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Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that youmay better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com², and HTML versions of the book can be found at opentext.uleth.ca³.

These three texts are intended towork together andmake one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com⁴.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—level top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just—learned material helps address future problems.

• Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

²apexcalculus.com
³opentext.uleth.ca/calculus.html
⁴amazon.com
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• You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

• Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theoremmeans and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX – Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculuswould not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
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need. The source files can be found at github.com/APEXCalculus⁵.
You can learn more at www.vmi.edu/APEX⁶.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

• The underlying source code has been completely rewritten, to use the
PreTeXt⁷ language, instead of the original LATEX .

• Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is bothmore accessible andmore interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca⁸.

• The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

• In the html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com⁹ for more information.

• More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

⁵github.com/APEXCalculus
⁶www.vmi.edu/APEX
⁷pretextbook.org
⁸opentext.uleth.ca/calculus.html
⁹apexcalculus.com
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A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate × time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”
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Chapter 14

Functions of Several Variables,
Continued

In Chapter 13 we introduced functions of several variables, and considered lim-
its, continuity, and partial derivatives. This chapter continues the study of func-
tions of several variables in more detail. We begin in Section 14.1 with what it
means for a multivariable function to be differentiable. We then continue with
multivariable analogues of elements from single variable calculus, such as the
chain rule and extreme values.

14.1 Differentiability and the Total Differential

We studied differentials in Section 4.4, where Definition 4.4.5 states that if y =
f(x) and f is differentiable, then dy = f ′(x)dx. One important use of this dif-
ferential is in Integration by Substitution. Another important application is ap-
proximation. Let∆x = dx represent a change in x. When dx is small, dy ≈ ∆y,
the change in y resulting from the change in x. Fundamental in this understand-
ing is this: as dx gets small, the difference between ∆y and dy goes to 0. An-
other way of stating this: as dx goes to 0, the error in approximating ∆y with
dy goes to 0.

We extend this idea to functions of two variables. Let z = f(x, y), and
let ∆x = dx and ∆y = dy represent changes in x and y, respectively. Let
∆z = f(x+ dx, y + dy)− f(x, y) be the change in z over the change in x and
y. Recalling that fx and fy give the instantaneous rates of z-change in the x-
and y-directions, respectively, we can approximate∆z with dz = fxdx+ fydy;
in words, the total change in z is approximately the change caused by changing
x plus the change caused by changing y. In a moment we give an indication of
whether or not this approximation is any good. First we give a name to dz.

14.1.1 The Total Differential

Definition 14.1.1 Total Differential.

Let z = f(x, y) be continuous on a set S. Let dx and dy represent
changes in x and y, respectively. Where the partial derivatives fx and

759



760 CHAPTER 14. FUNCTIONS OF SEVERAL VARIABLES, CONTINUED

fy exist, the total differential of z is

dz = fx(x, y) dx+ fy(x, y) dy.

From Definition 14.1.1, we can
write

dz = ⟨ fx, fy⟩ · ⟨dx, dy⟩.

While not explored in this sec-
tion, the vector ⟨fx, fy⟩ is seen
again in the next section and fully
defined in Section 14.3.

Example 14.1.2 Finding the total differential.

Let z = x4e3y. Find dz.
Solution. We compute the partial derivatives: fx = 4x3e3y and fy =
3x4e3y. Following Definition 14.1.1, we have

dz = 4x3e3ydx+ 3x4e3ydy.

We can approximate ∆z with dz, but as with all approximations, there is
error involved. A good approximation is one in which the error is small. At a
given point (x0, y0), letEx andEy be functions of dx and dy such thatExdx+
Eydy describes this error. Then

∆z = dz + Exdx+ Eydy

= fx(x0, y0)dx+ fy(x0, y0)dy + Exdx+ Eydy.

If the approximation of ∆z by dz is good, then as dx and dy get small, so
doesExdx+Eydy. The approximation of∆z by dz is even better if, as dx and
dy go to 0, so do Ex and Ey. This leads us to our definition of differentiability.

Definition 14.1.3 Multivariable Differentiability.

Let z = f(x, y) be defined on a set S containing (x0, y0) where
fx(x0, y0) and fy(x0, y0) exist. Let dz be the total differential of z at
(x0, y0), let∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey

be functions of dx and dy such that

∆z = dz + Exdx+ Eydy.

1. We say f is differentiable at (x0, y0) if, given ε > 0, there is a
δ > 0 such that if ∥⟨dx, dy⟩∥ < δ, then ∥⟨Ex, Ey⟩∥ < ε. That is,
as dx and dy go to 0, so do Ex and Ey.

2. We say f is differentiable on S if f is differentiable at every point
in S. If f is differentiable on R2, we say that f is differentiable
everywhere.

youtu.be/watch?v=hJaLxYbPgdM

Figure 14.1.4 Another approach to
defining differentiability

Example 14.1.5 Showing a function is differentiable.

Show f(x, y) = xy + 3y2 is differentiable using Definition 14.1.3.
Solution. We begin by finding f(x+ dx, y + dy),∆z, fx and fy.

f(x+ dx, y + dy) = (x+ dx)(y + dy) + 3(y + dy)2

= xy + xdy + ydx+ dxdy + 3y2 + 6ydy + 3dy2.

∆z = f(x+ dx, y + dy)− f(x, y), so

∆z = xdy + ydx+ dxdy + 6ydy + 3dy2.

It is straightforward to compute fx = y and fy = x+6y. Consider once

https://www.youtube.com/watch?v=hJaLxYbPgdM
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more∆z:

∆z = xdy + ydx+ dxdy + 6ydy + 3dy2 (now reorder)

= ydx+ xdy + 6ydy + dxdy + 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy + (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy + Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0,
Ex and Ey also go to 0. Since this did not depend on a specific point
(x0, y0), we can say that f(x, y) is differentiable for all pairs (x, y) inR2,
or, equivalently, that f is differentiable everywhere.

youtu.be/watch?v=rYvDghlxlUA

Figure 14.1.6 Establishing differen-
tiability using the definition in Fig-
ure 14.1.4

Our intuitive understanding of differentiability of functions y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuitive understanding
of functions z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differentiable functions are continuous, followedby another theorem
that provides a more tangible way of determining whether a great number of
functions are differentiable or not.

Theorem 14.1.7 Continuity and Differentiability of Multivariable Func-
tions.

Let z = f(x, y) be defined on a set S containing (x0, y0). If f is differ-
entiable at (x0, y0), then f is continuous at (x0, y0).

Theorem 14.1.8 Differentiability of Multivariable Functions.

Let z = f(x, y) be defined on a set S. If fx and fy are both continuous
on S, then f is differentiable on S.

The above theorems assure us that essentially all functions that we see in
the course of our studies here are differentiable (and hence continuous) on
their natural domains. There is a difference between Definition 14.1.3 and The-
orem 14.1.8, though: it is possible for a function f to be differentiable yet fx
and/or fy is not continuous. Such strange behavior of functions is a source of
delight for many mathematicians, but in practical situations we want to avoid it,
leading to the following definition.

Definition 14.1.9 Continouously Differentiable Function.

Let U be an open subset ofmathbbR2. We say that a function f is con-
tinuously differentiable on U if fx and fy are defined and continuous
at each point in U .
A similar statement applies for functions of three variables inmathbbR3.

When fx and fy exist at a point but are not continuous at that point, we
need to use other methods to determine whether or not f is differentiable at
that point.

https://www.youtube.com/watch?v=rYvDghlxlUA
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For instance, consider the function

f(x, y) =

{
xy

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

We can find fx(0, 0) and fy(0, 0) using Definition 13.3.3:

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

0

h2
= 0;

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h

= lim
h→0

0

h2
= 0.

Both fx and fy exist at (0, 0), but they are not continuous at (0, 0), as

fx(x, y) =
y(y2 − x2)

(x2 + y2)2
and fy(x, y) =

x(x2 − y2)

(x2 + y2)2

are not continuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at
every point in the xy-plane, they are not continuous. Therefore it is possible, by
Theorem 14.1.8, for f to not be differentiable.

Indeed, it is not. One can show that f is not continuous at (0, 0) (see Ex-
ample 13.2.11), and by Theorem 14.1.7, this means f is not differentiable at
(0, 0).

14.1.2 Approximating with the Total Differential
By the definition, when f is differentiable dz is a good approximation for ∆z
when dx and dy are small. We give some simple examples of how this is used
here.

Example 14.1.10 Approximating with the total differential.

Let z =
√
x sin(y). Approximate f(4.1, 0.8).

Solution. Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approxi-
mate f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =√
4 sin(π/4) = 2

(√
2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the

best approximation we could reasonably come up with. The total differ-
ential gives us a way of adjusting this initial approximation to hopefully
get a more accurate answer.
We let∆z = f(4.1, 0.8)− f(4, π/4). The total differential dz is approx-
imately equal to∆z, so

f(4.1, 0.8)−f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+f(4, π/4). (14.1.1)

To find dz, we need fx and fy.

fx(x, y) =
sin(y)
2
√
x

⇒ fx(4, π/4) =
sin(π)/4
2
√
4

=

√
2/2

4
=

√
2/8.
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fy(x, y) =
√
x cos(y) ⇒ fy(4, π/4) =

√
4

√
2

2

=
√
2.

Approximating 4.1 with 4 gives dx = 0.1; approximating 0.8 with π/4
gives dy ≈ 0.015. Thus

dz = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2

8
(0.1) +

√
2(0.015)

≈ 0.039.

Returning to Equation (14.1.1), we have

f(4.1, 0.8) ≈ 0.039 + 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8) with a calcu-
lator; the actual value, accurate to 5 places after the decimal, is 1.45254.
Obviously our approximation is quite good.

The point of the previous example was not to develop an approximation
method for known functions. After all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximation works, and to reinforce the following concept:

“New position = old position+ amount of change,” so
“New position≈ old position + approximate amount of change.”
In the previous example, we could easily compute f(4, π/4) and could ap-

proximate the amount of z-change when computing f(4.1, 0.8), letting us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of
f , fx and fy at a particular point without actually knowing the function f . The
total differential gives a good method of approximating f at nearby points.

Example 14.1.11 Approximating an unknown function.

Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, ap-
proximate f(2.1,−3.03).
Solution. The total differential approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy =
−0.03, we have

dz = fx(2,−3)dx+ fy(2,−3)dy

= 1.3(0.1) + (−0.6)(−0.03)

= 0.148.

The change in z is approximately 0.148, so we approximate
f(2.1,−3.03) ≈ 6.148.

14.1.3 Tangent Plane Approximation
Recall from Chapter 2 that in one variable, the essence of differentiability is the
tangent line approximation. This idea is emphasized in Section 4.4, where we
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first introduced the differential.
In Subsection 13.3.2 we saw that the partial derivatives of a function f(x, y)

can be used to define the tangent plane to a graph z = f(x, y). Wewill now see
that this plane plays the same role for functions of two variables as the tangent
line to a graph y = f(x) for a function of one variable.

Recall from Definition 4.4.4 that for a function f(x), when x is near c we
have the linear approximation f(x) ≈ ℓ(x), where

ℓ(x) = f(c) + f ′(c)(x− c)

is the linearization of f at c. If we set dx = ∆x = x − c, and evaluate the
differential dy = f ′(x) dx at c, then we have

∆y = f(x)− f(c)

dy = ℓ(x)− f(c).

Given the graph y = f(x), we know that y = ℓ(x) gives the tangent line
to the graph at c. For the graph z = f(x, y) of a function of two variables, we
similarly have the tangent plane

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

defined in Definition 13.3.10, suggesting that we define the two variable lin-
earization

ℓ(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Consider the total differential dz at (a, b):

dz = fx(a, b) dx+ fy(a, b) dy.

If we assume that (x, y) is “close” to (a, b), and set dx = x − a, dy = y − b,
then we have

dz = fx(a, b) dx+ fy(a, b) dy = fx(a, b)(x− a) + fy(a, b)(y − b).

Since ℓ(a, b) = f(a, b), we have ℓ(x, y) − ℓ(a, b) = dz, which agrees with
the one-variable situation, and reinforces the concept of the differential as the
“linear change” in a function.

If we recast Definition 14.1.3 in the language of tangent planes, we canmore
easily see the analogy with functions of a single variable. We can now say that
f(x, y) is differentiable at (a, b) if it has a valid tangent plane approximation at
(a, b). Note that f(x, y)− ℓ(x, y) is equal to the error term Ex dx+ Ey dy.

By Theorem 14.1.7, we know that the tangent plane at (a, b, f(a, b)) exists,
and gives a good approximation to the graph z = f(x, y), as long as the partial
derivatives of f exist and are continuous at (a, b).

14.1.4 Error/Sensitivity Analysis
The total differential gives an approximationof the change in z given small changes
in x and y. We can use this to approximate error propagation; that is, if the input
is a little off fromwhat it should be, how far from correct will the output be? We
demonstrate this in an example.
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Example 14.1.12 Sensitivity analysis.

A cylindrical steel storage tank is to be built that is 10ft tall and 4ft across
in diameter. It is known that the steel will expand/contract with tem-
perature changes; is the overall volume of the tank more sensitive to
changes in the diameter or in the height of the tank?
Solution. A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a function of two variables, r and h. We can
compute partial derivatives of V :

∂V

∂r
= Vr(r, h) = 2πrh and

∂V

∂h
= Vh(r, h) = πr2.

The total differential is dV = (2πrh)dr + (πr2)dh. When h = 10 and
r = 2, we have dV = 40πdr + 4πdh. Note that the coefficient of dr
is 40π ≈ 125.7; the coefficient of dh is a tenth of that, approximately
12.57. A small change in radius will be multiplied by 125.7, whereas a
small change in height will be multiplied by 12.57. Thus the volume of
the tank is more sensitive to changes in radius than in height.

The previous example showed that the volume of a particular tankwasmore
sensitive to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1ft and radius of
5ft would be more sensitive to changes in height than in radius.

One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differential.

14.1.5 Differentiability of Functions of Three Variables
The definition of differentiability for functions of three variables is very similar
to that of functions of two variables. We again start with the total differential.

Definition 14.1.13 Total Differential.

Letw = f(x, y, z)be continuous on a setD. Letdx, dy and dz represent
changes in x, y and z, respectively. Where the partial derivatives fx, fy
and fz exist, the total differential of w is

dw = fx(x, y, z) dx+ fy(x, y, z) dy + fz(x, y, z) dz.

This differential can be a good approximation of the change in w when w =
f(x, y, z) is differentiable.

Definition 14.1.14 Multivariable Differentiability.

Let w = f(x, y, z) be defined on a set D containing (x0, y0, z0) where
fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the total
differential ofw at (x0, y0, z0), let∆w = f(x0+dx, y0+dy, z0+dz)−
f(x0, y0, z0), and letEx,Ey andEz be functions of dx, dy and dz such
that

∆w = dw + Exdx+ Eydy + Ezdz.

1. We say f is differentiable at (x0, y0, z0) if, given ε > 0, there is a
δ > 0 such that if ∥⟨dx, dy, dz⟩∥ < δ, then ∥⟨Ex, Ey, Ez⟩∥ < ε.
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2. We say f is differentiable onB if f is differentiable at every point
in B. If f is differentiable on R3, we say that f is differentiable
everywhere.

Just as before, this definition gives a rigorous statement about what it means
to be differentiable that is not very intuitive. We follow it with a theorem similar
to Theorem 14.1.8.

Theorem 14.1.15 Continuity and Differentiability of Functions of Three
Variables.

Let w = f(x, y, z) be defined on a setD containing (x0, y0, z0).

1. If f is differentiable at (x0, y0, z0), then f is continuous at
(x0, y0, z0).

2. If fx, fy and fz are continuous onD, then f is differentiable onD.
Using the languageofDefinition14.1.9,
we can restate Theorem 14.1.15
as saying that if f is continuously
differentiable onD, then f is dif-
ferentiable onD.

This set of definition and theoremextends to functions of any number of vari-
ables. The theorem again gives us a simple way of verifying that most functions
that we encounter are differentiable on their natural domains.

This section has given us a formal definition of what it means for a functions
to be “differentiable,” along with a theorem that gives a more accessible under-
standing. The following sections return to notions prompted by our study of
partial derivatives that make use of the fact that most functions we encounter
are differentiable.
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14.1.6 Exercises

Terms and Concepts

1. T/F: If f(x, y) is differentiable on S, the f is continuous on S.

2. T/F: If fx and fy are continuous on S, then f is differentiable on S.

3. T/F: If z = f(x, y) is differentiable, then the change in z over small changes dx and dy inx and y is approximately
dz.

4. Finish the sentence: “The new z-value is approximately the old z-value plus the approximate .”

Problems

Exercise Group. In the following exercises, find the total differential dz.
5. z = x sin(y) + x2 6. z = (2x2 + 3y)2

7. z = 5x− 7y 8. z = xex+y

Exercise Group. In the following exercises, a function f(x, y) is given. Give the indicated approximation using the
total differential.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1)

knowing f(3, 7) = 4.
10. f(x, y) = sin(x) cos(y). Approximate

f(0.1,−0.1) knowing f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate
f(2.04, 3.06) knowing f(2, 3) = −6.

12. f(x, y) = ln(x− y). Approximate f(5.1, 3.98)
knowing f(5, 4) = 0.

Exercise Group. The following exercises ask a variety of questions dealing with approximating error and sensitivity
analysis.

13. A cylindrical storage tank is to be 2ft tall with a
radius of 1ft. Is the volume of the tank more
sensitive to changes in the radius or the height?

14. Projectile Motion: The x-value of an object
moving under the principles of projectile
motion is x(θ, v0, t) = (v0 cos(θ))t. A particular
projectile is fired with an initial velocity of
v0 = 250ft/s and an angle of elevation of
θ = 60◦. It travels a distance of 375ft in 3
seconds.

Is the projectile more sensitive to errors in
initial speed or angle of elevation?

15. The length ℓ of a long wall is to be approximated.
The angle θ, as shown in the diagram (not to
scale), is measured to be 85◦, and the distance
x is measured to be 30’. Assume that the
triangle formed is a right triangle.

Is the measurement of the length of ℓmore
sensitive to errors in the measurement of x or
in θ?

ℓ =?

θ
x

16. It is “common sense” that it is far better to
measure a long distance with a long measuring
tape rather than a short one. A measured
distanceD can be viewed as the product of the
length ℓ of a measuring tape times the number
n of times it was used. For instance, using a 3’
tape 10 times gives a length of 30’. To measure
the same distance with a 12’ tape, we would
use the tape 2.5 times. (i.e., 30 = 12× 2.5.)
ThusD = nℓ.

Suppose each time a measurement is taken
with the tape, the recorded distance is within
1/16’’ of the actual distance. (i.e.,
dℓ = 1/16′′ ≈ 0.005ft). Using differentials,
show why common sense proves correct in that
it is better to use a long tape to measure long
distances.
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Exercise Group. In the following exercises, find the total differential dw.
17. w = x2yz3 18. w = ex sin(y) ln(z)

Exercise Group. In the following exercises, use the information provided and the total differential to make the given
approximation.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2.
Approximate f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6,
fy(−4, 2) = 5.1. Approximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) =
−3, fz(2, 4, 5) = 3.7. Approximate
f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) =
0, fz(3, 3, 3) = −2. Approximate
f(3.1, 3.1, 3.1).
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14.2 The Multivariable Chain Rule

Consider driving an off-road vehicle along a dirt road. As you drive, your eleva-
tion likely changes. What factors determine howquickly your elevation rises and
falls? After some thought, generally one recognizes that one’s velocity (speed
and direction) and the terrain influence your rise and fall.

One can represent the terrain as the surface defined by a multivariable func-
tion f(x, y); one can represent the path of the off-road vehicle, as seen from
above, with a vector-valued function r⃗(t) = ⟨x(t), y(t)⟩; the velocity of the ve-
hicle is thus r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

Consider Figure 14.2.1 in which a surface z = f(x, y) is drawn, along with a
dashed curve in the xy-plane. Restricting f to just the points on this circle gives
the curve shown on the surface (i.e., “the path of the off-road vehicle.”) The
derivative df

dt gives the instantaneous rate of change of f with respect to t. If
we consider an object traveling along this path, dfdt = dz

dt gives the rate at which
the object rises/falls (i.e., “the rate of elevation change” of the vehicle.) Concep-
tually, the Multivariable Chain Rule combines terrain and velocity information
properly to compute this rate of elevation change.

Figure 14.2.1 Understanding the ap-
plication of the Multivariable Chain
Rule

Abstractly, let z be a function of x and y; that is, z = f(x, y) for some
function f , and let x and y each be functions of t. By choosing a t-value, x- and
y-values are determined, which in turn determine z: this defines z as a function
of t. The Multivariable Chain Rule gives a method of computing dz

dt .

youtu.be/watch?v=e4uf2cA7YyA

Figure 14.2.2 Introducing the chain
rule in several variables

14.2.1 Multivariable Chain Rule, Part I

Theorem 14.2.3 Multivariable Chain Rule, Part I.

Let z = f(x, y), x = g(t) and y = h(t), where f , g and h are differ-
entiable functions. Then z = f(x, y) = f

(
g(t), h(t)

)
is a function of t,

and

dz

dt
=

df

dt
= fx(x, y)

dx

dt
+ fy(x, y)

dy

dt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= ⟨ fx, fy⟩ · ⟨x′, y′⟩.

The Chain Rule of Section 2.5 states that
d

dx

(
f
(
g(x)

))
= f ′(g(x))g′(x).

If t = g(x), we can express the Chain Rule as

df

dx
=

df

dt

dt

dx
;

recall that the derivative notation is deliberately chosen to reflect their fraction-
like properties. A similar effect is seen in Theorem 14.2.3. In the second line
of equations, one can think of the dx and ∂x as “sort of” canceling out, and
likewise with dy and ∂y.

Notice, too, the third line of equations in Theorem14.2.3. The vector ⟨ fx, fy⟩
contains information about the surface (terrain); the vector ⟨x′, y′⟩ can repre-
sent velocity. In the context measuring the rate of elevation change of the off-
road vehicle, the Multivariable Chain Rule states it can be found through a prod-
uct of terrain and velocity information.

We now practice applying the Multivariable Chain Rule.

youtu.be/watch?v=bagsQndc8nw

Figure 14.2.4 Examples involving the
chain rule

https://www.youtube.com/watch?v=e4uf2cA7YyA
https://www.youtube.com/watch?v=bagsQndc8nw
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Example 14.2.5 Using the Multivariable Chain Rule.

Let z = x2y+x, where x = sin(t) and y = e5t. Find dz
dt using the Chain

Rule.
Solution. Following Theorem 14.2.3, we find

fx(x, y) = 2xy+1, fy(x, y) = x2,
dx

dt
= cos(t),

dy

dt
= 5e5t.

Applying the theorem, we have

dz

dt
= (2xy + 1) cos(t) + 5x2e5t.

This may look odd, as it seems that dz
dt is a function of x, y and t. Since

x and y are functions of t, dz
dt is really just a function of t, and we can

replace x with sin(t) and y with e5t:

dz

dt
= (2xy+1) cos(t)+5x2e5t = (2 sin(t)e5t+1) cos(t)+5e5t sin2(t).

The previous example can make us wonder: if we substituted for x and y at
the end to show that dz

dt is really just a function of t, why not substitute before
differentiating, showing clearly that z is a function of t?

That is, z = x2y+x = (sin(t))2e5t+sin(t). Applying the Chain and Product
Rules, we have

dz

dt
= 2 sin(t) cos(t) e5t + 5 sin2(t) e5t + cos(t),

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivative, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerfulwhenwedo not knowwhat f , g and/orh are. Itmay be hard
to believe, but often in “the real world” we know rate-of-change information
(i.e., information about derivatives) without explicitly knowing the underlying
functions. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoretic use, giving us insight
into the behavior of certain constructions (as we’ll see in the next section).

We demonstrate this in the next example.

Example 14.2.6 Applying the Multivariable Chain Rule.

An object travels along a path on a surface. The exact path and surface
are not known, but at time t = t0 it is known that :

∂z

∂x
= 5,

∂z

∂y
= −2,

dx

dt
= 3 and

dy

dt
= 7.

Find dz
dt at time t0.

Solution. The Multivariable Chain Rule states that

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= 5(3) + (−2)(7)
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= 1.

By knowing certain rates-of-change information about the surface and
about the path of the particle in the xy-plane, we can determine how
quickly the object is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 14.2.7 Applying the Multivariable Chain Rule.

Consider the surface z = x2+y2−xy, a paraboloid, on which a particle
moves with x and y coordinates given by x = cos(t) and y = sin(t).
Find dz

dt when t = 0, and find where the particle reaches its maximum/
minimum z-values.
Solution. It is straightforward to compute

fx(x, y) = 2x− y fy(x, y) = 2y − x

dx

dt
= − sin(t) dy

dt
= cos(t).

Combining these according to the Chain Rule gives:

dz

dt
= −(2x− y) sin(t) + (2y − x) cos(t).

Figure 14.2.8 Plotting the path of
a particle on a surface in Exam-
ple 14.2.7

When t = 0, x = 1 and y = 0. Thus
dz

dt
= −(2)(0) + (−1)(1) = −1.

When t = 0, the particle is moving down, as shown in Figure 14.2.8.
To find where z-value is maximized/minimized on the particle’s path, we
set dz

dt = 0 and solve for t:

dz

dt
= 0 = −(2x− y) sin(t) + (2y − x) cos(t)

0 = −(2 cos(t)− sin(t)) sin(t) + (2 sin(t)− cos(t)) cos(t)

0 = sin2(t)− cos2(t)

cos2(t) = sin2(t)

t = n
π

4
(for odd n)

We can use the First Derivative Test to find that on [0, 2π], z has reaches
its absolute minimum at t = π/4 and 5π/4; it reaches its absolute max-
imum at t = 3π/4 and 7π/4, as shown in Figure 14.2.8.

We can extend the Chain Rule to include the situation where z is a function
of more than one variable, and each of these variables is also a function of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
functions of two variables, say s and t.

Theorem 14.2.9 Multivariable Chain Rule, Part II.

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f , g and h are
differentiable functions. Then z is a function of s and t, and

•
∂z

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
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•
∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

2. Let z = f(x1, x2, . . . , xm) be a differentiable function of m vari-
ables, where each of the xi is a differentiable function of the vari-
ables t1, t2, . . . , tn. Then z is a function of the ti, and

∂z

∂ti
=

∂f

∂x1

∂x1

∂ti
+

∂f

∂x2

∂x2

∂ti
+ · · ·+ ∂f

∂xm

∂xm

∂ti
.

Example 14.2.10 Using the Multivariable Chain Rule, Part II.

Let z = x2y + x, x = s2 + 3t and y = 2s − t. Find ∂z
∂s and

∂z
∂t , and

evaluate each when s = 1 and t = 2.
Solution. Following Theorem 14.2.9, we compute the following partial
derivatives:

∂f

∂x
= 2xy + 1

∂f

∂y
= x2,

∂x

∂s
= 2s

∂x

∂t
= 3

∂y

∂s
= 2

∂y

∂t
= −1.

Thus

∂z

∂s
= (2xy + 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z

∂t
= (2xy + 1)(3) + (x2)(−1) = 6xy − x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z

∂s
= 100 and

∂z

∂t
= −46.

Example 14.2.11 Using the Multivariable Chain Rule, Part II.

Let w = xy + z2, where x = t2es, y = t cos(s), and z = s sin(t). Find
∂w
∂t when s = 0 and t = π.
Solution. Following Theorem 14.2.9, we compute the following partial
derivatives:

∂f

∂x
= y

∂f

∂y
= x

∂f

∂z
= 2z

∂x

∂t
= 2tes

∂y

∂t
= cos(s)

∂z

∂t
= s cos(t).

Thus
∂w

∂t
= y(2tes) + x(cos(s)) + 2z(s cos(t)).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w

∂t
= π(2π) + π2 = 3π2.
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14.2.2 Implicit Differentiation

We studied finding dy
dx when y is given as an implicit function of x in detail in Sec-

tion 2.6. We find here that the Multivariable Chain Rule gives a simpler method
of finding dy

dx .
For instance, consider the implicit function x2y − xy3 = 3. We learned to

use the following steps to find dy
dx :

d

dx

(
x2y − xy3

)
=

d

dx

(
3
)

2xy + x2 dy

dx
− y3 − 3xy2

dy

dx
= 0

dy

dx
= − 2xy − y3

x2 − 3xy2
.

Instead of using this method, consider z = x2y−xy3. The implicit function
above describes the level curve z = 3. Considering x and y as functions of x,
the Multivariable Chain Rule states that

dz

dx
=

∂z

∂x

dx

dx
+

∂z

∂y

dy

dx
. (14.2.1)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
Equation (14.2.1) becomes

0 =
∂z

∂x
(1) +

∂z

∂y

dy

dx
⇒

dy

dx
= −∂z

∂x

/∂z

∂y

= − fx
fy
. (14.2.2)

Note howour solution for dy
dx in Equation (14.2.2) is just the partial derivative

of z with respect to x, divided by the partial derivative of z with respect to y, all
multiplied by (−1).

We state the above as a theorem.

Theorem 14.2.12 Implicit Differentiation.

Let f be a differentiable function of x and y, where f(x, y) = c defines
y as an implicit function of x, for some constant c. Then

dy

dx
= −fx(x, y)

fy(x, y)
.

We practice using Theorem 14.2.12 by applying it to a problem from Sec-
tion 2.6.

Example 14.2.13 Implicit Differentiation.

Given the implicitly defined function sin(x2y2) + y3 = x + y, find y′.
Note: this is the same problem as given in Example 2.6.8 of Section 2.6,
where the solution took about a full page to find.
Solution. Let f(x, y) = sin(x2y2) + y3 − x− y; the implicitly defined
function above is equivalent to f(x, y) = 0. We find dy

dx by applying
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Theorem 14.2.12. We find

fx(x, y) = 2xy2 cos(x2y2)− 1

fy(x, y) = 2x2y cos(x2y2) + 3y2 − 1,

so
dy

dx
= − 2xy2 cos(x2y2)− 1

2x2y cos(x2y2) + 3y2 − 1
,

which matches our solution from Example 2.6.8.

youtu.be/watch?v=o9Zyg-QY8Qo

Figure 14.2.14 Examples with implicit
differentiation

We can also do implicit differentiation for functions of three variables. In
the same way that a level curve f(x, y) = c is used to implicitly define y as a
function of x, a level surface f(x, y, z) = c can be viewed as implicitly defining
z as a function of x and y.

Suppose the equation f(x, y, z) = c, where c is a constant, defines the
function z = g(x, y). Thenwe can use the chain rule to compute the derivatives
of f(x, y, z) with respect to x and y, where we set x = x, y = y, and z =
g(x, y). Since f(x, y, z) is constant, we have

0 =
∂

∂x
f(x, y, z)

= fx(x, y, z)
∂x

∂x
+ fy(x, y, z)

∂y

∂x
+ fz(x, y, z)

∂z

∂x

= fx(x, y, z)(1) + fy(x, y, z)(0) + fz(x, y, z)
∂z

∂x
.

Solving for ∂z
∂x gives us

∂z

∂x
= −fx(x, y, z)

fz(x, y, z)
,

and similarly,
∂z

∂y
= −fy(x, y, z)

fz(x, y, z)
.

There is a subtlety in this calcu-
lation that can be quite confus-
ing. It appears to be chain rule,
but shouldn’t the derivative of
f(x, y, z) with respect to x be
simply fx(x, y, z)? The catchhere
is thatweare considering the vari-
ablesx, y, z (viewedas coordinates
in R3) as functions of x and y,
viewed as coordinates in R2.

In other words, the x and y
in g(x, y) are not the sameas the
ones in f(x, y, z)! If this is still
confusing, try settingx = s, y =
t, and z = g(s, t), and then ap-
plying the chain rule as usual, for
derivatives of f(x, y, z) with re-
spect to s and t. At the end, we
can relabel s and t as x and y.

In Subsection 13.3.2 we saw that we can use partial derivatives to determine
the equation of the tangent plane to a graph z = f(x, y). Using implicit differ-
entiation, we can do the same for a level surface f(x, y, z) = c.

Example 14.2.15 Implicit Differentiation with three variables.

Given that the equation

x2yz3 − sin(x− 3z) + 4xy2 − 3yz = 0 (14.2.3)

defines z implicitly as a function of x and y, compute ∂z
∂x and

∂z
∂y using

implicit differentiation. Then, determine the equation of the tangent
plane to the surface at the point (3, 0, 1).
Solution. There are two ways to proceed. One is to use implicit differ-
entiation as before, but using partial derivatives. Whenever we differen-
tiate a function of z, we multiply by the appropriate partial derivative of
z. The other option is to use the formula derived above. We will use the
first method for the x derivative, and the second for y.
We first take the partial derivative of both sides of Equation (14.2.3) with
respect to x:

∂

∂x
(x2yz3 − sin(x− 3z) + 4xy2 − 3yz) = 0

https://www.youtube.com/watch?v=o9Zyg-QY8Qo
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2xyz3 + x2y(3z2)
∂z

∂x
− cos(x− 3z)

(
1− 3

∂z

∂x

)
+ 4y2 − 3y

∂z

∂x
= 0.

Note that we treated y as a constant, since the derivative is with respect
to x. Next, we collect terms:

∂z

∂x

(
3x2yz2 + 3 cos(x− 3z)− 3y

)
= −2xyz3 + cos(x− 3z)− 4y2.

Lastly, we solve for ∂z
∂x :

∂z

∂x
=

−2xyz3 + cos(x− 3z)− 4y2

3x2yz2 + 3 cos(x− 3z)− 3y
.

For the y derivative, we will use the result given above. Setting
f(x, y, z) = x2yz3−sin(x−3z)+4xy2−3yz, we have ∂z

∂y = − fy(x,y,z)
fz(x,y,z)

.
Therefore,

∂z

∂y
= − x2z3 + 8xy − 3z

3x2yz2 + 3 cos(x− 3z)− 3y
.

The second method certainly seems simpler! The reader is invited to try
each part with the other method, and compare answers.
Finally, we consider the problem of the tangent plane. First, we check
that the point (3, 0, 1) is indeed on the surface: f(3, 0, 1) = 0, as re-
quired. Next we note that z = 1 is given to us from this point. So if
f(x, y, z) = c implicitly defines the graph z = g(x, y), then we must
have g(3, 0) = 1. Next, we have

gx(3, 0) =
∂z

∂x

∣∣∣∣
(3,0)

=
0 + 1− 0

0 + 3− 0
=

1

3

gy(3, 0) =
∂z

∂y

∣∣∣∣
(3,0)

= −9 + 0− 3

0 + 3− 0
= −2.

The equation of the tangent plane is therefore

z = g(3, 0) + gx(3, 0)(x− 3) + gy(3, 0)(y − 0) = 1 +
1

3
(x− 3)− 2y.

In Section 13.3we learned howpartial derivatives give certain instantaneous
rate of change information about a function f(x, y). In that section, we mea-
sured the rate of change of f by holding one variable constant and letting the
other vary (such as, holding y constant and letting x vary gives fx). We can visu-
alize this change by considering the surface defined by f at a point and moving
parallel to the x-axis.

What if we want to move in a direction that is not parallel to a coordinate
axis? Can we still measure instantaneous rates of change? Yes; we find out how
in Section 14.3. In doing so, we’ll see how the Multivariable Chain Rule informs
our understanding of these directional derivatives.
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14.2.3 Exercises

Terms and Concepts

1. Let a level curve of z = f(x, y) be described by x = g(t), y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d

dx

(
f
(
g(x)

))
= f ′(g(x))· .

3. Fill in the blank: The Multivariable Chain Rule states
df

dt
=

∂f

∂x
· + ·dydt .

4. If z = f(x, y), where x = g(t) and y = h(t), we can substitute and write z as an explicit function of t.
T/F: Using the Multivariable Chain Rule to find dz

dt is sometimes easier than first substituting and then taking
the derivative.

5. T/F: The Multivariable Chain Rule is only useful when all the related functions are known explicitly.

6. TheMultivariable Chain Rule allows us to compute implicit derivatives easily by just computing two
derivatives.

Problems

Exercise Group. Given the functions z = f(x, y), x = g(t) and y = h(t):

(a) Use the Multivariable Chain Rule to compute dz
dt .

(b) Evaluate dz
dt at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1 8. z = x2 − y2, x = t, and y = t2 − 1; t = 1

9. z = 5x+ 2y, x = 2 cos(t) + 1, y = sin(t)− 3;
t = π/4

10. z = x
y2+1 , x = cos(t), and y = sin(t); t = π/2

11. z = x2 + 2y2, x = sin(t), y = 3 sin(t); t = π/4 12. z = cos(x) sin(y), x = πt, and y = 2πt+ π/2;
t = 3

Exercise Group. In the following exercises, functions z = f(x, y), x = g(t) and y = h(t) are given. Find the values
of t where dz

dt = 0. Note: these are the same surfaces/curves as found in Exercises 7–12.

13. z = 3x+ 4y, x = t2, y = 2t 14. Given z = x2 − y2, x = t, and y = t2 − 1, at
what values of t does dz

dt = 0?

15. z = 5x+ 2y, x = 2 cos(t) + 1, y = sin(t)− 3 16. Given z = x
y2+1 , x = cos(t), and y = sin(t), at

what values of t in [0, 2π) does dz
dt = 0?

17. z = x2 + 2y2, x = sin(t), y = 3 sin(t) 18. Given z = cos(x) sin(y), x = πt, and
y = 2πt+ π/2, at what values of t in [0, 2) does
dz
dt = 0?

Exercise Group. Given the functions z = f(x, y), x = g(s, t) and y = h(s, t):

(a) Use the Multivariable Chain Rule to compute ∂z
∂s and

∂z
∂t .

(b) Evaluate ∂z
∂s and

∂z
∂t at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0 20. z = cos
(
πx+ π

2 y
)
, x = st2, and y = s2t;

s = 1, t = 0

21. z = x2 + y2, x = s cos(t), and y = s sin(t);
s = 2, t = π/4

22. z = e−(x2+y2), x = t, and y = st2, s = 1, t = 1
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Exercise Group. The given equation defines y implicitly as a function of x. Find dy
dx using Implicit Differentiation and

Theorem 14.2.12.
23. x2 tan(y) = 50 24.

(
3x2 + 2y3

)4
= 2

25.
x2 + y

x+ y2
= 17

26. ln
(
x2 + xy + y2

)
= 1

Exercise Group. Find dz
dt , or

∂z
∂s and

∂z
∂t , using the supplied information.

27.
∂z

∂x
= 2,

∂z

∂y
= 1,

dx

dt
= 4,

dy

dt
= −5 28. ∂z

∂x = 1, ∂z∂y = −3, dxdt = 6, and dy
dt = 2.

29.
∂z

∂x
= −4,

∂z

∂y
= 9,

∂x

∂s
= 5,

∂x

∂t
= 7,

∂y

∂s
= −2,

∂y

∂t
= 6

30. ∂z
∂x = 2, ∂z∂y = 1, ∂x∂s = −2, ∂x∂t = 3, ∂y∂s = 2 and
∂y
∂t = −1
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14.3 Directional Derivatives

Partial derivatives give us an understanding of how a surface changes when we
move in the x and y directions. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is compara-
ble to fx. Likewise, the rise/fall in moving due north is comparable to fy. The
steeper the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Partial derivatives
alone cannotmeasure this. This section investigatesdirectional derivatives, which
do measure this rate of change.

youtu.be/watch?v=ZQPnmL5CM6s

Figure 14.3.1 Introducing directional
derivatives

14.3.1 Functions of Two Variables
We begin with a definition.

Definition 14.3.2 Directional Derivatives.

Let z = f(x, y) be continuous on a set S and let u⃗ = ⟨u1, u2⟩ be a unit
vector. For all points (x, y), the directional derivative of f at (x, y) in
the direction of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y + hu2)− f(x, y)

h
.

The partial derivatives fx and fy are definedwith similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a particular unit vector u⃗. This may look a bit intimidating but in reality it is
not too difficult to deal with; it often just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 14.3.3 Directional Derivatives.

Let z = f(x, y) be differentiable on a set S containing (x0, y0), and let
u⃗ = ⟨u1, u2⟩ be a unit vector. The directional derivative of f at (x0, y0)
in the direction of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Example 14.3.4 Computing directional derivatives.

Let z = 14− x2 − y2 and let P = (1, 2). Find the directional derivative
of f , at P , in the following directions:

1. toward the pointQ = (3, 4),

2. in the direction of ⟨2,−1⟩, and

3. toward the origin.

Solution. The surface is plotted in Figure 14.3.5, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies
on the surface of f . We find that fx(x, y) = −2x and fx(1, 2) = −2;
fy(x, y) = −2y and fy(1, 2) = −4.Figure 14.3.5 Understanding the di-

rectional derivative in Example 14.3.4
1. Let u⃗1 be the unit vector that points from the point (1, 2) to the
pointQ = (3, 4), as shown in the figure. The vector

−−→
PQ = ⟨2, 2⟩;

https://www.youtube.com/watch?v=ZQPnmL5CM6s
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the unit vector in this direction is u⃗1 =
〈
1/
√
2, 1/

√
2
〉
. Thus the

directional derivative of f at (1, 2) in the direction of u⃗1 is

Du⃗1
f(1, 2) = −2(1/

√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point
(1, 2, 9) on the surface in the direction of u⃗1 (which points toward
the point Q) is about −4.24. Moving in this direction moves one
steeply downward.

2. We seek the directional derivative in the direction of ⟨2,−1⟩. The
unit vector in this direction is u⃗2 =

〈
2/
√
5,−1/

√
5
〉
. Thus the

directional derivative of f at (1, 2) in the direction of u⃗2 is

Du⃗2
f(1, 2) = −2(2/

√
5) + (−4)(−1/

√
5) = 0.

Starting on the surface of f at (1, 2) and moving in the direction
of ⟨2,−1⟩ (or u⃗2) results in no instantaneous change in z-value.
This is analogous to standing on the side of a hill and choosing a
direction to walk that does not change the elevation. One neither
walks up nor down, rather just “along the side” of the hill. Finding
these directions of “no elevation change” is important.

3. At P = (1, 2), the direction towards the origin is given by
the vector ⟨−1,−2⟩; the unit vector in this direction is u⃗3 =〈
−1/

√
5,−2/

√
5
〉
. The directional derivative of f at P in the di-

rection of the origin is

Du⃗3
f(1, 2) = −2(−1/

√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply,
with an initial slope of about 4.47.

youtu.be/watch?v=aoR9ANpc334

Figure 14.3.6 Computing directional
derivatives

As we study directional derivatives, it will help tomake an important connec-
tion between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direction and the
partial derivatives fx and fy. We start with a definition and follow this with a
Key Idea.

Definition 14.3.7 Gradient.

Let z = f(x, y) be differentiable on a set S that contains the point
(x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is ∇f(x0, y0) =
⟨fx(x0, y0), fy(x0, y0)⟩. The symbol “∇” is named “nabla,”

derived from the Greek name of
a Jewish harp. Oddly enough, in
mathematics the expression∇f
is pronounced “del f .”

To simplify notation, we often express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute directional derivatives in terms of a dot product.

Key Idea 14.3.8 The Gradient and Directional Derivatives.

The directional derivative of z = f(x, y) in the direction of u⃗ is

Du⃗ f = ∇f · u⃗.

https://www.youtube.com/watch?v=aoR9ANpc334
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The properties of the dot product previously studied allow us to investigate
the properties of the directional derivative. Given that the directional derivative
gives the instantaneous rate of change of z when moving in the direction of u⃗,
three questions naturally arise:

1. In what direction(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direction(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direction(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = ∥∇f∥ ∥u⃗∥ cos(θ) = ∥∇f∥ cos(θ), (14.3.1)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, ∥u⃗∥ =
1.) This equation allows us to answer the three questions stated previously.

1. Equation (14.3.1) is maximized when cos(θ) = 1, i.e., when the gradient
and u⃗ have the same direction. We conclude the gradient points in the
direction of greatest z change.

2. Equation (14.3.1) is minimized when cos(θ) = −1, i.e., when the gradient
and u⃗ have opposite directions. We conclude the gradient points in the
opposite direction of the least z change.

3. Equation (14.3.1) is 0 when cos(θ) = 0, i.e., when the gradient and u⃗
are orthogonal to each other. We conclude the gradient is orthogonal to
directions of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direction that leads you steepest uphill. Then the direction that
leads steepest downhill is directly behind you, and side-stepping either left or
right (i.e., moving perpendicularly to the direction you face) does not change
your elevation at all.

Recall that a level curve is defined as a curve in the xy-plane along which the
z-values of a functiondonot change. Let a surface z = f(x, y)be given, and let’s
represent one such level curve as a vector-valued function, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t,

for some constant c.
Since f is constant for all t, dfdt = 0. By the Multivariable Chain Rule, we also

know

df

dt
= fx(x, y)x

′(t) + fy(x, y)y
′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x′(t), y′(t)⟩
= ∇f · r⃗ ′(t)
= 0.

This last equality states ∇f · r⃗ ′(t) = 0: the gradient is orthogonal to the
derivative of r⃗, meaning the gradient is orthogonal to the graph of r⃗. Our con-
clusion: at any point on a surface, the gradient at that point is orthogonal to the
level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.
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Theorem 14.3.9 The Gradient and Directional Derivatives.

Let z = f(x, y) be differentiable on a set S with gradient ∇f , let P =
(x0, y0) be a point in S and let u⃗ be a unit vector.

1. The maximum value of Du⃗ f(x0, y0) is ∥∇f(x0, y0)∥; the direc-
tion of maximal z increase is∇f(x0, y0).

2. The minimum value ofDu⃗ f(x0, y0) is −∥∇f(x0, y0)∥; the direc-
tion of minimal z increase is−∇f(x0, y0).

3. At P ,∇f(x0, y0) is orthogonal to the level curve passing through(
x0, y0

)
.

Example 14.3.10 Finding directions of maximal and minimal increase.

Let f(x, y) = sin(x) cos(y) and let P = (π/3, π/3). Find the directions
of maximal/minimal increase, and find a direction where the instanta-
neous rate of z change is 0.
Solution. We begin by finding the gradient. fx = cos(x) cos(y) and
fy = − sin(x) sin(y), thus

∇f = ⟨cos(x) cos(y),− sin(x) sin(y)⟩ and, at P ,∇f
(π
3
,
π

3

)
=

〈
1

4
,−3

4

〉
.

Thus the direction of maximal increase is ⟨1/4,−3/4⟩. In this direction,
the instantaneous rate of z change is ∥⟨1/4,−3/4⟩∥ =

√
10/4 ≈ 0.79.

Figure 14.3.11 shows the surface plotted from twodifferent perspectives.
In each, the gradient is drawn at P with a dashed line (because of the
nature of this surface, the gradient points “into” the surface). Let u⃗ =
⟨u1, u2⟩ be the unit vector in the direction of∇f atP . Each graph of the
figure also contains the vector ⟨u1, u2, ∥∇f ∥⟩. This vector has a “run” of
1 (because in the xy-plane it moves 1 unit) and a “rise” of ∥∇f∥, hence
we can think of it as a vector with slope of ∥∇f∥ in the direction of∇f ,
helping us visualize how “steep” the surface is in its steepest direction.

(a) (b)

Figure 14.3.11 Graphing the surface and important directions in Exam-
ple 14.3.10
The direction of minimal increase is ⟨−1/4, 3/4⟩; in this direction the
instantaneous rate of z change is−

√
10/4 ≈ −0.79.
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Any direction orthogonal to ∇f is a direction of no z change. We have
two choices: the direction of ⟨3, 1⟩ and the direction of ⟨−3,−1⟩. The
unit vector in the direction of ⟨3, 1⟩ is shown in each graph of the figure
as well. The level curve at z =

√
3/4 is drawn: recall that along this

curve the z-values do not change. Since ⟨3, 1⟩ is a direction of no z-
change, this vector is tangent to the level curve at P .

Example 14.3.12 Understanding when∇f = 0⃗.

Let f(x, y) = −x2 + 2x − y2 + 2y + 1. Find the directional derivative
of f in any direction at P = (1, 1).
Solution. We find ∇f = ⟨−2x+ 2,−2y + 2⟩. At P , we have
∇f(1, 1) = ⟨0, 0⟩. According to Theorem 14.3.9, this is the direction
of maximal increase. However, ⟨0, 0⟩ is directionless; it has no displace-
ment. And regardless of the unit vector u⃗ chosen,Du⃗ f = 0.
Figure 14.3.13 helps us understand what this means. We can see that P
lies at the top of a paraboloid. In all directions, the instantaneous rate
of change is 0.
So what is the direction of maximal increase? It is fine to give an answer
of 0⃗ = ⟨0, 0⟩, as this indicates that all directional derivatives are 0.

Figure 14.3.13 At the top of a parabo-
loid, all directional derivatives are 0

The fact that the gradient of a surface always points in the direction of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 14.3.14 The flow of water downhill.

Consider the surface given by the graph of f(x, y) = 20 − x2 − 2y2.
Water is poured on the surface at (1, 1/4). What path does it take as it
flows downhill?
Solution. Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector-valued function de-
scribing the path of the water in the xy-plane; we seek x(t) and y(t).
We know that water will always flow downhill in the steepest direction;
therefore, at any point on its path, it will be moving in the direction
of −∇f . (We ignore the physical effects of momentum on the water.)
Thus r⃗ ′(t) will be parallel to∇f , and there is some constant c such that
c∇f = r⃗ ′(t) = ⟨x′(t), y′(t)⟩.
We find∇f = ⟨−2x,−4y⟩ and write x′(t) as dx

dt and y
′(t) as dy

dt . Then

c∇f = ⟨x′(t), y′(t)⟩

⟨−2cx,−4cy⟩ =
〈
dx

dt
,
dy

dt

〉
.

This implies

−2cx =
dx

dt
and − 4cy =

dy

dt
, i.e.,

c = − 1

2x

dx

dt
and c = − 1

4y

dy

dt
.

As c equals both expressions, we have

1

2x

dx

dt
=

1

4y

dy

dt
.
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To find an explicit relationship between x and y, we can integrate both
sides with respect to t. Recall from our study of differentials that dx

dt dt =
dx. Thus:∫

1

2x

dx

dt
dt =

∫
1

4y

dy

dt
dt∫

1

2x
dx =

∫
1

4y
dy

1

2
ln |x| = 1

4
ln |y|+ C1

2 ln |x| = ln |y|+ C1

ln
∣∣x2
∣∣ = ln |y|+ C1

Now raise both sides as a power of e:

x2 = eln|y|+C1

x2 = eln|y|eC1 (Note that eC1 is just a constant.)

x2 = yC2

1

C2
x2 = y (Note that 1/C2 is just a constant.)

Cx2 = y.

As the water started at the point (1, 1/4), we can solve for C:

C(1)2 =
1

4
⇒ C =

1

4
.

(a)

−4 −2 2 4

−2

2

x

y

(b)

Figure 14.3.15 A sketch of the surface described in Example 14.3.14
along with the path in the xy-plane with the level curves

Thus the water follows the curve y = x2/4 in the xy-plane. The sur-
face and the path of the water is graphed in Figure 14.3.15(a). In Fig-
ure 14.3.15(b), the level curves of the surface are plotted in thexy-plane,
along with the curve y = x2/4. Notice how the path intersects the level
curves at right angles. As the path follows the gradient downhill, this
reinforces the fact that the gradient is orthogonal to level curves.

youtu.be/watch?v=Re0amVb6QdQ

Figure 14.3.16 Discussing the signifi-
cance of directional derivatives

https://www.youtube.com/watch?v=Re0amVb6QdQ
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14.3.2 Functions of Three Variables
The concepts of directional derivatives and the gradient are easily extended to
three (andmore) variables. We combine the concepts behind Definitions 14.3.2
and 14.3.7 and Theorem 14.3.3 into one set of definitions.

Definition 14.3.17 Directional Derivatives and Gradient with Three
Variables.

Letw = F (x, y, z) be differentiable on a setD and let u⃗ be a unit vector
in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The directional derivative of F in the direction of u⃗ is

Du⃗F = ∇F · u⃗.

The same properties of the gradient given in Theorem 14.3.9, when f is a
function of two variables, hold for F , a function of three variables.

Theorem 14.3.18 The Gradient and Directional Derivatives with Three
Variables.

Let w = F (x, y, z) be differentiable on a setD, let∇F be the gradient
of F , and let u⃗ be a unit vector.

1. The maximum value of Du⃗F is ∥∇F∥, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direction of maximal increase is
∇F .

2. The minimum value ofDu⃗F is−∥∇F∥, obtained when the angle
between ∇F and u⃗ is π, i.e., the direction of minimal increase is
−∇F .

3. Du⃗F = 0 when∇F and u⃗ are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three-variable analogue to level curves.

Example 14.3.19 Finding directional derivativeswith functions of three
variables.

If a point source S is radiating energy, the intensity I at a given point P
in space is inversely proportional to the square of the distance between
S and P . That is, when S = (0, 0, 0), I(x, y, z) = k

x2+y2+z2 for some
constant k.
Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the directional derivative of I at P in
the direction of u⃗, and find the direction of greatest intensity increase at
P .
Solution. We need the gradient ∇I , meaning we need Ix, Iy and Iz .
Each partial derivative requires a simple application of theQuotient Rule,
giving

∇I =

〈
−2x

(x2 + y2 + z2)2
,

−2y

(x2 + y2 + z2)2
,

−2z

(x2 + y2 + z2)2

〉
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∇I(2, 5, 3) =

〈
−4

1444
,
−10

1444
,
−6

1444

〉
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17

2166
≈ −0.0078.

The directional derivative tells us that moving in the direction of u⃗ from
P results in a decrease in intensity of about−0.008 units per inch. (The
intensity is decreasing as u⃗moves one farther from the origin than P .)
The gradient gives the direction of greatest intensity increase. Notice
that

∇I(2, 5, 3) =

〈
−4

1444
,
−10

1444
,
−6

1444

〉
=

2

1444
⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is pointing in the direction of
⟨−2,−5,−3⟩, that is, towards the origin. That should make intuitive
sense: the greatest increase in intensity is found by moving towards to
source of the energy.

Thedirectional derivative allowsus to find the instantaneous rate of z change
in any direction at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next section.
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14.3.3 Exercises

Terms and Concepts

1. What is the difference between a directional derivative and a partial derivative?
2. For f(x, y), for what u⃗ isDu⃗ f = fx?

3. For f(x, y), for what u⃗ isDu⃗ f = fy?

4. The gradient is to level curves.

5. The gradient points in the direction of increase.

6. It is generally more informative to view the directional derivative not as the result of a limit, but rather as the
result of a product.

Problems

Exercise Group. In the following exercises, a function f(x, y) is given. Find∇f .

7. f(x, y) = −x2y + xy2 + xy 8. Find∇f , where f(x, y) = sin(x) cos(y).

9. f(x, y) =
1

x2 + y2 + 1

10. Find∇f , where f(x, y) = −4x+ 3y.

11. f(x, y) = x2 + 2y2 − xy − 7x 12. Find∇f , where f(x, y) = x2y3 − 2x.

Exercise Group. In the following exercises, a function f(x, y) and a point P are given. Find the directional derivative
of f in the indicated directions. Note: these are the same functions as in Exercises 14.3.7–14.3.12.

13. f(x, y) = −x2y + xy2 + xy, P = (2, 1)

(a) In the direction of v⃗ = ⟨3, 4⟩

(b) In the direction toward the point
Q = (1,−1).

14. Consider f(x, y) = sin(x) cos(y), at
P =

(
π
4 ,

π
3

)
.

(a) In the direction of v⃗ = ⟨1, 1⟩ .

(b) In the direction toward the point
Q = (0, 0).

15. f(x, y) =
1

x2 + y2 + 1
, P = (1, 1).

(a) In the direction of v⃗ = ⟨1,−1⟩.

(b) In the direction toward the point
Q = (−2,−2).

16. Consider f(x, y) = −4x+ 3y, at P = (5, 2).

(a) In the direction of v⃗ = ⟨3, 1⟩ .

(b) In the direction toward the point
Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy − 7x, P = (4, 1)

(a) In the direction of v⃗ = ⟨−2, 5⟩

(b) In the direction toward the point
Q = (4, 0).

18. Consider f(x, y) = x2y3 − 2x, at P = (1, 1).

(a) Find the directional derivative in the
direction of v⃗ = ⟨3, 3⟩ .

(b) Find the directional derivative in the
direction toward the pointQ = (1, 2).

Exercise Group. In the following exercises, a function f(x, y) and a point P are given. Investigate the directions of
maximal increase and decrease, as indicated.

Note: these are the same functions and points as in Exercises 13–18.
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19. f(x, y) = −x2y + xy2 + xy, P = (2, 1)

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

20. f(x, y) = sin(x) cos(y), P =
(
π
4 ,

π
3

)
:

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

21. f(x, y) =
1

x2 + y2 + 1
, P = (1, 1).

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

22. f(x, y) = −4x+ 3y, P = (5, 4)

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

23. f(x, y) = x2 + 2y2 − xy − 7x, P = (4, 1)

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

24. Given f(x, y) = x2y3 − 2x, P = (1, 1):

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

Exercise Group. In the following exercises, a function F (x, y, z), a vector v⃗ and a point P are given.
Compute the gradient of F , and the derivative of F in the direction of v⃗ at P .
25. F (x, y, z) = 3x2z3 + 4xy − 3z2, v⃗ = ⟨1, 1, 1⟩,

P = (3, 2, 1)

(a) Compute the gradient of F .

(b) Find the derivative of F at P in the
direction of v⃗.

26. F (x, y, z) = sin(x) cos(y)ez , v⃗ = ⟨2, 2, 1⟩ ,
P = (0, 0, 0).

(a) Find∇F (x, y, z).

(b) FindDu⃗ F at P .

27. F (x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩,
P = (1, 0,−1)

(a) Compute the gradient of F .

(b) Find the derivative of F at P in the
direction of v⃗.

28. Given F (x, y, z) = 2
x2+y2+z2 , v⃗ = ⟨1, 1,−2⟩ ,

P = (1, 1, 1):

(a) Find∇F (x, y, z).

(b) FindDu⃗ F at P .
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14.4 Tangent Lines, Normal Lines, and Tangent Planes

14.4.1 Tangent Lines
Derivatives and tangent lines go hand-in-hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0);

that is, the slope of the tangent line is the instantaneous rate of change of f at
x0.

When dealing with functions of two variables, the graph is no longer a curve
but a surface. At a given point on the surface, it seems there are many lines that
fit our intuition of being “tangent” to the surface.

In Subsection 13.3.2 we introduced the concept of the tangent plane, which
could be thought of as consisting of all possible lines tangent to the surface at a
given point. In this section, we explore this idea in more detail.

Figure 14.4.1 Showing various lines
tangent to a surface

In Figure 14.4.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definition formally defines what it means to be “tangent
to a surface.”

Definition 14.4.2 Directional Tangent Line.

Let z = f(x, y) be differentiable on a set S containing (x0, y0) and let
u⃗ = ⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is

the tangent line to f in the direction of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is

the tangent line to f in the direction of y at (x0, y0).

3. The line ℓu⃗ through
(
x0, y0, f(x0, y0)

)
parallel to

⟨u1, u2, Du⃗ f(x0, y0)⟩ is the tangent line to f in the direction
of u⃗ at (x0, y0).

It is instructive to consider each of three directions given in the definition in
terms of “slope.” The direction of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direction and the “rise” is fx(x0, y0) units in the z-direction. Note
how the slope is just the partial derivative with respect to x. A similar statement
can bemade for ℓy. The direction of ℓu⃗ is ⟨u1, u2, Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direction (where u⃗ is a unit vector) and the “rise” is the directional
derivative of z in that direction.

Definition 14.4.2 leads to the following parametric equations of directional
tangent lines:

ℓx(t) =


x = x0 + t

y = y0
z = z0 + fx(x0, y0)t

ℓy(t) =


x = x0

y = y0 + t

z = z0 + fy(x0, y0)t

ℓu⃗(t) =


x = x0 + u1t

y = y0 + u2t

z = z0 +Du⃗ f(x0, y0)t

.
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Example 14.4.3 Finding directional tangent lines.

Find the lines tangent to the surface z = sin(x) cos(y) at (π/2, π/2) in
the x and y directions and also in the direction of v⃗ = ⟨−1, 1⟩.
Solution. The partial derivatives with respect to x and y are:

fx(x, y) = cos(x) cos(y) ⇒ fx(π/2, π/2) = 0

fy(x, y) = − sin(x) sin(y) ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equations of the line tangent to f at (π/2, π/2) in
the directions of x and y are:

ℓx(t) =


x = π/2 + t

y = π/2

z = 0

and ℓy(t) =


x = π/2

y = π/2 + t

z = −t

.

The two lines are shown with the surface in Figure 14.4.4(a).

(a) (b)

Figure 14.4.4 A surface and directional tangent lines in Example 14.4.3
To find the equation of the tangent line in the direction of v⃗, we first
find the unit vector in the direction of v⃗: u⃗ =

〈
−1/

√
2, 1/

√
2
〉
. The

directional derivative at (π/2, π, 2) in the direction of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
〈
−1/

√
2, 1/

√
2
〉
= −1/

√
2.

Thus the directional tangent line is

ℓu⃗(t) =


x = π/2− t/

√
2

y = π/2 + t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direction of v⃗ is shown in Fig-
ure 14.4.4(b) along with ℓu⃗(t).

Example 14.4.5 Finding directional tangent lines.

Let f(x, y) = 4xy−x4−y4. Find the equations of all directional tangent
lines to f at (1, 1).
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Solution. First note that f(1, 1) = 2. We need to compute directional
derivatives, so we need∇f . We begin by computing partial derivatives.

fx = 4y − 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direc-
tional derivative of f at (1, 1) will beDu⃗ f(1, 1) = ⟨0, 0⟩ · ⟨u1, u2⟩ = 0.
It does not matter what direction we choose; the directional derivative
is always 0. Therefore

ℓu⃗(t) =


x = 1 + u1t

y = 1 + u2t

z = 2

.

Figure 14.4.6 shows a graph of f and the point (1, 1, 2). Note that
this point comes at the top of a “hill,” and therefore every tangent line
through this point will have a “slope” of 0.

Figure 14.4.6 Graphing f in Exam-
ple 14.4.5

That is, consider any curve on the surface that goes through this point.
Each curve will have a relative maximum at this point, hence its tangent
line will have a slope of 0. The following section investigates the points
on surfaces where all tangent lines have a slope of 0.

14.4.2 Normal Lines
When dealing with a function y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) andwas normal
(or, perpendicular, orthogonal) to f if it had a slope of−1/f ′(c). We extend the
concept of normal, or orthogonal, to functions of two variables.

Let z = f(x, y) be a differentiable function of two variables. By Defini-
tion14.4.2, at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩
and ℓy(t) is a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direc-
tions through

(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this

point and orthogonal to these directions would be orthogonal, or normal, to the
surface. We can use this direction to create a normal line.

The direction of the normal line is orthogonal to d⃗x and d⃗y , hence the direc-
tion is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .
It is often more convenient to refer to the opposite of this direction, namely

⟨fx, fy,−1⟩. This leads to a definition.

Definition 14.4.7 Normal Line.

Let z = f(x, y) be differentiable on a set S containing (x0, y0) where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through P with direction parallel to n⃗ is the normal
line to f at P .
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Thus the parametric equations of the normal line to a surface z = f(x, y) at(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =


x = x0 + at

y = y0 + bt

z = f(x0, y0)− t

.

Example 14.4.8 Finding a normal line.

Find the equation of the normal line to z = −x2 − y2 + 2 at (0, 1).
Solution. We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direction of the normal line,
following Definition 14.4.7, to be n⃗ = ⟨0,−2,−1⟩. The line with this
direction going through the point (0, 1, 1) is

ℓn(t) =


x = 0

y = −2t+ 1

z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

Figure 14.4.9 Graphing a surface with
a normal line from Example 14.4.8

The surface z = −x2 − y2 + 2, along with the found normal line, is
graphed in Figure 14.4.9.

The direction of the normal line has many uses, one of which is the defini-
tion of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that

−−→
PQ will be orthogonal to the surface at P . Therefore we can

measure the distance fromQ to the surface z = f(x, y) by finding a point P on
the surface such that

−−→
PQ is parallel to the normal line to f at P .

Example 14.4.10 Finding the distance from a point to a surface.

Let f(x, y) = 2− x2 − y2 and letQ = (2, 2, 2). Find the distance from
Q to the surface defined by f .
Solution. This surface is used in Example 14.4.5, so we know that at
(x, y), the direction of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩.
A point P on the surface will have coordinates (x, y, 2 − x2 − y2), so
−−→
PQ =

〈
2− x, 2− y, x2 + y2

〉
. To find where

−−→
PQ is parallel to d⃗n, we

need to find x, y and c such that c
−−→
PQ = d⃗n.

c
−−→
PQ = d⃗n

c
〈
2− x, 2− y, x2 + y2

〉
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x

c(2− y) = −2y

c(x2 + y2) = −1

In each equation, we can solve for c:

c =
−2x

2− x
=

−2y

2− y
=

−1

x2 + y2
.
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The first two fractions imply x = y, and so the last fraction can be rewrit-
ten as c = −1/(2x2). Then

−2x

2− x
=

−1

2x2

−2x(2x2) = −1(2− x)

4x3 = 2− x

4x3 + x− 2 = 0.

This last equation is a cubic, which is not difficult to solve with a numeric
solver. We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We
find the distance fromQ to the graph of f is∥∥∥−−→PQ

∥∥∥ =
√

(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a particular distance from a surface at a given point P on the
surface.

Example 14.4.11 Finding a point a set distance from a surface.

Let f(x, y) = x−y2+3. LetP =
(
2, 1, f(2, 1)

)
= (2, 1, 4). Find points

Q in space that are 4 units from the graph of f at P . That is, findQ such
that

∥∥∥−−→PQ
∥∥∥ = 4 and

−−→
PQ is orthogonal to f at P .

Solution. We begin by finding partial derivatives:

fx(x, y) = 1 ⇒ fx(2, 1) = 1

fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f atP . For reasons that will
becomemore clear in a moment, we find the unit vector in the direction
of n⃗:

u⃗ =
n⃗

∥n⃗∥
=
〈
1/
√
6,−2/

√
6,−1/

√
6
〉
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be written as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrization of the line is that letting t = t0
gives a point on the line that is |t0| units from P . (This is because the
direction of the line is given in terms of a unit vector.) There are thus
two points in space 4 units from P :

Q1 = ℓn(4) Q2 = ℓn(−4)

≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

Figure 14.4.12 Graphing the surface
in Example 14.4.11 along with points
4 units from the surface

The surface is graphed along with points P ,Q1,Q2 and a portion of the
normal line to f at P .
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14.4.3 Tangent Planes
Wecanuse thedirectionof the normal line to define aplane. Witha = fx(x0, y0),
b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩ is orthog-

onal to f atP . (See Definition 13.3.10.) The plane throughP with normal vector
n⃗ is therefore tangent to f at P .

Whenwe introduced the tangent
plane in Section 13.3, we com-
puted the normal vector to be
n⃗ = ⟨−fx(x0, y0),−fy(x0, y0), 1⟩.
Here, for convenience, we take
the negative of this vector, and
use n⃗ = ⟨fx(x0, y0), fy(x0, y0),−1⟩.

Definition 14.4.13 Tangent Plane.

Let z = f(x, y) be differentiable on a set S containing (x0, y0),
where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and P =(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at
P . The standard form of this plane is

a(x− x0) + b(y − y0)−
(
z − f(x0, y0)

)
= 0.

Example 14.4.14 Finding tangent planes.

Find the equation of the tangent plane to z = −x2 − y2 + 2 at (0, 1).
Solution. Note that this is the same surface and point used in Exam-
ple 14.4.8. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). There-
fore the equation of the tangent plane is

−2(y − 1)− (z − 1) = 0.

Figure 14.4.15 Graphing a surface
with tangent plane from Exam-
ple 14.4.14

The surface z = −x2 − y2 + 2 and tangent plane are graphed in Fig-
ure 14.4.15.

Example 14.4.16 Using the tangent plane to approximate function val-
ues.

The point (3,−1, 4) lies on the graph of an unknown differentiable func-
tion f where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equation
of the tangent plane to f at P , and use this to approximate the value of
f(2.9,−0.8).
Solution. Knowing the partial derivatives at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the
equation of the tangent line to f at P is:

2(x− 3)− 1/2(y+1)− (z− 4) = 0 ⇒ z = 2(x− 3)− 1/2(y+1)+4.
(14.4.1)

Just as tangent lines provide excellent approximations of curves near
their point of intersection, tangent planes provide excellent approxima-
tions of surfaces near their point of intersection. So f(2.9,−0.8) ≈
z(2.9,−0.8) = 3.7.
This is not a new method of approximation. Compare the right hand
expression for z in Equation (14.4.1) to the total differential:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y + 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Thus the “new z-value” is the sum of the change in z (i.e., dz) and the
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old z-value (4). As mentioned when studying the total differential, it is
not uncommon to know partial derivative information about a unknown
function, and tangent planes are used to give accurate approximations
of the function.

14.4.4 The Gradient and Normal Lines, Tangent Planes
The methods developed in this section so far give a straightforward method of
finding equations of normal lines and tangent planes for surfaces with explicit
equations of the form z = f(x, y). However, they do not handle implicit equa-
tions well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

Definition 14.4.17 Gradient.

Let w = F (x, y, z) be differentiable on a set D that contains the point
(x0, y0, z0).

1. The gradient of F is ∇F (x, y, z) =
⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F (x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

Recall that when z = f(x, y), the gradient ∇f = ⟨fx, fy⟩ is orthogonal
to level curves of f . An analogous statement can be made about the gradient
∇F , where w = F (x, y, z). Given a point (x0, y0, z0), let c = F (x0, y0, z0).
Then F (x, y, z) = c is a level surface that contains the point (x0, y0, z0). The
following theorem states that∇F (x0, y0, z0) is orthogonal to this level surface.

Theorem 14.4.18 The Gradient and Level Surfaces.

Let w = F (x, y, z) be differentiable on a set D containing (x0, y0, z0)
with gradient∇F , where F (x0, y0, z0) = c.
The vector∇F (x0, y0, z0) is orthogonal to the level surfaceF (x, y, z) =
c at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direction can be used to find tangent planes and normal lines.

Example 14.4.19 Using the gradient to find a tangent plane.

Find the equation of the plane tangent to the ellipsoid x2

12 +
y2

6 + z2

4 = 1
at P = (1, 2, 1).
Solution. We consider the equation of the ellipsoid as a level surface of
a function F of three variables, where F (x, y, z) = x2

12 + y2

6 + z2

4 . The
gradient is:

∇F (x, y, z) = ⟨Fx, Fy, Fz⟩

=
〈x
6
,
y

3
,
z

2

〉
.

At P , the gradient is∇F (1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equation
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of the plane tangent to the ellipsoid at P is

1

6
(x− 1) +

2

3
(y − 2) +

1

2
(z − 1) = 0.

Figure 14.4.20An ellipsoid and its tan-
gent plane at a point

The ellipsoid and tangent plane are graphed in Figure 14.4.20.

To understand why Theorem 14.4.18 is true, recall the method of implicit
differentiation given in Subsection 14.2.2. A level surface f(x, y, z) = 0 can be
viewed as defining z = g(x, y) implicitly. We found that the partial derivatives
of z with respect to x and y are then given by

∂z

∂x
= gx(x, y) = −fx(x, y, z)

fz(x, y, z)

∂z

∂y
= gy(x, y) = −fy(x, y, z)

fz(x, y, z)
.

If we plug these values into the tangent plane equation

z = g(a, b) + gx(a, b)(x− a) + gy(a, b)(y − b)

we get, with c = g(a, b),

z = c− fx(a, b, c)

fz(a, b, c)
(x− a)− fy(a, b, c)

fz(a, b, c)
(y − b).

If wemove everything to the left-hand side of the equation andmultiply through
by fz(a, b, c), we get

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0,

which is the equation of a plane with normal vector∇f(a, b, c).

Example 14.4.21 Finding the tangent plane of a level surface.

Determine the equation of the tangent plane to the level surface
x2yz3 − sin(x − 3z) + 4xy2 − 3yz = 0 at the point (3, 0, 1). (Note
that this is the same problem as Example 14.2.15.)
Solution. With f(x, y, z) = x2yz3− sin(x−3z)+4xy2−3yz we have

fx(x, y, z) = 2xyz3 − cos(x− 3z) + 4y2 fx(3, 0, 1) = −1

fy(x, y, z) = x2z3 + 8xy − 3z fy(3, 0, 1) = 6

fz(x, y, z) = 3x2yz2 + 3 cos(x− 3z)− 3y fz(3, 0, 1) = 3.

The equation of the tangent plane is therefore

−1(x− 3) + 6y + 3(z − 1) = 0.

Note that solving for z gives z = 1 + 1
3 (x− 3)− 2y, which is the same

result as Example 14.2.15.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximations. Normal lines also
have many uses. In this section we focused on using them to measure distances
from a surface. Another interesting application is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next section investigates another use of partial derivatives: determining
relative extrema. When dealing with functions of the form y = f(x), we found
relative extrema by finding x where f ′(x) = 0. We can start finding relative
extrema of z = f(x, y) by setting fx and fy to 0, but it turns out that there is
more to consider.
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14.4.5 Exercises

Terms and Concepts

1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as having a “slope” of 3.
2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought of as having a “slope” of−2.

3. True or False? Let z = f(x, y) be differentiable at P . If n⃗ is a normal vector to the tangent plane of f at P , then
n⃗ is orthogonal to ℓx and ℓy at P . (□ True □ False)

4. Explain in your ownwordswhywe do not refer to the tangent line to a surface at a point, but rather to directional
tangent lines to a surface at a point.

Problems

Exercise Group. A function f(x, y), a vector v⃗ and a pointP are given. Give the parametric equations of the following
directional tangent lines to z = f(x, y) at P :

(a) ℓx(t)

(b) ℓy(t)

(c) ℓu⃗ (t), where u⃗ is the unit vector in the direction of v⃗.

5. f(x, y) = 2x2y − 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3). 6. f(x, y) = 3 cos(x) sin(y), v⃗ = ⟨1, 2⟩ ,
P = (π/3, π/6)

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2). 8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩ ,
P = (1, 2)

Exercise Group. A function f(x, y) and a point P are given. Find the equation of the normal line to z = f(x, y) at
P . Note: these are the same functions as in Exercises 5–8.

9. f(x, y) = 2x2y − 4xy2, P = (2, 3). 10. f(x, y) = 3 cos(x) sin(y) and P = (π/3, π/6)

11. f(x, y) = 3x− 5y, P = (4, 2). 12. f(x, y) = x2 − 2x− y2 + 4y and P = (1, 2)

Exercise Group. A function f(x, y) and a point P are given. Find the two points that are 2 units from the surface
z = f(x, y) at P . Note: these are the same functions as in Exercises 5–8.

13. f(x, y) = 2x2y − 4xy2, P = (2, 3). 14. f(x, y) = 3 cos(x) sin(y), P = (π/3, π/6).
15. f(x, y) = 3x− 5y, P = (4, 2). 16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

Exercise Group. A function f(x, y) and a point P are given. Find an equation of the tangent plane to z = f(x, y) at
P . Note: these are the same functions as in Exercises 5–8.

17. f(x, y) = 2x2y − 4xy2, P = (2, 3). 18. f(x, y) = 3 cos(x) sin(y), P = (π/3, π/6).
19. f(x, y) = 3x− 5y, P = (4, 2). 20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2)

Exercise Group. An implicitly defined function of x, y and z is given, along with a point P that lies on the surface.
Use the gradient∇F to:

(a) find the equation of the normal line to the surface at P , and

(b) find the equation of the plane tangent to the surface at P .

21.
x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6) 22. z2 − x2

4 − y2

9 = 0, at P = (4,−3,
√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1) 24. sin(xy) + cos(yz) = 1, at P = (2, π/12, 4)
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14.5 Extreme Values

14.5.1 Critical Points of Functions of Two Variables

youtu.be/watch?v=smAvod2dFsw

Figure 14.5.1 Introducing extreme
values for functions of several vari-
ables

Given a function f(x, y), we are often interested in points where z = f(x, y)
takes on the largest or smallest values. For instance, if f represents a cost func-
tion, we would likely want to know what (x, y) values minimize the cost. If f
represents the ratio of a volume to surface area, we would likely want to know
where f is greatest. This leads to the following definition.

Definition 14.5.2 Relative and Absolute Extrema.

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute
maximum at P If f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f
has an absolute minimum at P .

2. If there is an open disk D containing P such that f(x0, y0) ≥
f(x, y) for all points (x, y) that are in bothD and S, then f has a
relative maximum at P . If there is an open disk D containing P
such that f(x0, y0) ≤ f(x, y) for all points (x, y) that are in both
D and S, then f has a relative minimum at P .

3. If f has an absolutemaximum orminimum atP , then f has an ab-
solute extremum at P . If f has a relative maximum or minimum
at P , then f has a relative extremum at P .

If f has a relative or absolute maximum at (x0, y0), it means every curve on
the graph of f through (x0, y0, f(x0, y0)) will also have a relative or absolute
maximum at P . Recalling what we learned in Section 3.1, the slopes of the tan-
gent lines to these curves at P must be 0 or undefined. Since directional deriv-
atives are computed using fx and fy , we are led to the following definition and
theorem.

Definition 14.5.3 Critical Point.

Let z = f(x, y) be continuous on a set S. A critical point P = (x0, y0)
of f is a point in S such that, at P ,

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Theorem 14.5.4 Critical Points and Relative Extrema.

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If
f has a relative extrema at P , then P is a critical point of f .

Therefore, to find relative extrema, we find the critical points of f and de-
termine which correspond to relative maxima, relative minima, or neither. The
following examples demonstrate this process.

youtu.be/watch?v=smAvod2dFsw

Figure 14.5.5 Finding critical points

https://www.youtube.com/watch?v=smAvod2dFsw
https://www.youtube.com/watch?v=smAvod2dFsw
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Example 14.5.6 Finding critical points and relative extrema.

Let f(x, y) = x2 + y2 − xy − x− 2. Find the relative extrema of f .
Solution. We start by computing the partial derivatives of f :

fx(x, y) = 2x− y − 1 and fy(x, y) = 2y − x.

Each is never undefined. A critical point occurswhen fx and fy are simul-
taneously 0, leading us to solve the following system of linear equations:

2x− y − 1 = 0 and − x+ 2y = 0.

This solution to this system is x = 2/3, y = 1/3. (Check that at
(2/3, 1/3), both fx and fy are 0.)

Figure 14.5.7 The surface in Exam-
ple 14.5.6 with its absolute minimum
indicated

The graph in Figure 14.5.7 shows f alongwith this critical point. It is clear
from the graph that this is a relative minimum; further consideration of
the function shows that this is actually the absolute minimum.

Example 14.5.8 Finding critical points and relative extrema.

Let f(x, y) = −
√

x2 + y2 + 2. Find the relative extrema of f .
Solution. We start by computing the partial derivatives of f :

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0when x = 0& y ̸= 0, and that fy = 0when y = 0
& x ̸= 0. At (0, 0), both fx and fy are not 0, but rather undefined. The
point (0, 0) is still a critical point, though, because the partial derivatives
are undefined. This is the only critical point of f .

Figure 14.5.9 The surface in Exam-
ple 14.5.8 with its absolute maximum
indicated

The graph of f is plotted in Figure 14.5.9 along with the point (0, 0, 2).
The graph shows that this point is the absolute maximum of f .

In each of the previous two examples, we found a critical point of f and then
determinedwhether or not it was a relative (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a critical point
corresponded to a max or a min without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 14.5.10 Finding critical points and relative extrema.

Let f(x, y) = x3 − 3x− y2 + 4y. Find the relative extrema of f .
Solution. Once again we start by finding the partial derivatives of f :

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y + 4.

Each is always defined. Setting each equal to 0 and solving for x and y,
we find

fx(x, y) = 0 ⇒ x = ±1

fy(x, y) = 0 ⇒ y = 2.

We have two critical points: (−1, 2) and (1, 2). To determine if they
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correspond to a relative maximum or minimum, we consider the graph
of f in Figure 14.5.11.

Figure 14.5.11 The surface in Exam-
ple 14.5.10 with both critical points
marked

The critical point (−1, 2) clearly corresponds to a relative maximum.
However, the critical point at (1, 2) is neither a maximum nor a mini-
mum, displaying a different, interesting characteristic.
If one walks parallel to the y-axis towards this critical point, then this
point becomes a relative maximum along this path. But if one walks
towards this point parallel to the x-axis, this point becomes a relative
minimum along this path. A point that seems to act as both a max and
a min is a saddle point. A formal definition follows.

Definition 14.5.12 Saddle Point.

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at
P . We say P is a saddle point of f if, for every open diskD containing
P , there are points (x1, y1) and (x2, y2) in D such that f(x0, y0) >
f(x1, y1) and f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all directions is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Before Example 14.5.10wementioned the need for a test to differentiate be-
tween relative maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second partial derivatives
of f .

Recall that with single variable functions, such as y = f(x), if f ′′(c) > 0,
then f is concave up at c, and if f ′(c) = 0, then f has a relative minimum at
x = c. (We called this the Second Derivative Test.) Note that at a saddle point, it
seems the graph is “both” concave up and concave down, depending on which
direction you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relative minimum
fxx and fyy < 0 ⇒ relative maximum
fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. Functions f exist where fxx and fyy are both
positive but a saddle point still exists. In such a case, while the concavity in
the x-direction is up (i.e., fxx > 0) and the concavity in the y-direction is also
up (i.e., fyy > 0), the concavity switches somewhere in between the x- and
y-directions.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are
equal when continuous (refer back to Theorem 13.3.15), we can rewrite this as
D = fxxfyy − f 2

xy . D can be used to test whether the concavity at a point
changes depending on direction. If D > 0, the concavity does not switch (i.e.,
at that point, the graph is concave up or down in all directions). If D < 0, the
concavity does switch. If D = 0, our test fails to determine whether concavity
switches or not. We state the use ofD in the following theorem.

Theorem 14.5.13 Second Derivative Test.

Let R be an open set on which a function z = f(x, y) and all its first
and second partial derivatives are defined, let P = (x0, y0) be a critical
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point of f inR, and let

D = fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then f has a relative minimum at
P .

2. IfD > 0 and fxx(x0, y0) < 0, then f has a relative maximum at
P .

3. IfD < 0, then f has a saddle point at P .

4. IfD = 0, the test is inconclusive.

youtu.be/watch?v=xap1euIjzww

Figure 14.5.14 Presenting the second
derivative test

We first practice using this test with the function in the previous example,
where we visually determined we had a relative maximum and a saddle point.

Example 14.5.15 Using the Second Derivative Test.

Let f(x, y) = x3 − 3x − y2 + 4y as in Example 14.5.10. Determine
whether the function has a relativeminimum,maximum, or saddle point
at each critical point.
Solution. We determined previously that the critical points of f are
(−1, 2) and (1, 2). To use the Second Derivative Test, we must find the
second partial derivatives of f :

fxx = 6x; fyy = −2; fxy = 0.

ThusD(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second
Derivative Test, f has a relative maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second Derivative Test states that f
has a saddle point at (1, 2).
The Second Derivative Test confirmed what we determined visually.

Example 14.5.16 Using the Second Derivative Test.

Find the relative extrema of f(x, y) = x2y + y2 + xy.
Solution. We start by finding the first and second partial derivatives of
f :

fx = 2xy + y fy = x2 + 2y + x

fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.

We find the critical points by finding where fx and fy are simultaneously
0 (they are both never undefined). Setting fx = 0, we have:

fx = 0 ⇒ 2xy + y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0

https://www.youtube.com/watch?v=xap1euIjzww
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x2 + 2y + x = 0, and since y = 0, we have

x2 + x = 0

x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two critical points:
(−1, 0) and (0, 0).
Going back to fx, now assume 2x + 1 = 0, i.e., that x = −1/2, then
consider fy = 0:

fy = 0

x2 + 2y + x = 0, and since x = −1/2, we have
1/4 + 2y − 1/2 = 0

y = 1/8.

Thus if x = −1/2, y = 1/8 giving the critical point (−1/2, 1/8).
WithD = 4y − (2x+ 1)2, we apply the Second Derivative Test to each
critical point.
At (−1, 0),D < 0, so (−1, 0) is a saddle point.
At (0, 0),D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relative mini-
mum. Figure 14.5.17Graphing f fromExam-

ple 14.5.16 and its relative extremaFigure 14.5.17 shows a graph of f and the three critical points. Note
how this function does not vary much near the critical points — that is,
visually it is difficult to determine whether a point is a saddle point or
relative minimum (or even a critical point at all!). This is one reason why
the Second Derivative Test is so important to have.

youtu.be/watch?v=XysapWrA7eA

Figure 14.5.18 Two more examples
with classification of critical points

14.5.2 Constrained Optimization
When optimizing functions of one variable such as y = f(x), we made use of
Theorem 3.1.4, the Extreme Value Theorem, that said that over a closed interval
I = [a, b], a continuous function has both a maximum and minimum value. To
find these maximum and minimum values, we evaluated f at all critical points
in the interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to functions of two variables. A
continuous function over a closed set also attains a maximum and minimum
value (see the following theorem). We can find these values by evaluating the
function at the critical values in the set and over the boundary of the set. After
formally stating this extreme value theorem, we give examples.

Theorem 14.5.19 Extreme Value Theorem.

Let z = f(x, y) be a continuous function on a closed, bounded set S.
Then f has a maximum and minimum value on S.

Example 14.5.20 Finding extrema on a closed set.

Let f(x, y) = x2−y2+5 and letS be the trianglewith vertices (−1,−2),
(0, 1) and (2,−2). Find the maximum and minimum values of f on S.
Solution. It can help to see a graph of f along with the set S. In

https://www.youtube.com/watch?v=XysapWrA7eA
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Figure 14.5.21(a) the triangle defining S is shown in the xy-plane in a
dashed line. Above it is the graph of f ; we are only concerned with the
portion of the surface z = f(x, y) enclosed by the “triangle”.

(a)

−2 2

−2

−1

1

−1 1

y
=
3x

+
1

y
=
−
3/2x

+
1

y = −2

x

y

(b)

Figure 14.5.21 Plotting the graph of f along with the restricted domain
S in Example 14.5.20
We begin by finding the critical points of f . With fx = 2x and fy = −2y,
we find only one critical point, at (0, 0).
We now find the maximum and minimum values that f attains along
the boundary of S, that is, along the edges of the triangle. In Fig-
ure 14.5.21(b) we see the triangle sketched in the plane with the equa-
tions of the lines forming its edges labeled.
Start with the bottom edge, along the line y = −2. If y is −2, then
on the surface, we are considering points f(x,−2); that is, our function
reduces to f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to
maximize/minimize f1(x) = x2+1 on the interval [−1, 2]. To do so, we
evaluate f1(x) at its critical points and at the endpoints.
The critical points of f1 are found by setting its derivative equal to 0:

f ′
1(x) = 0 ⇒ x = 0.

Evaluating f1 at this critical point, and at the endpoints of [−1, 2] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2

f1(0) = 1 ⇒ f(0,−2) = 1

f1(2) = 5 ⇒ f(2,−2) = 5.

Notice how evaluating f1 at a point is the same as evaluating f at its
corresponding point.
We need to do this process twice more, for the other two edges of the
triangle.
Along the left edge, along the line y = 3x + 1, we substitute 3x + 1 in
for y in f(x, y):

f(x, y) = f(x, 3x+1) = x2−(3x+1)2+5 = −8x2−6x+4 = f2(x).

Wewant themaximumandminimumvalues of f2 on the interval [−1, 0],
so we evaluate f2 at its critical points and the endpoints of the interval.
We find the critical points:

f ′
2(x) = −16x− 6 = 0 ⇒ x = −3/8.
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Evaluate f2 at its critical point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2

f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 4 ⇒ f(0, 1) = 4.

Finally, we evaluate f along the right edge of the triangle, where y =
−3/2x+ 1.

f(x, y) = f(x,−3/2x+1) = x2−(−3/2x+1)2+5 = −5

4
x2+3x+4 = f3(x).

The critical points of f3(x) are:

f ′
3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this critical point and at the endpoints of the interval
[0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4

f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the critical point of f , (0, 0). We find f(0, 0) = 5.

Figure 14.5.22 The graph of f along
with important points along the
boundary of S and the interior in
Example 14.5.20

We have evaluated f at a total of 7 different places, all shown in Fig-
ure 14.5.21(b). We checked each vertex of the triangle twice, as each
showed up as the endpoint of an interval twice. Of all the z-values found,
the maximum is 5.8, found at (1.2,−0.8); the minimum is 1, found at
(0,−2).

This portion of the text is entitled “Constrained Optimization” because we
want to optimize a function (i.e., find its maximum and/or minimum values) sub-
ject to a constraint — some limit to what values the function can attain. In
the previous example, we constrained ourselves by considering a function only
within the boundary of a triangle. This was largely arbitrary; the function and
the boundary were chosen just as an example, with no real “meaning” behind
the function or the chosen constraint.

However, solving constrainedoptimizationproblems is a very important topic
in appliedmathematics. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

youtu.be/watch?v=diIso_CFgCQ

Figure 14.5.23 Finding extreme val-
ues

We illustrate the technique once more with a classic problem.

Example 14.5.24 Constrained Optimization.

TheU.S. Postal Service states that the girth+length of Standard Post Pack-
age must not exceed 130’’. Given a rectangular box, the “length” is the
longest side, and the “girth” is twice the width+height.
Given a rectangular box where the width and height are equal, what are
the dimensions of the box that give the maximum volume subject to the
constraint of the size of a Standard Post Package?
Solution. Letw, h and ℓ denote thewidth, height and length of a rectan-
gular box; we assume here thatw = h. The girth is then 2(w+h) = 4w.
The volume of the box is V (w, ℓ) = whℓ = w2ℓ. We wish to maximize

https://www.youtube.com/watch?v=diIso_CFgCQ
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this volume subject to the constraint 4w + ℓ ≤ 130, or ℓ ≤ 130 − 4w.
(Common sense also indicates that ℓ > 0, w > 0.)
We begin by finding the critical values of V . We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 at points of the form (0, ℓ). These
give a volume of 0, so we can ignore these critical points.
We now consider the volume along the constraint ℓ = 130− 4w. Along
this line, we have:

V (w, ℓ) = V (w, 130−4w) = w2(130−4w) = 130w2−4w3 = V1(w).

The constraint is applicable on thew-interval [0, 32.5] as indicated in the
figure. Thus we want to maximize V1 on [0, 32.5].
Finding the critical values of V1, we take the derivative and set it equal
to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260

12
≈ 21.67.

We found two critical values: when w = 0 and when w = 21.67. We
again ignore the w = 0 solution; the maximum volume, subject to the
constraint, comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This
gives a volume of V (21.67, 43.33) ≈ 20, 343in3.

Figure 14.5.25 Graphing the volume
of a box with girth 4w and length ℓ,
subject to a size constraint

The volume function V (w, ℓ) is shown in Figure 14.5.25 along with the
constraint ℓ = 130 − 4w. As done previously, the constraint is drawn
dashed in the xy-plane and also along the graph of the function. The
point where the volume is maximized is indicated.

It is hard to overemphasize the importance of optimization. In “the real
world,” we routinely seek to make something better. By expressing the some-
thing as a mathematical function, “making something better” means “optimize
some function.”

The techniques shownhere are only the beginning of an incredibly important
field. Many functions that we seek to optimize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.
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14.5.3 Exercises

Terms and Concepts

1. True or False? Theorem 14.5.4 states that if f has a critical point at P , then f has a relative extrema at P .
(□ True □ False)

2. True or False? A point P is a critical point of f if fx and fy are both 0 at P . (□ True □ False)

3. True or False? A point P is a critical point of f if fx or fy are undefined at P . (□ True □ False)

4. Explain what it means to “solve a constrained optimization” problem.

Problems

Exercise Group. Find the critical points of the given function. Use the Second Derivative Test to determine if each
critical point corresponds to a relative maximum, minimum, or saddle point.

5. f(x, y) = 1
2x

2 + 2y2 − 8y + 4x 6. f(x, y) = x2 + 4x+ y2 − 9y + 3xy

7. f(x, y) = x2 + 3y2 − 6y + 4xy 8. f(x, y) = 1
x2+y2+1

9. f(x, y) = x2 + y3 − 3y + 1 10. f(x, y) = 1
3x

3 − x+ 1
3y

3 − 4y

11. f(x, y) = x2y2 12. f(x, y) = x4 − 2x2 + y3 − 27y − 15

13. f(x, y) =
√
16− (x− 3)2 − y2 14. f(x, y) =

√
x2 + y2

Exercise Group. Find the absolute maximum and minimum of the function subject to the given constraint.
15. Let f(x, y) = x2 + y2 + y + 1, constrained to

the triangle with vertices (0, 1), (−1,−1) and
(1,−1).

.

.

16. Let f(x, y) = 5x− 7y, constrained to the
region bounded by y = x2 and y = 1.

.

.

17. f(x, y) = x2 + 2x+ y2 + 2y, constrained to
the region bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region
bounded by the parabola y = x2 + x− 1 and
the line y = x.
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14.6 The Derivative as a Linear Transformation

We defined what it means for a real-valued function of two variables to be dif-
ferentiable in Definition Definition 14.1.3 in Section 14.1.

The definition there easily extends to real-valued functions of three or more
variables, but it leaves unanswered a couple of natural questions:

1. What about vector-valued functions of several variables? (That is, func-
tions f with a domainD ⊆ Rn and range in Rm for somem > 1.)

2. What is the derivative of a function of several variables? After all, we know
how to define f ′(x) and r⃗ ′(t) for real or vector-valued functions of one
variable.

Onemight be tempted at first to simplymimic the definition of the derivative
from Chapter 2, but we quickly run into trouble, for a reason that is immediately
obvious.

To simplify notation, we shift fo-
cus slightly and represent points
in Rn by their position vectors,
and think of functions of several
variables as functions of a vec-
tor variable. For example, we’ll
write f(x⃗) insteadof f(x1, x2, . . . , xn).

Let a⃗ be a fixed point in Rn, and let h⃗ represent a point (h1, h2, . . . , hn).
Since we’re treating h⃗ and a⃗ as vectors, we can add them, and write down the
limit

lim
h⃗→0⃗

f (⃗a+ h⃗)− f (⃗a)∥∥∥h⃗∥∥∥ .

(Note that division by a vector is nonsense, so we must divide by
∥∥∥h⃗∥∥∥, not

h⃗.) But of course, we know that this limit does not exist, because it depends
on the direction in which h⃗ approaches 0⃗! Indeed, if h⃗ = h⃗i or h⃗j, we get a
partial derivative, and for any unit vector u⃗, setting h⃗ = hu⃗ gives us a directional
derivative, and we know from Section 14.3 that a directional derivative depends
on u⃗. It seems this approach is doomed to failure. What can we try instead?

youtu.be/watch?v=Ss4wvGRb6L8

Figure 14.6.1 Defining differentiabil-
ity in general

14.6.1 The Definition of the Derivative
The key to generalizing the definition of the derivative given in Definition 2.1.7
in Chapter 2 is remembering the following essential property of the derivative:
the derivative f ′(a) is used to compute the best linear approximation to f at a.
Indeed, the linearization of f at a is the linear function

La(x) = f(a) + f ′(a)(x− a). (14.6.1)

That this is the best linear approximation of f at a can be understood as fol-
lows: first, note that the graph y = La(x) is simply the equation of the tangent
line to y = f(x) at a. Second, note that the difference between f(x) andLa(x)
vanishes faster than the difference x− a as x approaches a:

lim
x→a

f(x)− La(x)

x− a
= lim

x→a

f(x)− (f(a) + f ′(a)(x− a))

x− a

= lim
x→a

(
f(x)− f(a)

x− a
− f ′(a)

x− a

x− a

)
= f ′(a)− f ′(a) = 0.

In general, we say that two real-
valued functions of one variable
f and g agree to first order at a
if

lim
x→a

|f(x)− g(x)|
x− a

= 0.

The linearization of f at a is the
unique linear function that agrees
with f to first order at a. Going
further, we can say that f and g
agree to order k at a if

lim
x→a

|f(x)− g(x)|
(x− a)k

= 0.

For example one could define the
degree n Taylor polynomial of a
function f at a to be the unique
polynomial of degreen that agrees
with f to order k at a.

While the definition of the derivative doesn’t generalize well to several vari-
ables, the notion of linear approximation does. Recall from your first course in
linear algebra that, given anym×nmatrixA, we can define a function T , called

https://www.youtube.com/watch?v=Ss4wvGRb6L8
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a linear transformation, that takes ann×1 column vector as input, and produces
anm× 1 column vector as output:

T (x⃗) = Ax⃗ =

a11 · · · a1n
...

. . .
...

am1 · · · amn



x1

x2

...
xn

 =


y1
y2
...
ym

 = y⃗.

In the above definition, the product Ax⃗ is the usual matrix product of the
m× nmatrix A with the n× 1matrix x⃗. In this text, we generally do not write
our vectors as columns, so for a vector x⃗ = ⟨x1, . . . , xn⟩wewill use the notation

A · x⃗ = ⟨a11x1 + · · ·+ a1nxn, . . . , am1x1 + · · ·+ amnxn⟩

to represent the same product in our notation. (And yes, the dot in this product
is intended to remind you of the dot product between vectors: recall that the
(i, j)-entry of a matrix product AB is the dot product of the ith row of A with
the jth column of B.) We can now make the following definition.

To avoid confusion between the
meaning of linear function in Cal-
culus, and linear transformation
in Linear Algebra, we will use ℓ
to denote the former, and T to
denote the latter. Notice that if
b⃗ = 0⃗ in Definition 14.6.2, then
a linear function is a linear trans-
formation.

Definition 14.6.2 Linear function.

A function ℓ from Rn to Rm will be called a linear function if ℓ is of the
form

ℓ(x⃗) = M · x⃗+ b⃗

for somem× nmatrixM and vector b⃗ Rm.

If we apply the convention of representing points in terms of their position
vectors to the codomain aswell as the domain, we can express such a function as
f = ⟨f1, . . . , fn⟩, where each function fi is a real-valued function of n variables.
We want differentiability of f to mean that f has a linear approximation ℓ that
agrees with f to first order at a. Since f(x⃗) and ℓ(x⃗) are now vectors, saying
that ℓ is a good approximation of f requires that the magnitude ∥f(x⃗)− ℓ(x⃗)∥
is small relative to the size of ∥x⃗− a⃗∥.

Definition 14.6.3 General definition of differentiability.

Let D be an open subset of Rn and let f be a function with domain D
and values in Rm. We say that f is differentiable at a point a⃗ ∈ D if
there exists a linear function ℓ : Rn → Rm that agrees with f to first
order at a⃗; that is, if

lim
x⃗→a⃗

∥f(x⃗)− ℓ(x⃗)∥
∥x⃗− a⃗∥

= 0.

This definition is going to take a lot of unpacking. First of all, what is this func-
tion ℓ? How do we compute it? Does this definition include Definition 14.1.3
from Section 14.1 as a special case? What about differentiability for vector-
valued functions of one variable, or real-valued functions of one variable?

We will answer the first two questions in due course. The answer to the rest
is, “Yes.” The above definition generalizes all the definitions of differentiability
we’ve encountered so far. As a first step, let us note that for ℓ(x⃗) = M ·x⃗+ b⃗, we
must have ℓ(⃗a) = f (⃗a), or the limit above will not exist. ThusM · a⃗+ b⃗ = f (⃗a),
so b⃗ = f (⃗a)−M · a⃗. This tells us that ℓmust have the following form:

ℓ(x⃗) = M · x⃗+ b⃗
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= M · x⃗+ (f (⃗a)−M · a⃗)
= f (⃗a) +M · (x⃗− a⃗). (14.6.2)

This should ring some bells: the form of ℓ is very similar to that of the lin-
earization given for a function of one variable in Equation (14.6.1) above, with
the matrixM playing the role of f ′(a). Perhaps this matrix is the derivative we
seek?

14.6.2 Real-valued functions of several variables
Let f : D ⊆ Rn → R be a given function of n variables (you can assume
n = 1, 2 or 3 if you prefer). Let us denote a point (x1, x2, . . . , xn) ∈ Rn using
the vector x⃗ = ⟨x1, x2, . . . , xn⟩, so that f(x⃗) = f(x1, x2, . . . , xn). Let a⃗ =
⟨a1, a2, . . . , an⟩ denote a fixed point (a1, a2, . . . , an) ∈ D.

In Section 14.1, we saw that differentiabilitymeans that the difference∆z =
f(x + dx, y + dy) − f(x, y) can be approximated by the differential dz =
fx(x, y) dx + fy(x, y) dy. Differentiability was defined to mean that the error
functions Ex and Ey , defined by

Ex dx+ Ey dy = ∆z − dz,

go to zero as ⟨dx, dy⟩ goes to zero. Let’s rephrase this so that it works for any
number of variables. Recall that the gradient of f at a⃗ ∈ D is the vector∇f (⃗a)
defined by

∇f (⃗a) =

〈
∂f

∂x1
(⃗a),

∂f

∂x2
(⃗a), . . . ,

∂f

∂xn
(⃗a)

〉
.

Definition 14.6.4 The linearization of a function of several variables.

Let f be continuously differentiable on some open setD ⊆ Rn, and let
a⃗ ∈ D. The linearization of f at a⃗ is the function La⃗(x⃗) defined by

La⃗(x⃗) = f (⃗a) +∇f (⃗a) · (x⃗− a⃗).
If the point a⃗ ∈ D at which we
are considering the linearization
is fixed, or clear from context in
a givenproblem,we candrop the
subscript in the notation, and sim-
ply write L(x⃗) instead of La⃗(x⃗).

When n = 1, we get the linearization La(x) = f(a) + f ′(a)(x− a), which
is the usual linearization from Calculus I. (You might also notice that La(x) is
the first-degree Taylor polynomial of f about x = a. The same is true of the
linearizationof f formore than one variable, althoughwewill not be considering
Taylor polynomials in several variables.)

For n = 2, we get the linear approximation associated to the total differen-
tial:

L(a,b)(x, y) = f(a, b) + ⟨fx(a, b), fy(a, b)⟩ · ⟨x− a, y − b⟩
= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Compare thiswith Equation (14.6.2) above. It seems that the gradient∇f (⃗a)
is our matrixM in this case: for a real-valued function, m = 1, so we expect
a 1 × n row matrix, and the gradient certainly can be interpreted to fit that
description.

Viewing the gradient ∇f as a
1×nmatrixM , the productM ·
x⃗definedabove is indeedexactly
the same as the usual dot prod-
uct∇f (⃗a) · x⃗.

For real-valued functions, Definition 14.6.3 becomes the following:
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Definition 14.6.5 Differentiability of real-valued functions.

We say that f is differentiable at a⃗ ∈ D if ∇f (⃗a) exists, and f(x⃗) and
La⃗(x⃗) agree to first order at a⃗; that is, if

lim
x⃗→a⃗

|f(x⃗)− La⃗(x⃗)|
∥x⃗− a⃗∥

= lim
x⃗→a⃗

|f(x⃗)− f (⃗a)−∇f (⃗a) · ⟨x⃗− a⃗⟩|
∥x⃗− a⃗∥

= 0.

What this definition says is that the linearization La⃗(x⃗) is a good linear ap-
proximation to f at a⃗. In fact, it’s theonly (and hence, best) linear approximation:
if a linear approximation exists, it has to be La⃗(x⃗).

If you want to see why this has to be true, recall that since the above limit
exists, we have to be able to evaluate it along any path we like. Suppose we
chose the path

r⃗(t) = ⟨h, a2, . . . , an⟩.
Then x⃗− a⃗ = ⟨h, 0, . . . , 0⟩ = h⃗i, and our definition becomes:

lim
h→0

∣∣∣∣f(a1 + h, a2, . . . , an)− f(a1, a2, . . . , an)

h
− ∂f

∂x1
(a1, a2, . . . , an)

∣∣∣∣ = 0,

which is just another way of stating the definition of the partial derivative with
respect to x1. Of course, approaching along any of the other coordinate direc-
tions will similarly produce the other partial derivatives.

Recall that in one variable, the derivative is often written instead in terms of
h = x− a, so that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

In more than one variable, we can define hi = xi − ai, for i = 1, . . . , n, or the
corresponding vector h⃗ = x⃗ − a⃗. The definition of differentiability then can be
written as

lim
h⃗→0

|f (⃗a+ h⃗)− f (⃗a)−∇f (⃗a) · h⃗|
∥h⃗∥

= 0. (14.6.3)

Note that we want the difference between f (⃗a + h⃗) and La⃗(⃗h) to go to zero
faster than ∥h⃗∥ goes to zero, and that it only makes sense to divide by the length
of h⃗, since division by a vector (or the corresponding point) is not defined.

Recall that

∥x⃗− a⃗∥ =√
(x1 − a1)2 + · · ·+ (xn − an)2

is the distance from x⃗ to a⃗. In
general, we would say that two
functions f(x⃗) and g(x⃗) “agree
up to order k” at a⃗ if

lim
x⃗→a⃗

f(x⃗)− g(x⃗)

∥x⃗− a⃗∥k
= 0.

As an exercise, check that, forn =
1, two functions f and g agree
up to order k at a if and only if
their degree k Taylor polynomi-
als are equal. (A similar statement
is true inmore thanone variable.)

Let’s return ton = 2 andDefinition 14.1.3 from Section 14.1. If wewrite h⃗ =
⟨dx, dy⟩, then f (⃗a+h⃗)−f (⃗a) = ∆z, and∇f (⃗a)·h⃗ = dz, and Equation (14.6.3)
becomes

lim
h⃗→0⃗

|∆z − dz|∥∥∥h⃗∥∥∥ = lim
h⃗→0⃗

|Ex dx+ Ey dz|
∥⟨dx, dy⟩∥

= 0,

which is another way of saying that the error terms Ex, Ey must vanish as dx
and dy approach zero. Success! Definition 14.6.3 is indeed a generalization of
Definition 14.1.3.

Note that we’ve also generalized Definition 2.1.7 for functions of one vari-
able as well: Equation (14.6.3) becomes

lim
h→0

∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ = 0,

which is just another way of re-writing the usual definition of the derivative. In
fact, we’ve also generalized Definition 12.2.10 from Chapter 12 for differentia-
bility of vector-valued functions: all we have to do is write our vector-valued
function as a column matrix.
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For

r⃗(t) =


x1(t)

x2(t)
...

xm(t)

 and r⃗ ′(t) =


x1

′(t)

x2
′(t)
...

xm
′(t)

 ,
we have

lim
h→0

∥∥∥∥ 1h (r⃗(a+ h)− r⃗(a))− r⃗ ′(a)

∥∥∥∥ = 0,

which again reproduces the definition of r⃗ ′(a).
One of the results we learn in Calculus I is that differentiability implies con-

tinuity. The situation is no different in general, and with our new definition of
differentiability, an easy proof is possible.

Theorem 14.6.6 Differentiability implies continuity.

If f : D ⊆ Rn → R is differentiable at a⃗ ∈ D, then f is continuous at a⃗.

Proof. Suppose that f is differentiable at a⃗. Then we know that

lim
x⃗→a⃗

f(x⃗)− La⃗(x⃗)

∥x⃗− a⃗∥
= lim

x⃗→a⃗

f(x⃗)− f (⃗a)−∇f (⃗a) · ⟨x⃗− a⃗⟩
∥x⃗− a⃗∥

= 0.

By the definition of continuity, we need to show that lim
x⃗→a⃗

f(x⃗) = f (⃗a). We have
that

f(x⃗) = f (⃗a) + (f(x⃗)− f (⃗a))

= f (⃗a) + (f(x⃗)− f (⃗a)−∇f (⃗a) · (x⃗− a⃗)) +∇f (⃗a) · (x⃗− a⃗)

= f (⃗a) +

(
f(x⃗)− f (⃗a)−∇f (⃗a) · (x⃗− a⃗)

∥x⃗− a⃗∥

)
(∥x⃗− a⃗∥) +∇f (⃗a) · (x⃗− a⃗).

Thus, taking limits of the above as x⃗ → a⃗, we find lim
x⃗→a⃗

f(x⃗) = f (⃗a), since

the first term is a constant (f (⃗a)), the second is the product of two terms that
both go to zero (the first term is zero by the definition of differentiability, and
clearly limx⃗→a⃗∥x⃗ − a⃗∥ = 0), and the last term vanishes since it’s linear (and
thus continuous) in x⃗, and so, by direct substitution,

lim
x⃗→a⃗

∇f (⃗a) · (x⃗− a⃗) = ∇f (⃗a) · (⃗a− a⃗) = 0.

■

14.6.3 Vector-valued functions of several variables
Let us now consider Definition 14.6.3 for general functions f : D ⊆ Rn → Rm.
If f is differentiable at a⃗, then we must have

lim
x⃗→a⃗

∥f(x⃗)− ℓ(x⃗)∥
∥x⃗− a⃗∥

= 0

for some linear function ℓ(x⃗). Moreover, we’ll see below that (a) the matrixM
is uniquely defined, and (b)M is deserving of the title of “the” derivative of f .

We saw in Equation (14.6.2) above that T must have the form of a linear
approximation:

ℓ(x⃗) = La⃗(x⃗) = f (⃗a) +M · (x⃗− a⃗).
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this exposition we are going to
write our vectors as column ma-
trices rather thanusing angle bracket
notation.

Let’s compare again to the one variable case: La(x) = f(a)+ f ′(a)(x− a).
With this in mind, the matrixM , whatever it is, certainly seems to play the role
of the derivative for general functions from Rn to Rm. It remains to determine
the matrixM , and see that there can only be one possibility. To that end, let us
write

M =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

 ,
and consider what happens when we let x⃗ → a⃗ along different paths.

If we consider the path x1 = a1 + t, x2 = a2, . . . , xn = an (that is, varying
x1 while holding the other variables constant) then

x⃗− a⃗ = ⟨a1 + t, a2, . . . , an⟩ − ⟨a1, a2,
..., an⟩ = ⟨t, 0, . . . , 0⟩,

soM · (x⃗− a⃗) gives us t times the first column ofM , since for each row ofM ,
the first entry is multiplied by t, and the remaining entries aremultiplied by zero.
Thus,

M · (x⃗− a⃗) = ⟨c11, c21, . . . , cm1⟩

along this path.
Now we consider the limit as t → 0.

lim
t→0

∣∣∣∣f(a1 + t, a2, . . . , an)− f(a1, a2, . . . , an)

t
− ⟨c11, c21, . . . , cm1⟩

∣∣∣∣ = 0.

Since ⟨c11, c21, . . . , cm1⟩ is a constant vector, fromdifferentiability of f , together
with Definition 14.6.3, we get

lim
t→0

f(a1 + t, a2, . . . , an)− f(a1, a2, . . . , an)

t
= ⟨c11, c21, . . . , cm1⟩.

But this limit on the left is just the partial derivative of f with respect to x1!
If we write f(x⃗) = ⟨f1(x⃗), f2(x⃗), . . . , fm(x⃗)⟨, then we have

lim
t→0

f(a1 + t, a2, . . . , an)− f(a1, a2, . . . , an)

t
=

〈
∂f1
∂x1

(⃗a),
∂f2
∂x1

(⃗a), . . . ,
∂fm
∂x1

(⃗a)

〉
,

and this gives us the first column ofM ! Repeating this for each variable, we see
that the matrixM is exactly the matrix of all the partial derivatives of f . This
matrix is important enough to have a name:

Definition 14.6.7 The Jacobian matrix of a differentiable function.

LetD ⊆ Rn be an open subset, and let f : D → Rm be a differentiable
function. At any point a⃗ ∈ D, the Jacobian matrix of f at a⃗, denoted
Df (⃗a), is them× nmatrix defined by

Df (⃗a) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
xn

 .
The linear transformation Tf,⃗a : Rn → Rm defined by Tf,⃗a(x⃗) =
Df (⃗a) · x⃗ is defined to be the derivative of f at a⃗.
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Notice that if f is differentiable, the Jacobian matrix is the only matrix that
can fit the definition: the fact that the limit must be zero along a path parallel to
one of the coordinate axes forces thematrixM to contain the partial derivatives
of f .

In particular, note that for a function f : Rn → R, we recover the gradient
vector. Technically, the derivative in this sense is a row vector (some might say
dual vector), not a columnvector. Note thatmultiplying a rowvector by a column
vector is the same as taking the dot product of two column vectors.

This definition also accounts for parametric curves, viewed as vector-valued
functions of one variable. If r : R → Rn defines a parametric curve, then the

derivative r′(t) =


x′
1(t)

x′
2(t)
...

x′
n(t)

 as introduced in Chapter 12 is the same as the one
obtained using this definition.

14.6.4 The General Chain Rule
One of the big advantages of representing the derivative of a function of sev-
eral variables in terms of its Jacobian matrix is that the Chain Rule becomes
completely transparent. Arguably, the version of the Chain Rule we’re about
to present is even more intuitive than the single-variable version!

Recall that the Chain Rule is all about derivatives of composite functions. In
one variable, given h = f ◦ g, if b = g(a), we have

h′(a) = f ′(g(a))g′(a) = f ′(b)g′(a).

The derivative of the composition is the product of the derivatives of the func-
tions being composed, as long as we take care to evaluate them at the appropri-
ate points.

In Section 14.2 we saw that in several variables, the Chain Rule comes in
various flavours, depending on the number of variables involved in each function
being composed. If we think of derivatives in terms of the Jacobian matrix, then
each of these flavours says exactly the same thing as the original Chain Rule
above!

Theorem 14.6.8 The general Chain Rule (matrix form).

Let f : U ⊆ Rm → Rp and g : V ⊆ Rn → Rm be differentiable
functions, such that the range of g is contained in the domain U of f .
Then the composite function h = f ◦ g is differentiable on V , and for
each a⃗ ∈ V , we have

Dh(⃗a) = D(f ◦ g)(⃗a) = Df (⃗b)Dg(⃗a),

where b⃗ = g(⃗a), and the product on the right is the usual matrix product
of the two Jacobian matrices.

This is a remarkable result. Let’s unpack it in a couple of examples.

Example 14.6.9 Applying the general chain rule.

Let f : U ⊆ R3 → R be a differentiable function of three variables, and
let r⃗(t) = ⟨x(t), y(t), z(t)⟩ be a vector-valued function of one variable.
Use Theorem 14.6.8 to determine a formula for the derivative of h(t) =



14.6. THE DERIVATIVE AS A LINEAR TRANSFORMATION 813

f(r⃗(t)).
Solution. We already know what this derivative should look like from
Section 14.2. The point is to confirm that this is a special case of The-
orem 14.6.8. The Jacobian matrix of f is a 1 × 3 matrix and Jacobian
matrix of r⃗ is a 3× 1matrix. They are given, respectively, by

Df(x⃗) =
[
fx(x⃗) fy(x⃗) fz(x⃗)

]
and Dr⃗(t) =

x′(t)

y′(t)

z′(t)

 .
Theorem 14.6.8 then gives us

h′(t) = Df(r⃗(t))Dr⃗(t) = fx( ⃗r(t))x′(t)+fy( ⃗r(t))y′(t)+fz( ⃗r(t))z′(t),

as before. Of course, in this context we usually write Df(x⃗) as ∇f(x⃗)
andDr⃗(t) as r⃗ ′(t), and instead of a matrix product, we write a dot prod-
uct. But this is simply a shift in notation — the quantities involved are
no different than before.

Example 14.6.10 Applying the general chain rule.

Let f : U ⊆ R2 → R be a function of 2 variables, and let g : V ⊆ R2 →
R2 be given by

g(u, v) = (x(u, v), y(u, v)).

Given h = f ◦ g, use Theorem 14.6.8 to determine hu and hv.
Solution. First we compute the Jacobian matrices for f and g. We have

Df(x, y) =
[
fx(x, y) fy(x, y)

]
and Dg(u, v) =

[
xu(u, v) xv(u, v)

yu(u, v) yv(u, v)

]
.

The Chain Rule then gives

Dh(u, v) =
[
hu(u, v) hv(u, v)

]
= Df(h(u, v))Dh(u, v)

=
[
fx(h(u, v)) fy(h(u, v))

] [xu(u, v) xv(u, v)

yu(u, v) yv(u, v)

]
= [fx(h(u, v)xu(u, v) + fy(h(u, v))yu(u, v)

fx(h(u, v))xv(u, v) + fy(h(u, v))yv(u, v)].

Equating coefficients of the first and last matrices, we have, in Leibniz
notation,

∂h

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

∂h

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
.

Again, this reproduces another instance of the Chain Rule from Sec-
tion 14.2.

With additional experimentation, you will find that every instance of the
Chain Rule you have previously encountered can be interpreted as a special case
of Theorem 14.6.8. Moreover, a slight shift in interpretation makes this version
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of the Chain Rule even more obvious! (There’s another detour coming, but stick
with us.)

Let us digress briefly and discuss the progression of mathematics from Calcu-
lus to higher math. If you continue on to upper-level undergraduate mathemat-
ics, you will encounter courses in Analysis and Topology. Analysis deals with the
theoretical underpinnings of Calculus: this is where you see all the careful proofs
of theorems that have been omitted from this text. Topology is a further abstrac-
tion of Analysis. In Topology, one studies continuity (and its consequences) at
its most fundamental, abstract level.

The corresponding successors to Calculus in several variables are known as
differential geometry and differential topology. You probably won’t encounter
these unless you continue on to graduate studies in mathematics. One of the
core philosophies in these two (closely related) subjects is the following:

Functions map points. Derivatives map tangent vectors.

This can be understood in our context. At any point a⃗ in Rn, we can attach a
copy of the vector space Rn, thought of as all the possible tangent vectors to
curves passing through that point.

Let r⃗ : (a, b) → Rn be such a curve, and let f : Rn → Rm be a differentiable
function. The composite function s⃗ = f ◦ r⃗ is then a curve in Rm. The point
a⃗ = r⃗(t0) on our first curve in Rn becomes a point

b⃗ = f (⃗a) = f(r⃗(t0)) = s⃗(t0)

on our new curve in Rm. What about tangent vectors?
At the point a⃗, we have the tangent vector v⃗ = r⃗ ′(t0). What is the tangent

vector to s⃗(t) at the point b⃗? On the one hand, by definition, wehave the tangent
vector

w⃗ = s⃗ ′(t0).

On the other hand, the Chain Rule gives us

s⃗ ′(t0) = (f ◦ r⃗) ′(t0) = Df(r⃗(t0))r⃗
′(t0).

But r⃗ ′(t0) = v⃗, so we have

w⃗ = Df (⃗a) · v⃗.

Multiplying the original tangent vector by the derivative of f gives us the new
tangent vector. Cool!

What’s more, we can view this as a linear transformation. Let V denote the
vector space of all tangent vectors at the point a⃗ inRn (this is just a copy of Rn)
and letW denote the space of all tangent vectors inRm at the point b⃗. Then we
have the linear transformation T : V → W given by

T (v⃗) = Df (⃗a) · v⃗.

In more advanced Calculus, or Differential Geometry, we view this linear
transformation as the derivative of f at a⃗. Now, recall from Linear Algebra that
matrix multiplication corresponds to the composition of the corresponding lin-
ear transformations: if S(v⃗) = Av⃗ and T (w⃗) = Bw⃗, and the matricesA andB
are of the appropriate sizes, then

S ◦ T (w⃗) = S(T (w⃗)) = A(Bw⃗) = (AB)w⃗.

Suppose we have differentiable functions f : Rn → Rm and g : Rm → Rp.
Let Tf : Rn → Rm be the linear function given by the derivative of f , and
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let Tg : Rm → Rp be the linear function given by the derivative of g. The
chain rule is then essentially telling us that the derivative of a composition is the
composition of the derivatives: we have

Tf ◦Tg(v⃗) = Tf (Tg(v⃗)) = Df(y⃗)(Dg(x⃗)v⃗) = (Df(g(x⃗))Dg(x⃗))v⃗ = Tf◦g(v⃗).

In other words, given the composition

Rn Rm Rp

g

f◦g

f

we have the corresponding composition

Rn Rm Rp

Dg(x⃗)

D(f◦g)(x⃗)

Df(y⃗)

(But beware of the dual usage of Rn here. In the first composition, we’re
thinking of it as a set of points in the domain of a function. In the second com-
position, we’re thinking of it as the set of tangent vectors at a point.)

This turns out to be an extremely powerful way of looking at derivatives and
the Chain Rule. Youmaywant to keep this inmind in later sections, such aswhen
we consider change of variables in multiple integrals at the end of Chapter 15,
and when we define integrals over curves and surfaces in Chapter 16. We won’t
use this language when we get there, but many of the results in those sections
(for example, the formula for surface area of a parametric surface) can be under-
stood according to the two principles we have just seen: functions map points,
while derivatives map tangent vectors, and the derivative of a composition is the
composition of the derivatives.

14.7 Constrained Optimization and Lagrange Multipli-
ers

Let us continue our discussion of constrained optimization begun in Section 14.5.
Theorem 14.5.19 tells us that the Extreme Value Theorem extends to functions
of two variables; in fact, this is true for a function of any number of variables: if
a real-valued function f is continuous on a closed, bounded subset of Rn, then
it is guaranteed to have an absolute maximum and minimum.

However, as the number of variables increases, the job of finding these ab-
solute extrema becomes more and more complicated. We saw one approach in
Section 14.5: given a continuous function on a closed, bounded region D, we
first consider critical values on the interior of D. We then restrict our function
f to points on the boundary of D, and attempt to reduce the problem to opti-
mization in one variable.

Inmany cases, this approach is best accomplishedbyparametrizing the bound-
ary. We learned how to define parametric curves in the plane in Section 9.2.

Example 14.7.1 Constrained optimization by parametrization.

Find the absolutemaximumandminimumvalues of f(x, y) = x2−8x−
3y2 on the disc x2 + y2 ≤ 4.
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Solution. First, we check for critical points: We have

∇f(x, y) = ⟨2x− 8,−6y⟩ ,

which vanishes when (x, y) = (4, 0). This critical point is outside our
region, so we do not consider it.
Next, we look for extreme values on the boundary. The boundary of
our region is the circle x2 + y2 = 4, which we can parametrize using
x = 2 cos t, y = 2 sin t, for t ∈ [0, 2π]. For (x, y) on the boundary, we
have

f(x, y) = x2 − 8x− 3y2 = 4 cos2 t− 16 cos t− 12 sin2 t = h(t),

a function of one variable, with domain [0, 2π].
We learned how to find the extreme values of such a function back in our
first course in calculus: see Section 3.1. We have h(0) = h(2π) = −12,
and

h′(t) = −8 cos t sin t+ 16 sin t− 24 sin t cos t = 16 sin t(1− 2 cos t).

Thus, h′(t) = 0 if sin t = 0 (t = 0, π, 2π) or cos = 1
2 (t = π/3, 5π/3).

We have already checked that h(0) = h(2π) = −12, so we check the
remaining points:

h(π) = 4(−1)2 − 16(−1) = 20

h(π/3) = h(5π/3) = 4

(
1

4

)
− 16

(
1

2

)
− 12

(
3

4

)
= −16.

We see that the absolute maximum is when t = π: h(π) = f(−2, 0) =
20, and the absolute minimum is −16, which occurs when t = π/3 and
t = 5π/3, corresponding to the points (1,

√
3) and (1,−

√
3), respec-

tively.

The above method works well, when it’s straightforward to set up. The ad-
vantage is that it reduces the problem of optimization along the boundary to
an optimization problem in one variable, which is something we mastered long
ago.

One downside is that it is not always easy to come upwith a parametrization
for a curve. In the above example, the boundary x2+y2 = 4 is a level curve: it’s
of the form g(x, y) = c. Whenwe’re trying to optimize subject to a constraint of
this form, there is another approach, called themethod of Lagrangemultipliers.

youtu.be/watch?v=W5ykqB7261c

Figure 14.7.2 Introducing Lagrange
multipliers

Suppose we are trying to maximize a function f(x, y) subject to a constrain
g(x, y) = c. We could follow the approach given above: find a function r⃗ :
[a, b] → R2 that parametrizes the curve g(x, y) = c. As we saw above, the
maximum (or minimum) should occur at some point t0 that is a critical number
of h(t) = f(r⃗(t)); that is, such that

h′(t0) = ∇f(r⃗(t0)) · r⃗ ′(t0) = 0.

This tells us that the gradient ∇f should be orthogonal to the constraint
curve g(x, y) = c at the point (x0, y0) = (x(t0), y(t0)). But we know another
gradient that is orthogonal to this curve: ∇g! Recall from Theorem 14.3.9 that
∇g(x, y) is always orthogonal to the level curve g(x, y) = c at points along the
curve.

https://www.youtube.com/watch?v=W5ykqB7261c
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Let’s sum up: the vectors ∇f(x0, y0) and ∇g(x0, y0) are both orthogonal
to the vector r⃗ ′(t0). We assume that ∇f(x0, y0) ̸= 0⃗, since critical points of
f have already been checked. We also assume that c is a regular value of g,
meaning that there are no critical points of g along the curve g(x, y) = c, so
∇g(x0, y0) ̸= 0⃗ as well.

If (x0, y0) is a critical point of a
function g; that is, if∇g(x0, y0) =
0⃗, and g(x0, y0) = c, we call the
number c a critical valueof g. Any
number that is not a critical value
is called a regular value. Often,
if c is a critical value, the level
set defined by g(x, y) = c is not
a smooth curve, or even a curve
at all.

For example, g(x, y) = x2 +
y2 has the critical point (0, 0), and
critical value 0. The set of (x, y)
with x2 + y2 = 0 is not a curve;
it’s a single point. Because of this,
it’s usually a safe assumption that
when a level curve g(x, y) = c
is given, the value c is a regular
value.

But the only way that two non-zero vectors in the plane can both be orthog-
onal to a third vector is if they’re parallel! This means that there must be some
scalar λ such that

∇f(x0, y0) = λ∇g(x0, y0).
We have demonstrated the following:

Theorem 14.7.3 Location of constrained extrema.

Let f and g be continuously differentiable functions of two variables, and
suppose c is a regular value for g. If the function f , when constrained to
the level curve g(x, y) = c has a local maximum or minimum value at a
point (x0, y0), then

∇f(x0, y0) = λ∇g(x0, y0)

for some scalar λ.

Note that there are two possibilities: either λ = 0, in which case (x0, y0)
is a critical point of f , or λ ̸= 0, in which case the level curve of f that passes
through (x0, y0)must be tangent to the curve g(x, y) = c at that point. Putting
Theorem 14.7.3 to use is a matter of solving a system of equations.

Key Idea 14.7.4 Method of Lagrange Multipliers.

To find the maximum and minimum values of a function f of two vari-
ables subject to a constraint g(x, y) = c, wemust find the simultaneous
solutions to the following equations, where λ is an unknown constant
(called a Lagrange multiplier):

fx(x, y) = λgx(x, y)

fy(x, y) = λgy(x, y)

g(x, y) = c.

Example 14.7.5 Using Lagrange multipliers.

Find the absolutemaximumandminimumvalues of f(x, y) = x2−8x−
3y2 on the disc x2 + y2 ≤ 4.
Solution. This is the same problem as Example 14.7.1, but this time,
we will attempt to solve it using the method of Lagrange multipliers.
Again, since ∇f(x, y) = ⟨2x− 8,−6y⟩, the only critical point for f is
outside the given disc. It remains to find the maximum and minimum
of f subject to the constraint x2 + y2 = 4, so our constraint function is
g(x, y) = x2 + y2. We have

∇f(x, y) = ⟨2x− 8,−6y⟩ = λ ⟨2x, 2y⟩ = λ∇g(x, y).

Together with the constraint, we have three equations:

2x− 8 = 2λx ⇒ (1− λ)x = 4
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−6y = 2λy ⇒ y = 0 or λ = −3

x2 + y2 = 4.

Now we encounter the primary difficulty with Lagrange multipliers.
While the idea is simple, the equations it leads to frequently are not. The
equations are rarely linear, so there is no systematic method for solving
them: solving a Lagrange multiplier problem requires a certain amount
of patience and creativity!
One of the possibilities we see above is y = 0. If y = 0, the constraint
equation requires x = ±2, and in either case we can choose a value for
λ (−1 and 3, respectively) that solves the equation (1− λ)x = 4.
We find f(2, 0) = −12, and f(−2, 0) = 20. If y ̸= 0, thenwemust have
λ = −3. Putting this into the equation (1 − λ)x = 4 gives us 4x = 4,
or x = 1. If x = 1, the constraint equation gives us 1 + y2 = 4, so
y = ±

√
3.

We find f(1,
√
3) = f(1,−

√
3) = −16. There are no other points that

satisfy all three equations, so we compare values to complete the prob-
lem: the maximum is f(−2, 0) = 20, and the minimum is f(1,±

√
3) =

−16, as before.

youtu.be/watch?v=WgzwyBEDTzA

Figure 14.7.6 Using the method of La-
grange multipliers

The method of Lagrange multipliers seems rather arcane at first glance, but
it’s actually not hard to understand geometrically why it works.

−2 −1 1 2

−2

2

x

y

Figure 14.7.7 The constraint curve
and several level curves in Exam-
ple 14.7.5

Consider Figure 14.7.7. The constraint curve x2+y2 = 4 is the dashed circle.
We also see the three level curves (solid) that were obtained as solutions to the
Lagrange multiplier equations:

• f(x, y) = −12: passing through (2, 0)

• f(x, y) = 20: passing through (−2, 0)

• f(x, y) = −16: this curve is actually a pair of lines,
√
3y = ±(x − 4),

passing through (1,±
√
3), respectively.

We see that all three curves are tangent to the constraint curve, as we ex-
pect from the requirement that the gradients∇f and∇g be parallel where the
curves intersect.

Additional level curves f(x, y) = c are plotted as well, with dashed-dotted
lines. For values of c with c > 20 (greater than the maximum) or c < −16 (less
than theminimum), the level curve f(x, y) = c does not intersect the constraint
curve at all.

For values of cwith−16 < c < 20, the curve f(x, y) = c intersects the con-
straint curve, but the intersection is what’s called transversal: at these points of
intersection, the two curves are not tangent, and the gradients are not parallel.

In Figure 14.7.7, you can imagine that increasing or decreasing the value of c
has the effect of shifting the level curve oneway or the other, until it just touches
the circle. Any bigger than the maximum, or smaller than the minimum, and
the curves no longer intersect. Of course, saying that the curves “just touch”
amounts to saying that they are tangent at their point of intersection, just as
Theorem 14.7.3 predicts.

Example 14.7.8 Exploring Lagrange Multipliers Geometrically.

Use Lagrange multipliers to locate the extrema of f(x, y) = 2x2 + y2,
subject to the constraint x+ y = 3.

https://www.youtube.com/watch?v=WgzwyBEDTzA
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Solution. Let’s see what happens if we dive right in and apply our ma-
chinery. With g(x, y) = x+ y, we need to have

∇f(x, y) = ⟨4x, 2y⟩ = λ ⟨1, 1⟩ = λ∇g(x, y),

so x+y = 4, from our constraint, and 4x = λ = 2y, giving us y = 3−x
and y = 2x, so 2x = 3− x, giving x = 1, and y = 2.
We get only one solution: the value f(1, 2) = 6. But is this a maximum
or a minimum? And shouldn’t we get both?
Rather than blindly attacking the equations, perhaps it would do to take
a step back and think about the problem. First, consider the constraint
equation: x + y = 3. This is a line; it certainly is not the boundary of
a closed, bounded reason in the plane. Thus, we haven’t satisfied the
conditions of the Extreme Value Theorem, and have no reason to expect
both an absolute maximum and an absolute minimum.
Now, since the linex+y = 3 extendswithout bound, it’s clear that there
can be nomaximum value c beyond which the ellipse 2x2+y2 = c does
not intersect the line. There is, however, a minimum value: when c = 6,
the ellipse 2x2 + y2 = 6 has gradient ∇f(x, y) = ⟨4, 4⟩, giving us the
tangent line

4(x− 1) + 4(y − 2) = 0, or x+ y = 3,

the equation of our constraint. For value of c less than 3, the ellipse
2x2 + y2 = c does not intersect the line x+ y = 3.

−2 −1 1 2
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−2

2

4

x

y

Figure 14.7.9 The constraint and
some level curves in Example 14.7.8

The method of Lagrange multipliers is not restricted to functions of two vari-
ables or to single constraints. We can similarly determine the extrema of a func-
tion f of three variables on a closed bounded subset of R3.

Example 14.7.10 Determining constrained extrema for a function of
three variables.

Determine the maximum and minimum values of the function
f(x, y, z) = x4 + y4 + z4, subject to the constraint x2 + y2 + z2 = 1.
Solution. With g(x, y, z) = x2 + y2 + z2, the equation∇f(x, y, z) =
λ∇g(x, y, z) gives us〈

4x3, 4y3, 4z3
〉
= λ ⟨2x, 2y, 2z⟩ .

Equating first components, we have 2x3 = λx. One possibility is x = 0;
the other is λ = 2x2. Similar results hold for the other two variables,
leaving us with several possibilities to consider.

• We take the solution x = 0, y = 0, and z = 0 from the vector
equation above. But this result cannot satisfy our constraint, so
we rule it out.

• We have x = 0 and y = 0, but z ̸= 0. The constraint equation
forces z = ±1. Similarly, we can have x = 0, y = ±1, and z = 0,
or x = ±1, y = 0, and z = 0. This gives us six points, and they all
give the same value for f :

f(±1, 0, 0) = f(0,±1, 0) = f(0, 0,±1) = 1.
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• One of the three variables is zero. If x = 0, with y and z nonzero,
then we have 2y2 = λ = 2z2, and since x2 + y2 + z2 = 1, we
must have y2 = z2 = 1

2 . This gives us f(x, y, z) = 0+ 1
4 +

1
4 = 1

2 .

There are twelve possibilities here: one variable zero, and the
other two can be± 1√

2
. Each one gives a value of 1

2 for f .

• Finally, we could have all three variables nonzero. In this case the
Lagrange multiplier equations give us

2x2 = 2y2 = 2z2 = λ,

and putting these into the constraint equation gives us x2 = y2 =
z2 = 1

3 . There are eight different points satisfying this require-
ment, but all of them give us a value of

f(x, y, z) =
1

9
+

1

9
+

1

9
=

1

3
.

Comparing values, we see that the maximum value for f , when con-
strained to unit sphere, is 1, and there are 6 points on the sphere with
this value. The minimum value is 1

3 , and this occurs at 8 different points.

For functions of three or more
variables, it is also possible to con-
sider two or more constraints. If
wewished tooptimize a function
f(x, y, z) subject to constraints
g(x, y, z) = a and h(x, y, z) =
b, wewould have to solve the vec-
tor equation

∇f(x, y, z) = λg(x, y, z)

+ µh(x, y, z),

alongwith the two constraint equa-
tions. Problems involving large
(or even arbitrary!) numbers of
variables and constraints are en-
countered everywhere fromEco-
nomics to Quantum Mechanics.

As the above examples show, Lagrange multiplier problems are often easy
to set up, but hard to solve by hand. So why is the method useful? One reason
is that it can be used to establish useful theoretical results. But more practically,
the method of Lagrange multipliers is useful because it is easy to program into
a computer: we simply provide the function and the constraint(s), and the com-
puter solves the resulting equations. There is no need for the same degree of
problem-solving employed when we first tackled optimization problems in one
variable, back in Chapter 4. To emphasize this, we consider one more example:
a reprise of one of the optimization problems from Section 4.3.

Example 14.7.11 Solving an optimization problem with Lagrange mul-
tipliers.

Find the dimensions of a cylindrical can of volume 206 in3 that minimize
the can’s surface area.
Solution. This was one of the exercises at the end of Section 4.3. The
surface area of a cylinder of radius r and height h is given by

s(r, h) = 2r2 + 2πrh.

This is the function we wish to minimize, subject to the volume con-
straint πr2h = 206.
In Section 4.3, our next step would have been to solve the constraint
equation for one of the two variables (likely h ) in terms of the other,
so we could rewrite s(r, h) as a function of one variable and apply the
techniques of Section 3.1.
Instead, we introduce the constraint function v(r, h) = πr2h. The La-
grange multiplier equation∇s = λ∇v gives us

⟨4r + 2πh, 2πr⟩ = λ
〈
2πrh, πr2

〉
.

Equating the second components gives us 2πr = λπr2. Since the con-
straint ensures that r ̸= 0, we have λr = 2.
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Now, we equate the first components:

4r + 2πh = λ · 2πr,

but λr = 2, so we have simply 4r + 2πh = 4πh, or πh = 2r. Putting
this into the constraint equation gives us

πr2h = 2r2 = 206,

so r = 3
√
103 ≈ 4.688, and h = 2 3

√
103/π ≈ 2.984. This is, of course,

the same result you would have found if you did this exercise back in
Section 4.3.

youtu.be/watch?v=uvQku50u_-0

Figure 14.7.12 Another optimization
problem using Lagrange multipliers

14.8 Hessians and the General Second Derivative Test

In Section 14.5, we saw that, just as for functions of a single variable (recall Sec-
tion 3.1), local extreme values occur at critical points. Definition 14.5.3 defined
a critical point (a, b) of a function f(x, y) to be onewhere the gradient vanishes:

∇f(a, b) = ⟨fx(a, b), fy(a, b)⟩ = ⟨0, 0⟩ .

Given a critical point for a function f of two variables, Theorem 14.5.13, the
Second Derivative Test, tells us how to determine whether that critical point
corresponds to a local minimum, local maximum, or saddle point. You might
have been left wondering why the second derivative test looks so different in
two variables. You might also have been left wondering what this test looks like
if we have three or more variables!

The appearance of the quantity

D = fxx(a, b)fyy(a, b)− f 2
xy(a, b)

seems a bit weird at first, but the idea is actually fairly simple, if you’re willing to
accept Taylor’s Theorem without proof for functions of more than one variable.
We already know that if f(x, y) is C1 (continuously differentiable), then we get
the linear approximation

f(x, y) ≈ f(a, b) +∇f(a, b) · ⟨x− a, y − b⟩

near a point (a, b) in the domain of f . (Multiplying out the dot product above
gives us the differential df defined in Definition 14.1.1.)

Taylor’s theorem tells us that if f is C2 (has continuous second-order deriv-
atives), then we get the quadratic approximation

f(x, y) ≈ f(a, b) +∇f(a, b) · ⟨x− a, y − b⟩

+
1

2
A(x− a)2 +B(x− a)(y − b) +

1

2
C(y − b)2,

where A =
∂2f

∂x2
(a, b), B =

∂2f

∂x∂y
(a, b), and C =

∂2f

∂y2
(a, b). (Compare this to

the single-variable version: f(x) ≈ f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2.)
Now, if (a, b) is a critical point, then ∇f(a, b) = 0⃗, and we get the approxi-

mation
f(x, y) ≈ k +

1

2

(
AX2 + 2BXY + CY 2

)
,

https://www.youtube.com/watch?v=uvQku50u_-0
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where k = f(a, b), X = x − a, Y = y − b. So it’s enough to understand the
critical points of the function

g(x, y) = Ax2 + 2Bxy + Cy2,

since f locally looks just like g. (We’ve basically just done a shift of the graph,
and stretched by a factor of 2 to get rid of the 1/2.)

Now, we can re-write g as follows, assuming A ̸= 0:

g(x, y) = Ax2 + 2Bxy + Cy2

= A

(
x2 + 2

B

A
xy

)
+ Cy2

= A

(
x+

B

A
y

)2

− B2

A
y2 + Cy2

= A

(
x+

B

A
y

)2

+
1

A
(AC −B2)y2.

Now we can see that this is basically just a paraboloid, as long asAC −B2 ̸= 0.
(Otherwise, we end up with a parabolic cylinder.)

IfAC−B2 > 0 (note that this is just the discriminantD!), then both the co-
efficient for both terms has the same sign; ifA > 0we get an elliptic paraboloid
opening upwards (local minimum), and if A < 0 we get an elliptic paraboloid
opening downwards (local maximum). If AC − B2 < 0, then the two terms
have coefficients with opposite signs, and that gives us a hyperbolic paraboloid
(saddle point).

And what if A = 0?Well, in that case AC − B2 = −B2 ≤ 0, so there are
two cases: if B ̸= 0, the second derivative test tells us to expect a saddle point,
and indeed this is what we get. Either C = 0 as well, and g(x, y) = 2Bxy,
which is just a hyperbolic paraboloid rotated by π/4 (its contour curves are the
hyperbolas xy = c), or C ̸= 0, in which case you can complete the square in y,
and check that the result is once again a hyperbolic paraboloid (exercise).

The other case is if B = 0, in which case D = 0, so we can’t make any
conclusions from the second derivative test (although we’ll have g(x, y) = Cy2,
which is again a parabolic cylinder).

We will now explain how to state second derivative test in general, for func-
tions of n variables, where n = 1, 2, 3, . . .. We will also give an outline of the
proof of this result. The proof requires the use of Taylor’s theorem for a func-
tion of several variables, which we will not prove, and a bit of terminology from
linear algebra. Our sketch of the proof follows the exposition given in the text
Vector Calculus, 4th edition, by Marsden and Tromba.

14.8.1 Taylor Polynomials in Several Variables
Before getting to the general result, let’s take a brief detour and discuss Taylor
polynomials. One way of thinking about differentiability of a function f : D ⊆
Rn → R is to think of the linearizationL(x⃗) as the degree one Taylor polynomial

P1(x⃗) = f (⃗a)+∇f (⃗a)·(x⃗−a⃗) = f (⃗a)+
∂f

∂x1
(⃗a)(x1−a1)+· · ·+ ∂f

∂xn
(xn−an).

We will use the shorthand f(x⃗)
from Section 14.6 for the func-
tion f(x1, . . . , xn), where x⃗ =
⟨x1, . . . , xn⟩. We will also write
our vectors using angle bracket
notation, even when we should
really write them as column vec-
tors for the purposes of matrix
multiplication. Finally, as in Sec-
tion 14.6, for an n× nmatrixA,
we will use the dot productA · x⃗
to account for this.

The requirement of differentiability is then that the remainder R1(x⃗) =
f(x⃗)− P1(x⃗) goes to zero faster than ∥x⃗− a⃗∥; that is,

lim
x⃗→a⃗

R1(x⃗)

∥x⃗− a⃗∥
= 0.
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Using the terminology from Section 14.6, we say that f and P1 “agree to first
order”. From here we can go on and ask for degree k Taylor polynomials Pk(x⃗)
that give a “kth-order approximation” of f near a⃗.

In other words, we want a polynomial

Pk(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn + a11x
2
1 + a12x1x2 + · · ·+ annx

2
n

+ · · ·+ a1···1x
k
1 + a1···12x

k−1
1 x2 + · · ·+ an···nx

k
n,

in n variables, of degree k, such that the remainder Rk(x⃗) = f(x⃗) − Pk(x⃗)

satisfiesRk(x⃗) ≈ C ∥x⃗− a⃗∥l, with l > k. In terms of limits, this means

lim
x⃗→a⃗

Rk(x⃗)

∥x⃗− a⃗∥k
= 0.

You’ve probably already noticed a problem with talking about higher-order
polynomials in several variables: the notation gets really messy, since there are
so many more possible terms! For example, even a relatively simple case like a
degree 3 polynomial in 3 variables looks like

P (x, y, z) = a+ bx+ cy + dz + ex2 + fxy + gxz + hy2 + kyz + lz2

+mx3 + nx2y + oxy2 + pxyz + qx2z + rxz2 + sy3 + ty2z + uyz2 + vz3

for constants a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v!
Usuallywe get around this using “multi-index” notationWe letα = (a1, . . . , an)

denote an-tuple of non-negative integers, and thenwedefine x⃗α = xa1
1 xa2

2 · · ·xan
n ,

|α| = a1 + · · · + an (so that x⃗α is a monomial of order |α|), and we denote a
possible coefficient of x⃗α by aα. A general kth-order polynomial then looks like

Pk(x⃗) =

k∑
|α|=0

aαx
α.

For example, in 3 variables, the terms where |α| = 3 would involve α =
(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3),
so in the above polynomial m = a(3,0,0), n = a(2,1,0), etc., with x⃗(3,0,0) =

x3, x⃗(2,1,0) = x2y, and so on. (Note that α = (0, . . . , 0) is the only multi-index
with |α| = 0).

With all of that notational unpleasantness out of the way, we can say what
the kth-order Taylor polynomial for f near a⃗ should be: Taylor’s Theorem, gen-
eralized to n variables, states that

Pk(x⃗) =

k∑
|α|=0

f (α)(⃗a)

α!
(x⃗− a⃗)α,

where α! = a1!a2! · · · an!, and

f (α)(⃗a) =

(
∂a1

∂xa1
1

∂a2

∂xan
2

· · · ∂
an

∂xn
f

)
(⃗a).

As an exercise, check that putting k = 1 reproduces the linearization P1(x⃗)
(note that if |α| = 1 we have to have α = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), etc.),
and that putting k = 2 gives the quadratic approximation discussed below.
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14.8.2 Quadratic Functions in Several Variables

Let A = [aij ] be an n × n matrix. We say that A is symmetric if AT = A, or
equivalently, if aij = aji for each i, j between 1 and n. To each such A we can
associate a quadratic function q : Rn → R given by

q(x⃗) = x⃗ · (A · x⃗),

or in terms of components,

q(x1, . . . , xn) =

n∑
i,j=1

aijx
ixj .

We say that A is non-degenerate if detA ̸= 0; this is equivalent to saying
thatA is invertible, or thatAx⃗ = 0⃗ is possible only if x⃗ = 0⃗. (Note however that
the corresponding property does not hold for q: it is possible to have q(x⃗) = 0
for x⃗ ̸= 0⃗ even if the corresponding matrix A is non-degenerate.) For example,
the quadratic function q(x, y) = x2 − y2 has q(1, 1) = 0 and corresponds to

the non-degenerate matrix
[
1 0

0 −1

]
.

A quadratic function q is called positive-definite if q(x⃗) ≥ 0 for all x⃗ ∈ Rn,
and q(x⃗) = 0 only for x⃗ = 0⃗. (Note that the quadratic function q(x, y) = x2−y2

given above is not positive definite; however, q̃(x, y) = x2 + y2 is.) Similarly, q
is negative-definite if q(x⃗) ≤ 0 for all x⃗ ∈ Rn with q(x⃗) = 0 for x⃗ = 0⃗ only.

If q(x⃗) = x⃗ ·Ax⃗ is positive(negative)-definite, we refer to the corresponding
symmetric matrix A as positive(negative)-definite as well. In general it can be
difficult to determine when a given quadratic function (or its corresponding ma-

trix) is positive or negative-definite. In the case of a 2 × 2 matrix A =

[
a b

b c

]
we get

q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2

= a

(
x1 +

b

a
x2

)2

+

(
c− b2

a

)
x2
2,

by completing the square. Since we must have q(x1, 0) > 0 if x1 ̸= 0, we get
a > 0, and since q(0, x2) > 0 for x2 ̸= 0, it follows that ac − b2 = detA > 0.
Similarly q is negative-definite if a < 0 and detA > 0.

For ann×nmatrix, one test is as follows: consider the sequence of j×jma-

trices Aj , for j = 1, . . . , n, given by A1 = [a11], A2 =

[
a11 a12
a21 a22

]
, . . . , An =

A. (i.e. we take upper-left square sub-matrices of increasing size.) Then A
is positive-definite if and only if detAj > 0 for each j = 1, . . . n, and A is
negative-definite if the signs of detAj alternate between negative and positive.
(So detA1 = a11 < 0, detA2 > 0, detA3 < 0, . . ..)

Another approach, which is more illuminating but requires more advanced
linear algebra, is to use the fact that for any symmetric matrix A, there exists a
change of basis such that A becomes a diagonal matrix Ã with respect to that
basis. (i.e.A can be diagonalized.) If the entries ãii of Ã along themain diagonal
(that is, the eigenvalues of A) are all non-zero, then A is non-degenerate. If
they are all positive, then A is positive-definite. If they are all negative, then A
is negative-definite.

We will need the following lemma below, which is a consequence of the
Extreme Value Theorem.
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Theorem 14.8.1

If q : Rn → R is a positive-definite quadratic function, then there exists
a real numberM > 0 such that

q(x⃗) ≥ M∥x⃗∥2

for any x ∈ Rn.

To see that this is true, consider q(x⃗) on the set B of all x⃗ with ∥x⃗∥ = 1.
The set B is closed and bounded and q is continuous on B, so by the Extreme
Value Theorem, q must attain a minimum valueM for some a⃗ ∈ B. Now, for
any constant c ∈ R, the fact that q is quadratic implies that q(cx⃗) = c2q(x⃗). For

any non-zero x⃗ ∈ Rn, we know that
x⃗

∥x⃗∥
∈ B, and thus, we have

q(x⃗) = q

(
∥x⃗∥ x⃗

∥x⃗∥

)
= ∥x⃗∥2q

(
x⃗

∥x⃗∥

)
≥ M∥x⃗∥2.

Finally, if x⃗ = 0⃗ we get q(⃗0) = 0 = M ∥⃗0∥2.

14.8.3 The Hessian Matrix of a Real-Valued Function

Definition 14.8.2 The Hessian Matrix.

Let f : Rn → R be a function with continuous second-order partial
derivatives. We define theHessianmatrix of f at a point a⃗ in the domain
of f to be the n× n symmetric matrix

Hess f (⃗a) =
1

2


∂2f
∂x2

1
(⃗a) ∂2f

∂x1∂x2
(⃗a) · · · ∂2f

∂x1∂xn
(⃗a)

∂2f
∂x2∂x1

(⃗a) ∂2f
∂x2

2
(⃗a) · · · ∂2f

∂x2∂xn
(⃗a)

...
...

...
∂2f

∂xn∂x1
(⃗a) ∂2f

∂xn∂x2
(⃗a) · · · ∂2f

∂x2
n
(⃗a)

 .

Note that Hess f (⃗a) is symmetric by Theorem 13.3.15. The factor of 1/2
is included for convenience with respect to Taylor’s theorem. Recall that for a
function of one variable, the second-order Taylor polynomial of f about x = a
is

P2(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.

For x⃗ ∈ Rn, let us define the quadratic function hf,⃗a(x⃗) = x⃗ · (Hess f (⃗a) · x⃗)
associated to the Hessian of f at a⃗. Taylor’s theorem for functions of several
variables tells us that if all the third derivatives of f are continuous, then near
a⃗ ∈ Rn we have

f(x⃗) = f (⃗a) +∇f (⃗a) · (x⃗− a⃗) + hf,⃗a(x⃗− a⃗) +R(⃗a, x⃗), (14.8.1)

where the remainder termR(⃗a, x⃗) satisfies

lim
x⃗→a⃗

R(x⃗, a⃗)

∥x⃗− a⃗∥2
= 0. (14.8.2)

Finally, let us define a critical point a⃗ for f to be non-degenerate if Hess f (⃗a)
is non-degenerate. Nowwe’re ready to state our result on the second derivative
test.



826 CHAPTER 14. FUNCTIONS OF SEVERAL VARIABLES, CONTINUED

Theorem 14.8.3 The General Second Derivative Test.

Let f : Rn → R be three times continuously differentiable, and sup-
pose that f has a non-degenerate critical point at a⃗. If Hess f (⃗a) is
positive-definite, then a⃗ is a local minimum for f . Similarly, if Hess f (⃗a)
is negative-definite, then a⃗ is a local maximum for f .

The way to think about this intuitively is the following: the matrix Hess f (⃗a)
is symmetric. We know from Linear Algebra that every symmetric matrix can be
diagonalized. Less obvious (but still true) is that we can make a (linear) change
of variables (u1, . . . , un) = T (x1, . . . , xn) so that the vectors in the direction
of the ui coordinate axes are eigenvectors for Hess f (⃗a). Slightly harder to show
(but also true) is that this change of variables can be chosen so that it is orthogo-
nal. That is, we simply have to rotate our coordinate system: lengths and angles
are all preserved.

In this new coordinate system, the Hessian matrix is diagonal:

Hess f (⃗a) =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
If each of the eigenvalues λ1, . . . , λn is positive, the Hessian is positive-definite,
and our critical point is a local minimum. If all the eigenvalues are negative, our
critical point is a local maximum. If some of the eigenvalues are positive and
some are negative, we have a saddle point.

We in fact do slightly better than
a localminimum: weget the strict
inequality f(x⃗) > f (⃗a), and not
just f(x⃗) ≥ f (⃗a). Often this fact
is expressed by saying that non-
degenerate critical points are iso-
lated — if f has a critical point
at a⃗, then there is some neigh-
bourhood of a⃗ in which f has no
other critical points. (We have
only established this for localmax-
ima and minima, but this fact is
true for non-degenerate critical
points in general.) This observa-
tion is the starting point for an
important area of differential topol-
ogy known as Morse Theory.

Proving the result is somewhat more technical. Suppose a⃗ is a critical point
for f , and that Hess f (⃗a) is positive definite. We know that ∇f (⃗a) = 0 at a
critical point, so from Equation (14.8.1) we get

f(x⃗)− f (⃗a) = hf,⃗a(x⃗− a⃗) +R(⃗a, x⃗).

Theorem 14.8.1 tells us that hf,⃗a(x⃗ − a⃗) ≥ M∥x⃗ − a⃗∥2 for someM , and
by Equation (14.8.2), there exists a δ > 0 such that whenever 0 < ∥x⃗− a⃗∥ < δ,
we get |R(⃗a, x⃗)| < M∥x⃗− a⃗∥2. (Take ϵ = M in the definition of the limit.)

If we carefully put all this together, we can show that

hf,⃗a(x⃗− a⃗) +R(⃗a, x⃗) > 0,

since
hf,⃗a(x⃗− a⃗) ≥ M∥x⃗− a⃗∥2 > |R(⃗a, x⃗)|.

Substituting this into the above equation, we get f(x⃗)−f (⃗a) > 0 for any x⃗with
0 < ∥x⃗− a⃗∥ < δ, and thus f has a local minimum at a⃗ ∈ Rn. The case of a local
maximum can be handled similarly (or by replacing f with−f ).



Chapter 15

Multiple Integration

Chapters 13–14 introduced multivariable functions and we applied concepts of
differential calculus to these functions. We learned how we can view a function
of two variables as a surface in space, and learned howpartial derivatives convey
information about how the surface is changing in any direction.

In this chapter we apply techniques of integral calculus tomultivariable func-
tions. In Chapter 5 we learned how the definite integral of a single variable func-
tion gave us “area under the curve.” In this chapter we will see that integration
applied to a multivariable function gives us “volume under a surface.” And just
as we learned applications of integration beyond finding areas, we will find ap-
plications of integration in this chapter beyond finding volume.

15.1 Iterated Integrals and Area

In Section 13.3 we found that it was useful to differentiate functions of several
variables with respect to one variable, while treating all the other variables as
constants or coefficients. We can integrate functions of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =

∫
fx(x, y) dx

=

∫
2xy dx

= x2y + C.

Make a careful note about the constant of integration, C. This “constant” is
something with a derivative of 0with respect to x, so it could be any expression
that contains only constants and functions of y. For instance, if f(x, y) = x2y+
sin(y) + y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a function
of y, we write:

f(x, y) =

∫
fx(x, y) dx = x2y + C(y).

Using this process we can even evaluate definite integrals.

827
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15.1.1 Iterated integrals

Example 15.1.1 Integrating functions of more than one variable.

Evaluate the integral
∫ 2y

1

2xy dx.

Solution. We find the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:∫ 2y

1

2xy dx = x2y
∣∣∣2y
1

= (2y)2y − (1)2y

= 4y3 − y.

We can also integrate with respect to y. In general,∫ h2(y)

h1(y)

fx(x, y) dx = f(x, y)
∣∣∣h2(y)

h1(y)
= f

(
h2(y), y

)
− f

(
h1(y), y

)
,

and ∫ g2(x)

g1(x)

fy(x, y) dy = f(x, y)
∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f

(
x, g1(x)

)
.

Note that when integrating with respect to x, the bounds are functions of y
(of the form x = h1(y) and x = h2(y)) and the final result is also a function
of y. When integrating with respect to y, the bounds are functions of x (of the
form y = g1(x) and y = g2(x)) and the final result is a function of x. Another
example will help us understand this.

Example 15.1.2 Integrating functions of more than one variable.

Evaluate
∫ x

1

(
5x3y−3 + 6y2

)
dy.

Solution. We consider x as staying constant and integrate with respect
to y:∫ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5

2
x3x−2 + 2x3

)
−
(
−5

2
x3 + 2

)
=

9

2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that
the final answer is a function of x.

In the previous example, we integrated a function with respect to y and
ended up with a function of x. We can integrate this as well. This process is
known as iterated integration, ormultiple integration.
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Example 15.1.3 Evaluating an integral.

Evaluate
∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy

)
dx.

Solution. We follow a standard “order of operations” and perform the
operations inside parentheses first (which is the integral evaluated in
Example 15.1.2.)∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy

)
dx =

∫ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

∫ 2

1

(
9

2
x3 − 5

2
x− 2

)
dx

=

(
9

8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89

8
.

Note how the bounds of x were x = 1 to x = 2 and the final result was
a number.

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we investigate
these questions, we offer some definitions.

Definition 15.1.4 Iterated Integration.

Iterated integration is the process of repeatedly integrating the results
of previous integrations. Evaulating one integral is denoted as follows.
Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
functions of x and y, respectively. Then:

1.
∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy =

∫ d

c

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy.

2.
∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy,x varies fromh1(y) toh2(y), whereas y varies

from c to d. That is, the bounds of x are curves, the curves x = h1(y) and
x = h2(y), whereas the bounds of y are constants, y = c and y = d. It is useful
to remember that when setting up and evaluating such iterated integrals, we
integrate “from curve to curve, then from point to point.”

We now begin to investigate why we are interested in iterated integrals and
what they mean.
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15.1.2 Area of a plane region
Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 15.1.5. We learned in Section 7.1 that the area ofR is given by∫ b

a

(
g2(x)− g1(x)

)
dx.

y = g2(x)

y = g1(x)

R

a b

x

y

Figure 15.1.5 Calculating the area of
a plane region R with an iterated in-
tegral

We can view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

∫ g2(x)

g1(x)

1 dy =

∫ g2(x)

g1(x)

dy,

meaning we can express the area ofR as an iterated integral:

area ofR =

∫ b

a

(
g2(x)−g1(x)

)
dx =

∫ b

a

(∫ g2(x)

g1(x)

dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)

dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), as
shown in Figure 15.1.6. Using a process similar to that above, we have

the area ofR =

∫ d

c

∫ h2(y)

h1(y)

dx dy.

x = h1(y) x = h2(y)

R

c

d

x

y

Figure 15.1.6 Calculating the area of
a plane region R with an iterated in-
tegral

We state this formally in a theorem.

Theorem 15.1.7 Area of a plane region.

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are continuous functions on [a, b]. The area
A ofR is

A =

∫ b

a

∫ g2(x)

g1(x)

dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are continuous functions on [c, d]. The
area A ofR is

A =

∫ d

c

∫ h2(y)

h1(y)

dx dy.

The following examples should help us understand this theorem.

Example 15.1.8 Area of a rectangle.

Find the area A of the rectangle with corners (−1, 1) and (3, 3), as
shown in Figure 15.1.9.

R

−1 1 2 3

1

2

3

x

y

Figure 15.1.9 Calculating the area of a
rectangle with an iterated integral in
Example 15.1.8

Solution. Multiple integration is obviously overkill in this situation, but
we proceed to establish its use.
The regionR is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing
to integrate with respect to y first, we have

A =

∫ 3

−1

∫ 3

1

1 dy dx =

∫ 3

−1

(
y
∣∣∣3
1

)
dx =

∫ 3

−1

2 dx = 2x
∣∣∣3
−1

= 8.
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We could also integrate with respect to x first, giving:

A =

∫ 3

1

∫ 3

−1

1 dx dy =

∫ 3

1

(
x
∣∣∣3
−1

)
dy =

∫ 3

1

4 dy = 4y
∣∣∣3
1
= 8.

Clearly there are simpler ways to find this area, but it is interesting to
note that this method works.

Example 15.1.10 Area of a triangle.

Find the area A of the triangle with vertices at (1, 1), (3, 1) and (5, 5),
as shown in Figure 15.1.11.

y = 1

y
=
x

y
=
2x

−
5

R

4 51 2 3

1

2

3

4

5

x

y

Figure 15.1.11 Calculating the area of
a triangle with iterated integrals in Ex-
ample 15.1.10

Solution. The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by
x = y to x = y+5

2 , while y is bounded by y = 1 to y = 5. (Recall that
since x-values increase from left to right, the leftmost curve, x = y, is
the lower bound and the rightmost curve, x = (y + 5)/2, is the upper
bound.) The area is

A =

∫ 5

1

∫ y+5
2

y

dx dy

=

∫ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

∫ 5

1

(
−1

2
y +

5

2

)
dy

=

(
−1

4
y2 +

5

2
y

) ∣∣∣5
1

= 4.

We can also find the area by integrating with respect to y first. In this
situation, though, we have two functions that act as the lower bound
for the region R, y = 1 and y = 2x − 5. This requires us to use two
iterated integrals. Note how the x-bounds are different for each integral:

A =

∫ 3

1

∫ x

1

1 dy dx +

∫ 5

3

∫ x

2x−5

1 dy dx

=

∫ 3

1

(
y
)∣∣∣x

1
dx +

∫ 5

3

(
y
)∣∣∣x

2x−5
dx

=

∫ 3

1

(
x− 1

)
dx +

∫ 5

3

(
− x+ 5

)
dx

= 2 + 2

= 4.

As expected, we get the same answer both ways.

Example 15.1.12 Area of a plane region.

Find the area of the region enclosed by y = 2x and y = x2, as shown in
Figure 15.1.13.
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y
=
2x

y
=
x
2

R

1 2

1

2

3

4

x

y

Figure 15.1.13 Calculating the area of
a plane region with iterated integrals
in Example 15.1.12

Solution. Once again we’ll find the area of the region using both orders
of integration.
Using dy dx:∫ 2

0

∫ 2x

x2

1 dy dx =

∫ 2

0

(2x− x2) dx =
(
x2 − 1

3
x3
)∣∣∣2

0
=

4

3
.

Using dx dy:∫ 4

0

∫ √
y

y/2

1 dx dy =

∫ 4

0

(
√
y − y/2) dy =

(
2

3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4

3
.

15.1.3 Changing Order of Integration
In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integration. We
integrated using both orders of integration to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
gration from a different perspective. Instead of starting with a region and cre-
ating iterated integrals, we will start with an iterated integral and rewrite it in
the other integration order. To do so, we’ll need to understand the region over
which we are integrating.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 15.1.8), and so:∫ b

a

∫ d

c

1 dy dx =

∫ d

c

∫ b

a

1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integrating over looks
like. From the sketch we can then rewrite the integral with the other order of
integration.

Examples will help us develop this skill.

Example 15.1.14 Changing the order of integration.

Rewrite the iterated integral
∫ 6

0

∫ x/3

0

1 dy dxwith the order of integra-

tion dx dy.
Solution. We need to use the bounds of integration to determine the
region we are integrating over.
The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0
and 6. We plot these four curves: y = 0, y = x/3, x = 0 and x = 6
to find the region described by the bounds. Figure 15.1.15 shows these
curves, indicating thatR is a triangle.

y =
x/
3

R

1 2 3 4 5 6

1

2

x

y

Figure 15.1.15 Sketching the regionR
described by the iterated integral in
Example 15.1.14

To change the order of integration, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the
upper bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite

the integral as
∫ 2

0

∫ 6

3y

1 dx dy.
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Example 15.1.16 Changing the order of integration.

Change the order of integration of
∫ 4

0

∫ (y+4)/2

y2/4

1 dx dy.

Solution. We sketch the region described by the bounds to help us
change the integration order. x is bounded below and above (i.e., to the
left and right) by x = y2/4 and x = (y + 4)/2 respectively, and y is
bounded between 0 and 4. Graphing the previous curves, we find the
regionR to be that shown in Figure 15.1.17.

x
=
y
2 /4

x
=
(y
+
4)
/2

R

1 2 3 4

1

2

3

4

x

y

Figure 15.1.17 Drawing the region de-
termined by the bounds of integra-
tion in Example 15.1.16

To change the order of integration, we need to establish curves that
bound y. The figure makes it clear that there are two lower bounds for
y: y = 0 on 0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need
two double integrals. The upper bound for each is y = 2

√
x. Thus we

have∫ 4

0

∫ (y+4)/2

y2/4

1 dx dy =

∫ 2

0

∫ 2
√
x

0

1 dy dx+

∫ 4

2

∫ 2
√
x

2x−4

1 dy dx.

This section has introduced a new concept, the iterated integral. We devel-
oped one application for iterated integration: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next section we apply iterated integration to solve problems we cur-
rently do not know how to handle. The “real” goal of this section was not to
learn a new way of computing area. Rather, our goal was to learn how to define
a region in the plane using the bounds of an iterated integral. That skill is very
important in the following sections.
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15.1.4 Exercises

Terms and Concepts

1. When integrating fx(x, y)with respect to x, the constant of integrationC is really which: C(x) orC(y)? What
does this mean?

2. Evaluating a double integral in steps is called .

3. When evaluating an iterated integral, we integrate from to , then from to
.

4. One understanding of an iterated integral is that
∫ b

a

∫ g2(x)

g1(x)

dy dx gives the of a plane region.

Problems

Exercise Group. In the following exercises, evaluate the integral and subsequent iterated integral.
5.

(a)
∫ 5

2

(
6x2 + 4xy − 3y2

)
dy

(b)
∫ −2

−3

∫ 5

2

(
6x2 + 4xy − 3y2

)
dy dx

6.

(a)
∫ π

0

(2x cos(y) + sin(x)) dx

(b)
∫ π/2

0

∫ π

0

(2x cos(y) + sin(x)) dx dy

7.

(a)
∫ x

1

(
x2y − y + 2

)
dy

(b)
∫ 2

0

∫ x

1

(
x2y − y + 2

)
dy dx

8.

(a)
∫ y2

y

(x− y) dx

(b)
∫ 1

−1

∫ y2

y

(x− y) dx dy

9.

(a)
∫ y

0

(
cos(x) sin(y)

)
dx

(b)
∫ π

0

∫ y

0

(
cos(x) sin(y)

)
dx dy

10.

(a)
∫ x

0

(
1

1 + x2

)
dy

(b)
∫ 2

1

∫ x

0

(
1

1 + x2

)
dy dx

Exercise Group. In the following exercises, a graph of a planar region R is given. Give the iterated integrals, with
both orders of integration dy dx and dx dy, that give the area of R. Evaluate one of the iterated integrals to find the
area.
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11.

R

1 2 3 4

−2

−1

1

x

y
12.

R

1 2 3 4

1

2

3

x

y

13.

R

1 2 3 4

1

2

3

4

5

x

y
14.

R

x = y
2 /3

2 4 6 8 10 12

−2

−4

−6

6

4

2

x

y

15.

y =
√ x

y
=
x
4R

−0.4 −0.2 0.2 0.4 0.6 0.8 1

−0.5

0.5

1

x

y
16.

y
=
x
3

y
=
4x

R

−0.5 0.5 1 1.5 2 2.5

2

4

6

8

x

y

Exercise Group. In the following exercises, iterated integrals are given that compute the area of a region R in the
xy-plane. Sketch the region R, and give the iterated integral(s) that give the area of R with the opposite order of
integration.

17.
∫ 2

−2

∫ 4−x2

0

dy dx 18.
∫ 1

0

∫ 5−5x2

5−5x

dy dx

19.
∫ 2

−2

∫ 2
√

4−y2

0

dx dy 20.
∫ 3

−3

∫ √
9−x2

−
√
9−x2

dy dx

21.
∫ 1

0

∫ √
y

−√
y

dx dy +

∫ 4

1

∫ √
y

y−2

dx dy 22.
∫ 1

−1

∫ (1−x)/2

(x−1)/2

dy dx
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15.2 Double Integration and Volume

The definite integral of f over [a, b],
∫ b

a
f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdi-
viding [a, b] into n subintervals, where the ith subinterval has length ∆xi, and
letting ci be any value in the ith subinterval. We formed rectangles that approx-
imated part of the region under the curve with width ∆xi, height f(ci), and
hence with area f(ci)∆xi. Summing all the rectangle’s areas gave an approxi-
mation of the definite integral, and Theorem 5.3.26 stated that∫ b

a

f(x) dx = lim
∥∆x∥→0

∑
f(ci)∆xi,

connecting the area under the curve with sums of the areas of rectangles.
We use a similar approach in this section to find volume under a surface.

youtu.be/watch?v=5FpKcnG-5vY

Figure 15.2.1 Introducing the double
integral

Let R be a closed, bounded region in the xy-plane and let z = f(x, y) be
a continuous function defined on R. We wish to find the signed volume under
the graph of f overR. (We use the term “signed volume” to denote that space
above the xy-plane, under f , will have a positive volume; space above f and
under thexy-planewill have a “negative” volume, similar to the notion of signed
area used before.)

We start by partitioning R into n rectangular subregions as shown in Fig-
ure 15.2.2(a). For simplicity’s sake, we let all widths be ∆x and all heights be
∆y. Note that the sum of the areas of the rectangles is not equal to the area
of R, but rather is a close approximation. Arbitrarily number the rectangles 1
through n, and pick a point (xi, yi) in the ith subregion.

0.5 1 1.5 2

−0.5

0.5

x

y

(a) (b)

Figure 15.2.2 Developing a method for finding signed volume under a surface
The volume of the rectangular solid whose base is the ith subregion and

whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Fig-
ure 15.2.2(b). Note how this rectangular solid only approximates the true vol-
ume under the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done be-
fore, to get a better approximation we can use more rectangles to approximate
the regionR.

https://www.youtube.com/watch?v=5FpKcnG-5vY
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In general, each rectangle could have a different width∆xj and height∆yk,
giving the ith rectangle an area ∆Ai = ∆xj∆yk and the ith rectangular solid
a volume of f(xi, yi)∆Ai. Let ∥∆A∥ denote the length of the longest diagonal
of all rectangles in the subdivision of R; ∥∆A∥ → 0 means each rectangle’s
width and height are both approaching 0. If f is a continuous function, as ∥∆A∥

shrinks (and hence n → ∞) the summation
n∑

i=1

f(xi, yi)∆Ai approximates the

signed volume better and better. This leads to a definition.

Double integrals as limits of dou-
ble sums. Recall that the inte-
gration symbol “

∫
” is an “elon-

gated S,” representing the word
“sum.” We interpreted

∫ b

a
f(x) dx

as “take the sum of the areas of
rectangles over the interval [a, b].”
The double integral uses two in-
tegration symbols to represent a
“double sum.” When adding up
the volumesof rectangular solids
over a partition of a regionR, as
done in Figure 15.2.2, one could
first add up the volumes across
each row (one typeof sum), then
add these totals together (another
sum), as in

n∑
j=1

m∑
i=1

f(xi, yj)∆xi∆yj .

One can rewrite this as

n∑
j=1

(
m∑
i=1

f(xi, yj)∆xi

)
∆yj .

The summation inside the paren-
thesis indicates the sumof heights
×widths, which gives an area;mul-
tiplying these areas by the thick-
ness∆yj gives a volume. The il-
lustration in Figure 15.2.6 relates
to this understanding.

Definition 15.2.3 Double Integral, Signed Volume.

Let z = f(x, y) be a continuous function definedover a closed, bounded
region R in the xy-plane. The signed volume V under f over R is de-
noted by the double integral

V =

∫∫
R

f(x, y) dA.

Alternate notations for the double integral are∫∫
R

f(x, y) dA =

∫∫
R

f(x, y) dx dy =

∫∫
R

f(x, y) dy dx.

youtu.be/watch?v=l7hGaXcsq9g

Figure 15.2.4 Defining the double in-
tegral

Definition 15.2.3 does not state how to find the signed volume, though the
notation offers a hint. We need the next two theorems to evaluate double inte-
grals to find volume.

Theorem 15.2.5 Double Integrals and Signed Volume.

Let z = f(x, y) be a continuous function defined over a closed , bounded
regionR in the xy-plane. Then the signed volume V under f overR is

V =

∫∫
R

f(x, y) dA = lim
∥∆A∥→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit of
sums. The partition of the region R is not specified, so any partitioning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very satisfying way of computing volume, though. Our
experience has shown that evaluating the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 7.2.3 in Section 7.2. This stated that if A(x) gives the cross-
sectional area of a solid at x, then

∫ b

a
A(x) dx gave the volume of that solid over

[a, b].
Consider Figure 15.2.6, where a surface z = f(x, y) is drawn over a region

R. Fixing a particular x value, we can consider the area under f over R where
x has that fixed value. That area can be found with a definite integral, namely

A(x) =

∫ g2(x)

g1(x)

f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integration are functions of x: the bounds depend
on the value of x.

Figure 15.2.6 Finding volume under
a surface by sweeping out a cross-
sectional area

https://www.youtube.com/watch?v=l7hGaXcsq9g
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AsA(x) is a cross-sectional area function, we can find the signed volume V
under f by integrating it:

V =

∫ b

a

A(x) dx =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedure where we started with y fixed, resulting in an iter-
ated integral with the order of integration dx dy. The following theorem states
that bothmethods give the same result, which is the value of the double integral.
It is such an important theorem it has a name associated with it.

Theorem 15.2.7 Fubini’s Theorem.

Let R be a closed, bounded region in the xy-plane and let z = f(x, y)
be a continuous function on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are continuous functions on [a, b], then∫∫

R

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1

and h2 are continuous functions on [c, d], then∫∫
R

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy.

Note that once again the bounds of integration follow the “curve to curve,
point to point” pattern discussed in the previous section. In fact, one of the
main points of the previous section is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quantities, not just signed volume under
a surface.

youtu.be/watch?v=smdRuI_ztAw

Figure 15.2.8 Fubini’s Theorem and it-
erated integrals

Example 15.2.9 Evaluating a double integral.

Let f(x, y) = xy + ey. Find the signed volume under f on the region
R, which is the rectangle with corners (3, 1) and (4, 2) pictured in Fig-
ure 15.2.10, using Fubini’s Theorem and both orders of integration.

Figure 15.2.10 Finding the signed
volume under a surface in Exam-
ple 15.2.9

Solution. We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.
Using the order dy dx:∫∫

R

(
xy + ey

)
dA =

∫ 4

3

∫ 2

1

(
xy + ey

)
dy dx

=

∫ 4

3

([
1

2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

∫ 4

3

(
3

2
x+ e2 − e

)
dx

https://www.youtube.com/watch?v=smdRuI_ztAw
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=

(
3

4
x2 +

(
e2 − e

)
x

)∣∣∣∣4
3

=
21

4
+ e2 − e ≈ 9.92.

Now we check the validity of Fubini’s Theorem by using the order dx dy:∫∫
R

(
xy + ey

)
dA =

∫ 2

1

∫ 4

3

(
xy + ey

)
dx dy

=

∫ 2

1

([
1

2
x2y + xey

]∣∣∣∣4
3

)
dy

=

∫ 2

1

(
7

2
y + ey

)
dy

=

(
7

4
y2 + ey

)∣∣∣∣2
1

=
21

4
+ e2 − e ≈ 9.92.

Both orders of integration return the same result, as expected.

Example 15.2.11 Evaluating a double integral.

Evaluate
∫∫

R

(
3xy− x2 − y2 +6

)
dA, whereR is the triangle bounded

by x = 0, y = 0 and x/2 + y = 1, as shown in Figure 15.2.12.

Figure 15.2.12 Finding the signed
volume under the surface in Exam-
ple 15.2.11

Solution. While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the
point that it does not matter which order we use.
Using the order dy dx: The bounds on y go from “curve to curve,” i.e.,
0 ≤ y ≤ 1 − x/2, and the bounds on x go from “point to point,” i.e.,
0 ≤ x ≤ 2.∫∫

R

(
3xy − x2 − y2 + 6

)
dA =

∫ 2

0

∫ − x
2+1

0

(
3xy − x2 − y2 + 6

)
dy dx

=

∫ 2

0

(
3

2
xy2 − x2y − 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0

dx

=

∫ 2

0

(
11

12
x3 − 11

4
x2 − x+

17

3

)
dx

=

(
11

48
x4 − 11

12
x3 − 1

2
x2 +

17

3
x

)∣∣∣∣2
0

=
17

3
= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,”
0 ≤ x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:∫∫

R

(
3xy − x2 − y2 + 6

)
dA =

∫ 1

0

∫ 2−2y

0

(
3xy − x2 − y2 + 6

)
dx dy

=

∫ 1

0

(
3

2
x2y − 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0

dy
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=

∫ 1

0

(
32

3
y3 − 22y2 + 2y +

28

3

)
dy

=

(
8

3
y4 − 22

3
y3 + y2 +

28

3
y

)∣∣∣∣1
0

=
17

3
= 5.6.

We obtained the same result using both orders of integration.

youtu.be/watch?v=MMbLzFw-5Rg

Figure 15.2.13 Further examples of
double integrals over rectangles

Note how in these examples that the bounds of integration depend only on
R; the bounds of integration have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Key Idea 15.2.14 Double Integration Bounds.

When evaluating
∫∫

R
f(x, y) dA using an iterated integral, the bounds

of integration depend only onR. The function f does not determine the
bounds of integration.

Before doing another example, we give some properties of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

Theorem 15.2.15 Properties of Double Integrals.

Let f and g be continuous functions over a closed, bounded plane region
R, and let c be a constant.

1.
∫∫

R

c f(x, y) dA = c

∫∫
R

f(x, y) dA.

2.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫
R

f(x, y) dA±
∫∫

R

g(x, y) dA

3. If f(x, y) ≥ 0 onR, then
∫∫

R

f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R

f(x, y) dA ≥∫∫
R

g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1

⋃
R2

(see Figure 15.2.16). Then∫∫
R

f(x, y) dA =

∫∫
R1

f(x, y) dA+

∫∫
R2

f(x, y) dA.

R1

R2

R

Figure 15.2.16 R is the union of two
nonoverlapping regions, R1 andR2

youtu.be/watch?v=FcxnuFSNOfY

Figure 15.2.17 Evaluating a double in-
tegral over a more general region

Example 15.2.18 Evaluating a double integral.

Let f(x, y) = sin(x) cos(y) and R be the triangle with vertices (−1, 0),
(1, 0) and (0, 1) (see Figure 15.2.19). Evaluate the double integral∫∫

R
f(x, y) dA.

Figure 15.2.19 Finding the signed
volume under a surface in Exam-
ple 15.2.18

Solution. If we attempt to integrate using an iterated integral with the

https://www.youtube.com/watch?v=MMbLzFw-5Rg
https://www.youtube.com/watch?v=FcxnuFSNOfY
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order dy dx, note how there are two upper bounds onRmeaning we’ll
need to use two iterated integrals. We would need to split the triangle
into two regions along the y-axis, then use Theorem 15.2.15, Part 5.
Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤
x ≤ 1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:∫∫

R

f(x, y) dA =

∫ 1

0

∫ 1−y

y−1

sin(x) cos(y) dx dy

=

∫ 1

0

(
− cos(x) cos(y)

)∣∣∣1−y

y−1
dy

=

∫ 1

0

cos(y)
(
− cos(1− y) + cos(y − 1)

)
dy.

Recall that the cosine function is an even function; that is, cos(x) =
cos(−x). Therefore, from the last integral above, we have cos(y− 1) =
cos(1− y). Thus the integrand simplifies to 0, and we have∫∫

R

f(x, y) dA =

∫ 1

0

0 dy

= 0.

It turns out that overR, there is just asmuch volume above thexy-plane
as below (look again at Figure 15.2.19), giving a final signed volume of 0.

youtu.be/watch?v=m_8kBmNVxEM

Figure 15.2.20 Finding the volume of
a tetrahedron

Example 15.2.21 Evaluating a double integral.

Evaluate
∫∫

R
(4−y) dA, whereR is the region bounded by the parabolas

y2 = 4x and x2 = 4y, graphed in Figure 15.2.22.

Figure 15.2.22 Finding the volume un-
der the surface in Example 15.2.21

Solution. Graphing each curve can help us find their points of intersec-
tion. Solving analytically, the second equation tells us that y = x2/4.
Substituting this value in for y in the first equation gives us x4/16 = 4x.
Solving for x:

x4

16
= 4x

x4 − 64x = 0

x(x3 − 64) = 0

x = 0, 4.

Thus we’ve found analytically what was easy to approximate graphically:
the regions intersect at (0, 0) and (4, 4), as shown in Figure 15.2.22.
We now choose an order of integration: dy dx or dx dy? Either order
works; since the integrand does not contain x, choosing dx dy might be
simpler — at least, the first integral is very simple.
Thus we have the following “curve to curve, point to point” bounds:

y2/4 ≤ x ≤ 2
√
y, and 0 ≤ y ≤ 4.

Therefore,∫∫
R

(4− y) dA =

∫ 4

0

∫ 2
√
y

y2/4

(4− y) dx dy

https://www.youtube.com/watch?v=m_8kBmNVxEM
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=

∫ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

∫ 4

0

((
2
√
y − y2

4

)(
4− y

))
dy

=

∫ 4

0

(y3
4

− y2 − 2y3/2 + 8y1/2
)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176

15
= 11.73.

The signed volume under the surface z = f(x, y) is about 11.7 cubic
units.

youtu.be/watch?v=a4XiokkzyrU

Figure 15.2.23 Evaluating a double in-
tegral over a general region

In the previous section we practiced changing the order of integration of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integrating in one order is really hard, if not impossible,
whereas integrating with the other order is feasible.

Example 15.2.24 Changing the order of integration.

Rewrite the iterated integral
∫ 3

0

∫ 3

y

e−x2

dx dy with the order dy dx.

Comment on the feasibility to evaluate each integral.
Solution. Once again wemake a sketch of the region over which we are
integrating to facilitate changing the order. The bounds on x are from
x = y to x = 3; the bounds on y are from y = 0 to y = 3. These curves
are sketched in Figure 15.2.25, enclosing the regionR.

y
=
x

R

1 2 3

1

2

3

x

y

Figure 15.2.25 Determining the re-
gion R determined by the bounds of
integration in Example 15.2.24

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integration are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated

integral
∫ 3

0

∫ x

0

e−x2

dy dx.

How easy is it to evaluate each iterated integral? Consider the order of
integrating dx dy, as given in the original problem. The first indefinite
integral we need to evaluate is

∫
e−x2

dx; we have stated before (see
Section 5.5) that this integral cannot be evaluated in terms of elementary
functions. We are stuck.
Changing the order of integration makes a big difference here. In the
second iterated integral, we are faced with

∫
e−x2

dy; integrating with
respect to y gives us ye−x2

+C, and the first definite integral evaluates
to ∫ x

0

e−x2

dy = xe−x2

.

Thus ∫ 3

0

∫ x

0

e−x2

dy dx =

∫ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with substitution, giving a final an-
swer of 1

2 (1− e−9) ≈ 0.5. Figure 15.2.26 shows the surface overR.

Figure 15.2.26 Showing the surface
z = f(x, y) defined in Exam-
ple 15.2.24 over its regionR

https://www.youtube.com/watch?v=a4XiokkzyrU
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In short, evaluating one iterated integral is impossible; the other iterated
integral is relatively simple.

youtu.be/watch?v=2lQA7pTALGk

Figure 15.2.27 Twomore examples of
changing the order of integration

Definition 5.4.34 defines the average value of a single-variable function f(x)
on the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

∫ b

a

f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a regionR is the volume under f overR divided by the area ofR.

Definition 15.2.28 The Average Value of f onR.

Let z = f(x, y) be a continuous function definedover a closed, bounded
regionR in the xy-plane. The average value of f onR is

average value of f onR =

∫∫
R

f(x, y) dA∫∫
R

dA

.

Example 15.2.29 Finding average value of a function over a regionR.

Find the average value of f(x, y) = 4 − y over the region R, which is
bounded by the parabolas y2 = 4x and x2 = 4y. Note: this is the same
function and region as used in Example 15.2.21.
Solution. In Example 15.2.21 we found∫∫

R

f(x, y) dA =

∫ 4

0

∫ 2
√
y

y2/4

(4− y) dx dy =
176

15
.

We find the area ofR by computing
∫∫

R
dA:∫∫

R

dA =

∫ 4

0

∫ 2
√
y

y2/4

dx dy =
16

3
.

Dividing the volume under the surface by the area gives the average
value:

average value of f onR =
176/15

16/3
=

11

5
= 2.2.

While the surface, as shown in Figure 15.2.30, covers z-values from z =
0 to z = 4, the “average” z-value onR is 2.2.

Figure 15.2.30 Finding the average
value of f in Example 15.2.29

The previous section introduced the iterated integral in the context of find-
ing the area of plane regions. This section has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
tion. Given a region R in the plane, we computed

∫∫
R
1 dA; again, our under-

standing at the time was that we were finding the area of R. However, we can

https://www.youtube.com/watch?v=2lQA7pTALGk


844 CHAPTER 15. MULTIPLE INTEGRATION

now view the graph z = 1 as a surface, a flat surface with constant z-value of 1.
The double integral

∫∫
R
1 dA finds the volume, under z = 1, over R, as shown

in Figure 15.2.31. Basic geometry tells us that if the base of a general right cylin-
der has areaA, its volume isA·h, whereh is the height. In our case, the height is
1. We were “actually” computing the volume of a solid, though we interpreted
the number as an area.

Figure 15.2.31 Showing how an iter-
ated integral used to find area also
finds a certain volume

The next section extends our abilities to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integrating over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converting
everything into polar coordinates.
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15.2.1 Exercises

Terms and Concepts

1. An integral can be interpreted as giving the signed area over an interval; a double integral can be interpreted as
giving the signed over a region.

2. Explain why the following statement is false: Fubini’s Theorem states that∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx =

∫ b

a

∫ g2(y)

g1(y)

f(x, y) dx dy.

3. Explain why if f(x, y) > 0 over a regionR, then∫∫
R
f(x, y) dA > 0.

4. If
∫∫

R
f(x, y) dA =

∫∫
R
g(x, y) dA, does this imply f(x, y) = g(x, y)?

Problems

Exercise Group. For the given integral,

(a) Evaluate the given iterated integral, and

(b) rewrite the integral using the other order of integration.

5.
∫ 2

1

∫ 1

−1

(
x

y
+ 3

)
dx dy 6.

∫ π/2

−π/2

∫ π

0

(sin(x) cos(y)) dx dy

7.
∫ 4

0

∫ −x/2+2

0

(
3x2 − y + 2

)
dy dx 8.

∫ 3

1

∫ 3

y

(
x2y − xy2

)
dx dy

9.
∫ 1

0

∫ √
1−y

−
√
1−y

(x+ y + 2) dx dy 10.
∫ 9

0

∫ √
y

y/3

(
xy2
)
dx dy

Exercise Group. In the following exercises:

(a) Sketch the regionR given by the problem.

(b) Set up the iterated integrals, in both orders, that evaluate the given double integral for the described regionR.

(c) Evaluate one of the iterated integrals to find the signed volume under the surface z = f(x, y) over the region
R.

11.
∫∫

R

x2y dA, whereR is bounded by y =
√
x

and y = x2.

12.
∫∫

R

x2y dA, whereR is bounded by y = 3
√
x

and y = x3.

13.
∫∫

R

x2 − y2 dA, whereR is the rectangle with

corners (−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
∫∫

R

yex dA, whereR is bounded by x = 0,

x = y2 and y = 1.

15.
∫∫

R

(
6− 3x− 2y

)
dA, whereR is bounded by

x = 0, y = 0 and 3x+ 2y = 6.

16.
∫∫

R

ey dA, whereR is bounded by y = ln(x)

and
y =

1

e− 1
(x− 1).

17.
∫∫

R

(
x3y − x

)
dA, whereR is the half of the

circle x2 + y2 = 9 in the first and second
quadrants.

18.
∫∫

R

(
4− 3y

)
dA, whereR is bounded by

y = 0, y = x/e and y = ln(x).
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Exercise Group. In the following exercises, state why it is difficult/impossible to integrate the iterated integral in the
given order of integration. Change the order of integration and evaluate the new iterated integral.

19.
∫ 4

0

∫ 2

y/2

ex
2

dx dy 20.
∫ √

π/2

0

∫ √
π/2

x

cos
(
y2
)
dy dx

21.
∫ 1

0

∫ 1

y

2y

x2 + y2
dx dy 22.

∫ 1

−1

∫ 2

1

x tan2(y)
1 + ln(y)

dy dx

Exercise Group. In the following exercises, find the average value of f over the regionR. Notice how these functions
and regions are related to the iterated integrals given in Exercises 5–8.

23. f(x, y) =
x

y
+ 3;R is the rectangle with

opposite corners (−1, 1) and (1, 2).

24. f(x, y) = sin(x) cos(y);R is bounded by x = 0,
x = π, y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2;R is bounded by the
lines y = 0, y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2;R is bounded by y = x,
y = 1 and x = 3.
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15.3 Double Integration with Polar Coordinates

We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the xy-plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the regionR.

Some regions R are easy to describe using rectangular coordinates — that
is, with equations of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equations of the
form r = f(θ), θ = α, etc.

youtu.be/watch?v=K7hpTI0PNGo

Figure 15.3.1 Introducing the double
integral in polar coordinates

The basic form of the double integral is
∫∫

R
f(x, y) dA. We interpret this

integral as follows: over the regionR, sum up lots of products of heights (given
by f(xi, yi)) and areas (given by ∆Ai). That is, dA represents “a little bit of
area.” In rectangular coordinates, we can describe a small rectangle as having
area dx dy or dy dx— the area of a rectangle is simply length×width — a small
change in x times a small change in y. Thus we replace dA in the double integral
with dx dy or dy dx.

−0.2 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

x

y

0

π/2

(a)

︸
︷︷

︸
r1

r2

︷
︸︸

︷
∆θ

(b)

Figure 15.3.2 Approximating a regionR with portions of sectors of circles
Now consider representing a regionR with polar coordinates. Consider Fig-

ure 15.3.2(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
portions of sectors of circles. In the figure, one such region is shaded, shown
again in Figure 15.3.2(b).

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = 1

2r
2θ, we can find the area of the shaded region. The whole sector has

area 1
2r

2
2∆θ, whereas the smaller, unshaded sector has area 1

2r
2
1∆θ. The area

of the shaded region is the difference of these areas:

∆Ai =
1

2
r22∆θ − 1

2
r21∆θ =

1

2

(
r22 − r21

)(
∆θ
)
=

r2 + r1
2

(
r2 − r1

)
∆θ.

Note that (r2 + r1)/2 is just the average of the two radii.
To approximate the regionR, we usemany such subregions; doing so shrinks

the difference r2−r1 between radii to 0 and shrinks the change in angle∆θ also
to 0. We represent these infinitesimal changes in radius and angle as dr and dθ,
respectively. Finally, as dr is small, r2 ≈ r1, and so (r2 + r1)/2 ≈ r1. Thus,
when dr and dθ are small,

∆Ai ≈ ri dr dθ.

Taking a limit, where the number of subregions goes to infinity and both
r2 − r1 and∆θ go to 0, we get

dA = r dr dθ.

https://www.youtube.com/watch?v=K7hpTI0PNGo
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So to evaluate
∫∫

R
f(x, y) dA, replace dAwith r dr dθ. Convert the function

f(x, y) to a function with polar coordinates with the substitutions x = r cos(θ),
y = r sin(θ). Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that
describeR. This is the key principle of this section, so we restate it here as a Key
Idea.

Key Idea 15.3.3 Evaluating Double Integrals with Polar Coordinates.

Let z = f(x, y) be a continuous function definedover a closed, bounded
region R in the xy-plane, where R is bounded by the polar equations
α ≤ θ ≤ β and g1(θ) ≤ r ≤ g2(θ). Then∫∫

R

f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)

f
(
r cos(θ), r sin(θ)

)
r dr dθ.

Examples will help us understand this Key Idea.

Example 15.3.4 Evaluating a double integral with polar coordinates.

Find the signed volume under the plane z = 4 − x − 2y over the disk
bounded by the circle with equation x2 + y2 = 1.
Solution. The bounds of the integral are determined solely by the re-
gionR over which we are integrating. In this case, it is a disk with bound-
ary x2 + y2 = 1. We need to find polar bounds for this region. It may
help to review Section 9.4; bounds for this disk are 0 ≤ r ≤ 1 and
0 ≤ θ ≤ 2π.
We replace f(x, y) with f(r cos(θ), r sin(θ)). That means we make the
following substitutions:

4− x− 2y ⇒ 4− r cos(θ)− 2r sin(θ).

Finally, we replace dA in the double integral with r dr dθ. This gives the
final iterated integral, which we evaluate:∫∫

R

f(x, y) dA =

∫ 2π

0

∫ 1

0

(
4− r cos(θ)− 2r sin(θ)

)
r dr dθ

=

∫ 2π

0

∫ 1

0

(
4r − r2(cos(θ)− 2 sin(θ))

)
dr dθ

=

∫ 2π

0

(
2r2 − 1

3
r3(cos(θ)− 2 sin(θ))

)∣∣∣∣1
0

dθ

=

∫ 2π

0

(
2− 1

3

(
cos(θ)− 2 sin(θ)

))
dθ

=

(
2θ − 1

3

(
sin(θ) + 2 cos(θ)

))∣∣∣∣2π
0

= 4π ≈ 12.566.

Figure 15.3.5 Evaluating a double in-
tegral with polar coordinates in Exam-
ple 15.3.4

The surface and regionR are shown in Figure 15.3.5.

youtu.be/watch?v=Gmt0dak05Lk

Figure 15.3.6 Two simple examples of
double integrals in polar coordinates

https://www.youtube.com/watch?v=Gmt0dak05Lk
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Example 15.3.7 Evaluating a double integral with polar coordinates.

Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the
region bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.
Solution. At first glance, this seems like a very hard volume to compute
as the regionR (shown in Figure 15.3.8(a)) has a hole in it, cutting out a
strange portion of the surface, as shown in Figure 15.3.8(b). However, by
describingR in terms of polar equations, the volume is not very difficult
to compute.

21 3 4

−2

−1

1

2

x

y

(a)
(b)

Figure 15.3.8 Showing the region R
and surface used in Example 15.3.7

It is straightforward to show that the circle (x− 1)2 + y2 = 1 has polar
equation r = 2 cos(θ), and that the circle (x − 2)2 + y2 = 4 has polar
equation r = 4 cos(θ). Each of these circles is traced out on the interval
0 ≤ θ ≤ π. The bounds on r are 2 cos(θ) ≤ r ≤ 4 cos(θ).
Replacing x with r cos(θ) in the integrand, along with replacing y with
r sin(θ), prepares us to evaluate the double integral

∫∫
R
f(x, y) dA:∫∫

R

f(x, y) dA =

∫ π

0

∫ 4 cos(θ)

2 cos(θ)

(
4−

(
r cos(θ)− 2

)2 − (r sin(θ))2)r dr dθ
=

∫ π

0

∫ 4 cos(θ)

2 cos(θ)

(
− r3 + 4r2 cos(θ)

)
dr dθ

=

∫ π

0

(
−1

4
r4 +

4

3
r3 cos(θ)

)∣∣∣∣4 cos(θ)
2 cos(θ)

dθ

=

∫ π

0

([
−1

4
(256 cos4(θ)) +

4

3
(64 cos4(θ))

]
−[

−1

4
(16 cos4(θ)) +

4

3
(8 cos4(θ))

])
dθ

=

∫ π

0

44

3
cos4(θ) dθ

To integrate cos4(θ), rewrite it as cos2(θ) cos2(θ) and employ the power-
reducing formula twice:

cos4(θ) = cos2(θ) cos2(θ)

=
1

2

(
1 + cos(2θ)

)1
2

(
1 + cos(2θ)

)
=

1

4

(
1 + 2 cos(2θ) + cos2(2θ)

)
=

1

4

(
1 + 2 cos(2θ) +

1

2

(
1 + cos(4θ)

))
=

3

8
+

1

2
cos(2θ) +

1

8
cos(4θ).

Picking up from where we left off above, we have∫∫
R

f(x, y) dA =

∫ π

0

44

3
cos4(θ) dθ

=

∫ π

0

44

3

(
3

8
+

1

2
cos(2θ) +

1

8
cos(4θ)

)
dθ

=
44

3

(
3

8
θ +

1

4
sin(2θ) +

1

32
sin(4θ)

)∣∣∣∣π
0
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=
11

2
π ≈ 17.279.

While this example was not trivial, the double integral would have been
much harder to evaluate had we used rectangular coordinates.

Example 15.3.9 Evaluating a double integral with polar coordinates.

Find the volume under the surface given by the graph of f(x, y) =
1

x2 + y2 + 1
over the sector of the circle with radius a centered at the

origin in the first quadrant, as shown in Figure 15.3.10.

Figure 15.3.10 The surface and regionR used in Example 15.3.9

Solution. The region R we are integrating over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are
0 ≤ r ≤ a, 0 ≤ θ ≤ π/2. The integrand is rewritten in polar as

1

x2 + y2 + 1
⇒ 1

r2 cos2(θ) + r2 sin2(θ) + 1
=

1

r2 + 1
.

We find the volume as follows:∫∫
R

f(x, y) dA =

∫ π/2

0

∫ a

0

r

r2 + 1
dr dθ

=

∫ π/2

0

1

2

(
ln
∣∣r2 + 1

∣∣ )∣∣∣a
0
dθ

=

∫ π/2

0

1

2
ln(a2 + 1) dθ

=

(
1

2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Previous work has shown that
there is finite area under 1

x2+1
over the entire x-axis. How-
ever, Example 15.3.9 shows that
there is infinite volume under

1
x2+y2+1 over the entire xy-
plane.

Figure 15.3.10 shows that f shrinks to near 0 very quickly. Regardless,
as a grows, so does the volume, without bound.
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Example 15.3.11 Finding the volume of a sphere.

Find the volume of a sphere with radius a.
Solution. The sphere of radius a, centered at the origin, has equation
x2 + y2 + z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This

gives the upper half of a sphere. We wish to find the volume under this
top half, then double it to find the total volume.
The region we need to integrate over is the disk of radius a, centered at
the origin. Polar bounds for this equation are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.
All together, the volume of a sphere with radius a is:

2

∫∫
R

√
a2 − x2 − y2 dA = 2

∫ 2π

0

∫ a

0

√
a2 − (r cos(θ))2 − (r sin(θ))2r dr dθ

= 2

∫ 2π

0

∫ a

0

r
√
a2 − r2 dr dθ.

We can evaluate this inner integral with substitution. With u = a2 − r2,
du = −2r dr. The newbounds of integration areu(0) = a2 tou(a) = 0.
Thus we have:

=

∫ 2π

0

∫ 0

a2

(
− u1/2

)
du dθ

=

∫ 2π

0

(
−2

3
u3/2

)∣∣∣∣0
a2

dθ

=

∫ 2π

0

(
2

3
a3
)

dθ

=

(
2

3
a3θ

)∣∣∣∣2π
0

=
4

3
πa3.

Generally, the formula for the volume of a sphere with radius r is given
as 4/3πr3; we have justified this formula with our calculation.

youtu.be/watch?v=47Xebo9FsKs

Figure 15.3.12 Finding the volume
bounded by two surfaces

Example 15.3.13 Finding the volume of a solid.

A sculptor wants to make a solid bronze cast of the solid shown in Fig-
ure 15.3.14, where the base of the solid has boundary, in polar coordi-
nates, r = cos(3θ), and the top is defined by the plane z = 1−x+0.1y.
Find the volume of the solid.

Figure 15.3.14 Visualizing the solid
used in Example 15.3.13

Solution. From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to
compute the integrals. The iterated integral to come is not “hard” to
evaluate, though it is long, requiring lots of algebra. Once the proper
iterated integral is determined, one can use readily available technology
to help compute the final answer.
The region R that we are integrating over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval
[0, π], not [0, 2π]). This gives us our bounds of integration. The integrand

https://www.youtube.com/watch?v=47Xebo9FsKs
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is z = 1− x+ 0.1y; converting to polar, we have that the volume V is:

V =

∫∫
R

f(x, y) dA =

∫ π

0

∫ cos(3θ)

0

(
1−r cos(θ)+0.1r sin(θ)

)
r dr dθ.

Distributing the r, the inner integral is easy to evaluate, leading to∫ π

0

(
1

2
cos2(3θ)− 1

3
cos3(3θ) cos(θ) +

0.1

3
cos3(3θ) sin(θ)

)
dθ.

This integral takes time to compute by hand; it is rather long and cum-
bersome. The powers of cosine need to be reduced, and products like
cos(3θ) cos(θ) need to be turned to sums using the Product To Sum for-
mulas in the back cover of this text.
We rewrite 1

2 cos
2(3θ) as 1

4 (1 + cos(6θ)). We can also rewrite
1
3 cos

3(3θ) cos(θ) as:

1

3
cos3(3θ) cos(θ) =

1

3
cos2(3θ) cos(3θ) cos(θ)

=
1

3

1 + cos(6θ)
2

(
cos(4θ) + cos(2θ)

)
.

This last expression still needs simplification, but eventually all terms can
be reduced to the form a cos(mθ) or a sin(mθ) for various values of a
andm.
We forgo the algebra and recommend the reader employ technology,
such as WolframAlpha®, to compute the numeric answer. Such technol-
ogy gives:∫ π

0

∫ cos(3θ)

0

(
1− r cos(θ) + 0.1r sin(θ)

)
r dr dθ =

π

4
≈ 0.785u3.

Since the units were not specified, we leave the result as almost 0.8 cu-
bic units (meters, feet, etc.) Should the artist want to scale the piece
uniformly, so that each rose petal had a length other than 1, she should
keep in mind that scaling by a factor of k scales the volume by a factor
of k3.

youtu.be/watch?v=x72_v_zZkI4

Figure 15.3.15 Another integral over
a rose curve

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two sections show two, among many,
applications of iterated integrals.

https://www.youtube.com/watch?v=x72_v_zZkI4
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15.3.1 Exercises

Terms and Concepts

1. When evaluating
∫∫

R
f(x, y) dA using polar coordinates, f(x, y) is replacedwith and dA is replaced

with .

2. Why would one be interested in evaluating a double integral with polar coordinates?

Problems

Exercise Group. A function f(x, y) is given and a region R of the xy-plane is described. Set up and evaluate∫∫
R
f(x, y) dA using polar coordinates.

3. f(x, y) = 3x− y + 4 andR is the region
enclosed by the circle x2 + y2 = 1.

4. f(x, y) = 4x+ 4y;R is the region enclosed by
the circle x2 + y2 = 4.

5. f(x, y) = 8− y andR is the region enclosed by
the circles with polar equations r = cos(θ) and
r = 3 cos(θ).

6. f(x, y) = 4;R is the region enclosed by the
petal of the rose curve r = sin(2θ) in the first
quadrant.

7. f(x, y) = ln(x2 + y2);R is the annulus
enclosed by the circles x2 + y2 = 1 and
x2 + y2 = 4.

8. f(x, y) = 1− x2 − y2 andR is the region
enclosed by the circle x2 + y2 = 1.

9. f(x, y) = x2 − y2;R is the region enclosed by
the circle x2 + y2 = 36 in the first and fourth
quadrants.

10. f(x, y) = (x− y)/(x+ y);R is the region
enclosed by the lines y = x, y = 0 and the
circle x2 + y2 = 1 in the first quadrant.

Exercise Group. An iterated integral in rectangular coordinates is given. Rewrite the integral using polar coordinates
and evaluate the new double integral.

11.
∫ 5

0

∫ √
25−x2

−
√
25−x2

√
x2 + y2 dy dx

12.
∫ 4

−4

∫ 0

−
√

16−y2

(
2y − x

)
dx dy

13.
∫ 2

0

∫ √
8−y2

y

(
x+ y

)
dx dy

14.
∫ −1

−2

∫ √
4−x2

0

(
x+ 5

)
dy dx+

∫ 1

−1

∫ √
4−x2

√
1−x2

(
x+ 5

)
dy dx+

∫ 2

1

∫ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see how they all connect.

Exercise Group. In the following exercises, special double integrals are presented that are especially well suited for
evaluation in polar coordinates.
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15. Consider
∫∫

R

e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in
rectangular coordinates, regardless of the
regionR?

(b) LetR be the region bounded by the circle
of radius a centered at the origin.
Evaluate the double integral using polar
coordinates.

(c) Take the limit of your answer from (b), as
a → ∞. What does this imply about the
volume under the surface z = e−(x2+y2)

over the entire xy-plane?

16. The surface of a right circular cone with height
h and base radius a can be described by the

equation f(x, y) = h− h

√
x2

a2
+

y2

a2
, where

the tip of the cone lies at (0, 0, h) and the
circular base lies in the xy-plane, centered at
the origin.

Confirm that the volume of a right circular
cone with height h and base radius a is

V =
1

3
πa2h by evaluating

∫∫
R

f(x, y) dA in

polar coordinates.
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15.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this section as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R
dA.

That is, summing up the areas of lots of little subregions of R gave us the total
area. Informally, we think of

∫∫
R
dA asmeaning “sum up lots of little areas over

R.”
To find the signed volume under a surface, we evaluated the double inte-

gral
∫∫

R
f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end

of an integral; rather, it is multiplied by f(x, y). We regard f(x, y) as giving a
height, and dA still giving an area: f(x, y) dA gives a volume. Thus, informally,∫∫

R
f(x, y) dAmeans “sum up lots of little volumes over R.”
We now extend these ideas to other contexts.

15.4.1 Mass and Weight
Consider a thin sheet of material with constant thickness and finite area. Mathe-
maticians (and physicists and engineers) call such a sheet a lamina. So consider
a lamina, as shown in Figure 15.4.1(a), with the shape of some planar regionR,
as shown in Figure 15.4.1(b).

(a)

y = f2(x)

y =
f1(

x)

R

0.5 1 1.5 2 2.5 3 3.5

1

2

3

x

y

(b)

Figure 15.4.1 Illustrating the concept of a lamina
We canwrite a simple double integral that represents themass of the lamina:∫∫

R
dm, where “dm” means “a little mass.” That is, the double integral states

the total mass of the lamina can be found by “summing up lots of little masses
overR.”

To evaluate this double integral, partition R into n subregions as we have
done in the past. The ith subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this ith subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by multiplying a small amount of area by the density.

If density is variable, with density function δ = δ(x, y), then we can approxi-
mate the mass of the ith subregion ofR by multiplying∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

Mass and weight are different
measures. Since they are scalar
multiples of each other, it is of-
ten easy to treat themas the same
measure. In this section we ef-
fectively treat them as the same,
as our technique for findingmass
is the same as for finding weight.
The density functions used will
simply have different units.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1

∆mi =

n∑
i=1

δ(xi, yi)∆Ai.
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Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integrating δ(x, y) overR gives the mass of the lamina.

Definition 15.4.2 Mass of a Lamina with Variable Density.

Let δ(x, y) be a continuous density function of a lamina corresponding
to a closed, bounded plane region R. The massM of the lamina is

massM =

∫∫
R

dm =

∫∫
R

δ(x, y) dA.

Example 15.4.3 Finding the mass of a lamina with constant density.

Find the mass of a square lamina, with side length 1, with a density of
δ = 3 g/cm2.
Solution. We represent the lamina with a square region in the plane
as shown in Figure 15.4.4. As the density is constant, it does not matter
where we place the square.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 15.4.4A regionR representing
a lamina in Example 15.4.3

Following Definition 15.4.2, the massM of the lamina is

M =

∫∫
R

3 dA =

∫ 1

0

∫ 1

0

3 dx dy = 3

∫ 1

0

∫ 1

0

dx dy = 3 g.

This is all very straightforward; note that all we really did was find the
area of the lamina and multiply it by the constant density of 3 g

cm2 .

Example 15.4.5 Finding the mass of a lamina with variable density.

Find the mass of a square lamina, represented by the unit square with
lower lefthand corner at the origin (see Figure 15.4.4), with variable den-
sity δ(x, y) = (x+ y + 2) g/cm2.

Figure 15.4.6 Graphing the density
functions in Example 15.4.3 and Ex-
ample 15.4.5

Solution. The variable density δ, in this example, is very uniform, giving
a density of 3 in the center of the square and changing linearly. A graph
of δ(x, y) can be seen in Figure 15.4.6; notice how “same amount” of
density is above z = 3 as below. We’ll comment on the significance of
this momentarily.
The massM is found by integrating δ(x, y) overR. The order of integra-
tion is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫
R

(x+ y + 2) dA =

∫ 1

0

∫ 1

0

(x+ y + 2) dx dy

=

∫ 1

0

(
1

2
x2 + x(y + 2)

)∣∣∣∣1
0

dy

=

∫ 1

0

(
5

2
+ y

)
dy

=

(
5

2
y +

1

2
y2
)∣∣∣∣1

0

= 3 g.

It turns out that since the density of the lamina is so uniformly distrib-
uted “above and below” z = 3 that themass of the lamina is the same as
if it had a constant density of 3. The density functions in Example 15.4.3
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and Example 15.4.5 are graphed in Figure 15.4.6, which illustrates this
concept.

Example 15.4.7 Finding the weight of a lamina with variable density.

Find the weight of the lamina represented by the disk with radius 2 ft,
centered at the origin, with density function δ(x, y) = (x2 + y2 +
1) lb/ft2. Compare this to the weight of the lamina with the same shape
and density δ(x, y) = (2

√
x2 + y2 + 1) lb/ft2.

Solution. A direct application of Definition 15.4.2 states that the weight
of the lamina is

∫∫
R
δ(x, y) dA. Since our lamina is in the shape of a

circle, it makes sense to approach the double integral using polar coor-
dinates.
The density function δ(x, y) = x2 + y2 + 1 becomes

δ(r, θ) = (r cos(θ))2 + (r sin(θ))2 + 1 = r2 + 1.

The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. Thus the weight
W is:

W =

∫ 2π

0

∫ 2

0

(r2 + 1)r dr dθ

=

∫ 2π

0

(
1

4
r4 +

1

2
r2
)∣∣∣∣2

0

dθ

=

∫ 2π

0

(6) dθ

= 12π ≈ 37.70 lb .

Now compare this with the density function δ(x, y) = 2
√
x2 + y2 + 1.

Converting this to polar coordinates gives

δ(r, θ) = 2
√

(r cos(θ))2 + (r sin(θ))2 + 1 = 2r + 1.

Thus the weightW is:

W =

∫ 2π

0

∫ 2

0

(2r + 1)r dr dθ

=

∫ 2π

0

(
2

3
r3 +

1

2
r2)
∣∣∣2
0
dθ

=

∫ 2π

0

(
22

3

)
dθ

=
44

3
π ≈ 46.08 lb .

Onewould expect different density functions to return different weights,
as we have here. The density functions were chosen, though, to be simi-
lar: each gives a density of 1 at the origin and a density of 5 at the outside
edge of the circle, as seen in Figure 15.4.8.
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(a) (b)

Figure 15.4.8 Graphing the density functions in Example 15.4.7. In (a)
is the density function δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) =

2
√
x2 + y2 + 1

Notice how x2 + y2 + 1 ≤ 2
√
x2 + y2 + 1 over the circle; this results

in less weight.

Plotting the density functions can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫
R
f(x, y) dA as giving the volume under f overR; we can understand∫∫

R
δ(x, y) dA in the same way. The “volume” under δ overR is actually mass;

by compressing the “volume” under δ onto the xy-plane, we get “more mass”
in some areas than others — i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.

15.4.2 Center of Mass
Consider a disk of radius 1 with uniform density. It is common knowledge that
the disk will balance on a point if the point is placed at the center of the disk.
What if the disk does not have a uniform density? Through trial-and-error, we
should still be able to find a spot on the disk at which the disk will balance on a
point. This balance point is referred to as the center of mass, or center of gravity.
It is though all the mass is “centered” there. In fact, if the disk has a mass of 3 kg,
the disk will behave physically as though it were a point-mass of 3 kg located at
its center of mass. For instance, the disk will naturally spin with an axis through
its center of mass (which is why it is important to “balance” the tires of your car:
if they are “out of balance”, their center of mass will be outside of the axle and
it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
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final grade is not the average of these three grades: that is, it is not:

0.9 + 0.73 + 0.85

3
≈ 0.837 = 83.7

That is, you are probably not pulling a B in the course. Rather, your grades
are weighted. Let’s say the homework is worth 10% of the grade, tests are 60%
and the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3

Each grade is multiplied by a weight.
In general, given valuesx1, x2, . . . , xn andweightsw1, w2, . . . , wn, theweighted

average of the n values is

n∑
i=1

wixi

/
n∑

i=1

wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Theorem 15.4.9 Center of Mass of Discrete Linear System.

Let point masses m1,m2, . . . ,mn be distributed along the x-axis at lo-
cations x1, x2, . . . , xn, respectively. The center of mass x of the system
is located at

x =

n∑
i=1

mixi

/
n∑

i=1

mi.

Example 15.4.10 Finding the center of mass of a discrete linear system.

1. Point masses of 2 g are located at x = −1, x = 2 and x = 3 are
connected by a thin rod of negligible weight. Find the center of
mass of the system.

2. Point masses of 10 g, 2 g and 1 g are located at x = −1, x = 2
and x = 3, respectively, are connected by a thin rod of negligible
weight. Find the center of mass of the system.

Solution.

1. Following Theorem 15.4.9, we compute the center of mass as:

x =
2(−1) + 2(2) + 2(3)

2 + 2 + 2
=

4

3
= 1.3.

So the system would balance on a point placed at x = 4/3, as
illustrated in Figure 15.4.11(a).
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x

−1 0 1 2 3

x

(a)

x

−1 0 1 2 3

x

(b)

Figure 15.4.11 Illustrating point masses along a thin rod and the
center of mass

2. Again following Theorem 15.4.9, we find:

x =
10(−1) + 2(2) + 1(3)

10 + 2 + 1
=

−3

13
≈ −0.23.

Placing a large weight at the left hand side of the system moves
the center of mass left, as shown in Figure 15.4.11(b).

In a discrete system (i.e., mass is located at individual points, not along a
continuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
ticular point or line. In the case described by Theorem 15.4.9, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented byMy. LettingM be the total mass of the
system, we have x = My/M .

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

Definition 15.4.12 Moments about the x and y Axes.

Let point massesm1,m2, . . . ,mn be located at points

(x1, y1), (x2, y2), . . . , (xn, yn),

respectively, in the xy-plane.

1. Themoment about the y-axis,My , isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =

n∑
i=1

miyi.

One can think that these definitions are “backwards” as My sums up “x”
distances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.
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Theorem 15.4.13 Center of Mass of Discrete Planar System.

Let point massesm1,m2, . . . ,mn be located at points

(x1, y1), (x2, y2), . . . , (xn, yn),

respectively, in the xy-plane, and letM =

n∑
i=1

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

Example 15.4.14 Finding the center ofmass of a discrete planar system.

Let point masses of 1 kg, 2 kg and 5 kg be located at points (2, 0), (1, 1)
and (3, 1), respectively, and are connected by thin rods of negligible
weight. Find the center of mass of the system.
Solution. We follow Theorem 15.4.13 and Definition 15.4.12 to findM ,
Mx andMy:
M = 1 + 2 + 5 = 8 kg.

Mx =

n∑
i=1

miyi

= 1(0) + 2(1) + 5(1)

= 7.

My =

n∑
i=1

mixi

= 1(2) + 2(1) + 5(3)

= 19.

(x, y)

1 2 3

1

x

y

Figure 15.4.15 Illustrating the center
of mass of a discrete planar system in
Example 15.4.14

Thus the center of mass is (x, y) =

(
My

M
,
Mx

M

)
=

(
19

8
,
7

8

)
=

(2.375, 0.875), illustrated in Figure 15.4.15.

We finally arrive at our true goal of this section: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interesting, it does not directly answermore realistic situationswhereweneed
to find the center of mass of a contiguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximation to an exact value.

We begin by representing a planar lamina with a region R in the xy-plane
with density function δ(x, y). Partition R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the ith subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the ith subregion. We can approx-
imate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai —
that is, by multiplying the approximate mass of the region by its approximate
distance from the y-axis. Similarly, we can approximate the moment about the
x-axis with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1

δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1

yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1

xiδ(xi, yi)∆Ai
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By taking limits, where size of each subregion shrinks to 0 in both the x and
y directions, we arrive at the double integrals given in the following theorem.

Theorem 15.4.16 Center of Mass of a Planar Lamina, Moments.

Let a planar lamina be represented by a closed, bounded regionR in the
xy-plane with density function δ(x, y).

1. mass: M =

∫∫
R

δ(x, y) dA

2. moment about the x-axis: Mx =

∫∫
R

yδ(x, y) dA

3. moment about the y-axis: My =

∫∫
R

xδ(x, y) dA

4. The center of mass of the lamina is

(x, y) =

(
My

M
,
Mx

M

)
.

We start our practice of finding centers of mass by revisiting some of the
lamina used previously in this section when finding mass. We will just set up
the integrals needed to computeM , Mx andMy and leave the details of the
integration to the reader.

Example 15.4.17 Finding the center of mass of a lamina.

Find the center mass of a square lamina, with side length 1, with a den-
sity of δ = 3 g/cm2. (Note: this is the lamina from Example 15.4.3.)
Solution. We represent the lamina with a square region in the plane as
shown in Figure 15.4.18 as done previously.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 15.4.18 A region R represent-
ing a lamina in Example 15.4.3

Following Theorem 15.4.16, we findM ,Mx andMy:

M =

∫∫
R

3 dA =

∫ 1

0

∫ 1

0

3 dx dy = 3 g

Mx =

∫∫
R

3y dA =

∫ 1

0

∫ 1

0

3y dx dy = 3/2 = 1.5

My =

∫∫
R

3x dA =

∫ 1

0

∫ 1

0

3x dx dy = 3/2 = 1.5.

Thus the center of mass is (x, y) =

(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) =

(0.5, 0.5). This is what we should have expected: the center of mass of
a square with constant density is the center of the square.

Example 15.4.19 Finding the center of mass of a lamina.

Find the center of mass of a square lamina, represented by the unit
squarewith lower lefthand corner at the origin (see Figure 15.4.18), with
variable density δ(x, y) = (x + y + 2) g/cm2. (Note: this is the lamina
from Example 15.4.5.)
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Solution. We follow Theorem 15.4.16, to findM ,Mx andMy:

M =

∫∫
R

(x+ y + 2) dA =

∫ 1

0

∫ 1

0

(x+ y + 2) dx dy = 3 g

Mx =

∫∫
R

y(x+ y + 2) dA =

∫ 1

0

∫ 1

0

y(x+ y + 2) dx dy =
19

12

My =

∫∫
R

x(x+ y + 2) dA =

∫ 1

0

∫ 1

0

x(x+ y + 2) dx dy =
19

12
.

Thus the center of mass is

(x, y) =

(
My

M
,
Mx

M

)
=

(
19

36
,
19

36

)
≈ (0.528, 0.528).

While the mass of this lamina is the same as the lamina in the previous
example, the greater density found with greater x and y values pulls
the center of mass from the center slightly towards the upper righthand
corner.

Example 15.4.20 Finding the center of mass of a lamina.

Find the center of mass of the lamina represented by the circle with ra-
dius 2 ft, centered at the origin, with density function δ(x, y) = (x2 +
y2 + 1) lb/ft2. (Note: this is one of the lamina used in Example 15.4.7.)
Solution. As done in Example 15.4.7, it is best to describe R using
polar coordinates. Thus when we compute My , we will integrate not
xδ(x, y) = x(x2 + y2 +1), but rather

(
r cos(θ)

)
δ(r cos(θ), r sin(θ)) =(

r cos(θ)
)(
r2 + 1

)
. We computeM ,Mx andMy:

M =

∫ 2π

0

∫ 2

0

(r2 + 1)r dr dθ = 12π ≈ 37.7 lb

Mx =

∫ 2π

0

∫ 2

0

(r sin(θ))(r2 + 1)r dr dθ = 0

My =

∫ 2π

0

∫ 2

0

(r cos(θ))(r2 + 1)r dr dθ = 0.

SinceR and the density ofR are both symmetric about the x and y axes,
it should come as no big surprise that the moments about each axis is 0.
Thus the center of mass is (x, y) = (0, 0).

Example 15.4.21 Finding the center of mass of a lamina.

Find the center ofmass of the lamina represented by the regionR shown
in Figure 15.4.22, half an annulus with outer radius 6 ft and inner radius
5 ft, with constant density 2 lb

ft2 . (x, y)

−6 −4 −2 2 4 6

−2

2

4

6

8

x

y

Figure 15.4.22 Illustrating the region
R in Example 15.4.21

Solution. Once again it will be useful to represent R in polar coordi-
nates. Using the description of R and/or the illustration, we see that R
is bounded by 5 ≤ r ≤ 6 and 0 ≤ θ ≤ π. As the lamina is symmetric
about the y-axis, we should expectMy = 0. We computeM ,Mx and
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My:

M =

∫ π

0

∫ 6

5

(2)r dr dθ = 11π lb

Mx =

∫ π

0

∫ 6

5

(r sin(θ))(2)r dr dθ =
364

3
≈ 121.33

My =

∫ π

0

∫ 6

5

(r cos(θ))(2)r dr dθ = 0.

Thus the center of mass is (x, y) =
(
0, 364

33π

)
≈ (0, 3.51). The center of

mass is indicated in Figure 15.4.22; note how it lies outside of R!

This section has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more application in the following section: computing sur-
face area.
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15.4.3 Exercises

Terms and Concepts

1. Why is it easy to use “mass” and “weight” interchangeably, even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance from the -axis.

3. We can think of
∫∫

R
dm as meaning “sum up lots of ”

4. What is a “discrete planar system?”

5. Why doesMx use
∫∫

R
yδ(x, y) dA instead of

∫∫
R
xδ(x, y) dA; that is, why do we use “y” and not “x”?

6. Describe a situation where the center of mass of a lamina does not lie within the region of the lamina itself.

Problems

Exercise Group. In the following exercises, point masses are given along a line or in the plane. Find the center of
mass x or (x, y), as appropriate. (All masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1;m2 = 3 at x = 3;m3 = 5 at
x = 10

8. m1 = 2 at x = −3;m2 = 2 at x = −1;
m3 = 3 at x = 0;m4 = 3 at x = 7

9. m1 = 2 at (−2,−2);m2 = 2 at (2,−2);
m3 = 20 at (0, 4)

10. m1 = 1 at (−1,−1);m2 = 2 at (−1, 1);
m3 = 2 at (1, 1);m4 = 1 at (1,−1)

Exercise Group. In the following exercises, find themass/weight of the lamina described by the regionR in the plane
and its density function δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2),
(7, 2) and (7,−3); δ(x, y) = 5 g/cm2

12. R is the rectangle with corners (1,−3), (1, 2),
(7, 2) and (7,−3); δ(x, y) = (x+ y2) g/cm2

13. R is the triangle with corners (−1, 0), (1, 0),
and (0, 1); δ(x, y) = 2 lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and
(0, 1); δ(x, y) = (x2 + y2 + 1) lb/in2

15. R is the disk centered at the origin with radius
2; δ(x, y) = (x+ y + 4) kg/m2

16. R is the circle sector bounded by x2 + y2 = 25
in the first quadrant;
δ(x, y) = (

√
x2 + y2 + 1) kg/m2

17. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) = 4 lb/ft2

18. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) =

√
x2 + y2 lb/ft2

Exercise Group. In the following exercises, find the center of mass of the lamina described by the region R in the
plane and its density function δ(x, y).

Note: these are the same lamina as in Exercise 15.4.11 — Exercise 15.4.18.
19. R is the rectangle with corners (1,−3), (1, 2),

(7, 2) and (7,−3); δ(x, y) = 5 g/cm2
20. R is the rectangle with corners (1,−3), (1, 2),

(7, 2) and (7,−3); δ(x, y) = (x+ y2) g/cm2

21. R is the triangle with corners (−1, 0), (1, 0),
and (0, 1); δ(x, y) = 2 lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and
(0, 1); δ(x, y) = (x2 + y2 + 1) lb/in2

23. R is the disk centered at the origin with radius
2; δ(x, y) = (x+ y + 4) kg/m2

24. R is the circle sector bounded by x2 + y2 = 25
in the first quadrant;
δ(x, y) = (

√
x2 + y2 + 1) kg/m2

25. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) = 4 lb/ft2

26. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) =

√
x2 + y2 lb/ft2

Exercise Group. The moment of inertia I is a measure of the tendency of a lamina to resist rotating about an axis or
continue to rotate about an axis. Ix is the moment of inertia about the x-axis, Iy is the moment of inertia about the
y-axis, and IO is the moment of inertia about the origin. These are computed as follows:
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• Ix =

∫∫
R

y2 dm

• Iy =

∫∫
R

x2 dm

• IO =

∫∫
R

(
x2 + y2

)
dm

In the following exercises, a lamina corresponding to a planar region R is given with a mass of 16 units. For each,
compute Ix, Iy and IO.

27. R is the 4× 4 square with corners at (−2,−2)
and (2, 2) with density δ(x, y) = 1.

28. R is the 8× 2 rectangle with corners at
(−4,−1) and (4, 1) with density δ(x, y) = 1.

29. R is the 4× 2 rectangle with corners at
(−2,−1) and (2, 1) with density δ(x, y) = 2.

30. R is the disk with radius 2 centered at the origin
with density δ(x, y) = 4/π.
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15.5 Surface Area

In Section 7.4 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equations.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the xy-plane, shown
in Figure 15.5.1(a). Because of the domed shape of the surface, the surface
area will be greater than that of the area of the region R. We can find this
area using the same basic technique we have used over and over: we’ll make
an approximation, then using limits, we’ll refine the approximation to the exact
value.

(a) (b)

Figure 15.5.1 Developing a method of computing surface area
As done to find the volume under a surface or the mass of a lamina, we

subdivideR inton subregions. Herewe subdivideR into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part Figure 15.5.1(b) of the figure, we zoom in on this portion of the sur-
face. When ∆xi and ∆yi are small, the function is approximated well by the
tangent plane at any point (xi, yi) in this subregion, which is graphed in part
Figure 15.5.1(b). In fact, the tangent plane approximates the function so well
that in this figure, it is virtually indistinguishable from the surface itself! There-
fore we can approximate the surface area Si of this region of the surface with
the area Ti of the corresponding portion of the tangent plane.

This portion of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applications of the cross product from Section 11.4 is
that the area of this parallelogram is ∥u⃗× v⃗∥. Once we can determine u⃗ and v⃗,
we can determine the area.

The vector u⃗ is tangent to the surface in the direction of x, therefore, from
Section 14.4, u⃗ is parallel to ⟨1, 0, fx(xi, yi)⟩. Thex-displacement of u⃗ is∆xi, so
we know that u⃗ = ∆xi ⟨1, 0, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨0, 1, fy(xi, yi)⟩.
Thus:

surface area Si ≈ area of Ti

= ∥u⃗× v⃗∥
= ∥∆xi ⟨1, 0, fx(xi, yi)⟩ ×∆yi ⟨0, 1, fy(xi, yi)⟩∥

=
√
1 + fx(xi, yi)2 + fy(xi, yi)2∆xi∆yi.
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Note that∆xi∆yi = ∆Ai, the area of the ith subregion.
Summing up all n of the approximations to the surface area gives

surface area overR ≈
n∑

i=1

√
1 + fx(xi, yi)2 + fy(xi, yi)2∆Ai.

Once again take a limit as all of the∆xi and∆yi shrink to 0; this leads to a
double integral.

Definition 15.5.2 Surface Area.

Let z = f(x, y)where fx and fy are continuous over a closed, bounded
regionR. The surface area S overR is

S =

∫∫
R

dS

=

∫∫
R

√
1 + fx(x, y)2 + fy(x, y)2 dA.

As donebefore, we think of “
∫∫

R
dS”

as meaning “sum up lots of little
surface areas overR.”

The concept of surface area
is defined here, for while we al-
ready have a notion of the area
of a region in the plane, we did
not yet have a solid graspofwhat
“the area of a surface in space”
means. We test this definition by using it to compute surface areas of known sur-

faces. We start with a triangle.

Example 15.5.3 Finding the surface area of a plane over a triangle.

Let f(x, y) = 4− x− 2y, and letR be the region in the plane bounded
by x = 0, y = 0 and y = 2 − x/2, as shown in Figure 15.5.4. Find the
surface area of f overR.

Figure 15.5.4 Finding the area of a tri-
angle in space in Example 15.5.3

Solution. We follow Definition 15.5.2. We start by noting that
fx(x, y) = −1 and fy(x, y) = −2. To define R, we use bounds
0 ≤ y ≤ 2− x/2 and 0 ≤ x ≤ 4. Therefore

S =

∫∫
R

dS

=

∫ 4

0

∫ 2−x/2

0

√
1 + (−1)2 + (−2)2 dy dx

=

∫ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Because the surface is a triangle, we can figure out the area using geom-
etry. Considering the base of the triangle to be the side in the xy-plane,
we find the length of the base to be

√
20. We can find the height using

our knowledge of vectors: let u⃗ be the side in the xz-plane and let v⃗ be
the side in the xy-plane. The height is then ∥u⃗− proj v⃗ u⃗∥ = 4

√
6/5.

Geometry states that the area is thus

1

2
· 4
√
6/5 ·

√
20 = 4

√
6.

We affirm the validity of our formula.

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our for-
mula with polar coordinates.
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Example 15.5.5 The surface area of a sphere.

Find the surface area of the sphere with radius a centered at the origin,
whose top hemisphere has equation f(x, y) =

√
a2 − x2 − y2.

Solution. We start by computing partial derivatives and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our function f only defines the top upper hemisphere of the sphere,
we double our surface area result to get the total area:

S = 2

∫∫
R

√
1 + fx(x, y)2 + fy(x, y)2 dA

= 2

∫∫
R

√
1 +

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integrating over is bounded by the circle, cen-
tered at the origin, with radius a: x2 + y2 = a2. Because of this region,
we are likely to have greater success with our integration by converting
to polar coordinates. Using the substitutions x = r cos(θ), y = r sin(θ),
dA = r dr dθ and bounds 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a, we have:

S = 2

∫ 2π

0

∫ a

0

√
1 +

r2 cos2(θ) + r2 sin2(θ)
a2 − r2 cos2(θ)− r2 sin2(θ)

r dr dθ

= 2

∫ 2π

0

∫ a

0

r

√
1 +

r2

a2 − r2
dr dθ

= 2

∫ 2π

0

∫ a

0

r

√
a2

a2 − r2
dr dθ. (15.5.1)

Apply substitution u = a2 − r2 and integrate the inner integral, giving

= 2

∫ 2π

0

a2 dθ

= 4πa2.

Our work confirms our previous formula.

The inner integral in Equation (15.5.1)
is an improper integral, as the in-
tegrandof

∫ a

0
r
√

a2

a2−r2 dr is not
defined at r = a. To properly
evaluate this integral, one must
use the techniques of Section6.8.

The reason this need arises
is that the function

f(x, y) =
√

a2 − x2 − y2

fails the requirements of Defini-
tion 15.5.2, as fx and fy are not
continuous on the boundary of
the circle x2 + y2 = a2.

The computation of the sur-
face area is still valid. The defini-
tionmakes stronger requirements
than necessary in part to avoid
the use of improper integration,
aswhen fx and/or fy are not con-
tinuous, the resulting improper
integralmaynot converge. Since
the improper integral does con-
verge in this example, the surface
area is accurately computed.

Example 15.5.6 Finding the surface area of a cone.

The general formula for a right cone with height h and base radius a is

f(x, y) = h− h

a

√
x2 + y2,

shown in Figure 15.5.7. Find the surface area of this cone.

Figure 15.5.7 Finding the surface area
of a cone in Example 15.5.6

Solution. We begin by computing partial derivatives.

fx(x, y) = − xh

a
√

x2 + y2
and fy(x, y) = − yh

a
√

x2 + y2
.

Sincewe are integrating over the disk boundedbyx2+y2 = a2, we again
use polar coordinates. Using the standard substitutions, our integrand
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becomes √
1 +

(
hr cos(θ)
a
√
r2

)2

+

(
hr sin(θ)
a
√
r2

)2

.

This may look intimidating at first, but there are lots of simple simplifica-
tions to be done. It amazingly reduces to just√

1 +
h2

a2
=

1

a

√
a2 + h2.

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

S =

∫ 2π

0

∫ a

0

r
1

a

√
a2 + h2 dr dθ

=

∫ 2π

0

(
1

2
r2

1

a

√
a2 + h2

)∣∣∣∣a
0

dθ

=

∫ 2π

0

1

2
a
√

a2 + h2 dθ

= πa
√
a2 + h2.

This matches the formula found in the back of this text.

Note that once again fx and
fy are not continuous on the
domain of f , as both are unde-
fined at (0, 0). (A similar prob-
lem occurred in the previous ex-
ample.) Once again the result-
ing improper integral converges
and the computation of the sur-
face area is valid.

Example 15.5.8 Finding surface area over a region.

Find the area of the surface f(x, y) = x2 − 3y + 3 over the region R
bounded by−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 15.5.9.

Figure 15.5.9 Graphing the surface in
Example 15.5.8

Solution. It is straightforward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral∫∫

R

√
1 + (2x)2 + (−3)2 dA =

∫∫
R

√
10 + 4x2 dA.

As with integrals describing arc length, double integrals describing sur-
face area are in general hard to evaluate directly because of the square-
root. This particular integral can be easily evaluated, though, with judi-
cious choice of our order of integration.
Integrating with order dx dy requires us to evaluate

∫ √
10 + 4x2 dx.

This can be done, though it involves Integration By Parts and sinh−1(x).
Integrating with order dy dx has as its first integral

∫ √
10 + 4x2 dy,

which is easy to evaluate: it is simply y
√
10 + 4x2 + C. So we proceed

with the order dy dx; the bounds are already given in the statement of
the problem.∫∫

R

√
10 + 4x2 dA =

∫ 4

0

∫ x

−x

√
10 + 4x2 dy dx

=

∫ 4

0

(
y
√
10 + 4x2

)∣∣∣x
−x

dx

=

∫ 4

0

(
2x
√
10 + 4x2

)
dx.
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Apply substitution with u = 10 + 4x2:

=

(
1

6

(
10 + 4x2

)3/2)∣∣∣∣4
0

=
1

3

(
37
√
74− 5

√
10
)
≈ 100.825 units2.

So while the regionR over which we integrate has an area of 16 square
units, the surface has amuch greater area as its z-values change dramat-
ically overR.

In practice, technology helps greatly in the evaluation of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least time consuming, by hand, and can at the least produce very accurate
approximations with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the regionR in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

We have learned how to integrate integrals; that is, we have learned to eval-
uate double integrals. In the next section, we learn how to integrate double in-
tegrals — that is, we learn to evaluate triple integrals, along with learning some
uses for this operation.
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15.5.1 Exercises

Terms and Concepts

1. “Surface area” is analogous to what previously studied concept?

2. To approximate the area of a small portion of a surface, we computed the area of its plane.

3. We interpret
∫∫

R

dS as “sum up lots of little .”

4. Why is it important to know how to set up a double integral to compute surface area, even if the resulting
integral is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some real number h, have the same surface area over
a regionR?

6. Let f(x, y) be a function defined over a region R and let g(x, y) = 2f(x, y). Why is the surface area of z =
g(x, y) overR not twice the surface area of z = f(x, y) overR?

Problems

Exercise Group. In the following exercises, set up the iterated integral that computes the surface area of the graph
of the given function over the regionR.

7. f(x, y) = sin(x) cos(y);R is the rectangle with
bounds 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π. 8. f(x, y) =

1

x2 + y2 + 1
;R is bounded by the

circle x2 + y2 = 9.
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9. f(x, y) = x2 − y2;R is the rectangle with
opposite corners (−1,−1) and (1, 1).

10. f(x, y) =
1

ex2 + 1
;R is the rectangle bounded

by
−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.

Exercise Group. In the following exercises, find the area of the given surface over the regionR.
11. z = 3x− 7y + 2;R is the rectangle with

opposite corners (−1, 0) and (1, 3).
12. z = 2x+ 2y + 2;R is the triangle with corners

(0, 0), (1, 0) and (0, 1).
13. z = x2 + y2 + 10;R is bounded by the circle

x2 + y2 = 16.
14. z = −2x+ 4y2 + 7 overR, the triangle

bounded by y = −x, y = x, 0 ≤ y ≤ 1.
15. z = x2 + y overR, the triangle bounded by

y = 2x, y = 0 and x = 2.
16. z = 2

3x
3/2 + 2y3/2 overR, the rectangle with

opposite corners (0, 0) and (1, 1).

17. z = 10− 2
√
x2 + y2 over the regionR

bounded by the circle x2 + y2 = 25. (This is the
cone with height 10 and base radius 5; be sure
to compare your result with the known
formula.)

18. Find the surface area of the sphere with radius
5 by doubling the surface area of
f(x, y) =

√
25− x2 − y2 over the regionR

bounded by the circle x2 + y2 = 25. (Be sure to
compare your result with the known formula.)

19. Find the surface area of the ellipse formed by
restricting the plane f(x, y) = cx+ dy + h to
the regionR bounded by the circle x2 + y2 = 1,
where c, d and h are some constants. Your
answer should be given in terms of c and d; why
does the value of h not matter?



874 CHAPTER 15. MULTIPLE INTEGRATION

15.6 Volume Between Surfaces and Triple Integration

15.6.1 Volume between surfaces
We learned in Section15.2 how to compute the signed volumeV under a surface
z = f(x, y) over a region R: V =

∫∫
R
f(x, y) dA. It follows naturally that if

f(x, y) ≥ g(x, y) onR, then the volume between f(x, y) and g(x, y) onR is

V =

∫∫
R

f(x, y) dA−
∫∫

R

g(x, y) dA =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Theorem 15.6.1 Volume Between Surfaces.

Let f and g be continuous functions on a closed, bounded region R,
where f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f
and g overR is

V =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Example 15.6.2 Finding volume between surfaces.

Find the volume of the space region bounded by the planes z = 3x +
y− 4, z = 8− 3x− 2y, x = 0 and y = 0. In Figure 15.6.3(a) the planes
are drawn; in Figure 15.6.3(b), only the defined region is given.

(a) (b)

Figure 15.6.3 Finding the volume between the planes given in Exam-
ple 15.6.2

Solution. We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They
have common z-values when 3x+y−4 = 8−3x−2y. Applying a little
algebra, we have:

3x+ y − 4 = 8− 3x− 2y

6x+ 3y = 12

2x+ y = 4

The planes intersect along the line 2x+ y = 4. Therefore the region R
is bounded by x = 0, y = 0, and y = 4 − 2x; we can convert these
bounds to integration bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

∫∫
R

(
8− 3x− 2y − (3x+ y − 4)

)
dA
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=

∫ 2

0

∫ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16 units3.

The volume between the surfaces is 16 cubic units.

In the preceding example, we found the volume by evaluating the integral∫ 2

0

∫ 4−2x

0

(
8− 3x− 2y − (3x+ y − 4)

)
dy dx.

Note how we can rewrite the integrand as an integral, much as we did in
Section 15.1:

8− 3x− 2y − (3x+ y − 4) =

∫ 8−3x−2y

3x+y−4

dz.

Thus we can rewrite the double integral that finds volume as∫ 2

0

∫ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

∫ 2

0

∫ 4−2x

0

(∫ 8−3x−2y

3x+y−4

dz

)
dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introduction to double integrals was in the context of finding the
area of a plane region, our introduction into triple integrals will be in the context
of finding the volume of a space region.

(a) (b)

Figure 15.6.4 Approximating the volume of a regionD in space
To formally find the volume of a closed, bounded region D in space, such

as the one shown in Figure 15.6.4(a), we start with an approximation. BreakD
into n rectangular solids; the solids near the boundary of D may possibly not
include portions ofD and/or include extra space. In Figure 15.6.4(b), we zoom
in on a portion of the boundary of D to show a rectangular solid that contains
space not inD; as this is an approximation of the volume, this is acceptable and
this error will be reduced as we shrink the size of our solids.

The volume∆Vi of the ith solidDi is∆Vi = ∆xi∆yi∆zi, where∆xi,∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z directions,
respectively. By summing up the volumes of all n solids, we get an approxima-
tion of the volume V ofD:

V ≈
n∑

i=1

∆Vi =

n∑
i=1

∆xi∆yi∆zi.
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Let ∥∆D∥ represent the length of the longest diagonal of rectangular solids
in the subdivision ofD. As ∥∆D∥ → 0, the volume of each solid goes to 0, as do
each of∆xi,∆yi and∆zi, for all i. Our calculus experience tells us that taking
a limit as ∥∆D∥ → 0 turns our approximation of V into an exact calculation of
V . Before we state this result in a theorem, we use a definition to define some
terms.

Definition 15.6.5 Triple Integrals, Iterated Integration (Part I).

LetD be a closed, bounded region in space. Let a and b be real numbers,
let g1(x) and g2(x) be continuous functions of x, and let f1(x, y) and
f2(x, y) be continuous functions of x and y.

1. The volume V ofD is denoted by a triple integral,

V =

∫∫∫
D

dV .

2. The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)

dz

)
dy dx.

Evaluating the above iterated integral is triple integration.

Our informal understanding of the notation
∫∫∫

D
dV is “sum up lots of little

volumes overD,” analogous to our understanding of
∫∫

R
dA and

∫∫
R
dm.

youtu.be/watch?v=EEWiIQfJktI

Figure 15.6.6 Introducing the triple in-
tegral

We now state the major theorem of this section.

Theorem 15.6.7 Triple Integration (Part I).

Let D be a closed, bounded region in space and let ∆D be any subdi-
vision of D into n rectangular solids, where the ith subregion Di has
dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V ofD is

V =

∫∫∫
D

dV = lim
∥∆D∥→0

n∑
i=1

∆Vi = lim
∥∆D∥→0

n∑
i=1

∆xi∆yi∆zi.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) onD, then∫∫∫

D

dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx.

3. V can be determined using iterated integration with other orders
of integration (there are 6 total), as long as D is defined by the
region enclosed by a pair of planes, a pair of cylinders, and a pair
of surfaces.

Weevaluated the area of a plane regionR by iterated integration, where the

https://www.youtube.com/watch?v=EEWiIQfJktI
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bounds were “from curve to curve, then from point to point.” Theorem 15.6.7
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the xy-
plane over which the regionD exists in space. However, these bounds are also
defining surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The
combination of these 6 surfaces enclose, and define,D.

Example 15.6.9 uses the term
“first octant.” Recall how the x-
, y- and z-axes divide space into
eightoctants; the octant inwhich
x, y and z are all positive is called
the first octant.

Examples will help us understand triple integration, including integrating
with various orders of integration.

youtu.be/watch?v=lswNoU6cAmA

Figure 15.6.8 Finding the volume of a
tetrahedron

Example 15.6.9 Finding the volume of a space region with triple inte-
gration.

Find the volume of the space region in the first octant bounded by the
plane z = 2− y/3− 2x/3, shown in Figure 15.6.10, using the order of
integration dz dy dx. Set up the triple integrals that give the volume in
the other 5 orders of integration.

Figure 15.6.10 The region D used in
Example 15.6.9

Solution. Starting with the order of integration dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane
z = 0 (because we are restricted to the first octant) and above by z =
2− y/3− 2x/3; 0 ≤ z ≤ 2− y/3− 2x/3.
To find the bounds on y and x, we “collapse” the region onto the xy-
plane, giving the triangle shown in Figure 15.6.11. (We know the equa-
tion of the line y = 6− 2x in two ways. First, by setting z = 0, we have
0 = 2− y/3− 2x/3 ⇒ y = 6− 2x. Secondly, we know this is going to
be a straight line between the points (3, 0) and (0, 6) in the xy-plane.)

Figure 15.6.11 The region found by
collapsingD onto the xy-plane

We define that regionR, in the integration order of dy dx, with bounds
0 ≤ y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the regionD is:

V =

∫∫∫
D

dV

=

∫ 3

0

∫ 6−2x

0

∫ 2− 1
3y−

2
3x

0

dz dy dx

=

∫ 3

0

∫ 6−2x

0

(∫ 2− 1
3y−

2
3x

0

dz

)
dy dx

=

∫ 3

0

∫ 6−2x

0

z
∣∣∣2− 1

3y−
2
3x

0
dy dx

=

∫ 3

0

∫ 6−2x

0

(
2− 1

3
y − 2

3
x

)
dy dx.

From this step on, we are evaluating a double integral as done many
times before. We skip these steps and give the final volume, V = 6.
The order dz dx dy:
Now consider the volume using the order of integration dz dx dy. The
bounds on z are the same as before, 0 ≤ z ≤ 2 − y/3 − 2x/3. Col-
lapsing the space region on the xy-plane as shown in Figure 15.6.11, we
now describe this triangle with the order of integration dx dy. This gives
bounds 0 ≤ x ≤ 3 − y/2 and 0 ≤ y ≤ 6. Thus the volume is given by

https://www.youtube.com/watch?v=lswNoU6cAmA
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the triple integral

V =

∫ 6

0

∫ 3− 1
2y

0

∫ 2− 1
3y−

2
3x

0

dz dx dy.

The order dx dy dz:
Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region
“from behind,” in the direction of increasing x. The first surface we hit
as we enter the region is the yz-plane, defined by x = 0. We come out
of the region at the plane z = 2 − y/3 − 2x/3; solving for x, we have
x = 3−y/2−3z/2. Thus the bounds on x are: 0 ≤ x ≤ 3−y/2−3z/2.
Now collapse the space region onto the yz-plane, as shown in Fig-
ure 15.6.12(a). (Again, we find the equation of the line z = 2 − y/3
by setting x = 0 in the equation x = 3− y/2− 3z/2.) We need to find
bounds on this region with the order dy dz. The curves that bound y are
y = 0 and y = 6 − 3z; the points that bound z are 0 and 2. Thus the
triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2

0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2

⇒ ∫ 2

0

∫ 6−3z

0

∫ 3−y/2−3z/2

0

dx dy dz.

The order dx dz dy:

(a) (b)

Figure 15.6.12 The regionD in Example 15.6.9 is collapsed onto the yz-
plane in (a); in (b), the region is collapsed onto the xz-plane
The x-bounds are the same as the order above. We now consider the
triangle in Figure 15.6.12(a) and describe it with the order dz dy: 0 ≤
z ≤ 2− y/3 and 0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2

0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6

⇒ ∫ 6

0

∫ 2−y/3

0

∫ 3−y/2−3z/2

0

dx dz dy.

The order dy dz dx:
We now need to determine the y-surfaces that determine our region.
Approaching the space region from “behind” andmoving in the direction
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of increasing y, we first enter the region at y = 0, and exit along the
plane z = 2 − y/3 − 2x/3. Solving for y, this plane has equation y =
6− 2x− 3z. Thus y has bounds 0 ≤ y ≤ 6− 2x− 3z.
Now collapse the region onto the xz-plane, as shown in Fig-
ure 15.6.12(b). The curves bounding this triangle are z = 0 and z =
2 − 2x/3; x is bounded by the points x = 0 to x = 3. Thus the triple
integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z

0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3

⇒ ∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3z

0

dy dz dx.

The order dy dx dz:
The y-bounds are the same as in the order above. We now determine
the bounds of the triangle in Figure 15.6.12(b) using the order dy dx dz.
x is bounded by x = 0 and x = 3− 3z/2; z is bounded between z = 0
and z = 2. This leads to the triple integral:

0 ≤ y ≤ 6− 2x− 3z

0 ≤ x ≤ 3− 3z/2

0 ≤ z ≤ 2

⇒ ∫ 2

0

∫ 3−3z/2

0

∫ 6−2x−3z

0

dy dx dz.

This problem was long, but hopefully useful, demonstrating how to de-
termine bounds with every order of integration to describe the region
D. In practice, we only need 1, but being able to do them all gives us
flexibility to choose the order that suits us best.

In the previous example, we collapsed the surface into the x-y, x-z, and
yz-planes as we determined the “curve to curve, point to point” bounds of in-
tegration. Since the surface was a triangular portion of a plane, this collapsing,
or projecting, was simple: the projection of a straight line in space onto a coor-
dinate plane is a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

Example 15.6.13 Finding the projection of a curve in space onto the
coordinate planes.

Consider the surfaces z = 3 − x2 − y2 and z = 2y, as shown in Fig-
ure 15.6.14(a). The curve of their intersection is shown, along with the
projection of this curve into the coordinate planes, shown dashed. Find
the equations of the projections into the coordinate planes.
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(a) (b)

Figure 15.6.14 Finding the projections of the curve of intersection in Ex-
ample 15.6.13

Solution. The two surfaces are z = 3 − x2 − y2 and z = 2y. To
find where they intersect, it is natural to set them equal to each other:
3 − x2 − y2 = 2y. This is an implicit function of x and y that gives all
points (x, y) in the xy-plane where the z values of the two surfaces are
equal.
We can rewrite this implicit function by completing the square:

3− x2 − y2 = 2y ⇒ y2 + 2y + x2 = 3 ⇒ (y + 1)2 + x2 = 4.

Thus in the xy-plane the projection of the intersection is a circle with
radius 2, centered at (0,−1).
To project onto the xz-plane, we do a similar procedure: find the x and
z values where the y values on the surface are the same. We start by
solving the equation of each surface for y. In this particular case, it works
well to actually solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.
Thus we have (after again completing the square):

3− x2 − z = z2/4 ⇒ (z + 2)2

16
+

x2

4
= 1,

and ellipse centered at (0,−2) in thexz-planewith amajor axis of length
8 and a minor axis of length 4.
Finally, to project the curve of intersection into the yz-plane, we solve
equation for x. Since z = 2y is a cylinder that lacks the variable x, it
becomes our equation of the projection in the yz-plane.
All three projections are shown in Figure 15.6.14(b).

youtu.be/watch?v=PA9fkl8bLaI

Figure 15.6.15 Changing the order of
integration in a triple integral

Example 15.6.16 Finding the volume of a space region with triple inte-
gration.

Set up the triple integrals that find the volume of the space region D
bounded by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in
Figure 15.6.17(a), with the orders of integration dz dy dx, dy dx dz and
dx dz dy.

https://www.youtube.com/watch?v=PA9fkl8bLaI


15.6. VOLUME BETWEEN SURFACES AND TRIPLE INTEGRATION 881

(a) (b)

Figure 15.6.17 The regionD in Example 15.6.16 is shown in (a); in (b), it
is collapsed onto the xy-plane

Solution. The order dz dy dx:
The region D is bounded below by the plane z = 0 and above by the
plane z = −y. The cylinderx2+y2 = 1 does not offer any bounds in the
z-direction, as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.
Collapsing the region into the xy-plane, we get part of the circle with
equation x2 + y2 = 1 as shown in Figure 15.6.17(b). As a function of x,
this half circle has equation y = −

√
1− x2. Thus y is bounded below by

−
√
1− x2 and above by y = 0: −

√
1− x2 ≤ y ≤ 0. The x bounds of

the half circle are −1 ≤ x ≤ 1. All together, the bounds of integration
and triple integral are as follows:

0 ≤ z ≤ −y

−
√
1− x2 ≤y ≤ 0

−1 ≤ x ≤ 1

⇒
∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

dz dy dx.

We evaluate this triple integral:∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

dz dy dx =

∫ 1

−1

∫ 0

−
√
1−x2

(
− y
)
dy dx

=

∫ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

∫ 1

−1

1

2

(
1− x2

)
dx

=

(
1

2

(
x− 1

3
x3

))∣∣∣∣1
−1

=
2

3
units 3.

With the order dy dx dz:
The region is bounded “below” in the y-direction by the surface x2 +
y2 = 1 ⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus

the y bounds are−
√
1− x2 ≤ y ≤ −z.

Collapsing the region onto the xz-plane gives the region shown in Fig-
ure 15.6.18(a); this half disk is bounded by z = 0 and x2 + z2 = 1. (We
find this curve by solving each surface for y2, then setting them equal
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to each other. We have y2 = 1 − x2 and y = −z ⇒ y2 = z2. Thus
x2 + z2 = 1.) It is bounded below by x = −

√
1− z2 and above by

x =
√
1− z2, where z is bounded by 0 ≤ z ≤ 1. All together, we have:

−
√
1− x2 ≤ y ≤ −z

−
√
1− z2 ≤ x ≤

√
1− z2

0 ≤ z ≤ 1

⇒ ∫ 1

0

∫ √
1−z2

−
√
1−z2

∫ −z

−
√
1−x2

dy dx dz.

(a) (b)

Figure 15.6.18 The regionD in Example 15.6.16 is shown collapsed onto
the xz-plane in (a); in (b), it is collapsed onto the yz-plane

With the order dx dz dy:
D is bounded below by the surface x = −

√
1− y2 and above by√

1− y2. We then collapse the region onto the yz-plane and get the
triangle shown in Figure 15.6.18(b). (The hypotenuse is the line z = −y,
just as the plane.) Thus z is bounded by 0 ≤ z ≤ −y and y is bounded
by−1 ≤ y ≤ 0. This gives:

−
√
1− y2 ≤ x ≤

√
1− y2

0 ≤ z ≤ −y

−1 ≤ y ≤ 0

⇒ ∫ 0

−1

∫ −y

0

∫ √
1−y2

−
√

1−y2

dx dz dy.

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a regionD should always
return a positive number; we are computing volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Theorem 15.6.19 Properties of Triple Integrals.

LetD be a closed, bounded region in space, and letD1 andD2 be non-
overlapping regions such thatD = D1

⋃
D2.

1.
∫∫∫

D

dV ≥ 0
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2.
∫∫∫

D

dV =

∫∫∫
D1

dV +

∫∫∫
D2

dV .

We use this latter property in the next example.

Example 15.6.20 Finding the volume of a space region with triple inte-
gration.

Find the volume of the space region D bounded by the coordinate
planes, z = 1 − x/2 and z = 1 − y/4, as shown in Figure 15.6.21(a).
Set up the triple integrals that find the volume of D in all 6 orders of
integration.

(a) (b)

Figure 15.6.21 The regionD in Example 15.6.20 is shown in (a); in (b), it
is collapsed onto the xy-plane

Solution. Following the bounds-determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most
difficult orders of integration are the two in which we integrate with re-
spect to z first, for there are two “upper” surfaces that boundD in the
z-direction. So we start by noting that we have

0 ≤ z ≤ 1− 1

2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the xy-axis, as shown in Fig-
ure 15.6.21(b). The boundary of D, the line from (0, 0, 1) to (2, 4, 0),
is shown in Figure 15.6.21(b) as a dashed line; it has equation y = 2x.
(We can recognize this in two ways: one, in collapsing the line from
(0, 0, 1) to (2, 4, 0) onto the xy-plane, we simply ignore the z-values,
meaning the line now goes from (0, 0) to (2, 4). Secondly, the two
surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4: thus
1− x/2 = 1− y/4 ⇒ y = 2x.)
We use the second property of Theorem 15.6.19 to state that∫∫∫

D

dV =

∫∫∫
D1

dV +

∫∫∫
D2

dV ,

whereD1 andD2 are the space regions above the plane regionsR1 and
R2, respectively. Thus we can say∫∫∫

D

dV =

∫∫
R1

(∫ 1−x/2

0

dz

)
dA+

∫∫
R2

(∫ 1−y/4

0

dz

)
dA.
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All that is left is to determine bounds of R1 and R2, depending on
whether we are integrating with order dx dy or dy dx. We give the fi-
nal integrals here, leaving it to the reader to confirm these results.
dz dy dx:

0 ≤ z ≤ 1− x/2 0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 2x 2x ≤ y ≤ 4

0 ≤ x ≤ 2 0 ≤ x ≤ 2

∫∫∫
D

dV =

∫ 2

0

∫ 2x

0

∫ 1−x/2

0

dz dy dx +

∫ 2

0

∫ 4

2x

∫ 1−y/4

0

dz dy dx

dz dx dy:

0 ≤ z ≤ 1− x/2 0 ≤ z ≤ 1− y/4

y/2 ≤ x ≤ 2 0 ≤ x ≤ y/2

0 ≤ y ≤ 4 0 ≤ y ≤ 4

∫∫∫
D

dV =

∫ 4

0

∫ 2

y/2

∫ 1−x/2

0

dz dx dy +

∫ 4

0

∫ y/2

0

∫ 1−y/4

0

dz dx dy

The remaining four orders of integration do not require a sum of triple
integrals. In Figure 15.6.22 we show D collapsed onto the other two
coordinate planes. Using these graphs, we give the final orders of inte-
gration here, again leaving it to the reader to confirm these results.

(a) (b)

Figure 15.6.22 The regionD in Example 15.6.20 is shown collapsed onto
the xz-plane in (a); in (b), it is collapsed onto the yz-plane

dy dx dz:

0 ≤ y ≤ 4− 4z

0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1

⇒ ∫ 1

0

∫ 2−2z

0

∫ 4−4z

0

dy dx dz.

dy dz dx:
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0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2

⇒ ∫ 2

0

∫ 1−x/2

0

∫ 4−4z

0

dy dx dz.

dx dy dz:

0 ≤ x ≤ 2− 2z

0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1

⇒ ∫ 1

0

∫ 4−4z

0

∫ 2−2z

0

dx dy dz.

dx dz dy:

0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4

⇒ ∫ 4

0

∫ 1−y/4

0

∫ 2−2z

0

dx dz dy.

We give one more example of finding the volume of a space region.

Example 15.6.23 Finding the volume of a space region.

Set up a triple integral that gives the volume of the space region D
bounded by z = 2x2+2 and z = 6− 2x2− y2. These surfaces are plot-
ted in Figure 15.6.24(a) and Figure 15.6.24(b), respectively; the region
D is shown in Figure 15.6.24(c).

(a) (b) (c)

Figure 15.6.24 The regionD is bounded by the surfaces shown in (a) and
(b);D is shown in (c)

Solution. The main point of this example is this: integrating with re-
spect to z first is rather straightforward; integrating with respect to x
first is not.
The order dz dy dx:
The bounds on z are clearly 2x2 + 2 ≤ z ≤ 6 − 2x2 − y2. Collapsing
D onto the xy-plane gives the ellipse shown in Figure 15.6.24(c). The
equation of this ellipse is found by setting the two surfaces equal to each
other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√
4− 4x2 ≤ y ≤

√
4− 4x2 and − 1 ≤ x ≤ 1.
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Thus we find volume as

2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1

⇒ ∫ 1

−1

∫ √
4−4x2

−
√
4−4x2

∫ 6−2x2−y2

2x2+2

dz dy dx.

The order dy dz dx:
Integrating with respect to y is not too difficult. Since the surface z =
2x2 + 2 is a cylinder whose directrix is the y-axis, it does not create a
border for y. The paraboloid z = 6 − 2x2 − y2 does; solving for y, we
get the bounds

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z.

Collapsing D onto the xz-plane gives the region shown in Fig-
ure 15.6.25(a); the lower curve is from the cylinder, with equation z =
2x2 + 2. The upper curve is from the paraboloid; with y = 0, the curve
is z = 6 − 2x2. Thus bounds on z are 2x2 + 2 ≤ z ≤ 6 − 2x2; the
bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√

6− 2x2 − z ≤ y ≤
√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1

⇒ ∫ 1

−1

∫ 6−2x2

2x2+2

∫ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

(a) (b)

Figure 15.6.25 The region D in Example 15.6.23 is collapsed onto the
xz-plane in (a); in (b), it is collapsed onto the yz-plane

The order dx dz dy:
This order takes more effort asDmust be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the
cylinder creates bounds

−
√

z/2− 1 ≤ x ≤
√

z/2− 1

for regionD1 and the paraboloid creates bounds

−
√
3− y2/2− z2/2 ≤ x ≤

√
3− y2/2− z2/2

for regionD2.
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Collapsing D onto the yz-axes gives the regions shown in Fig-
ure 15.6.25(b). We find the equation of the curve z = 4−y2/2 by noting
that the equation of the ellipse seen in Figure 15.6.24(c) has equation

x2 + y2/4 = 1 ⇒ x =
√
1− y2/4.

Substitute this expression for x in either surface equation, z = 6−2x2−
y2 or z = 2x2 + 2. In both cases, we find

z = 4− 1

2
y2.

RegionR1, corresponding toD1, has bounds

2 ≤ z ≤ 4− y2/2,−2 ≤ y ≤ 2

and regionR2, corresponding toD2, has bounds

4− y2/2 ≤ z ≤ 6− y2,−2 ≤ y ≤ 2.

Thus the volume ofD is given by:∫ 2

−2

∫ 4−y2/2

2

∫ √
z/2−1

−
√

z/2−1

dx dz dy+

∫ 2

−2

∫ 6−y2

4−y2/2

∫ √
3−y2/2−z2/2

−
√

3−y2/2−z2/2

dx dz dy.

If all one wanted to do in Example 15.6.23 was find the volume of the re-
gion D, one would have likely stopped at the first integration setup (with or-
der dz dy dx) and computed the volume from there. However, we included the
other two methods 1) to show that it could be done, “messy” or not, and 2) be-
cause sometimes we “have” to use a less desirable order of integration in order
to actually integrate.

15.6.2 Triple Integration and Functions of Three Variables
There are uses for triple integration beyondmerely finding volume, just as there
are uses for integration beyond “area under the curve.” These uses start with
understanding how to integrate functions of three variables, which is effectively
no different than integrating functions of two variables. This leads us to a defin-
ition, followed by an example.

Definition 15.6.26 Iterated Integration, (Part II).

Let D be a closed, bounded region in space, over which g1(x), g2(x), f1(x, y), f2(x, y)
and h(x, y, z) are all continuous, and let a and b be real numbers.

The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

h(x, y, z) dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

h(x, y, z) dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)

h(x, y, z) dz

)
dy dx.
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Example 15.6.27 Evaluating a triple integral of a function of three vari-
ables.

Evaluate
∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy + 2xz

)
dz dy dx.

Solution. We evaluate this integral according to Definition 15.6.26.

∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy + 2xz

)
dz dy dx

=

∫ 1

0

∫ x

x2

(∫ 2x+3y

x2−y

(
xy + 2xz

)
dz

)
dy dx

=

∫ 1

0

∫ x

x2

((
xyz + xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

∫ 1

0

∫ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

∫ 1

0

∫ x

x2

(
− x5 + x3y + 4x3 + 14x2y + 12xy2

)
dy dx.

We continue as we have in the past, showing fewer steps.

=

∫ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281

336
≈ 0.836.

We now know how to evaluate a triple integral of a function of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integration and double inte-
gration.

Let h(x, y, z) be a continuous function of three variables, defined over some
space region D. We can partition D into n rectangular-solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the ith
subregion, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product
of a function value (that’s the h(xi, yi, zi) part) and a small volume∆Vi (that’s
the∆xi∆yi∆zi part). One of the simplest understanding of this type of product
is when h describes the density of an object, for then h× volume = mass .

We can sum up all n products over D. Again letting ∥∆D∥ represent the
length of the longest diagonal of the n rectangular solids in the partition, we
can take the limit of the sums of products as ∥∆D∥ → 0. That is, we can find

S = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretations depending on the function h, in
the case where h describes density, S is the total mass of the object described
by the regionD.

We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteration, followed by the application of triple
integrals to find the centers of mass of solid objects.
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Definition 15.6.28 Triple Integral.

Let w = h(x, y, z) be a continuous function over a closed, bounded
regionD in space, and let∆D be any partition ofD into n rectangular
solids with volume∆Vi. The triple integral of h overD is∫∫∫

D

h(x, y, z) dV = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for continuous
functions h and gives us a method of evaluating the limit.

Theorem 15.6.29 Triple Integration (Part II).

Let w = h(x, y, z) be a continuous function over a closed, bounded re-
gion D in space, and let ∆D be any partition of D into n rectangular
solids with volume Vi.

1. The limit lim
∥∆D∥→0

∑n
i=1 h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) onD, then∫∫∫

D

h(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

h(x, y, z) dz dy dx.

Note: In an aside in Section 15.2, we showed how the summation of rectan-
gles over a region R in the plane could be viewed as a double sum, leading to
the double integral. Likewise, we can view the sum

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi

as a triple sum,
p∑

k=1

n∑
j=1

m∑
i=1

h(xi, yj , zk)∆xi∆yj∆zk,

which we evaluate as
p∑

k=1

 n∑
j=1

(
m∑
i=1

h(xi, yj , zk)∆xi

)
∆yj

∆zk.

Herewe fix a k value, which establishes the z-height of the rectangular solids
on one “level” of all the rectangular solids in the space region D. The inner
double summation adds up all the volumes of the rectangular solids on this level,
while the outer summation adds up the volumes of each level.

This triple summation understanding leads to the
∫∫∫

D
notation of the triple

integral, as well as the method of evaluation shown in Theorem 15.6.29.
We nowapply triple integration to find the centers ofmass of solid objects.

15.6.3 Mass and Center of Mass
One may wish to review Section 15.4 for a reminder of the relevant terms and
concepts.
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Definition 15.6.30 Mass, Center of Mass of Solids.

Let a solid be represented by a closed, bounded regionD in space with
variable density function δ(x, y, z).

1. Themass of the object isM =

∫∫∫
D

dm =

∫∫∫
D

δ(x, y, z) dV .

2. Themoment about the yz-plane isMyz =

∫∫∫
D

xδ(x, y, z) dV .

3. Themoment about the xz-plane isMxz =

∫∫∫
D

yδ(x, y, z) dV .

4. Themoment about the xy-plane isMxy =

∫∫∫
D

zδ(x, y, z) dV .

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 15.6.31 Finding the center of mass of a solid.

Find the mass and center of mass of the solid represented by the space
region boundedby the coordinate planes and z = 2−y/3−2x/3, shown
in Figure 15.6.32, with constant density δ(x, y, z) = 3 g/cm3. (Note:
this space region was used in Example 15.6.9.)

Figure 15.6.32 Finding the center of
mass of the solid in Example 15.6.31

Solution. We apply Definition 15.6.30. In Example 15.6.9, we found
bounds for the order of integration dz dy dx to be 0 ≤ z ≤ 2 − y/3 −
2x/3, 0 ≤ y ≤ 6− 2x and 0 ≤ x ≤ 3. We find the mass of the object:

M =

∫∫∫
D

δ(x, y, z) dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

dz dy dx

= 3(6) = 18 g.

The evaluation of the triple integral is done in Example 15.6.9, so we
skipped those steps above. Note how the mass of an object with con-
stant density is simply “density×volume.”
We now find the moments about the planes.

Mxy =

∫∫∫
D

3z dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

∫ 3

0

∫ 6−2x

0

3

2

(
2− y/3− 2x/3

)2
dy dx

=

∫ 3

0

−4

9

(
x− 3

)3
dx
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= 9.

We omit the steps of integrating to find the other moments.

Myz =

∫∫∫
D

3x dV

=
27

2
.

Mxz =

∫∫∫
D

3y dV

= 27.

The center of mass is(
x, y, z

)
=

(
27/2

18
,
27

18
,
9

18

)
=
(
0.75, 1.5, 0.5

)
.

Example 15.6.33 Finding the center of mass of a solid.

Find the center of mass of the solid represented by the region bounded
by the planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown
in Figure 15.6.34, with density function δ(x, y, z) = 10 + x2 + 5y − 5z.
(Note: this space region was used in Example 15.6.16.)

Figure 15.6.34 Finding the center of
mass of the solid in Example 15.6.33

Solution. As we start, consider the density function. It is symmet-
ric about the yz-plane, and the farther one moves from this plane, the
denser the object is. The symmetry indicates that x should be 0.
As one moves away from the origin in the y or z directions, the object
becomes less dense, though there is more volume in these regions.
Though none of the integrals needed to compute the center of mass are
particularly hard, they do require a number of steps. We emphasize here
the importance of knowing how to set up the proper integrals; in com-
plex situations we can appeal to technology for a good approximation,
if not the exact answer. We use the order of integration dz dy dx, using
the bounds found in Example 15.6.16. (As these are the same for all four
triple integrals, we explicitly show the bounds only forM .)

M =

∫∫∫
D

(
10 + x2 + 5y − 5z

)
dV

=

∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

(
10 + x2 + 5y − 5z

)
dV

=
64

5
− 15π

16
≈ 3.855.

Myz =

∫∫∫
D

x
(
10 + x2 + 5y − 5z

)
dV

= 0.

Mxz =

∫∫∫
D

y
(
10 + x2 + 5y − 5z

)
dV

= 2− 61π

48
≈ −1.99.

Mxy =

∫∫∫
D

z
(
10 + x2 + 5y − 5z

)
dV



892 CHAPTER 15. MULTIPLE INTEGRATION

=
61π

96
− 10

9
≈ 0.885.

Note howMyz = 0, as expected. The center of mass is

(
x, y, z

)
=

(
0,

−1.99

3.855
,
0.885

3.855

)
≈
(
0,−0.516, 0.230

)
.

As stated before, there are many uses for triple integration beyond finding
volume. When h(x, y, z) describes a rate of change function over some space

regionD, then
∫∫∫

D

h(x, y, z) dV gives the total change overD. Our one spe-

cific example of this was computing mass; a density function is simply a “rate of
mass change per volume” function. Integrating density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quantity; modern technology is very useful in evaluating these
formulas quickly and accurately.

In Section 15.7, we learn about two new coordinate systems (each related to
polar coordinates) that allow us to integrate over closed regions in space more
easily than when using rectangular coordinates.
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15.6.4 Exercises

Terms and Concepts

1. The strategy for establishing bounds for triple integrals is to , to
and to .

2. Give an informal interpretation of what “
∫∫∫

D

dV ” means.

3. Give two uses of triple integration.
4. If an object has a constant density δ and a volume V , what is its mass?

Problems

Exercise Group. Two functions f1(x, y) and f2(x, y) and a regionR in the x, y plane are given. Set up and evaluate
the double integral that finds the volume between the surfaces given by the graphs of these two functions over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and

(1, 1).

6. z = f1(x, y) = x2 + y2 and
z = f2(x, y) = −x2 − y2;

R is the square with corners (0, 0) and
(2, 3).

7. f1(x, y) = sin(x) cos(y),
f2(x, y) = cos(x) sin(y) + 2;

R is the triangle with corners (0, 0), (π, 0)
and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3 and
f2(x, y) = 6− x2 − y2;

R is the disc x2 + y2 ≤ 1.

Exercise Group. In the following exercises, a domainD is described by its bounding surfaces, along with a graph. Set
up the triple integrals that give the volume ofD in all 6 orders of integration, and find the volume ofD by evaluating
the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.
Evaluate the triple integral with order

dz dy dx.

10. D is bounded by the planes y = 0, y = 2,
x = 1, z = 0 and

z = (3− x)/2.
Evaluate the triple integral with order

dx dy dz.
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11. D is bounded by the planes x = 0, x = 2,
z = −y and by

z = y2/2.
Evaluate the triple integral with the order

dy dz dx.

12. D is bounded by the planes z = 0, y = 9, x = 0
and by

z =
√

y2 − 9x2.
Do not evaluate any triple integral.

13. D is bounded by the planes x = 2, y = 1, z = 0
and

z = 2x+ 4y − 4.
Evaluate the triple integral with the order

dx dy dz.

14. D is bounded by the plane z = 2y and by
y = 4− x2.

Evaluate the triple integral with the order
dz dy dx.
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15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.
Do not evaluate any triple integral. Which

order is easier to evaluate: dz dy dx or
dy dz dx? Explain why.

16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.
Evaluate the triple integral with order

dx dy dz.

Exercise Group. In the following exercises, evaluate the triple integral.

17.
∫ π/2

−π/2

∫ π

0

∫ π

0

(
cos(x) sin(y) sin(z)

)
dz dy dx 18. Evaluate

∫ 1

0

∫ x

0

∫ x+y

0

(x+ y + z) dz dy dx.

19.
∫ π

0

∫ 1

0

∫ z

0

(
sin(yz)

)
dx dy dz

20. Evaluate∫ π2

π

∫ x3

x

∫ y2

−y2

(
z
x2y + y2x

ex2+y2

)
dz dy dx.

Exercise Group. In the following exercises, find the center of mass of the solid represented by the indicated space
regionD with density function δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10 g/cm3.
(Note: this is the same region as used in

Exercise 15.6.9.)

22. D is bounded by the planes y = 0, y = 2,
x = 1, z = 0 and

z = (3− x)/2; δ(x, y, z) = 2 g/cm3.
(Note: this is the same region as used in

Exercise 15.6.10.)
23. D is bounded by the planes x = 2, y = 1, z = 0

and
z = 2x+ 4y − 4;δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in

Exercise 15.6.13.)

24. D is bounded by the plane z = 2y and by
y = 4− x2.

δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in

Exercise 15.6.14.)
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15.7 Triple Integration with Cylindrical and Spherical
Coordinates

Just as polar coordinates gave us a new way of describing curves in the plane,
in this section we will see how cylindrical and spherical coordinates give us new
ways of desribing surfaces and regions in space.

Both coordinate systemsprovide
ways of extending polar coordi-
nates in the plane to threedimen-
sions. The reader is warned that
while conventions are fairly stan-
dard for cylindrical coordinates,
there aremanydifferent conven-
tions for spherical coordinates. Math-
ematics, physics, and engineer-
ing all use slightly different ver-
sions. The definition presented
in this text also differs from the
usualmathematical definition. Why
add yet another competing stan-
dard? The definition we present
is slightly easier toworkwith, and
should also bemore familiar, since
it corresponds to the coordinate
system of latitude and longitude
used to describe locations on the
Earth.

15.7.1 Cylindrical Coordinates
In short, cylindrical coordinates can be thought of as a combination of the polar
and rectangular coordinate systems. One can identify a point (x0, y0, z0), given
in rectangular coordinates, with the point (r0, θ0, z0), given in cylindrical coordi-
nates, where the z-value in both systems is the same, and the point (x0, y0) in
the xy-plane is identified with the polar point P (r0, θ0); see Figure 15.7.1. So
that each point in space that does not lie on the z-axis is defined uniquely, we
will restrict r ≥ 0 and 0 ≤ θ ≤ 2π.

Figure 15.7.1 Illustrating the principles behind cylindrical coordinates
We use the identity z = z along with the identities found in Key Idea 9.4.6

to convert between the rectangular coordinate (x, y, z) and the cylindrical co-
ordinate (r, θ, z), namely:

From rectangular to cylindrical: r =
√

x2 + y2, tan(θ) = y/x and z = z;

From cylindrical to rectangular: x = r cos(θ), y = r sin(θ) and z = z.

Our rectangular to polar conver-
sion formulas used r2 = x2 +
y2, allowing for negative r val-
ues. Since we now restrict r ≥
0, we can use r =

√
x2 + y2.

These identities, alongwith conversions related to spherical coordinates, are
given later in Key Idea 15.7.15.

youtu.be/watch?v=DOFhlADkGko

Figure 15.7.2 Explaining the cylindri-
cal coordinate system

Example 15.7.3 Converting between rectangular and cylindrical coor-
dinates.

Convert the rectangular point (2,−2, 1) to cylindrical coordinates, and
convert the cylindrical point (4, 3π/4, 5) to rectangular.
Solution. Following the identities given above (and, later in Key
Idea 15.7.15), we have r =

√
22 + (−2)2 = 2

√
2. Using tan(θ) = y/x,

we find θ = tan−1(−2/2) = −π/4. As we restrict θ to being between
0 and 2π, we set θ = 7π/4. Finally, z = 1, giving the cylindrical point
(2
√
2, 7π/4, 1).

In converting the cylindrical point (4, 3π/4, 5) to rectangular, we have
x = 4 cos

(
3π/4

)
= −2

√
2, y = 4 sin

(
3π/4

)
= 2

√
2 and z = 5, giving

the rectangular point (−2
√
2, 2

√
2, 5).

https://www.youtube.com/watch?v=DOFhlADkGko
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Setting each of r, θ and z equal to a constant defines a surface in space, as
illustrated in the following example.

Example 15.7.4 Canonical surfaces in cylindrical coordinates.

Describe the surfaces r = 1, θ = π/3 and z = 2, given in cylindrical
coordinates.
Solution. The equation r = 1 describes all points in space that are 1
unit away from the z-axis. This surface is a “tube” or “cylinder” of radius
1, centered on the z-axis, as graphed in Figure 11.1.17 (which describes
the cylinder x2 + y2 = 1 in space).
The equation θ = π/3 describes the plane formed by extending the line
θ = π/3, as given by polar coordinates in the xy-plane, parallel to the
z-axis.
The equation z = 2 describes the plane of all points in space that are 2
units above the xy-plane. This plane is the same as the plane described
by z = 2 in rectangular coordinates.

Figure 15.7.5 Graphing the canoni-
cal surfaces in cylindrical coordinates
from Example 15.7.4

All three surfaces are graphed in Figure 15.7.5. Note how their intersec-
tion uniquely defines the point P = (1, π/3, 2).

Cylindrical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates.

Theorem 15.6.29 shows how to evaluate
∫∫∫

D
h(x, y, z) dV using rectan-

gular coordinates. In that evaluation, we use dV = dz dy dx (or one of the
other five orders of integration). Recall how, in this order of integration, the
bounds on y are “curve to curve” and the bounds on x are “point to point”:
these bounds describe a region R in the xy-plane. We could describe R using
polar coordinates as done in Section 15.3. In that section, we saw how we used
dA = r dr dθ instead of dA = dy dx.

Considering the above thoughts, we have dV = dz
(
r dr dθ

)
= r dz dr dθ.

We set bounds on z as “surface to surface” as done in the previous section, and
then use “curve to curve” and “point to point” bounds on r and θ, respectively.
Finally, using the identities given above, we change the integrand h(x, y, z) to
h(r, θ, z).

This process should sound plausible; the following theorem states it is truly
a way of evaluating a triple integral.

Theorem 15.7.6 Triple Integration in Cylindrical Coordinates.

Letw = h(r, θ, z) be a continuous function on a closed, bounded region
D in space, bounded in cylindrical coordinates by α ≤ θ ≤ β, g1(θ) ≤
r ≤ g2(θ) and f1(r, θ) ≤ z ≤ f2(r, θ). Then∫∫∫

D

h(r, θ, z) dV =

∫ β

α

∫ g2(θ)

g1(θ)

∫ f2(r,θ)

f1(r,θ)

h(r, θ, z)r dz dr dθ.

youtu.be/watch?v=u0FYs9MaI5k

Figure 15.7.7 Using cylindrical coordi-
nates to find the volume of a cone

Example 15.7.8 Evaluating a triple integral with cylindrical coordinates.

Find themass of the solid represented by the region in space bounded by
z = 0, z =

√
4− x2 − y2 + 3 and the cylinder x2 + y2 = 4 (as shown

in Figure 15.7.9), with density function δ(x, y, z) = x2 + y2 + z + 1,
using a triple integral in cylindrical coordinates. Distances are measured

https://www.youtube.com/watch?v=u0FYs9MaI5k
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in centimeters and density is measured in grams per cubic centimeter.

Figure 15.7.9 Visualizing the solid
used in Example 15.7.8

Solution. We begin by describing this region of space with cylindrical
coordinates. The plane z = 0 is left unchanged; with the identity r =√
x2 + y2, we convert the hemisphere of radius 2 to the equation z =√
4− r2; the cylinder x2 + y2 = 4 is converted to r2 = 4, or, more

simply, r = 2. We also convert the density function: δ(r, θ, z) = r2 +
z + 1.
To describe this solid with the bounds of a triple integral, we bound z
with 0 ≤ z ≤

√
4− r2 + 3; we bound r with 0 ≤ r ≤ 2; we bound θ

with 0 ≤ θ ≤ 2π.
Using Definition 15.6.30 and Theorem 15.7.6, we have the mass of the
solid is

M =

∫∫∫
D

δ(x, y, z) dV =

∫ 2π

0

∫ 2

0

∫ √
4−r2+3

0

(
r2 + z + 1

)
r dz dr dθ

=

∫ 2π

0

∫ 2

0

(
(r3 + 4r)

√
4− r2 +

5

2
r3 +

19

2
r
)
dr dθ

=
1318π

15
≈ 276.04 g,

where we leave the details of the remaining double integral to the
reader.

Example 15.7.10 Finding the center of mass using cylindrical coordi-
nates.

Find the center of mass of the solid with constant density whose base
can be described by the polar curve r = cos(3θ) and whose top is de-
fined by the plane z = 1 − x + 0.1y, where distances are measured in
feet, as seen in Figure 15.7.11. (The volume of this solid was found in
Example 15.3.13.)

Figure 15.7.11 Visualizing the solid
used in Example 15.7.10

Solution. We convert the equation of the plane to use cylindrical co-
ordinates: z = 1 − r cos(θ) + 0.1r sin(θ). Thus the region is space is
bounded by 0 ≤ z ≤ 1 − r cos(θ) + 0.1r sin(θ), 0 ≤ r ≤ cos(3θ),
0 ≤ θ ≤ π (recall that the rose curve r = cos(3θ) is traced out once on
[0, π].
Since density is constant, we set δ = 1 and finding the mass is equiva-
lent to finding the volume of the solid. We set up the triple integral to
compute this but do not evaluate it; we leave it to the reader to confirm
it evaluates to the same result found in Example 15.3.13.

M =

∫∫∫
D

δ dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

r dz dr dθ =
π

4
.

From Definition 15.6.30 we set up the triple integrals to compute the
moments about the three coordinate planes. The computation of each
is left to the reader (using technology is recommended):

Myz =

∫∫∫
D

x dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

(r cos(θ))r dz dr dθ

=
−3π

64
≈ −0.147.
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Mxz =

∫∫∫
D

y dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

(r sin(θ))r dz dr dθ

=
3π

640
≈ 0.015.

Mxy =

∫∫∫
D

z dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

(z)r dz dr dθ

=
1903π

12800
≈ 0.467.

The center of mass in rectangular coordinates, found by dividing
the respective moments by the mass, is approximately located at
(−0.188, 0.019, 0.595), which lies outside the bounds of the solid.

15.7.2 Spherical Coordinates
In short, spherical coordinates can be thought of as a “double application” of
the polar coordinate system. In spherical coordinates, a point P is identified
with (ρ, θ, φ), where ρ is the distance from the origin to P , θ is the same angle
as would be used to describeP in the cylindrical coordinate system, andφ is the
angle between the xy-plane and the ray from the origin toP ; see Figure 15.7.13.
So that each point in space that does not lie on the z-axis is defined uniquely, we
will restrict ρ ≥ 0, 0 ≤ θ ≤ 2π and−π/2 ≤ φ ≤ π/2.

The symbol ρ is the Greek letter
“rho.” Traditionally it is used in
the spherical coordinate system,
while r is used in the polar and
cylindrical coordinate systems.

Convention 15.7.12 Note that most mathematics textbooks define φ to be mea-
sured from the positive z-axis, with values in [0, π], rather than from the xy-
plane.

We have chosen our convention with a number of considerations in mind:

• The coordinates (ρ, θ, φ) form a right-handed coordinate system: one
in which the orientation matches that of our usual (x, y, z) coordinates,
where the “right-hand rule” applies. If φ is measured from the z-axis, the
order (ρ, φ, θ) is needed to get a right-handed system.

• Points of the form (a, α, 0) are the same in both cylindrical and spherical
coordinates.

• Some integration problems become slightly easier: we will see soon that
the volume element in spherical coordinates involves cos(φ), which inte-
grates to sin(φ). In the usual convention, the volume element involves
sin(φ), which integrates to− cos(φ) – a source of many common sign er-
rors.

Students of Physics will encounter yet another convention. In Physics, the
variable r is preferred as the radial coordinate, and spherical coordinates are
given as (r, θ, φ); however, in Physics, φ becomes the angle in the xy-plane,
while θ is the angle measured from the positive z-axis.

Note that the angle in the xy-plane (θ, in our case) is known as the azimuthal
angle. Our angle φ is known as the elevation angle. The angle used in other
conventions that is measured from the positive z-axis (often identified with the
north pole) is known as the polar angle. For further discussion, the Wikipedia
article¹ is quite useful.

Figure 15.7.13 Illustrating the princi-
ples behind spherical coordinates

youtu.be/watch?v=In5up-a1jMI

Figure 15.7.14 Introducing spherical
coordinates
The videos used in this section
(and later) were recorded for an
earlier version of the textbook,
that used thepolar angle instead
of the elevation angle. Some of
the details will therefore differ
from those presented in the text.
(The reader can consider this an
opportunity to learn—and com-
pare — both conventions.)

¹en.wikipedia.org/wiki/Spherical_coordinate_system

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://www.youtube.com/watch?v=In5up-a1jMI
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The following Key Idea gives conversions to/from our three spatial coordi-
nate systems.

Key Idea 15.7.15 Converting Between Rectangular, Cylindrical and Spherical Co-
ordinates.

• Rectangular and Cylindrical.

r2 = x2 + y2, tan(θ) = y/x, z = z

x = r cos(θ), y = r sin(θ), z = z

• Rectangular and Spherical.

ρ =
√
x2 + y2 + z2, tan(θ) = y/x, sin(φ) = z/

√
x2 + y2 + z2

x = ρ cos(φ) cos(θ), y = ρ cos(φ) sin(θ), z = ρ sin(φ)

• Cylindrical and Spherical.

ρ =
√
r2 + z2, θ = θ, tan(φ) = z/r

r = ρ cos(φ), θ = θ, z = ρ sin(φ)

Example 15.7.16 Converting between rectangular and spherical coor-
dinates.

Convert the rectangular point (2,−2, 1) to spherical coordinates, and
convert the spherical point (6, π/3, 0) to rectangular and cylindrical co-
ordinates.
Solution. This rectangular point is the same as used in Example 15.7.3.
Using Key Idea 15.7.15, we find ρ =

√
22 + (−1)2 + 12 = 3. Using the

same logic as in Example 15.7.3, wefind θ = 7π/4. Finally, sin(φ) = 1/3,
giving φ = sin−1(1/3) ≈ 0.34, or about 19.47◦. Thus the spherical
coordinates are approximately (3, 7π/4, 0.34).
Converting the spherical point (6, π/3, 0) to rectangular, we have x =
6 cos(0) cos(π/3) = 3, y = 6 cos(0) sin(π/3) = 3

√
3 and z =

6 sin(0) = 0. Thus the rectangular coordinates are (3, 3
√
3, 0).

To convert this spherical point to cylindrical, we have r = 6 cos(0) = 6,
θ = π/3 and z = 6 sin(0) = 0, giving the cylindrical point (6, π/3, 0).

Example 15.7.17 Canonical surfaces in spherical coordinates.

Describe the surfaces ρ = 1, θ = π/3 and φ = π/3, given in spherical
coordinates.
Solution. The equation ρ = 1 describes all points in space that are 1
unit away from the origin: this is the sphere of radius 1, centered at the
origin.
The equation θ = π/3 describes the same surface in spherical coor-
dinates as it does in cylindrical coordinates: beginning with the line



15.7. TRIPLE INTEGRATIONWITHCYLINDRICALANDSPHERICAL COORDINATES901

θ = π/3 in the xy-plane as given by polar coordinates, extend the line
parallel to the z-axis, forming a plane.
The equationφ = π/3describes all pointsP in spacewhere the ray from
the origin to P makes an angle of π/3with the xy-plane. This describes
a cone, with the positive z-axis its axis of symmetry, with point at the
origin.

Figure 15.7.18 Graphing the canoni-
cal surfaces in spherical coordinates
from Example 15.7.17

All three surfaces are graphed in Figure 15.7.18. Note how their inter-
section uniquely defines the point P = (1, π/3, π/6).

Spherical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates or cylindrical coordinates. The crux of setting
up a triple integral in spherical coordinates is appropriately describing the “small
amount of volume,” dV , used in the integral.

Considering Figure 15.7.19, we can make a small “spherical wedge” by vary-
ing ρ, θ andφ each a small amount,∆ρ,∆θ and∆φ, respectively. This wedge is
approximately a rectangular solid when the change in each coordinate is small,
giving a volume of about

∆V ≈ ∆ρ × ρ∆φ × ρ cos(φ)∆θ.

Figure 15.7.19 Approximating the vol-
ume of a standard region in space us-
ing spherical coordinates

Given a regionD in space, we can approximate the volume ofD with many
such wedges. As the size of each of ∆ρ, ∆θ and ∆φ goes to zero, the number
of wedges increases to infinity and the volume ofD is more accurately approxi-
mated, giving

dV = dρ × ρ dφ × ρ cos(φ)dθ = ρ2 cos(φ) dρ dθ dφ.

Again, this development of dV should sound reasonable, and the following
theorem states it is the appropriate manner by which triple integrals are to be
evaluated in spherical coordinates.

It is generally most intuitive to
evaluate the triple integral in The-
orem15.7.20 by integratingwith
respect to ρ first; it often does
not matter whether we next in-
tegratewith respect to θ orφ. Dif-
ferent texts present different stan-
dard orders, somepreferringdφdθ
instead of dθ dφ. As the bounds
for these variables are usually con-
stants in practice, it generally is
a matter of preference.

Theorem 15.7.20 Triple Integration in Spherical Coordinates.

Letw = h(ρ, θ, φ) be a continuous function on a closed, bounded region
D in space, bounded in spherical coordinates by α1 ≤ φ ≤ α2, β1 ≤
θ ≤ β2 and f1(θ, φ) ≤ ρ ≤ f2(θ, φ). Then∫∫∫

D

h(ρ, θ, φ) dV =

∫ α2

α1

∫ β2

β1

∫ f2(θ,φ)

f1(θ,φ)

h(ρ, θ, φ)ρ2 cos(φ) dρ dθ dφ.

Example 15.7.21 Establishing the volume of a sphere.

Let D be the region in space bounded by the sphere, centered at the
origin, of radius r. Use a triple integral in spherical coordinates to find
the volume V ofD.
Solution. The sphere of radius r, centered at the origin, has equation
ρ = r. To obtain the full sphere, the bounds on θ and φ are 0 ≤ θ ≤ 2π
and−π/2 ≤ φ ≤ π/2. This leads us to:

V =

∫∫∫
D

dV
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=

∫ π/2

−π/2

∫ 2π

0

∫ r

0

(
ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/2

−π/2

∫ 2π

0

(
1

3
ρ3 cos(φ)

∣∣∣r
0

)
dθ dφ

=

∫ π/2

−π/2

∫ 2π

0

(
1

3
r3 cos(φ)

)
dθ dφ

=

∫ π/2

−π/2

(
2π

3
r3 cos(φ)

)
dφ

=

(
2π

3
r3 sin(φ)

)∣∣∣∣π/2
−π/2

=
4π

3
r3,

the familiar formula for the volume of a sphere. Note how the integra-
tion steps were easy, not using square roots nor integration steps such
as Substitution.

youtu.be/watch?v=wqjjslo0auI

Figure 15.7.22 Setting up an integral
in spherical coorindates

Example 15.7.23 Finding the center of mass using spherical coordi-
nates.

Find the center ofmass of the solidwith constant density enclosed above
by ρ = 4 and below by φ = π/3, as illustrated in Figure 15.7.24.

Figure 15.7.24 Graphing the solid,
and its center of mass, from Exam-
ple 15.7.23

Solution. We will set up the four triple integrals needed to find the
center of mass (i.e., to computeM ,Myz ,Mxz andMxy) and leave it to
the reader to evaluate each integral. Because of symmetry, we expect
the x- and y- coordinates of the center of mass to be 0.
While the surfaces describing the solid are given in the statement of the
problem, to describe the full solidD, we use the following bounds: 0 ≤
ρ ≤ 4, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/3. Since density δ is constant, we
assume δ = 1.
The mass of the solid:

M =

∫∫∫
D

dm =

∫∫∫
D

dV

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ2 cos(φ)

)
dρ dθ dφ

=
64

3

(
2−

√
3
)
π ≈ 17.958.

To compute Myz , the integrand is x; using Key Idea 15.7.15, we have
x = ρ cos(φ) cos(θ). This gives:

Myz =

∫∫∫
D

x dm

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
(ρ cos(φ) cos(θ))ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ3 cos2(φ) cos(θ)

)
dρ dθ dφ

= 0,

https://www.youtube.com/watch?v=wqjjslo0auI
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which we expected as we expect x = 0.
To compute Mxz , the integrand is y; using Key Idea 15.7.15, we have
y = ρ cos(φ) sin(θ). This gives:

Mxz =

∫∫∫
D

y dm

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
(ρ cos(φ) sin(θ))ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ3 cos2(φ) sin(θ)

)
dρ dθ dφ

= 0,

which we also expected as we expect y = 0.
To compute Mxy , the integrand is z; using Key Idea 15.7.15, we have
z = ρ sin(φ). This gives:

Mxy =

∫∫∫
D

z dm

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
(ρ sin(φ))ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ3 sin(φ) cos(φ)

)
dρ dθ dφ

= 16π ≈ 50.266.

Thus the center of mass is (0, 0,Mxy/M) ≈ (0, 0, 2.799), as indicated
in Figure 15.7.24.

youtu.be/watch?v=jwzvDiiM94o

Figure 15.7.25 Spherical coordinates
example: volume of a spherical
wedge

youtu.be/watch?v=EKxY_5PlgTU

Figure 15.7.26 Spherical coordinates
example: volume of a conical cup

This section has provided a brief introduction into two new coordinate sys-
tems useful for identifying points in space. Each can be used to define a variety
of surfaces in space beyond the canonical surfaces graphed as each system was
introduced.

However, the usefulness of these coordinate systems does not lie in the vari-
ety of surfaces that they candescribe nor the regions in space these surfacesmay
enclose. Rather, cylindrical coordinates are mostly used to describe cylinders
and spherical coordinates are mostly used to describe spheres. These shapes
are of special interest in the sciences, especially in physics, and computations
on/inside these shapes is difficult using rectangular coordinates. For instance,
in the study of electricity and magnetism, one often studies the effects of an
electrical current passing through a wire; that wire is essentially a cylinder, de-
scribed well by cylindrical coordinates.

This chapter investigated the natural follow-on to partial derivatives: iter-
ated integration. We learned how to use the bounds of a double integral to de-
scribe a region in the plane using both rectangular and polar coordinates, then
later expanded to use the bounds of a triple integral to describe a region in space.
We used double integrals to find volumes under surfaces, surface area, and the
center of mass of lamina; we used triple integrals as an alternatemethod of find-
ing volumes of space regions and also to find the center of mass of a region in
space.

Integration does not stop here. We could continue to iterate our integrals,
next investigating “quadruple integrals” whose bounds describe a region in 4-
dimensional space (which are very hard to visualize). We can also look back to
“regular” integration where we found the area under a curve in the plane. A

https://www.youtube.com/watch?v=jwzvDiiM94o
https://www.youtube.com/watch?v=EKxY_5PlgTU
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natural analogue to this is finding the “area under a curve,” where the curve is
in space, not in a plane. These are just two of many avenues to explore under
the heading of “integration.”
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15.7.3 Exercises

Terms and Concepts

1. Explain the difference between the roles r, in cylindrical coordinates, and ρ, in spherical coordinates, play in
determining the location of a point.

2. Why are points on the z-axis not determined uniquely when using cylindrical and spherical coordinates?
3. What surfaces are naturally defined using cylindrical coordinates?
4. What surfaces are naturally defined using spherical coordinates?

Problems

Exercise Group. In the following exercises, points are given in either the rectangular, cylindrical or spherical coordi-
nate systems. Find the coordinates of the points in the other systems.

5.

(a) Points in rectangular coordinates: (2, 2, 1)
and (−

√
3, 1, 0)

(b) Points in cylindrical coordinates:
(2, π/4, 2) and (3, 3π/2,−4)

(c) Points in spherical coordinates:
(2, π/4, π/4) and (1, 0, 0)

6.

(a) Points in rectangular coordinates: (0, 1, 1)
and (−1, 0, 1)

(b) Points in cylindrical coordinates: (0, π, 1)
and (2, 4π/3, 0)

(c) Points in spherical coordinates:
(2, π/6, 0) and (3, π,−π/2)

Exercise Group. In the following exercises, describe the curve, surface or region in space determined by the given
bounds in cylindrical coordinates.

7.

(a) r = 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

(b) 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 0 ≤ z ≤ 1

8.

(a) 1 ≤ r ≤ 2, θ = π/2, 0 ≤ z ≤ 1

(b) r = 2, 0 ≤ θ ≤ 2π, z = 5

Exercise Group. In the following exercises, describe the curve, surface or region in space determined by the given
bounds in spherical coordinates.

9.

(a) ρ = 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2

(b) 2 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π,
−π/2 ≤ φ ≤ π/2

10.

(a) 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ π, φ = π/4

(b) ρ = 2, 0 ≤ θ ≤ 2π, φ = π/3

(c) This is a curve, a circle of radius 1
centered at (0, 0,

√
3), lying parallel to

the xy-plane.

Exercise Group. In the following exercises, standard regions in space, as defined by cylindrical and spherical coordi-
nates, are shown. Set up the triple integral that integrates the given function over the graphed region.
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11. Cylindrical coordinates, integrating h(r, θ, z): 12. Spherical coordinates, integrating h(ρ, θ, φ):

Exercise Group. In the following exercises, a triple integral in cylindrical coordinates is given. Describe the region in
space defined by the bounds of the integral.

13.
∫ π/2

0

∫ 2

0

∫ 2

0

r dz dr dθ 14.
∫ 2π

0

∫ 4

3

∫ 5

0

r dz dr dθ

15.
∫ 2π

0

∫ 1

0

∫ 1−r

0

r dz dr dθ 16.
∫ π

0

∫ 1

0

∫ 2−r

0

r dz dr dθ

17.
∫ π

0

∫ 3

0

∫ √
9−r2

0

r dz dr dθ 18.
∫ 2π

0

∫ a

0

∫ √
a2−r2+b

0

r dz dr dθ

Exercise Group. In the following exercises, a triple integral in spherical coordinates is given. Describe the region in
space defined by the bounds of the integral.

19.
∫ π/2

0

∫ π/2

0

∫ 1

0

ρ2 cos(φ) dρ dθ dφ 20.
∫ π/2

−π/2

∫ π

0

∫ 1.1

1

ρ2 cos(φ) dρ dθ dφ

21.
∫ π/2

π/4

∫ 2π

0

∫ 2

0

ρ2 cos(φ) dρ dθ dφ 22.
∫ π/3

π/4

∫ 2π

0

∫ 2

0

ρ2 cos(φ) dρ dθ dφ

23.
∫ π/2

π/3

∫ 2π

0

∫ csc(φ)

0

ρ2 cos(φ) dρ dθ dφ 24.
∫ π/2

π/3

∫ 2π

0

∫ a csc(φ)

0

ρ2 cos(φ) dρ dθ dφ

Exercise Group. In the following exercises, a solid is described along with its density function. Find the mass of the
solid using cylindrical coordinates.

25. Bounded by the cylinder x2 + y2 = 4 and the
planes z = 0 and z = 4 with density function
δ(x, y, z) =

√
x2 + y2 + 1.

26. Bounded by the cylinders x2 + y2 = 4 and
x2 + y2 = 9, between the planes z = 0 and
z = 10 with density function δ(x, y, z) = z.

27. Bounded by y ≥ 0, the cylinder x2 + y2 = 1,
and between the planes z = 0 and z = 4− y
with density function δ(x, y, z) = 1.

28. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

Exercise Group. In the following exercises, a solid is described along with its density function. Find the center of
mass of the solid using cylindrical coordinates. (Note: these are the same solids and density functions as found in
Exercises 25–28.)

29. Bounded by the cylinder x2 + y2 = 4 and the
planes z = 0 and z = 4 with density function
δ(x, y, z) =

√
x2 + y2 + 1.

30. Bounded by the cylinders x2 + y2 = 4 and
x2 + y2 = 9, between the planes z = 0 and
z = 10 with density function δ(x, y, z) = z.
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31. Bounded by y ≥ 0, the cylinder x2 + y2 = 1,
and between the planes z = 0 and z = 4− y
with density function δ(x, y, z) = 1.

32. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

Exercise Group. In the following exercises, a solid is described along with its density function. Find the mass of the
solid using spherical coordinates.

33. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

34. The spherical shell bounded between
x2 + y2 + z2 = 16 and x2 + y2 + z2 = 25 with
density function δ(x, y, z) =

√
x2 + y2 + z2.

35. The conical region bounded below by
z =

√
x2 + y2 and above by the sphere

x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

36. The cone that lies above the cone
z =

√
x2 + y2 and below the plane z = 1 with

density function δ(x, y, z) = z.

Exercise Group. In the following exercises, a solid is described along with its density function. Find the center of
mass of the solid using spherical coordinates. (Note: these are the same solids and density functions as found in
Exercises 33–36.)

37. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

38. The spherical shell bounded between
x2 + y2 + z2 = 16 and x2 + y2 + z2 = 25 with
density function δ(x, y, z) =

√
x2 + y2 + z2.

39. The conical region bounded above
z =

√
x2 + y2 and below the sphere

x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

40. The cone bounded above z =
√
x2 + y2 and

below the plane z = 1 with density function
δ(x, y, z) = z.

Exercise Group. In the following exercises, a region is space is described. Set up the triple integrals that find the
volume of this region using rectangular, cylindrical and spherical coordinates, then comment on which of the three
appears easiest to evaluate.

41. The region enclosed by the unit sphere,
x2 + y2 + z2 = 1.

42. The region enclosed by the cylinder x2 + y2 = 1
and planes z = 0 and z = 1.

43. The region enclosed by the cone z =
√

x2 + y2

and plane z = 1.
44. The cube enclosed by the planes x = 0, x = 1,

y = 0, y = 1, z = 0 and z = 1. (Hint: in
spherical, use order of integration dρ dφ dθ.)
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15.8 Change of Variables in Multiple Integrals

We have seen in Sections 15.3 and 15.7 that switching to a different coordinate
system can be a powerful tool. Integrals that are intractable (or even impossible)
in one coordinate system can become straightforward in another.

Recall Exercise 15.3.15 in Section15.3:
the function f(x, y) = e−x2−y2

is impossible to integrate in rec-
tangular coordinates (at least, by
finding antidervatives in termsof
elementary functions), but switch-
ing to polar coordinates results
in an integral that can be evalu-
ated using a simple substitution.

Changing from rectangular coordinates to polar, or cylindrical, or spherical
coordinates, are special cases of a general process known as a change of vari-
ables or transformation. A change of variables should be considered in any
situation where we are presented with an integral that is difficult to evaluate in
rectangular coordinates.

Our goals in this section are as follows:

• Understand how a change of variables affects the area element dA in a
double integral, or the volume element dV in a triple integral.

• Derive a general change of variables formula for multiple integrals that
works for any suitable change of coordinates, including the ones we have
already seen in Sections 15.3 and 15.7

• Develop some basic guiding principles for knowing when a change of vari-
ables should be considered, and how to define the corresponding trans-
formation.

youtu.be/watch?v=G1YTunRt6g0

Figure 15.8.1 Introducing the change
of variables formula

15.8.1 Review of substitution techniques
One of the situations that should be covered by our general change of variables
formula is that of substitution for a definite integral in one variable, as encoun-
tered in Section 6.1, way back in Calculus I. Of course, for a definite integral in
one variable, there is only one type of region of integration: a closed interval
[a, b]. For single integrals, our only consideration when making a change of vari-
ables is the function being integrated. Recall that substitution — at least, for
indefinite integrals — is essentially an attempt to reverse the Chain Rule: given∫ b

a

f(T (u))T ′(u) du,

we set x = T (u), compute the differential dx = T ′(u) du, and set∫ b

a

f(T (u))T ′(u) du =

∫ T (b)

T (a)

f(x) dx. (15.8.1)

We have reversed the roles of x
and u as they typically appear in
Calculus I. Thismay seemstrange
in this context, but it’s in keep-
ing with the way the change of
variables formula in several vari-
ables is usually presented.

The formula we seek will be a generalization of this result, with one notable
change in perspective: for multiple integrals, it is often the region of integration
that creates most of the difficulty, and not the function being integrated. In
one variable, one closed interval is transformed into another, and we apply the
Fundamental Theorem of Calculus. What we will find is that in most cases, we
start on the right hand side of our analogue of Equation (15.8.1), and move to
the left.

For double and triple integrals,
itwill be important to understand
how both the function and the
regionof integration are transformed.
For single integrals, the Funda-
mental Theoremof Calculus (The-
orem 5.4.10) lets us gloss over
someof the detailswe’ll nowneed
to consider. In particular, wedon’t
really need to pay any attention
to the interval over which we in-
tegrate in a single integral, as long
as we can come up with an anti-
derivative.

Changing from polar coordinates can be viewed as the process of writing our
rectangular coordinates (x, y) in terms of new variables r and θ:

x(r, θ) = r cos θ
y(r, θ) = r sin θ.

Or conversely, as defining new variables r and θ as functions of the old variables
x and y:

r(x, y) =
√
x2 + y2

https://www.youtube.com/watch?v=G1YTunRt6g0
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θ(x, y) = arctan(y/x).

We can think of the polar coordinate transformation as a change of variables,
where we define new variables in terms of old ones, but we could also think of
it as a function from the plane R2 to itself. That is, we have a mapping

T : D ⊆ R2 → R2

(x, y) = T (r, θ) = (r cos θ, r sin θ),

where D is some subset of R2 (with coordinates labelled by r and θ), and the
codomain is R2 with usual (x, y) coordinates. As we know from Section 15.3,
the polar coordinate transformation T given above transforms a rectangle such
as D = [0, 3] × [0, 2π] into a disk — in this case, the set of points (x, y) with
x2 + y2 ≤ 9, as shown in Figure 15.8.2 below.

Polar coordinates are a very com-
mon choice of coordinate system,
because they are well adapted
to situationswith circular symme-
try, a commonassumption inmany
physical problems. They are also
natural from a navigational per-
spective. However, the polar co-
ordinate transformation is a bit
unusual, in that it violates some
of the principles we will require
below for a general transforma-
tion. For example, the transfor-
mation is not one-to-one, and since
we often allow r < 0 (recall Sec-
tion9.4), the inverse transforma-
tion (from polar to rectangular)
technically isn’t even a function!
However, we’re willing to over-
look these defects due to theubiq-
uity and usefulness of the polar
coordinate system.
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Figure 15.8.2 Transforming a rectangle to a disk using polar coordinates
It is interesting to pause and consider what happens to the four sides of the

rectangle D in the transformation above. (As we’ll see, this particular transfor-
mation exhibits some behaviour we usually prefer to avoid!). First, the side with
r = 0 is collapsed to a single point: the origin. The side with r = 3 forms the
entire perimeter of the circle. What happens to the sides θ = 0 and θ = 2π?
They both get sent to the line segment from (0, 0) to (3, 0)!

These observations let us imagine transformation as a physical process: first,
the left side of the rectangle is shrunk down to a single point, while the right
side is simultaneously stretched by a factor of 3. (Vertical lines in between are
stretched/shrunk by a factor of r, with 0 ≤ r ≤ 3.) The top of the rectangle is
then bent around until it joins with the bottom.

It is perhaps easier to picture the transformation for a domain of the form
[a, b] × [α, β], with 0 < a < b and 0 ≤ α < β < 2π. The case r ∈ [1, 2],
θ ∈ [π/6, π/3] is pictured in Figure 15.8.3 below.
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Figure 15.8.3 Transforming a rectangle to an annular portion using polar coordi-
nates
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15.8.2 General transformations

Given a region R in the plane and an integral
∫∫

R
f(x, y) dA, we will look for a

domainD ⊆ R2 and a function T : D → R2 of the form

(x, y) = T (u, v) = (h(u, v), k(u, v))

that mapsD ontoR, which can be used to simplify our integral.
Definition 15.8.12 below specifies the properties we require for a function

T : D ⊆ Rn → Rn to be used to define a change of variables. To explain some
of those properties, we will need the following definitions.

The notation f : A → B is
commonly used in mathematics
when we want to indicate that
a function f has a particular do-
main A and codomain B. We
usually do not see this notation
in calculus, since the domain is
always a subset of Rn for some
n, andunderstood to be the largest
set of values for which the func-
tion is defined.

Note however that the choice
of domain is part of the defini-
tion of a function, and it can sig-
nificantly affect important prop-
erties of that function, such as
being one-to-one: recall the def-
initionof the inverse trigonomet-
ric functions in Section 2.7.

Definition 15.8.4 The image of a point or set.

LetD ⊆ Rn be any subset, and let F : D → Rm be a function. For any
point x ∈ D, the image of x under F is the point y = F (x) in the range
of F .
For any subset C ⊆ D, the image of C under F is denoted F (C) and
defined by

F (C) = {F (x) | x ∈ C}.

In other words, y ∈ F (C) if and only if y is the image of x for some
x ∈ C.
In particular, we denote the range (or image) of F by F (D).

Definition 15.8.5 One-to-one and onto functions.

Let A ⊆ Rn, letB ⊆ Rm, and let T : A → B be a function.

• We say that T is one-to-one if no two points in A have the same
image. That is, for any x1, x2 ∈ A, if x1 ̸= x2, then T (x1) ̸= T (x2).

• We say that T is onto if the range of T isB; that is, if T (A) = B.To avoid clutter throughout this
section, wewill use boldface vari-
ables as shorthand for points in
Rn. For example, we will write
x instead of (x1, x2, . . . , xn).

A function used for a change of variables is called a transformation. Such
functions need to be one-to-one, except possibly on the boundary of their do-
main, and they need to be continuously differentiable. (See Definition 15.8.12
below.) One of the important properties of a transformation, which we will jus-
tify later in this section (see Theorem 15.8.27), is that the boundary of a closed,
bounded domain is mapped to the boundary of the range. This observation is
key to visualizing the effect of a transformation.

Example 15.8.6

Let D ⊆ R2 be the rectangle defined by 1 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
Determine the range of the function T : D → R2 defined by

(x, y) = T (u, v) = (uv, u2 + 2v2).

Solution. The function T is continuously differentiable, since x = 4uv
and y = u2+v2 both have continuous first-order partial derivativeswith
respect to u and v. Showing that T is one-to-one is a mess of algebra
that we omit here. From these properties, we can conclude that the
boundary ofD will be transformed to the boundary of T (D).

While it is important to know
that our function is one-to-one,
we will usually not ask you to
check this fact. However, you
should make sure you’re aware
of what can go wrong if this
property is not satisfied: see
the discussion following Defini-
tion 15.8.12.

Now, let’s see what happens to the boundary of D. The boundary con-
sists of four line segments:

1. The segment u = 1, 0 ≤ v ≤ 1.
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2. The segment u = 2, 0 ≤ v ≤ 1.

3. The segment 1 ≤ u ≤ 2, v = 0.

4. The segment 1 ≤ u ≤ 2, v = 1.

On the first segment, x = v and y = 1+v2, with 0 ≤ v ≤ 1. Eliminating
the parameter v gives us portion of the parabola y = 1+ x2 from (0, 1)
to (1, 2).
For the second segment we have x = 2v and y = 4 + v2. This is the
part of the parabola y = 4 + 1

4x
2 from (0, 4) to (2, 5).

The third segment has x = 0 and y = u2, for 1 ≤ u ≤ 2. This is the
portion of the y axis from (0, 1) to (0, 4).
Finally, the fourth segment is given by x = u, y = u2+1, for 1 ≤ u ≤ 2.
This is again the parabola y = 1 + x2, but this time 1 ≤ x ≤ 2.
The resulting region is plotted in Figure 15.8.7. Interestingly, two of the
four sides of the rectangle bounding D were mapped to (different por-
tions of) the same curve.
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Figure 15.8.7 Plotting the image of
the function T in Example 15.8.6

This example is interesting, in that two of the four sides of our rectangular
domain were mapped to the same curve. Note also that (without explicitly solv-
ing for the inverse function, giving u and v as functions of x and y) we can see
that lines of constant x in the u, v plane are circles, and lines of constant y are
hyperbolas.

One other observation is worthy of note: we mentioned above that we will
be primarily concernedwith finding transformations that can be used to simplify
a double integral. Suppose we were given a double integral over R = T (D),
as pictured in Figure 15.8.7. We probably wouldn’t even consider a change of
variables in this case, unless one was needed for the function being integrated:
the region can be described by the inequalities

1 + x2 ≤ y ≤ 4 +
1

4
x2, where 0 ≤ x ≤ 2.

We already learned how to deal with such regions at the beginning of this
Chapter, and in any case, it’s unlikely that anyone looking at this region would
come up with the transformation we just considered.

15.8.3 The Jacobian of a transformation
We’re ready to move on, and describe the effect of a change of variables on an
integral. We begin with an observation from single variable calculus. Consider
the definition of a definite integral as a limit of Riemann sums. When we make
a change of variables x = T (u) in a single integral, a partition of [a, b] given by
a = u0 < u1 < · · · < un = b is transformed into a partition x0 = T (u0), x1 =
T (u1), . . . , xn = T (un). (As long as T ′(u) > 0, we have x0 < x1 < · · · < xn.)

The transformation affects the size of the subintervals in the partition: from
Section 4.4, we know that∆xi ≈ T ′(ui)∆xi. Thus, the derivative tells us how
the size of each subinterval changes under the transformation.

This gives us a way of thinking about the geometric effect of a substitution.

In the integral
∫ T (b)

T (a)

f(x) dx, the subintervals in a partition (thought of as the

width of the rectangles in a Riemann sum) are stretched/shrunk horizontally by
a factor given by the derivative T ′(u) of the transformation function g(u). In

the integral
∫ b

a

f(T (u))T ′(u) du, the derivative T ′(u) is part of the integrand,
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and therefore our horizontal stretch/shrink becomes a vertical stretch/shrink.
Of course, the area of a rectangle changes by the same amount regardless of
whether the stretch/shrink is horizontal or vertical.

In the discussion given here, we
will stick to two variables for sim-
plicity of presentation. However,
everything we do for double in-
tegralsworks equallywell for triple
integrals in three variables.

Similarly, when we do a change of variables in two or three variables, we
need a measure of how the size of each subregion in a partition changes under
change of variables. This measure is given by an object known as the Jacobian.

Definition 15.8.8 The Jacobian of a transformation.

LetD ⊆ R2 be a subset of the plane, described with coordinates (u, v).
Let T : D ⊆ R2 → R2 be given by

T (u, v) = (f(u, v), g(u, v)),

where f and g are continuously differentiable onD. The Jacobian is the
function JT : D → R defined by

JT (u, v) = det
[
fu(u, v) fv(u, v)

gu(u, v) gv(u, v)

]
.

If we define x = f(u, v) and y = g(u, v), we can write the Jacobian as

JT (u, v) = det
[
xu xv

yu yv

]
= det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
.

In the case of a transformation T : D ⊆ R3 → R3, with (x, y, z) =
T (u, v, w), the definition of the Jacobian is similar, except that we need to com-
pute the determinant of a 3× 3matrix.

If you read Section 14.6 on the definition of the derivative as a matrix of
partial derivatives, you probably recognize the matrix whose determinant gives
us the Jacobian: it’s the derivative matrix! One therefore could write

JT (u, v) = detDT (u, v)

for the Jacobian, and this formula is valid in any dimension.
In fact, we can even use this definition for single integrals: a 1× 1matrix is

just a number, and the determinant does nothing to that number, and of course,
the derivative of a function of one variable is the same as always.

Another common notation for
the Jacobian is

JT (u, v) =
∂(x, y)

∂(u, v)
.

This notation is intended to be
reminiscent of the Leibniz form
of the chain rule when T is used
to define a change of variables:
we have the mnemonic devices

dx =
dx

du
du

dx dy =
∂(x, y)

∂(u, v)
du dv

dx dy dz =
∂(x, y, z)

∂(u, v, w)
du dv dw

for a change of variables in sin-
gle, double, and triple integrals,
respectively.

Example 15.8.9

Compute the Jacobian of the transformation (x, y) = T (u, v) given by

x = 7u− 3v y = −4u+ 2v.

Solution. We apply Definition 15.8.8 directly:

JT (u, v) = det
[
xu(u, v) xv(u, v)

yu(u, v) yv(u, v)

]
= det

[
7 −3

−4 2

]
= 7(2)− (−3)(−4) = 2.

In this case, the Jacobian is a constant function. This is the case whenever x
and y are linear functions of u and v., but not true in general. We’ll look at the
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case of linear transformations in more detail after a few more examples.

Example 15.8.10

Compute the Jacobian of the transformation given by

T (u, v) = ( 3
√
x2y, 3

√
xy2).

Solution. Again, this is a direct application of the definition, but we
should be clever about how we compute our partial derivatives. Our
transformation defines x = 3

√
x2y and y = 3

√
xy2. If we blindly push

forward with the partial derivatives as written, we get a mess. For exam-
ple, if we get a little too excited, we might do something like:

xu(u, v) =
∂

∂u
( 3
√
x2y) =

1

3
(x2y)−2/3(2xy),

with similar results for the other four partial derivatives.
Instead, let’s first simplify using laws of exponents:

x(u, v) = 3
√

x2y = (x2y)1/3 = x2/3y1/3 and

y(u, v) = 3
√
xy2 = (xy2)1/3 = x1/3y2/3.

Now we only need the power rule to compute our partial derivatives,
and we find

JT (u, v) = det
[
xu(u, v) xv(u, v)

yu(u, v) yv(u, v)

]
= det

[
2
3x

−1/3y1/3 1
3x

2/3y−2/3

1
3x

−2/3y2/3 2
3x

1/3y−1/3

]
=

(
2

3
x−1/3y1/3

)(
2

3
x1/3y−1/3

)
−
(
1

3
x2/3y−2/3

)(
1

3
x−2/3y2/3

)
=

4

9
− 1

9
=

1

3
.

Interestingly enough, the Jacobian turns out to be constant again, even though
the transformation was far from being linear. Let’s try one more.

Example 15.8.11

Compute the Jacobian of the transformation

x = 4u2 − v2 y = 2u2 + 3v2.

Solution. Computing the Jacobian in this case is straightforward:

JT (u, v) = det
[
xu(u, v) xv(u, v)

yu(u, v) yv(u, v)

]
= det

[
8u −2v

4u 6v

]
48uv+8uv = 56uv.

As hinted at earlier, the Jacobian is important because it appears in the
change of variables formula to come. Its role is analogous to that of the deriv-
ative g′(u) in Equation (15.8.1). We also need the Jacobian to precisely define
the type of function that can be used for a change of variables.
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Definition 15.8.12 Properties of a transformation.

Let D and E subsets of R2, with D ⊆ R2 described in terms of coordi-
nates u, v, and E ⊆ R2 described in terms of coordinates x, y. Let Do

denote the interior ofD; that is, the set of all non-boundary points ofD.
We say that a function T : D → E is a transformation if:

1. T is continuously differentiable onDo.

2. T is one-to-one onDo, and the range of T is E.

3. The Jacobian of T does not vanish: JT (u, v) ̸= 0 for all (u.v) ∈
Do.

For all three coordinate systems
we’ve studied, the transformation
conditions can fail on the bound-
ary of our domain, which we’re
willing to accept, andweaccount
forthis by only requring these con-
ditions to hold on the interior of
the domain. What would not be
acceptable is a situation where
the transformation conditions fail
on a region interior to the domain.

For example, the functionT (r, θ) =
(r cos θ, r sin θ)would not produce
an acceptable transformation for
domains such as r ∈ [−1, 1], θ ∈
[0, 2π] or r ∈ [0, 2], θ ∈ [0, 3π].
The first traces out the unit disk
twice: once for r < 0, and once
for r > 0. The range of the sec-
ond transformation is the diskx2+
y2 ≤ 4, but the upper half of
this disk is produced twice: once
for θ ∈ [0, π], and again for θ ∈
[2π, 3π].

If we were using these trans-
formations to compute a double
integral over a circular region, we’d
get the wrong answer!

When D is a closed, bounded subset, note that we do not require Defini-
tion 15.8.12 to hold on the boundary. Each of the three conditions above must
hold on the interior of D, but are allowed to fail on all or part of the boundary.
In particular, this is the case for cylindrical, and spherical coordinates:

• The polar coordinate transformation x = r cos θ, y = r sin θ is only one-
to-one if r > 0 and θ belongs to an interval whose length is less than 2π.
Note that JT (r, θ) vanishes at r = 0.
Of course, we often use a domain such as r ∈ [0, R], θ = [0, 2π] to de-
scribe a disk centred at the origin. The conditions of Definition 15.8.12 fail
at r = 0, and because points with θ = 0 get mapped to the same place as
points with θ = 2π. But these coordinates describe 3 of the 4 sides of the
boundary rectangle for our domain, and the conditions are not required
to hold on the boundadry.

• The cylindrical coordinate transformation has exactly the same issues as
polar coordinates.

• For spherical coordinates, we take ρ ≥ 0 and again accept the fact that
our transformation is not one-to-one (and the Jacobian is zero) when ρ =
0. Similarly, we generally allow θ ∈ [0, 2π] and φ ∈ [−π/2, π/2] even
though endpoints of these intervals might get sent to the same point.

Before we move on to the change of variables formula, we consider one
more example that will help clarify the geometry involved in a change of vari-
ables, and that may be familiar to you from a first course in linear algebra.

We saw in Example 15.8.9 that when x and y are linear functions of u and v,
the Jacobian of the transformation is a constant. What does that constant tell
us about the transformation? Here is an example taken from the book Matrix
Algebra, by Greg Hartman (who is also the main author of this text).

Example 15.8.13

Consider the function T : R2 → R2 given by

T (u, v) = (u+ 4v, 2u+ 3v).

Note that T is linear in both variables. In fact, if we set (x, y) = T (u, v)

and represent points by vectors, replacing (x, y) by x⃗ =

[
x

y

]
and (u, v)

by u⃗ =

[
u

v

]
, thenwe canwrite this function as thematrix transformation
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x⃗ = Au⃗, whereA is the 2× 2matrix
[
1 4

2 3

]
. That is:

[
x

y

]
=

[
1 4

2 3

] [
u

v

]
.

To visualize the effect of T , plot the vectors representing the four cor-
ners of the unit square, before and after they have been multiplied by
A, where

A =

[
1 4

2 3

]
.

Solution. The four corners of the unit square can be represented by the
vectors [

0

0

]
,

[
1

0

]
,

[
1

1

]
,

[
0

1

]
.

Multiplying each by A gives the vectors[
0

0

]
,

[
1

2

]
,

[
5

5

]
,

[
4

3

]
,

respectively.
The unit square and its transformation are graphed in Figure 15.8.14,
where the shaped vertices correspond to each other across the two
graphs. Note how the square got turned into some sort of quadrilateral
(it’s actually a parallelogram). A really interesting thing is how the trian-
gular and square vertices seem to have changed places— it is as though
the square, in addition to being stretched out of shape, was flipped.
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Figure 15.8.14 Transforming the unit square by matrix multiplication in
Example 15.8.13

How does all this relate to Jacobians and change of variables? First note that
the derivative of any linear function is (perhaps not so surprisingly) the matrix
that defines it: for T (u, v) = (u+ 4v, 2u+ 3v), we have

DT (u, v) =

[
1 4

2 3

]
= A.

The Jacobian of T is then the determinant of this matrix:

JT (u, v) = detA = 1(3)− 4(2) = −5.

Let us make a note of a few key points about Example 15.8.13. First, note
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that in this case, the derivative matrix, (and as a result, the Jacobian) is constant.
(This of course is generally true of the derivative for linear functions.)

What happens when we apply the map T to the unit square? The value
JT (u, v) = −5 tells us two things:

• First, the area of the unit square is increased by a factor of 5.

• Second, the transformation T reverses the orientation of the unit square.
This is indicated by the negative value of the determinant. The reversal of
orientation is responsible for the “flipping” of the square noticed in the
solution above.

The result of performing the transformationT on the unit square is therefore
the following: first, the square is flipped over. Then, the square is stretched out
into a parallelogram whose area is 5 times that of the original square.

Recall, from linear algebra, that
if two vectors a⃗, b⃗ span a paral-
lelogram in the plane, then the
determinant of the 2× 2matrix
containing a⃗ and b⃗ gives the area
(up to sign) of the parallelogram.

Let us make a couple more remarks about the Example 15.8.13. First, note
the need for an absolute value around the determinant, to ensure the area com-
puted is positive. This absolute value will be needed in our change of variables
formula as well.

Second, since our transformation was linear, with constant derivative, the
effect on area is the same for any portion of the plane: applying the transforma-
tion T to a closed bounded region D ⊆ R2 of area A will produce a region of
area 5A. For non-linear transformations, the value of the Jacobian (and hence,
the effect on area) will vary from point to point.

Recall the following property for
definite integrals in one variable:∫ b

a

f(x) dx = −
∫ a

b

f(x) dx. The

definite integral is sensitive to the
orientation of the interval over
which the integration is performed.
(Left to right or right to left.) Dou-
ble and triple integrals donot have
this sensitivity. We’ll see in Sec-
tion16.5 how informationabout
orientation is reintroduced in the
context of vector calculus.

Beforewemove on, let’s do twomore examples, with transformationswe’ve
already encountered. In these examples, we’ll find that the value of the Jacobian
is not a constant.

Example 15.8.15

Compute the Jacobian for

1. The polar coordinate transformation

x = r cos θ y = r sin θ

2. The spherical coordinate transformation

x = r cos θ cosφ y = r sin θ cosφ z = r sinφ.

Solution.

1. Here we’ve defined x and y in terms of the coordinates r and θ
instead of u and v, but the process is the same:

JT (r, θ) = det
[
xr(r, θ) xθ(r, θ)

yr(r, θ) yθ(r, θ)

]
= det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r.

Interesting. Note that the value of the Jacobian is r, which is
precisely the correction factor needed in the area element for a
double integral when we change from rectangular to polar coordi-
nates. Let’s try the spherical coordinate transformation to see if
this was merely a coincidence.
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2. Although we haven’t defined the Jacobian for a change of coordi-
nates in three variables, the process is exactly the same. We form
the derivative of the transformation, given by thematrix of partial
derivatives, and compute its determinant. We find:

JT (r, θ, φ) = det

xρ(ρ, θ, φ) xθ(ρ, θ, φ) xφ(ρ, θ, φ)

yρ(ρ, θ, φ) yθ(ρ, θ, φ) yφ(ρ, θ, φ)

zρ(ρ, θ, φ) zθ(ρ, θ, φ) zφ(ρ, θ, φ)


= det

cos θ cosφ −ρ sin θ cosφ −ρ cos θ sinφ
sin θ cosφ ρ cos θ cosφ −ρ sin θ sinφ
sinφ 0 ρ cosφ


= ρ sin θ cosφ

∣∣∣∣sin θ cosφ −ρ sin θ sinφ
sinφ ρ cosφ

∣∣∣∣
+ ρ cos θ cosφ

∣∣∣∣cos θ cosφ −ρ cos θ sinφ
sinφ ρ cosφ

∣∣∣∣
= ρ sin θ cosφ(ρ sin θ(cos2 φ+ sin2 φ)

+ ρ cos θ cosφ(ρ cos θ(cos2 φ+ sin2 φ)

= ρ2 sin2 θ cosφ+ ρ2 cos2 θ cosφ

= ρ2 cos θ.

We computed the above 3×3 determinant using a cofactor expansion along
the second column. This is once again exactly the correction factor for the vol-
umeelement in spherical coordinates, as given in Theorem15.7.20 in Section15.7.

youtu.be/watch?v=r1FX1DkDRb0

Figure 15.8.16 Computing the spheri-
cal coordinate Jacobian

15.8.4 The Change of Variables Formula
It seems that we’re onto something. It is time that we stated the general change
of variables formula for multiple integrals. Notice how, as with the derivative
g′(u) in Equation (15.8.1), the Jacobian gives us a measure of how subregions
in the domain are stretched or shrunk. It shouldn’t be too surprising, then, that
the Jacobian plays the same role in multiple integrals that the derivative does in
a single integral.

Theorem 15.8.17 Change of variables formula for double integrals.

LetD be a closed, bounded region in the plane, and let T : D ⊆ R2 →
R2 be a transformation. If f is a continuous, real-valued function onD,
then ∫∫

D

f(T (u, v))|JT (u, v)| du dv =

∫∫
T (D)

f(x, y) dx dy.

The formula for triple integrals is analogous: given (x, y, z) = T (u, v, w)
for (u, v, w) in some closed, bounded domainD, then∫∫∫

D

f(T (u, v, w)) |JT (u, v, w)| du dv dw =

∫∫∫
T (D)

f(x, y, z) dx dy dz.

Let us try a simple example.

https://www.youtube.com/watch?v=r1FX1DkDRb0
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Example 15.8.18

Let R be the region in the x, y plane whose boundary is the parallelo-
gram with vertices (0, 0), (3, 1), (1, 4), and (4, 5).

1. Determine a rectangular regionD and a transformation T : D →
R2 such thatR = T (D).

2. Use the transformation T and Theorem 15.8.17 to determine the
area ofR.

Solution.

1. For inspiration, we look to Example 15.8.13. Notice how the trans-

formation defined by thematrixA =

[
1 4

2 3

]
preserves the origin,

and sends the points (1, 0) and (0, 1) to (1, 2) and (4, 3), respec-
tively. In general, the transformation

T (u, v) = (au+ cv, bu+ dv), with matrix
[
a c

b d

]
will send (1, 0) to (a, b), and (0, 1) to (c, d).

If you need further convinc-
ing, notice that setting u = 0,
v = t gives the parametric curve
T (0, t) = (t, 4t), which is the
same as the line y = 4x: the
line from (0, 0) to (1, 4). Simi-
larly, setting u = t, v = 0 gives
T (t, 0) = (3t, t): the line y =
1
3x from (0, 0) to (3, 1). One
can similarly check that T (1, t)
and T (t, 1) give lines forming
the other two sides of the paral-
lelogram.

This suggests that in our case we can takeD to be the unit square
[0, 1]× [0, 1], and set

T (u, v) = (3u+ v, u+ 4v).

We check that T (0, 0) = (0, 0), T (1, 0) = (3, 1), T (0, 1) = (1, 4),
and T (1, 1) = (4, 5). The four corners of the unit square are
mapped to the four corners of the parallelogram. Since linear
transformations map “lines to lines”, we have our transformation.

2. To use Theorem 15.8.17, we need to compute the Jacobian of our
transformation. We have

JT (u, v) = det
[
3 1

1 4

]
= 11,

and sinceR = T (D), the change of variables formula gives us

A =

∫∫
R

1 dx dy =

∫∫
D

11 du dv = 11.

youtu.be/watch?v=Yf-0g8afcb4

Figure 15.8.19 Using a transforma-
tion to compute an integral over a par-
allelogram

Let’s try another example. Our next example is more complicated, but this
time, we’re given the change of variables.

Example 15.8.20

Use the change of variables x = u+v, y = u−v to evaluate the integral∫∫
R

xex
2−y2

dA,

whereR is the region bounded by the lines:

y = x, y = −x, y = x− 2, and y = 2− x.

https://www.youtube.com/watch?v=Yf-0g8afcb4
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Solution. The region of integration is shown in Figure 15.8.21.

1 2

−1

1

x

y

Figure 15.8.21 The region of integra-
tionR in Example 15.8.20

We need to determine a domain for the transformation T (u, v) = (u+
v, u−v) such that the range of T isR. Let’s put x = u+v and y = u−v
into the equations of our boundary lines, to see what the corresponding
lines in the u, v plane are.

y = x ⇒ u− v = u+ v ⇒ v = 0

y = −x ⇒ u− v = −(u+ v) ⇒ u = 0

y = x− 2 ⇒ u− v = u+ v − 2 ⇒ 2v = 2 ⇒ v = 1.

These lines are simply the boundary of the unit square in the u, v plane.
Thus, if we take the domainD = [0, 1]× [0, 1] for T , we will have R =
T (D), as required.
Now, we apply Theorem 15.8.17. Recall the formula:∫∫

D

f(T (u, v))|JT (u, v)| du dv =

∫∫
T (D)

f(x, y) dx dy.

We have f(x, y) = xex
2−y2

. It follows that

f(T (u, v)) = (u+v)e(u+v)2−(u−v)2 = (u+v)eu
2+2uv+v2−(u2−2uv+v2) = (u+v)e4uv .

We also need to compute the Jacobian. Since the transformation is lin-
ear, we know this will be a constant. We find:

JT (u, v) = det
[
xu xv

yu yv

]
= det

[
1 1

1 −1

]
= −2.

In this case, understanding the
geometry of the Jacobian gives
us the answer without any com-
putation. Since a square of area
1 is transformed to a square of
area 2, we know |JT (u, v)| = 2.

Putting all this into our change of variables formula, we have∫∫
R

xex
2+y2

dx dy =

∫∫
D

(u+ v)e4uv|−2| du dv.

This integral can be evaluated by splitting it in two, and choosing the
most convenient order of integration for each part:∫∫

D

2(u+v)e4uv du dv = 2

∫ 1

0

∫ 1

0

ue4uv dv du+2

∫ 1

0

∫ 1

0

ve4uv du dv.

Now, we find that∫ 1

0

∫ 1

0

ue4uv dv du =

∫ 1

0

(
1

4
e4uv

∣∣∣∣1
0

)
du

=
1

4

∫ 1

0

(e4u − 1) du

=
1

16
(e4 − 1)− 1

4
(1) =

1

16
e4 − 5

16
,

and the second integral differs only in the labelling of the variables, and
gives the same result. Thus, we have∫∫

R

xex
2−y2

dx dy =
1

4
e4 − 5

4
.

Let’s try onemore examplewherewe’re given someguidance before tackling
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a general change of variables problem.

Example 15.8.22

LetR be the region in the first quadrant bounded by the lines y = x and
y = 4x, and the hyperbolas y = 1/x and y = 4/x. Evaluate the integral∫∫

R

xy2 dA

using the change of variables x = u/v, y = v.
Solution. First, we note that setting y = kx, where k is a constant,
gives us

v = k
u

v
⇒ u =

1

k
v2,

while setting y = k/x gives xy = k, or u = k. The regionR is therefore
the image under the transformation T (u, v) = (u/v, v) of the regionD
bounded by the curves u = v2 and u = 1

4v
2, and the lines u = 1, u = 4;

see Figure 15.8.24.

Some caution is needed when
determining the domain D.
Note that the given curves
bound two regions: one above
the u axis, and one below. But
we note that y = v, and since
y > 0 for the regionR, we must
have v > 0 inD.

1 2 3 4

1

2

3

4

R

x

y

Figure 15.8.23 The region of inte-
grationR in Example 15.8.22

1 2 3 4

−4

−3

−2

−1

1

2

3

4

D

x

y

Figure 15.8.24 The domain D
mapped onto R by T

This is perhaps not the best possible change of variables: the domainD
is not a rectangle. (See Example 15.8.31 below for a change of variables
that is more effective for this type of region.) However, it is a region of
the type we considered in Section 15.2, so we’re better off thanwewere
with the original region. We have 1 ≤ u ≤ 4, and the equations u = v2,
u = 1

4v
2 can be re-written (noting that v > 0) as v =

√
u and v = 2

√
u.

With f(x, y) = xy2wehave f(T (u, v)) = u
v ·v

2 = uv, and the Jacobian
is given by

JT (u, v) = det
[
1/v −u/v2

0 1

]
=

1

v
.

Thus, we have ∫∫
R

xy2 dA =

∫∫
D

uv

∣∣∣∣1v
∣∣∣∣ du dv

=

∫ 4

1

∫ 2
√
u

√
u

u dv du

=

∫ 4

1

u3/2 du.

Our next goal is to tackle the following general problem: given a multiple
integral over a region E, determine a transformation T with domain D such
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that T (D) = E, and use it to evaluate the integral. Before attempting a couple
of examples, we take a brief detour to consider some technical details that will
assist us in understanding the problem.

Recall from Definition 15.8.12 that we require transformations to be one-to-
one and onto (see Definition 15.8.5), except possibly on the boundary of their
domain.

One of the reasons that we require these properties is that they guarantee
that T has an inverse. If a transformation T : D → E is one-to-one and onto,
then we can define the inverse mapping T−1 : E → D according to

T−1(x) = u if and only if x = T (u).

Notice that the onto condition guarantees that the domain of T−1 is all of
E. When considering a changes of variables for a multiple integral over a region
E, we would ideally like to have a one-to-one and onto mapping from D to E
to ensure that when we convert to an integral overD, each point inE only gets
“counted once”.

For example, consider the mapping T (u, v) = (u2, v) defined on [−1, 1] ×
[0, 1]. (That is, x = u2 with−1 ≤ u ≤ 1 and y = v, with 0 ≤ v ≤ 1.) The image
of T is the square [0, 1]× [0, 1], but each point (x, y) corresponds to two points
(±

√
x,

√
y) in D, so integrating over D would be the same as integrating over

E {\em twice}!
Next we want to consider differentiability. Recall that a vector-valued func-

tion
r(t) = ⟨x(t), y(t)⟩

is continuous if and only if each of the component functions x(t), y(t) is contin-
uous, and similarly, r(t) is differentiable if and only if each of the component
functions is differentiable, and

r′(t) = ⟨x′(t), y′(t)⟩.

Similarly, a function T : D ⊂ Rn → Rn is continuous if and only if each of
its components is continuous (as a function of several variables), and (for n = 2)
the partial derivatives of T can be viewed as the vector-valued functions

ru(u, v) =
∂T

∂u
(u, v) =

〈
∂x

∂u
(u, v),

∂y

∂u
(u, v)

〉
rv(u, v) =

∂T

∂v
(u, v) =

〈
∂x

∂v
(u, v),

∂y

∂v
(u, v)

〉
,

with similar formulas for n = 3. (For n = 1 we have only the single derivative
T ′(u).)

If each of the components of each of the partial derivatives is continuous
(that is, if the partial derivative of each of the x variables with respect to each of
the u variables is continuous) we say that T isC1, or continuously differentiable.

Recall that in Section 14.6 we
gave the following alternativede-
finition of differentiability: f :
D ⊂ Rn → Rm is differentiable
if the limit of

∥f(a+ h)− f(a)−Df(a)h∥
∥h∥

is 0 as h → 0, where Df(a) is
the matrix of partial derivatives
of f at a, and Df(a)h denotes
matrixmultiplication, withh viewed
as a column vector.

If a function T : D ⊂ Rn → E ⊂ Rn is C1, then as with real-valued
functions, being continuously differentiable implies that T is differentiable (in
the sense of the definition from Section 14.6), and therefore continuous. The
derivative of T is then an n× nmatrix. For example, when n = 2, if T (u, v) =
(x(u, v), y(u, v)), we get

DT (u, v) =


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 .
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Notice that, while the gradients ∇x(u, v),∇y(u, v) make up the rows of
the derivative matrix DT (a), the columns of DT (a) are the partial derivative
vectors ru and rv.

Given our function T : D ⊂ Rn → E ⊂ Rn, let us denote byDT thematrix
of partial derivatives, as in Section 14.6. Since the dimension of the domain
and range are the same,DT is a square (n × n) matrix, so we can compute its
determinant, and this, of course, is the Jacobian, as defined in Definition 15.8.8.

Let’s comeback to the change of variables formula. If we let dx denote either
dx, dA, or dV , depending on whether n = 1, 2 or 3, and doing the same for du,
the change of variables formula for a transformation T : D → E can be written
as ∫

E

f(x)dx =
∫
D

f(T (u))|JT (u)|du,

where the integral sign represents a single, double, or triple integral, depend-
ing on the value of n. (So this really is just a generalization of the method of
substitution you learned in Calculus I.)

Note that the properties required for T to be a transformation tell us that
every point ofE corresponds to a point inD, and integrating overD is the same
as integrating over E, once we account for the “stretch factor” of the transfor-
mation given by the Jacobian JT (u). A rigorous proof of the change of variables
formula is very difficult, but we will give an argument at the end of this section
similar to the one we considered for the polar and spherical coordinate transfor-
mations that, although not a complete proof, is at least a plausible explanation.

The general inverse function theorem, which is not stated in most calculus
textbooks, (probably in part because the statement requires defining the matrix
DT of partial derivatives and explaining what the inverse of a matrix is), states
that if T : D → E is one-to-one and onto, then T−1 exists, and moreover, if T
is C1 and JT (u) ̸= 0 for all u ∈ D, then T−1 is also a C1 function, and

DT−1(x) = (DT (u))−1, (15.8.2)

where u = T−1(x).

The −1 on the right-hand side
of Equation (15.8.2) denotes ama-
trix inverse. A basic result from
linear algebra tells us that a ma-
trix is invertible if and only if its
determinant is non-zero, which
is one reason why we require a
nonzero Jacobian inDefinition15.8.12.
(Compare this to the result (f−1)′(x) =

1

f ′(f−1(x))
in one variable.) A useful consequence of Equation (15.8.2) is obtained by taking the determi-

nant of both sides of the above equation (recall that det(A−1) = 1/ det(A) for
any invertible matrix A).

Theorem 15.8.25 The Jacobian of an inverse transformation.

Let T : D → R2 be a one-to-oneC1 mapping with imageE = T (D). If
JT (u) ̸= 0 for all u ∈ D, then T−1 : E → R2 is a transformation, and
the Jacobian of T−1 is given by

JT−1(x) =
1

JT (T−1(x))
.

This result can come in handy in cases where it’s easy to come up with the
inverse mapping u = T−1(x), but hard to solve for x in terms of u to obtain T .youtu.be/watch?v=-kHCIjBbcoA

Figure 15.8.26 Working with the in-
verse of a transformation

Our last technical detail is a theorem that can be very useful when trying to
determine the transformation to use for a change of variables: the boundary
of E must correspond to the boundary of D. This is useful because we usually
would likeD to be as simple as possible, ideally a rectangle (or box, if n = 3).

Since the sides of the rectangle are given by settingu or v equal to a constant,
we look at the curves that define the boundary of E. If the boundary of E can
be expressed in terms of level curves for two functions f(x, y) and g(x, y), we
can define u = f(x, y) and v = g(x, y), which allows us to define T−1(x, y) =

https://www.youtube.com/watch?v=-kHCIjBbcoA
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(f(x, y), g(x, y)). From there, we can try to compute T from T−1, which is a
matter of solving for x and y in terms of u and v.

Theorem 15.8.27 Transformations preserve the boundary.

LetD,E ⊂ Rn be closed, bounded regions. If T : D → E is a transfor-
mation, then the boundary ofE is the image under T of the boundary of
D; that is, if T (u) = x is on the boundary ofE, then u is on the boundary
ofD.

Wewill prove this result in the case that T is one-to-one, with JT (u) ̸= 0, on
all ofD, including the boundary. Note that if this property fails on some portion
on the boundary, this will not affect the integral. For example, if n = 2, the
boundary ofD consists of a finite union of continuous curves, so any portion of
the boundary is a continuous curve, andwe know thatwe can neglect the graphs
of finitely many continuous curves when carrying out an integral. We begin by
first proving a simpler result. A result such as Theorem15.8.28

that is used as a step towards prov-
ing a more substantial result is
often referred to as a lemma.

Theorem 15.8.28 Transformations are open mappings.

If f : A → B is a continuous, one-to-one, and onto mapping from A
to B with continuous inverse f−1 : B → A, then f maps open sets to
open sets. That is, if U ⊂ A is an open subset of A, then the image
f(U) = {f(u) ∈ B|u ∈ U} is an open subset of B.

Proof. Let U ⊂ A be open, and let x ∈ f(U). We need to show that there
exists some δ > 0 such thatNδ(x) = {y ∈ A| ∥x− y∥ < δ} is a subset of f(U).
(By definition, f(U) is open if each element of f(U) has a δ-neighbourhood
completely contained in f(U).) Since f is one-to-one and onto, there exists a
unique v = f−1(x) ∈ U such that f(v) = x. (We must have v ∈ U since
f(v) ∈ f(U).) Since U is open, there exists an ϵ > 0 such thatNϵ(v) ⊂ U .
Now, since f−1 is continuous, there exists a δ > 0 such that if y ∈ Nδ(x), then
f−1(y) ∈ Nϵ(v). But if f−1(y) ∈ Nϵ ⊂ U , then f(f−1(y)) = y ∈ f(U), by
definition of f(U). Thus,Nδ(x) ⊂ f(U), which is what we needed to show. ■

Using the above lemma, we can now give a proof of our theorem.

Proof of Theorem 15.8.27. Let T : D → E be the given transformation, which is
one-to-one and onto, and such that JT (u) ̸= 0 for all u ∈ D. Since T is one-to-
one and onto, we can find an inverse function T−1 : E → D. Since T isC1 and
JT (u) ̸= 0 for all u ∈ D, the inverse function theorem tells us that T−1 must be
C1 on E. Since T and T−1 are both C1, they are differentiable and therefore
continuous.
Now, let x ∈ E be a boundary point. We need to show that x is the image of
a boundary point in D. Recall that x is a boundary point if and only if every
neighbourhood of x contains both points in E and points not in E. Let u =
T−1(x) ∈ D be the element of D that is mapped to x by T . For the sake of
contradiction, suppose that u is not a boundary point ofD. Then since u ∈ D it
must be an interior point ofD, and therefore, there exists some δ > 0 such that
Nδ(u) ⊂ D. (That is, there is a neighbourhood of u that is completely contained
inD.)
However, since T satisfies the conditions of Theorem 15.8.28, we know that T
must map open sets to open sets. In particular, sinceNδ(u) is an open subset of
D, T (Nδ(u))must be an open subset ofE. But since u ∈ Nδ(u), we must have
x = T (u) ∈ T (Nδ(u)), and thus T (Nδ(u)) is an open subset ofE that contains
x, which contradicts the fact that x is a boundary point. Thus, it must be the case
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that u is a boundary point ofD. ■
Note that sinceT−1 : E → D is also a transformationwith the same proper-

ties as T , the converse to this result is valid as well: if u belongs to the boundary
ofD, then T (u) belongs to the boundary of E.

Wewill see howTheorems15.8.27 and15.8.25 are put to use in the following
examples.

Example 15.8.29

Compute
∫∫

E

(
y2

x4
+

x2

y4

)
dA, whereE is the region bounded by y =

x2, y = 2x2, x = y2, and x = 4y2.
Solution. The region E is pictured in Figure 15.8.30 below. We need
to find a region D ⊂ R2 and a transformation T : D → R2 whose
image is E. We use the fact that T must map the boundary ofD to the
boundary of E as a guideline. In particular, note that since T is C1, it
must map smooth curves to smooth curves by the chain rule. This tells
us that the corners of E must correspond to the corners of D, and in
particular, that each of the four curves that make up the boundary of E
must come from four curves that make up the boundary ofD. Since we
would like the integral overD to be as simple as possible, we try to find
a transformation such thatD is a rectangle.

1

1

x

y

Figure 15.8.30 The region of integra-
tion for Example 15.8.29

Since the sides of a rectangle in the uv-plane are given by either u =
constant or v = constant, we try to express the boundary ofE in terms
of level curves u(x, y) = c1, c2 and v(x, y) = d1, d2. Let’s look at the
curves y = x2 and y = 2x2. These both belong to the family of curves
y = cx2, or

y

x2
= c, so we set u(x, y) =

y

x2
. The region between these

two parabolas is then given by 1 ≤ u ≤ 2, or u ∈ [1, 2]. Similarly, the
other two sides of the boundary of E, given by x = y2 and x = 4y2

both belong to the family of curves x = dy2, or
x

y2
= d. This suggests

that we take v(x, y) =
x

y2
, with 1 ≤ v ≤ 4.

We have now determined a map S : E → D = [1, 2]× [1, 4] given by

S(x, y) =

(
y

x2
,
x

y2

)
.

This map is one-to-one and onto (check this), clearly C1, and has Jaco-
bian

JS(x, y) =
∂

∂x

( y

x2

) ∂

∂y

(
x

y2

)
− ∂

∂x

(
x

y2

)
∂

∂y

( y

x2

)
=

3

x2y2
,

which is defined and non-zero on all ofE. This means that S = T−1 for
some transformation T : D → E. We can now proceed to compute the
integral via change of variables in one of two ways:

1. Directly, by solving for x and y in terms of u and v, which will give
us the transformation T .

From u =
y

x2
we get y = ux2, so x = vy2 = vu2x4. Since x ̸= 0

on E, this gives us x−3 = u2v, so x = u−2/3v−1/3, and thus
y = ux2 = u−1/3v−2/3. The transformation T is thus T (u, v) =
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(u−2/3v−1/3, u−1/3v−2/3), and its Jacobian is given by

JT (u, v) =
∂

∂u
(u−2/3v−1/3)

∂

∂v
(u−1/3v−2/3)− ∂

∂u
(u−1/3v−2/3)

∂

∂v
(u−2/3v−1/3)

=
1

3u2v2
.

The integral is therefore∫∫
E

(
x2

y4
+

y2

x4

)
dA =

∫∫
D

(
v2 + u2

) ∣∣∣∣ 1

3u2v2

∣∣∣∣ du dv
=

1

3

∫ 4

1

∫ 2

1

(
1

u2
+

1

v2

)
du dv

=
1

3

∫ 4

1

(
−1

2
− −1

1
+

1

v2

)
dv.

2. Indirectly, using the fact that JT (u, v) =
1

JT−1(x(u, v), y(u, v))
.

From the above, we have that JT−1(x, y) = 3
x2y2 , so JT (u, v) =

1
3 (x(u, v))

2(y(u, v))2. From u =
y

x2
and v =

x

y2
, we have uv =

xy

x2y2
=

1

xy
. Thus, x2y2 =

1

u2v2
, so JT (u, v) =

1

3u2v2
as before.

From here we can proceed as above.

Example 15.8.31

Compute
∫∫

E

xy dA, where E is the region in the first quadrant

bounded by y = x, y = 4x, y = 1/x, and y = 2/x.
Solution. We need to find a region D ⊂ R2 and a transformation
T : D → R2 whose image is E. This problem is almost identical to
the one we solved in Example 15.8.22, where wewere given a change of
variables whose domain was still somewhat complicated. This time, we
look for a transformation with a rectangular domain.
Using the principle that T must map the boundary ofD to the boundary
of E as above, we set u =

y

x
, so that 1 ≤ u ≤ 4 gives the region

between y = x and y = 4x, and v = xy, so that 1 ≤ v ≤ 2 gives the
region between y = 1/x and y = 2/x. Thus the desired transformation
is defined on the rectangleD = [1, 4] × [1, 2] and has an inverse given
by T−1(x, y) = (y/x, xy).

1 2

1

2

3

4

x

y

Figure 15.8.32 The region of integra-
tion in Example 15.8.31

This time we leave the direct method (solving for x and y in terms of u
and v) as an exercise and use the indirect method. The Jacobian of T−1

is given by

JT−1(x, y) = det


∂

∂x

(y
x

) ∂

∂y

(y
x

)
∂

∂x
(xy)

∂

∂y
(xy)

 = det


−y

x2

1

x

y x

 =
−2y

x
.



926 CHAPTER 15. MULTIPLE INTEGRATION

The Jacobian of T is thus

JT (u, v) =
1

J−1
T (x(u, v), y(u, v))

= − x(u, v)

2y(u, v)
= − 1

2u
,

since u = y/x. The integral is then∫∫
E

xy dA =

∫∫
D

x(u, v)y(u, v)|JT (u, v)| du dv

=

∫ 2

1

∫ 4

1

v

(
1

2u

)
du dv

=

∫ 2

1

v

2
(ln 4− ln 1) dv.

youtu.be/watch?v=hSDH3FnD97w

Figure 15.8.33 A video presentation
of Example 15.8.31, with slightly dif-
ferent numbers

15.8.5 Understanding the change of variables formula
We now have some practice working with the change of variables formula, but
why is it valid? In any dimension, the formula has the form∫

T (D)

f(x)dx =
∫
D

f(T (u))|JT (u)|du,

if we let the symbol
∫
stand for a single, double, or triple integral as necessary.

In practice, we use the formula in one of two ways:

• Right-to-left, because it is easier to compute antiderivatives for the func-
tion f(x). This is the case with change of variables for single integrals.

• Left-to-right, because the domainD is a simpler region of integration than
T (D), such as the examples above, as well as the transformations to po-
lar, cylindrical, or spherical coordinates considered earlier. (Of course, we
might also get lucky and find that our function simplifies as well!)

Let’s consider this formula in the intermediate case of a double integral. If
the function f is positive throughout the region E = T (D), we can interpret
the integral on the left as a volume. In terms of Riemann sums, we are adding
up volumes of boxes:

∆Vij = f(xij , yij)∆xi ∆yj .

Just as f(x) ≈ T ′(u)∆u in one variable, the validity of the change of vari-
ables formula rests on the approximation

∆xi ∆yj ≈ |JT (uij , vij)|∆ui ∆vj .

The distortion in area caused by the mapping T when we move from the region
D in the u, v plane to the region E in the x, y plane is hidden within the dx dy
area element in the integral on the left-hand side.

To ensure that both integrals compute the same volume, the Jacobian is in-
troduced as part of the integrand on the right-hand side to produce a corre-
sponding change in height:

∆Vij ≈ (f(xij , yij))︸ ︷︷ ︸
height

(|JT (uij , vij)|∆ui ∆vj)︸ ︷︷ ︸
area

= (f(T (uij , vij))|JT (uij , vij)|)︸ ︷︷ ︸
height

(∆ui ∆vj)︸ ︷︷ ︸
area

.

https://www.youtube.com/watch?v=hSDH3FnD97w
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Appropriately interpreted, the only differences between the integrals on ei-
ther side are the labelling of the variables, and whether the Jacobian provides a
measure of height, or of area, in the calculation of volume.

In general, transformations produce what are called “curvilinear coordinate
systems”: the original linear coordinate system in the u, v plane, with grid lines
given by u = constant or v = constant is transformed into a “grid of curves” in
the x, y plane. This is the case, for example, with the polar coordinate transfor-
mation, as seen in Figure 15.8.34 below.

1 2 3 4 5

π/4

π/2

3π/4

π

5π/4

3π/2

r

θ

T

0

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

Figure 15.8.34 Correspondence between rectangular and polar grid lines
For another example, consider the transformation T given by

T (u, v) = (u1/3v−1/3, u2/3v1/3), T−1(x, y) =
(
xy,

y

x2

)
.

A grid in the u, v plane is transformed to two families of curves: lines u = m,
v = n, where m,n are constants become the curves y = m

x and y = nx2,
respectively. The transformation is pictured in Figure 15.8.35 below.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

u

v

T

1 2

1

2

3

4

x

y

Figure 15.8.35 Visualizing a general transformation
In Figure 15.8.35 we’ve highlighted one of the rectangles in our grid to see

how it’s transformed. Imagine now that our grid lines are much finer, coming
not from the integer values of u and v, but from a partition of a rectangle D
in the u, v plane. Zooming in, we’d see that each rectangle in the partition is
transformed much like the one above.

Indeed, recall the following philosophy from Section 14.6: the transforma-
tion T maps points in the u, v plane to points in the x, y plane. The derivative
matrix DT (u, v) of T at a point (u, v), when viewed as the matrix of a linear
transformation, maps (tangent) vectors at the point (u, v) to (tangent) vectors
at the point (x, y) = T (u, v). (This is a consequence of the Chain Rule.)

This also fits with a general phi-
losophy of differential calculus:
the derivative of a function at a
point determines the best linear
approximation to that function
near that point. It seems only
fitting, then, that the best linear
approximation to a transforma-
tion is a linear transformation!

Consider a general transformation T (u, v) = (x(u, v), y(u, v)) and a uni-
form partition of the domain of T . At a point (ui, vj) in our partition, the lines
u = ui and v = vj can be viewed as parametric curves:

r⃗1(t) = ⟨t, vj⟩, for ui ≤ t ≤ ui +∆u, and
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r⃗2(t) = ⟨ui, t⟩, for vj ≤ t ≤ vj +∆v.

Tangent vectors to these curves are given by

r⃗1
′(t) = ⟨1, 0⟩ = i⃗ and r⃗2

′(t) = ⟨0, 1⟩ = j⃗.

The (i, j)-th rectangle, given by ui ≤ u ≤ ui +∆u and vj ≤ v ≤ vj +∆v, has
area∆uDeltav.

Viewed anotherway, this rectangle is a parallelogram spanned by the vectors
∆u⃗i and∆vj⃗. The area of this parallelogram is given by the determinant of the
matrix whose columns are these vectors. Of course, this produces the same
area:

det
[
∆u 0

0 ∆v

]
= ∆u∆v.

Now, let’s consider the corresponding region in the x, y plane. The curves
in Figure 15.8.35 above can also be realized as parametric curves. In fact, they
are precisely the composition of the curves abovewith our transformation, if we
view T as a vector-valued function. We have curves

s⃗1(t) = T (r⃗1(t)) = T (t, vj) = ⟨x(t, vj), y(t, vj)⟩
s⃗2(t) = T (r⃗2(t)) = T (ui, t) = ⟨x(ui, t), y(ui, t)⟩

making up two of the four sides of our transformed rectangle.
Now, s⃗1(t) and s⃗2(t) are curves in general, not lines, and the image of our

rectangle is no longer rectangular. But for∆u,∆v small enough, our curves are
approximately linear, and the image of our rectangle is approximately a paral-
lelogram. See Figure 15.8.36.

We can make linear approximations to vector-valued functions in much the
same way as we do for real-valued functions. We have

s⃗1(ui +∆u)− s⃗1(ui) ≈ s⃗1
′(ui)∆u,

with a similar result for s⃗2. This means that we can approximate the area of our
transformed rectangle using the parallelogram spanned by the vectors

a⃗ = ∆us⃗1
′(ui) = ∆u

〈
∂x

∂u
(ui, vj),

∂y

∂u
(ui, vj)

〉
b⃗ = ∆us⃗2

′(ui) = ∆u

〈
∂x

∂v
(ui, vj),

∂y

∂v
(ui, vj)

〉
.

Recall that the Chain Rule gives
us

d

dt
(x(r⃗(t))) = ∇x(r⃗(t)) · r⃗ ′(t),

with an analogous result for y(r⃗(t)).
Applying this for the curves r⃗1(t)
and r⃗2(t) above allowsus to com-
pute the derivatives s⃗1 ′(t) and
s⃗2

′(t).
Note further that we can ob-

tain the same result by writing
i⃗ and j⃗ as column vectors, and
multiplying by thematrixDT (ui, vj)
— this is the sense in which the
derivative acts as a linear trans-
formation on vectors.

Figure 15.8.36 A transformed rectan-
gle and its parallelogram approxima-
tion

The area of our transformed region is therefore approximated by the area of
the parallelogram spanned by the vectors a⃗ and b⃗:

∆A ≈ det
[
xu(ui, vj)∆u xv(ui, vj)∆v

yu(ui, vj)∆u yv(ui, vj)∆v

]
= det

[
xu(ui, vj) xv(ui, vj)

yu(ui, vj) yv(ui, vj)

]
∆u∆v

= JT (ui, vj)∆u∆v.

This is exactly the result we wanted: the area of our transformed rectangle is
approximately the area of the original rectangle, multiplied by the Jacobian.

We can begin to see the change of variables formula by putting this result
into the Riemann sum definition of the double integral:

f(xi, yj)∆x∆y ≈ f(T (ui, vj)) · JT (ui, vj)∆ui∆vj .
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This equation should be viewed somewhat skeptically. The area element on the
left is that of a rectangle, not the parallelogram we ended up with above. The
argument given here is far from a complete proof of Theorem 15.8.17, but the
result is true nonetheless. The interested reader is directed to search online, or
seek out the advanced calculus section of their library, should they wish to see
a proof.





Chapter 16

Vector Analysis

This chapter explores completely different relationships between vectors and
integration. These relationships will enable us to compute the work done by a
magnetic field in moving an object along a path and find how much air moves
through an oddly-shaped screen in space, among other things.

Our upcoming work with integration will benefit from a review. We are
not concerned here with techniques of integration, but rather what an integral
“does” and how that relates to the notation we use to describe it.

Integration review.

Recall from Section 15.1 that when R is a region in the xy-plane,∫∫
R
dA gives the area of the region R. The integral symbols are “elon-

gated esses” meaning “sum” and dA represents “a small amount of
area.” Taken together,

∫∫
R
dA means “sum up, over R, small amounts

of area.” This sum then gives the total area of R. We use two integral
symbols sinceR is a two-dimensional region.

Now let z = f(x, y) represent a surface. The integral∫∫
R
f(x, y) dAmeans “sum up, over R, function values (heights) given

by f times small amounts of area.” Since “height × area = volume,” we
are summing small amounts of volume over R, giving the total signed
volume under the surface z = f(x, y) and above the xy-plane.

This notation does not directly inform us how to evaluate the double
integrals to find an area or a volume. With additional work, we recognize
that a small amount of area dA can be measured as the area of a small
rectangle, with one side length a small change in x and the other side
length a small change in y. That is, dA = dx dy or dA = dy dx. We
could also compute a small amount of area by thinking in terms of polar
coordinates, where dA = r dr dθ. These understandings lead us to the
iterated integrals we used in Chapter 15.

Let us back our review up farther. Note that
∫ 3

1
dx = x

∣∣3
1
= 3−1 =

2. We have simply measured the length of the interval [1, 3]. We could
rewrite the above integral using syntax similar to the double integral syn-
tax above: ∫ 3

1

dx =

∫
I

dx, where I = [1, 3] .

We interpret “
∫
I
dx” as meaning “sum up, over the interval I , small

changes inx.” A change inx is a length along thex-axis, sowe are adding
up along I small lengths, giving the total length of I .

931
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We could also write
∫ 3

1
f(x) dx as

∫
I
f(x) dx, interpreted as “sum

up, over I , heights given by y = f(x) times small changes in x.” Since
“height×length = area,” we are summing up areas and finding the total
signed area between y = f(x) and the x-axis.

This method of referring to the process of integration can be very
powerful. It is the core of our notion of the Riemann Sum. When faced
with a quantity to compute, if one can think of a way to approximate
its value through a sum, the one is well on their way to constructing an
integral (or, double or triple integral) that computes the desired quantity.
We will demonstrate this process throughout this chapter, starting with
the next section.

16.1 Introduction to Line Integrals

We first used integration to find “area under a curve.” In this section, we learn
to do this (again), but in a different context.

16.1.1 Line Integrals of Functions

youtu.be/watch?v=ponQzAg7V3I

Figure 16.1.1 Introducing the line in-
tegral

Consider the surface and curve shown in Figure 16.1.2(a). The surface is
given by f(x, y) = 1− cos(x) sin(y). The dashed curve lies in the xy-plane and
is the familiar y = x2 parabola from −1 ≤ x ≤ 1; we’ll call this curve C. The
curve drawn with a solid line in the graph is the curve in space that lies on our
surface with x and y values that lie on C.

The question we want to answer is this: what is the area that lies below
the curve drawn with the solid line? In other words, what is the area of the
region above C and under the the surface z = f(x, y)? This region is shown in
Figure 16.1.2(b).

We suspect the answer can be found using an integral, but before trying to
figure out what that integral is, let us first try to approximate its value.

(a) (b) (c)

Figure 16.1.2 Finding area under a curve in space
In Figure 16.1.2(c), four rectangles have been drawn over the curve C. The

bottom corners of each rectangle lie onC, and each rectangle has a height given
by the function f(x, y) for some (x, y) pair along C between the rectangle’s
bottom corners.

As we know how to find the area of each rectangle, we are able to approxi-
mate the area above C and under f . Clearly, our approximation will be an ap-
proximation. The heights of the rectangles do notmatch exactlywith the surface
f , nor does the base of each rectangle follow perfectly the path of C.

https://www.youtube.com/watch?v=ponQzAg7V3I
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In typical calculus fashion, our approximation can be improvedby usingmore
rectangles. The sum of the areas of these rectangles gives an approximate value
of the true area above C and under f . As the area of each rectangle is “height
× width”, we assert that the

area above C ≈
∑

( heights × widths ).

When first learning of the integral, and approximating areas with “heights ×
widths”, the width was a small change in x: dx. That will not suffice in this con-
text. Rather, each width of a rectangle is actually approximating the arc length
of a small portion of C. In Section 12.5, we used s to represent the arc-length
parameter of a curve. A small amount of arc length will thus be represented by
ds.

The height of each rectangle will be determined in some way by the surface
f . If we parametrizeC by s, an s-value corresponds to an (x, y) pair that lies on
the parabola C. Since f is a function of x and y, and x and y are functions of s,
we can say that f is a function of s. Given a value s, we can compute f(s) and
find a height. Thus

area under f and above C ≈
∑

( heights × widths );

area under f and above C = lim
∥∆s∥→0

∑
f(ci)∆si

=

∫
C

f(s) ds. (16.1.1)

Here we have introduce a new notation, the integral symbol with a subscript
of C. It is reminiscent of our usage of

∫∫
R
. Using the train of thought found

in the Integration Review preceding this section, we interpret “
∫
C
f(s) ds” as

meaning “sum up, along a curve C, function values f(s)×small arc lengths.” It
is understood here that s represents the arc-length parameter.

All this leads us to a definition. The integral found in Equation (16.1.1) is
called a line integral. We formally define it below, but note that the definition is
very abstract. On one hand, one is apt to say “the definitionmakes sense,” while
on the other, one is equally apt to say “but I don’t know what I’m supposed to
do with this definition.” We’ll address that after the definition, and actually find
an answer to the area problem we posed at the beginning of this section.

Definition 16.1.3 Line Integral Over A Scalar Field.

Let C be a smooth curve parametrized by s, the arc-length parameter,
and let f be a continuous function of s. A line integral is an integral of
the form ∫

C

f(s) ds = lim
∥∆s∥→0

n∑
i=1

f(ci)∆si,

where s0 < s1 < . . . < sn is any partition of the s-interval over which
C is defined, ci is any value in the ith subinterval, ∆si is the width of
the ith subinterval, and ∥∆s∥ is the length of the longest subinterval in
the partition.

Note: Definition 16.1.3 uses the
term scalar field which has not
yet been defined. Its meaning is
discussed in the paragraph pre-
ceding Definition 16.3.2 when it
is compared to a vector field.

When C is a closed curve, i.e., a curve that ends at the same point at which
it starts, we use ∮

C

f(s) ds instead of
∫
C

f(s) ds.

The definition of the line integral does not specify whether C is a curve in
the plane or space (or hyperspace), as the definition holds regardless. For now,
we’ll assume C lies in the xy-plane.
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This definition of the line integral doesn’t really say anything new. If C is a
curve and s is the arc-length parameter of C on a ≤ s ≤ b, then∫

C

f(s) ds =

∫ b

a

f(s) ds.

The real differencewith this integral from the standard “
∫ b

a
f(x) dx”weused

in the past is that of context. Our previous integrals naturally summed up values
over an interval on the x-axis, whereas now we are summing up values over a
curve. If we can parametrize the curve with the arc-length parameter, we can
evaluate the line integral just as before. Unfortunately, parametrizing a curve in
terms of the arc-length parameter is usually very difficult, so we must develop a
method of evaluating line integrals using a different parametrization.

Given a curve C, find any parametrization of C: x = g(t) and y = h(t),
for continuous functions g and h, where a ≤ t ≤ b. We can represent this
parametrization with a vector-valued function, r⃗(t) = ⟨g(t), h(t)⟩.

In Section 12.5, we defined the arc-length parameter in Equation (12.5.1) as

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du.

By the Fundamental Theorem of Calculus, ds = ∥r⃗ ′(t)∥ dt. We can substi-
tute the right hand side of this equation for ds in the line integral definition.

We can view f as being a function of x and y since it is a function of s. Thus
f(s) = f(x, y) = f

(
g(t), h(t)

)
. This gives us a concrete way to evaluate a line

integral: ∫
C

f(s) ds =

∫ b

a

f
(
g(t), h(t)

)
∥r⃗ ′(t)∥ dt.

We restate this as a theorem, along with its three-dimensional analogue,
followed by an example where we finally evaluate an integral and find an area.

Theorem 16.1.4 Evaluating a Line Integral Over A Scalar Field.

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t)⟩, a ≤ t ≤ b,
where g and h are continuously differentiable, and let z = f(x, y),
where f is continuous over C. Then∫

C

f(s) ds =

∫ b

a

f
(
g(t), h(t)

)
∥r⃗ ′(t)∥ dt.

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t), k(t)⟩, a ≤
t ≤ b, where g, h and k are continuously differentiable, and let
w = f(x, y, z), where f is continuous over C. Then∫

C

f(s) ds =

∫ b

a

f
(
g(t), h(t), k(t)

)
∥r⃗ ′(t)∥ dt.

To be clear, the first point of Theorem 16.1.4 can be used to find the area
under a surface z = f(x, y) and above a curve C. We will later give an under-
standing of the line integral when C is a curve in space.

Let’s do an example where we actually compute an area.
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Example 16.1.5 Evaluating a line integral: area under a surface over a
curve.

Find the area under the surface f(x, y) = cos(x) + sin(y) + 2 over the
curve C, which is the segment of the line y = 2x + 1 on −1 ≤ x ≤ 1,
as shown in Figure 16.1.6.

(a) (b)

Figure 16.1.6 Finding area under a curve in Example 16.1.5

Solution. Our first step is to represent C with a vector-valued function.
Since C is a simple line, and we have a explicit relationship between y
and x (namely, that y is 2x+1), we can let x = t, y = 2t+1, and write
r⃗(t) = ⟨t, 2t+ 1⟩ for−1 ≤ t ≤ 1.
We find the values of f over C as f(x, y) = f(t, 2t + 1) = cos(t) +
sin(2t + 1) + 2. We also need ∥r⃗ ′(t)∥; with r⃗ ′(t) = ⟨1, 2⟩, we have
∥r⃗ ′(t)∥ =

√
5. Thus ds =

√
5 dt.

The area we seek is∫
C

f(s) ds =

∫ 1

−1

(
cos(t) + sin(2t+ 1) + 2

)√
5 dt

=
√
5
(
sin(t)− 1

2
cos(2t+ 1) + 2t

)∣∣∣∣1
−1

≈ 14.418 units 2.

We will practice setting up and evaluating a line integral in another example,
then find the area described at the beginning of this section.

Example 16.1.7 Evaluating a line integral: area under a surface over a
curve.

Find the area over the unit circle in the xy-plane and under the graph of
f(x, y) = x2 − y2 + 3, shown in Figure 16.1.8.



936 CHAPTER 16. VECTOR ANALYSIS

(a) (b)

Figure 16.1.8 Finding area under a curve in Example 16.1.7

Solution. The curveC is the unit circle, which we will describe with the
parametrization r⃗(t) = ⟨cos t, sin t⟩ for 0 ≤ t ≤ 2π. We find ∥r⃗ ′(t)∥ =
1, so ds = 1dt.
We find the values of f over C as f(x, y) = f(cos t, sin t) = cos2 t −
sin2 t + 3. Thus the area we seek is (note the use of the

∮
f(s)ds nota-

tion): ∮
C

f(s) ds =

∫ 2π

0

(
cos2 t− sin2 t+ 3

)
dt

= 6π.

(Note: we may have approximated this answer from the start. The unit
circle has a circumference of 2π, and we may have guessed that due to
the apparent symmetry of our surface, the average height of the surface
is 3.)

We now consider the example that introduced this section.

Example 16.1.9 Evaluating a line integral: area under a surface over a
curve.

Find the area under f(x, y) = 1 − cos(x) sin(y) and over the parabola
y = x2, from−1 ≤ x ≤ 1.
Solution. We parametrize our curveC as r⃗(t) = ⟨t, t2⟩ for−1 ≤ t ≤ 1;
we find ∥r⃗ ′(t)∥ =

√
1 + 4t2, so ds =

√
1 + 4t2 dt.

Replacing x and ywith their respective functions of t, we have f(x, y) =
f(t, t2) = 1− cos(t) sin(t2). Thus the area under f and overC is found
to be ∫

C

f(s) ds =

∫ 1

−1

(
1− cos(t) sin

(
t2
))√

1 + t2 dt.

This integral is impossible to evaluate using the techniques developed
in this text. We resort to a numerical approximation; accurate to two
places after the decimal, we find the area is

= 2.17.

We give one more example of finding area.
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Example 16.1.10 Evaluating a line integral: area under a curve in space.

Find the area above the xy-plane and below the helix parametrized by
r⃗(t) = ⟨cos t, 2 sin t, t/π⟩, for 0 ≤ t ≤ 2π, as shown in Figure 16.1.11.

Figure 16.1.11 Finding area under a
curve in Example 16.1.10

Solution. Note how this is problem is different than the previous exam-
ples: here, the height is not given by a surface, but by the curve itself.
We use the given vector-valued function r⃗(t) to determine the curve C
in the xy-plane by simply using the first two components of \vec r(t):
c⃗(t) = ⟨cos t, 2 sin t⟩. Thus ds = ∥c⃗ ′(t)∥ dt =

√
sin2 t+ 4 cos2 t dt.

The height is not found by evaluating a surface over C, but rather it is
given directly by the third component of \vec r(t): t/π. Thus∮

C

f(s) ds =

∫ 2π

0

t

π

√
sin2 t+ 4 cos2 t dt ≈ 9.69,

where the approximation was obtained using numerical methods.

youtu.be/watch?v=EN9r0JKI5uY

Figure 16.1.12 Another line integral
example

Note how in each of the previous examples we are effectively finding “area
under a curve”, just as we did when first learning of integration. We have used
the phrase “area over a curve C and under a surface,” but that is because of
the important role C plays in the integral. The figures show how the curve C
defines another curve on the surface z = f(x, y), and we are finding the area
under that curve.

16.1.2 Properties of Line Integrals
Many properties of line integrals can be inferred from general integration prop-
erties. For instance, if k is a scalar, then

∫
C
k f(s)ds = k

∫
C
f(s)ds.

One property in particular of line integrals is worth noting. If C is a curve
composed of subcurves C1 and C2, where they share only one point in com-
mon (see Figure 16.1.13(a), then the line integral over C is the sum of the line
integrals over C1 and C2:∫

C

f(s) ds =

∫
C1

f(s) ds+

∫
C2

f(s) ds.

A
B

D

C1

C2

(a)

A
B

D

C1 C2

(b)

Figure 16.1.13 Illustrating properties of line integrals
This property allows us to evaluate line integrals over some curves C that

are not smooth. Note how in Figure 16.1.13(b) the curve is not smooth at D,
so by our definition of the line integral we cannot evaluate

∫
C
f(s)ds. However,

one can evaluate line integrals overC1 andC2 and their sumwill be the desired
quantity.

A curveC that is composed of two ormore smooth curves is said to be piece-
wise smooth. In this chapter, any statement that is made about smooth curves
also holds for piecewise smooth curves.

We state these properties as a theorem.

https://www.youtube.com/watch?v=EN9r0JKI5uY
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Theorem 16.1.14 Properties of Line Integrals Over Scalar Fields.

1. Let C be a smooth curve parametrized by the arc-length parame-
ter s, let f and g be continuous functions of s, and let k1 and k2
be scalars. Then∫

C

(
k1f(s) + k2g(s)

)
ds = k1

∫
C

f(s) ds+ k2

∫
C

g(s) ds.

2. Let C be piecewise smooth, composed of smooth components C1

and C2. Then∫
C

f(s) ds =

∫
C1

f(s) ds+

∫
C2

f(s) ds.

16.1.3 Mass and Center of Mass
We first learned integration as a method to find area under a curve, then later
used integration to compute a variety of other quantities, such as arc length,
volume, force, etc. In this section, we also introduced line integrals as a method
to find area under a curve, and now we explore one more application.

Let a curve C (either in the plane or in space) represent a thin wire with
variable density δ(s). We can approximate the mass of the wire by dividing the
wire (i.e., the curve) into small segments of length∆si and assume the density
is constant across these small segments. Themass of each segment is density of
the segment × its length; by summing up the approximatemass of each segment
we can approximate the total mass:

Total Mass of Wire =
∑

δ(si)∆si.

By taking the limit as the length of the segments approaches 0, we have the
definition of the line integral as seen in Definition 16.1.3. When learning of the
line integral, we let f(s) represent a height; now we let f(s) = δ(s) represent
a density.

We can extend this understanding of computing mass to also compute the
center of mass of a thin wire. (As a reminder, the center of mass can be a useful
piece of information as objects rotate about that center.) We give the relevant
formulas in the next definition, followed by an example. Note the similarities
between this definition and Definition 15.6.30, which gives similar properties of
solids in space.

Definition 16.1.15 Mass, Center of Mass of Thin Wire.

Let a thin wire lie along a smooth curveC with continuous density func-
tion δ(s), where s is the arc length parameter.

1. Themass of the thin wire isM =

∫
C

δ(s) ds.

2. Themoment about the yz-plane isMyz =

∫
C

xδ(s) ds.

3. Themoment about the xz-plane isMxz =

∫
C

yδ(s) ds.
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4. Themoment about the xy-plane isMxy =

∫
C

zδ(s) ds.

5. The center of mass of the wire is

(x, y, z) =

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 16.1.16 Evaluating a line integral: calculating mass.

A thin wire follows the path r⃗(t) = ⟨1 + cos t, 1 + sin t, 1 + sin(2t)⟩,
0 ≤ t ≤ 2π. The density of the wire is determined by its position in
space: δ(x, y, z) = y + z gm/cm. The wire is shown in Figure 16.1.17,
where a light color indicates low density and a dark color represents high
density. Find the mass and center of mass of the wire.

Figure 16.1.17 Finding the mass of a
thin wire in Example 16.1.16

Solution. We compute the density of the wire as

δ(x, y, z) = δ
(
1 + cos t, 1 + sin t, 1 + sin(2t)

)
= 2 + sin t+ sin(2t).

We compute ds as

ds = ∥r⃗ ′(t)∥ dt =

√
sin2 t+ cos2 t+ 4 cos2(2t) dt =

√
1 + 4 cos2(2t) dt.

Thus the mass is

M =

∮
C

δ(s) ds =

∫ 2π

0

(
2+sin t+sin(2t)

)√
1 + 4 cos2(2t) dt ≈ 21.08 gm .

We compute the moments about the coordinate planes:

Myz =

∮
C

xδ(s) ds

=

∫ 2π

0

(1 + cos t)
(
2 + sin t+ sin(2t)

)√
1 + 4 cos2(2t) dt

≈ 21.08.

Mxz =

∮
C

yδ(s) ds

=

∫ 2π

0

(1 + sin t)
(
2 + sin t+ sin(2t)

)√
1 + 4 cos2(2t) dt

≈ 26.35

Mxy =

∮
C

zδ(s) ds

=

∫ 2π

0

(
1 + sin(2t)

)(
2 + sin t+ sin(2t)

)√
1 + 4 cos2(2t) dt

≈ 25.40

Thus the center of mass of the wire is located at

(x, y, z) =

(
Myz

M
,
Mxz

M
,
Mxy

M

)
≈ (1, 1.25, 1.20),

as indicated by the dot in Figure 16.1.17. Note how in this example, the
curveC is “centered” about the point (1, 1, 1), though the variable den-
sity of the wire pulls the center of mass out along the y and z axes.
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We end this section with a callback to the Integration Review that preceded
this section. A line integral looks like:

∫
C
f(s) ds. As stated before the definition

of the line integral, this means “sum up, along a curveC, function values f(s) ×
small arc lengths.” When f(s) represents a height, we have “height × length =
area.” When f(s) is a density (andwe use δ(s) by convention), we have “density
(mass per unit length) × length = mass.”

In the next section, we investigate a new mathematical object, the vector
field. The remaining sections of this chapter are devoted to understanding inte-
gration in the context of vector fields.
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16.1.4 Exercises

Terms and Concepts

1. Explain how a line integral can be used to find the area under a curve.

2. How does the evaluation of a line integral given as
∫
C
f(s) ds differ from a line integral given as

∮
C
f(s) ds?

3. Why are most line integrals evaluated using Theorem 16.1.4 instead of “directly” as
∫
C
f(s) ds?

4. Sketch a closed, piecewise smooth curve composed of three subcurves.

Problems

Exercise Group. In the following exercises, a planar curve C is given along with a function f that is defined over C.

Evaluate the line integral
∫
C

f(s) ds.

5. C is the line segment joining the points
(−2,−1) and (1, 2); the function is
f(x, y) = x2 + y2 + 2.

6. C is the segment of y = 3x+ 2 on [1, 2]; the
function is f(x, y) = 5x+ 2y.

7. C is the circle with radius 2 centered at the
point (4, 2); the function is f(x, y) = 3x− y.

8. C is the curve given by
r⃗(t) = ⟨cos t+ t sin t, sin t− t cos t⟩ on [0, 2π];
the function is f(x, y) = 5.

9. C is the piecewise curve composed of the line
segments that connect (0, 1) to (1, 1), then
connect (1, 1) to (1, 0); the function is
f(x, y) = x+ y2.

10. C is the piecewise curve composed of the line
segment joining the points (0, 0) and (1, 1),
along with the quarter-circle parametrized by
⟨cos t,− sin t+ 1⟩ on [0, π/2](which starts at
the point (1, 1) and ends at (0, 0); the function
is f(x, y) = x2 + y2.

Exercise Group. In the following exercises, a planar curve C is given along with a function f that is defined over C.

Set up the line integral
∫
C

f(s) ds, then approximate its value using technology.

11. C is the portion of the parabola y = 2x2+x+1
on [0, 1]; the function is f(x, y) = x2 + 2y.

12. C is the portion of the curve y = sinx on [0, π];
the function is f(x, y) = x.

13. C is the ellipse given by r⃗(t) = ⟨2 cos t, sin t⟩ on
[0, 2π]; the function is f(x, y) = 10− x2 − y2.

14. C is the portion of y = x3 on [−1, 1]; the
function is f(x, y) = 2x+ 3y + 5.

Exercise Group. In the following exercises, a parametrized curveC in space is given. Find the area above thexy-plane
that is under C.

15. C: r⃗(t) = ⟨5t, t, t2⟩ for 1 ≤ t ≤ 2. 16. C: r⃗(t) = ⟨cos t, sin t, sin(2t) + 1⟩ for
0 ≤ t ≤ 2π.

17. C: r⃗(t) = ⟨3 cos t, 3 sin t, t2⟩ for 0 ≤ t ≤ 2π. 18. C: r⃗(t) = ⟨3t, 4t, t⟩ for 0 ≤ t ≤ 1.

Exercise Group. In the following exercises, a parametrized curve C is given that represents a thin wire with density
δ. Find the mass and center of mass of the thin wire.

19. C: r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π;
δ(x, y, z) = z.

20. C: r⃗(t) = ⟨t− t2, t2− t3, t3− t4⟩ for 0 ≤ t ≤ 1;
δ(x, y, z) = x+ 2y + 2z. Use technology to
approximate the value of each integral.
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16.2 Vector Fields

We have studied functions of two and three variables, where the input of such
functions is a point (either a point in the plane or in space) and the output is a
number.

We could also create functions where the input is a point (again, either in
the plane or in space), but the output is a vector. For instance, we could create
the following function: F⃗ (x, y) = ⟨x+ y, x− y⟩, where F⃗ (2, 3) = ⟨5,−1⟩. We
are to think of F⃗ assigning the vector ⟨5,−1⟩ to the point (2, 3); in some sense,
the vector ⟨5,−1⟩ lies at the point (2, 3).

youtu.be/watch?v=hnQqjC0cwKY

Figure 16.2.1 Introducing vector
fields

Such functions are extremely useful in any context where magnitude and
direction are important. For instance, we could create a function F⃗ that repre-
sents the electromagnetic force exerted at a point by a electromagnetic field, or
the velocity of air as it moves across an airfoil.

Because these functions are so important, we need to formally define them.

Definition 16.2.2 Vector Field.

1. A vector field in the plane is a function F⃗ (x, y)whose domain is a
subset of R2 and whose output is a two-dimensional vector:

F⃗ (x, y) = ⟨M(x, y), N(x, y)⟩.

2. A vector field in space is a function F⃗ (x, y, z) whose domain is a
subset of R3 and whose output is a three-dimensional vector:

F⃗ (x, y, z) = ⟨M(x, y, z), N(x, y, z), P (x, y, z)⟩.

This definition may seem odd at first, as a special type of function is called a
“field.” However, as the function determines a “field of vectors”, we can say the
field is defined by the function, and thus the field is a function.

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(a)

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(b)

Figure 16.2.3 Demonstrating methods of graphing vector fields
Visualizing vector fields helps cement this connection. When graphing a vec-

tor field in the plane, the general idea is to draw the vector F⃗ (x, y) at the point
(x, y). For instance, using F⃗ (x, y) = ⟨x+y, x−y⟩ as before, at (1, 1)wewould
draw ⟨2, 0⟩.

In Figure 16.2.3(a), one can see that the vector ⟨2, 0⟩ is drawn starting from
the point (1, 1). A total of 8 vectors are drawn, with the x- and y-values of
−1, 0, 1. In many ways, the resulting graph is a mess; it is hard to tell what this
field “looks like.”

https://www.youtube.com/watch?v=hnQqjC0cwKY
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In Figure 16.2.3(b), the same field is redrawnwith each vector F⃗ (x, y) drawn
centered on the point (x, y). This makes for a better looking image, though the
long vectors can cause confusion: whenone vector intersects another, the image
looks cluttered.

A commonway to address this problem is limit the length of each arrow, and
represent long vectors with thick arrows, as done in Figure 16.2.4(a). Usually
we do not use a graph of a vector field to determine exactly the magnitude of a
particular vector. Rather, we are more concerned with the relative magnitudes
of vectors: which are bigger than others? Thus limiting the length of the vectors
is not problematic.

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(a)

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(b)

Figure 16.2.4 Demonstrating methods of graphing vector fields
Drawing arrows with variable thickness is best done with technology; search

thedocumentationof your favorite graphing program for terms like “vector fields”
or “slope fields” to learn how. Technology obviously allows us to plot many vec-
tors in a vector field nicely; in Figure 16.2.4(b), we see the same vector field
drawn with many vectors, and finally get a clear picture of how this vector field
behaves. (If this vector field represented the velocity of air moving across a flat
surface, we could see that the air tends to move either to the upper-right or
lower-left, and moves very slowly near the origin.)

We can similarly plot vector fields in space, as shown in Figure 16.2.5, though
it is not often done. The plots get very busy very quickly, as there are lots of ar-
rows drawn in a small amount of space. In Figure 16.2.5 the field F⃗ = ⟨−y, x, z⟩
is graphed. If one could view the graph from above, one could see the arrows
point in a circle about the z-axis. One should also note how the arrows far from
the origin are larger than those close to the origin.

It is good practice to try to visualize certain vector fields in one’s head. For
instance, consider a point mass at the origin and the vector field that represents
the gravitational force exerted by the mass at any point in the room. The field
would consist of arrows pointing toward the origin, increasing in size as they
near the origin (as the gravitational pull is strongest near the point mass).

Figure 16.2.5 Graphing a vector field
in space

16.2.1 Vector Field Notation and Del Operator

Definition 16.2.2 defines a vector field F⃗ using the notation

F⃗ (x, y) = ⟨M(x, y), N(x, y)⟩ and F⃗ (x, y, z) = ⟨M(x, y, z), N(x, y, z), P (x, y, z)⟩.

That is, the components of F⃗ are each functions of x and y (and also z in
space). As done in other contexts, we will drop the “of x, y and z” portions of
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the notation and refer to vector fields in the plane and in space as

F⃗ = ⟨M,N⟩ and F⃗ = ⟨M,N,P ⟩,

respectively, as this shorthand is quite convenient.
Another item of notation will become useful: the “del operator.” Recall in

Section 14.3 how we used the symbol ∇ (pronounced “del”) to represent the
gradient of a function of two variables. That is, if z = f(x, y), then “del f”
= ∇f = ⟨fx, fy⟩.youtu.be/watch?v=L7AEW0NsyHA

Figure 16.2.6 Introducing the del op-
erator

We now define∇ to be the “del operator.” It is a vector whose components
are partial derivative operations.

In the plane,∇ =

〈
∂

∂x
,
∂

∂y

〉
; in space,∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
.

With this definition of ∇, we can better understand the gradient ∇f . As f
returns a scalar, the properties of scalar and vector multiplication gives

∇f =

〈
∂

∂x
,
∂

∂y

〉
f =

〈
∂

∂x
f,

∂

∂y
f

〉
= ⟨fx, fy⟩.

youtu.be/watch?v=QbkbxwicFRI

Figure 16.2.7 Del and the gradient

Now apply the del operator∇ to vector fields. Let F⃗ = ⟨x+sin y, y2+z, x2⟩.
We can use vector operations and find the dot product of∇ and F⃗ :

∇ · F⃗ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· ⟨x+ sin y, y2 + z, x2⟩

=
∂

∂x
(x+ sin y) +

∂

∂y
(y2 + z) +

∂

∂z
(x2)

= 1 + 2y.

We can also compute their cross products:

∇× F⃗ =

〈
∂

∂y

(
x2
)
− ∂

∂z

(
y2 + z

)
,
∂

∂z

(
x+ sin y

)
− ∂

∂x

(
x2
)
,
∂

∂x

(
y2 + z

)
− ∂

∂y

(
x+ sin y

)〉
= ⟨−1,−2x,− cos y⟩.

We do not yet know why we would want to compute the above. However,
as we next learn about properties of vector fields, wewill see how these dot and
cross products with the del operator are quite useful.

16.2.2 Divergence and Curl
Two properties of vector fields will prove themselves to be very important: di-
vergence and curl. Each is a special “derivative” of a vector field; that is, each
measures an instantaneous rate of change of a vector field.

youtu.be/watch?v=10Yh8JUGRYU

Figure 16.2.8 Introducing the diver-
gence

If the vector field represents the velocity of a fluid or gas, then the divergence
of the field is a measure of the “compressibility” of the fluid. If the divergence
is negative at a point, it means that the fluid is compressing: more fluid is going
into the point than is going out. If the divergence is positive, it means the fluid
is expanding: more fluid is going out at that point than going in. A divergence of
zeromeans the same amount of fluid is going in as is going out. If the divergence
is zero at all points, we say the field is incompressible.

It turns out that the proper measure of divergence is simply∇ · F⃗ , as stated
in the following definition.

https://www.youtube.com/watch?v=L7AEW0NsyHA
https://www.youtube.com/watch?v=QbkbxwicFRI
https://www.youtube.com/watch?v=10Yh8JUGRYU
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Definition 16.2.9 Divergence of a Vector Field.

The divergence of a vector field F⃗ is

div F⃗ = ∇ · F⃗ .

• In the plane, with F⃗ = ⟨M,N⟩, div F⃗ = Mx +Ny.

• In space, with F⃗ = ⟨M,N,P ⟩, div F⃗ = Mx +Ny + Pz .

youtu.be/watch?v=PMZXQDhcA2I

Figure 16.2.10 Introducing the curl

Curl is a measure of the spinning action of the field. Let F⃗ represent the flow
of water over a flat surface. If a small round cork were held in place at a point
in the water, would the water cause the cork to spin? No spin corresponds to
zero curl; counterclockwise spin corresponds to positive curl and clockwise spin
corresponds to negative curl.

In space, things are a bit more complicated. Again let F⃗ represent the flow
of water, and imagine suspending a tennis ball in one location in this flow. The
water may cause the ball to spin along an axis. If so, the curl of the vector field
is a vector (not a scalar, as before), parallel to the axis of rotation, following a
right hand rule: when the thumb of one’s right hand points in the direction of
the curl, the ball will spin in the direction of the curling fingers of the hand.

In space, it turns out the proper measure of curl is ∇ × F⃗ , as stated in the
following definition. To find the curl of a planar vector field F⃗ = ⟨M,N⟩, embed
it into space as F⃗ = ⟨M,N, 0⟩ and apply the cross product definition. SinceM
andN are functions of justx and y (and not z), all partial derivativeswith respect
to z become 0 and the result is simply ⟨0, 0, Nx −My⟩. The third component is
the measure of curl of a planar vector field.

Note that in twodimensions, curl
is a scalar quantity, while in three
dimensions, curl is a vector quan-
tity. Many authors reserve the
termcurl for the three-dimensional
vector quantity.

Definition 16.2.11 Curl of a Vector Field.

• Let F⃗ = ⟨M,N⟩ be a vector field in the plane. The curl of F⃗ is
curl F⃗ = Nx −My.

• Let F⃗ = ⟨M,N,P ⟩ be a vector field in space. The curl of F⃗ is
curl F⃗ = ∇× F⃗ = ⟨Py −Nz,Mz − Px, Nx −My⟩.

We adopt the convention of referring to curl as∇×F⃗ , regardless of whether
F⃗ is a vector field in two or three dimensions. (Some people prefer to write
(∇× F⃗ ) · k⃗ in two dimensions.)

youtu.be/watch?v=PXMWLny21CI

Figure 16.2.12 Interpreting the curl of
a vector field

We now practice computing these quantities.

Example 16.2.13 Computing divergence and curl of planar vector
fields.

For each of the planar vector fields given below, view its graph and try
to visually determine if its divergence and curl are 0. Then compute the
divergence and curl.

1. F⃗ = ⟨y, 0⟩ (see Figure 16.2.14(a))

2. F⃗ = ⟨−y, x⟩ (see Figure 16.2.14(b))

3. F⃗ = ⟨x, y⟩ (see Figure 16.2.15(a))

4. F⃗ = ⟨cos y, sinx⟩ (see Figure 16.2.15(b))

Solution.

https://www.youtube.com/watch?v=PMZXQDhcA2I
https://www.youtube.com/watch?v=PXMWLny21CI


946 CHAPTER 16. VECTOR ANALYSIS

1. The arrow sizes are constant along any horizontal line, so if one
were to draw a small box anywhere on the graph, it would seem
that the same amount of fluid would enter the box as exit. There-
fore it seems the divergence is zero; it is, as

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(y) +

∂

∂y
(0) = 0.

−1

1

−1 1

x

y

(a)

−1

1

−1 1

x

y

(b)

Figure 16.2.14 The vector fields in parts 1 and 2 in Example 16.2.13
At any point on the x-axis, arrows above it move to the right and
arrows below it move to the left, indicating that a cork placed on
the axis would spin clockwise. A cork placed anywhere above the
x-axis would have water above it moving to the right faster than
the water below it, also creating a clockwise spin. A clockwise
spin also appears to be created at points below the x-axis. Thus it
seems the curl should be negative (and not zero). Indeed, it is:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(0)− ∂

∂y
(y) = −1.

2. It appears that all vectors that lie on a circle of radius r, centered
at the origin, have the same length (and indeed this is true). That
implies that the divergence should be zero: draw any box on the
graph, and any fluid coming in will lie along a circle that takes the
same amount of fluid out. Indeed, the divergence is zero, as

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(−y) +

∂

∂y
(x) = 0.

Clearly this field moves objects in a circle, but would it induce a
cork to spin? It appears that yes, it would: place a cork anywhere
in the flow, and the point of the cork closest to the origin would
feel less flow than the point on the cork farthest from the origin,
which would induce a counterclockwise flow. Indeed, the curl is
positive:

curl F⃗ = ∇×F⃗ = Nx−My =
∂

∂x
(x)− ∂

∂y
(−y) = 1−(−1) = 2.

Since the curl is constant, we conclude the induced spin is the
same no matter where one is in this field.
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3. At the origin, there are many arrows pointing out but no arrows
pointing in. We conclude that at the origin, the divergence must
be positive (and not zero). If one were to draw a box anywhere
in the field, the edges farther from the origin would have larger
arrows passing through them than the edges close to the origin,
indicating that more is going from a point than going in. This indi-
cates a positive (and not zero) divergence. This is correct:

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(x) +

∂

∂y
(y) = 1 + 1 = 2.

One may find this curl to be harder to determine visually than pre-
vious examples. One might note that any arrow that induces a
clockwise spin on a cork will have an equally sized arrow inducing
a counterclockwise spin on the other side, indicating no spin and
no curl. This is correct, as

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(y)− ∂

∂y
(x) = 0.

−1

1

−1 1

x

y

(a)

−6

−3

3

6

−6 −3 3 6

x

y

(b)

Figure 16.2.15 The vector fields in parts 3 and 4 in Example 16.2.13

4. One might find this divergence hard to determine visually as large
arrows appear in close proximity to small arrows, each pointing
in different directions. Instead of trying to rationalize a guess, we
compute the divergence:

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(cos y) +

∂

∂y
(sinx) = 0.

Perhaps surprisingly, the divergence is 0. With all the loops of dif-
ferent directions in the field, one is apt to reason the curl is vari-
able. Indeed, it is:

curl F⃗ = ∇×F⃗ = Nx−My =
∂

∂x
(sinx)− ∂

∂y
(cos y) = cosx+sin y.

Depending on the values of x and y, the curl may be positive, neg-
ative, or zero.
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Example 16.2.16 Computing divergence and curl of vector fields in
space.

Compute the divergence and curl of each of the following vector fields.

1. F⃗ = ⟨x2 + y + z,−x− z, x+ y⟩

2. F⃗ = ⟨exy, sin(x+ z), x2 + y⟩

Solution. We compute the divergence and curl of each field following
the definitions.

1.

div F⃗ = ∇ · F⃗ = Mx +Ny + Pz = 2x+ 0 + 0 = 2x

curl F⃗ = ∇× F⃗ = ⟨Py −Nz,Mz − Px, Nx −My⟩
= ⟨1− (−1), 1− 1,−1− (1)⟩ = ⟨2, 0,−2⟩.

For this particular field, no matter the location in space, a spin is
induced with axis parallel to ⟨2, 0,−2⟩.

2.

div F⃗ = ∇ · F⃗ = Mx +Ny + Pz = yexy + 0 + 0 = yexy

curl F⃗ = ∇× F⃗ = ⟨Py −Nz,Mz − Px, Nx −My⟩
= ⟨1− cos(x+ z),−2x, cos(x+ z)− xexy⟩

youtu.be/watch?v=_QPgbwG_SHw

Figure 16.2.17 Further examples with
divergence

Example 16.2.18 Creating a field representing gravitational force.

The force of gravity between two objects is inversely proportional to the
square of the distance between the objects. Locate a point mass at the
origin. Create a vector field F⃗ that represents the gravitational pull of
the point mass at any point (x, y, z). Find the divergence and curl of this
field.
Solution. The point mass pulls toward the origin, so at (x, y, z), the
force will pull in the direction of ⟨−x,−y,−z⟩. To get the proper mag-
nitude, it will be useful to find the unit vector in this direction. Dividing
by its magnitude, we have

u⃗ =

〈
−x√

x2 + y2 + z2
,

−y√
x2 + y2 + z2

,
−z√

x2 + y2 + z2

〉
.

The magnitude of the force is inversely proportional to the square of
the distance between the two points. Letting k be the constant of pro-

portionality, we have the magnitude as
k

x2 + y2 + z2
. Multiplying this

magnitude by the unit vector above, we have the desired vector field:

F⃗ =

〈
−kx

(x2 + y2 + z2)3/2
,

−ky

(x2 + y2 + z2)3/2
,

−kz

(x2 + y2 + z2)3/2

〉
.

We leave it to the reader to confirm that div F⃗ = 0 and curl F⃗ = 0⃗.−1

1

−1 1

x

y

Figure 16.2.19 A vector field repre-
senting a planar gravitational force

The analogous planar vector field is given in Figure 16.2.19. Note how
all arrows point to the origin, and the magnitude gets very small when
“far” from the origin.

https://www.youtube.com/watch?v=_QPgbwG_SHw
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A function f(x, y) naturally induces a vector field, F⃗ = ∇f = ⟨fx, fy⟩.
Given what we learned of the gradient in Section 14.3, we know that the vectors
of F⃗ point in the direction of greatest increase of f . Because of this, f is said to
be the potential function of F⃗ . Vector fields that are the gradient of potential
functions will play an important role in the next section.

Example 16.2.20 A vector field that is the gradient of a potential func-
tion.

Let f(x, y) = 3 − x2 − 2y2 and let F⃗ = ∇f . Graph F⃗ , and find the
divergence and curl of F⃗ .
Solution. Given f , we find F⃗ = ∇f = ⟨−2x,−4y⟩. A graph of F⃗ is
given in Figure 16.2.21(a). In Figure 16.2.21(b), the vector field is given
along with a graph of the surface itself; one can see how each vector is
pointing in the direction of “steepest uphill”, which, in this case, is not
simply just “toward the origin.”

−1

1

−1 1

x

y

(a) (b)

Figure 16.2.21A graph of a function f(x, y) and the vector field F⃗ = ∇f
in Example 16.2.20

We leave it to the reader to confirm that div F⃗ = −6 and curl F⃗ = 0.

There are some important concepts visited in this section that will be revis-
ited in subsequent sections and again at the very end of this chapter. One is:
given a vector field F⃗ , both div F⃗ and curl F⃗ are measures of rates of change of
F⃗ . The divergence measures how much the field spreads (diverges) at a point,
and the curl measures how much the field twists (curls) at a point. Another im-
portant concept is this: given z = f(x, y), the gradient ∇f is also a measure
of a rate of change of f . We will see how the integrals of these rates of change
produce meaningful results.

This section introduces the concept of a vector field. The next section “ap-
plies calculus” to vector fields. A common application is this: let F⃗ be a vector
field representing a force (hence it is called a “force field,” though this name has
a decidedly comic-book feel) and let a particle move along a curve C under the
influence of this force. What work is performed by the field on this particle? The
solution lies in correctly applying the concepts of line integrals in the context of
vector fields.
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16.2.3 Exercises

Terms and Concepts

1. Give two quantities that can be represented by a vector field in the plane or in space.
2. In your own words, describe what it means for a vector field to have a negative divergence at a point.
3. In your own words, describe what it means for a vector field to have a negative curl at a point.

4. The divergence of a vector field F⃗ at a particular point is 0. Does this mean that F⃗ is incompressible? Why/why
not?

Problems

Exercise Group. In the following exercises, sketch the given vector field over the rectangle with opposite corners
(−2,−2) and (2, 2), sketching one vector for every point with integer coordinates (i.e., at (0, 0), (1, 2), etc.).

5. F⃗ = ⟨x, 0⟩ 6. F⃗ = ⟨0, x⟩

7. F⃗ = ⟨1,−1⟩ 8. F⃗ = ⟨y2, 1⟩

Exercise Group. In the following exercises, find the divergence and curl of the given vector field.

9. F⃗ = ⟨x, y2⟩ 10. F⃗ = ⟨−y2, x⟩

11. F⃗ = ⟨cos(xy), sin(xy)⟩ 12. F⃗ =

〈
−2x

(x2 + y2)2
,

−2y

(x2 + y2)2

〉
13. F⃗ = ⟨x+ y, y + z, x+ z⟩ 14. F⃗ =

〈
x2 + z2, x2 + y2, y2 + z2

〉
15. F⃗ = ∇f , where f(x, y) = 1

2x
2 + 1

3y
3. 16. F⃗ = ∇f , where f(x, y) = x2y.

17. F⃗ = ∇f , where f(x, y, z) = x2y + sin z. 18. F⃗ = ∇f , where f(x, y, z) =
1

x2 + y2 + z2
.
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16.3 Line Integrals over Vector Fields

Suppose a particle moves along a curveC under the influence of an electromag-
netic force described by a vector field F⃗ . Since a force is inducing motion, work
is performed. How can we calculate how much work is performed?

Recall that when moving in a straight line, if F⃗ represents a constant force
and d⃗ represents the direction and length of travel, then work is simply W =
F⃗ · d⃗. However, we generally want to be able to calculate work even if F⃗ is not
constant and C is not a straight line.

As we have practiced many times before, we can calculate work by first ap-
proximating, then refining our approximation through a limit that leads to inte-
gration.

youtu.be/watch?v=ennr8HI2iFE

Figure 16.3.1 Line integrals of scalar
fields, revisited

Assume as we did in Section 16.1 that C can be parametrized by the arc
length parameter s. Over a short piece of the curve with length ds, the curve
is approximately straight and our force is approximately constant. The straight-
line direction of this short length of curve is given by T⃗ , the unit tangent vector;
let d⃗ = T⃗ ds, which gives the direction and magnitude of a small section of C.
Thus work over this small section of C is F⃗ · d⃗ = F⃗ · T⃗ ds.

Summing up all the work over these small segments gives an approximation
of the work performed. By taking the limit as ds goes to zero, and hence the
number of segments approaches infinity, we can obtain the exact amount of
work. Following the logic presented at the beginning of this chapter in the Inte-
gration Review, we see that

W =

∫
C

F⃗ · T⃗ ds,

a line integral.
This line integral is beautiful in its simplicity, yet is not so useful in making

actual computations (largely because the arc length parameter is so difficult to
work with). To compute actual work, we need to parametrize C with another
parameter t via a vector-valued function r⃗(t). As stated in Section 16.1, ds =

∥r⃗ ′(t)∥ dt, and recall that T⃗ = r⃗ ′(t)/ ∥r⃗ ′(t)∥. Thus

W =

∫
C

F⃗ · T⃗ ds =

∫
C

F⃗ · r⃗ ′(t)

∥r⃗ ′(t)∥
∥r⃗ ′(t)∥ dt

=

∫
C

F⃗ · r⃗ ′(t) dt =
∫
C

F⃗ · dr⃗, (16.3.1)

where the final integral uses the differential dr⃗ for r⃗ ′(t) dt.

16.3.1 Evaluating Line Integrals over Vector Fields
These integrals are knownas line integrals over vector fields. By contrast, the line
integrals we dealt with in Section 16.1 are sometimes referred to as line integrals
over scalar fields. Just as a vector field is defined by a function that returns a
vector, a scalar field is a function that returns a scalar, such as z = f(x, y). We
waited until now to introduce this terminology so we could contrast the concept
with vector fields.

We formally define this line integral, then give examples and applications.

Definition 16.3.2 Line Integral Over A Vector Field.

Let F⃗ be a vector fieldwith continuous components definedon a smooth
curve C, parametrized by r⃗(t), and let T⃗ be the unit tangent vector of

https://www.youtube.com/watch?v=ennr8HI2iFE
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r⃗(t). The line integral over F⃗ along C is∫
C

F⃗ · dr⃗ =

∫
C

F⃗ · T⃗ ds.

In Definition 16.3.2, note how the dot product F⃗ · T⃗ is just a scalar. There-
fore, this new line integral is really just a special kind of line integral found in
Section 16.1; letting f(s) = F⃗ (s) · T⃗ (s), the right-hand side simply becomes∫
C
f(s) ds, and we can use the techniques of that section to evaluate the inte-

gral. We combine those techniques, along with parts of Equation (16.3.1), to
clearly state how to evaluate a line integral over a vector field in the following
Key Idea.

youtu.be/watch?v=fwTHe_y3T1c

Figure 16.3.3 Introducing line inte-
grals of vector fields

Key Idea 16.3.4 Evaluating a Line Integral Over A Vector Field.

Let F⃗ be a vector fieldwith continuous components definedon a smooth
curve C, parametrized by r⃗(t), a ≤ t ≤ b, where r⃗ is continuously dif-
ferentiable. Then∫

C

F⃗ · T⃗ ds =

∫
C

F⃗ · dr⃗ =

∫ b

a

F⃗
(
r⃗(t)

)
· r⃗ ′(t) dt.

An important concept implicit in this Key Idea: we can use any continuously
differentiable parametrization r⃗(t) of C that preserves the orientation of C:
there isn’t a “right” one. In practice, choose one that seems easy to work with.

Notation note: the above Definition and Key Idea implicitly evaluate F⃗ along
the curve C, which is parametrized by r⃗(t). For instance, if F⃗ = ⟨x+ y, x− y⟩
and r⃗(t) = ⟨t2, cos t⟩, then evaluating F⃗ alongC means substituting the x- and
y-components of r⃗(t) in for x and y, respectively, in F⃗ . Therefore, along C,
F⃗ = ⟨x + y, x − y⟩ =

〈
t2 + cos t, t2 − cos t

〉
. Since we are substituting the

output of r⃗(t) for the input of F⃗ , we write this as F⃗
(
r⃗(t)

)
. This is a slight abuse

of notation as technically the input of F⃗ is to be a point, not a vector, but this
shorthand is useful.

We use an example to practice evaluating line integrals over vector fields.

Example 16.3.5 Evaluating a line integral over a vector field: computing
work.

Two particles move from (0, 0) to (1, 1) under the influence of the force
field F⃗ = ⟨x, x + y⟩. One particle follows C1, the line y = x; the
other follows C2, the curve y = x4, as shown in Figure 16.3.6. Force
is measured in newtons and distance is measured in meters. Find the
work performed by each particle.

1

1

x

y

y = x

y = x4

Figure 16.3.6 Paths through a vector
field in Example 16.3.5

Solution. To compute work, we need to parametrize each path. We use
r⃗1(t) = ⟨t, t⟩ to parametrize y = x, and let r⃗2(t) = ⟨t, t4⟩ parametrize
y = x4; for each, 0 ≤ t ≤ 1.
Along the straight-line path, F⃗

(
r⃗1(t)

)
= ⟨x, x+y⟩ = ⟨t, t+ t⟩ = ⟨t, 2t⟩.

We find r⃗ ′1(t) = ⟨1, 1⟩. The integral that computes work is:∫
C1

F⃗ · dr⃗ =

∫ 1

0

⟨t, 2t⟩ · ⟨1, 1⟩ dt

https://www.youtube.com/watch?v=fwTHe_y3T1c
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=

∫ 1

0

3t dt

=
3

2
t2
∣∣∣1
0
= 1.5 joules .

Along the curve y = x4, F⃗
(
r⃗2(t)

)
= ⟨x, x+ y⟩ =

〈
t, t+ t4

〉
. We find

r⃗ ′2(t) =
〈
1, 4t3

〉
. The work performed along this path is∫

C2

F⃗ · dr⃗ =

∫ 1

0

〈
t, t+ t4

〉
·
〈
1, 4t3

〉
dt

=

∫ 1

0

(
t+ 4t4 + 4t7

)
dt

=
(1
2
t2 +

4

5
t5 +

1

2
t8
)∣∣∣1

0
= 1.8 joules .

Note how differing amounts of work are performed along the different
paths. This should not be too surprising: the force is variable, one path
is longer than the other, etc.

Example 16.3.7 Evaluating a line integral over a vector field: computing
work.

Two particles move from (−1, 1) to (1, 1) under the influence of a force
field F⃗ = ⟨y, x⟩. One moves along the curve C1, the parabola defined
by y = 2x2−1. The other particlemoves along the curveC2, the bottom
half of the circle defined by x2+(y−1)2 = 1, as shown in Figure 16.3.8.
Force is measured in pounds and distances are measured in feet. Find
the work performed by moving each particle along its path.

−1

1

−1 1

x

y

y = 2x2 − 1

x2 + (y − 1)2 = 1

Figure 16.3.8 Paths through a vector
field in Example 16.3.7

Solution. We start by parametrizing C1: the parametrization r⃗1(t) =〈
t, 2t2 − 1

〉
is straightforward, giving r⃗ ′1 = ⟨1, 4t⟩. On C1, F⃗

(
r⃗1(t)

)
=

⟨y, x⟩ =
〈
2t2 − 1, t

〉
.

Computing the work along C1, we have:∫
C1

F⃗ · dr⃗1 =

∫ 1

−1

〈
2t2 − 1, t

〉
· ⟨1, 4t⟩ dt

=

∫ 1

−1

(
2t2 − 1 + 4t2

)
dt = 2 ft-lbs .

For C2, it is probably simplest to parametrize the half circle using sine
and cosine. Recall that r⃗(t) = ⟨cos t, sin t⟩ is a parametrization of the
unit circle on 0 ≤ t ≤ 2π; we add 1 to the second component to shift the
circle up one unit, then restrict the domain to π ≤ t ≤ 2π to obtain only
the lower half, giving r⃗2(t) = ⟨cos t, sin t+ 1⟩, π ≤ t ≤ 2π, and hence
r⃗ ′2(t) = ⟨− sin t, cos t⟩ and F⃗

(
r⃗2(t)

)
= ⟨y, x⟩ = ⟨sin t+ 1, cos t⟩.

Computing the work along C2, we have:∫
C2

F⃗ · dr⃗2 =

∫ 2π

π

⟨sin t+ 1, cos t⟩ · ⟨− sin t, cos t⟩ dt

=

∫ 2π

π

(
− sin2 t− sin t+ cos2 t

)
dt = 2 ft-lbs .
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Note how the work along C1 and C2 in this example is the same. We’ll
address why later in this section when conservative fields and path inde-
pendence are discussed.

16.3.2 Properties of Line Integrals Over Vector Fields
Line integrals over vector fields share the same properties as line integrals over
scalar fields, with one important distinction. The orientation of the curve C
matters with line integrals over vector fields, whereas it did not matter with line
integrals over scalar fields.

youtu.be/watch?v=JeEIaKjbnJo

Figure 16.3.9 Reivew of terminology
for curves

It is relatively easy to see why. Let C be the unit circle. The area under
a surface over C is the same whether we traverse the circle in a clockwise or
counterclockwise fashion, hence the line integral over a scalar field on C is the
same irrespective of orientation. On the other hand, if we are computing work
done by a force field, direction of travel definitely matters. Opposite directions
create opposite signs when computing dot products, so traversing the circle in
opposite directions will create line integrals that differ by a factor of−1.

Theorem 16.3.10 Properties of Line Integrals Over Vector Fields.

1. Let F⃗ and G⃗ be vector fields with continuous components defined
on a smooth curve C, parametrized by r⃗(t), and let k1 and k2 be
scalars. Then∫

C

(
k1F⃗ + k2G⃗

)
· dr⃗ = k1

∫
C

F⃗ · dr⃗ + k2

∫
C

G⃗ · dr⃗.

2. Let C be piecewise smooth, composed of smooth components C1

and C2. Then∫
C

F⃗ · dr⃗ =

∫
C1

F⃗ · dr⃗ +
∫
C2

F⃗ · dr⃗.

3. Let C∗ be the curve C with opposite orientation, parametrized by
r⃗ ∗. Then ∫

C

F⃗ · dr⃗ = −
∫
C∗

F⃗ · dr⃗ ∗.

youtu.be/watch?v=wcKzYvJ20sI

Figure 16.3.11 Properties of line inte-
grals

We demonstrate using these properties in the following example.

Example 16.3.12 Using properties of line integrals over vector fields.

Let F⃗ = ⟨3(y − 1/2), 1⟩ and let C be the path that starts at (0, 0), goes
to (1, 1) along the curve y = x3, then returns to (0, 0) along the line
y = x, as shown in Figure 16.3.13. Evaluate

∮
C
F⃗ · dr⃗.

1

1

x

y

Figure 16.3.13 The vector field and
curve in Example 16.3.12

Solution. As C is piecewise smooth, we break it into two components
C1 andC2, whereC1 follows the curve y = x3 andC2 follows the curve
y = x.
We parametrize C1 with r⃗1(t) =

〈
t, t3

〉
on 0 ≤ t ≤ 1, with r⃗ ′1(t) =〈

1, 3t2
〉
. We will use F⃗

(
r⃗1(t)

)
=
〈
3(t3 − 1/2), 1

〉
.

While we always have unlimited ways in which to parametrize a curve,
there are 2 “direct” methods to choose from when parametrizing C2.

https://www.youtube.com/watch?v=JeEIaKjbnJo
https://www.youtube.com/watch?v=wcKzYvJ20sI
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The parametrization r⃗2(t) = ⟨t, t⟩, 0 ≤ t ≤ 1 traces the correct line
segment but with the wrong orientation. Using Property 3 of Theo-
rem 16.3.10, we can use this parametrization and negate the result.
Another choice is to use the techniques of Section 11.5 to create the line
with the orientation we desire. We wish to start at (1, 1) and travel in
the d⃗ = ⟨−1,−1⟩ direction for one length of d⃗, giving equation ℓ⃗(t) =
⟨1, 1⟩+ t ⟨−1,−1⟩ = ⟨1− t, 1− t⟩ on 0 ≤ t ≤ 1.
Either choice is fine; we choose r⃗2(t) to practice using line integral prop-
erties. We find r⃗ ′2(t) = ⟨1, 1⟩ and F⃗

(
r⃗2(t)

)
= ⟨3(t− 1/2), 1⟩.

Evaluating the line integral (note how we subtract the integral over C2

as the orientation of r⃗2(t) is opposite):∮
C

F⃗ · dr⃗ =

∫
C1

F⃗ · dr⃗1 −
∫
C2

F⃗ · dr⃗2

=

∫ 1

0

〈
3(t3 − 1/2), 1

〉
·
〈
1, 3t2

〉
dt−

∫ 1

0

⟨3(t− 1/2), 1⟩ · ⟨1, 1⟩ dt

=

∫ 1

0

(
3t3 + 3t2 − 3/2

)
dt−

∫ 1

0

(
3t− 1/2

)
dt

=
(
1/4
)
−
(
1
)

= −3/4.

If we interpret this integral as computingwork, the negativework implies
that themotion ismostly against the direction of the force, which seems
plausible when we look at Figure 16.3.13.

youtu.be/watch?v=iOweAD63oCE

Figure 16.3.14 Computing a line inte-
gral over a piecewise smooth curve

Example 16.3.15 Evaluating a line integral over a vector field in space.

Let F⃗ = ⟨−y, x, 1⟩, and let C be the portion of the helix given by
r⃗(t) = ⟨cos t, sin t, t/(2π)⟩ on [0, 2π], as shown in Figure 16.3.16. Eval-
uate

∫
C
F⃗ · dr⃗.

Figure 16.3.16 The graph of r⃗(t) in Ex-
ample 16.3.15

Solution. A parametrization is already given for C, so we just need to
find F⃗

(
r⃗(t)

)
and \vec r ’(t).

We have F⃗
(
r⃗(t)

)
= ⟨− sin t, cos t, 1⟩ and r⃗ ′(t) =

⟨− sin t, cos t, 1/(2π)⟩. Thus∫
C

F⃗ · dr⃗ =

∫ 2π

0

⟨− sin t, cos t, 1⟩ · ⟨− sin t, cos t, 1/(2π)⟩ dt

=

∫ 2π

0

(
sin2 t+ cos2 t+

1

2π

)
dt

= 2π + 1 ≈ 7.28

youtu.be/watch?v=NBkXSN614hU

Figure 16.3.17 Evaluating a line inte-
gral presented in differential form

16.3.3 The Fundamental Theorem of Line Integrals
We are preparing to make important statements about the value of certain line
integrals over special vector fields. Before we can do that, we need to define
some terms that describe the domains over which a vector field is defined.

youtu.be/watch?v=14LOByUGRXA

Figure 16.3.18 Introducing the Funda-
mental Theorem of Line Integrals

A region in the plane is connected if any twopoints in the region canbe joined
by a piecewise smooth curve that lies entirely in the region. In Figure 16.3.19,
sets R1 and R2 are connected; set R3 is not connected, though it is composed

https://www.youtube.com/watch?v=iOweAD63oCE
https://www.youtube.com/watch?v=NBkXSN614hU
https://www.youtube.com/watch?v=14LOByUGRXA
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of two connected subregions.
A region is simply connected if every simple closed curve that lies entirely

in the region can be continuously deformed (shrunk) to a single point without
leaving the region. (A curve is simple if it does not cross itself.) In Figure 16.3.19,
only setR1 is simply connected. RegionR2 is not simply connected as any closed
curve that goes around the “hole” in R2 cannot be continuously shrunk to a
single point. AsR3 is not even connected, it cannot be simply connected, though
again it consists of two simply connected subregions.

We have applied these terms to regions of the plane, but they can be ex-
tended intuitively to domains in space (and hyperspace). In Figure 16.3.20(a),
the domain bounded by the sphere (at left) and the domain with a subsphere
removed (at right) are both simply connected. Any simple closed path that lies
entirely within these domains can be continuously deformed into a single point.
In Figure 16.3.20(a), neither domain is simply connected. A left, the ball has a
hole that extends its length and the pictured closed path cannot be deformed
to a point. At right, two paths are illustrated on the torus that cannot be shrunk
to a point.

We will use the terms connected and simply connected in subsequent defi-
nitions and theorems.

R1

R2

R3

Figure 16.3.19 R1 is simply con-
nected;R2 is connected, but not sim-
ply connected;R3 is not connected

(a) (b)

Figure 16.3.20 The domains in (a) are simply connected, while the domains in
(b) are not

Recall how in Example 16.3.7 particles moved from A = (−1, 1) to B =
(1, 1) along two different paths, wherein the same amount of work was per-
formed along each path. It turns out that regardless of the choice of path from
A to B, the amount of work performed under the field F⃗ = ⟨y, x⟩ is the same.
Since our expectation is that differing amounts of work are performed along dif-
ferent paths, we give such special fields a name.

Definition 16.3.21 Conservative Field, Path Independent.

Let F⃗ be a vector field defined on an open, connected domainD in the
plane or in space containing points A and B. If the line integral

∫
C
F⃗ ·

dr⃗ has the same value for all choices of pathsC starting atA and ending
atB, then

• F⃗ is a conservative field and

• The line integral
∫
C
F⃗ · dr⃗ is path independent and can be written

as ∫
C

F⃗ · dr⃗ =

∫ B

A

F⃗ · dr⃗.

When F⃗ is a conservative field, the line integral from pointsA toB is some-
times written as

∫ B

A
F⃗ · dr⃗ to emphasize the independence of its value from the

choice of path; all that matters are the beginning and ending points of the path.
How can we tell if a field is conservative? To show a field F⃗ is conservative
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using the definition, we need to show that all line integrals from points A to B
have the same value. It is equivalent to show that all line integrals over closed
paths C are 0. Each of these tasks are generally nontrivial.

There is a simpler method. Consider the surface defined by z = f(x, y) =
xy. We can compute the gradient of this function: ∇f = ⟨fx, fy⟩ = ⟨y, x⟩.
Note that this is the field from Example 16.3.7, which we have claimed is con-
servative. We will soon give a theorem that states that a field F⃗ is conservative
if, and only if, it is the gradient of some scalar function f . To show F⃗ is con-
servative, we need to determine whether or not F⃗ = ∇f for some function
f . (We’ll later see that there is a yet simpler method). To recognize the special
relationship between F⃗ and f in this situation, f is given a name.

Definition 16.3.22 Potential Function.

Let f be a differentiable function defined on a domain D in the plane
or in space (i.e., z = f(x, y) or w = f(x, y, z)) and let F⃗ = ∇f , the
gradient of f . Then f is a potential function of F⃗ .

We now state the Fundamental Theorem of Line Integrals, which connects
conservative fields and path independence to fields with potential functions.

Theorem 16.3.23 Fundamental Theorem of Line Integrals.

Let F⃗ be a vector fieldwhose components are continuous on a connected
domainD in the plane or in space, let A and B be any points inD, and
let C be any path inD starting at A and ending at B.

1. F⃗ is conservative if and only if there exists a differentiable function
f such that F⃗ = ∇f .

2. If F⃗ is conservative, then∫
C

F⃗ · dr⃗ =

∫ B

A

F⃗ · dr⃗ = f(B)− f(A).

Once again considering Example 16.3.7, we have A = (−1, 1), B = (1, 1)

and F⃗ = ⟨y, x⟩. In that example, we evaluated two line integrals from A to
B and found the value of each was 2. Note that f(x, y) = xy is a potential
function for F⃗ . Following the Fundamental Theorem of Line Integrals, consider
f(B)− f(A):

f(B)− f(A) = f(1, 1)− f(−1, 1) = 1− (−1) = 2,

the same value given by the line integrals.
We practice using this theorem again in the next example.

Example 16.3.24 Using the Fundamental Theorem of Line Integrals.

Let F⃗ =
〈
3x2y + 2x, x3 + 1

〉
, A = (0, 1) and B = (1, 4). Use the

first part of the Fundamental Theorem of Line Integrals to show that
F⃗ is conservative, then choose any path from A to B and confirm the
second part of the theorem.
Solution. To show F⃗ is conservative, we need to find z = f(x, y) such
that F⃗ = ∇f = ⟨fx, fy⟩. That is, we need to find f such that fx =
3x2y + 2x and fy = x3 + 1. As all we know about f are its partial
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derivatives, we recover f by integration:∫
∂f

∂x
dx = f(x, y) + C(y).

Note how the constant of integration is more than “just a constant”: it
is anything that acts as a constant when taking a derivative with respect
to x. Any function that is a function of y (containing no x’s) acts as a
constant when deriving with respect to x.
Integrating fx in this example gives:∫

∂f

∂x
dx =

∫
(3x2y + 2x) dx = x3y + x2 + C1(y).

Likewise, integrating fy with respect to y gives:∫
∂f

∂y
dy =

∫
(x3 + 1) dy = x3y + y + C2(x).

These two results should be equal with appropriate choices ofC1(y) and
C2(x):

x3y + x2 + C1(y) = x3y + y + C2(x) ⇒ C2(x) = x2 and C1(y) = y.

We find f(x, y) = x3y + x2 + y, a potential function of F⃗ . (If F⃗ were
not conservative, no choice of C2(x) and C1(y) would give equality.)
By the Fundamental Theorem of Line Integrals, regardless of the path
from A toB, ∫ B

A

F⃗ · dr⃗ = f(B)− f(A)

= f(1, 4)− f(0, 1)

= 9− 1 = 8.

To illustrate the validity of the Fundamental Theorem, we pick a path
from A to B. The line between these two points would be simple to
construct; we choose a slightly more complicated path by choosing the
parabola y = x2 + 2x + 1. This leads to the parametrization r⃗(t) =〈
t, t2 + 2t+ 1

〉
, 0 ≤ t ≤ 1, with r⃗ ′(t) = ⟨t, 2t+ 2⟩. Thus∫

C

F⃗ · dr⃗ =

∫
C

F⃗
(
r⃗(t)

)
· r⃗ ′(t) dt

=

∫ 1

0

〈
3(t)(t2 + 2t+ 1) + 2t, t3 + 1

〉
· ⟨t, 2t+ 2⟩ dt

=

∫ 1

0

(
5t4 + 8t3 + 3t2 + 4t+ 2

)
dt

=
(
t5 + 2t4 + t3 + 2t2 + 2t

)∣∣∣1
0

= 8,

which matches our previous result.

youtu.be/watch?v=urwjnm5PXhQ

Figure 16.3.25 Further examples with
the Fundamental Theorem (4 videos)

The Fundamental Theorem of Line Integrals states that we can determine
whether or not F⃗ is conservative by determining whether or not F⃗ has a po-

https://www.youtube.com/watch?v=urwjnm5PXhQ
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tential function. This can be difficult. A simpler method exists if the domain of
F⃗ is simply connected (not just connected as needed in the Fundamental Theo-
rem of Line Integrals), which is a reasonable requirement. We state this simpler
method as a theorem.

Theorem 16.3.26 Curl of Conservative Fields.

Let F⃗ be a vector field whose components have continuous partial deriv-
atives on a simply connected domainD in the plane or in space. Then F⃗
is conservative if and only if curl F⃗ = 0 or 0⃗, in 2D or 3D, respectively.

In Example 16.3.24, we showed that F⃗ = ⟨3x2y+2x, x3+1⟩ is conservative
by finding a potential function for F⃗ . Using the above theorem, we can show
that F⃗ is conservative much more easily by computing its curl:

curl F⃗ = Nx −My = 3x2 − 3x2 = 0.

youtu.be/watch?v=I4Oaf3ArIr8

Figure 16.3.27 Discussing conserva-
tive vector fields and path indepen-
dence

https://www.youtube.com/watch?v=I4Oaf3ArIr8
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16.3.4 Exercises

Terms and Concepts

1. T/F: In practice, the evaluation of line integrals over vector fields involves computing the magnitude of a vector-
valued function.

2. Let F⃗ (x, y) be a vector field in the plane and let r⃗(t) be a two-dimensional vector-valued function. Why is
“F⃗
(
r⃗(t)

)
” an “abuse of notation”?

3. T/F: The orientation of a curve C matters when computing a line integral over a vector field.
4. T/F: The orientation of a curve C matters when computing a line integral over a scalar field.

5. Under “reasonable conditions,” if curl F⃗ = 0⃗, what can we conclude about the vector field F⃗ ?

6. Let F⃗ be a conservative field and let C be a closed curve. Why are we able to conclude that
∮
C
F⃗ · dr⃗ = 0?

Problems

Exercise Group. In the following exercises, a vector field F⃗ and a curve C are given. Evaluate
∫
C

F⃗ · dr⃗.

7. F⃗ = ⟨y, y2⟩; C is the line segment from (0, 0)
to (3, 1).

8. F⃗ = ⟨x, x+ y⟩; C is the portion of the parabola
y = x2 from (0, 0) to (1, 1).

9. F⃗ = ⟨y, x⟩; C is the top half of the unit circle,
beginning at (1, 0) and ending at (−1, 0).

10. F⃗ = ⟨xy, x⟩; C is the portion of the curve
y = x3 on−1 ≤ x ≤ 1.

11. F⃗ = ⟨z, x2, y⟩; C is the line segment from
(1, 2, 3) to (4, 3, 2).

12. F⃗ = ⟨y + z, x+ z, x+ y⟩; C is the helix
r⃗(t) = ⟨cos t, sin t, t/(2π)⟩ on 0 ≤ t ≤ 2π.

Exercise Group. In the following exercises, find the work performed by the force field F⃗ moving a particle along the
path C.

13. F⃗ = ⟨y, x2⟩ N; C is the segment of the line
y = x from (0, 0) to (1, 1), where distances are
measured in meters.

14. F⃗ = ⟨y, x2⟩ N; C is the portion of y =
√
x from

(0, 0) to (1, 1), where distances are measured in
meters.

15. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0)
to (2, 4, 8) via r⃗(t) = ⟨t, t2, t3⟩ on 0 ≤ t ≤ 2,
where distance are measured in feet.

16. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0)
to (2, 4, 8) via r⃗(t) = ⟨t, 2t, 4t⟩ on 0 ≤ t ≤ 2,
where distance are measured in feet.

Exercise Group. In the following exercises, a conservative vector field F⃗ and a curve C are given.

(a) Find a potential function f for F⃗ .

(b) Compute curl F⃗ .

(c) Evaluate
∫
C

F⃗ · dr⃗ directly, i.e., using Key Idea 16.3.4.

(d) Evaluate
∫
C

F⃗ · dr⃗ using the Fundamental Theorem of Line Integrals.

17. F⃗ = ⟨y + 1, x⟩, C is the line segment from
(0, 1) to (1, 0).

18. F⃗ = ⟨2x+ y, 2y + x⟩, C is curve parametrized
by r⃗(t) = ⟨t2 − t, t3 − t⟩ on 0 ≤ t ≤ 1.

19. F⃗ = ⟨2xyz, x2z, x2y⟩, C is curve parametrized
by r⃗(t) = ⟨2t+ 1, 3t− 1, t⟩ on 0 ≤ t ≤ 2.

20. F⃗ = ⟨2x, 2y, 2z⟩, C is curve parametrized by
r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on 0 ≤ t ≤ 2π.

21. Prove part of Theorem 16.3.26: let F⃗ = ⟨M,N,P ⟩ be a conservative vector field. Show that curl F⃗ = 0.
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16.4 Flow, Flux, Green’s Theorem and the Divergence
Theorem

16.4.1 Flow and Flux
Line integrals over vector fields have the natural interpretation of computing
work when F⃗ represents a force field. It is also common to use vector fields to
represent velocities. In these cases, the line integral

∫
C
F⃗ ·dr⃗ is said to represent

flow.

1

1

x

y

C1

C2

C3

Figure 16.4.1 Illustrating the princi-
ples of flow and flux

Let the vector field F⃗ = ⟨1, 0⟩ represent the velocity of water as it moves
across a smooth surface, depicted in Figure 16.4.1. A line integral over C will
compute “how much water is moving along the path C.”

In the figure, “all” of thewater aboveC1 is moving along that curve, whereas
“none” of the water aboveC2 is moving along that curve (the curve and the flow
of water are at right angles to each other). Because C3 has nonzero horizontal
and vertical components, “some” of the water above that curve is moving along
the curve.

WhenC is a closed curve, we call flow circulation, represented by
∮
C
F⃗ · dr⃗.

The “opposite” of flow is flux, a measure of “how much water is moving
across the path C.” If a curve represents a filter in flowing water, flux measures
how much water will pass through the filter. Considering again Figure 16.4.1,
we see that a screen alongC1 will not filter any water as no water passes across
that curve. Because of the nature of this field, C2 and C3 each filter the same
amount of water per second.

The terms “flow” and “flux” are used apart from velocity fields, too. Flow is
measured by

∫
C
F⃗ · dr⃗, which is the same as

∫
C
F⃗ · T⃗ ds by Definition 16.3.2.

That is, flow is a summation of the amount of F⃗ that is tangent to the curve C.
By contrast, flux is a summation of the amount of F⃗ that is orthogonal to the

direction of travel. To capture this orthogonal amount of F⃗ , we use
∫
C
F⃗ · n⃗ ds

to measure flux, where n⃗ is a unit vector orthogonal to the curveC. (Later, we’ll
measure flux across surfaces, too. For example, in physics it is useful tomeasure
the amount of a magnetic field that passes through a surface.)

youtu.be/watch?v=setRFQrIgC4

Figure 16.4.2 Further terminology for
curves: closed, simple, positively ori-
entedHow is n⃗ determined? We’ll later see that ifC is a closed curve, we’ll want n⃗

to point to the outside of the curve (measuring howmuch is “going out”). We’ll
also adopt the convention that closed curves should be traversed counterclock-
wise.

(If C is a complicated closed curve, it can be difficult to determine what
“counterclockwise” means. Consider Figure 16.4.3. Seeing the curve as a whole,
we know which way “counterclockwise” is. If we zoom in on pointA, one might
incorrectly choose to traverse the path in the wrong direction. So we offer this
definition: a closed curve is being traversed counterclockwise if the outside is to
the right of the path and the inside is to the left.)

1

−1

−1 1

x

y

A

Figure 16.4.3 Determining “counter-
clockwise” is not always simple with-
out a good definition

When a curve C is traversed counterclockwise by r⃗(t) = ⟨f(t), g(t)⟩, we
rotate T⃗ clockwise 90◦ to obtain n⃗:

T⃗ =
⟨f ′(t), g′(t)⟩

∥r⃗ ′(t)∥
⇒ n⃗ =

⟨g′(t),−f ′(t)⟩
∥r⃗ ′(t)∥

.

Letting F⃗ = ⟨M,N⟩, we calculate flux as:∫
C

F⃗ · n⃗ ds =

∫
C

F⃗ · ⟨g
′(t),−f ′(t)⟩
∥r⃗ ′(t)∥

∥r⃗ ′(t)∥ dt

=

∫
C

⟨M,N⟩ · ⟨g′(t),−f ′(t)⟩ dt

=

∫
C

(
M g′(t)−N f ′(t)

)
dt

https://www.youtube.com/watch?v=setRFQrIgC4
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=

∫
C

M g′(t) dt−
∫
C

N f ′(t) dt.

As thex and y components of r⃗(t) are f(t) and g(t) respectively, the differentials
of x and y are dx = f ′(t)dt and dy = g′(t)dt. We can then write the above
integrals as:

=

∫
C

M dy −
∫
C

N dx.

This is often written as one integral (not incorrectly, though somewhat confus-
ingly, as this one integral has two “d ’s”):

=

∫
C

M dy −N dx.

We summarize the above in the following definition.

Definition 16.4.4 Flow, Flux.

Let F⃗ = ⟨M,N⟩ be a vector field with continuous components defined
on a smooth curve C, parametrized by r⃗(t) = ⟨f(t), g(t)⟩, let T⃗ be the
unit tangent vector of r⃗(t), and let n⃗be the clockwise 90◦degree rotation
of T⃗ .

• The flow of F⃗ along C is∫
C

F⃗ · T⃗ ds =

∫
C

F⃗ · dr⃗.

• The flux of F⃗ across C is∫
C

F⃗ · n⃗ ds =

∫
C

M dy −N dx =

∫
C

(
M g′(t)−N f ′(t)

)
dt.

This definition of flow also holds for curves in space, though it does notmake
sense to measure “flux across a curve” in space.

Measuring flow is essentially the same as finding work performed by a force
as done in the previous examples. Therefore we practice finding only flux in the
following example.

Example 16.4.5 Finding flux across curves in the plane.

Curves C1 and C2 each start at (1, 0) and end at (0, 1), where C1 fol-
lows the line y = 1 − x and C2 follows the unit circle, as shown in
Figure 16.4.6. Find the flux across both curves for the vector fields
F⃗1 = ⟨y,−x+ 1⟩ and F⃗2 = ⟨−x, 2y − x⟩.
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1

1

x

y

C2

C1

(a)

1

1

x

y

C2

C1

(b)

Figure 16.4.6 Illustrating the curves and vector fields in Example 16.4.5.
In (a) the vector field is F⃗1, and in (b) the vector field is F⃗2.

Solution. We begin by finding parametrizations of C1 and C2. As done
in Example 16.3.12, parametrize C1 by creating the line that starts at
(1, 0) and moves in the ⟨−1, 1⟩ direction: r⃗1(t) = ⟨1, 0⟩ + t ⟨−1, 1⟩ =
⟨1− t, t⟩, for 0 ≤ t ≤ 1. We parametrize C2 with the familiar r⃗2(t) =
⟨cos t, sin t⟩ on 0 ≤ t ≤ π/2. For reference later, we give each function
and its derivative below:

r⃗1(t) = ⟨1− t, t⟩ , r⃗ ′1(t) = ⟨−1, 1⟩ .

r⃗2(t) = ⟨cos t, sin t⟩ , r⃗ ′2(t) = ⟨− sin t, cos t⟩ .

When F⃗ = F⃗1 = ⟨y,−x+ 1⟩ (as shown in Figure 16.4.6(a)), over C1

we haveM = y = t and N = −x + 1 = −(1 − t) + 1 = t. Using
Definition 16.4.4, we compute the flux:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ 1

0

(
t(1)− t(−1)

)
dt

=

∫ 1

0

2t dt

= 1.

Over C2, we haveM = y = sin t and N = −x + 1 = 1 − cos t. Thus
the flux across C2 is:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ π/2

0

(
(sin t)(cos t)− (1− cos t)(− sin t)

)
dt

=

∫ π/2

0

sin t dt

= 1.

Notice how the flux was the same across both curves. This won’t hold
true when we change the vector field.
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When F⃗ = F⃗2 = ⟨−x, 2y − x⟩ (as shown in Figure 16.4.6(b)), over C1

we haveM = −x = t − 1 and N = 2y − x = 2t − (1 − t) = 3t − 1.
Computing the flux across C1:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ 1

0

(
(t− 1)(1)− (3t− 1)(−1)

)
dt

=

∫ 1

0

(4t− 2) dt

= 0.

OverC2, we haveM = −x = − cos t andN = 2y−x = 2 sin t− cos t.
Thus the flux across C2 is:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ π/2

0

(
(− cos t)(cos t)− (2 sin t− cos t)(− sin t)

)
dt

=

∫ π/2

0

(
2 sin2 t− sin t cos t− cos2 t

)
dt

= π/4− 1/2 ≈ 0.285.

We analyze the results of this example below.

In Example 16.4.5, we saw that the flux across the two curves was the same
when the vector field was F⃗1 = ⟨y,−x+ 1⟩. This is not a coincidence. We
show why they are equal in Example 16.4.23. In short, the reason is this: the
divergence of F⃗1 is 0, and when div F⃗ = 0, the flux across any two paths with
common beginning and ending points will be the same.

We also saw in the example that the flux across C1 was 0 when the field
was F⃗2 = ⟨−x, 2y − x⟩. Flux measures “how much” of the field crosses the
path from left to right (following the conventions established before). Positive
flux means most of the field is crossing from left to right; negative flux means
most of the field is crossing from right to left; zero flux means the same amount
crosses from each side. When we consider Figure 16.4.6(b), it seems plausible
that the same amount of F⃗2 was crossing C1 from left to right as from right to
left.

16.4.2 Green’s Theorem
There is an important connectionbetween the circulation around a closed region
R and the curl of the vector field inside ofR, aswell as a connectionbetween the
flux across the boundary of R and the divergence of the field inside R. These
connections are described by Green’s Theorem and the Divergence Theorem,
respectively. We’ll explore each in turn.

youtu.be/watch?v=JOFBkUN5Dis

Figure 16.4.7 Introducing Green’s
Theorem

Green’s Theorem states “the counterclockwise circulation around a closed
regionR is equal to the sum of the curls over R.”

https://www.youtube.com/watch?v=JOFBkUN5Dis
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Theorem 16.4.8 Green’s Theorem.

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametrization of C, and let F⃗ = ⟨M,N⟩ where Nx andMy are con-
tinuous overR. Then ∮

C

F⃗ · dr⃗ =

∫∫
R

curl F⃗ dA.

We’ll explore Green’s Theorem through an example.

Example 16.4.9 Confirming Green’s Theorem.

Let F⃗ =
〈
−y, x2 + 1

〉
and let R be the region of the plane bounded

by the triangle with vertices (−1, 0), (1, 0) and (0, 2), shown in Fig-
ure 16.4.10. Verify Green’s Theorem; that is, find the circulation of F⃗
around the boundary ofR and show that is equal to the double integral
of curl F⃗ overR. 1

2

−1 1

x

y

R

Figure 16.4.10 The vector field and
planar region used in Example 16.4.9

Solution. The curve C that bounds R is composed of 3 lines. While
we need to traverse the boundary of R in a counterclockwise fashion,
we may start anywhere we choose. We arbitrarily choose to start at
(−1, 0), move to (1, 0), etc., with each line parametrized by r⃗1(t), r⃗2(t)
and r⃗3(t), respectively.
We leave it to the reader to confirm that the following parametrizations
of the three lines are accurate:

r⃗1(t) = ⟨2t− 1, 0⟩, for 0 ≤ t ≤ 1, with r⃗ ′1(t) = ⟨2, 0⟩,
r⃗2(t) = ⟨1− t, 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′2(t) = ⟨−1, 2⟩, and
r⃗3(t) = ⟨−t, 2− 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′3(t) = ⟨−1,−2⟩.

The circulation around C is found by summing the flow along each of
the sides of the triangle. We again leave it to the reader to confirm the
following computations:∫

C1

F⃗ · dr⃗1 =

∫ 1

0

〈
0, (2t− 1)2 + 1

〉
· ⟨2, 0⟩ dt = 0,∫

C2

F⃗ · dr⃗2 =

∫ 1

0

〈
−2t, (1− t)2 + 1

〉
· ⟨−1, 2⟩ dt = 11/3, and∫

C3

F⃗ · dr⃗3 =

∫ 1

0

〈
2t− 2, t2 + 1

〉
· ⟨−1,−2⟩ dt = −5/3.

The circulation is the sum of the flows: 2.
We confirm Green’s Theorem by computing

∫∫
R
curl F⃗ dA. We find

curl F⃗ = 2x + 1. The region R is bounded by the lines y = 2x + 2,
y = −2x + 2 and y = 0. Integrating with the order dx dy is most
straightforward, leading to∫ 2

0

∫ 1−y/2

y/2−1

(2x+ 1) dx dy =

∫ 2

0

(2− y) dy = 2,

which matches our previous measurement of circulation.
youtu.be/watch?v=K2lPAvWyH4Y

Figure 16.4.11 Verifying Green’s The-
orem with an example

https://www.youtube.com/watch?v=K2lPAvWyH4Y
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Example 16.4.12 Using Green’s Theorem.

Let F⃗ = ⟨sinx, cos y⟩ and let R be the region enclosed by the curve C
parametrized by r⃗(t) =

〈
2 cos t+ 1

10 cos(10t), 2 sin t+
1
10 sin(10t)

〉
on

0 ≤ t ≤ 2π, as shown in Figure 16.4.13. Find the circulation around C.

−2

2

−2 2

x

y

R

Figure 16.4.13 The vector field
and planar region used in Exam-
ple 16.4.12

Solution. Computing the circulation directly using the line integral
looks difficult, as the integrand will include terms like “sin

(
2 cos t +

1
10 cos(10t)

)
.”

Green’s Theorem states that
∮
C
F⃗ ·dr⃗ =

∫∫
R
curl F⃗ dA; since curl F⃗ = 0

in this example, the double integral is simply 0 and hence the circulation
is 0.
Since curl F⃗ = 0, we can conclude that the circulation is 0 in two ways.
One method is to employ Green’s Theorem as done above. The second
way is to recognize that F⃗ is a conservative field, hence there is a func-
tion f(x, y)wherein F⃗ = ∇f . LetA be any point on the curveC; since
C is closed, we can say that C “begins” and “ends” at A. By the Funda-
mental Theorem of Line Integrals,

∮
C
F⃗ dr⃗ = f(A)− f(A) = 0.

Since Green’s Theorem is an important result, it’s worth taking a minute (or
12) to see why it’s true, in the video in Figure 16.4.14.

youtu.be/watch?v=l9RaOCx4r1g

Figure 16.4.14 Sketching the proof of
Green’s Theorem

One can use Green’s Theorem to find the area of an enclosed region by in-
tegrating along its boundary. Let C be a closed curve, enclosing the region R,
parametrized by r⃗(t) = ⟨f(t), g(t)⟩. We know the area of R is computed by
the double integral

∫∫
R
dA, where the integrand is 1. By creating a field F⃗

where curl F⃗ = 1, we can employ Green’s Theorem to compute the area of R
as
∮
C
F⃗ · dr⃗.

One is free to choose any field F⃗ to use as long as curl F⃗ = 1. Common
choices are F⃗ = ⟨0, x⟩, F⃗ = ⟨−y, 0⟩ and F⃗ = ⟨−y/2, x/2⟩. We demonstrate
this below.

Example 16.4.15 Using Green’s Theorem to find area.

Let C be the closed curve parametrized by r⃗(t) =
〈
t− t3, t2

〉
on−1 ≤

t ≤ 1, enclosing the regionR, as shown in Figure 16.4.16. Find the area
ofR.

−1 1

1

R

x

y

Figure 16.4.16 The region R, whose
area is found in Example 16.4.15

Solution. We can choose any field F⃗ , as long as curl F⃗ = 1. We choose
F⃗ = ⟨−y, 0⟩. We also confirm (left to the reader) that r⃗(t) traverses the
regionR in a counterclockwise fashion. Thus

Area ofR =

∫∫
R

dA

=

∮
C

F⃗ · dr⃗

=

∫ 1

−1

〈
−t2, 0

〉
·
〈
1− 3t2, 2t

〉
dt

=

∫ 1

−1

(−t2)(1− 3t2) dt

=
8

15
.

youtu.be/watch?v=g8iULyP0alk

Figure 16.4.17 Using Green’s Theo-
rem to find the area under a cycloid

Another interesting scenario that comes up is the case ofmultiply-connected
regions (as opposed to simply-connected). If a bounded region has a “hole”, its

https://www.youtube.com/watch?v=l9RaOCx4r1g
https://www.youtube.com/watch?v=g8iULyP0alk
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boundary will consist of more than one curve: the outer boundary, as well as
the boundary of the hole. Green’s Theorem applies in this situation as well, as
the video in Figure 16.4.19 explains. youtu.be/watch?v=x1bIGtNu-0M

Figure 16.4.18 Using Green’s Theo-
rem to derive a polygon area formula

youtu.be/watch?v=PaW_ZF-js-M

Figure 16.4.19 Green’s Theorem and
multiply-connected regions

16.4.3 The Divergence Theorem
Green’s Theorem makes a connection between the circulation around a closed
region R and the sum of the curls over R. The Divergence Theorem makes a
somewhat “opposite” connection: the total flux across the boundary of R is
equal to the sum of the divergences overR.

Theorem 16.4.20 The Divergence Theorem (in the plane).

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametrization of C, and let F⃗ = ⟨M,N⟩ whereMx and Ny are con-
tinuous overR. Then∮

C

F⃗ · n⃗ ds =

∫∫
R

div F⃗ dA.

Example 16.4.21 Confirming the Divergence Theorem.

Let F⃗ = ⟨x− y, x+ y⟩, let C be the circle of radius 2 centered at the
origin and define R to be the interior of that circle, as shown in Fig-
ure 16.4.22. Verify the Divergence Theorem; that is, find the flux across
C and show it is equal to the double integral of div F⃗ overR.

−2

2

−2 2

x

y

R

Figure 16.4.22 The region R used in
Example 16.4.21

Solution. We parametrize the circle in the usual way, with r⃗(t) =
⟨2 cos t, 2 sin t⟩, 0 ≤ t ≤ 2π. The flux across C is∮
C

F⃗ · n⃗ ds =

∮
C

(
Mg ′(t)−Nf ′(t)

)
dt

=

∫ 2π

0

(
(2 cos t− 2 sin t)(2 cos t)− (2 cos t+ 2 sin t)(−2 sin t)

)
dt

=

∫ 2π

0

4 dt = 8π.

We compute the divergence of F⃗ as div F⃗ = Mx + Ny = 2. Since the
divergence is constant, we can compute the following double integral
easily:∫∫

R

div F⃗ dA =

∫∫
R

2 dA = 2

∫∫
R

dA = 2( area ofR ) = 8π,

which matches our previous result.

Example 16.4.23 Flux when div F⃗ = 0.

Let F⃗ be any field where div F⃗ = 0, and let C1 and C2 be any two non-
intersecting paths, except that each begin at pointA and end at pointB
(see Figure 16.4.24). Show why the flux across C1 and C2 is the same.

https://www.youtube.com/watch?v=x1bIGtNu-0M
https://www.youtube.com/watch?v=PaW_ZF-js-M
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Solution. By referencing Figure 16.4.24, we see we can make a closed
path C that combines C1 with C2, where C2 is traversed with its oppo-
site orientation. We label the enclosed region R. Since div F⃗ = 0, the
Divergence Theorem states that∮

C

F⃗ · n⃗ ds =

∫∫
R

div F⃗ dA =

∫∫
R

0 dA = 0.

Using the properties and notation given in Theorem 16.3.10, consider:

A

B

C1

C2

Figure 16.4.24 As used in Exam-
ple 16.4.23, the vector field has a di-
vergence of 0 and the two paths only
intersect at their initial and terminal
points.

0 =

∮
C

F⃗ · n⃗ ds

=

∫
C1

F⃗ · n⃗ ds+

∫
C∗

2

F⃗ · n⃗ ds

(where C∗
2 is the path C2 traversed with opposite orientation)

=

∫
C1

F⃗ · n⃗ ds−
∫
C2

F⃗ · n⃗ ds.∫
C2

F⃗ · n⃗ ds =

∫
C1

F⃗ · n⃗ ds.

Thus the flux across each path is equal.

In this section, we have investigated flow and flux, quantities that measure
interactions between a vector field and a planar curve. We can also measure
flow along spatial curves, though as mentioned before, it does not make sense
to measure flux across spatial curves.

It does, however, make sense to measure the amount of a vector field that
passes across a surface in space — i.e, the flux across a surface. We will study
this, though in the next section we first learn about a more powerful way to
describe surfaces than using functions of the form z = f(x, y).
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16.4.4 Exercises

Terms and Concepts

1. Let F⃗ be a vector field and let C be a curve. Flow is a measure of the amount of F⃗ going C; flux is
a measure of the amount of F⃗ going C.

2. What is circulation?
3. Green’s Theorem states, informally, that the circulation around a closed curve that bounds a region R is equal

to the sum of acrossR.

4. The Divergence Theorem states, informally, that the outward flux across a closed curve that bounds a regionR
is equal to the sum of acrossR.

5. Let F⃗ be a vector field and let C1 and C2 be any nonintersecting paths except that each starts at point A and
ends at point B. If = 0, then

∫
C1

F⃗ · T⃗ ds =
∫
C2

F⃗ · T⃗ ds.

6. Let F⃗ be a vector field and let C1 and C2 be any nonintersecting paths except that each starts at point A and
ends at point B. If = 0, then

∫
C1

F⃗ · n⃗ ds =
∫
C2

F⃗ · n⃗ ds.

Problems

Exercise Group. In the following exercises, a vector field F⃗ and a curve C are given. Evaluate
∫
C
F⃗ · n⃗ ds, the flux of

F⃗ over C.
7. F⃗ = ⟨x+ y, x− y⟩; C is the curve with initial

and terminal points (3,−2) and (3, 2),
respectively, parametrized by r⃗(t) = ⟨3t2, 2t⟩
on−1 ≤ t ≤ 1.

8. F⃗ = ⟨x+ y, x− y⟩; C is the curve with initial
and terminal points (3,−2) and (3, 2),
respectively, parametrized by r⃗(t) = ⟨3, t⟩ on
−2 ≤ t ≤ 2.

9. F⃗ = ⟨x2, y + 1⟩; C is line segment from (0, 0)
to (2, 4).

10. F⃗ = ⟨x2, y + 1⟩; C is the portion of the
parabola y = x2 from (0, 0) to (2, 4).

11. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to
(0, 1).

12. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to
(1, 1).

Exercise Group. In the following exercises, a vector field F⃗ and a closed curve C, enclosing a region R, are given.
Verify Green’s Theorem by evaluating

∮
C
F⃗ · dr⃗ and

∫∫
R
curl F⃗ dA, showing they are equal.

13. F⃗ = ⟨x− y, x+ y⟩; C is the closed curve
composed of the parabola y = x2 on 0 ≤ x ≤ 2
followed by the line segment from (2, 4) to
(0, 0).

14. F⃗ = ⟨−y, x⟩; C is the unit circle.

15. F⃗ = ⟨0, x2⟩; C the triangle with corners at
(0, 0), (2, 0) and (1, 1).

16. F⃗ = ⟨x+ y, 2x⟩; C the curve that starts at
(0, 1), follows the parabola y = (x− 1)2 to
(3, 4), then follows a line back to (0, 1).

Exercise Group. In the following exercises, a closed curve C enclosing a region R is given. Find the area of R by
computing

∮
C
F⃗ · dr⃗ for an appropriate choice of vector field F⃗ .

17. C is the ellipse parametrized by
r⃗(t) = ⟨4 cos t, 3 sin t⟩ on 0 ≤ t ≤ 2π.

18. C is the curve parametrized by
r⃗(t) = ⟨cos t, sin(2t)⟩ on−π/2 ≤ t ≤ π/2.

19. C is the curve parametrized by
r⃗(t) = ⟨−t3 +3t2 − 2t, 2(t− 1)2⟩ on 0 ≤ t ≤ 2.

20. C is the curve parametrized by r⃗(t) =
⟨2 cos t+ 1

10 cos(10t), 2 sin t+
1
10 sin(10t)⟩ on

0 ≤ t ≤ 2π.
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Exercise Group. In the following exercises, a vector field F⃗ and a closed curve C, enclosing a region R, are given.
Verify the Divergence Theorem by evaluating

∮
C
F⃗ · n⃗ ds and

∫∫
R
div F⃗ dA, showing they are equal.

21. F⃗ = ⟨x− y, x+ y⟩; C is the closed curve
composed of the parabola y = x2 on 0 ≤ x ≤ 2
followed by the line segment from (2, 4) to
(0, 0).

22. F⃗ = ⟨−y, x⟩; C is the unit circle.

23. F⃗ = ⟨0, y2⟩; C the triangle with corners at
(0, 0), (2, 0) and (1, 1).

24. F⃗ = ⟨x2/2, y2/2⟩; C the curve that starts at
(0, 1), follows the parabola y = (x− 1)2 to
(3, 4), then follows a line back to (0, 1).
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16.5 Parametrized Surfaces and Surface Area

Thus far we have focusedmostly on 2-dimensional vector fields, measuring flow
and flux along/across curves in the plane. Both Green’s Theorem and the Di-
vergence Theorem make connections between planar regions and their bound-
aries. We now move our attention to 3-dimensional vector fields, considering
both curves and surfaces in space.

16.5.1 Parametrizing surfaces

youtu.be/watch?v=dPB3NGtuEhU

Figure 16.5.1 Introducing parame-
trized surfaces

We are accustomed to describing surfaces as functions of two variables, usu-
ally written as z = f(x, y). For our coming needs, this method of describing
surfaces will prove to be insufficient. Instead, we will parametrize our surfaces,
describing them as the set of terminal points of some vector-valued function
r⃗(u, v) = ⟨f(u, v), g(u, v), h(u, v)⟩. The bulk of this section is spent practicing
the skill of describing a surface Susing a vector-valued function. Once this skill is
developed, we’ll showhow to find the surface areaS of a parametrically-defined
surface S , a skill needed in the remaining sections of this chapter.

We use the letter S to denote
SurfaceArea. This sectionbegins
a study into surfaces, and it is nat-
ural to label a surface with the
letter “S”. We distinguish a sur-
face from its surface area by us-
ing a calligraphic S to denote a
surface: S. When writing this
letter by hand, it may be useful
to add serifs to the letter, such
as:

Definition 16.5.2 Parametrized Surface.

Let r⃗(u, v) = ⟨ f(u, v), g(u, v), h(u, v)⟩ be a vector-valued function that
is continuous and one to one on the interior of its domain R in the u-v
plane. The set of all terminal points of r⃗ (i.e., the range of r⃗ ) is the
surface S , and r⃗ along with its domain R form a parametrization of S.
This parametrization is smooth on R if r⃗u and r⃗v are continuous and
r⃗u × r⃗v is never 0⃗ on the interior of R.

Given a point (u0, v0) in the domain of a vector-valued function r⃗, the vec-
tors r⃗u(u0, v0) and r⃗v(u0, v0) are tangent to the surface S at r⃗(u0, v0) (a proof
of this is developed later in this section). The definition of smoothness dictates
that r⃗u × r⃗v ̸= 0⃗; this ensures that neither r⃗u nor r⃗v are 0⃗, nor are they ever
parallel. Therefore smoothness guarantees that r⃗u and r⃗v determine a plane
that is tangent to S.

Recall that function isone to one
on its domain if the functionnever
repeats anoutput value over the
domain. In the case of r⃗(u, v), r⃗
is one to one if r⃗(u1, v1) ̸= r⃗(u2, v2)
for all points (u1, v1) ̸= (u2, v2)
in the domain of r⃗.

A surface S is said to be orientable if a field of normal vectors can be de-
fined on S that vary continuously along S. This definition may be hard to under-
stand; it may help to know that orientable surfaces are often called “two sided.”
A sphere is an orientable surface, and one can easily envision an “inside” and
“outside” of the sphere. A paraboloid is orientable, where again one can gener-
ally envision “inside” and “outside” sides (or “top” and “bottom” sides) to this
surface. Just about every surface that one can imagine is orientable, and we’ll
assume all surfaces we deal with in this text are orientable.

It is enlightening to examine a classic non-orientable surface: the Möbius
band, shown in Figure 16.5.3. Vectors normal to the surface are given, starting
at the point indicated in the figure. These normal vectors “vary continuously” as
they move along the surface. Letting each vector indicate the “top” side of the
band, we can easily see near any vector which side is the “top”.

However, if as we progress along the band, we recognize that we are labeling
“both sides” of the band as the top; in fact, there are not two “sides” to this band,
but one. The Möbius band is a non-orientable surface.

Figure 16.5.3 A Möbius band, a non-
orientable surface

We now practice parametrizing surfaces.

https://www.youtube.com/watch?v=dPB3NGtuEhU
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Example 16.5.4 Parametrizing a surface over a rectangle.

Parametrize the surface z = x2 + 2y2 over the rectangular region R
defined by−3 ≤ x ≤ 3,−1 ≤ y ≤ 1.
Solution. There is a straightforward way to parametrize a surface of the
form z = f(x, y) over a rectangular domain. We let x = u and y = v,
and let r⃗(u, v) = ⟨u, v, f(u, v)⟩. In this instance, we have r⃗(u, v) =
⟨u, v, u2 + 2v2⟩, for −3 ≤ u ≤ 3, −1 ≤ v ≤ 1. This surface is graphed
in Figure 16.5.5.

Figure 16.5.5 The surface parame-
trized in Example 16.5.4

Example 16.5.6 Parametrizing a surface over a circular disk.

Parametrize the surface z = x2+2y2 over the circular regionR enclosed
by the circle of radius 2 that is centered at the origin.
Solution. We can parametrize the circular boundary of R with the
vector-valued function ⟨2 cosu, 2 sinu⟩, where 0 ≤ u ≤ 2π. We can
obtain the interior of R by scaling this function by a variable amount,
i.e., by multiplying by v: ⟨2v cosu, 2v sinu⟩, where 0 ≤ v ≤ 1.
It is important to understand the role of v in the above function. When
v = 1, we get the boundary of R, a circle of radius 2. When v = 0, we
simply get the point (0, 0), the center of R (which can be thought of as
a circle with radius of 0). When v = 1/2, we get the circle of radius 1
that is centered at the origin, which is the circle halfway between the
boundary and the center. As v varies from 0 to 1, we create a series of
concentric circles that fill out all of R.

Figure 16.5.7 The surface parame-
trized in Example 16.5.6

Thus far, we have determined the x and y components of our parame-
trization of the surface: x = 2v cosu and y = 2v sinu. We find the z
component simply by using z = f(x, y) = x2 + 2y2:

z = (2v cosu)2 + 2(2v sinu)2 = 4v2 cos2 u+ 8v2 sin2 u.

Thus r⃗(u, v) = ⟨2v cosu, 2v sinu, 4v2 cos2 u+8v2 sin2 u⟩, 0 ≤ u ≤ 2π,
0 ≤ v ≤ 1, which is graphed in Figure 16.5.7. The way that this graphic
was generated highlights how the surface was parametrized. When
viewing from above, one can see lines emanating from the origin; they
represent different values of u as u sweeps from an angle of 0 up to 2π.
One can also see concentric circles, each corresponding to a different
value of v.

Examples 16.5.4 and 16.5.6 demonstrate an important principle when pa-
rametrizing surfaces given in the form z = f(x, y) over a region R: if one can
determine x and y in terms of u and v, then z follows directly as z = f(x, y).

In the following two examples, we parametrize the same surface over trian-
gular regions. Each will use v as a “scaling factor” as done in Example 16.5.6.

Example 16.5.8 Parametrizing a surface over a triangle.

Parametrize the surface z = x2 + 2y2 over the triangular region R en-
closed by the coordinate axes and the line y = 2 − 2x/3, as shown in
Figure 16.5.9(a).
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1 2 3

1

2

3

y =
2− 2x/3

R

x

y

(a) (b)

Figure 16.5.9 Part (a) shows a graph of the regionR, and part (b) shows
the surface overR, as defined in Example 16.5.8

Solution. Wemay begin by letting x = u, 0 ≤ u ≤ 3, and y = 2−2u/3.
This gives only the line on the “upper” side of the triangle. To get all of
the regionR, we can once again scale y by a variable factor, v.
Still letting x = u, 0 ≤ u ≤ 3, we let y = v(2−2u/3), 0 ≤ v ≤ 1. When
v = 0, all y-values are 0, and we get the portion of the x-axis between
x = 0 and x = 3. When v = 1, we get the upper side of the triangle.
When v = 1/2, we get the line y = 1/2(2 − 2u/3) = 1 − u/3, which
is the line “halfway up” the triangle, shown in the figure with a dashed
line.
Letting z = f(x, y) = x2+2y2, we have r⃗(u, v) = ⟨u, v(2−2u/3), u2+

2
(
v(2 − 2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1. This surface is graphed in
Figure 16.5.9(b). Again, when one looks from above, we can see the
scaling effects of v: the series of lines that run to the point (3, 0) each
represent a different value of v.
Another common way to parametrize the surface is to begin with y = u,
0 ≤ u ≤ 2. Solving the equation of the line y = 2 − 2x/3 for x, we
have x = 3− 3y/2, leading to using x = v(3− 3u/2), 0 ≤ v ≤ 1. With
z = x2+2y2, we have r⃗(u, v) = ⟨v(3−3u/2), u,

(
v(3−3u/2)

)2
+2v2⟩,

0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

Example 16.5.10 Parametrizing a surface over a triangle.

Parametrize the surface z = x2 + 2y2 over the triangular region R en-
closed by the lines y = 3 − 2x/3, y = 1 and x = 0 as shown in Fig-
ure 16.5.11(a).
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1 2 3

1

2

3

y =
3− 2x/3

R

x

y

(a) (b)

Figure 16.5.11 Part (a) shows a graph of the regionR, and part (b) shows
the surface overR, as defined in Example 16.5.10

Solution. While the regionR in this example is very similar to the region
R in the previous example, and ourmethod of parametrizing the surface
is fundamentally the same, it will feel as though our answer is much
different than before.
We begin with letting x = u, 0 ≤ u ≤ 3. We may be tempted to let
y = v(3 − 2u/3), 0 ≤ v ≤ 1, but this is incorrect. When v = 1, we
obtain the upper line of the triangle as desired. However, when v = 0,
the y-value is 0, which does not lie in the region R.
We will describe the general method of proceeding following this ex-
ample. For now, consider y = 1 + v(2 − 2u/3), 0 ≤ v ≤ 1. Note
that when v = 1, we have y = 3 − 2u/3, the upper line of the
boundary of R. Also, when v = 0, we have y = 1, which is the
lower boundary of R. With z = x2 + 2y2, we determine r⃗(u, v) =

⟨u, 1+ v(2− 2u/3), u2 +2
(
1+ v(2− 2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1.
The surface is graphed in Figure 16.5.11(b).

Given a surface of the form z = f(x, y), one can often determine a pa-
rametrization of the surface over a regionR in a manner similar to determining
bounds of integration over a region R. Using the techniques of Section 15.1,
suppose a region R can be described by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e.,
the area ofR can be found using the iterated integral∫ b

a

∫ g2(x)

g1(x)

dy dx.

When parametrizing the surface, we can let x = u, a ≤ u ≤ b, and we
can let y = g1(u) + v

(
g2(u) − g1(u)

)
, 0 ≤ v ≤ 1. The parametrization of

x is straightforward, but look closely at how y is determined. When v = 0,
y = g1(u) = g1(x). When v = 1, y = g2(u) = g2(x).

As a specific example, consider the triangular regionR fromExample 16.5.10,
shown in Figure 16.5.11(a). Using the techniques of Section 15.1, we can find
the area ofR as ∫ 3

0

∫ 3−2x/3

1

dy dx.

Following the above discussion, we can set x = u, where 0 ≤ u ≤ 3, and
set y = 1 + v

(
3 − 2u/3 − 1

)
= 1 + v(2 − 2u/3), 0 ≤ v ≤ 1, as used in that

example.



16.5. PARAMETRIZED SURFACES AND SURFACE AREA 975

One can do a similar thing ifR is bounded by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y),
but for the sake of simplicity we leave it to the reader to flesh out those details.
The principles outlined above are given in the following Key Idea for reference.

Key Idea 16.5.12 Parametrizing Surfaces.

Let a surface S be the graph of a function f(x, y), where the domain of
f is a closed, bounded region R in the xy-plane. Let R be bounded by
a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e., the area ofR can be found using the
iterated integral

∫ b

a

∫ g2(x)

g1(x)
dy dx, and let h(u, v) = g1(u) + v

(
g2(u) −

g1(u)
)
.

S can be parametrized as

r⃗(u, v) =
〈
u, h(u, v), f

(
u, h(u, v)

)〉
, a ≤ u ≤ b, 0 ≤ v ≤ 1.

Example 16.5.13 Parametrizing a cylindrical surface.

Find a parametrizationof the cylinderx2+z2/4 = 1, where−1 ≤ y ≤ 2,
as shown in Figure 16.5.14.

Figure 16.5.14 The cylinder parame-
trized in Example 16.5.13

Solution. The equation x2+z2/4 = 1 can be envisioned to describe an
ellipse in the xz-plane; as the equation lacks a y-term, the equation de-
scribes a cylinder (recall Definition 11.1.18) that extends without bound
parallel to the y-axis. This ellipse has a vertical major axis of length 4, a
horizontal minor axis of length 2, and is centered at the origin. We can
parametrize this ellipse using sines and cosines; our parametrization can
begin with

r⃗(u, v) = ⟨cosu, ??? , 2 sinu⟩ , 0 ≤ u ≤ 2π,

where we still need to determine the y component.
While the cylinder x2+z2/4 = 1 is satisfied by any y value, the problem
states that all y values are to be between y = −1 and y = 2. Since the
value of y does not depend at all on the values of x or z, we can use
another variable, v, to describe y. Our final answer is

r⃗(u, v) = ⟨cosu, v, 2 sinu⟩ , 0 ≤ u ≤ 2π,−1 ≤ v ≤ 2.

Example 16.5.15 Parametrizing an elliptic cone.

Find a parametrization of the elliptic cone z2 = x2

4 + y2

9 , where −2 ≤
z ≤ 3, as shown in Figure 16.5.16.

Figure 16.5.16 The elliptic cone as de-
scribed in Example 16.5.15

Solution. One way to parametrize this cone is to recognize that given
a z value, the cross section of the cone at that z value is an ellipse with
equation x2

(2z)2 +
y2

(3z)2 = 1. We can let z = v, for−2 ≤ v ≤ 3 and then
parametrize the above ellipses using sines, cosines and v.
We can parametrize the x component of our surface with x = 2z cosu
and the y component with y = 3z sinu, where 0 ≤ u ≤ 2π. Putting all
components together, we have

r⃗(u, v) = ⟨2v cosu, 3v sinu, v⟩ , 0 ≤ u ≤ 2π,−2 ≤ v ≤ 3.

When v takes on negative values, the radii of the cross-sectional ellipses
become “negative,” which can lead to some surprising results. Consider
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Figure 16.5.17, where the cone is graphed for 0 ≤ u ≤ π. Because v
is negative below the xy-plane, the radii of the cross-sectional ellipses
are negative, and the opposite side of the cone is sketched below the
xy-plane.

Figure 16.5.17 The elliptic cone as de-
scribed in Example 16.5.15 with re-
stricted domain

Example 16.5.18 Parametrizing an ellipsoid.

Find a parametrization of the ellipsoid x2

25 + y2 + z2

4 = 1 as shown in
Figure 16.5.19(a).

(a) (b)

Figure 16.5.19 An ellipsoid in (a), drawn again in (b) with its domain re-
stricted, as described in Example 16.5.18

Solution. Recall Key Idea 11.2.25 from Section 11.2, which states that
all unit vectors in space have the form ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for
some angles θ and φ. If we choose our angles appropriately, this allows
us to draw the unit sphere. To get an ellipsoid, we need only scale each
component of the sphere appropriately.
The x-radius of the given ellipsoid is 5, the y-radius is 1 and the z-radius
is 2. Substituting u for θ and v for φ, we have

r⃗(u, v) = ⟨5 sinu cos v, sinu sin v, 2 cosu⟩,

where we still need to determine the ranges of u and v.
Note how the x and y components of r⃗ have cos v and sin v terms, re-
spectively. This hints at the fact that ellipses are drawn parallel to the
xy-plane as v varies, which implies we should have v range from 0 to 2π.
One may be tempted to let 0 ≤ u ≤ 2π as well, but note how the z
component is 2 cosu. We only need cosu to take on values between−1
and 1 once, therefore we can restrict u to 0 ≤ u ≤ π.
The final parametrization is thus

r⃗(u, v) = ⟨5 sinu cos v, sinu sin v, 2 cosu⟩, 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.

In Figure 16.5.19(b), the ellipsoid is graphed on π
4 ≤ u ≤ 2π

3 ,
π
4 ≤ v ≤

3π
2 to demonstrate how each variable affects the surface.

Parametrization is a powerful way to represent surfaces. One of the advan-
tages of the methods of parametrization described in this section is that the
domain of r⃗(u, v) is always a rectangle; that is, the bounds on u and v are con-
stants. This will make some of our future computations easier to evaluate.
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Just as we could parametrize curves in more than one way, there will always
be multiple ways to parametrize a surface. Some ways will be more “natural”
than others, but these other ways are not incorrect. Because technology is of-
ten readily available, it is often a good idea to check one’s work by graphing a
parametrizationof a surface to check if it indeed representswhat it was intended
to.

16.5.2 Surface Area

youtu.be/watch?v=9TtJ6xpuadQ

Figure 16.5.20 Tangent and normal
vectors for parametric surfaces

It will become important in the following sections to be able to compute the
surface area of a surface S given a smooth parametrization r⃗(u, v), a ≤ u ≤
b, c ≤ v ≤ d. Following the principles given in the integration review at the
beginning of this chapter, we can say that

Surface Area of S = S =

∫∫
S
dS,

where dS represents a small amount of surface area. That is, to compute total
surface areaS, add up lots of small amounts of surface area dS across the entire
surface S. The key to finding surface area is knowing how to compute dS. We
begin by approximating.

In Section 15.5 we used the area of a plane to approximate the surface area
of a small portion of a surface. We will do the same here.

Let R be the region of the u-v plane bounded by a ≤ u ≤ b, c ≤ v ≤ d as
shown in Figure 16.5.21(a). PartitionR into rectangles of width∆u = b−a

n and
height∆v = d−c

n , for some n. Let p = (u0, v0) be the lower left corner of some
rectangle in the partition, and letm and q be neighboring corners as shown.

The point pmaps to a point P = r⃗(u0, v0) on the surface S , and the rectan-
gle with corners p,m and q maps to some region (probably not rectangular) on
the surface as shown in Figure 16.5.21(b), whereM = r⃗(m) andQ = r⃗(q). We
wish to approximate the surface area of this mapped region.

Let u⃗ = M − P and v⃗ = Q − P . These two vectors form a parallelogram,
illustrated in Figure 16.5.21(c), whose area approximates the surface area we
seek. In this particular illustration, we can see that parallelogram does not par-
ticularly match well the region we wish to approximate, but that is acceptable;
by increasing the number of partitions ofR,∆u and∆v shrink and our approx-
imations will become better.

a bu0 u0 +∆u

c

d

v0

v0 +∆v

p

q

m

R

u

v

(a)

(b) (c)

Figure 16.5.21 Illustrating the process of finding surface area by approximating
with planes

From Section 11.4 we know the area of this parallelogram is || u⃗× v⃗ ||. If
we repeat this approximation process for each rectangle in the partition of R,
we can sum the areas of all the parallelograms to get an approximation of the

https://www.youtube.com/watch?v=9TtJ6xpuadQ
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surface area S:

Surface area of S = S ≈
n∑

j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || ,

where u⃗i,j = r⃗(ui +∆u, vj)− r⃗(ui, vj) and v⃗i,j = r⃗(ui, vj +∆v)− r⃗(ui, vj).
From our previous calculus experience, we expect that taking a limit as n →

∞ will result in the exact surface area. However, the current form of the above
double sum makes it difficult to realize what the result of that limit is. The fol-
lowing rewriting of the double summation will be helpful:

n∑
j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || =

n∑
j=1

n∑
i=1

∣∣∣∣ (r⃗(ui +∆u, vj)− r⃗(ui, vj)
)
×
(
r⃗(ui, vj +∆v)− r⃗(ui, vj)

) ∣∣∣∣ =
n∑

j=1

n∑
i=1

∣∣∣∣∣∣∣∣ r⃗(ui +∆u, vj)− r⃗(ui, vj)

∆u
× r⃗(ui, vj +∆v)− r⃗(ui, vj)

∆v

∣∣∣∣∣∣∣∣∆u∆v.

We now take the limit as n → ∞, forcing∆u and∆v to 0. As∆u → 0,

r⃗(ui +∆u, vj)− r⃗(ui, vj)

∆u
→ r⃗u(ui, vj) and

r⃗(ui, vj +∆v)− r⃗(ui, vj)

∆v
→ r⃗v(ui, vj).

(This limit process also demonstrates that r⃗u(u, v) and r⃗v(u, v) are tangent
to the surface S at r⃗(u, v). We don’t need this fact now, but it will be important
in the next section.)

Thus, in the limit, the double sum leads to a double integral:

lim
n→∞

n∑
j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || =
∫ d

c

∫ b

a

|| r⃗u × r⃗v || du dv.

Theorem 16.5.22 Surface Area of Parametrically Defined Surfaces.

Let r⃗(u, v) be a smooth parametrization of a surface S over a closed,
bounded regionR of the u-v plane.

• The surface area differential dS is: dS = || r⃗u × r⃗v || dA.

• The surface area S of S is

S =

∫∫
S
dS =

∫∫
R

|| r⃗u × r⃗v || dA.

youtu.be/watch?v=ezVITWloEfA

Figure 16.5.23 Area of parametric sur-
faces

Example 16.5.24 Finding the surface area of a parametrized surface.

Using the parametrization found in Example 16.5.6, find the surface area
of z = x2 +2y2 over the circular disk of radius 2, centered at the origin.
Solution. In Example 16.5.6, we parametrized the surface as r⃗(u, v) =〈
2v cosu, 2v sinu, 4v2 cos2 u+ 8v2 sin2 u

〉
, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

To find the surface area using Theorem 16.5.22, we need || r⃗u × r⃗v ||.

https://www.youtube.com/watch?v=ezVITWloEfA
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We find:

r⃗u =
〈
−2v sinu, 2v cosu, 8v2 cosu sinu

〉
r⃗v =

〈
2 cosu, 2 sin v, 8v cos2 u+ 16v sin2 u

〉
r⃗u × r⃗v =

〈
16v2 cosu, 32v2 sinu,−4v

〉
|| r⃗u × r⃗v || =

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2.

Thus the surface area is

S =

∫∫
S
dS =

∫∫
R

|| r⃗u × r⃗v || dA

=

∫ 1

0

∫ 2π

0

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2 du dv

≈ 53.59.

There is a lot of tedious work in the above calculations and the final in-
tegral is nontrivial. The use of a computer-algebra system is highly rec-
ommended.

youtu.be/watch?v=9tIGTOpQ5WE

Figure 16.5.25 Surface area of a
sphere

In Section 16.1, we recalled the arc length differential ds = || r⃗ ′(t) || dt.
In subsequent sections, we used that differential, but in most applications the
“|| r⃗ ′(t) ||” part of the differential canceled out of the integrand (to our bene-
fit, as integrating the square roots of functions is generally difficult). We will
find a similar thing happens when we use the surface area differential dS in the
following sections. That is, our main goal is not to be able to compute surface
area; rather, surface area is a tool to obtain other quantities that are more im-
portant and useful. In our applications, we will use dS, but most of the time
the “|| r⃗u × r⃗v ||” part will cancel out of the integrand, making the subsequent
integration easier to compute.

https://www.youtube.com/watch?v=9tIGTOpQ5WE
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16.5.3 Exercises

Terms and Concepts

1. In your own words, describe what an orientable surface is.
2. Give an example of a non-orientable surface.

Problems

Exercise Group. In the following exercises, parametrize the surface defined by the function z = f(x, y) over each of
the given regionsR of the xy-plane.

3. z = 3x2y;

(a) R is the rectangle bounded by
−1 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

(b) R is the circle of radius 3, centered at
(1, 2).

(c) R is the triangle with vertices (0, 0), (1, 0)
and (0, 2).

(d) R is the region bounded by the x-axis and
the graph of y = 1− x2.

4. z = 4x+ 2y2;

(a) R is the rectangle bounded by 1 ≤ x ≤ 4
and 5 ≤ y ≤ 7.

(b) R is the ellipse with major axis of length 8
parallel to the x-axis, and minor axis of
length 6 parallel to the y-axis, centered at
the origin.

(c) R is the triangle with vertices (0, 0), (2, 2)
and (0, 4).

(d) R is the annulus bounded between the
circles, centered at the origin, with radius
2 and radius 5.

Exercise Group. In the following exercises, a surface S in space is described that cannot be defined as the graph of
a function f(x, y). Give a parametrization of S.

5. S is the rectangle in space with corners at
(0, 0, 0), (0, 2, 0), (0, 2, 1) and (0, 0, 1).

6. S is the triangle in space with corners at
(1, 0, 0), (1, 0, 1) and (0, 0, 1).

7. S is the ellipsoid x2

9
+

y2

4
+

z2

16
= 1. 8. S is the elliptic cone y2 = x2 +

z2

16
, for

−1 ≤ y ≤ 5.

Exercise Group. In the following exercises, a domainD in space is given. Parametrize each of the bounding surfaces
ofD.
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9. D is the domain bounded by the planes
z = 1

2 (3− x), x = 1, y = 0, y = 2 and z = 0.
10. D is the domain bounded by the planes

z = 2x+ 4y − 4, x = 2, y = 1 and z = 0.

11. D is the domain bounded by z = 2y,
y = 4− x2 and z = 0.

12. D is the domain bounded by y = 1− z2,
y = 1− x2, x = 0, y = 0 and z = 0.

13. D is the domain bounded by the cylinder
x2 + y2/9 = 1 and the planes z = 1 and z = 3.

14. D is the domain bounded by the cone
x2 + y2 = (z − 1)2 and the plane z = 0.
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15. D is the domain bounded by the cylinder
z = 1− x2 and the planes y = −1, y = 2 and
z = 0.

16. D is the domain bounded by the paraboloid
z = 4− x2 − 4y2 and the plane z = 0.

Exercise Group. In the following exercises, find the surface area S of the given surface S. (The associated integrals
are computable without the assistance of technology.)

17. S is the plane z = 2x+ 3y over the rectangle
−1 ≤ x ≤ 1, 2 ≤ y ≤ 3.

18. S is the plane z = x+ 2y over the triangle with
vertices at (0, 0), (1, 0) and (0, 1).

19. S is the plane z = x+ y over the circular disk,
centered at the origin, with radius 2.

20. S is the plane z = x+ y over the annulus
bounded by the circles, centered at the origin,
with radius 1 and radius 2.

Exercise Group. In the following exercises, set up the double integral that finds the surface areaS of the given surface
S , then use technology to approximate its value.

21. S is the paraboloid z = x2 + y2 over the
circular disk of radius 3 centered at the origin.

22. S is the paraboloid z = x2 + y2 over the
triangle with vertices at (0, 0), (0, 1) and (1, 1).

23. S is the plane z = 5x− y over the region
enclosed by the parabola y = 1− x2 and the
x-axis.

24. S is the hyperbolic paraboloid z = x2 − y2 over
the circular disk of radius 1 centered at the
origin.
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16.6 Surface Integrals

Consider a smooth surface S that represents a thin sheet of metal. How could
we find the mass of this metallic object?

If the density of this object is constant, then we can find mass via “mass=
density × surface area,” and we could compute the surface area using the tech-
niques of the previous section.

What if the density were not constant, but variable, described by a function
δ(x, y, z)? We can describe the mass using our general integration techniques
as

mass =

∫∫
S
dm,

where dm represents “a little bit of mass.” That is, to find the total mass of the
object, sum up lots of little masses over the surface.

How do we find the “little bit of mass” dm? On a small portion of the sur-
face with surface area∆S, the density is approximately constant, hence dm ≈
δ(x, y, z)∆S. As we use limits to shrink the size of ∆S to 0, we get dm =
δ(x, y, z)dS; that is, a little bit ofmass is equal to a density times a small amount
of surface area. Thus the total mass of the thin sheet is

mass =

∫∫
S
δ(x, y, z) dS. (16.6.1)

To evaluate the above integral, we would seek r⃗(u, v), a smooth parame-
trization of S over a region R of the u-v plane. The density would become a
function of u and v, and we would integrate

∫∫
R
δ(u, v) || r⃗u × r⃗v || dA.

The integral in Equation (16.6.1) is a specific example of a more general con-
struction defined below.

16.6.1 Surface integrals of scalar fields

youtu.be/watch?v=-1NgI5Xts6E

Figure 16.6.1 The surface integral of a
scalar field (function)

Definition 16.6.2 Surface Integral.

LetG(x, y, z) be a continuous function defined on a surface S. The sur-
face integral ofG on S is ∫∫

S
G(x, y, z) dS.

Surface integrals can be used tomeasure a variety of quantities beyondmass.
IfG(x, y, z)measures the static charge density at a point, then the surface inte-
gral will compute the total static charge of the sheet. IfGmeasures the amount
of fluid passing through a screen (represented by S) at a point, then the surface
integral gives the total amount of fluid going through the screen.

Example 16.6.3 Finding the mass of a thin sheet.

Find the mass of a thin sheet modeled by the plane 2x + y + z = 3
over the triangular region of the xy-plane bounded by the coordinate
axes and the line y = 2 − 2x, as shown in Figure 16.6.4, with density
function δ(x, y, z) = x2 + 5y + z, where all distances are measured in
cm and the density is given as gm/cm2.

Figure 16.6.4 The surfacewhosemass
is computed in Example 16.6.3

Solution. We begin by parametrizing the planar surface S. Using the
techniques of the previous section, we can let x = u and y = v(2−2u),
where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Solving for z in the equation of the

https://www.youtube.com/watch?v=-1NgI5Xts6E
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plane, we have z = 3− 2x− y, hence z = 3− 2u− v(2− 2u), giving
the parametrization r⃗(u, v) = ⟨u, v(2− 2u), 3− 2u− v(2− 2u)⟩.
We need dS = || r⃗u × r⃗v || dA, so we need to compute r⃗u, r⃗v and the
norm of their cross product. We leave it to the reader to confirm the
following:

r⃗u = ⟨1,−2v, 2v − 2⟩, r⃗v = ⟨0, 2− 2u, 2u− 2⟩,

r⃗u × r⃗v = ⟨4− 4u, 2− 2u, 2− 2u⟩ and || r⃗u × r⃗v || = 2
√
6
√

(u− 1)2.

We need to be careful to not “simplify” || r⃗u × r⃗v || = 2
√
6
√
(u− 1)2 as

2
√
6(u−1); rather, it is 2

√
6|u−1|. In this example, u is bounded by 0 ≤

u ≤ 1, and on this interval |u− 1| = 1− u. Thus dS = 2
√
6(1− u)dA.

The density is given as a function of x, y and z, for which we’ll substitute
the corresponding components of r⃗ (with the slight abuse of notation
that we used in previous sections):

δ(x, y, z) = δ
(
r⃗(u, v)

)
= u2 + 5v(2− 2u) + 3− 2u− v(2− 2u)

= u2 − 8uv − 2u+ 8v + 3.

Thus the mass of the sheet is:

M =

∫∫
S
dm

=

∫∫
R

δ
(
r⃗(u, v)

)
|| r⃗u × r⃗v || dA

=

∫ 1

0

∫ 1

0

(
u2 − 8uv − 2u+ 8v + 3

)(
2
√
6(1− u)

)
du dv

=
31√
6
≈ 12.66 gm.

16.6.2 Flux

Let a surface S lie within a vector field F⃗ . One is often interested in measuring
the flux of F⃗ across S; that is, measuring “how much of the vector field passes
across S.” For instance, if F⃗ represents the velocity field of moving air and S
represents the shape of an air filter, the fluxwillmeasure howmuch air is passing
through the filter per unit time.

As flux measures the amount of F⃗ passing across S , we need to find the
“amount of F⃗ orthogonal to S.” Similar to our measure of flux in the plane, this
is equal to F⃗ ·n⃗, where n⃗ is a unit vector normal toS at a point. We now consider
how to find n⃗.

youtu.be/watch?v=ISowVEDVEzM

Figure 16.6.5 Introducing surface in-
tegrals of vector fields

Given a smooth parametrization r⃗(u, v) of S , the work in the previous sec-
tion showing the development of our method of computing surface area also
shows that r⃗u(u, v) and r⃗v(u, v) are tangent to S at r⃗(u, v). Thus r⃗u × r⃗v is
orthogonal to S , and we let

n⃗ =
r⃗u × r⃗v

|| r⃗u × r⃗v ||
,

which is a unit vector normal to S at r⃗(u, v).

https://www.youtube.com/watch?v=ISowVEDVEzM
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The measurement of flux across a surface is a surface integral; that is, to
measure total flux we sum the product of F⃗ · n⃗ times a small amount of surface
area: F⃗ · n⃗ dS.

A nice thing happens with the actual computation of flux: the || r⃗u × r⃗v ||
terms go away. Consider:

Flux =

∫∫
S
F⃗ · n⃗ dS

=

∫∫
R

F⃗ · r⃗u × r⃗v
|| r⃗u × r⃗v ||

|| r⃗u × r⃗v || dA

=

∫∫
R

F⃗ · (r⃗u × r⃗v) dA.

The above only makes sense if S is orientable; the normal vectors n⃗ must
vary continuously across S. We assume that n⃗ does vary continuously. (If the
parametrization r⃗ of S is smooth, then our above definition of n⃗ will vary con-
tinuously.)

Definition 16.6.6 Flux over a surface.

Let F⃗ be a vector field with continuous components defined on an ori-
entable surface S with normal vector n⃗. The flux of F⃗ across S is

Flux =

∫∫
S
F⃗ · n⃗ dS.

If S is parametrized by r⃗(u, v), which is smooth on its domain R, then

Flux =

∫∫
R

F⃗
(
r⃗(u, v)

)
· (r⃗u × r⃗v) dA.

Since S is orientable, we adopt the convention of saying one passes from
the “back” side of S to the “front” side when moving across the surface parallel
to the direction of n⃗. Also, when S is closed, it is natural to speak of the regions
of space “inside” and “outside” S. We also adopt the convention that when S is
a closed surface, n⃗ should point to the outside of S. If n⃗ = r⃗u× r⃗v points inside
S , use n⃗ = r⃗v × r⃗u instead.

When the computation of flux is positive, it means that the field is moving
from the back side of S to the front side; when flux is negative, it means the
field is moving opposite the direction of n⃗, and is moving from the front of S
to the back. When S is not closed, there is not a “right” and “wrong” direction
in which n⃗ should point, but one should be mindful of its direction to make full
sense of the flux computation.

We demonstrate the computation of flux, and its interpretation, in the fol-
lowing examples.

Example 16.6.7 Finding flux across a surface.

LetS be the surface given in Example 16.6.3, whereS is parametrized by
r⃗(u, v) = ⟨u, v(2− 2u), 3− 2u− v(2− 2u)⟩ on 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,
and let F⃗ = ⟨1, x,−y⟩, as shown in Figure 16.6.8. Find the flux of F⃗
across S.

Figure 16.6.8 The surface and vector
field used in Example 16.6.7

Solution. Using ourwork from the previous example, we have n⃗ = r⃗u×
r⃗v = ⟨4−4u, 2−2u, 2−2u⟩. We also need F⃗

(
r⃗(u, v)

)
= ⟨1, u,−v(2−

2u)⟩.
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Thus the flux of F⃗ across S is:

Flux =

∫∫
S
F⃗ · n⃗ dS

=

∫∫
R

⟨1, u,−v(2− 2u)⟩ · ⟨4− 4u, 2− 2u, 2− 2u⟩ dA

=

∫ 1

0

∫ 1

0

(
− 4u2v − 2u2 + 8uv − 2u− 4v + 4

)
du dv

= 5/3.

To make full use of this numeric answer, we need to know the direction
in which the field is passing across S. The graph in Figure 16.6.8 helps,
but we need a method that is not dependent on a graph.
Pick a point (u, v) in the interior ofR and consider n⃗(u, v). For instance,
choose (1/2, 1/2) and look at n⃗(1/2, 1/2) = ⟨2, 1, 1⟩/

√
6. This vector

has positive x, y and z components. Generally speaking, one has some
idea of what the surface S looks like, as that surface is for some reason
important. In our case, we know S is a plane with z-intercept of z = 3.
Knowing n⃗ and the flux measurement of positive 5/3, we know that the
field must be passing from “behind” S , i.e., the side the origin is on, to
the “front” of S.

youtu.be/watch?v=5XEt-DZedNM

Figure 16.6.9 Computing a surface in-
tegral over part of a paraboloid

Example 16.6.10 Flux across surfaces with shared boundaries.

Let S1 be the unit disk in the xy-plane, and let S2 be the paraboloid
z = 1 − x2 − y2, for z ≥ 0, as graphed in Figure 16.6.11. Note how
these two surfaces each have the unit circle as a boundary.

Figure 16.6.11 The surfaces used in
Example 16.6.10

Let F⃗1 = ⟨0, 0, 1⟩ and F⃗2 = ⟨0, 0, z⟩. Using normal vectors for each
surface that point “upward,” i.e., with a positive z-component, find the
flux of each field across each surface.
Solution. We begin by parametrizing each surface.
The boundary of the unit disk in the xy-plane is the unit circle, which can
be described with ⟨cosu, sinu, 0⟩, 0 ≤ u ≤ 2π. To obtain the interior
of the circle as well, we can scale by v, giving

r⃗1(u, v) = ⟨v cosu, v sinu, 0⟩, 0 ≤ u ≤ 2π0 ≤ v ≤ 1.

As the boundary of S2 is also the unit circle, the x and y components of
r⃗2 will be the same as those of r⃗1; we just need a different z component.
With z = 1− x2 − y2, we have

r⃗2(u, v) = ⟨v cosu, v sinu, 1−v2 cos2 u−v2 sin2 u⟩ = ⟨v cosu, v sinu, 1−v2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
We now compute the normal vectors n⃗1 and n⃗2.
For n⃗1: r⃗1u = ⟨−v sinu, v cosu, 0⟩, r⃗1v = ⟨cosu, sinu, 0⟩, so

n⃗1 = r⃗1u × r⃗1v = ⟨0, 0,−v⟩.

As this vector has a negative z-component, we instead use

n⃗1 = r⃗1v × r⃗1u = ⟨0, 0, v⟩.

https://www.youtube.com/watch?v=5XEt-DZedNM
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Similarly, n⃗2: r⃗2u = ⟨−v sinu, v cosu, 0⟩, r⃗2v = ⟨cosu, sinu,−2v⟩, so

n⃗2 = r⃗2u × r⃗2v = ⟨−2v2 cosu,−2v2 sinu,−v⟩.

Again, this normal vector has a negative z-component so we use

n⃗2 = r⃗2v × r⃗2u = ⟨2v2 cosu, 2v2 sinu, v⟩.

We are now set to compute flux. Over field F⃗1 = ⟨0, 0, 1⟩:

Flux across S1 =

∫∫
S1

F⃗1 · n⃗1 dS

=

∫∫
R

⟨0, 0, 1⟩ · ⟨0, 0, v⟩ dA

=

∫ 1

0

∫ 2π

0

(v) du dv

= π.

Flux across S2 =

∫∫
S2

F⃗1 · n⃗2 dS

=

∫∫
R

⟨0, 0, 1⟩ · ⟨2v2 cosu, 2v2 sinu, v⟩ dA

=

∫ 1

0

∫ 2π

0

(v) du dv

= π.

These two results are equal and positive. Each are positive because both
normal vectors are pointing in the positive z-directions, as does F⃗1. As
the field passes through each surface in the direction of their normal
vectors, the flux is measured as positive.
We can also intuitively understand why the results are equal. Consider
F⃗1 to represent the flow of air, and let each surface represent a filter.
Since F⃗1 is constant, andmoving “straight up,” it makes sense that all air
passing through S1 also passes through S2, and vice-versa.
If we treated the surfaces as creating one piecewise-smooth surface S ,
wewould find the total flux acrossS by finding the flux across each piece,
being sure that each normal vector pointed to the outside of the closed
surface. Above, n⃗1 does not point outside the surface, though n⃗2 does.
We would instead want to use−n⃗1 in our computation. We would then
find that the flux across S1 is −π, and hence the total flux across S is
−π+ π = 0. (As 0 is a special number, we should wonder if this answer
has special significance. It does, which is briefly discussed following this
example and will be more fully developed in the next section.)
We now compute the flux across each surface with F⃗2 = ⟨0, 0, z⟩:

Flux across S1 =

∫∫
S1

F⃗2 · n⃗1 dS.

Over S1, F⃗2 = F⃗2

(
r⃗2(u, v)

)
= ⟨0, 0, 0⟩. Therefore,

=

∫∫
R

⟨0, 0, 0⟩ · ⟨0, 0, v⟩ dA
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=

∫ 1

0

∫ 2π

0

(0) du dv

= 0.

Flux across S2 =

∫∫
S2

F⃗2 · n⃗2 dS.

Over S2, F⃗2 = F⃗2

(
r⃗2(u, v)

)
= ⟨0, 0, 1− v2⟩. Therefore,

=

∫∫
R

⟨0, 0, 1− v2⟩ · ⟨2v2 cosu, 2v2 sinu, v⟩ dA

=

∫ 1

0

∫ 2π

0

(v3 − v) du dv

= π/2.

This time the measurements of flux differ. Over S1, the field F⃗2 is just 0⃗,
hence there is no flux. Over S2, the flux is again positive as F⃗2 points in
the positive z direction over S2, as does n⃗2.

In the previous example, the surfaces S1 and S2 form a closed surface that
is piecewise smooth. That the measurement of flux across each surface was
the same for some fields (and not for others) is reminiscent of a result from
Section 16.4, where we measured flux across curves. The quick answer to why
the flux was the same when considering F⃗1 is that div F⃗1 = 0. In the next
section, we’ll see the second part of the Divergence Theorem, which will more
fully explain this occurrence. We will also explore Stokes’ Theorem, the spatial
analogue to Green’s Theorem.

The videos in Figure 16.6.12–16.6.13 present some additional examples in-
volving surface integrals of vector fields. Note that computing flux a cross a cube
requires us to consider all six faces. This is a case where the Divergence Theo-
rem can greatly simplify matters. For integrals over spheres, there are often
simplifications possible, especially for “radial” vector fields (those parallel to the
position vector r⃗(x, y, z) = ⟨x, y, z⟩).

youtu.be/watch?v=u59S_E8VCM8

Figure 16.6.12 Computing flux across
a cube

youtu.be/watch?v=xdtbrzLRtBY

Figure 16.6.13 Some surface integrals
over spheres

https://www.youtube.com/watch?v=u59S_E8VCM8
https://www.youtube.com/watch?v=xdtbrzLRtBY
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16.6.3 Exercises

Terms and Concepts

1. In the plane, flux is a measurement of how much of the vector field passes across a ; in space, flux
is a measurement of how much of the vector field passes across a .

2. When computing flux, what does it mean when the result is a negative number?

3. When S is a closed surface, we choose the normal vector so that it points to the of the surface.

4. If S is a plane, and F⃗ is always parallel to S , then the flux of F⃗ across S will be .

Problems

Exercise Group. In the following exercises, a surface S that represents a thin sheet of material with density δ is given.
Find the mass of each thin sheet.

5. S is the plane z = x+ y on−2 ≤ x ≤ 2,
−3 ≤ y ≤ 3, with δ(x, y, z) = z + 10.

6. S is the unit sphere, with
δ(x, y, z) = x+ y + z + 10.

Exercise Group. In the following exercises, a surface S and a vector field F⃗ are given. Compute the flux of F⃗ across
S. (If S is not a closed surface, choose n⃗ so that it has a positive z-component, unless otherwise indicated.)

7. S is the plane z = 3x+ y on 0 ≤ x ≤ 1,
1 ≤ y ≤ 4; F⃗ = ⟨x2,−z, 2y⟩.

8. S is the plane z = 8− x− y over the triangle
with vertices at (0, 0), (1, 0) and (1, 5);
F⃗ = ⟨3, 1, 2⟩.

9. S is the paraboloid z = x2 + y2 over the unit
disk; F⃗ = ⟨1, 0, 0⟩.

10. S is the unit sphere; F⃗ = ⟨y − z, z − x, x− y⟩.

11. S is the square in space with corners at (0, 0, 0),
(1, 0, 0), (1, 0, 1) and (0, 0, 1) (choose n⃗ such
that it has a positive y-component);
F⃗ = ⟨0,−z, y⟩.

12. S is the disk in the yz-plane with radius 1,
centered at (0, 1, 1) (choose n⃗ such that it has a
positive x-component); F⃗ = ⟨y, z, x⟩.

13. S is the closed surface composed of S1, whose
boundary is the ellipse in the xy-plane
described by x2

25 + y2

9 = 1 and S2, part of the
elliptical paraboloid f(x, y) = 1− x2

25 − y2

9 (see
graph); F⃗ = ⟨5, 2, 3⟩.

14. S is the closed surface composed of S1, part of
the unit sphere and S2, part of the plane
z = 1/2 (see graph); F⃗ = ⟨x,−y, z⟩.
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16.7 The Divergence Theorem and Stokes’ Theorem

16.7.1 The Divergence Theorem
Theorem 16.4.20 gives the Divergence Theorem in the plane, which states that
the flux of a vector field across a closed curve equals the sum of the divergences
over the region enclosed by the curve. Recall that the flux was measured via a
line integral, and the sum of the divergences was measured through a double
integral.

We now consider the three-dimensional version of the Divergence Theorem.
It states, in words, that the flux across a closed surface equals the sum of the
divergences over the domain enclosed by the surface. Since we are in space
(versus the plane), we measure flux via a surface integral, and the sums of diver-
gences will be measured through a triple integral.

youtu.be/watch?v=Ra6bxrTj5xU

Figure 16.7.1 Introducing the Diver-
genge Theorem

Theorem 16.7.2 The Divergence Theorem (in space).

Let D be a closed domain in space whose boundary is an orientable,
piecewise smooth surface S with outer unit normal vector n⃗, and let F⃗
be a vector field whose components are differentiable onD. Then∫∫

S
F⃗ · n⃗ dS =

∫∫∫
D

div F⃗ dV .

Note: the term “outer unit nor-
mal vector” used in Theorem16.7.2
means n⃗ points to the outside of
S.

Example 16.7.3 Using the Divergence Theorem in space.

LetD be the domain in space bounded by the planes z = 0 and z = 2x,
along with the cylinder x = 1− y2, as graphed in Figure 16.7.4, let S be
the boundary ofD, and let F⃗ = ⟨x+ y, y2, 2z⟩.

Figure 16.7.4 The surfaces used in Ex-
ample 16.7.3

Verify the Divergence Theorem by finding the total outward flux of F⃗
across S , and show this is equal to

∫∫∫
D
div F⃗ dV .

Solution. The surface S is piecewise smooth, comprising surfaces S1,
which is part of the plane z = 2x, surfaceS2, which is part of the cylinder
x = 1 − y2, and surface S3, which is part of the plane z = 0. To find
the total outward flux across S , we need to compute the outward flux
across each of these three surfaces.
We leave it to the reader to confirm that surfaces S1, S2 and S3 can be
parametrized by r⃗1, r⃗2 and r⃗3 respectively as

r⃗1(u, v) =
〈
v(1− u2), u, 2v(1− u2)

〉
,

r⃗2(u, v) =
〈
(1− u2), u, 2v(1− u2)

〉
,

r⃗3(u, v) =
〈
v(1− u2), u, 0

〉
,

where−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1 for all three functions.
We compute a unit normal vector n⃗ for each as r⃗u×r⃗v

|| r⃗u×r⃗v || , though recall
that aswe are integrating F⃗ ·n⃗ dS, we actually only use r⃗u×r⃗v. Finally, in
previous flux computations, it did not matter which direction n⃗ pointed
as long as we made note of its direction. When using the Divergence
Theorem, we need n⃗ to point to the outside of the closed surface, so in
practice this means we’ll either use r⃗u × r⃗v or r⃗v × r⃗u, depending on
which points outside of the closed surface S.
We leave it to the reader to confirm the following cross products and
integrations are correct.
For S1, we need to use r⃗1v × r⃗1u = ⟨2(u2 − 1), 0, 1− u2⟩. (Note the z-
component is nonnegative as u ≤ 1, therefore this vector always points

https://www.youtube.com/watch?v=Ra6bxrTj5xU
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up, meaning to the outside, of S.) The flux across S1 is:

Flux across S1 : =

∫∫
S1

F⃗ · n⃗1 dS

=

∫ 1

0

∫ 1

−1

F⃗
(
r⃗1(u, v)

)
·
(
r⃗1v × r⃗1u

)
du dv

=

∫ 1

0

∫ 1

−1

〈
v(1− u2) + u, u2, 4v(1− u2)

〉
·
〈
2(u2 − 1), 0, 1− u2

〉
du dv

=

∫ 1

0

∫ 1

−1

(
2u4v + 2u3 − 4u2v − 2u+ 2v

)
du dv

=
16

15
.

For S2, we use r⃗2u × r⃗2v = ⟨2(1 − u2), 4u(1 − u2), 0⟩. (Note the x-
component is always nonnegative, meaning this vector points outside
S.) The flux across S2 is:

Flux across S2 : =

∫∫
S2

F⃗ · n⃗2 dS

=

∫ 1

0

∫ 1

−1

F⃗
(
r⃗2(u, v)

)
·
(
r⃗2u × r⃗2v

)
du dv

=

∫ 1

0

∫ 1

−1

〈
1− u2 + u, u2, 4v(1− u2)

〉
·
〈
2(1− u2), 4u(1− u2), 0

〉
du dv

=

∫ 1

0

∫ 1

−1

(
4u5 − 2u4 − 2u3 + 4u2 − 2u− 2

)
du dv

=
32

15
.

For S3, we use r⃗3u × r⃗3v = ⟨0, 0, u2 − 1⟩. (Note the z-component is
never positive, meaning this vector points down, outside of S.) The flux
across S3 is:

Flux across S3 : =

∫∫
S3

F⃗ · n⃗3 dS

=

∫ 1

0

∫ 1

−1

F⃗
(
r⃗3(u, v)

)
·
(
r⃗3u × r⃗3v

)
du dv

=

∫ 1

0

∫ 1

−1

〈
v(1− u2) + u, u2, 0

〉
·
〈
0, 0, u2 − 1

〉
du dv

=

∫ 1

0

∫ 1

−1

0 du dv

= 0.

Thus the total outward flux, measured by surface integrals across all
three component surfaces of S , is 16/15 + 32/15 + 0 = 48/15 =

16/5 = 3.2. We now find the total outward flux by integrating div F⃗
overD.
Following the steps outlined in Section 15.6, we see the bounds of x, y
and z can be set as (thinking “surface to surface, curve to curve, point
to point”):

0 ≤ z ≤ 2x; 0 ≤ x ≤ 1− y2;−1 ≤ y ≤ 1.
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With div F⃗ = 1 + 2y + 2 = 2y + 3, we find the total outward flux of F⃗
over S as:

Flux =
∫∫∫

D

div F⃗ dV =

∫ 1

−1

∫ 1−y2

0

∫ 2x

0

(
2y + 3

)
dz dx dy = 16/5,

the same result we obtained previously.

In Example 16.7.3 we see that the total outward flux of a vector field across a
closed surface can be found two different ways because of the Divergence Theo-
rem. One computation took far less work to obtain. In that particular case, since
S was comprised of three separate surfaces, it was far simpler to compute one
triple integral than three surface integrals (each of which required partial deriv-
atives and a cross product). In practice, if outward flux needs to be measured,
one would choose only one method. We will use both methods in this section
simply to reinforce the truth of the Divergence Theorem.

We practice again in the following example.

Example 16.7.5 Using the Divergence Theorem in space.

Let S be the surface formed by the paraboloid z = 1 − x2 − y2, z ≥
0, and the unit disk centered at the origin in the xy-plane, graphed in
Figure 16.7.6, and let F⃗ = ⟨0, 0, z⟩. (This surface and vector field were
used in Example 16.6.10.)

Figure 16.7.6 The surfaces used in Ex-
ample 16.7.5

Verify the Divergence Theorem; find the total outward flux across S and
evaluate the triple integral of div F⃗ , showing that these two quantities
are equal.
Solution. We find the flux across S first. As S is piecewise-smooth, we
decompose it into smooth components S1, the disk, and S2, the parab-
oloid, and find the flux across each.
In Example 16.6.10, we found the flux across S1 is 0. We also found that
the flux across S2 is π/2. (In that example, the normal vector had a pos-
itive z component hence was an outer normal.) Thus the total outward
flux is 0 + π/2 = π/2.
We now compute

∫∫∫
D
div F⃗ dV . We can describe D as the domain

bounded by (think “surface to surface, curve to curve, point to point”):

0 ≤ z ≤ 1− x2 − y2,−
√
1− x2 ≤ y ≤

√
1− x2,−1 ≤ x ≤ 1.

This description of D is not very easy to integrate. With polar, we can
do better. LetR represent the unit disk, which can be described in polar
simply as r, where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. With x = r cos θ and
y = r sin θ, the surface S2 becomes

z = 1− x2 − y2 ⇒ 1− (r cos θ)2 − (r sin θ)2 ⇒ 1− r2.

ThusD can be described as the domain bounded by:

0 ≤ z ≤ 1− r2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

With div F⃗ = 1, we can integrate, recalling that dV = r dz dr dθ:∫∫∫
D

div F⃗ dV =

∫ 2π

0

∫ 1

0

∫ 1−r2

0

r dz dr dθ =
π

2
,

which matches our flux computation above.
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Example 16.7.7 A “paradox” of the Divergence Theorem and Gauss’s
Law.

The magnitude of many physical quantities (such as light intensity or
electromagnetic and gravitational forces) follow an “inverse square law”:
the magnitude of the quantity at a point is inversely proportional to the
square of the distance to the source of the quantity.
Let a point light source be placed at the origin and let F⃗ be the vector
field which describes the intensity and direction of the emanating light.
At a point (x, y, z), the unit vector describing the direction of the light
passing through that point is ⟨x, y, z⟩/

√
x2 + y2 + z2. As the intensity

of light follows the inverse square law, the magnitude of F⃗ at (x, y, z) is
k/(x2 + y2 + z2) for some constant k. Taken together,

F⃗ (x, y, z) =
k

(x2 + y2 + z2)3/2
⟨x, y, z⟩.

Consider the cube, centered at the origin, with sides of length 2a for
some a > 0 (hence corners of the cube lie at (a, a, a), (−a,−a,−a),
etc., as shown in Figure 16.7.8). Find the flux across the six faces of the
cube and compare this to

∫∫
D
div F⃗ dV .

Figure 16.7.8 The cube used in Exam-
ple 16.7.7

Solution. Let S1 be the “top” face of the cube, which can be parame-
trized by r⃗(u, v) = ⟨u, v, a⟩ for −a ≤ u ≤ a, −a ≤ v ≤ a. We leave it
to the reader to confirm that r⃗u × r⃗v = ⟨0, 0, 1⟩, which points outside
of the cube.
The flux across this face is:

Flux =

∫∫
S1

F⃗ · n⃗ dS

=

∫ a

−a

∫ a

−a

F⃗
(
r⃗(u, v)

)
·
(
r⃗u × r⃗v

)
du dv

=

∫ a

−a

∫ a

−a

k a

(u2 + v2 + a2)3/2
du dv.

This double integral is not trivial to compute, requiring multiple trigono-
metric substitutions. This example is not meant to stress integration
techniques, so we leave it to the reader to confirm the result is

=
2kπ

3
.

Note how the result is independent of a; no matter the size of the cube,
the flux through the top surface is always 2kπ/3.
An argument of symmetry shows that the flux through each of the six
faces is 2kπ/3, thus the total flux through the faces of the cube is 6 ×
2kπ/3 = 4kπ.
It takes a bit of algebra, but we can show that div F⃗ = 0. Thus the
Divergence Theorem would seem to imply that the total flux through
the faces of the cube should be

Flux =

∫∫∫
D

div F⃗ dV =

∫∫∫
D

0 dV = 0,

but clearly this does not match the result from above. What went
wrong?
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Revisit the statement of the Divergence Theorem. One of the condi-
tions is that the components of F⃗ must be differentiable on the do-
main enclosed by the surface. In our case, F⃗ is not differentiable at the
origin — it is not even defined! As F⃗ does not satisfy the conditions
of the Divergence Theorem, it does not apply, and we cannot expect∫∫

S F⃗ · n⃗ dA =
∫∫∫

D
div F⃗ dV .

Since F⃗ is differentiable everywhere except the origin, the Divergence
Theorem does apply over any domain that does not include the origin.
Let S2 be any surface that encloses the cube used before, and let D̂ be
the domain between the cube and S2; note how D̂ does not include the
origin and so the Divergence Theorem does apply over this domain. The
total outward flux over D̂ is thus

∫∫
D̂
div F⃗ dV = 0, which means the

amount of flux coming out ofS2 is the sameas the amount of flux coming
out of the cube. The conclusion: the flux across any surface enclosing
the origin will be 4kπ.
This has an important consequence in electrodynamics. Let q be a point
charge at the origin. The electric field generated by this point charge is

E⃗ =
q

4πϵ0

⟨x, y, z⟩
(x2 + y2 + z2)3/2

,

i.e., it is F⃗ with k = q/(4πϵ0), where ϵ0 is a physical constant (the “per-
mittivity of free space”). Gauss’s Law states that the outward flux of E⃗
across any surface enclosing the origin is q/ϵ0.

youtu.be/watch?v=Zc_OAF_CRIQ

Figure 16.7.9 Exploring Gauss’s Law

Our interest in the Divergence Theorem is twofold. First, its truth alone is
interesting: to study the behavior of a vector field across a closed surface, one
can examine properties of that field within the surface. Secondly, it offers an
alternative way of computing flux. When there are multiple methods of com-
puting a desired quantity, one has power to select the easiest computation as
illustrated next.

Example 16.7.10 Using the Divergence Theorem to compute flux.

Let S be the cube bounded by the planes x = ±1, y = ±1, z = ±1,
and let F⃗ = ⟨x2y, 2yz, x2z3⟩. Compute the outward flux of F⃗ over S.
Solution. We compute div F⃗ = 2xy + 2z + 3x2z2. By the Divergence
Theorem, the outward flux is the triple integral over the domain D en-
closed by S:

Outward flux:
∫ 1

−1

∫ 1

−1

∫ 1

−1

(2xy + 2z + 3x2z2) dz dy dx =
8

3
.

The direct flux computation requires six surface integrals, one for each
face of the cube. The Divergence Theorem offers a much more simple
computation.

16.7.2 Stokes’ Theorem
Just as the spatial Divergence Theorem of this section is an extension of the
planar Divergence Theorem, Stokes’ Theorem is the spatial extension of Green’s
Theorem. Recall that Green’s Theorem states that the circulation of a vector
field around a closed curve in the plane is equal to the sum of the curl of the

https://www.youtube.com/watch?v=Zc_OAF_CRIQ
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field over the region enclosed by the curve. Stokes’ Theorem effectively makes
the same statement: given a closed curve that lies on a surfaceS , the circulation
of a vector field around that curve is the same as the sum of “the curl of the
field” across the enclosed surface. We use quotes around “the curl of the field”
to signify that this statement is not quite correct, as we do not sum curl F⃗ , but
curl F⃗ · n⃗, where n⃗ is a unit vector normal to S. That is, we sum the portion of
curl F⃗ that is orthogonal to S at a point.

youtu.be/watch?v=WzrQbtC7ZiU

Figure 16.7.11 Introducing Stokes’
Theorem

Green’s Theorem dictated that the curve was to be traversed counterclock-
wise when measuring circulation. Stokes’ Theorem will follow a right hand rule:
when the thumb of one’s right hand points in the direction of n⃗, the path C will
be traversed in the direction of the curling fingers of the hand (this is equivalent
to traversing counterclockwise in the plane).

Theorem 16.7.12 Stokes’ Theorem.

Let S be a piecewise smooth, orientable surface whose boundary is a
piecewise smooth curve C, let n⃗ be a unit vector normal to S , let C be
traversed with respect to n⃗ according to the right hand rule, and let the
components of F⃗ have continuous first partial derivatives over S. Then∮

C

F⃗ · dr⃗ =

∫∫
S
(curl F⃗ ) · n⃗ dS.

In general, the best approach to evaluating the surface integral in Stokes’
Theorem is to parametrize the surface S with a function r⃗(u, v). We can find a
unit normal vector n⃗ as

n⃗ =
r⃗u × r⃗v

|| r⃗u × r⃗v ||
.

Since dS = || r⃗u × r⃗v || dA, the surface integral in practice is evaluated as∫∫
S
(curl F⃗ ) · (r⃗u × r⃗v) dA,

where r⃗u × r⃗v may be replaced by r⃗v × r⃗u to properly match the direction of
this vector with the orientation of the parametrization of C.

Example 16.7.13 Verifying Stokes’ Theorem.

Considering the planar surface f(x, y) = 7 − 2x − 2y, let C be the
curve in space that lies on this surface above the circle of radius 1 and
centered at (1, 1) in the xy-plane, let S be the planar region enclosed
byC, as illustrated in Figure 16.7.14, and let F⃗ = ⟨x+ y, 2y, y2⟩. Verify
Stoke’s Theorem by showing

∮
C
F⃗ · dr⃗ =

∫∫
S(curl F⃗ ) · n⃗ dS.

Figure 16.7.14 As given in Exam-
ple 16.7.13, the surface S is the por-
tion of the plane bounded by the
curve

Solution. We begin by parametrizing C and then find the circulation.
A unit circle centered at (1, 1) can be parametrized with x = cos t +
1, y = sin t + 1 on 0 ≤ t ≤ 2π; to put this curve on the surface f ,
make the z component equal f(x, y): z = 7 − 2(cos t + 1) − 2(sin t +
1) = 3 − 2 cos t − 2 sin t. All together, we parametrize C with r⃗(t) =
⟨cos t+ 1, sin t+ 1, 3− 2 cos t− 2 sin t⟩.
The circulation of F⃗ around C is∮

C

F⃗ · dr⃗ =

∫ 2π

0

F⃗
(
r⃗(t)

)
· r⃗ ′(t) dt

=

∫ 2π

0

(
2 sin3 t− 2 cos t sin2 t+ 3 sin2 t− 3 cos t sin t

)
dt

https://www.youtube.com/watch?v=WzrQbtC7ZiU
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= 3π.

We now parametrize S. (We reuse the letter “r” for our surface as this is
our custom.) Based on the parametrization of C above, we describe S
with r⃗(u, v) = ⟨v cosu+ 1, v sinu+ 1, 3− 2v cosu− 2v sinu⟩, where
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
We leave it to the reader to confirm that r⃗u × r⃗v = ⟨2v, 2v, v⟩. As
0 ≤ v ≤ 1, this vector always has a non-negative z-component, which
the right-hand rule requires given the orientation of C used above. We
also leave it to the reader to confirm curl F⃗ = ⟨2y, 0,−1⟩.
The surface integral of Stokes’ Theorem is thus∫∫

S
(curl F⃗ ) · n⃗ dS =

∫∫
S
(curl F⃗ ) · (r⃗u × r⃗v) dA

=

∫ 1

0

∫ 2π

0

⟨2v sinu+ 2, 0,−1⟩ · ⟨2v, 2v, v⟩ du dv

= 3π,

which matches our previous result.

youtu.be/watch?v=IxDa_2_Eric

Figure 16.7.15 An example with
Stokes’ Theorem

One of the interesting results of Stokes’ Theorem is that if two surfaces S1

andS2 share the same boundary, then
∫∫

S1
(curl F⃗ )·n⃗ dS =

∫∫
S2
(curl F⃗ )·n⃗ dS.

That is, the value of these two surface integrals is somehow independent of the
interior of the surface. We demonstrate this principle in the next example.

Example 16.7.16 Stokes’ Theorem and surfaces that share a boundary.

Let C be the curve given in Example 16.7.13 and note that it lies on the
surface z = 6 − x2 − y2. Let S be the region of this surface bounded
by C, and let F⃗ = ⟨x+ y, 2y, y2⟩ as in the previous example. Compute∫∫

S(curl F⃗ ) · n⃗ dS to show it equals the result found in the previous
example.

(a) (b)

Figure 16.7.17 As given in Example 16.7.16, the surface S is the portion
of the plane bounded by the curve

Solution. We begin by demonstrating that C lies on the surface z =
6 − x2 − y2. We can parametrize the x and y components of C with
x = cos t+ 1, y = sin t+ 1 as before. Lifting these components to the
surface z = 6 − x2 − y2 gives the z component as z = 6 − x2 − y2 =

https://www.youtube.com/watch?v=IxDa_2_Eric
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6− (cos t+ 1)2 − (sin t+ 1)2 = 3− 2 cos t− 2 sin t, which is the same
z component as found in Example 16.7.13. Thus the curve C lies on the
surface z = 6− x2 − y2, as illustrated in Figure 16.7.17.
Since C and F⃗ are the same as in the previous example, we already
know that

∮
C
F⃗ · dr⃗ = 3π. We confirm that this is also the value of∫∫

S(curl F⃗ ) · n⃗ dS.
We parametrize S with

r⃗(u, v) = ⟨v cosu+ 1, v sinu+ 1, 6− (v cosu+ 1)2 − (v sinu+ 1)2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1, and leave it to the reader to confirm
that

r⃗u × r⃗v =
〈
2v
(
v cosu+ 1

)
, 2v
(
v sinu+ 1

)
, v
〉
,

which also conforms to the right-hand rulewith regard to the orientation
of C. With curl F⃗ = ⟨2y, 0,−1⟩ as before, we have∫∫

S
(curl F⃗ ) · n⃗ dS

=

∫ 1

0

∫ 2π

0

⟨2v sinu+ 2, 0,−1⟩ ·
〈
2v
(
v cosu+ 1

)
, 2v
(
v sinu+ 1

)
, v
〉
du dv

= 3π.

Even though the surfaces used in this example and in Example 16.7.13
are very different, because they share the same boundary, Stokes’ The-
orem guarantees they have equal “sum of curls” across their respective
surfaces.

youtu.be/watch?v=sIqNIkmYPiE

Figure 16.7.18 Another example with
Stokes’ Theorem

16.7.3 A Common Thread of Calculus
We have threefold interest in each of the major theorems of this chapter: the
Fundamental Theorem of Line Integrals, Green’s, Stokes’ and the Divergence
Theorems. First, we find the beauty of their truth interesting. Second, each
provides two methods of computing a desired quantity, sometimes offering a
simpler method of computation.

There is yet one more reason of interest in the major theorems of this chap-
ter. These important theorems also all share an important principle with the
Fundamental Theorem of Calculus, introduced in Chapter 5.

Revisit this fundamental theorem, adopting the notation used heavily in this
chapter. Let I be the interval [a, b] and let y = F (x) be differentiable on I , with
F ′(x) = f(x). The Fundamental Theorem of Calculus states that∫

I

f(x) dx = F (b)− F (a).

That is, the sum of the rates of change of a function F over an interval I can
also be calculated with a certain sum of F itself on the boundary of I (in this
case, at the points x = a and x = b).

Each of the named theorems above can be expressed in similar terms. Con-
sider the Fundamental Theorem of Line Integrals: given a function f(x, y), the
gradient ∇f is a type of rate of change of f . Given a curve C with initial and
terminal points A andB, respectively, this fundamental theorem states that∫

C

∇f ds = f(B)− f(A),

https://www.youtube.com/watch?v=sIqNIkmYPiE
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where again the sum of a rate of change of f along a curve C can also be evalu-
ated by a certain sum of f at the boundary of C (i.e., the points A andB).

Green’s Theorem is essentially a special case of Stokes’ Theorem, so we con-
sider just Stokes’ Theorem here. Recalling that the curl of a vector field F⃗ is a
measure of a rate of change of F⃗ , Stokes’ Theorem states that over a surface S
bounded by a closed curve C,∫∫

S

(
curl F⃗

)
· n⃗ dS =

∮
C

F⃗ · dr⃗,

i.e., the sum of a rate of change of F⃗ can be calculated with a certain sum of F⃗
itself over the boundary of S. In this case, the latter sum is also an infinite sum,
requiring an integral.

Finally, the Divergence Theorems state that the sum of divergences of a vec-
tor field (another measure of a rate of change of F⃗ ) over a region can also be
computed with a certain sum of F⃗ over the boundary of that region. When the
region is planar, the latter sum of F⃗ is an integral; when the region is spatial, the
latter sum of F⃗ is a double integral.

The common thread among these theorems: the sum of a rate of change of
a function over a region can be computed as another sum of the function itself
on the boundary of the region. While very general, this is a very powerful and
important statement.
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16.7.4 Exercises

Terms and Concepts

1. What are the differences between the Divergence Theorems of Section 16.4 and this section?
2. What property of a vector field does the Divergence Theorem relate to flux?
3. What property of a vector field does Stokes’ Theorem relate to circulation?
4. Stokes’ Theorem is the spatial version of what other theorem?

Problems

Exercise Group. In the following exercises, a closed surface S enclosing a domain D and a vector field F⃗ are given.
Verify the Divergence Theorem on S; that is, show

∫∫
S F⃗ · n⃗ dS =

∫∫∫
D
div F⃗ dV .

5. S is the surface bounding the domainD
enclosed by the plane z = 2− x/2− 2y/3 and
the coordinate planes in the first octant;
F⃗ = ⟨x2, y2, x⟩.

6. S is the surface bounding the domainD
enclosed by the cylinder x2 + y2 = 1 and the
planes z = −3 and z = 3; F⃗ = ⟨−x, y, z⟩.

7. S is the surface bounding the domainD
enclosed by z = xy(3− x)(3− y) and the
plane z = 0; F⃗ = ⟨3x, 4y, 5z + 1⟩.

8. S is the surface composed of S1, the paraboloid
z = 4− x2 − y2 for z ≥ 0, and S2, the disk of
radius 2 centered at the origin; F⃗ = ⟨x, y, z2⟩.
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Exercise Group. In the following exercises, a closed curve C that is the boundary of a surface S is given along with a
vector field F⃗ . Verify Stokes’ Theorem on C; that is, show

∮
C
F⃗ · dr⃗ =

∫∫
S
(
curl F⃗

)
· n⃗ dS.

9. C is the curve parametrized by
r⃗(t) = ⟨cos t, sin t, 1⟩ and S is the portion of
z = x2 + y2 enclosed by C; F⃗ = ⟨z,−x, y⟩.

10. C is the curve parametrized by
r⃗(t) = ⟨cos t, sin t, e−1⟩ and S is the portion of
z = e−x2−y2

enclosed by C; F⃗ = ⟨−y, x, 1⟩.

11. C is the curve that follows the triangle with
vertices at (0, 0, 2), (4, 0, 0) and (0, 3, 0),
traversing the the vertices in that order and
returning to (0, 0, 2), and S is the portion of the
plane z = 2− x/2− 2y/3 enclosed by C;
F⃗ = ⟨y,−z, y⟩.

12. C is the curve whose x and y coordinates follow
the parabola y = 1− x2 from x = 1 to x = −1,
then follow the line from (−1, 0) back to (1, 0),
where the z coordinates of C are determined
by f(x, y) = 2x2 + y2, and S is the portion of
z = 2x2 + y2 enclosed by C;
F⃗ = ⟨y2 + z, x, x2 − y⟩.

Exercise Group. In the following exercises, a closed surface S and a vector field F⃗ are given. Find the outward flux
of F⃗ over S either through direct computation or through the Divergence Theorem.
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13. S is the surface formed by the intersections of
z = 0 and z = (x2 − 1)(y2 − 1);
F⃗ = ⟨x2 + 1, yz, xz2⟩.

14. S is the surface formed by the intersections of
the planes z = 1

2 (3− x), x = 1, y = 0, y = 2

and z = 0; F⃗ = ⟨x, y2, z⟩.

15. S is the surface formed by the intersections of
the planes z = 2y, y = 4− x2 and z = 0;
F⃗ = ⟨xz, 0, xz⟩.

16. S is the surface formed by the intersections of
the cylinder z = 1− x2 and the planes y = −2,
y = 2 and z = 0; F⃗ = ⟨0, y3, 0⟩.

Exercise Group. In the following exercises, a closed curve C that is the boundary of a surface S is given along with a
vector field F⃗ . Find the circulation of F⃗ around C either through direct computation or through Stokes’ Theorem.



1002 CHAPTER 16. VECTOR ANALYSIS

17. C is the curve whose x- and y-values are
determined by the three sides of a triangle with
vertices at (−1, 0), (1, 0) and (0, 1), traversed
in that order, and the z-values are determined
by the function z = xy; F⃗ = ⟨z − y2, x, z⟩.

18. C is the curve whose x- and y-values are given
by r⃗(t) = ⟨2 cos t, 2 sin t⟩ and the z-values are
determined by the function
z = x2 + y3 − 3y + 1; F⃗ = ⟨−y, x, z⟩.

19. C is the curve whose x- and y-values are given
by r⃗(t) = ⟨cos t, 3 sin t⟩ and the z-values are
determined by the function z = 5− 2x− y;
F⃗ = ⟨− 1

3y, 3x,
2
3y − 3x⟩.

20. C is the curve whose x- and y-values are sides
of the square with vertices at (1, 1), (−1, 1),
(−1,−1) and (1,−1), traversed in that order,
and the z-values are determined by the
function z = 10− 5x− 2y; F⃗ = ⟨5y2, 2y2, y2⟩.

Exercise Group. The following exercises are designed to challenge your understanding and require no computation.
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21. Let S be any closed surface enclosing a domain
D. Consider F⃗1 = ⟨x, 0, 0⟩ and
F⃗2 = ⟨y, y2, z − 2yz⟩.

These fields are clearly very different. Why
is it that the total outward flux of each field
across S is the same?

22.

(a) Green’s Theorem can be used to find the
area of a region enclosed by a curve by
evaluating a line integral with the
appropriate choice of vector field F⃗ .
What condition on F⃗ makes this possible?

(b) Likewise, Stokes’ Theorem can be used to
find the surface area of a region enclosed
by a curve in space by evaluating a line
integral with the appropriate choice of
vector field F⃗ . What condition on F⃗
makes this possible?

23. The Divergence Theorem establishes equality
between a particular double integral and a
particular triple integral. What types of
circumstances would lead one to choose to
evaluate the triple integral over the double
integral?

24. Stokes’ Theorem establishes equality between a
particular line integral and a particular double
integral. What types of circumstances would
lead one to choose to evaluate the double
integral over the line integral?
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1078 APPENDIX A. ANSWERS TO SELECTED EXERCISES

IV · Math 2580: Calculus IV
14 · Functions of Several Variables, Continued
14.2 · The Multivariable Chain Rule
14.2 · Exercises

Terms and Concepts

14.2.2. g′(x)
14.2.4. T
14.2.5. F
14.2.6. partial

Problems

14.2.7.

(a) dz
dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dzdt = 14.

14.2.8. (a). 2x− 4yt

(b). 2

14.2.9.

(a)
dz

dt
= 5(−2 sin(t)) + 2(cos(t)) =

−10 sin(t) + 2 cos(t)

(b) At t = π/4, dzdt = −4
√
2.

14.2.10. (a). − sin(t)
1+y2 − 2xy cos(t)

(y2+1)2

(b). − 1
2

14.2.11.

(a)
dz

dt
= 2x(cos(t)) + 4y(3 cos(t)).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and

dz
dt = 19.

14.2.12. (a). − sin(x) sin(y)π + cos(x) cos(y) · 2π
(b). 0

14.2.14. −
√

3
2 , 0,

√
3
2

14.2.16. 0, π

14.2.18. 0, 1
π tan

−1
(√

5
)
, 1− 1

π tan
−1
(√

5
)
, 1, 1 +

1
π tan

−1
(√

5
)
, 2− 1

π tan
−1
(√

5
)

14.2.20.
(a). −π sin

(
πx+ πy

2

)
t2 − 1

2π sin
(
πx+ πy

2

)
· 2st

(b). −π sin
(
πx+ πy

2

)
· 2st− 1

2π sin
(
πx+ πy

2

)
s2

(c). 2π

(d). 5π
2

14.2.21. (a). 2x cos(t) + 2y sin(t)
(b). −2xs sin(t) + 2ys cos(t)
(c). 4

(d). 0

14.2.22. (a). −2yt2e−(x
2+y2)

(b). −2xe−(x
2+y2) − 4stye−(x

2+y2)

(c). −2
e2

(d). −6
e2

14.2.24. −x
y2 14.2.26. −(2x+y)

2y+x
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14.2.28. 0 14.2.30. (a). −2

(b). 5

14.3 · Directional Derivatives
14.3 · Exercises

Terms and Concepts

14.3.2. i
14.3.3. j
14.3.4. orthogonal
14.3.6. dot

Problems

14.3.8. ⟨cos(x) cos(y) ,− sin(x) sin(y)⟩ 14.3.10. ⟨−4, 3⟩
14.3.12.

〈
2xy3 − 2, 3x2y2

〉
14.3.13.

(a) 2/5

(b) −2/
√
5

14.3.14.

(a) 1
4

(
1−

√
3
)

(b) 4
√
3−3

10
√
2

14.3.15.

(a) 0

(b) 2
√
2/9

14.3.16.

(a) −9√
10

(b) 27√
34

14.3.17.

(a) 0

(b) 0

14.3.18.

(a) 3√
2

(b) 3

14.3.19.

(a) ∇f(2, 1) = ⟨−2, 2⟩

(b)
√
8

(c) ⟨2,−2⟩

(d) u⃗ =
〈
1/
√
2, 1/

√
2
〉

14.3.20.

(a)
〈

1
2
√
2
, −1

2

√
3
2

〉
(b) 1√

2

(c)
〈

−1
2
√
2
, 1
2

√
3
2

〉
(d)

〈
1
2

√
3
2 ,

1
2
√
2

〉
14.3.21.

(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩

(b) 2
√
2/9

(c) ⟨2/9, 2/9⟩

(d) u⃗ =
〈
1/
√
2,−1/

√
2
〉

14.3.22.

(a) ⟨−4, 3⟩

(b) 5

(c) ⟨4,−3⟩

(d) ⟨3, 4⟩
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14.3.23.

(a) No such direction

(b) 0

(c) No such direction

(d) All directions

14.3.24.

(a) ⟨0, 3⟩

(b) 3

(c) ⟨0,−3⟩

(d) ⟨1, 0⟩

14.3.25.

(a) ∇F (x, y, z) =
〈
6xz3 + 4y, 4x, 9x2z2 − 6z

〉
(b) 113/

√
3

14.3.26.

(a)
⟨cos(x) cos(y) ez,− sin(x) sin(y) ez, sin(x) cos(y) ez⟩

(b) 2
3

14.3.27.

(a) ∇F (x, y, z) =
〈
2xy2, 2y(x2 − z2),−2y2z

〉
(b) 0

14.3.28.

(a)
〈

−4x
(x2+y2+z2)2

, −4y
(x2+y2+z2)2

, −4z
(x2+y2+z2)2

〉
(b) 0

14.4 · Tangent Lines, Normal Lines, and Tangent Planes
14.4 · Exercises

Terms and Concepts

14.4.3. True

Problems

14.4.6. (a). x = π
3 + t, y = π

6 , z = 3
4 − 3

√
3

4 t

(b). x = π
3 , y = π

6 + t, z = 3
4 + 3

√
3

4 t

(c). x = π
3 + t√

5
, y = π

6 + 2t√
5
, z = 3

4 +
3
√

3
5

4 t

14.4.8. (a). x = 1 + t, y = 2, z = 3

(b). x = 1, y = 2 + t, z = 3

(c). x = 1 + t√
2
, y = 2 + t√

2
, z = 3

14.4.10. x = π
3 − 3

√
3

4 t, y = π
6 + 3

√
3

4 t, z = 3
4 − t 14.4.12. x = 1, y = 2, z = 3− t

14.4.18. 1.29904y − 1.29904x− z = −1.43017 14.4.20. z = 3

14.4.22.
(a). x = 4− 2t, y = −3 + 2

3 t, z =
√
5 + 2

√
5t

(b). 0.666667y − 2x+ 4.47214z = 0

14.4.24.
(a). x = 2 + π

8
√
3
t, y = π

12 −
√
3t, z = 4− π

8
√
3
t

(b). 0.226725x−1.73205y−0.226725z = −0.9069

14.5 · Extreme Values
14.5 · Exercises

Terms and Concepts

14.5.1. False
14.5.2. True
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14.5.3. True

Problems

14.5.6. (a). NONE
(b). NONE
(c). (7,−6)

(d). NONE

14.5.8. (a). (0, 0)

(b). NONE
(c). NONE
(d). NONE

14.5.10. (a). (−1,−2)

(b). (1, 2)

(c). (1,−2) , (−1, 2)

(d). NONE

14.5.12. (a). (0,−3)

(b). (−1, 3) , (1, 3)

(c). (−1,−3) , (0, 3) , (1,−3)

(d). NONE
14.5.14. (a). NONE
(b). NONE
(c). NONE
(d). (0, 0)

14.5.15. (a). 3

(b). (0, 1)

(c). 3
4

(d).
(
0, −1

2

)
14.5.16. (a). 25

28

(b).
(

5
14 ,

25
196

)
(c). −12

(d). (−1, 1)

15 · Multiple Integration
15.1 · Iterated Integrals and Area
15.1 · Exercises

Terms and Concepts

15.1.2. iterated integration
15.1.3. curve to curve, then from point to point
15.1.4. area

Problems

15.1.5.

(a) 18x2 + 42x− 117

(b) −108

15.1.6.

(a) 2 + π2 cos(y)

(b) π2 + π

15.1.7.

(a) x4/2− x2 + 2x− 3/2

(b) 23/15

15.1.8.

(a) y4

2 − y3 + y2

2

(b) 8
15

15.1.9.

(a) sin2(y)

(b) π/2

15.1.10.

(a) x
1+x2

(b) 1
2 ln
(
5
2

)
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15.3 · Double Integration with Polar Coordinates
15.3 · Exercises

Problems

15.3.3. 4π 15.3.5. 16π
15.3.8. π

2

15.3.12. 128
3

15.5 · Surface Area
15.5 · Exercises

Problems

15.5.7. SA =∫ 2π

0

∫ 2π

0

√
1 + cos2(x) cos2(y) + sin2(x) sin2(y) dx dy

15.5.8.

SA =

∫ 3

−3

∫ √
9−x2

−
√
9−x2

√
1 +

4x2 + 4y2

(1 + x2 + y2)4
dx dy

Polar offers simpler bounds:

SA =

∫ 2π

0

∫ 3

0

r

√
1 +

4r2

(1 + r2)4
dr dθ

15.5.9. SA =

∫ 1

−1

∫ 1

−1

√
1 + 4x2 + 4y2 dx dy 15.5.10. SA =

∫ 5

−5

∫ 1

0

√
1 +

4x2e2x2(
1 + ex2

)4 dy dx

15.6 · Volume Between Surfaces and Triple Integration
15.6 · Exercises

Problems

15.6.6. 52 15.6.8. 3π
2

15.6.9. dz dy dx:
∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0

dz dy dx

dz dx dy:
∫ 1

0

∫ 3−3y

0

∫ 2−2x/3−2y

0

dz dx dy

dy dz dx:
∫ 3

0

∫ 2−2x/3

0

∫ 1−x/3−z/2

0

dy dz dx

dy dx dz:
∫ 2

0

∫ 3−3z/2

0

∫ 1−x/3−z/2

0

dy dx dz

dx dz dy:
∫ 1

0

∫ 2−2y

0

∫ 3−3y−3z/2

0

dx dz dy

dx dy dz:
∫ 2

0

∫ 1−z/2

0

∫ 3−3y−3z/2

0

dx dy dz

V =

∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0

dz dy dx = 1.

15.6.10. dz dy dx:
∫ 3

1

∫ 2

0

∫ (3−x)/2

0

dz dy dx

dz dx dy:
∫ 2

0

∫ 3

1

∫ (3−x)/2

0

dz dx dy

dy dz dx:
∫ 3

1

∫ (3−x)/2

0

∫ 2

0

dy dz dx

dy dx dz:
∫ 1

0

∫ 3−2z

1

∫ 2

0

dy dx dz

dx dz dy:
∫ 2

0

∫ 1

0

∫ 3−2z

1

dx dz dy

dx dy dz:
∫ 1

0

∫ 2

0

∫ 3−2z

1

dx dy dz

V =

∫ 1

0

∫ 2

0

∫ 3−2z

1

dx dy dz = 2.
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15.6.11. dz dy dx:
∫ 2

0

∫ 0

−2

∫ −y

y2/2

dz dy dx

dz dx dy:
∫ 0

−2

∫ 2

0

∫ −y

y2/2

dz dx dy

dy dz dx:
∫ 2

0

∫ 2

0

∫ −z

−
√
2z

dy dz dx

dy dx dz:
∫ 2

0

∫ 2

0

∫ −z

−
√
2z

dy dx dz

dx dz dy:
∫ 0

−2

∫ −y

y2/2

∫ 2

0

dx dz dy

dx dy dz:
∫ 2

0

∫ −z

−
√
2z

∫ 2

0

dx dy dz

V =

∫ 2

0

∫ 2

0

∫ −z

−
√
2z

dy dz dx = 4/3.

15.6.12. dz dy dx:
∫ 3

0

∫ 9

3x

∫ √
y2−9x2

0

dz dy dx

dz dx dy:
∫ 9

0

∫ y/3

0

∫ √
y2−9x2

0

dz dx dy

dy dz dx:
∫ 3

0

∫ √
81−9x2

0

∫ 9

√
z2+9x2

dy dz dx

dy dx dz:
∫ 9

0

∫ √
9−z2/9

0

∫ 9

√
z2+9x2

dy dx dz

dx dz dy:
∫ 9

0

∫ y

0

∫ 1
3

√
y2−z2

0

dx dz dy

dx dy dz:
∫ 9

0

∫ 9

z

∫ 1
3

√
y2−z2

0

dx dy dz

15.6.13. dz dy dx:
∫ 2

0

∫ 1

1−x/2

∫ 2x+4y−4

0

dz dy dx

dz dx dy:
∫ 1

0

∫ 2

2−2y

∫ 2x+4y−4

0

dz dx dy

dy dz dx:
∫ 2

0

∫ 2x

0

∫ 1

z/4−x/2+1

dy dz dx

dy dx dz:
∫ 4

0

∫ 2

z/2

∫ 1

z/4−x/2+1

dy dx dz

dx dz dy:
∫ 1

0

∫ 4y

0

∫ 2

z/2−2y+2

dx dz dy

dx dy dz:
∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2

dx dy dz

V =

∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y−2

dx dy dz = 4/3.

15.6.14. dz dy dx:
∫ 2

−2

∫ 4−x2

0

∫ 2y

0

dz dy dx

dz dx dy:
∫ 4

0

∫ √
4−y

−
√
4−y

∫ 2x+4y−4

0

dz dx dy

dy dz dx:
∫ 2

−2

∫ 8−2x2

0

∫ 4−x2

z/2

dy dz dx

dy dx dz:
∫ 8

0

∫ √
4−z/2

−
√

4−z/2

∫ 4−x2

z/2

dy dx dz

dx dz dy:
∫ 4

0

∫ 2y

0

∫ √
4−y

−
√
4−y

dx dz dy

dx dy dz:
∫ 8

0

∫ 4

z/2

∫ √
4−y

−
√
4−y

dx dy dz

V =

∫ 2

−2

∫ 4−x2

0

∫ 2y

0

dz dy dx = 512/15.

15.6.15. dz dy dx:
∫ 1

0

∫ 1−x2

0

∫ √
1−y

0

dz dy dx

dz dx dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0

dz dx dy

dy dz dx:∫ 1

0

∫ x

0

∫ 1−x2

0

dy dz dx+

∫ 1

0

∫ 1

x

∫ 1−z2

0

dy dz dx

dy dx dz:∫ 1

0

∫ z

0

∫ 1−z2

0

dy dx dz +

∫ 1

0

∫ 1

z

∫ 1−x2

0

dy dx dz

dx dz dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0

dx dz dy

dx dy dz:
∫ 1

0

∫ 1−z2

0

∫ √
1−y

0

dx dy dz Answers

will vary. Neither order is particularly “hard.” The
order dz dy dx requires integrating a square root, so
powers can be messy; the order dy dz dx requires
two triple integrals, but each uses only polynomials.

15.6.16. dz dy dx:∫ 1

0

∫ 3x

0

∫ 1−x

0

dz dy dx+

∫ 1

0

∫ 3

3x

∫ 1−y/3

0

dz dy dx

dz dx dy:
∫ 3

0

∫ y/3

0

∫ 1−y/3

0

dz dy dx+∫ 3

0

∫ 1

y/3

∫ 1−x

0

dz dx dy

dy dz dx:
∫ 1

0

∫ 1−x

0

∫ 3−3z

0

dy dz dx

dy dx dz:
∫ 1

0

∫ 1−z

0

∫ 3−3z

0

dy dx dz

dx dz dy:
∫ 3

0

∫ 1−y/3

0

∫ 1−z

0

dx dz dy

dx dy dz:
∫ 1

0

∫ 3−3z

0

∫ 1−z

0

dx dy dz

V =

∫ 1

0

∫ 3−3z

0

∫ 1−z

0

dx dy dz = 1.

15.6.18. 7
8

15.6.20. 0
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15.7 · Triple Integration with Cylindrical and Spherical Coordinates
15.7 · Exercises

Problems

15.7.11.
∫ θ2

θ1

∫ r2

r1

∫ z2

z1

h(r, θ, z)r dz dr dθ 15.7.12.
∫ φ2

φ1

∫ θ2

θ1

∫ ρ2

ρ1

h(ρ, θ, φ)ρ2 sin(φ) dρ dθ dφ

15.7.19. Describes the portion of the unit ball that
resides in the first octant.

15.7.20. Describes half of a spherical shell (i.e., y ≥ 0)
with inner radius of 1 and outer radius of 1.1 centered
at the origin.

16 · Vector Analysis
16.1 · Introduction to Line Integrals
16.1 · Exercises

Terms and Concepts

16.1.1. When C is a curve in the plane and f is a function defined over C, then
∫
C
f(s) ds describes the area under

the spatial curve that lies on f , over C.

16.1.2. The evaluation is the same. The
∮
notation signifies that the curve C is a closed curve, though the evaluation

is the same.
16.1.3. The variable s denotes the arc-length parameter, which is generally difficult to use. The Key Idea allows one
to parametrize a curve using another, ideally easier-to-use, parameter.
16.1.4. Answers will vary.

Problems

16.1.5. 12
√
2 16.1.6. 41

√
10/2

16.1.7. 40π 16.1.8. 10π2

16.1.9. Over the first subcurve of C, the line integral
has a value of 3/2; over the second subcurve, the line
integral has a value of 4/3. The total value of the line
integral is thus 17/6.

16.1.10. Over the first subcurve of C, the line integral
has a value of 2

√
2/3; over the second subcurve, the

line integral has a value of π − 2. The total value of
the line integral is thus π + 2

√
2/3− 2.

16.1.11.∫ 1

0
(5t2 +2 t+ 2)

√
(4t+ 1)2 + 1 dt ≈ 17.071

16.1.12.
∫ π

0
t
√
1 + cos2 t dt ≈ 6.001

16.1.13.∮ 2π

0

(
10− 4 cos2 t− sin2 t

)√
cos2 t+ 4 sin2 t dt ≈

74.986

16.1.14.
∫ 1

−1

(
3t3 + 2t+ 5

)√
9t4 + 1 dt ≈ 15.479

16.1.15. 7
√
26/3 16.1.16. 2π

16.1.17. 8π3 16.1.18. 5/2

16.1.19. M = 8
√
2π2; center of mass is

(0,−1/(2π), 8π/3).
16.1.20. M ≈ 0.237; center of mass is approximately
(0.173, 0.099, 0.065).
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16.2 · Vector Fields
16.2 · Exercises

Terms and Concepts

16.2.1. Answers will vary. Appropriate answers include velocities of moving particles (air, water, etc.); gravitational or
electromagnetic forces.
16.2.2. Specific answers will vary, though should relate to the idea that “more of the vector field is moving into that
point than out of that point.”
16.2.3. Specific answers will vary, though should relate to the idea that the vector field is spinning clockwise at that
point.
16.2.4. No; to be incompressible, the divergence needs to be 0 everywhere, not just at one point.

Problems

16.2.5. Correct answers should look similar to

−2

2

−2 2

x

y

16.2.6. Correct answers should look similar to

−2

2

−2 2

x

y
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16.2.7. Correct answers should look similar to

−2

2

−2 2

x

y

16.2.8. Correct answers should look similar to

−2

2

−2 2

x

y

16.2.9. div F⃗ = 1 + 2y
curl F⃗ = 0

16.2.10. div F⃗ = 0
curl F⃗ = 1 + 2y

16.2.11. div F⃗ = x cos(xy)− y sin(xy)
curl F⃗ = y cos(xy) + x sin(xy)

16.2.12. div F⃗ = 4
(x2+y2)2

curl F⃗ = 0

16.2.13. div F⃗ = 3
curl F⃗ = ⟨−1,−1,−1⟩

16.2.14. div F⃗ = 2x+ 2y + 2z
curl F⃗ = ⟨2y, 2z, 2x⟩

16.2.15. div F⃗ = 1 + 2y
curl F⃗ = 0

16.2.16. div F⃗ = 2y
curl F⃗ = 0

16.2.17. div F⃗ = 2y − sin z
curl F⃗ = 0⃗

16.2.18. div F⃗ = 2
(x2+y2+z2)2

curl F⃗ = 0⃗

16.3 · Line Integrals over Vector Fields
16.3 · Exercises

Terms and Concepts

16.3.1. False. It is true for line integrals over scalar fields, though.

16.3.2. The input of F⃗ should be a point in the plane, not a two dimensional vector.
16.3.3. True.
16.3.4. False.

16.3.5. We can conclude that F⃗ is conservative.

16.3.6. By the Fundamental Theorem of Line Integrals, since F⃗ is conservative,
∮
C
F⃗ · dr⃗ = f(B)− f(A), where f is

a potential function for F⃗ andA andB are the initial and terminal points ofC, respectively. SinceC is a closed curve,
A = B, and hence f(B)− f(A) = 0.
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Problems

16.3.7. 11/6. (One parametrization for C is
r⃗(t) = ⟨3t, t⟩ on 0 ≤ t ≤ 1.)

16.3.8. 5/3. (One parametrization for C is
r⃗(t) = ⟨t, t2⟩ on 0 ≤ t ≤ 1.)

16.3.9. 0. (One parametrization for C is
r⃗(t) = ⟨cos t, sin t⟩ on 0 ≤ t ≤ π.)

16.3.10. 2/5. (One parametrization for C is
r⃗(t) = ⟨t, t3⟩ on−1 ≤ t ≤ 1.)

16.3.11. 12. (One parametrization for C is
r⃗(t) = ⟨1, 2, 3⟩+ t⟨3, 1,−1⟩ on 0 ≤ t ≤ 1.)

16.3.12. 1.

16.3.13. 5/6 joules. (One parametrization for C is
r⃗(t) = ⟨t, t⟩ on 0 ≤ t ≤ 1.)

16.3.14. 13/15 joules. (One parametrization for C is
r⃗(t) = ⟨t,

√
t⟩ on 0 ≤ t ≤ 1.)

16.3.15. 24 ft-lbs. 16.3.16. 24 ft-lbs.

16.3.17.

(a) f(x, y) = xy + x

(b) curl F⃗ = 0.

(c) 1. (One parametrization for C is
r⃗(t) = ⟨t, t− 1⟩ on 0 ≤ t ≤ 1.)

(d) 1 (with A = (0, 1) andB = (1, 0),
f(B)− f(A) = 1.)

16.3.18.

(a) f(x, y) = x2 + xy + y2

(b) curl F⃗ = 0.

(c) 0.

(d) 0 (with A = (0, 0) andB = (0, 0),
f(B)− f(A) = 0.)

16.3.19.

(a) f(x, y) = x2yz

(b) curl F⃗ = 0⃗.

(c) 250.

(d) 250 (with A = (1,−1, 0) andB = (5, 5, 2),
f(B)− f(A) = 250.)

16.3.20.

(a) f(x, y) = x2 + y2 + z2

(b) curl F⃗ = 0⃗.

(c) 0.

(d) 0 (with A = (1, 0, 0) andB = (1, 0, 0),
f(B)− f(A) = 0.)

16.4 · Flow, Flux, Green’s Theorem and the Divergence Theorem
16.4 · Exercises

Terms and Concepts

16.4.1. along, across
16.4.2. It is the measure of flow around the entirety of a closed curve C.

16.4.3. the curl of F⃗ , or curl F⃗

16.4.4. the divergence of F⃗ , or div F⃗

16.4.5. curl F⃗

16.4.6. div F⃗

Problems

16.4.7. 12 16.4.8. 12
16.4.9. −2/3 16.4.10. 10/3
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16.4.11. 1/2 16.4.12. 1/2

16.4.13. The line integral
∮
C
F⃗ · dr⃗, over the parabola,

is 38/3; over the line, it is−10. The total line integral
is thus 38/3− 10 = 8/3. The double integral of
curl F⃗ = 2 overR also has value 8/3.

16.4.14. Both the line integral and double integral
have value of 2π.

16.4.15. Three line integrals need to be computed to
compute

∮
C
F⃗ · dr⃗. It does not matter which corner

one starts from first, but be sure to proceed around
the triangle in a counterclockwise fashion.

From (0, 0) to (2, 0), the line integral has a value
of 0. From (2, 0) to (1, 1) the integral has a value of
7/3. From (1, 1) to (0, 0) the line integral has a value
of−1/3. Total value is 2.

The double integral of curl F⃗ overR also has
value 2.

16.4.16. Two line integrals need to be computed to
compute

∮
C
F⃗ · dr⃗. Along the parabola, the line

integral has value 25.5. Along the line, the line
integral has value−21. Together, the total value is 4.5

The double integral of curl F⃗ overR also has
value 4.5.

16.4.17. Any choice of F⃗ is appropriate as long as
curl F⃗ = 1. When F⃗ = ⟨−y/2, x/2⟩, the integrand of
the line integral is simply 6. The area of R is 12π.

16.4.18. Any choice of F⃗ is appropriate as long as
curl F⃗ = 1. The choices of F⃗ = ⟨−y, 0⟩ and ⟨0, x⟩
each lead to reasonable integrands. The area of R is
4/3.

16.4.19. Any choice of F⃗ is appropriate as long as
curl F⃗ = 1. The choices of F⃗ = ⟨−y, 0⟩, ⟨0, x⟩ and
⟨−y/2, x/2⟩ each lead to reasonable integrands. The
area ofR is 16/15.

16.4.20. Any choice of F⃗ is appropriate as long as
curl F⃗ = 1. The choice of F⃗ = ⟨−y/2, x/2⟩ leads to a
reasonable integrand after simplification. The area of
R is 41π/10.

16.4.21. The line integral
∮
C
F⃗ · n⃗ ds, over the

parabola, is−22/3; over the line, it is 10. The total
line integral is thus−22/3 + 10 = 8/3. The double
integral of div F⃗ = 2 overR also has value 8/3.

16.4.22. Both the line integral and double integral
have value of 0.

16.4.23. Three line integrals need to be computed to
compute

∮
C
F⃗ · n⃗ ds. It does not matter which corner

one starts from first, but be sure to proceed around
the triangle in a counterclockwise fashion.

From (0, 0) to (2, 0), the line integral has a value
of 0. From (2, 0) to (1, 1) the integral has a value of
1/3. From (1, 1) to (0, 0) the line integral has a value
of 1/3. Total value is 2/3.

The double integral of div F⃗ overR also has value
2/3.

16.4.24. Two line integrals need to be computed to
compute

∮
C
F⃗ · n⃗ ds. Along the parabola, the line

integral has value 159/20. Along the line, the line
integral has value 6. Together, the total value is
279/20.

The double integral of div F⃗ overR also has value
279/20.

16.5 · Parametrized Surfaces and Surface Area
16.5 · Exercises

Terms and Concepts

16.5.1. Answers will vary, though generally should meaningfully include terms like “two sided”.
16.5.2. Many possible answers exist; the one given by the book is the Möbius band.
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Problems

16.5.3.

(a) r⃗(u, v) = ⟨u, v, 3u2v⟩ on−1 ≤ u ≤ 1,
0 ≤ v ≤ 2.

(b) r⃗(u, v) = ⟨3v cosu+ 1, 3v sinu+
2, 3(3v cosu+ 1)2(3v sinu+ 2)⟩, on
0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

(c) r⃗(u, v) = ⟨u, v(2− 2u), 3u2v(2− 2u)⟩ on
0 ≤ u, v ≤ 1.

(d) r⃗(u, v) = ⟨u, v(1− u2), 3u2v(1− u2)⟩ on
−1 ≤ u ≤ 1, 0 ≤ v ≤ 1.

16.5.4.

(a) r⃗(u, v) = ⟨u, v, 4u+ 2u2⟩ on 1 ≤ u ≤ 4,
5 ≤ v ≤ 7.

(b) r⃗(u, v) =
⟨4v cosu, 3v sinu, 16v cosu+ 2(3v sinu)2⟩, on
0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

(c) r⃗(u, v) =

⟨u, u+ v(4− 2u), 4u+ 2
(
u+ v(4− 2u)

)2⟩ on
0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

(d) r⃗(u, v) =
⟨v cosu, v sinu, 4v cosu+ 2(v sinu)2⟩ on
0 ≤ u ≤ 2π, 2 ≤ v ≤ 5.

16.5.5. r⃗(u, v) = ⟨0, u, v⟩ with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1. 16.5.6. r⃗(u, v) = ⟨u, 0, 1− u+ vu⟩ with 0 ≤ u ≤ 1,
0 ≤ v ≤ 1.

16.5.7. r⃗(u, v) = ⟨3 sinu cos v, 2 sinu sin v, 4 cosu⟩
with 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.

16.5.8. Answers may vary; one solution is
r⃗(u, v) = ⟨v cosu, v, 4v sinu⟩ with 0 ≤ u ≤ 2π,
−1 ≤ v ≤ 5.

16.5.9. Answers may vary.
For z = 1

2 (3− x): r⃗(u, v) = ⟨u, v, 1
2 (3− u)⟩,

with 1 ≤ u ≤ 3 and 0 ≤ v ≤ 2.
For x = 1: r⃗(u, v) = ⟨1, u, v⟩, with 0 ≤ u ≤ 2,

0 ≤ v ≤ 1
For y = 0: r⃗(u, v) = ⟨u, 0, v/2(3− u)⟩, with

1 ≤ u ≤ 3, 0 ≤ v ≤ 1
For y = 2: r⃗(u, v) = ⟨u, 2, v/2(3− u)⟩, with

1 ≤ u ≤ 3, 0 ≤ v ≤ 1
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩, with 1 ≤ u ≤ 3,

0 ≤ v ≤ 2

16.5.10. Answers may vary.
For z = 2x+ 4y − 4: r⃗(u, v) =

⟨u, 1− u/2 + uv/2, 2u+ 4(1− u/2 + uv/2)− 4⟩,
with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

For x = 2: r⃗(u, v) = ⟨2, u, 4uv⟩, with 0 ≤ u ≤ 1,
0 ≤ v ≤ 1

For y = 1: r⃗(u, v) = ⟨u, 1, 2uv⟩, with 0 ≤ u ≤ 2,
0 ≤ v ≤ 1

For z = 0: r⃗(u, v) = ⟨u, 1− u/2 + uv/2, 0⟩, with
0 ≤ u ≤ 2, 0 ≤ v ≤ 1

16.5.11. Answers may vary.
For z = 2y : r⃗(u, v) = ⟨u, v(4− u2), 2v(4− u2)⟩

with−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For y = 4− x2 : r⃗(u, v) = ⟨u, 4− u2, 2v(4− u2)⟩

with−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v(4− u2), 0⟩ with

−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.

16.5.12. Answers may vary.
For y = 1− z2:

r⃗(u, v) = ⟨u, v(1− u2),
√
1− v(1− u2)⟩ with

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For y = 1− x2: r⃗(u, v) = ⟨u, 1− u2, uv⟩ with

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For x = 0: r⃗(u, v) = ⟨0, v(1− u2), u⟩ with

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For y = 0: r⃗(u, v) = ⟨u, 0, v⟩ with 0 ≤ u ≤ 1 and

0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v(1− u2), 0rangle with

0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
16.5.13. Answers may vary.

For x2 + y2/9 = 1: r⃗(u, v) = ⟨cosu, 3 sinu, v⟩
with 0 ≤ u ≤ 2π and 1 ≤ v ≤ 3.

For z = 1: r⃗(u, v) = ⟨v cosu, 3v sinu, 1⟩ with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

For z = 3: r⃗(u, v) = ⟨v cosu, 3v sinu, 3⟩ with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

16.5.14. Answers may vary.
For x2 + y2 = (z − 1)2:

r⃗(u, v) = ⟨v cosu, v sinu, 1− v⟩ with 0 ≤ u ≤ 2π
and 0 ≤ v ≤ 1.

For z = 0: r⃗(u, v) = ⟨v cosu, v sinu, 0⟩ with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
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16.5.15. Answers may vary.
For z = 1− x2: r⃗(u, v) = ⟨u, v, 1− u2⟩ with

−1 ≤ u ≤ 1 and−1 ≤ v ≤ 2.
For y = −1: r⃗(u, v) = ⟨u,−1, v(1− u2)⟩ with

−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For y = 2: r⃗(u, v) = ⟨u, 2, v(1− u2)⟩ with

−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩ with−1 ≤ u ≤ 1

and−1 ≤ v ≤ 2.

16.5.16. Answers may vary.
For z = 4− x2 − 4y2: r⃗(u, v) =

⟨2v cosu, v sinu, 4− (2v cosu)2 − 4(v sinu)2⟩ with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

For z = 0: r⃗(u, v) = ⟨2v cosu, v sinu, 0⟩ with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

16.5.17. S = 2
√
14. 16.5.18. S =

√
6/2.

16.5.19. S = 4
√
3π. 16.5.20. S = 3

√
3π.

16.5.21. S =
∫ 3

0

∫ 2π

0

√
v2 + 4v4 du dv =

(37
√
37− 1)π/6 ≈ 117.319.

16.5.22.
S =

∫ 1

0

∫ 1

0

√
v2 + 4u2v2 + 4v4 du dv ≈ 0.931.

16.5.23.
S =

∫ 1

0

∫ 1

−1

√
(5u2 − 5)2 + 2(1− u2)2 du dv =

4
√
3 ≈ 6.9282.

16.5.24. S =
∫ 1

0

∫ 2π

0

√
v2 + 4v4 du dv =

(5
√
5− 1)π/6 ≈ 5.330.

16.6 · Surface Integrals
16.6 · Exercises

Terms and Concepts

16.6.1. curve; surface
16.6.2. Answers will vary; in general, it means that more of the vector field passes through the surface opposite the
direction of the normal vector than in the same direction of the normal vector.
16.6.3. outside
16.6.4.

Problems

16.6.5. 240
√
3 16.6.6. 40π

16.6.7. 24 16.6.8. 15
16.6.9. 0 16.6.10. 0
16.6.11. −1/2 16.6.12. π
16.6.13. 0; the flux over S1 is−45π and the flux over
S2 is 45π.

16.6.14. 9π/8; the flux over S1 is 3π/4 (use
r⃗(u, v) = ⟨sinu cos v, sinu sin v, cosu⟩ on
π/3 ≤ u ≤ π, 0 ≤ v ≤ 2π) and the flux over S2 is
3π/8 (use
r⃗(u, v) = ⟨v

√
3 cos(u)/2, v

√
3 sin(u)/2, 1/2⟩ for

0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

16.7 · The Divergence Theorem and Stokes’ Theorem
16.7 · Exercises
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Terms and Concepts

16.7.1. Answers will vary; in Section 16.4, the Divergence Theorem connects outward flux over a closed curve in the
plane to the divergence of the vector field, whereas in this section the Divergence Theorem connects outward flux
over a closed surface in space to the divergence of the vector field.
16.7.2. Divergence.
16.7.3. Curl.
16.7.4. Green’s Theorem.

Problems

16.7.5. Outward flux across the plane
z = 2− x/2− 2y/3 is 14; across the plane z = 0 the
outward flux is−8; across the planes x = 0 and y = 0
the outward flux is 0.

Total outward flux: 14.∫∫
D
div F⃗ dV =∫ 4

0

∫ 3−3x/4

0

∫ 2−x/2−2y/3

0
(2x+ 2y) dz dy dx = 14.

16.7.6. Outward flux across the cylinder x2 + y2 = 1
is 0; across the plane z = 3 the outward flux is 3π;
across the plane z = −3 the outward flux is 3π.

Total outward flux: 6π.∫∫
D
div F⃗ dV =

∫ 2π

0

∫ 1

0

∫ 3

−3
r dz dr dθ = 6π.

16.7.7. Outward flux across the surface
z = xy(3− x)(3− y) is 252; across the plane z = 0
the outward flux is−9.

Total outward flux: 243.∫∫
D
div F⃗ dV =∫ 3

0

∫ 3

0

∫ xy(3−x)(3−y)

0
12 dz dy dx = 243.

16.7.8. Outward flux across the paraboloid is 112π/3;
across the disk the outward flux is 0.

Total outward flux: 112π/3.∫∫
D
div F⃗ dV =∫ 2π

0

∫ 2

0

∫ 4−r2

0
(2z + 2)r dz dr dθ = 112π/3.

16.7.9. Circulation on C:
∮
C
F⃗ · dr⃗ = π∫∫

S
(
curl F⃗

)
· n⃗ dS = π.

16.7.10. Circulation on C:
∮
C
F⃗ · dr⃗ = π∫∫

S
(
curl F⃗

)
· n⃗ dS = π.

16.7.11. Circulation on C: The flow along the line
from (0, 0, 2) to (4, 0, 0) is 0; from (4, 0, 0) to (0, 3, 0)
it is−6, and from (0, 3, 0) to (0, 0, 2) it is 6. The total
circulation is 0 + (−6) + 6 = 0.∫∫

S
(
curl F⃗

)
· n⃗ dS =

∫∫
S 0 dS = 0.

16.7.12. Circulation on C: The flow along the
parabola is−32/15; the flow along the line is 4/3.
The total circulation is 4/3− 32/15 = −4/5.∫∫

S
(
curl F⃗

)
· n⃗ dS = −4/5.

16.7.13. 128/225 16.7.14. 8
16.7.15. 8192/105 ≈ 78.019 16.7.16. 64/3

16.7.17. 5/3 16.7.18. 8π
16.7.19. 23π 16.7.20. 0

16.7.21. Each field has a divergence of 1; by the
Divergence Theorem, the total outward flux across S
is
∫∫

D
1 dS for each field.

16.7.22.

(a) curl F⃗ = 1.

(b) curl F⃗ · n⃗ = 1, where n⃗ is a unit vector normal
to S.
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16.7.23. Answers will vary. Often the closed surface S
is composed of several smooth surfaces. To measure
total outward flux, this may require evaluating
multiple double integrals. Each double integral
requires the parametrization of a surface and the
computation of the cross product of partial
derivatives. One triple integral may require less work,
especially as the divergence of a vector field is
generally easy to compute.

16.7.24. Answers will vary. Often the closed curve C
is composed of several smooth curves. To measure
the total circulation, one may have to evaluate line
integrals along each curve. Each line integral requires
the parametrization of its curve. It may be less work
to evaluate one single double (i.e., surface) integral.



Appendix B

Quick Reference

B.1 Differentiation Formulas

List B.1.1 Derivative Rules

1.
d

dx
(cx) = c

2.
d

dx
(u± v) = u′ ± v′

3.
d

dx
(u · v) = uv′ + u′v

4.
d

dx
(
u

v
) =

vu′ − uv′

v2

5.
d

dx
(u(v)) = u′(v)v′

6.
d

dx
(c) = 0

7.
d

dx
(x) = 1

List B.1.2 Derivatives of Elementary Functions

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ex) = ex

3.
d

dx
(ax) = ln a · ax

4.
d

dx
(lnx) =

1

x

5.
d

dx
(loga x) =

1

ln a
· 1
x

6.
d

dx
(sinx) = cosx

7.
d

dx
(cosx) = − sinx

8.
d

dx
(cscx) = − cscx cotx

9.
d

dx
(secx) = secx tanx

10.
d

dx
(tanx) = sec2 x

11.
d

dx
(cotx) = − csc2 x

12.
d

dx
(coshx) = sinhx

13.
d

dx
(sinhx) = coshx

14.
d

dx
(sechx) = − sechx tanhx

15.
d

dx
(tanhx) = sech2 x

16.
d

dx
(cschx) = − cschx cothx

17.
d

dx
(cothx) = − csch2 x

1093
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List B.1.3 Derivatives of Inverse Functions

1.
d

dx
(sin−1 x) =

1√
1− x2

2.
d

dx
(cos−1 x) =

−1√
1− x2

3.
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

4.
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

5.
d

dx
(tan−1 x) =

1

1 + x2

6.
d

dx
(cot−1 x) =

−1

1 + x2

7.
d

dx
(cosh−1 x) =

1√
x2 − 1

8.
d

dx
(sinh−1 x) =

1√
x2 + 1

9.
d

dx
(sech−1 x) =

−1

x
√
1− x2

10.
d

dx
(csch−1 x) =

−1

|x|
√
1 + x2

11.
d

dx
(tanh−1 x) =

1

1− x2

12.
d

dx
(coth−1 x) =

1

1− x2

B.2 Integration Formulas

List B.2.1 Basic Rules

1.
∫

c · f(x) dx = c

∫
f(x) dx

2.
∫ (

f(x)±g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

List B.2.2 Integrals of Elementary (non-Trig) Functions

1.
∫

ex dx = ex + C

2.
∫
lnx dx = x lnx− x+ C

3.
∫

ax dx =
1

ln a
· ax + C

4.
∫

1

x
dx = ln |x|+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

List B.2.3 Integrals Involving Trigonometric Functions

1.
∫
cosx dx = sinx+ C

2.
∫
sinx dx = − cosx+ C

3.
∫
tanx dx = − ln |cosx|+ C

4.
∫
secx dx = ln |secx+ tanx|+ C

5.
∫
cscx dx = − ln |cscx+ cotx|+ C
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6.
∫
cotx dx = ln |sinx|+ C

7.
∫
sec2 x dx = tanx+ C

8.
∫
csc2 x dx = − cotx+ C

9.
∫
secx tanx dx = secx+ C

10.
∫
cscx cotx dx = − cscx+ C

11.
∫
cos2 x dx =

1

2
x+

1

4
sin
(
2x
)
+ C

12.
∫
sin2 x dx =

1

2
x− 1

4
sin
(
2x
)
+ C

13.
∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ C

14.
∫

1√
a2 − x2

= sin−1
(x
a

)
+ C

15.
∫

1

x
√
x2 − a2

=
1

a
sec−1

(
|x|
a

)
+ C

List B.2.4 Integrals Involving Hyperbolic Functions

1.
∫
coshx dx = sinhx+ C

2.
∫
sinhx dx = coshx+ C

3.
∫
tanhx dx = ln(coshx) + C

4.
∫
cothx dx = ln |sinhx|+ C

5.
∫

1√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C

6.
∫

1√
x2 + a2

dx = ln
∣∣∣x+

√
x2 + a2

∣∣∣+ C

7.
∫

1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

8.
∫

1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

9.
∫

1

x
√
x2 + a2

=
1

a
ln
∣∣∣∣ x

a+
√
x2 + a2

∣∣∣∣+ C
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B.3 Trigonometry Reference

The Unit Circle.

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2
, 1
2

)
45◦

π/4

(√
2

2
,
√

2
2

)
60◦

π/3

(
1
2
,
√
3
2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2
,
√

3
2

)

135◦
3π/4

(
−

√
2

2
,
√
2
2

)

150◦
5π/6

(
−

√
3

2
, 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.3.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y
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Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.3.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.3.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.3.2 Double Angle Formulas

1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.3.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.3.4 Even/Odd Identities
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1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.3.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.3.6 Sum to Product Formulas

List B.3.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)
List B.3.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y

B.4 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r
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Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A

B.5 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)
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(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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B.6 Additional Formulas

Summation Formulas:.

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

Trapezoidal Rule:.∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
with Error≤ (b− a)3

12n2

[
max |f ′′(x)|

]
Simpson’s Rule:.

∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

]
with Error≤ (b− a)5

180n4

[
max

∣∣∣f (4)(x)
∣∣∣ ]

Arc Length:.

L =

∫ b

a

√
1 + f ′(x)2 dx

Surface of Revolution:.

2π

∫ b

a

f(x)
√
1 + f ′(x)2dx

(where f(x) ≥ 0)

S = 2π

∫ b

a

x
√
1 + f ′(x)2dx

(where a, b ≥ 0)

Work Done by a Variable Force:.

W =

∫ b

a

F (x)dx
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Force Exerted by a Fluid:.

F =

∫ b

a

w d(y) ℓ(y)dy

Taylor Series Expansion for f(x):.

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

Maclaurin Series Expansion for f(x), where c = 0:.

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

B.7 Summary of Tests for Series

Table B.7.1

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑

n=1

an lim
n→∞

an ̸= 0
Cannot be used to show
convergence.

Geometric Series
∞∑

n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑

n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑

n=1

1

(an+ b)p
p > 1 p ≤ 1

Integral Test
∞∑

n=0

an

∫ ∞

1

a(n) dn

converges

∫ ∞

1

a(n) dn diverges
an = a(n)must be
continuous

Direct Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

0 ≤ an ≤ bn

∞∑
n=0

bn diverges and

0 ≤ bn ≤ an

Limit Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

lim
n→∞

an

bn
≥ 0

∞∑
n=0

bn diverges and

lim
n→∞

an

bn
> 0

Also diverges if
lim

n→∞
an

bn
= ∞

Ratio Test
∞∑

n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1 {an}must be positive

Also diverges if lim
n→∞

an+1

an
= ∞

Root Test
∞∑

n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1 {an}must be positive

Also diverges if lim
n→∞

(an)
1/n = ∞
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!, 526
Absolute Convergence Theorem,

579
absolute maximum, 133
absolute minimum, 133
Absolute Value Theorem, 530
acceleration, 81, 695
accumulated error

using Euler’s method, 437
Alternating Harmonic Series, 549,

578, 590
Alternating Series Test, 574
aN, 712, 723
analytic function, 598
angle of elevation, 700
antiderivative, 217

of vector-valued function, 690
approximation

linear, 196
tangent line, 196

arc length, 401, 494, 517, 692, 717
arc length parameter, 717, 719
asymptote

horizontal, 54
vertical, 53

aT, 712, 723
average rate of change, 681
average value of a function, 843
average value of function, 263
average velocity, 8

bacterial growth, 455
Binomial Series, 598
Bisection Method, 46
boundary point, 735
bounded

interval, 41
bounded sequence, 532

convergence, 533
bounded set, 735

carrying capacity, 435
center of mass, 858, 859, 861, 862,

890
Chain Rule, 105

multivariable, 769, 772
notation, 111

chain rule
as matrix multiplication, 812

change of variables, 908
circle of curvature, 721
circulation, 961
closed, 735
closed disk, 735
concave down, 156
concave up, 156
concavity, 156, 492

inflection point, 158
test for, 158

conic sections, 466
degenerate, 466
ellipse, 469
hyperbola, 472
parabola, 466

connected, 955
simply, 956

conservative field, 956, 957, 959
Constant Multiple Rule

of derivatives, 88
of integration, 221
of series, 548

constrained optimization, 801
continuity

of exponential functions, 21
of logarithmic functions, 21
of polynomial functions, 20
of rational functions, 20
of trigonometric functions, 21

continuous
at a point, 40
everywhere, 40

1103
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on an interval, 40
continuous function, 40, 740

properties, 43, 741
vector-valued, 684

continuously differentiable, 761
contour lines, 729
convergence

absolute, 578, 579
Alternating Series Test, 574
conditional, 578
Direct Comparison Test, 559
for integration, 366

Integral Test, 556
interval of, 585
Limit Comparison Test, 561
for integration, 367

nth-term test, 551
of geometric series, 543
of improper int., 361, 366,

367
of monotonic sequences, 536
of p-series, 545
of power series, 585
of sequence, 528, 533
of series, 540
radius of, 585
Ratio Comparison Test, 567
Root Comparison Test, 569

coordinates
cylindrical, 896
polar, 499
spherical, 899

critical number, 135
critical point, 135, 797, 799
critical value

of a function of two variables,
817

cross product
and derivatives, 687
applications, 653
area of parallelogram, 654
torque, 656
volume of parallelepiped,
656

definition, 650
properties, 652

curl, 945
of conservative fields, 959

curvature, 719
and motion, 723
equations for, 720
of circle, 721
radius of, 721

curve

parametrically defined, 479
rectangular equation, 479
smooth, 485

curve sketching, 165
cusp, 485
cycloid, 680
cylinder, 612
cylindrical coordinates, 896

decreasing function, 148
finding intervals, 149

definite integral, 228
and substitution, 297
of vector-valued function, 690
properties, 229

del operator, 944
derivative

acceleration, 81
as a function, 69
at a point, 65
basic rules, 86
Chain Rule, 105, 111, 769, 772
Constant Multiple Rule, 88
Constant Rule, 86
differential, 196
directional, 778, 779, 781, 784
exponential functions, 111
First Deriv. Test, 151
general, 811
Generalized Power Rule, 106
higher order, 89
interpretation, 90

hyperbolic funct., 344
implicit, 114, 773
interpretation, 79
inverse function, 125
inverse hyper., 348
inverse trig., 128
logarithmic, 120
Mean Value Theorem, 143
mixed partial, 749
motion, 81
multivariable differentiability,

760, 765
normal line, 67
notation, 69, 89
parametric equations, 489
partial, 744, 752
Power Rule, 86, 100, 119
power series, 588
Product Rule, 94
Quotient Rule, 97
Second Deriv. Test, 161
Sum/Difference Rule, 87
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tangent line, 65
trigonometric functions, 98
vector-valued functions, 685,

687
velocity, 81

difference quotient, 8
differentiability

functions of several variables,
809

differentiable, 65, 760, 765
general functions, 807
on a closed interval, 74

differential, 196
notation, 196

differential equation
definition, 429
first order linear, 447
general solution, 430
graphical solution, 433
implicit soution, 432
integrating factor, 448
logistic, 434, 458
modeling, 455
numerical solution, 435
order of, 429
particular solution, 430
separable, 441

Direct Comparison Test
for integration, 366
for series, 559

direction field, see slope field
directional derivative, 778, 779,

781, 784
directrix, 466, 612
discontinuity

infinite, 44
jump, 44
removable, 44

Disk Method, 382
displacement, 257, 680, 692
distance

between lines, 665
between point and line, 665
between point and plane, 673
between points in space, 610
traveled, 702

divergence, 944, 945
Alternating Series Test, 574
Direct Comparison Test, 559
for integration, 366

Integral Test, 556
Limit Comparison Test, 561
for integration, 367

nth-term test, 551

of geometric series, 543
of improper int., 361, 366,

367
of p-series, 545
of sequence, 528
of series, 540
Ratio Comparison Test, 567
Root Comparison Test, 569

Divergence Theorem
in space, 990
in the plane, 967

dot product
and derivatives, 687
definition, 638
properties, 638, 639

double integral, 837, 838
in polar, 848
properties, 840

eccentricity, 471, 473
elementary function, 267
ellipse

definition, 469
eccentricity, 471
parametric equations, 484
reflective property, 471
standard equation, 469

Euler’s Method, 436
Euler’s method

accumulated error, 437
everywhere continuous, 40
exponential function

continuity of, 21
extrema

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
finding, 136
relative, 134, 797

Extreme Value Theorem, 134, 801
extreme values, 133

factorial, 526
First Derivative Test, 151
first octant, 610
floor function, 40
flow, 961, 962
fluid pressure/force, 420, 421
flux, 961, 962, 984, 985
focus, 466, 469, 472
Fubini’s Theorem, 838
function

continuous, 40
floor, 40
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of three variables, 731
of two variables, 727
vector-valued, 677

Fundamental Theorem of Calculus,
254, 255

and Chain Rule, 259
Fundamental Theorem of Line

Integrals, 955, 957

Gabriel’s Horn, 406
Gauss’s Law, 993
general solution

of a differential equation, 430
Generalized Power Rule, 106
geometric series, 542, 543
gradient, 779, 781, 784, 794

and level curves, 781
and level surfaces, 794

Green’s Theorem, 964, 965

half life, 463
Harmonic Series, 549
Head To Tail Rule, 628
Hooke’s Law, 413
hyperbola

definition, 472
eccentricity, 473
parametric equations, 484
reflective property, 474
standard equation, 472

hyperbolic function
definition, 341
derivatives, 344
identities, 344
integrals, 344
inverse, 346
derivative, 348
integration, 349
logarithmic def., 347

image
of a point, 910
of a subset, 910

implicit differentiation, 114, 773
improper integration, 361, 364
incompressible vector field, 944
increasing function, 148

finding intervals, 149
indefinite integral, 217

of vector-valued function, 690
indeterminate form, 4, 53, 355,

357
inflection point, 158
initial condition, 430
initial point, 625

initial value problem, 222
for differential equations, 430

Integral Test, 556
integration

arc length, 401
area, 228, 830
area between curves, 260,

373
average value, 263
by parts, 303
by substitution, 286
definite, 228
and substitution, 297
properties, 229
Riemann Sums, 249

displacement, 257
distance traveled, 702
double, 837
fluid force, 420, 421
Fun. Thm. of Calc., 254, 255
general application technique,

371
hyperbolic funct., 344
improper, 361, 364, 366, 367
indefinite, 217
inverse hyperbolic, 349
iterated, 829
Mean Value Theorem, 262
multiple, 829
notation, 218, 228, 255, 829
numerical, 267
Left/Right Hand Rule, 267,
275

Simpson’s Rule, 273, 275,
276

Trapezoidal Rule, 270, 275,
276

of multivariable functions,
827

of power series, 588
of trig. functions, 291
of trig. powers, 314, 318
of vector-valued function, 690
of vector-valued functions,

690
partial fraction decomp., 333
Power Rule, 221
Sum/Difference Rule, 221
surface area, 404, 495, 518
trig. subst., 325
triple, 876, 887, 889
volume
cross-sectional area, 381
Disk Method, 382
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Shell Method, 392, 396
Washer Method, 385, 396

with cylindrical coordinates,
897

with spherical coordinates,
901

work, 410
interior point, 735
Intermediate Value Theorem, 45
interval of convergence, 585
inverse

of a transformation, 921
iterated integration, 829, 837, 838,

876, 887, 889
changing order, 832
properties, 840, 882

Jacobian
of a transformation, 912

Jacobian matrix, 811

l’Hospital’s Rule
infinity over infinity, 354
zero over zero, 353

Lagrange multipliers, 816
lamina, 855
Left Hand Rule, 238, 242, 267
Left/Right Hand Rule, 275
level curves, 729, 781
level surface, 732, 794
limit

Absolute Value Theorem, 530
at infinity, 54
definition, 12
difference quotient, 8
does not exist, 6, 33
indeterminate form, 4, 25, 53,

355, 357
l’Hospital’s Rule, 353, 354
left-handed, 31
of exponential functions, 21
of infinity, 51
of logarithmic functions, 21
of multivariable function, 736,

737, 742
of polynomial functions, 20
of rational functions, 20
of sequence, 528
of trigonometric functions, 21
of vector-valued functions,

683
one-sided, 31
properties, 19, 737
pseudo-definition, 4

right-handed, 31
Squeeze Theorem, 23

Limit Comparison Test
for integration, 367
for series, 561

line integral
Fundamental Theorem, 955,

957
over scalar field, 933, 934,

951
over vector field, 952
path independent, 956, 957
properties over a scalar field,

938
properties over a vector field,

954
linear function, 807
linearization, 196, 806

functions of several variables,
808

lines, 660
distances between, 665
equations for, 661
intersecting, 662
parallel, 662
skew, 662

logarithmic differentiation, 120
logarithmic function

continuity of, 21

Maclaurin Polynomial
definition, 205

Maclaurin Polynomial|see{Taylor
Polynomial}, 205

Maclaurin Series
definition, 595

Maclaurin Series|see{Taylor
Series}, 595

magnitude of vector, 625
mass, 855, 856, 890, 938

center of, 858, 938
matrix

Jacobian, 811
maximum

absolute, 133, 797
and First Deriv. Test, 151
and Second Deriv. Test, 161
relative/local, 134, 797, 800

Mean Value Theorem
of differentiation, 143
of integration, 262

Midpoint Rule, 238, 242
minimum

absolute, 133, 797
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and First Deriv. Test, 151, 161
relative/local, 134, 797, 800

moment, 860, 862, 890
monotonic sequence, 533
multi-index notation, 823
multiple integration|see{iterated

integration}, 829
multivariable function, 727, 731

continuity, 740–742, 761, 766
differentiability, 760, 761,

765, 766
domain, 727, 731
level curves, 729
level surface, 732
limit, 736, 737, 742
range, 727, 731

Möbius band, 971

Newton’s Law of Cooling, 456
Newton’s Method, 174
norm, 625
normal line, 67, 489, 790
normal vector, 669
nth-term test, 551
numerical integration, 267

Left/Right Hand Rule, 267,
275

Simpson’s Rule, 273, 275
error bounds, 276

Trapezoidal Rule, 270, 275
error bounds, 276

octant
first, 610

one to one, 971
one-to-one, 910
onto, 910
open, 735
open ball, 742
open disk, 735
optimization, 188

constrained, 801
with Lagrange multipliers, 816

order
of a differential equation, 429

orientable, 971
orientation, 916
orthogonal, 641, 790

decomposition, 645
orthogonal decomposition of

vectors, 645
orthogonal projection, 643
osculating circle, 721
outer unit normal vector, 990

p-series, 545
parabola

definition, 466
general equation, 467
reflective property, 468

parallel vectors, 631
Parallelogram Law, 628
parametric equations

arc length, 494
concavity, 492
definition, 479
finding d2y

dx2 , 492
finding dy

dx , 489
normal line, 489
of a surface, 971
surface area, 495
tangent line, 489

parametrized surface, 971
partial derivative, 744, 752

high order, 753
meaning, 746
mixed, 749
second derivative, 749
total differential, 760, 765

partition, 244
size of, 244

path independent, 956, 957
perpendicular|see{orthogonal},

641
piecewise smooth curve, 937
planes

coordinate plane, 611
distance between point and

plane, 673
equations of, 669
introduction, 611
normal vector, 669
tangent, 793

point of inflection, 158
polar

coordinates, 499
function
arc length, 517
gallery of graphs, 505
surface area, 518

functions, 502
area, 514
area between curves, 516
finding dy

dx , 512
graphing, 502

polar coordinates, 499
plotting points, 499

polynomial function
continuity of, 20
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potential function, 949, 957
Power Rule

differentiation, 86, 94, 100,
119

integration, 221
power series, 584

algebra of, 600
convergence, 585
derivatives and integrals, 588

projectile motion, 700, 713

quadric surface
definition, 616
ellipsoid, 618
elliptic cone, 618
elliptic paraboloid, 617
gallery, 617, 619
hyperbolic paraboloid, 619
hyperboloid of one sheet, 618
hyperboloid of two sheets,

619
sphere, 618
trace, 616

Quotient Rule, 97

R, 625
radius of convergence, 585
radius of curvature, 721
Ratio Comparison Test

for series, 567
rational function

continuity of, 20
rearrangements of series, 579
reduction formula

trigonometric integral, 321
regular value, 817
Related Rates, 179
related rates, 179
Riemann Sum, 238, 241, 244

and definite integral, 249
Right Hand Rule, 238, 242, 267
right hand rule

of Cartesian coordinates, 609
of the cross product, 653

Rolle’s Theorem, 143
Root Comparison Test

for series, 569

saddle point, 799, 800
Second Derivative Test, 161, 800
sensitivity analysis, 764
separation of variables, 441
sequence

Absolute Value Theorem, 530
positive, 559

sequences
boundedness, 532
convergent, 528, 533, 536
definition, 525
divergent, 528
limit, 528
limit properties, 531
monotonic, 533

series
absolute convergence, 578
Absolute Convergence

Theorem, 579
alternating, 574
Approximation Theorem,
576

Alternating Series Test, 574
Binomial, 598
conditional convergence, 578
convergent, 540
definition, 540
Direct Comparison Test, 559
divergent, 540
geometric, 542, 543
Integral Test, 556
interval of convergence, 585
Limit Comparison Test, 561
Maclaurin, 595
nth-term test, 551
p-series, 545
partial sums, 540
power, 584, 585
derivatives and integrals,
588

properties, 548
radius of convergence, 585
Ratio Comparison Test, 567
rearrangements, 579
Root Comparison Test, 569
Taylor, 595
telescoping, 546

Shell Method, 392, 396
signed area, 228
signed volume, 837, 838
simple curve, 956
simply connected, 956
Simpson’s Rule, 273, 275

error bounds, 276
slope field, 434
smooth, 687

curve, 485
surface, 971

smooth curve
piecewise, 937

speed, 695
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sphere, 610
spherical coordinates, 899
Squeeze Theorem, 23
Stokes’ Theorem, 995
Sum/Difference Rule

of derivatives, 87
of integration, 221
of series, 548

summation
notation, 239
properties, 241

surface, 971
smooth, 971

surface area, 868
of parametrized surface, 977,

978
solid of revolution, 404, 495,

518
surface integral, 983
surface of revolution, 614, 615

tangent line, 65, 489, 512, 686
directional, 788

tangent plane, 748, 793
to a graph, 748

Taylor polynimial
of several variables, 823

Taylor Polynomial
definition, 205
Taylor’s Theorem, 208

Taylor Series
common series, 600
definition, 595
equality with generating

function, 597
Taylor’s Theorem, 208

in several variables, 823
telescoping series, 546
terminal point, 625
theorem

Intermediate Value, 45
torque, 656
total differential, 760, 765

sensitivity analysis, 764
total signed area, 228
trace, 616
transformation, 908, 914
Trapezoidal Rule, 270, 275

error bounds, 276
trigonometric function

continuity of, 21
triple integral, 876, 887, 889

properties, 882

unbounded sequence, 532

unbounded set, 735
unit normal vector

aN, 712
and acceleration, 711, 712
and curvature, 723
definition, 709
in R2, 711

unit tangent vector
and acceleration, 711, 712
and curvature, 719, 723
aT, 712
definition, 708
in R2, 711

unit vector, 629
properties, 631
standard unit vector, 632
unit normal vector, 709
unit tangent vector, 708

vector field, 942
conservative, 956, 957
curl of, 945
divergence of, 944, 945
over vector field, 952
potential function of, 949, 957

vector-valued function
algebra of, 679
arc length, 692
average rate of change, 681
continuity, 684
definition, 677
derivatives, 685, 687
describing motion, 695
displacement, 680
distance traveled, 702
graphing, 677
integration, 690
limits, 683
of constant length, 689, 699,

700, 709
projectile motion, 700
smooth, 687
tangent line, 686

vectors, 625
algebra of, 627
algebraic properties, 629
component form, 626
cross product, 650, 652
definition, 625
dot product, 638, 639
Head To Tail Rule, 628
magnitude, 625
norm, 625
normal vector, 669
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orthogonal, 641
orthogonal decomposition,

645
orthogonal projection, 643
parallel, 631
Parallelogram Law, 628
resultant, 628
standard unit vector, 632

unit vector, 629, 631
zero vector, 628

velocity, 81, 695
average velocity, 8

volume, 837, 838, 874

Washer Method, 385, 396
work, 410, 647
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