, sin(t), tet − et
〉
+ C⃗ 12.2.34.

〈
tan−1(t), tan(t)

〉
+ C⃗

12.2.35. ⟨−2, 0⟩ 12.2.36. ⟨4,−4⟩

12.2.37.
〈

t2

2 + 2,− cos(t) + 3
〉

12.2.39.
〈

t4

12 + t+ 4, t3

6 + 2t+ 5, t2

2 + 3t+ 6
〉

12.2.41. 2 · 3.60555π 12.2.42. 10π

12.2.43. 1
54

(
22

3
2 − 8

)
12.2.44.

√
2(1− e−1)

12.3 · The Calculus of Motion
12.3 · Exercises

Terms and Concepts

12.3.4. arc length
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Problems

12.3.7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩ 12.3.8. (a). ⟨6t− 2,−2t+ 1⟩
(b). ⟨6,−2⟩

12.3.10. (a).
〈

1
10 , sin(t) , cos(t)

〉
(b). ⟨0, cos(t) ,− sin(t)⟩

12.3.16. (a). |t|
√
9t2 − 12t+ 8

(b). 0

(c). −1

12.3.19. (a). |sec(t)|
√
tan2(t) + sec2(t)

(b). 0

(c). π
4

12.3.22. (a).
√
8t2 + 3

(b). 0

(c). 1

12.3.30.
〈
t2 − t+ 5, 3t2

2 − t− 5
2

〉
12.3.32.

〈
10t,−16t2 + 50t

〉
12.3.34. (a). ⟨−10, 0⟩
(b). 5π

(c).
〈−10

π , 0
〉

(d). 5

12.3.36. (a). ⟨10, 20,−10⟩
(b). 10

√
6

(c). ⟨1, 2,−1⟩
(d).

√
6

12.3.38.

(a) t = sin−1(3/20)/(8π) + n/4 ≈ 0.006 + n/4,
where n is an integer

(b) ∥r⃗ ′(t)∥ = 24π ≈ 51.4 ft/s

(c) 0.27 radians, or 15.69◦

12.3.39.

(a) 0.013 radians

(b) 11.7 ft

12.4 · Unit Tangent and Normal Vectors
12.4 · Exercises

Terms and Concepts

12.4.1. 1
12.4.2. 0

12.4.3. T⃗ (t) and N⃗(t).

12.4.4. the speed

Problems

12.4.5. T⃗ (t) =
〈

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

〉
;

T⃗ (1) =
〈
4/
√
17, 1/

√
17
〉 12.4.6. (a).

〈
1√

1+sin2(t)
, − sin(t)√

1+sin2(t)

〉
(b).

〈√
2
3 ,

−1√
3

〉
12.4.8. (a). ⟨− sin(t) , cos(t)⟩
(b). ⟨0,−1⟩
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12.4.9. (2, 0) + t
〈

4√
17
, 1√

17

〉
12.4.10.

(
π
4 ,

√
2
2

)
+ t
〈√

2
3 ,

−1√
3

〉
12.4.12. (−1, 0) + t⟨0,−1⟩

12.4.13. T⃗ (t) = ⟨− sin(t), cos(t)⟩;
N⃗(t) = ⟨− cos(t),− sin(t)⟩

12.4.14. T⃗ (t) =
〈

1√
1+4t2

, 2t√
1+4t2

〉
;

N⃗(t) =
〈
− 2t√

1+4t2
, 1√

1+4t2

〉
12.4.15.
T⃗ (t) =

〈
− sin(t)√

4 cos2(t)+sin2(t)
, 2 cos(t)√

4 cos2(t)+sin2(t)

〉
;

N⃗(t) =

〈
− 2 cos(t)√

4 cos2(t)+sin2(t)
,− sin(t)√

4 cos2(t)+sin2(t)

〉
12.4.16. T⃗ (t) =

〈
et√

e2t+e−2t
,− e−t

√
e2t+e−2t

〉
;

N⃗(t) =
〈

e−t
√
e2t+e−2t

, et√
e2t+e−2t

〉

12.4.22.
〈
− cos(t) , −3

5 sin(t) , −4
5 sin(t)

〉
12.4.24. ⟨− cos(at) ,− sin(at) , 0⟩

12.4.26. (a).
−2

t5√
1+ 1

t4

(b).
2
t3√
1+ 1

t4

(c). −
√
2

(d).
√
2

(e). −1
4
√
17

(f). 1√
17

12.4.28. (a). 2

(b). 4t2

(c). 2

(d). 2π

(e). 2

(f). 4π

12.4.30. (a). 0

(b). 5

(c). 0

(d). 5

(e). 0

(f). 5

12.5 · The Arc Length Parameter and Curvature
12.5 · Exercises

Terms and Concepts

12.5.1. time and/or distance
12.5.2. curvature
12.5.3. Answers may include lines, circles, helixes
12.5.4. Answers will vary; they should mention the circle is tangent to the curve and has the same curvature as the
curve at that point.
12.5.5. κ
12.5.6. aT is not affected by curvature; the greater the curvature, the larger aN becomes.

Problems

12.5.8. (a). 7t

(b).
〈
7 cos

(
s
7

)
, 7 sin

(
s
7

)〉 12.5.10. (a). 13t

(b).
〈
5 cos

(
s
13

)
, 13 sin

(
s
13

)
, 12 cos

(
s
13

)〉
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12.5.12. (a). greater than

(b).

∣∣∣∣ 6x2−2

(x2+1)3

∣∣∣∣(
1+ 4x2

(x2+1)4

) 3
2

(c). 2

(d). 2750

641
3
2

12.5.15. (a). less than
(b). |2 cos(t) cos(2t)+4 sin(t) sin(2t)|

(4 cos2(2t)+sin2(t))
3
2

(c). 1
4

(d). 8

12.5.18. (a). greater than

(b). |sec3(t)|
(sec4(t)+sec2(t) tan2(t))

3
2

(c). 1

(d). 3
√
3

5
√
5

12.5.20. (a). greater than

(b). 2
√
18t4+15t2+1

(18t4−2t2+1)
3
2

(c). 2

(d). 2
√
2

17

12.5.22. (a). equal to
(b). 1

13

(c). 1
13

(d). 1
13

12.5.23.
√
2

4√5
, −

√
2

4√5
12.5.25. 1

4

12.5.26.
√
5,−

√
5

12.5.28. 5
√
10 12.5.30. 1

45

12.5.32.
(
x− 8

3

)2
+ y2 = 1

9 12.5.34.
(
x− 1

2

)2
+
(
y − 1

2

)2
= 1

2

13 · Introduction to Functions of Several Variables
13.2 · Limits and Continuity of Multivariable Functions
13.2 · Exercises

Problems

13.2.7.

(a) Answers will vary. interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set

(c) S is bounded

13.2.8.

(a) Answers will vary. Interior point: (1, 0) (any
point with y ̸= x2 will do). Boundary point:
(1, 1) (any point with y = x2 will do).

(b) S is an open set.

(c) S is unbounded.

13.2.11.

(a) D =
{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.

(c) D is bounded.

13.2.12.

(a) D =
{
(x, y) | y ≥ x2

}
.

(b) D is a closed set.

(c) D is unbounded.
13.2.13.

(a) D =
{
(x, y) | y > x2

}
.

(b) D is an open set.

(c) D is unbounded.

13.2.14.

(a) D = {(x, y) | (x, y) ̸= (0, 0)}.

(b) D is an open set.

(c) D is unbounded.
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13.3 · Partial Derivatives
13.3 · Exercises

Terms and Concepts

13.3.3. f_x
13.3.4. f_y

Problems

13.3.6. (a). 0

(b). 0

13.3.8. (a). − 1
2

(b). − 1
3

13.3.10. (a). 3x2 + 6xy + 3y2

(b). 3x2 + 6xy + 3y2

(c). 6x+ 6y

(d). 6x+ 6y

(e). 6x+ 6y

(f). 6x+ 6y

13.3.12. (a). −4
x2y

(b). −4
xy2

(c). 8
x3y

(d). 4
x2y2

(e). 4
x2y2

(f). 8
xy3

13.3.14. (a). ex+2y

(b). 2ex+2y

(c). ex+2y

(d). 2ex+2y

(e). 2ex+2y

(f). 4ex+2y

13.3.16. (a). 3(x+ y)
2

(b). 3(x+ y)
2

(c). 6(x+ y)

(d). 6(x+ y)

(e). 6(x+ y)

(f). 6(x+ y)

13.3.18. (a). 10x cos
(
5x2 + 2y3

)
(b). 6y2 cos

(
5x2 + 2y3

)
(c). 10 cos

(
5x2 + 2y3

)
− 100x2 sin

(
5x2 + 2y3

)
(d). −60xy2 sin

(
5x2 + 2y3

)
(e). −60xy2 sin

(
5x2 + 2y3

)
(f). 12y cos

(
5x2 + 2y3

)
− 36y4 sin

(
5x2 + 2y3

)

13.3.19. (a). 2y2√
4xy2+1

(b). 4xy√
4xy2+1

(c). −4y4(√
4xy2+1

)3

(d). −8xy3(√
4xy2+1

)3 + 4y√
4xy2+1

(e). −8xy3(√
4xy2+1

)3 + 4y√
4xy2+1

(f). −16x2y2(√
4xy2+1

)3 + 4x√
4xy2+1

13.3.22. (a). 5

(b). −17

(c). 0

(d). 0

(e). 0

(f). 0

13.3.24. (a). 2x
x2+y

(b). 1
x2+y

(c). −4x2

(x2+y)2
+ 2

x2+y

(d). −2x
(x2+y)2

(e). −2x
(x2+y)2

(f). −1
(x2+y)2
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13.3.26. (a). 5ex sin(y)
(b). 5ex cos(y)
(c). 5ex sin(y)
(d). 5ex cos(y)
(e). 5ex cos(y)
(f). −5ex sin(y)

13.3.28. 1
2x

2 + xy + 1
2y

2 13.3.30. ln
(
x2 + y2

)
13.3.32. (a). 3x2y2 + 3x2z

(b). 2x3y + 2yz

(c). x3 + y2

(d). 2y

(e). 2y

13.3.34. (a). 1
x

(b). 1
y

(c). 1
z

(d). 0

(e). 0





Appendix B

Quick Reference

B.1 Differentiation Formulas

List B.1.1 Derivative Rules

1.
d

dx
(cx) = c

2.
d

dx
(u± v) = u′ ± v′

3.
d

dx
(u · v) = uv′ + u′v

4.
d

dx
(
u

v
) =

vu′ − uv′

v2

5.
d

dx
(u(v)) = u′(v)v′

6.
d

dx
(c) = 0

7.
d

dx
(x) = 1

List B.1.2 Derivatives of Elementary Functions

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ex) = ex

3.
d

dx
(ax) = ln a · ax

4.
d

dx
(lnx) =

1

x

5.
d

dx
(loga x) =

1

ln a
· 1
x

6.
d

dx
(sinx) = cosx

7.
d

dx
(cosx) = − sinx

8.
d

dx
(cscx) = − cscx cotx

9.
d

dx
(secx) = secx tanx

10.
d

dx
(tanx) = sec2 x

11.
d

dx
(cotx) = − csc2 x

12.
d

dx
(coshx) = sinhx

13.
d

dx
(sinhx) = coshx

14.
d

dx
(sechx) = − sechx tanhx

15.
d

dx
(tanhx) = sech2 x

16.
d

dx
(cschx) = − cschx cothx

17.
d

dx
(cothx) = − csch2 x

1093
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List B.1.3 Derivatives of Inverse Functions

1.
d

dx
(sin−1 x) =

1√
1− x2

2.
d

dx
(cos−1 x) =

−1√
1− x2

3.
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

4.
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

5.
d

dx
(tan−1 x) =

1

1 + x2

6.
d

dx
(cot−1 x) =

−1

1 + x2

7.
d

dx
(cosh−1 x) =

1√
x2 − 1

8.
d

dx
(sinh−1 x) =

1√
x2 + 1

9.
d

dx
(sech−1 x) =

−1

x
√
1− x2

10.
d

dx
(csch−1 x) =

−1

|x|
√
1 + x2

11.
d

dx
(tanh−1 x) =

1

1− x2

12.
d

dx
(coth−1 x) =

1

1− x2

B.2 Integration Formulas

List B.2.1 Basic Rules

1.
∫

c · f(x) dx = c

∫
f(x) dx

2.
∫ (

f(x)±g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

List B.2.2 Integrals of Elementary (non-Trig) Functions

1.
∫

ex dx = ex + C

2.
∫
lnx dx = x lnx− x+ C

3.
∫

ax dx =
1

ln a
· ax + C

4.
∫

1

x
dx = ln |x|+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

List B.2.3 Integrals Involving Trigonometric Functions

1.
∫
cosx dx = sinx+ C

2.
∫
sinx dx = − cosx+ C

3.
∫
tanx dx = − ln |cosx|+ C

4.
∫
secx dx = ln |secx+ tanx|+ C

5.
∫
cscx dx = − ln |cscx+ cotx|+ C
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6.
∫
cotx dx = ln |sinx|+ C

7.
∫
sec2 x dx = tanx+ C

8.
∫
csc2 x dx = − cotx+ C

9.
∫
secx tanx dx = secx+ C

10.
∫
cscx cotx dx = − cscx+ C

11.
∫
cos2 x dx =

1

2
x+

1

4
sin
(
2x
)
+ C

12.
∫
sin2 x dx =

1

2
x− 1

4
sin
(
2x
)
+ C

13.
∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ C

14.
∫

1√
a2 − x2

= sin−1
(x
a

)
+ C

15.
∫

1

x
√
x2 − a2

=
1

a
sec−1

(
|x|
a

)
+ C

List B.2.4 Integrals Involving Hyperbolic Functions

1.
∫
coshx dx = sinhx+ C

2.
∫
sinhx dx = coshx+ C

3.
∫
tanhx dx = ln(coshx) + C

4.
∫
cothx dx = ln |sinhx|+ C

5.
∫

1√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C

6.
∫

1√
x2 + a2

dx = ln
∣∣∣x+

√
x2 + a2

∣∣∣+ C

7.
∫

1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

8.
∫

1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

9.
∫

1

x
√
x2 + a2

=
1

a
ln
∣∣∣∣ x

a+
√
x2 + a2

∣∣∣∣+ C
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B.3 Trigonometry Reference

The Unit Circle.

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2
, 1
2

)
45◦

π/4

(√
2

2
,
√

2
2

)
60◦

π/3

(
1
2
,
√
3
2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2
,
√

3
2

)

135◦
3π/4

(
−

√
2

2
,
√
2
2

)

150◦
5π/6

(
−

√
3

2
, 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.3.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y
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Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.3.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.3.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.3.2 Double Angle Formulas

1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.3.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.3.4 Even/Odd Identities
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1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.3.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.3.6 Sum to Product Formulas

List B.3.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)
List B.3.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y

B.4 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r
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Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A

B.5 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)
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(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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B.6 Additional Formulas

Summation Formulas:.

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

Trapezoidal Rule:.∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
with Error≤ (b− a)3

12n2

[
max |f ′′(x)|

]
Simpson’s Rule:.

∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

]
with Error≤ (b− a)5

180n4

[
max

∣∣∣f (4)(x)
∣∣∣ ]

Arc Length:.

L =

∫ b

a

√
1 + f ′(x)2 dx

Surface of Revolution:.

2π

∫ b

a

f(x)
√
1 + f ′(x)2dx

(where f(x) ≥ 0)

S = 2π

∫ b

a

x
√
1 + f ′(x)2dx

(where a, b ≥ 0)

Work Done by a Variable Force:.

W =

∫ b

a

F (x)dx
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Force Exerted by a Fluid:.

F =

∫ b

a

w d(y) ℓ(y)dy

Taylor Series Expansion for f(x):.

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

Maclaurin Series Expansion for f(x), where c = 0:.

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

B.7 Summary of Tests for Series

Table B.7.1

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑

n=1

an lim
n→∞

an ̸= 0
Cannot be used to show
convergence.

Geometric Series
∞∑

n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑

n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑

n=1

1

(an+ b)p
p > 1 p ≤ 1

Integral Test
∞∑

n=0

an

∫ ∞

1

a(n) dn

converges

∫ ∞

1

a(n) dn diverges
an = a(n)must be
continuous

Direct Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

0 ≤ an ≤ bn

∞∑
n=0

bn diverges and

0 ≤ bn ≤ an

Limit Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

lim
n→∞

an

bn
≥ 0

∞∑
n=0

bn diverges and

lim
n→∞

an

bn
> 0

Also diverges if
lim

n→∞
an

bn
= ∞

Ratio Test
∞∑

n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1 {an}must be positive

Also diverges if lim
n→∞

an+1

an
= ∞

Root Test
∞∑

n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1 {an}must be positive

Also diverges if lim
n→∞

(an)
1/n = ∞
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!, 526
Absolute Convergence Theorem,

579
absolute maximum, 133
absolute minimum, 133
Absolute Value Theorem, 530
acceleration, 81, 695
accumulated error

using Euler’s method, 437
Alternating Harmonic Series, 549,

578, 590
Alternating Series Test, 574
aN, 712, 723
analytic function, 598
angle of elevation, 700
antiderivative, 217

of vector-valued function, 690
approximation

linear, 196
tangent line, 196

arc length, 401, 494, 517, 692, 717
arc length parameter, 717, 719
asymptote

horizontal, 54
vertical, 53

aT, 712, 723
average rate of change, 681
average value of a function, 843
average value of function, 263
average velocity, 8

bacterial growth, 455
Binomial Series, 598
Bisection Method, 46
boundary point, 735
bounded

interval, 41
bounded sequence, 532

convergence, 533
bounded set, 735

carrying capacity, 435
center of mass, 858, 859, 861, 862,

890
Chain Rule, 105

multivariable, 769, 772
notation, 111

chain rule
as matrix multiplication, 812

change of variables, 908
circle of curvature, 721
circulation, 961
closed, 735
closed disk, 735
concave down, 156
concave up, 156
concavity, 156, 492

inflection point, 158
test for, 158

conic sections, 466
degenerate, 466
ellipse, 469
hyperbola, 472
parabola, 466

connected, 955
simply, 956

conservative field, 956, 957, 959
Constant Multiple Rule

of derivatives, 88
of integration, 221
of series, 548

constrained optimization, 801
continuity

of exponential functions, 21
of logarithmic functions, 21
of polynomial functions, 20
of rational functions, 20
of trigonometric functions, 21

continuous
at a point, 40
everywhere, 40

1103
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on an interval, 40
continuous function, 40, 740

properties, 43, 741
vector-valued, 684

continuously differentiable, 761
contour lines, 729
convergence

absolute, 578, 579
Alternating Series Test, 574
conditional, 578
Direct Comparison Test, 559
for integration, 366

Integral Test, 556
interval of, 585
Limit Comparison Test, 561
for integration, 367

nth-term test, 551
of geometric series, 543
of improper int., 361, 366,

367
of monotonic sequences, 536
of p-series, 545
of power series, 585
of sequence, 528, 533
of series, 540
radius of, 585
Ratio Comparison Test, 567
Root Comparison Test, 569

coordinates
cylindrical, 896
polar, 499
spherical, 899

critical number, 135
critical point, 135, 797, 799
critical value

of a function of two variables,
817

cross product
and derivatives, 687
applications, 653
area of parallelogram, 654
torque, 656
volume of parallelepiped,
656

definition, 650
properties, 652

curl, 945
of conservative fields, 959

curvature, 719
and motion, 723
equations for, 720
of circle, 721
radius of, 721

curve

parametrically defined, 479
rectangular equation, 479
smooth, 485

curve sketching, 165
cusp, 485
cycloid, 680
cylinder, 612
cylindrical coordinates, 896

decreasing function, 148
finding intervals, 149

definite integral, 228
and substitution, 297
of vector-valued function, 690
properties, 229

del operator, 944
derivative

acceleration, 81
as a function, 69
at a point, 65
basic rules, 86
Chain Rule, 105, 111, 769, 772
Constant Multiple Rule, 88
Constant Rule, 86
differential, 196
directional, 778, 779, 781, 784
exponential functions, 111
First Deriv. Test, 151
general, 811
Generalized Power Rule, 106
higher order, 89
interpretation, 90

hyperbolic funct., 344
implicit, 114, 773
interpretation, 79
inverse function, 125
inverse hyper., 348
inverse trig., 128
logarithmic, 120
Mean Value Theorem, 143
mixed partial, 749
motion, 81
multivariable differentiability,

760, 765
normal line, 67
notation, 69, 89
parametric equations, 489
partial, 744, 752
Power Rule, 86, 100, 119
power series, 588
Product Rule, 94
Quotient Rule, 97
Second Deriv. Test, 161
Sum/Difference Rule, 87
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tangent line, 65
trigonometric functions, 98
vector-valued functions, 685,

687
velocity, 81

difference quotient, 8
differentiability

functions of several variables,
809

differentiable, 65, 760, 765
general functions, 807
on a closed interval, 74

differential, 196
notation, 196

differential equation
definition, 429
first order linear, 447
general solution, 430
graphical solution, 433
implicit soution, 432
integrating factor, 448
logistic, 434, 458
modeling, 455
numerical solution, 435
order of, 429
particular solution, 430
separable, 441

Direct Comparison Test
for integration, 366
for series, 559

direction field, see slope field
directional derivative, 778, 779,

781, 784
directrix, 466, 612
discontinuity

infinite, 44
jump, 44
removable, 44

Disk Method, 382
displacement, 257, 680, 692
distance

between lines, 665
between point and line, 665
between point and plane, 673
between points in space, 610
traveled, 702

divergence, 944, 945
Alternating Series Test, 574
Direct Comparison Test, 559
for integration, 366

Integral Test, 556
Limit Comparison Test, 561
for integration, 367

nth-term test, 551

of geometric series, 543
of improper int., 361, 366,

367
of p-series, 545
of sequence, 528
of series, 540
Ratio Comparison Test, 567
Root Comparison Test, 569

Divergence Theorem
in space, 990
in the plane, 967

dot product
and derivatives, 687
definition, 638
properties, 638, 639

double integral, 837, 838
in polar, 848
properties, 840

eccentricity, 471, 473
elementary function, 267
ellipse

definition, 469
eccentricity, 471
parametric equations, 484
reflective property, 471
standard equation, 469

Euler’s Method, 436
Euler’s method

accumulated error, 437
everywhere continuous, 40
exponential function

continuity of, 21
extrema

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
finding, 136
relative, 134, 797

Extreme Value Theorem, 134, 801
extreme values, 133

factorial, 526
First Derivative Test, 151
first octant, 610
floor function, 40
flow, 961, 962
fluid pressure/force, 420, 421
flux, 961, 962, 984, 985
focus, 466, 469, 472
Fubini’s Theorem, 838
function

continuous, 40
floor, 40
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of three variables, 731
of two variables, 727
vector-valued, 677

Fundamental Theorem of Calculus,
254, 255

and Chain Rule, 259
Fundamental Theorem of Line

Integrals, 955, 957

Gabriel’s Horn, 406
Gauss’s Law, 993
general solution

of a differential equation, 430
Generalized Power Rule, 106
geometric series, 542, 543
gradient, 779, 781, 784, 794

and level curves, 781
and level surfaces, 794

Green’s Theorem, 964, 965

half life, 463
Harmonic Series, 549
Head To Tail Rule, 628
Hooke’s Law, 413
hyperbola

definition, 472
eccentricity, 473
parametric equations, 484
reflective property, 474
standard equation, 472

hyperbolic function
definition, 341
derivatives, 344
identities, 344
integrals, 344
inverse, 346
derivative, 348
integration, 349
logarithmic def., 347

image
of a point, 910
of a subset, 910

implicit differentiation, 114, 773
improper integration, 361, 364
incompressible vector field, 944
increasing function, 148

finding intervals, 149
indefinite integral, 217

of vector-valued function, 690
indeterminate form, 4, 53, 355,

357
inflection point, 158
initial condition, 430
initial point, 625

initial value problem, 222
for differential equations, 430

Integral Test, 556
integration

arc length, 401
area, 228, 830
area between curves, 260,

373
average value, 263
by parts, 303
by substitution, 286
definite, 228
and substitution, 297
properties, 229
Riemann Sums, 249

displacement, 257
distance traveled, 702
double, 837
fluid force, 420, 421
Fun. Thm. of Calc., 254, 255
general application technique,

371
hyperbolic funct., 344
improper, 361, 364, 366, 367
indefinite, 217
inverse hyperbolic, 349
iterated, 829
Mean Value Theorem, 262
multiple, 829
notation, 218, 228, 255, 829
numerical, 267
Left/Right Hand Rule, 267,
275

Simpson’s Rule, 273, 275,
276

Trapezoidal Rule, 270, 275,
276

of multivariable functions,
827

of power series, 588
of trig. functions, 291
of trig. powers, 314, 318
of vector-valued function, 690
of vector-valued functions,

690
partial fraction decomp., 333
Power Rule, 221
Sum/Difference Rule, 221
surface area, 404, 495, 518
trig. subst., 325
triple, 876, 887, 889
volume
cross-sectional area, 381
Disk Method, 382



1107

Shell Method, 392, 396
Washer Method, 385, 396

with cylindrical coordinates,
897

with spherical coordinates,
901

work, 410
interior point, 735
Intermediate Value Theorem, 45
interval of convergence, 585
inverse

of a transformation, 921
iterated integration, 829, 837, 838,

876, 887, 889
changing order, 832
properties, 840, 882

Jacobian
of a transformation, 912

Jacobian matrix, 811

l’Hospital’s Rule
infinity over infinity, 354
zero over zero, 353

Lagrange multipliers, 816
lamina, 855
Left Hand Rule, 238, 242, 267
Left/Right Hand Rule, 275
level curves, 729, 781
level surface, 732, 794
limit

Absolute Value Theorem, 530
at infinity, 54
definition, 12
difference quotient, 8
does not exist, 6, 33
indeterminate form, 4, 25, 53,

355, 357
l’Hospital’s Rule, 353, 354
left-handed, 31
of exponential functions, 21
of infinity, 51
of logarithmic functions, 21
of multivariable function, 736,

737, 742
of polynomial functions, 20
of rational functions, 20
of sequence, 528
of trigonometric functions, 21
of vector-valued functions,

683
one-sided, 31
properties, 19, 737
pseudo-definition, 4

right-handed, 31
Squeeze Theorem, 23

Limit Comparison Test
for integration, 367
for series, 561

line integral
Fundamental Theorem, 955,

957
over scalar field, 933, 934,

951
over vector field, 952
path independent, 956, 957
properties over a scalar field,

938
properties over a vector field,

954
linear function, 807
linearization, 196, 806

functions of several variables,
808

lines, 660
distances between, 665
equations for, 661
intersecting, 662
parallel, 662
skew, 662

logarithmic differentiation, 120
logarithmic function

continuity of, 21

Maclaurin Polynomial
definition, 205

Maclaurin Polynomial|see{Taylor
Polynomial}, 205

Maclaurin Series
definition, 595

Maclaurin Series|see{Taylor
Series}, 595

magnitude of vector, 625
mass, 855, 856, 890, 938

center of, 858, 938
matrix

Jacobian, 811
maximum

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
relative/local, 134, 797, 800

Mean Value Theorem
of differentiation, 143
of integration, 262

Midpoint Rule, 238, 242
minimum

absolute, 133, 797
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and First Deriv. Test, 151, 161
relative/local, 134, 797, 800

moment, 860, 862, 890
monotonic sequence, 533
multi-index notation, 823
multiple integration|see{iterated

integration}, 829
multivariable function, 727, 731

continuity, 740–742, 761, 766
differentiability, 760, 761,

765, 766
domain, 727, 731
level curves, 729
level surface, 732
limit, 736, 737, 742
range, 727, 731

Möbius band, 971

Newton’s Law of Cooling, 456
Newton’s Method, 174
norm, 625
normal line, 67, 489, 790
normal vector, 669
nth-term test, 551
numerical integration, 267

Left/Right Hand Rule, 267,
275

Simpson’s Rule, 273, 275
error bounds, 276

Trapezoidal Rule, 270, 275
error bounds, 276

octant
first, 610

one to one, 971
one-to-one, 910
onto, 910
open, 735
open ball, 742
open disk, 735
optimization, 188

constrained, 801
with Lagrange multipliers, 816

order
of a differential equation, 429

orientable, 971
orientation, 916
orthogonal, 641, 790

decomposition, 645
orthogonal decomposition of

vectors, 645
orthogonal projection, 643
osculating circle, 721
outer unit normal vector, 990

p-series, 545
parabola

definition, 466
general equation, 467
reflective property, 468

parallel vectors, 631
Parallelogram Law, 628
parametric equations

arc length, 494
concavity, 492
definition, 479
finding d2y

dx2 , 492
finding dy

dx , 489
normal line, 489
of a surface, 971
surface area, 495
tangent line, 489

parametrized surface, 971
partial derivative, 744, 752

high order, 753
meaning, 746
mixed, 749
second derivative, 749
total differential, 760, 765

partition, 244
size of, 244

path independent, 956, 957
perpendicular|see{orthogonal},

641
piecewise smooth curve, 937
planes

coordinate plane, 611
distance between point and

plane, 673
equations of, 669
introduction, 611
normal vector, 669
tangent, 793

point of inflection, 158
polar

coordinates, 499
function
arc length, 517
gallery of graphs, 505
surface area, 518

functions, 502
area, 514
area between curves, 516
finding dy

dx , 512
graphing, 502

polar coordinates, 499
plotting points, 499

polynomial function
continuity of, 20
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potential function, 949, 957
Power Rule

differentiation, 86, 94, 100,
119

integration, 221
power series, 584

algebra of, 600
convergence, 585
derivatives and integrals, 588

projectile motion, 700, 713

quadric surface
definition, 616
ellipsoid, 618
elliptic cone, 618
elliptic paraboloid, 617
gallery, 617, 619
hyperbolic paraboloid, 619
hyperboloid of one sheet, 618
hyperboloid of two sheets,

619
sphere, 618
trace, 616

Quotient Rule, 97

R, 625
radius of convergence, 585
radius of curvature, 721
Ratio Comparison Test

for series, 567
rational function

continuity of, 20
rearrangements of series, 579
reduction formula

trigonometric integral, 321
regular value, 817
Related Rates, 179
related rates, 179
Riemann Sum, 238, 241, 244

and definite integral, 249
Right Hand Rule, 238, 242, 267
right hand rule

of Cartesian coordinates, 609
of the cross product, 653

Rolle’s Theorem, 143
Root Comparison Test

for series, 569

saddle point, 799, 800
Second Derivative Test, 161, 800
sensitivity analysis, 764
separation of variables, 441
sequence

Absolute Value Theorem, 530
positive, 559

sequences
boundedness, 532
convergent, 528, 533, 536
definition, 525
divergent, 528
limit, 528
limit properties, 531
monotonic, 533

series
absolute convergence, 578
Absolute Convergence

Theorem, 579
alternating, 574
Approximation Theorem,
576

Alternating Series Test, 574
Binomial, 598
conditional convergence, 578
convergent, 540
definition, 540
Direct Comparison Test, 559
divergent, 540
geometric, 542, 543
Integral Test, 556
interval of convergence, 585
Limit Comparison Test, 561
Maclaurin, 595
nth-term test, 551
p-series, 545
partial sums, 540
power, 584, 585
derivatives and integrals,
588

properties, 548
radius of convergence, 585
Ratio Comparison Test, 567
rearrangements, 579
Root Comparison Test, 569
Taylor, 595
telescoping, 546

Shell Method, 392, 396
signed area, 228
signed volume, 837, 838
simple curve, 956
simply connected, 956
Simpson’s Rule, 273, 275

error bounds, 276
slope field, 434
smooth, 687

curve, 485
surface, 971

smooth curve
piecewise, 937

speed, 695
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sphere, 610
spherical coordinates, 899
Squeeze Theorem, 23
Stokes’ Theorem, 995
Sum/Difference Rule

of derivatives, 87
of integration, 221
of series, 548

summation
notation, 239
properties, 241

surface, 971
smooth, 971

surface area, 868
of parametrized surface, 977,

978
solid of revolution, 404, 495,

518
surface integral, 983
surface of revolution, 614, 615

tangent line, 65, 489, 512, 686
directional, 788

tangent plane, 748, 793
to a graph, 748

Taylor polynimial
of several variables, 823

Taylor Polynomial
definition, 205
Taylor’s Theorem, 208

Taylor Series
common series, 600
definition, 595
equality with generating

function, 597
Taylor’s Theorem, 208

in several variables, 823
telescoping series, 546
terminal point, 625
theorem

Intermediate Value, 45
torque, 656
total differential, 760, 765

sensitivity analysis, 764
total signed area, 228
trace, 616
transformation, 908, 914
Trapezoidal Rule, 270, 275

error bounds, 276
trigonometric function

continuity of, 21
triple integral, 876, 887, 889

properties, 882

unbounded sequence, 532

unbounded set, 735
unit normal vector

aN, 712
and acceleration, 711, 712
and curvature, 723
definition, 709
in R2, 711

unit tangent vector
and acceleration, 711, 712
and curvature, 719, 723
aT, 712
definition, 708
in R2, 711

unit vector, 629
properties, 631
standard unit vector, 632
unit normal vector, 709
unit tangent vector, 708

vector field, 942
conservative, 956, 957
curl of, 945
divergence of, 944, 945
over vector field, 952
potential function of, 949, 957

vector-valued function
algebra of, 679
arc length, 692
average rate of change, 681
continuity, 684
definition, 677
derivatives, 685, 687
describing motion, 695
displacement, 680
distance traveled, 702
graphing, 677
integration, 690
limits, 683
of constant length, 689, 699,

700, 709
projectile motion, 700
smooth, 687
tangent line, 686

vectors, 625
algebra of, 627
algebraic properties, 629
component form, 626
cross product, 650, 652
definition, 625
dot product, 638, 639
Head To Tail Rule, 628
magnitude, 625
norm, 625
normal vector, 669
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orthogonal, 641
orthogonal decomposition,

645
orthogonal projection, 643
parallel, 631
Parallelogram Law, 628
resultant, 628
standard unit vector, 632

unit vector, 629, 631
zero vector, 628

velocity, 81, 695
average velocity, 8

volume, 837, 838, 874

Washer Method, 385, 396
work, 410, 647


	Thanks
	Preface
	A Brief History of Calculus
	Math 2570: Calculus III
	Sequences and Series
	Sequences
	Infinite Series
	Integral and Comparison Tests
	Ratio and Root Tests
	Alternating Series and Absolute Convergence
	Power Series
	Taylor Series

	Vectors
	Introduction to Cartesian Coordinates in Space
	An Introduction to Vectors
	The Dot Product
	The Cross Product
	Lines
	Planes

	Vector Valued Functions
	Vector-Valued Functions
	Calculus and Vector-Valued Functions
	The Calculus of Motion
	Unit Tangent and Normal Vectors
	The Arc Length Parameter and Curvature

	Introduction to Functions of Several Variables
	Introduction to Multivariable Functions
	Limits and Continuity of Multivariable Functions
	Partial Derivatives


	Appendices
	Answers to Selected Exercises
	Quick Reference
	Differentiation Formulas
	Integration Formulas
	Trigonometry Reference
	Areas and Volumes
	Algebra
	Additional Formulas
	Summary of Tests for Series


	Back Matter
	Index

	Blank Page



