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Preface

This text is intended for a one semester calculus course for business students with
the equivalent of a college algebra prerequisite. Rather than being a three-semester
engineering calculus course that has been watered down to fit into one semester it
is designed for the business students.

We assume that

• The student has easy access to a spreadsheet and the internet.

• This is probably the last math class the student will take.

• The student is eithermajoring in business, orwill usemathematics in a business
setting.

This text tries to follow the recommendations of the CRAFTY reports.
The MAA curriculum guide (2004) notes that many of our current math courses

were designed in the last century in response to the needs of physics and engineering.
One might caricaturize a standard textbook for business calculus, often called brief
calculus as a watered down version of a three-semester course in calculus that was
designed for physics or math majors. Since it is trying to cover more topics in less
time, the main emphasis is skill in symbolic manipulation. The standard text for a
one semester survey of calculus is also used for both business and the life sciences.
To allow for broadmarketing the text is technology agnostic, follows the arrangement
of a course for majors, and uses the notational conventions of mathematics.

In contrast, following the Curriculum Reform Project recommendations, a course
for business calculus should:

• Use spreadsheets as the primary computational engine.

• Have greater emphasis on constructing mathematical models from data.

• Increase the emphasis on numerical methods rather than symbolic manipula-
tion.

• Whenever possible use the terminology and notational conventions of the busi-
ness world.

• Consistently use examples that the students will recognize as relevant to the
courses in their major.

Following the CRAFTY guidelines lead to a number of subtle but pervasive shifts
in a calculus text.

• Teaching the technology in a way that makes it portable: Experience showed,
as expected, that the students would have to be taught to use Excel. Since
the intent was to have the students see the material as usable outside of class,
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the text does not use any macros or instructor provided tools. Students are
also expected to use “Good Excel Style” and make worksheets readable with
sufficient documentation.

• Use of business terminology and conventions: Economics examples tradition-
ally use p and q axes with q as the independent variable. In business disciplines
a marginal function is not a derivative, as it is often described in calculus texts,
but a difference quotient with denominator 1.

• Use of business examples: The standard textbook example for related rates
is that of a person on a ladder that is sliding down a wall. One student com-
mented that he learned to never stand on an unsecured ladder. In contrast
our text uses the Cobb-Douglas equation and rate of change of revenue with
respect to cost to illustrate related rates, given that both are functions of quan-
tity. Other examples in the text include the standard supply and demand prob-
lems, marginal cost, revenue and profit problems, and present and future value
of an investment.

• Change of order of topics: Checking with business faculty we have found that
partial derivatives are considered more important than integrals. We reorder
the sequence of topics to do multivariable functions and partial derivatives be-
fore integration.

• Numerical techniques: With a spreadsheet, approximations of the derivative
using the symmetric difference and Riemann sums for integration are reason-
able tasks that work effectively for a wide variety of functions. The numerical
examples shift from simply being theoretical underpinnings to being a practi-
cal approach. With the use of numerical techniques presented first, the main
examples are introduced before the student has learned symbolic techniques.

• Use of CAS: Finding the current value of a revenue stream is an application of
integration at the end of the course. The students know enough to set up the
problem, but only have the integration techniques for solving symbolically if
the stream is constant or exponential. Using simple CAS allows the focus to
remain on a conceptual understanding of the problem.

• An increased emphasis on real data and modeling: With a spreadsheet is be-
comes reasonable to have students collect data from the web and to find a
variety of best fitting curves. In the review of pre-calculus topics students are
asked to decide which model should be expected to go with the data in a situ-
ation and then to find real data and produce an appropriate best fitting curve.

• Focus on communication and application: As mentioned above, the conven-
tions of school mathematics use a terse style with one letter names like x, y, f,
and g used as variable and function names to aid in symbolmanipulation. If the
goal is to produce work that someone else can read and understand 6 months
later more descriptive variable and function names are used, and having suffi-
cient documentation is considered part of answering the question.

The initial reaction from students and teachers to the text have been positive. In
particular, many report leaving the course with an understanding of how the course
connects to the rest of their business curriculum

This book remains a work in progress. Feel free to send comments, corrections,
or rebuttals.

Mike May, S.J.
mike dot may at slu dot edu
St Louis, MO 2023



Notes for Instructors

This text continues to be a work in progress, with features being added as we get
requests and have time.

Recent improvements.

• Excel worksheets were attached to sections where Excel was used in the text.
This allows students to examine the worksheet and the underlying code.

• Unworked versions of the Excel worksheets were attached to sections where
Excel was used in the text. This allows the student to follow along.

• Screencast videos of the Excel problems are being added.

• A significant number of the problems have been converted to WeBWorK. This
allows individualized problems for the students with automatic grading. A li-
brary of problems is available from the author.

• WeBWorK hosting is available through Edfinity and Runestone.

• Teaching materials, like calendars, sample quizzes, and sample tests are avail-
able to instructors on request.

• A landing page (https://mathstat.slu.edu/~may/ExcelCalculus/LandingPage.html³)
was established with resources that useful for offline work:

◦ There is a pdf version of the book that can be downloaded.

◦ There is a compressed collection of the Excel files used in the text that
can be downloaded.

The text was designed for a particular syllabus at a particular institution. Let us
know if a few additional optional topics would better suit your needs.

We welcome suggestions, comments, and corrections.
Mike May, S.J.
mike.may@slu.edu

St Louis, MO, 2023

³https://mathstat.slu.edu/~may/ExcelCalculus/LandingPage.html
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Notes for Students

This text has been written to make life better for business students taking calculus.
You should be able to see connections between this course and your business courses.
While it uses Excel, it does not assume that you are familiar with it. The excel work-
sheets used in the text are available for you to use and see the underlying code. We
are in the process of making them available in both the worked version, so you can
see what was done, and an unworked version so you can follow along. We recom-
mend you start with the unworked version. We are also adding videos of all the Excel
examples used in the text.

The rules for using Excel in the class violate several de facto rules you have learned
in all your previous math courses. This is done intentionally. This is probably either
your last math class or your second to last math class. We have added much greater
emphasis to how your skills will be used after the course is over. Mathematicians
have worked for millennia to develop techniques for fast symbol manipulation freed
from context. That means the same skills can be used inmany contexts. In a business
setting you want to make work products that you can come back to months or years
later. You also want your work to be understood by others. When practical, we use
longer variable names and break steps apart in Excel. This makes the material easier
to read. It also means that students make fewer mistakes with long formulas.

Excel has special functions for almost any financial calculation you can think of.
For the most part, we will not use the advanced formulas. When your job is to work
with a specific formula every day for months, it will make sense to learn the special
formulas. At this point, the syntax is too complicated and you will forget them in a
short period of time.

Final thoughts:

• If nothing else, this text is free, so it is one less text you need to buy.

• We welcome suggestions, comments, and corrections.

• Videos of the Excel problems are being added.

Mike May, S.J.
mike.may@slu.edu

St Louis, MO, 2021
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Chapter 1

Functions Graphs and Excel

1.1 Linear Functions and models

We will start this chapter with a review of linear functions, which are common in
business. In business there are quite a few examples of linear equations. We start by
reviewing some standard concepts related to lines, including the slope.

Following the conventions of microeconomics, we will often use the variables q
and p, for quantity and price, rather than x and y. We will also follow the conventions
of economics in treating quantity as the independent variable. (The q-axis will be the
horizontal axis. A fast web search for supply and demand equilibrium will convince
you this standard usage.)

1.1.1 Equations of a line
From prior courses, such as college algebra, you will remember that lines can be writ-
ten in several different forms. If we are given the slope and the y-intercept, the slope
intercept form will be the equation of choice. If we are given a point and a slope, it
might be faster if we use the point-slope form of a line.

Kinds of Linear Equations.

y = mx+ b the slope-intercept form of a line

y − y0 = m(x− x0) the point-slope form of a line

In a business setting we are likely to use q instead of x and p instead of y.
With this notation these standard equations of a line become:

p = mq + b the slope-intercept form of a line

p− p0 = m(q − q0) the point-slope form of a line

Example 1.1.1 Supply and Demand Curves.

Supply and demand equations are often modeled by linear equations. The
supply function is a line with a positive slope, and the demand function is a
line with a negative slope.

1



2 CHAPTER 1. FUNCTIONS GRAPHS AND EXCEL

Figure 1.1.2 The intersection of a supply and demand curve
The vertical axis shows the price, the horizontal axis shows quantity. Both

supply (S) and demand (D) are linear functions. In this diagram ‘B’ denotes a
surplus of supply, and ‘A’ denotes a surplus of demand.

Recall, that the slope of a line through the points P0 = (q0, p0) and P1 = (q1, p1)
is given by:

m =
rise
run

=
(p1 − p0)

(q1 − q0)

There are two other forms of a line that are sometimes used. The general form of
a line is a standard notation used in mathematics. The 2-point form of a line is very
handy in those situations where we are not given a slope, but we are given informa-
tion about two points that lie on the line.

ax+ by + c = 0 The general form of a line

y − y0 = y1−y0

x1−x0
(x− x0) The 2-point form of a line

As above, in the setting of this course we may be using p (price) and q (quantity)
as our variables. This would result in equations that look as follows:

aq + bp+ c = 0 The general form of a line



1.1. LINEAR FUNCTIONS AND MODELS 3

p− p0 = p1−p0

q1−q0
(q − q0) The 2-point form of a line

Example 1.1.3 Finding four versions of a line.

We find that we can sell 150 widgets a day if we sell them at $10. If we raise
the price to $15, we can only sell 110 widgets a day. Assume that there is a
linear relationship between price and quantity sold. Find the equation of the
line in all four forms.
Solution. Writing this using our variables p (price) and q (quantity of wid-
gets) we see that when p = 10, q = 150 and when p = 15, q = 110. Points
are (usually) given as (q, p), so this means we have two point (150, 10) and
(110, 15) on the line. We always need to find the slope of the line, and in this
case

m =
15− 10

110− 150
=

5

−40
=

−1

8
.

We are given two points, so the 2-point form of the line should be the
easiest formula to find:

p− p0 =
p1 − p0
q1 − q0

(q − q0).

In our case this becomes:

p− 10 =
15− 10

110− 150
(q − 150).

We just found the slope and we just need to pick a point (p0, q0) to finish
the problem. (Recall that p and q are the variables, so we want to leave those
as they are.) In this case lets pick (p0, q0) = (150, 10). Then we get this
simplified version, which is also the point-slope form of this line.

p− 10 =
−1

8
(q − 150).

Fromherewe can very easily find the slope intercept formby some straight-
forward algebra: p− 10 = −1

8 (q − 150) implies that

p =
−1

8
(q − 150) + 10 =

−1

8
q +

150

8
+ 10 =

−1

8
q +

230

8
.

Thus
p =

−1

8
q +

230

8
.

And finally the general form will be another exercise in algebra. We clear
the fractions and put everything on one side.

8p+ q − 230 = 0.

Example 1.1.4 Finding a line from two points.

Suppose that a linear cost-quantity relationship exists in producing widgets.
There is a fixed cost of $400. There is also a per-unit cost of $11.

(a) Find the equation of the line.
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(b) Find the cost of making 200 widgets.

Solution.

(a) We have one point of the form (quantity, cost) at (0, 400) from the
fixed cost. This point happens to be an intercept. The slope of the line
ism = 11/1 = 11. Wewill letC stand for Cost and q stand for quantity.
The general formula for a line with these variables will have the form

C = mq + b.

In this examplem = 11 and b = 400, hence the equation of the line is

C = 11q + 400

(b) Using the equation form part a) we see that the cost of producing 200
widgets is

C = 11(200) + 400 = $2, 600

Example 1.1.5 A nonlinear function.

Sarah is paid $500 for working up to 40 hours per week. For work beyond 40
hours per week she is paid $18/hour.

(a) Find the equation of the line.

(b) How much is she paid if she works 56 hours in a week?

(c) What is she paid for working 30 hours in a week?

Solution.

(a) For this example we will use “designer variables”, longer variables that
make the equation easier to read. The output will be Pay, and the input
variable— the number of hours worked—will be hrs. We are told that
Pay = 500when hrs = 40. The slope of the line forwork beyond 40 hours
is m = 18. Another way to think of this is to say that there is a fixed
Pay of $500 and a variable Pay for any hours in excess of 40: i.e. (hrs -
40). Thus, the equation of the line, according to the point-slope form
is

Pay = variable pay+ Fixed pay.

This gives us

Pay = m(hrs− 40) + 500 = 18 ∗ (hrs− 40) + 500.

(b) The pay for working 56 hours is 18(56-40)+500=$788.

(c) The pay for working 30 hours is $500. This is a trick question part of the
problem. From the text of the problem, the linearmodel only works for
overtime, with a flat rate applying to less than 40 hours per week. Com-
ment: The function should be written as a piecewise defined function.

This question is all about the function f defined by

Pay =

{
500 hrs ≤ 40

18 ∗ (hrs− 40) + 500 hrs > 40
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It can be useful when writing reports to have variables that convey some mean-
ing. We could have used y for Pay, and x for hrs, but using the much more easily
interpreted variables named Pay and hrs helps when reading the formulas.

1.1.2 Exercises 1.1 Linear Functions and models

1. Reading check, Linear Functions and Models. This question checks your read-
ing comprehension of the material is section 1.1, Linear functions and models,
of Business Calculus with Excel. Based on your reading, select all statements
that are correct. There may be more than one correct answer. The statements
may appear in what seems to be a random order.

A In this class we will sometimes use q and p instead of x and y.

B y = mx+ b is often referred to as the general form of the line.

C y = mx+ b is often referred to as the slope-intercept form of the line.

D The demand function is a line with a positive slope.

E If they are not labeled, there is no way to tell which is the supply curve
and which is the demand curve.

F y − y1 = m(x − x1) is often referred to as the point-slope form of the
line.

G The supply curve has a positive slope.

H The slope can be defined as rise over run.

I None of the above

Exercise Group. Given two points in the (q, p) plane and a value q0:

(a) Find the slope of the line determined by the points.

(b) Give the equation of the line determined by the points.

(c) Give the value of p predicted for q0 by the line.

2. Points (2, 5) and (6, 17), with q0 = 4.

3. Points (5, 7) and (10, 7), with q0 = 20.

4. Points (20, 10) and (40, 5), with q0 = 12.

5. Points (5, 62) and (115, 783), with q0 = 415.

6. Points (273, 578) and (412, 6), with q0 = 309.

7. Points (509, 17) and (211, 132), with q0 = 4.

Exercise Group. For the following problems, start with the information given:

(a) Give the equation of the line determined by that information.

(b) Using the line, give the predicted value of p for the given q0.

(c) Give the value of q for which the predicted value of p is 0.

8. A slope of 3, passing through (6, 3), with q0 = 4.

9. A slope of−2, passing through (2,−5), with q0 = 3.

10. A slope of 12.7, passing through (22, 183), with q0 = 46.
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11. A slope of−0.23, passing through (7.6, 19.7), with q0 = 59.6.

12. A slope of 0, passing through (12.3, 9.8), with q0 = 74.

13. A slope that is undefined, passing through (6, 3), explaining why part b
would not make sense.

Exercise Group. For problems 13-18, start with the equation given:

(a) Give the slope of the line or say that the slope is undefined.

(b) Give the intercepts of the line with the axes.

(c) Give two points that are on the line but not on the axes.

14. 3p+ 2q = 6.
15. 7p− 4q + 14 = 0.
16. y = 5.
17. x = 3.
18. y = 4(x− 3) + 9.
19. 112p+ 257q = 4783.

20. Suppose that the relationship between price and quantity of widgets sold is
linear. When the price is $23, we can sell 4783 widgets. If we raise the price to
$27, we can only sell 4295 widgets. Find the equation of the line.

21. Suppose that the relationship between price and quantity of gizmo kits we can
buy is linear. When the price is $15, we can buy 6000 gizmo kits. If we lower
the price we will pay to $13, we can only buy 4500 kits. Find the equation of
the line.

1.2 Functions in the Business setting

Link to worksheets used in this section¹
Not all functions we encounter in a business setting are linear. There are several

other families of functions we should (re-) familiarize ourselves with. These models
include:

• Quadratic functions

• Exponential functions

• Logistic functions

• Normal distribution functions

• Sinusoidal functions

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-1-2-Examples.xlsx

external/Examples/Section-1-2-Examples.xlsx
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1.2.1 Quadratic Functions
Quadratic functions should be very familiar frompreviousmathematics courses. They
are of the form y = ax2 + bx+ c. These are our standard parabolas.

In business we encounter quadratic equations when we study revenue and profit
functions. Recall from your economics course that:

Revenue = Price ∗Quantity = p ∗ q

In some of the models we will investigate later in the course price will be a linear
function. We will assume Price = mq + b. This implies that

Revenue = (mq + b) ∗ q = mq2 + bq

Ifm > 0, then the revenue function will look like a parabola that opens up. Ifm < 0,
then the revenue function will look like a parabola that opens down.

Figure 1.2.1 A quadratic function
For a quadratic model we are often very interested in the coordinates of the ver-

tex, and any possible zeros. For the general equation y = ax2 + bx + c the sign of
the coefficient of x2, a, will determine if we have a maximum or a minimum. If a is
positive, the parabola opens up and the vertex will be a minimum. If a is negative,
the parabola opens down and the vertex will be a maximum.

Recall that we can find the zeros of a quadratic by using the quadratic equation.

roots or zeroes =
−b±

√
b2 − 4ac

2a
.

From this equation we see that the vertex must be located at x = −b/(2a.). The
discriminant (the term underneath the radical sign determines if there are 0, 1, or 2
roots.

• If b2 − 4ac > 0, then there are 2 roots.

• If b2 − 4ac = 0, then there is 1 root (the vertex will touch the axis)

• If b2 − 4ac < 0, then there are no roots. This means the entire graph must lie
above the x-axis (a > 0) or below the x-axis (a < 0).

Sometimes wemay need more general polynomials in a model, with an equation
of the form f(x) = anx

n + · · · + a1x + a0. In such cases we remember that the
number of turning points of the graph can be no more than n− 1.
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1.2.2 Exponential functions

The exponential model, with an equation of the form f(t) = p ∗ et. Sometimes
the exponential function et is denoted by exp(t). Excel will use this format, so it is
worth looking at the notation in this case. f(t) = p ∗ ert can also be written as
f(t) = p ∗ exp(rt)

Exponential functions are used for proportional growth or decay. In business,
compound interest is given as an exponential function. In particular, if P is the prin-
cipal and r is the interest rate “compounded continuously” (expressed as a decimal),
then the amount A after time t is given by A = Pert. The relationship (in general)
between a future value (FV) and the present value (PV) given an interest rate r per
period, with t being the number of compounding periods is given by:

FutureValue : FV = PV ∗ (1 + r)t

It is also useful in determining a fair value today of a promised future payout. The
sign of the rate will determine if the graph turns up or down.

Aword of warning -Math books (and Excel) like using a base of e because it makes
the mathematics easier when we do calculus, so the equation is written as f(t) =
p ∗ ert or f(t) = p ∗ exp(rt) where r is the instantaneous rate of change. However,
in real world applications we tend to use f(t) = p ∗Rt, whereR is the effective rate
of change. We also use f(t) = p ∗ (1+ r)t. The reader is warned that inR = er and
bothR and r are referred to as the rate. You will have to use the context to tell them
apart.

When modeling real world behavior, we often know some special features of the
problem. For instance, we may know that our present value is $2,000 and that we
would like the future value to be $10,000 after 10 years. The question would be what
function would describe such a model? A method commonly used to solve such a
problem is to plug in the values we are given and see if we can determine what the
remaining quantities should be. We know that FV = PV ∗ (1 + r)t. The extra
information tells us PV= 2000, andwhen t = 10we know thatFV = 2000∗(1+r)10 =
10, 000. This is enough information to solve for r. Dividing both sides by 2000 shows
that (1 + r)10 = 5.

To solve this equation we need rules of exponents. We obtain 1+ r = 51⁄10, and
hence r = 51/10 − 1 = 0.1746. This means that to obtain such a growth we would
need a rate of growth of about 17.46%. The function modeling that growth would
be FV = 2000 ∗ (1.1746)t. In general we can set up equations and solve for the
unknown quantities.

1.2.3 Logistic Functions
The exponential model assumes growth without end. That is impossible in most busi-
ness situations. Instead there is typically a point where the market is saturated. The
alternative model says that the rate of change is proportional both to the current
quantity and to the distance from the theoretical maximum value. This is called lo-
gistic growth. A typical formula for logistic growth given an interest rate r, market
saturation pointM , and constant a depending on the problem is

f(x) =
M

1 + ae−rx
.

In Excel we would write this function as: f(x)=M/(1+a exp(-r x)). Using Excel
it is fairly easy to create a table and graph a logistic function.
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1.2.4 Sinusoidal Functions
The sinusoidal model is for data that repeats on a natural cycle. Typical examples
would include need for heating oil, electricity for air conditioning and sales for sea-
sonal items such as Christmas. The typical equation is

f(x) = M +A ∗ sin(2π ∗ (x− shift)/period),

where the meanM is the average value, the amplitude A is the distance from the
mean to the maximum, the period is the length of time till the cycle repeats, and the
shift is where we start the cycle for x = 0.

With an appropriate shift we can interchange the sine and cosine functions. (The
functions sin(x) and cos(x) arise from trigonometry.) In this course, wewill not focus
on trigonometric functions and their properties. We are only concerned with having
a periodic function for seasonal variations.

1.2.5 Normal Distribution Functions
The normal distribution or bell curve is used because many populations follow a
normal distribution on many scales. The equation

f(x) = ae−(
(x−m)

s )
2

looks a bit intimidating, but we will be able to use the power of a spreadsheet to
easily handle it.

In retail, there are several examples of items that follow a normal distribution. In
a store selling shoes for women for instance, we would expect to see that some sizes
are more prevalent than others. This would be a factor in determining what sizes to
have in stock, and at what quantities. The typical scenario in which we will be using
this curve model is one where we ask what range of sizes do we need to cover for the
population in an area to be large enough to justify a specialty store.
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Thenormal distribution functionhas certain interesting features. The graph shows
a maximum value. The maximum occurs when x = m. And when x = m, we know
that

f(x) = ae(
−(m−m)

s )
2

= ae0 = a ∗ 1 = a,

hence the maximum value is a.
There are a few more models that will show up from time to time and are worth

mentioning.

1.2.6 Inversely Proportional Functions
If we see the phrase that two quantities are inversely proportional, it means that f(x)
is a constant times 1/x. We might expect to use such a model when a fixed amount
of money will be spent to acquire all of a given product. Thus, we may see it used to
describe price as a function of supply.

1.2.7 Logarithmic Functions
The logarithmic model looks at equations of the form f(x) = a∗ ln(x)+b or f(x) =
a∗ ln(Bx). This model shows up in twoways. It can be obtained as the accumulation
of a quantity that is inversely proportional to our variable. It also shows up as the
inverse of the exponential model. (If y is described as an exponential function of x,
then x is a logarithmic function of y.)
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1.2.8 Exercises Functions in the Business Setting

1. Reading check, Functions in the Business Setting. This question checks your
reading comprehension of the material is section 1.2, Functions in the Business
Setting, of Business Calculus with Excel. Based on your reading, select all state-
ments that are correct. There may be more than one correct answer. The state-
ments may appear in what seems to be a random order.

A In business, compound interest is given as an exponential function.

B The normal distribution or bell curve is used because many populations
follow a normal distribution on many scales.

C The exponential model models growth over prolonged periods in most
business situations.

D If we see the phrase that two quantities are inversely proportional, it
means that f(x) is a constant times 1/x.

E Quadratic functions always have two roots.

F Present and future values is given by a linear function.

G When the rate of change is proportional both to the current quantity
and to the distance from the theoretical maximum value we have logistic
growth.

H In business we encounter quadratic equations when we study revenue
and profit functions.

I The sinusoidal model is for data that repeats on a natural cycle.

J None of the above

Exercise Group. For each model, some features of the graph are listed. Describe
how to change each feature by changing the parameters of the model. (e.g., With
the linear model, f(x) = ax + b, the parameters are a and b. The place where the
line intercepts the x-axis is −b/a, so any x-intercept can be produced with a = −1
and b equal to the desired value.)

2. For a linear model, f(x) = ax+ b, how do I get a graph with

(a) A positive y-intercept?

(b) A negative slope?

3. Suppose we are working with a quadratic model, f(x) = ax2 + bx+ c

(a) How do we get a graph, that points down? (i.e. a graph that has a
maximum)?

(b) How will we know if the graph of the function intercepts the x-axis
at two positive values?

4. For a quadratic model, f(x) = ax2 + bx+ c, How do I get a graph where
the vertex has x = 5?

5. For a polynomial model, f(x) = anx
n + · · · + a1x + a0, how do I get a

graph that goes up at both ends?
6. For an exponential model, f(x) = P ∗ exp(rx), how do I get a graph with

f(0) = 100, that goes to zero as x gets large?



12 CHAPTER 1. FUNCTIONS GRAPHS AND EXCEL

7. For an exponential model, f(x) = P ∗ exp(−rx)+ b, how do I get a graph
where f(x) goes to 10 as x gets large, f(0) = 1, and f(10) is at least 9?

8. For a logistic growth model, f(x) = M
1+a exp(−r∗t) , how do I get a graph

where f(x) goes to 10 as x gets large, f(0) = 1, and f(10) is at least 9?

9. For a sinusoidal model, f(x) = M+A sin(2π(x+shift)/period), based on
seasonal change through the year, if x is measured in months, what value
should period have?

10. For a normal model, f(x) = a exp
(
−
(
x−m

s

)2), how do I produce a graph
with a high point at (7, 20), and the value of f(4) between 1 and 2? (You
need to use trial and error on this problem.)

11. For a normal model, f(x) = a exp
(
−
(
x−m

s

)2), how do I produce a graph
with a high point at (7, 20), and the value of f(1) between 1 and 2? (You
need to use trial and error on this problem.)

12. For the powermodel, f(x) = axb, how do I produce a graphwith f(1) = 5
and f(3) = 1?

13. For the inversely proportional model, f(x) = a/x, how do I produce a
graph with f(1) < 0 and f(3) = −5?

14. For the logarithmic model, f(x) = a ln(x) how do I produce a graph with
f(e) = 3?

Exercise Group. For each situation, explain which model you would use for each
situation (linear, quadratic, etc.). Be sure to explicitly mention what you are using as
the free variable (the equivalent of x), what you are using as the dependent variable
(the equivalent of y), and why that model makes sense in the given situation.

15. The cost of producing an amount of a product is the sum of the fixed costs,
like warehouse rent, and the variable costs, like labor and materials, which
we can assume to be the same for each unit produced.

16. When looking at revenue, we can assume that sales will be linear function
of the price of the object.

17. The amount I expect to be able to withdraw from an account at a future
date, assuming that interest is compounded continuously and is fixed.

18. The amount of time it takes an investment to double assuming a fixed in-
terest rate.

19. The amount of electricity needed for air conditioners in a Washington, D.C.
at various times of the year.

20. The amount ofmetal needed tobuild a fuel tank as a functionof the amount
of fuel to be stored.

21. The total length of booms needed to contain an oil spill as a function of the
size of the spill.

22. The monthly sales of a hot new electronic device in a country.
23. The distribution of sales of pairs of pants by leg length.
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1.3 Introduction to Excel Spreadsheets

Link to set up but unworked worksheets used in this section¹
Link to worksheets used in this section²
Excel is used in the business world. (More precisely, the spreadsheet is the stan-

dard tool, and Excel is currently the de facto standard brand. Most of this text can eas-
ily be used with other spreadsheets.) However, we do not assume that the student
has worked with Excel previously. Throughout the course we will introduce those
features of Excel we need to do mathematics and model the business problems we
encounter.

While introducing Excel, we will also introduce rules of “Good Excel practice.” In
a business environment, spreadsheets should be written so that someone else can
easily understand the worksheet, and maintain it for future use. You should assume
those same standards when submitting work in Excel.

This section is meant as an introduction to several standard features of Excel we
will use often. These include:

• Basic Arithmetic such as add, subtract, multiply etc.

• Show formulas: allows us to check if the formulas in the cells are what they
should be.

• Quick fill: this feature takes a pattern and fills it across a column or a row.

• Relative and Absolute Reference: when do we refer to a fixed cell and when
does the reference depend on our place in the spreadsheet?

• SUM(): Adding a large number of cells can be efficiently done with this feature.

1.3.1 Basic Arithmetic, show formulas and quick fill.

Interactive³

Figure 1.3.1 Video presentation of this example
We start with an example that covers basic arithmetic. Assume we are given the

following worksheet:

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-1-3-Examples-Unworked.xlsx

²external/Examples/Section-1-3-Examples.xlsx
³www.youtube.com/watch?v=x3l0gz5APk0

external/Examples/Section-1-3-Examples-Unworked.xlsx
external/Examples/Section-1-3-Examples.xlsx
https://www.youtube.com/watch?v=x3l0gz5APk0
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From data we would like to compute the figures for the quarter (add the three
months), the monthly profit (revenues-cost), and the monthly unit costs (costs/ units
sold).

With the formula ribbon, we go to show and select Show Formulas. Since we
want the worksheet to be readable by others, we add labels for the quantities we
are computing, and in each cell we enter the formula for the quantity. The formula
bar tells us which cell has been selected and the formula for that cell. It is generally
easier to edit a formula by using the formula bar.

In this example, we have used several different ways of writing the formula. In
cells E2, B6, and B7 we simply typed in the equation like we would on a calculator.
Thus the profit for January is Revenues — Costs, or 3600-2700. Since we want Excel
to compute this value, we put an equals sign at the start of the formula.

In cells E3, C6 and C7, instead of typing the values, we use a reference to the
cell where the value is kept. This allows us to change the raw data and have Excel
automatically recompute the quantities that were derived from those numbers.

In cells E4 and E5 we use Excel’s SUM command. In cell E4, we are taking the sum
of the values in the cells from B4 through D4. We will come back to commands in
Excel later in the section.

Figure 1.3.2
If we unselect Show Formulas, we see the values that Excel computes.

We want to finish our assignment by computing the Profit and Per Unit Costs for
March and for the Quarter. However, wewould prefer not to type anymore formulas.
(Typing in four more cells is not so bad, but we can imagine being told to do this for
several years of data.) Wewill use a process called Quick Fill, that tells Excel to repeat
the same formula, with the cell references appropriately modified.

To do the quick fill, we select the cells we want copied.
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We can move the cursor until the cell(s) show the fill handle. This will change the
symbol in the corner of the cell to a thin dark ‘+’.

We then drag the little blue box at the lower left corner of the box of selected
cells. Excel automatically fills in the new values.

We look back at the formulas and see that Excel has produced formulas where
cells are in the same relative position. Profit is the value from the cell 4 rows higher
minus the value of the cell three rows higher.

There is a last detail to fix in our report. The quantities in profit and Per Unit Cost
are in money, so we want them formatted correctly. (They should start with a dollar
sign, have a decimal point, and stop at two decimal places or cents.) We do this by
selecting the cells and then formatting the cells as currency.
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If we use the quick fill on a pair of numbers, Excel produces an arithmetic se-
quence. A pair of cells containing 1 then 4 becomes the start of a sequence 1, 4, 7,
10, … .

1.3.2 Absolute and Relative Cell References

Interactive⁴

Figure 1.3.3 Video presentation of this example
One of the reasons that spreadsheets are so useful for doing mathematics in a

business setting is that businesses often do a relatively simple computation for a
large number of cases. That means we should pay attention to formulas with cell
references and the process of copying a formula from one case to another. In the
example above, all of the values change from one month to the next. It is not hard
to imagine a calculation where some values remain the same for many cases. Thus
we want to look at the idea of absolute and relative cell references. This is a very
important topic and an Excel feature we will be using for the rest of the term.

Consider the following example: Your rich uncle, Fred, decided to give you 10
shares of Google stock (goog) on January first 2009, with the option of receiving in-
stead the same value in either Microsoft (msft) or Apple stock (aapl). You would like
to see the monthly change in value of the portfolios over a three-year period.

We start by going to finance.yahoo.com and collecting the monthly prices of the
stocks, downloading the answers into a spreadsheet. When we look up historical
prices from Yahoo, we are interested in the adjusted closing price. (They adjust the
price to account care of splits and dividends.) That produces a spreadsheet like the
one below.

⁴www.youtube.com/watch?v=32VufLury4g

https://www.youtube.com/watch?v=32VufLury4g
finance.yahoo.com
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Next we want to compute the number of shares for each stock. This is 10 times
the closing price of Google divided by the closing price of the stock we selected.

In the formula for the number of shares of msft, we used $B$3 for the initial price
of goog. This is an absolute cell reference. When we copy the formula from cell C1
to cell D1, the formula changes from =10*$B$3/C3 to =10*$B$3/D3. This formula in
cell D1 asks for 10 times the value in cell B3, divided by the value in the 2 rows below
the cell of the formula.

Absolute references refer to a particular column and/or row. The dollar sign
‘$’ is used to fix the reference.

Relative references refer to the cell the same distance away from the cell
containing the formula.

Partial absolute references, like $B3and B$3, are absolute in either the
row direction or the column direction and relative in the other direction.

We continue our example by computing the change in value of our goog portfolio
in the first month. That will be the share price at the beginning of the next month
minus the share price at the beginning of themonth, times the number of shares. For
January 2009, for goog this becomes =(B4-B3)*B$1.
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Since we have properly used relative and absolute references, we can now copy
this formula to complete the chart, and Excel will modify the formula appropriately.

We note that the rows and columns can be independently made absolute or rela-
tive. Thus if we are looking at a formula in cell A1, and see a reference to B2 it means
the cell one below and to the right of the location of the formula. If we see $B2 it
means the cell in column B that is one row down from the formula. If we see B$2 it
means the cell in row two that is one column to the right of the formula.

When we convert back to see the values, we see that an original investment of
$3,385.30 would have made a profit of $3,073.70 in goog stock, $2,128.02 in msft
stock and $11,826.60 in aapl stock. Once again we use the SUM function and a cell
range to add the values in the column. We also use the split screen icons in the scroll
bars to be able to see the correct rows and columns.

Note: Excel can also make references across multiple pages of a workbook, but
we will not need that capability for this course.

1.3.3 Named Cell References
An alternative to using absolute references in formulas is to name the cells.

By default, Excel names each cell by its row and column. We can use the name
cell in the upper left corner of the Excel sheet to change the name from the
letter/number format into a descriptive name.

The more descriptive name can be useful when constructing and documenting
the process we are using for our computations. Consider the previous example with
the rich uncle. In cells B1, C1, and D1, we had the number of shares of Google, Mi-
crosoft, and Apple we could have had in the portfolio. Better names for those cells
would then be SharesGOOG, SharesMSFT, and SharesAAPL. We can name a cell by
editing the name box at the left side of the formula bar.
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Figure 1.3.4
We can then use the names in formulas. In general, the formulas with nicely

named variables are easier to read.

Figure 1.3.5

1.3.4 Getting Help
One of the ways that doing mathematics with a program like Excel differs from work-
ing with a calculator is that computer programs have help features. It is worthwhile
pointing out two that come with Excel. We illustrate both with the SUM function we
have used a number of times.

When we call Help from the top menu, we are given a pop up window for Excel
Help. It has a number of topics listed by default. It also has a bar for searching topics.

We type the name of the command we are looking for and we are given a page
of help for that command.
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A second kind of help is the formula builder from the formula ribbon. It gives a
more concise help when you do not remember the exact syntax of a command.

A third source of help is simply to do a web search for Excel help. To find how to
do a computation with an exponential functions you can search for “Excel formulas
exponential.”

1.3.5 Other Details
Excel is a rich and complex tool. Wewill be looking at more features as we go through
the course. There are several that are worth pointing out explicitly at this point.

• For ordinary arithmetic, Excel uses the standard symbols of + , − , * , / ,
and ^ for plus, minus, times, divided by, and raising to a power.
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• We can also use the SUM, PRODUCT, QUOTIENT, and POWER commands for ordi-
nary arithmetic.

• The order of operations used by Excel differs from the traditional order of op-
erations when it comes to taking powers of negative numbers. The problem is
illustrated in evaluating−32, which has a negative sign and an exponentiation.
In all math classes you have taken this is interpreted as−(32) or−9, with expo-
nentiation done first. In Excel, this is interpreted as (−3)2 or 9, with negation
done first. When in doubt, use parenthesis to make the order of operations
explicit.

• Excel also has the other mathematical functions you have used before. The
functions for square root, log base 10, log base e, and e to the power of, are
respectively, SQRT, LOG, LN, and EXP.

• The value of e is represented by EXP(1).

• Excel has a number of very useful operations on collections of numbers. We
start with easy ones where the name is self explanatory, like SUM, AVERAGE,
COUNT, MIN, and MAX.

1.3.6 Exercises Introduction to Excel Spreadsheets

1. Reading check, Functions in the Business Setting. This question checks your
reading comprehension of the material is section 1.3, Introduction to Excel
Spreadsheets, of Business Calculus with Excel. Based on your reading, select
all statements that are correct. There may be more than one correct answer.
The statements may appear in what seems to be a random order.

A We can name cells to make formulas easier to read.

B Absolute references refer to a particular column and/or row. The dollar
sign ’$’ is used to fix the reference.

C Relative references refer to the cell the same distance away from the cell
containing the formula.

D Excel can format an answer as currency.

E There is only one correct way to add up three quantities with Excel.

F Absolute and relative cell references can be used interchangeably.

G We can only check the underlying functions one cell at a time.

H In Excel, ex is written EXP(x).

I None of the above
2. Produce a spreadsheet where the first 100 rows are used. The cell in row n and

columnA should have value n. The cell in row n and column B should have value
2*n. You should be able to do this by typing in the value of 4 cells and using
quick fill.

3. Produce a spreadsheet where the first 100 rows are used. Column A should
contain the first 100 odd numbers. Column B should contain multiples of 7
starting with 21.

4. Start with the worksheet given. Complete the worksheet in such a way that if
the values of x, y, and z are changed, the other values are automatically recom-
puted.
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5. Produce a spreadsheetwhere the first 101 rows are used. Row1 should be used
for labels. Column A should contain integers from 1 to 100. Columns B through
F should contain the squares, cubes, square roots, logs base 10 and natural logs
of the entries in columns A.

6. Start with the spreadsheet section below.

If column E is copied and pasted into column G, give both the formula and
value for each non-empty cell in column G.

7. We would like to really understand what happens when we use quick fill.

(A) Let’s consider the entries =A1, =$A1, =A$1, and =$A$1 in row 2. Do quick
fill below to fill in 3 more rows and see what happens. Clearly in the first
row these cells all now point to cell A1 and the value returned is 1. After
the first row we get a mixture of values. Why?

(B) Next, we can set up the values in column D. Do quick fill to fill in the 3
columns to the right? Explain the pattern of values we see.

8. Complete the spreadsheet section below so that columns A through C are com-
plete for numbers 1 to 100. (The value for a should be a random number gen-
erated by the formula in cell E1.)

9. Using the help functions to check syntax, write a formula for cell B2, that looks
at the value for cell A2, and if it is negative, returns the square of it, and if
positive returns its square root.

10. Using your favorite source on the web create a spreadsheet that has the closing
price of your favorite stock on the first day of the month for the past 5 years.
Compute the change in adjusted stock price for each month and identify which
month had the greatest increase. (http://finance.yahoo.com/⁵) is one source

http://finance.yahoo.com/
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for such data.)
11. Using your favorite source on the web create a spreadsheet that has the closing

price of your favorite stock on the first day of the month for the past 5 years.
Compute the percentage change in adjusted stock price for each month and
identify which month had the greatest increase.

12. Create a spreadsheet showing the Consumer Price Index by month from 1930-
2010. (Good sources are http://inflationdata.com/⁶ and http://www.bls.gov/
cpi/⁷ at the Bureau of Labor Statistics.) Compute the percentage change be-
tween January and July for each year. Which year had the greatest percentage
change in the first half of the year?

1.4 Graphing functions with Excel

Link to set up but unworked worksheets used in this section¹
Link to worksheets used in this section²
One area where Excel is different from a graphing calculator is in producing the

graph of a function that has been defined by a formula. It is not difficult, but it is not
as straight forward as with a calculator. However, it is a skill worth developing . When
we are given a formula as part of a problem, we will want to easily see a graph of the
function.

We will walk through the process for producing graphs for three examples of in-
creasing complexity. For the first example, we have a specific function and specific
range in mind, say y = x2 − 6x over −10 ≤ x ≤ 10. For the second example, we
would like to use parameters in the formula, for example, y = ax2 + bx + c, with
specified values of a, b, and c, and have the ability to easily change the values of the
parameters and see the graph. For the third example, we would also like to have the
ability to change the domain, graphing over xLow ≤ x ≤ xHigh, where xLow and
xHigh can easily be changed.

1.4.1 A basic graph

Interactive³

Figure 1.4.1 Video presentation of this example
Graphing y = x2 − 6x over−10 ≤ x ≤ 10

⁵http://finance.yahoo.com/
⁶http://inflationdata.com/
⁷http://www.bls.gov/cpi/
¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-4-Examples-Unworked.xlsx
²mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-4-Examples.xlsx
³www.youtube.com/watch?v=0zuJMZN1UoA

http://inflationdata.com/
http://www.bls.gov/cpi/
http://www.bls.gov/cpi/
external/Examples/Section-1-4-Examples-Unworked.xlsx
external/Examples/Section-1-4-Examples.xlsx
https://www.youtube.com/watch?v=0zuJMZN1UoA
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We start by producing a column for x and one for f(x). In the column for x
we start with values −10 and −9, so that we can complete the column with a quick
fill. Similarly, we start the f(x) columns in the first cell with the “x” replaced by the
appropriate cell reference. In this case the formula for f(x) is in cell B15 and x is in
cell A15.

We then use quick fill and quick copy to fill out the table.

Figure 1.4.2
With the values of the cells filled in we highlight the cells we want to graph (A14

through B35) and add a scatter plot for the highlighted values.
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Figure 1.4.3
(The location of the scatterplot will be a bit different with Macs. The scatterplot

is in the Charts ribbon, under other, on Macs.) This gives the desired graph.
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1.4.2 A graph with parameters

Interactive⁴

Figure 1.4.4 Video presentation of this example
Graphing y = x2 − 6x as an example of y = ax2 + bx + c over the domain

−10 ≤ x ≤ 10.
For the second example, we want the same graph, but we want the ability to

easily convert the graph of our first quadratic into a different quadratic function. The
solution is to consider a, b, and c to be parameters that we can change.

Toward the top of the worksheet, we put the labels a, b, and c, and give values
for those parameters. In this case the values of a, b, and c are in cells B9, B10, and
B11 respectively.

Now we set up the problem in the same way we did above, except that we are
using absolute references for a, b, and c, and relative references for x.

Figure 1.4.5
Now, we once again do a quick fill to complete the table, and then add a scatter-

plot.

⁴www.youtube.com/watch?v=PFjsfVqDorE

https://www.youtube.com/watch?v=PFjsfVqDorE
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The difference with this second example is that if I now want to look at the graph
of y = −x2 + 3x+ 10, I simply change the values of the parameters a, b, and c.
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1.4.3 Controlling the viewing window

Interactive⁵

Figure 1.4.6 Video presentation of this example
Graphing y = x2 − 6x as an example of y = ax2 + bx + c over the domain

−10 ≤ x ≤ 10, but with the ability to easily change the domain of the graph.
Often, when we graph, we will want to change the domain of the graph. Most

easily, I may want to zoom in on a particular region to get a better view of some
interesting feature. I may want to look closely at several different regions.

To do this we will again plot 21 points, but we want to have control of the starting
point and the change in x between the first and second points. First we add labels
and values for x-start and x-step. Then we need a bit of care in defining the values
of x. The first value of x (cell A18) is the value of x-start. Every other value of x is
defined as the previous value of x plus the value of x-step.

In this case, I want a better look at the vertex of the parabola. I decide I want to
see the graph for 0 ≤ x ≤ 5. My value for x-start is 0. My value for x-step is one
twentieth of the distance from 0 to 5, or (5 − 0)/20 = 0.25. I plug those values in
and see the graph.

⁵www.youtube.com/watch?v=KMc0wWSgdIo

https://www.youtube.com/watch?v=KMc0wWSgdIo
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1.4.4 Graphing more than one function

Interactive⁶

Figure 1.4.7 Video presentation of this example
Wewould also like to put two or more graphs together. For our examples, we will

want to use the functions f(x) = x − 3, g(x) = (x2 − x)/10, and h(x) = x3 − x.
We start by using the procedure given above to make a chart of values for the three
functions.

⁶www.youtube.com/watch?v=gMIn78ufX0g

https://www.youtube.com/watch?v=gMIn78ufX0g
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We then simply select the cells for x and the functions we want graphed together
and produce a scatterplot as before. (To graph g(x) and h(x) together, we want to
select the columns for x, g(x), and h(x).)

Figure 1.4.8
One problem with the graph of g(x) and h(x) together is that the functions have

different orders of magnitude, so we do not see that y = g(x) is a parabola. One
remedy is to use a secondary axis for the graph of h(x). (Simply double click on one
of the points for h(x), and select secondary axis from the axes tab.)
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Figure 1.4.9

1.4.5 Formatting a chart
Excel has a lot of ways to add formatting to a graph or chart, many more than we
want to be concerned with at this point. We simply point out a few and leave it to
the reader to explore how this should be used for a good visual presentation. If you
click once on the chart to select it, the Chart tab in the home ribbon, adds sub-tabs
for layout and format. With Chart Title, you can add a title to the chart, then edit it.
The Axes icon allows you to add titles for the axes. If you select a data point form
g(x), you can then use the Data Labels icon to add values next to the points. The
chart with these annotations is given below. The rule of thumb to follow is to add
enough annotations for a reader to be able to easily understand what is happening
in the chart.

Figure 1.4.10
It is also worthwhile to note that you can manually set the y-range of a graph by

double clicking on the axis and setting the values. This is particularly useful of the
function has a vertical asymptote.
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1.4.6 Online graphing tools: Wolfram Alpha
Throughout this book, we are limiting ourselves to mathematical tools that the stu-
dent can reasonably expect to find in a generic work environment. That is one of the
reasons for focusing on using spreadsheets and Excel. A second reason is that we will
spend a significant amount of time on functions defined by data points, where we
then try to construct a formula. However when we are starting with a formula, there
are easier ways to produce a graph. The simplest is to use the free website, Wolfram
Alpha⁷. For example to obtain a graph of the functions f(x) = x2 − 3x, as x ranges
from−5 to 5, we simply type “plot x^2 - 3 x for x from -5 to 5” and obtain:

We will return to Wolfram Alpha from time to time, when we have nice formulas
to manipulate.

1.4.7 Exercises 1.4 Graphing functions with Excel
1. Reading check, Functions in the Business Setting. This question checks your

reading comprehension of the material is section 1.4, Graphing Functions in Ex-
cel, of Business Calculuswith Excel. Based on your reading, select all statements
that are correct. There may be more than one correct answer. The statements
may appear in what seems to be a random order.

A We can manually change the title of of a chart.

B If we want to look at the graph of several quadratic polynomials, we have
to start over for each graph.

C Secondary axes are useful when looking at functions that are of different
scales.

D We use a marked scatterplot to graph with Excel.

E We can only graph one function at a time with Excel.

F Absolute and relative cell references can be used interchangeably.

G Sometimes, there are other tools that are easier to use to produce a
graph.

⁷https://www.wolframalpha.com/

https://www.wolframalpha.com/
https://www.wolframalpha.com/
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H We can use absolute references to set up a graph where we can easily
change the viewing window.

I None of the above
2. Produce a worksheet that with a graph of the function f(x) = x2 − 5x, with x

going from -10 to 10 by 1.

3. Produce a worksheet that with a graph of the function g(x) = (x2−5x)/(x2+
7x+10), with x going from -10 to 10 by 1. Explain why the graph is inaccurate.
(Pay attention to places where there should be asymptotes.)

2* – Extra credit) — Fix the graph from problem 2 by adjusting the set of
x-values used.

4. Produce a worksheet with a graph of h(x) = x3 + ax2 + bx+ c for x from -10
to 10, where the values of a, b, and c can be changed and the graph will update
automatically. For initial values, use a = −2, b = 1, and c = −11.

5. Produce a worksheet with a graph of k(x) = (x2 + ax+ b)/(x+ c) for x from
-10 to 10, where the values of a, b, and c can be changed and the graph will
update automatically. For initial values, use a = −5, b = 2, and c = −11.

6. Produce a worksheet with a graph of h(x) = x3−2x2+x−11 for x going from
a to b, where the values of a and b can be changed and the graph will update
automatically. For initial values, use a = −5 and b = 5.

7. Produce a worksheet with a graph of k(x) = (x2 − 5x + 2)/(x − 11) for x
going from a to b, where the values of a and b can be changed and the graph
will update automatically. For initial values, use a = −5 and b = 5.

8. (Writing assignment) Write a report of 2 pages or less on the graph of the func-
tion f(x) = (x2 + 7x + 10)/(x2 − 3x + 2). The report should be in Word
(or other word processor) format with at least 2 graphs that illustrate different
features by looking at different viewing windows.

9. Produce a worksheet with graphs of f(x) = 2x + 5 and g(x) = x3 − 9x, for
x going from -10 to 10. Use secondary axes so that both graphs use the full
plotting window.

10. Produce a worksheet with graphs of h(x) = (x3− 9x)/(x2+3x+35/16) and
k(x) = 2x2 + 5, for x going from -10 to 10. Use secondary axes so that both
graphs use the full plotting window. Adjust the range of y values used to make
the graph reasonable.

11. Produce a worksheet with graphs of f(x) = 2x + 3 and g(x) = −2x + 5, for
x going from -10 to 10. Add a title to the chart. Do something interesting with
the fonts or other options and explain what you did.

12. Use Wolfram Alpha to produce a graph of f(x) = x3 − 16x, for x going from
-5 to 5. Use your favorite screen capture software and paste the result into an
Excel worksheet.

1.5 Using Excel to find best-fit curves

Overview. Link to set up but unworked worksheets used in this section¹
Link to worksheets used in this section²
¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-5-Examples-Unworked.xlsx
²mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-5-Examples.xlsx

external/Examples/Section-1-5-Examples-Unworked.xlsx
external/Examples/Section-1-5-Examples.xlsx
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In Section 1.1–1.2 we looked at useful mathematical models and formulas that
we anticipate seeing repeatedly in the business environment. If we are given equa-
tions that model the processes we are interested in, then this approach works. What
happens though if we are not given equations? Many important functions in busi-
ness are quite often defined by data. Examples include past sales, material costs,
and consumer demand.

If we are given a data set, we can find a best fitting curve. A straightforward
approach is to assume that the data represents the output of a nice formula. In real
life applications, we will often see that so-called ”noise” can complicate the situation.
(Noise is a technical term to describe external unpredictable factors that may cause
your data to deviate form the model. For example, if I am looking at sales at a fast
food restaurant, ourmodelwill have noise from traffic jams andbadweather outside.)
For the purpose of this course we will assume that the data will be reasonably nice,
although some noise may be evident. The problem of producing a best fitting curve
to data can be broken into two pieces:

1. We need to decide what kind of curve, or what model we want to use.

2. We want to be able to set the parameters (the constants) in the model to give
the best fit.

Coming up with a theoretical reason why we want to use a particular model in a
given case forms the content of a large number of your business courses, both courses
you have already taken and courses you are yet to take. The models that come up
repeatedly in the theoretical courses are given names and used without redoing the
theoretical foundation for the model. (This is why we introduced the normal distrib-
ution and the logistic growth function, neither of which looks like a simple equation.)
In this course, we will be happy with simple heuristic arguments on which model to
choose.

The second half of the problem is deciding how to choose the parameters to give
the curve that does the best job of fitting the data. A moment of reflection shows
deciding on the correct definitionof “best fitting” is a nontrivial task beyond the scope
of this course. For the time being we will accept the standard definition:

The best fitting curve minimizes the sum of the squares of the differences
between the measured and predicted values.

We will come back to that definition later in the course, when we know more
calculus, but for now we simply note that it is the standard definition, and is used
by Excel. Instead, we will focus on using Excel to produce a best fitting curve of the
appropriate model. Excel has a preprogrammed feature that will find the best fitting
equation for a data set for a select number of functions:

• Linear model

• Exponential model

• Polynomial model

• Logarithmic model

• Power model

We will show how to find an equation for a data set, assuming we know what
model would be the best one to represent the data.
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1.5.1 Using Excel to find a best-fit line

Interactive³

Figure 1.5.1 Video presentation of this example

1.5.1.1 Find the line

For a first example, we are running a widget factory and have the following data on
employee performance:

(A parenthetical note: In economics, widget is a placeholder name for a generic
manufactured device. It is only in recent times that it has also become a small
computer GUI unit.)

We would like a formula for widgets produced as a function of hours worked.
Since we can see two entries each, for 36, 43, and 44 hours worked, there cannot
be a function that hits all our data exactly. While we expect a linear function, we are
not surprised if there is randomnoise, as aworkermay take a break, or be particularly
focused on a given day. We start by creating a scatterplot for my data.

We right click (control-click on a Mac) on one of the data points and we get a
contextual menu. We select Add Trendline.

³www.youtube.com/watch?v=ZI9hS12tHoc

https://www.youtube.com/watch?v=ZI9hS12tHoc
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Figure 1.5.2

1.5.1.2 Produce the equation of the line

When adding a trend line, we need to select from a number of options. The first
option concerns the mathematical model we want to choose. Given that we suspect
the number of widget produced will be roughly proportional to the hours worked,
we want to use a linear model, so we make that choice. Under options, we want to
display the equation on the chart.

Figure 1.5.3
We have added a linear trend line to the graph and can also see the equation for
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the line. We could use that equation to plan how many hours we want our workers
on the job based on the number of widgets we expect to sell.

1.5.1.3 Bring the equation of the line back to the chart

Having found a best fitting line, I want to copy the equation back into my spread-
sheet and to be able to compare the values in my data with the projections from my
equation. You should notice that the equation Excel produces in the chart is written
in standard mathematical notation, while the corresponding equation in cell B3 is in
Excel notation. (In Excel notation we need a symbol for multiplication rather than
simply putting a number and variable together. In Excel notation, we also use a cell
reference, B1, rather than a variable, x.)

1.5.2 Checking and improving our equations

Interactive⁴

Figure 1.5.4 Video presentation of this example
When finding the best fitting curve to data we have gathered, we need to pay

attention to the model we have chosen and to the range to which we want to apply
it. In our example, the linear fit looks pretty good. However, we should be careful
about using it on toowide a domain. According to ourmodel, a worker whoworks no

⁴www.youtube.com/watch?v=wAy0kfdToTA

https://www.youtube.com/watch?v=wAy0kfdToTA
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hours produces 12.52 widgets a week, which is obviously silly. In the other direction,
it predicts that a worker who worked 168 (= 7 × 24) hours a week would produce
almost 970 widgets, instead of predicting a collapse from exhaustion.

The other issue is the choice of a model. We chose a linear model. An argu-
ment could easily be made for a proportional model. (A worker who works no hours
produces no widgets.) We can switch to the proportional model by setting the y-
intercept to 0 in options for the trend line. Then the equation is

(Widgets Produced) = 6.00026 ∗ (Hours Worked)

instead of our original equation of

(Widgets Produced) = 5.6975 ∗ (Hours Worked) + 12.54.

We should also be careful about trying to get a better fit by using an inappropriate
model. In our case, we can get a better fit by allowing the curve to be a 6th degree
polynomial. However the resulting equation does not make sense. It predicts that
a worker will produce about quarter million widgets with a 1-hour work week, and
−1500 widgets with a 55-hour work week.
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1.5.3 Fitting the Consumer Price Index (CPI) to a best fitting curve; an
extended example

Interactive⁵

Figure 1.5.5 Video presentation of this example
For our second example, wewill look at the consumer price index and try and fit it

to a model. This example will illustrate several issues we need to keep in mind when
building models. We obtained data for the consumer price index from

http://inflationdata.com/inflation/Consumer_Price_Index/HistoricalCPI.aspx.
The data from 1960 to 2011 is in the worksheet Section-1-5-Examples.xlsx⁶.

Figure 1.5.6
Since we expect prices to rise as a percentage of the current prices, we expect the

cpi to be modeled by an exponential curve. We start by selecting the data, producing
a scatterplot, and adding a best fitting curve using an exponential model. We will
always select the option to show the equation on the chart.

⁵www.youtube.com/watch?v=1hxc1bOOS68
⁶mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-5-Examples.xlsx

https://www.youtube.com/watch?v=1hxc1bOOS68
http://inflationdata.com/inflation/Consumer_Price_Index/HistoricalCPI.aspx
external/Examples/Section-1-5-Examples.xlsx
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Figure 1.5.7
This first attempt gives an exponential formula, but it is unsatisfactory for a num-

ber of reasons.

• That constant only shows one significant digit, which is not enough to make
meaningful predictions.

• The font size is too small to easily read off the resulting equations.

• The constant coefficient is ridiculously small because it gives the projected
value of the index in the year o.

• The graph does not look like a very good fit. The plot of the numbers actually
looks as though it represents three different graphs.

We will work through the problems one at a time.

1.5.3.1 Number of significant digits for equation constants

The first problem is that the equation Excel has given us does not have enough sig-
nificant digits to make useful predictions. We want to right click on the equation,
select “Format Trendline Label”. We are given a dialog box that lets us make format-
ting options. Since the lead coefficient is so small, we want the numbers formatted
in scientific notation. We choose 4 digits beyond the decimal point in that notation.
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Figure 1.5.8
This gives us a better equation. It should be noted that our pictures in this book

use the font option in the formatting to use a larger sized font.

1.5.3.2 Setting the base point of a variable

The next issue to deal with is adjusting the year. Looking at the raw data, the cpi
was 100 sometime in 1983. Thus we simply add an extra column to our spreadsheet
where the adjusted year is the current year minus 1983. In our graph, we also adjust
the labels so a reader can still understand our chart.



42 CHAPTER 1. FUNCTIONS GRAPHS AND EXCEL

Interactive⁷

Figure 1.5.9 Continued video presentation of this example

1.5.3.3 Selecting data for one model

Nowwewant to look at the more serious question, the one that says the model does
not fit very well. Looking at our data, the inflation rate seems to fall into roughly 3
blocks, the years before 1973, the years from 1973-1983, and the years after 1983.
We would want to go back to our economics classes and find an argument that says
this division of years is reasonable. Using the samemenu that lets us add a trend line,
we can edit the source data. We want to restrict to the years after 1983. In our case,
that means restricting to rows 1 to 30.

⁷www.youtube.com/watch?v=5W3OvF8VNEs

https://www.youtube.com/watch?v=5W3OvF8VNEs
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This breaks the data into two pieces. The first piece is the period from 1983 till
2011. As we see, the exponential model fits quite well in that case.

The second piece is the period from 1973 till 1982. Once again, the exponential
model fits quite well over that period. Notice that the exponent is quite different in
the two periods.
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The obvious question that arises is to figure out what happened in 1983 that
caused the economicmodel to shift. That question is beyond the scope of this course.

1.5.4 Exercises: Using Excel to find best fit curves

1. Reading check, Using Excel to Find Best Fit Curves. This question checks your
reading comprehension of the material is section 1.5, Using Excel to Find Best
Fit Curves, of Business Calculus with Excel. Based on your reading, select all
statements that are correct. There may be more than one correct answer. The
statements may appear in what seems to be a random order.

A We can change the number of digits shown in the trendline equation.

B When interpreting a trendline we need to be careful about the domain
where the function makes sense.

C With an exponential model, it does not matter what we choose as the
base year.

D It does not matter which model we use with trendline.

E The trendline equation can simply be copied into a cell for computation.

F The best fitting curveminimizes the sum of the squares of the differences
between the measured and predicted values.

G In Excel we ’Add a Trendline’ to a scatterplot to find a best fitting curve.

H None of the above
2. We have the following data on widget production:

Month Jan Feb Mar Apr May
Production 16,597 30,687 48,441 55,751 79,606

(a) Find the best fitting linear function for the data.

(b) Give the production value that function predicts for May.

(c) Give the production value that function predicts for July.
3. We have the following data on gizmo sales:
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Month Jan Mar Apr July Aug
Units sold 1.505 9,042 13,018 21,873 22,636

(a) Find the best fitting linear function for the data.

(b) Extend the chart to give the projected sales for each month from January
through September. (You need to add a row for predicted sales, and also
add a number of columns for missing months.)

4. We have the following data on gadget revenue:

Units sold 3,000 5,000 7,000 9,000 11,000
Revenue 16,161 24,783 34,484 38,014 33,030

(a) Find the best fitting linear function for the data.

(b) Find the best fitting quadratic function for the data.

(c) The data fits a quadratic function better than a linear function. With a
quadratic model we do not maximize revenue by selling as many units as
possible. Explain why this is reasonable in the real world.

(d) Project the revenue for selling 15,000 unitswith both linear and quadratic
models.

5. In building water tanks, design considerations indicate the weight of the dry
tank should be roughly a power function of the capacity. I am interested in
building a larger tank than I have before. I have the following data between
capacity and weight:

Gallons 1,000 5,000 7,000 9,000 17,000
Weight 103 878 1,339 1,927 4,496

(a) Find the best fitting power function for the data.

(b) Use your power function to estimate the weight of a tank that holds
40,000 gallons.

(c) Find the best fitting linear function for the data.

(d) Use your linear function to estimate theweight of a tank that holds 40,000
gallons.

(e) Visually, both curves seem to fit the data quite well, yet they make no-
ticeable different predictions for the weight of a larger tank. Which pre-
diction would you use? Justify your answer.

6. I am looking at sales figures for a new product, the gizmo. The sales figures
seem to be growing at an exponential rate.

Month Jan Apr July Oct Jan
Units sold 1082 1680 2662 3783 6430

(a) Find the best fitting exponential function for the data.

(b) Using your function, predict sales for the July after the data was collected.

Exercise Group. Excel has a limited set of models that can be used for trend lines to
automatically fit curves to data. In later sectionswewill look at how towe can use cal-
culus to find best fitting curves for other models. Until we develop those techniques,



46 CHAPTER 1. FUNCTIONS GRAPHS AND EXCEL

we can make a guess at parameters that will make curves fit.
7. The unit sales of widgets can be expected to follow a logistic model, with

rapid growth of sales, but with eventual saturation of the market so that
there is a cap on the market. In such a case the sales should be modeled
by a logistic equation, of the form

Sales(time) = MarketCap/(1 + adjustment ∗ exp(−rate ∗ time)).

We have the following data on sales:

time(years) 0 2 4 6 8
sales 1000 5610 14,845 19,095 19,870

Find values of the parameters MarketCap, adjustment, and rate to reason-
ably fit the data.

8. The unit sales of an article of clothes for adults can be expected to follow
the model of a normal distribution. In such a case the sales should be mod-
eled by a normal equation, of the form

Sales(size) = MaxPerSize ∗ exp

(
−

((
Size−Mean

StandardDeviation

)2
))

.

(Note we need an extra set of parenthesis to keep the order of operations
correct.) We have the following data on sales:

size 7 8 9 10 11 12
Weight 360 3,390 12,820 20,000 12,826 3,375

Find values of the parameters MaxPerSize, Mean, and StandardDeviation
to reasonably fit the data.

9. The populations of the states can be found online for both the 2000 and
2010 censuses.

(A good site is http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population⁸.)

(a) Explainwhyonewould guess the 2010populationof a state is roughly
a linear function of the 2000 population of the state.

(b) Download the 2000 and 2010 populations of the 50 states. Produce
a scatterplot that has the 2010 population as a function of the 2000
population. Find the equation of a best fitting curve for the data.

(c) Explain what the y-intercept means in terms of people moving to or
away from states with large populations.

10. The tax revenues of the states can be found online. (A good site is the
census bureau at http://www.census.gov/govs/state/⁹.)

(a) Explainwhyonewould guess the 2010 tax revenueof a state is roughly
a linear function of the 2010 population of the state.

(b) For 10 states, produce a scatterplot that has the 2010 tax revenue as
a function of the 2010 population. Find the equation of a best fitting
curve for the data.

(c) Explain what the y-intercept means in terms of the relationship of

⁸http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_
population

http://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_population
http://www.census.gov/govs/state/


1.6. FINDING NUMERICAL SOLUTIONS WITH GOAL SEEK 47

the size of the state and the tax burden per person.

Exercise Group. Projects:
11. Find the data for the consumer price index and the Dow Jones Industrial

average at the start of the year for the past 50 years. Over that time, what
is the best linear relationship between the two indices? Tomake your equa-
tion easier to understand, scale the indices so they both start at 100 on the
same day.

12. Pick your two favorite stocks and chart their prices on the opening days for
a period of 30 years. How well are their prices modeled as a linear model
of each other? See if you can find two stocks that seem to be inversely
proportional to each other.

1.6 Finding Numerical Solutions with Goal Seek

Link to unworked worksheets used in this section¹
Link to worksheets used in this section²
In previous sections, we looked at deciding on a model to use for numerical data,

and finding the best fitting curve of thatmodel for our data. Oncewe have completed
those phases of the process, we have reduced our data to an equation. At that point
wewant to use the equation to answer some question. Sometimes ,that questionwill
reduce to solving an equation, as when we have an equation for profit as a function
of sales and we want to know when the business will break even. At other times, we
want to know what input gives a desired output. (e.g., Howmuch do I need to sell to
make $100,000 in commission?)

We canobviously use all the algebraic techniqueswedeveloped in previous courses
to solve our problem symbolically. However, Excel gives us two tools to use to solve
problems numerically, Goal Seek and Solver. In this section wewill explore Goal Seek,
the simpler of these tools.

• We will use Goal Seek if we know what the desired output of an equa-
tion is, and would like to know when that output is achieved.

• We need to have an equation to work with and we can only solve for
one kind of input (variable).

• Goal Seek is located under the What-If analysis menu.

⁹http://www.census.gov/govs/state/
¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-6-Examples-unworked.xlsx
²mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-1-6-Examples.xlsx

external/Examples/Section-1-6-Examples-unworked.xlsx
external/Examples/Section-1-6-Examples.xlsx
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1.6.1 A linear example

Interactive³

Figure 1.6.1 Video presentation of this example
As with all new techniques in a math class, we start with a very simple example

that you can easily solve by methods you learned in previous courses. Suppose we
have the function f(x) = 3x+5, and I want to find the value of xwhere f(x) = 40.
I start by setting up a worksheet with x and f(x) as columns. I also need to start with
a guessed value, which can be any number. I will start by guessing a value of 5. (I will
enter that value twice so we can see before and after.)

Figure 1.6.2
I then go to the data tab and under the What-If analysis menu choose Goal Seek.

In the Goal Seek dialog, I want to change B3, to f(x), to 40 by changing A3, or x. I
then select OK.

Figure 1.6.3
Excel finds the value and asks if it is OK to replace the initial guess with that value.

In this case, Excel found the value of 11.66666667 or 35/3, which we could also have
found by simple algebra.

³www.youtube.com/watch?v=KPmpUjuI9gA

https://www.youtube.com/watch?v=KPmpUjuI9gA
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Figure 1.6.4

1.6.2 A quadratic example and concern with precision

We move on to a quadratic example. We let f(x) = x2 and want to find f(x) = 2.
The set up is similar, with an appropriate change in the equation. However when I
use Goal Seek, I don’t get quite the correct answer.

Instead of finding a value with x2 = 2, I found a value with x2 = 1.99999495.

• We note that Excel is not solving the problem algebraically, but is finding a
numerical approximation within a preset tolerance.

• It is actually finding an x such that f(x) is within 0.001 of 2.

For most of our work, that is close enough. Sometimes, however, we may want
more precision. (Our units may be millions of dollars.) In that case, we can improve
the precision with a work around. We add another cell with a formula whose value
is a large number, say 106, times the error. We then use Goal Seek to make that
value close to zero. We effectively reduce our error tolerance by a factor of our large
number. Applying this to our example gives:
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This has computed the value of the square root of 2 to 10 digits.

1.6.3 More realistic examples: finding the intersection of two curves
Equivalently, finding where two functions are equal to one another.

Interactive⁴

Figure 1.6.5 Video presentation of this example
In economics, there are the concepts of supply and demand prices, the prices

that will produce a specified supply or demand. (We will look at this problem in
more depth in the next chapter.) Suppose we are told the formula for the supply
and demand prices of a product are:

SupplyPrice(q) = ln(50 + 1000q) + q

DemandPrice(q) = 1000 ∗ exp(−0.02 ∗ q).

We want to find the quantity where supply and demand prices are equal. We first do
a fast graph to get an understanding of what is going on.

⁴www.youtube.com/watch?v=bA5ECNm_nvA

https://www.youtube.com/watch?v=bA5ECNm_nvA
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We can see that the curves cross when q is somewhere between 100 and 110. To
make this a Goal Seek problem, we add an extra column for the difference between
supply and demand, and look for where that is zero.

We see that equilibrium occurs when q is 106.725. We could have found this
algebraically by solving the equation

0 = 1000 ∗ exp(−0.02 ∗ q)− (ln(50 + 1000 ∗ q) + q),

but that is not an easy problem.
Our last example for Goal Seek looks at financial computations.
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1.6.4 Using Goal Seek for financial computations

Interactive⁵

Figure 1.6.6 Video presentation of this example
Assume you have decided to open a retirement account when you get out of col-

lege. You decide that you will start by contributing $2,000 at the beginning of each
year, with that amount increasing by $100 each year, assuming a 5% annual interest
rate. The relevant formulas are:

Ending Balance = Beginning Balance + deposits + Interest Earned
Interest Earned = (Beginning Balance + Deposits) * Interest Rate

Beginning Balance = previous year’s ending balance.

It becomes easy to set up a spreadsheet to compute the balance at the end of 40
years.

(We will look at this example in greater detail in a later chapter. For now, note
that this example is in the Excel notebook for this section.) We can see that we have
a bit more than $420,000 after 40 years.

With Goal Seek it is easy to ask the question of how we need to change the prob-
lem to have a balance of $500,000 after 40 years, either by changing the initial de-
posit, or the rate at which deposits are increasing, or the expected yield. We see that
we need a yield of 5.74% to have $500,000 ready for retirement.

⁵www.youtube.com/watch?v=pJdAEO1qEao

https://www.youtube.com/watch?v=pJdAEO1qEao
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It is worthwhile to note that in this case our final balance is the result of a 120-step
computation with our input variable. Goal Seek finds a solution without us having to
reduce that 120-step computation to a single long formula.

1.6.5 Looking under the hood and understanding Goal Seek’s limita-
tions

As with any tool we use, it is wise to have some understanding of the method used
by Goal Seek. That will help us understand when it is giving us an answer different
from the one we were expecting, or even gives us an answer that is wrong.

Interactive⁶

Figure 1.6.7 Video presentation of this example
Goal Seek uses Newton’s Method, a technique based on Calculus, to find solu-

tions. The heart of the method is based on the fact that, at least for most functions
nice enough to show up in a course like this, when you zoom in far enough on a graph
youwill get something that looks like a straight line. The linewe find that way is called
the tangent line. (Finding the slope of the tangent line, or the instantaneous rate of
change, is one of the main goals of calculus, and is given the name of finding the
derivative.) If we start with a guessed solution, we can produce a tangent line, find
the point where the tangent line reaches the desired value, and take the point’s x-
coordinate as our next guess. Repeating this process usually converges to a solution.

⁶www.youtube.com/watch?v=vIfIFoM1GA0

https://www.youtube.com/watch?v=vIfIFoM1GA0
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If we use the spreadsheet to illustrate Newton’s method for our example, finding
the solution for x2 = 2 starting with a guess of x = 1, we see that it converges in 5
iterations. (At this point, we are simply illustrating how Goal Seek works. You are not
yet expected to be able to replicate the process. You will learn how to find the slope
of the tangent in later chapters.)

As mentioned earlier, the reason for looking under the hood of Goal Seek is to
understand when it gives us an unexpected answer. A simplified description of the
method used is that it heads down to where it expects to find a solution and repeats
the process until it is within 0.001 of the desired answer. There are several easy ways
for this method to cause problems.

Interactive⁷

Figure 1.6.8 Further video for this example

⁷www.youtube.com/watch?v=zIIm0H1t8Vs

https://www.youtube.com/watch?v=zIIm0H1t8Vs
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The first difficulty is that Goal Seek may not give you the answer you are looking
for if there are multiple answers. The function f(x) = x3 − x has three roots, x =
−1, 0, 1. If we give Goal Seek a starting point of x = .55, it will give the solution of
x = 0.

As a general rule, Goal Seekwill get to the correct answer if there are no big curves
between the guess and the answer. Another difficulty arises if you ask Goal Seek a
question for which there is no answer. The easy case is when there is no answer and
we don’t even get close. We could ask it to find an x with x2 +1 = 0. Since we know
that all squares are non-negative, this does not have an answer. Goal Seek will tell us
that, but it will make some pretty wild guesses.

In this case Goal Seek will run for a fixed number of iterations and tell us it “may
not have found a solution.” In that case it will tell us where it ended and give us the
choice of accepting that point, or cancelling and going back to where we started. If
there is no solution and one of our intermediate points was close to a point with a
flat tangent line, we may wind up anywhere.

The more challenging case arises when there is no answer, but we get close. We
can ask Goal Seek to find an x with 1/x4 = 0. Clearly this problem has no answer.
However, if we start with a guess of x = 1, we get an answer of x = 6.14798. That is
because 1/6.147984 is within our tolerance of 0. In both of these cases, we see that
when we use Goal Seek we should also look at the graph of the function in question
to make sure we are asking a reasonable question.
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A variant of these problems occasionally shows up. If we start with a carefully
rigged problemwe can set the algorithm of Goal Seek into a loop. If we start with the
function f(x) = x3 − 50 ∗ x with an initial guess of x = 1, and ask Goal Seek to find
when f(x) = 500, Goal Seek will not find an answer. In this case we could look at a
graph and make an initial guess of 6, and then get a correct answer. Once again, with
a numerical method, it pays to try some cases and make sure that our guess is close
to a reasonable answer. If f(x) is a continuous function, this means finding a value
of x where f(x) is too low and another value where f(x) is too high.

While Excel is a powerful tool, we should always ask if there is an easier way to
do a problem. Most of the examples we looked at in this section boil down to finding
a solution to f(x) = 0where f(x) is a simple equation. We can solve such problems
more quickly with Wolfram Alpha.

As noted above, Goal Seek is most useful for problems with lots of steps where
we would have difficulty reducing the problem to a single equation.

1.6.6 Finding Numerical Solutions with Goal Seek
1. Reading check, Finding Numerical Solutions with Goal Seek. This question

checks your reading comprehension of the material is section 1.6, Finding Nu-
merical Solutions with Goal Seek, of Business Calculus with Excel. Based on
your reading, select all statements that are correct. There may be more than
one correct answer. The statements may appear in what seems to be a random
order.

A Goal Seek finds an exact answer.
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B Goal Seek lets you determine the input of a function that gives a desired
output.

C Goal Seek is found by choosing what if analysis.

D Goal Seek only works with if the function can be put in a single cell.

E Goal Seek always finds the answer closest to the starting value.

F Goal seek gets confused by functions that asymptotically approach zero.

G Goal Seek stops when it finds an answer whose output is within 0.001 of
the desired output.

H None of the above

Exercise Group. Use Goal Seek to find where the given equation has the desired
value.

2. Let f(x) = −2x2 + 20x+ 7. Find an x so that f(x) = 50.

3. Let f(x) = −x2 + 4x+ 5. Find an x so that f(x) = −5.

4. Let f(x) = 5x+ 7/x. Find an x so that f(x) = 20.

5. Let f(x) = 10 exp(x/10). Find an x so that f(x) = 1000.

6. Let f(x) = ln(x+ 5) + 7. Find an x so that f(x) = 5.

7. Let f(x) = 1000 ∗ (1/2)(x/7). Find an x so that f(x) = 50.

Exercise Group. Use Goal Seek to find the indicated number of points where the
curves intersect.

8. Find an intersection point of f(x) = 5x+ 7 and g(x) = 40− 2x.

9. Find an intersection point of f(x) = 5x and g(x) = 9x/7.

10. Find an intersection point of f(t) = exp(−0.05t)∗(3t+5) and g(t) = t/10.

11. Find an intersection point of f(t) = 20 ln(100t+ 854) and g(t) = 0.02t.

12. Find both intersection points of f(x) = 7 + 10x− x2 and g(x) = 0.

13. Find both intersection points of f(x) = 15x+200/x and g(x) = 20+25x.
14. We have reason to believe that the profit function for widget manufacturing

is modeled by a quadratic equation. We have the following data for sales and
profits.

Sales 100 250 350 500 600
Profit $8,462 $18,378 $22,455 $24,400 $23,747

(a) Find the best fitting curve for the data.

(b) Find the two break-even point, or amount of sales that yield a profit of
$0.

15. A certain bank will give a $75 bonus on a new account with a deposit of $1000,
and then pays 5% interest compounded continuously. A second investment
opportunity will pay $100 per year.

(a) Which opportunity pays more in the first year?

(b) For what period of time do the two opportunities offer the same return?

(c) What is the payout from the two opportunities for a 30-year investment?
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(d) What is the second period of time when the two opportunities offer the
same return?

16. Let f(x) = (10x− 1) ∗ exp(−x) + 2.

(a) Find a solution with Goal Seek starting with x=1.

(b) What happens when Goal Seek tries to find a solution starting at x = 2?

(c) Explain why, from the graph of f(x), we should expect this problem.

17. Let f(x) = x2 ∗ exp(−(x2)).

(a) Find a solution with Goal Seek, starting with x = .5. Does this represent
an actual solution?

(b) Find a solution with Goal Seek, starting with x = 2. Does this represent
an actual solution?



Chapter 2

Business Applications

2.1 Market Equilibrium Problems

Link to unworked set of worksheets used in this section¹
Link to worksheets used in this section²
As we mentioned in the previous chapter, many functions are locally linear, so

if we restrict the domain the function will appear linear. Thus, we often start with
linear models when trying to understand a situation. In this section, we look at the
concepts of supply and demand and market equilibrium. For our examples in this
section we will assume that the functions are linear in the range we care about.

2.1.1 Supply and Demand and Market Equilibrium
The normal laws of supply and demand assumewe are in amarket withmany produc-
ers and consumers, operating independently, all of them looking out for their own
best interests. We expect that when the price goes up, more producers are willing to
sell but fewer consumers are willing to buy. Conversely, when the price goes down,
fewer producers are willing to sell but more consumers are willing to buy.

Consider the example of gasoline prices. Different prices will make some areas
of exploration and production profitable or not profitable. When prices go up, new
wells get drilled. If prices go down too far, stripper wells cease being profitable and
are shut down. From the consumer side, when prices go up, more people look at
mass transit or getting amore fuel-efficient vehicle. When prices go down, it is easier
to think about a road trip.

The law of supply looks at the economy from the supplier’s point of view. Price
and quantity available for sale alwaysmove in the same direction. If the price goes up
we can assume that all the old suppliers are still willing to sell at the higher price, but
somemore suppliers may enter the market. If the price goes down, no new suppliers
will enter the market, and some old suppliers may leave the market. For a linear
model:

slope of supply curve =
change in price

change in quantity supplied
=

∆p

∆q
> 0.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-2-1-Examples-unworked.xlsx

²mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-2-1-Examples.xlsx
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external/Examples/Section-2-1-Examples-unworked.xlsx
external/Examples/Section-2-1-Examples.xlsx
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The law of demand looks at the economy from the consumer’s point of view.
Price and quantity available for sale always move in the opposite direction. If the
price goes down, we can assume that all the old consumers are still willing to buy at
the lower price, but some more consumers may enter the market. If the price goes
up, no new consumers will enter the market, and some old consumers may leave the
market. For a linear model:

slope of demand curve =
change in price

change in quantity demanded
=

∆p

∆q
< 0.

When we look at a graph of the supply price graph and the demand price graph
on the same graph, we know the supply curve goes up as we go left to right, while
the demand curve goes down. From the properties of lines we know there is a single
point where such a pair of lines can intersect. It is at the point where the amount of
goods offered for a price equals the amount of goods desired for the same price.

• This intersection of the supply and the demand functions is called the
point ofmarket equilibrium, or equilibrium point.

• The price at this point is referred to as the equilibrium price.

• The standard economic theory says that a free and open market will
naturally settle on the equilibrium price.
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Example 2.1.1 Starting With Formulas.

Interactive³

Figure 2.1.2 Video presentation of this example
Suppose q denotes quantity, and the supply price for widgets is given by

SupplyPrice = $6 +
q

100
.

We are also told the demand price is given by

DemandPrice = $18− 2q

100
.

Find the equilibrium price and quantity.
Solution 1 (Solution (a)). We have started with an example that we can do
by basic algebra without any technology. Subtracting the two equations, we
see that

0 = $12− 3q

100
.

Some straightforward algebra shows that the equilibrium quantity is 400.
Substituting back into either equation gives an equilibrium price of $10.
Solution 2 (Solution (b)). While we can do this example by hand, we also
want to use it to set up a solution with Excel, since we may want help on
problems where the numbers are not as nice. Our plan is to use Goal Seek
to find the intersection. We need a cell where we can solve the problem by
forcing the cell to have a value of zero.

When cell D2 is zero, the supply price will be the same as the demand
price. We now invoke Goal Seek.

As expected, it finds equilibrium when q = 400.

We need to do a bit more work when we are simply given data points and need
to find the supply and demand curves.

³www.youtube.com/watch?v=ulx0bKHKrVY

https://www.youtube.com/watch?v=ulx0bKHKrVY
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Example 2.1.3 Starting With Data.

Interactive⁴

Figure 2.1.4 Video presentation of this example
Mymarket data indicates customers will buy 700 gizmos if they are priced

at $13 each. If the price rises to $15, they will only buy 500. If the price is $12
a unit, the producers will make 400 gizmos. If the price rises to $13, they will
produce 600 gizmos. Assume that the supply and demand curves are linear
for between 300 and 1000 gizmos. Find the equilibrium point for the gizmo
market.
Solution. We start by making a chart for the values given. We add a scatter-
plot so that we can see the values.

Next we add linear trendlines for both the supply and demand. We select
the option to show the equations.

The projected equations are:

SupplyPrice = 0.005 ∗ Quantity+ 10

Dprice = −0.01 ∗ Quantity+ 20.

We set up columns for the projected supply and demand curves. We also
add a column for the difference so that we can use Goal seek to find the equi-
librium point.

https://www.youtube.com/watch?v=ZYZhgmFvvtc
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It is then straightforward to see that the equilibrium quantity is 666.67
and the equilibrium price is $13.33.

There is one more detail worth noting from this last example. Depending on the
units used, the slope can be very close to zero. If we are selling tens of millions of
units for a price under a dollar, the change in price of a penny may correspond to a
change in quantity of several thousand. Make sure to include enough digits for your
equation to be meaningful.

Example 2.1.5 Computing Sales.

Interactive⁵

Figure 2.1.6 Video presentation of this example
We have obtained the following data for sales of gizmos in our location.

quantity 653 762 847 943 1050 1130 1260
Supply price 5.52 6.20 6.85 7.48
Demand price 6.68 6.50 6.38 6.31

Assume the supply and demand curves are linear for quantities between 600
and 1300. Find the best fitting lines for the supply and demand functions.
Find the equilibrium point. Make a chart listing how many we can sell for
$6.40 and $6.60. Remember that sales will be the minimum of the supply
and the demand.
Solution. We start by putting the data into a spreadsheet and finding the
best fitting lines. We select the option to show the equations in the chart.

⁴www.youtube.com/watch?v=ZYZhgmFvvtc

https://www.youtube.com/watch?v=yBqKOI11Bds
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The supply and demand functions are:

SupplyPrice = .0032 ∗ Quantity+ 3.44

DemandPrice = −0.0010 ∗ Quantity+ 7.46.

We add columns for the projected supply and demand prices, using the
equations obtained from the best fitting lines. We also add a column, and
compute the difference of the supply and demand functions. We can now
use goal seek to solve the problem.

We now use Goal Seek to find the equilibrium point.

At equilibrium we sell 956 gizmos at $6.50. To find sales at $6.40 and
$6.60, we use Goal Seek to get those values at both supply and demand
prices.
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We see that we can sell 1055 gizmos at $6.40, but can only obtain 925.
Thus our sales at $6.40 will be 925. At $6.60 we can obtain 987 gizmos, but
can only sell 855. Thus our sales at $6.60 will be 855. We can eliminate a
step in this process if we recall that below equilibrium price the constraint is
supply, while above equilibrium price the constraint will be demand.

2.1.2 Exercises 2.1 Equilibrium Problems

1. Reading check, Market Equilibrium Problems. This question checks your read-
ing comprehension of the material is section 2.1, Market Equilibrium Problems,
of Business Calculus with Excel. Based on your reading, select all statements
that are correct. There may be more than one correct answer. The statements
may appear in what seems to be a random order.

A The slope of the demand curve is always positive.

B The standard economic theory says that a free and open market will nat-
urally settle on the equilibrium price.

C This intersection of the supply and the demand functions is called the
point of market equilibrium, or equilibrium point.

D The law of supply looks at the economy from the supplier’s point of view.

E If the supply and demand curves are unlabeled, there is no way to guess
which is which.

F The law of demand looks at the economy from the consumer’s point of
view.

G The slope of the supply curve is always positive.

H None of the above

Exercise Group. Given the equations of the supply and demand curves:

(a) Evaluate the curves at q0.

(b) Find the market equilibrium.

2. Given SupplyPrice = 3Quantity+10 andDemandPrice = −2Quantity+30,
with q0 = 6.

3. Given ps = 2q + 20 and pd = −q + 200, with q0 = 40.
4. Given SupplyPrice = .2q + 157.3 and DemandPrice = −0.01q + 3468.9,

with q0 = 6000.
5. Given ps = 0.0035q + 23 and pd = −0.0027q + 463, with q0 = 46, 798.

6. I am given p = −2q + 100 and p = 3q − 30, as my supply and demand curves,
but am not told which is which. Determine which curve is the supply curve and
explain how you did it. What limits can you put on the domain of the supply
and demand functions?

Exercise Group. For Exercise 2.1.2.7–2.1.2.10, given the supply and demand data:

(a) Find equations of the supply and demand curves, assuming they are both linear.

(b) Find the market equilibrium.

⁵www.youtube.com/watch?v=yBqKOI11Bds
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7. Given supply and demand data:

quantity 50 100
Supply price 4 10
Demand price 9 5

8. Given supply and demand data:

quantity 60 70 90 100
Supply price 14 20
Demand price 19 16

9. Given supply and demand data:

quantity 4356 4792 6503 7038
Supply price $1.00 $1.15
Demand price $1.10 $.98

10. Given supply and demand data:

quantity 5378 7984 8352
Supply price $8.00 $9.50
Demand price $12.00 $10.00

Exercise Group. For Exercise 2.1.2.11–2.1.2.13, given the supply and demand data:

(a) Find equations of the supply and demand curves, assuming they are both linear.

(b) Find the market equilibrium.

(c) Find the projected supply and demand prices for the extra quantities given.
11. Given the supply and demand data:

quantity 100 120 140 160 180 155
Supply price 10.5 11.8 13.9 16.3 17.5
Demand price 21.3 18.1 14.7 12.3 8.6

12. Given the supply and demand data:

quantity 5021 6051 6968 7901 9023 9917 7500
Supply price 13.18 16.76 17.89 19.32
Demand price 19.69 18.78 18.05 17.61

13. Given the supply and demand data:

quantity 3160 3615 4092 4462 4837 5261 5579 6000
Supply price 20.54 20.70 22.37 22.43
Demand price 25.31 18.91 17.04 14.37

2.2 Modeling Revenue, Costs, and Profit

Link to unworked worksheets used in this section¹
¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-2-2-Examples-unworked.xlsx

external/Examples/Section-2-2-Examples-unworked.xlsx
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Link to worksheets used in this section.²
In the last section we looked at the economic model for supply and demand. We

were particularly interested in the point of market equilibrium. In this section we will
look at the model for revenue, cost and profit. As with the previous section, we will
begin with assumptions that make as many things as possible linear.

2.2.1 Revenue and a review of demand price
The simple model for revenue is

Revenue = Quantity ∗ Price .

However, in the previous section we worked with two price functions, the supply
price and the demand price. Since we can only make a sale if the consumer is willing
to buy, we typically use the demand price in computing revenue. Our model is now

Revenue = Quantity ∗ DemandPrice(Quantity).

If the demand price is a linear function, then revenue is a quadratic function.
We previously noted that a linear demand price function has a negative slope.

We should note the two limiting cases. If the slope of the demand curve is 0, the con-
sumers have a fixed price they will pay for however much of the product is available.
In this case the demand curve is a constant, so the revenue curve will be linear. This
is referred to as a perfectly elastic market. The other limiting case is where the de-
mand is for a fixed amount no matter what the price. In this case the demand curve
is a vertical line and is not a function, so the revenue curve also fails to be a function
of quantity.

Obviously, we don’t expect to find the limiting cases in the real world. In real
world cases the revenue function has a negative coefficient for the quadratic term
and is a downward facing parabola.

²mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-2-2-Examples.xlsx

external/Examples/Section-2-2-Examples.xlsx
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Example 2.2.1 Finding Revenue From Linear Demand Price.

Interactive³

Figure 2.2.2 Video presentation of this example
We have determined that the demand price function for widgets is

DemandPrice(q) = 10− q/1000,

if the quantity is between 2000 and 8000. Find the revenue function and
graph it over the region where it is defined.
Solution. We set up a chart in Excelwith revenuedefined as SupplyPrice ∗Quantity.

When we graph we note that the scales are quite different for price and
revenue. Thus we want to use secondary axes to capture the scale of both
price and revenue. We can also put different labels on the two vertical axes.

https://www.youtube.com/watch?v=c8wOmYDtQPE
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2.2.2 Cost
Once again we will start with a simplified model for cost.

• For our (simplified) model we will break costs into fixed costs and vari-
able costs.

• Fixed costs include the costs of being in business. They might include
license fees, rent for a store or plant, and the cost of furnishings and
equipment.

• Variable costs are tied to the amount you produce or sell. For a manu-
facturer they might include raw material or labor costs. For someone
in sales they might include the cost of goods.

• For our simplified model, we assume that variable costs are propor-
tional to quantity. This makes our cost function linear.

• For our simplified model variable costs= unit costs*quantity.
• Thus costs= fixed costs + unit costs*quantity.

Example 2.2.3 Finding Linear Cost.

We can set up a small gizmo manufacturing shop for $6,000. The raw mate-
rials for producing gizmos cost $14 per unit. Find the cost function for gizmo
production. Find the cost of producing 2500 gizmos.

³www.youtube.com/watch?v=c8wOmYDtQPE
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Solution. The fixed costs are the y value of the y-intercept of the cost func-
tion. The per unit material cost is the slope of the function. We have

Cost = 6000 + 14 ∗ Quantity.

If we substitute 2500 for the quantity, our costs are

Cost(2500) = 6000 + 14 ∗ 2500 = 41000.

2.2.3 Profit
For the third piece of the model, we look at profit. We have the simple formula

Profit = Revenue− Cost .

For our simple examples where cost is linear and revenue is quadratic, we expect
the profit function to also be quadratic, and facing down. We will obviously be in-
terested in the spots where the profit function either crosses the axis or reaches a
maximum.

Interactive⁴

Figure 2.2.4 Video presentation of the next two examples

⁴www.youtube.com/watch?v=pgLZENVOjLo

https://www.youtube.com/watch?v=pgLZENVOjLo
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Example 2.2.5 Finding Profit.

We are interested in selling widgets. The demand price function is

DemandPrice = 15− q

1000
.

It will cost $10,000 to keep our shop open before we consider the price
of inventory. Our variable cost is the cost of buying the widgets from our
wholesaler who will sell them to us for $8 a unit. Find a function for profit as
a function of howmany units we sell. Graph that function for quantities from
1000 to 10000.
Solution. Using the methods from the previous examples, we write down
the functions for revenues and costs.

Revenue = Quantity ∗ Price

= q ∗ (15− q

1000
)

costs = fixed costs+ variable costs ∗ Quantity
= 10000 + 8 ∗ q.

Now we find profit as the difference of revenue and cost.

Profit = q ∗ (15− q

1000
)− (10000 + 8q)

Profit =
−q2

1000
+ 7q − 10000.

We then use Excel to make a chart of values and a graph.

2.2.4 Break-Even Point
The last example illustrates a reality of manufacturing and retail. If a business has a
fixed cost or startup expense, it will have a loss if it does not sell enough.

The point at which revenues equal expenses (cost) is called the break-even
point.

This is important in preparing a business proposal, because the bank will want to
know if the break even point is a reasonable amount before it lends any money.
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Example 2.2.6 Find Break-Even Points.

Find break-even points for previous example. Explainwhat those pointsmean
in practical terms.
Solution. We look at the chart from the previous example.

We can find break-even points by using Goal Seek and setting profit to 0
while changing quantity. In this case, we see that we have break-even points
when the quantity is 2000 or 5000, since those numbers were already on our
chart.

The first break even point tells us that, if our price is more than $13.00,
we will not attract enough customers to be able to turn a profit. The second
break even point says that is we bring our price down below $10, wewill bring
in enough customers, but our revenue will not cover expenses.

Example 2.2.7 Repeat, Starting With Data.

Interactive⁵

Figure 2.2.8 Video presentation of this example
We have the following data from the gizmo market, with quantity and

costs measured in millions.

Quantity 7.81 10.07 11.99 13.84 15.80
Demand Price $12.07 $9.05 $7.60 $6.64 $5.64

Cost $60.05 $70.09 $79.98 $89.90 $99.83

Assuming that price and cost are well modeled by linear equations, find the
break-even points and explain what they mean with units included in the ex-
planation.

To find the break-even point when we are given data instead of an equa-
tion, we usually follow this procedure: Find the best fitting equations for price
and cost. From those equations, produce formulas for revenue and profit.
Use the formulas to find the break-even points using either algebra or Excel.

https://www.youtube.com/watch?v=21NfE3S7EQs
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Solution. We put the data into Excel and ask for best fitting lines.

This produces the desired cost and price functions.

DemandPrice = −0.7796q + 17.478

Cost = 5.00251q + 20.162.

We enter these functions in new columns in the spreadsheet and then
compute projective revenues and profit. We then useGoal Seek to find places
where the projected profit is 0. The first break-even point tells us that we
expect to break even if we sell 1.83 million units. We can do that by setting
the price at $16.05. The second break-even point is at 14.15million units. We
reach that sales volume by lowering the price to $6.45. While we will have
gained market share, we will no longer be making a profit.

2.2.5 Technical note
In business situations we often have cases where a change of quantity in the thou-
sands only changes prices by pennies. Then, our coefficients are close to zero, and
Excel may give formulas rounded to zero. In those cases we need to format the trend-
line to get more digits of accuracy.

⁵www.youtube.com/watch?v=21NfE3S7EQs
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Example 2.2.9 Problems with using big numbers.

Interactive⁶

Figure 2.2.10 Video presentation of this example
We want to explore an issue that arises our coefficients are very small.

We will have to be concerned with the number of significant digits in our co-
efficients.

We repeat the previous example, but with quantity and cost measured
directly, rather than in millions. We should get the same answers, since we
are using the same data.

Quantity 7,810,000 10,070,000 11,990,000 13,840,000 15,800,000
Demand Price $12.07 $9.05 $7.60 $6.64 $5.64

Cost $60,050,000 $70,090,000 $79,980,000 $89,900,000 $99,830,000

We face the same tasks. Assuming that price and cost are well modeled by
linear equations, find the break-even points and explain what theymeanwith
units included in the explanation.

To find the break-even point when we are given data instead of an equa-
tion, we usually follow this procedure: Find the best fitting equations for price
and cost. From those equations, produce formulas for revenue and profit.
Use the formulas to find the break-even points using either algebra or Excel.
Solution. We put the data into Excel and ask for best fitting lines.

As expected, a coefficient of each equation has been shifted by a factor
of 1,000,000.

DemandPrice = −8 ∗ 10−7q + 17.478

Cost = 5.0251q + 2 ∗ 107.

These equations have only one digit of accuracy. In general, that will not
be accurate enough.

We enter these functions in new columns in the spreadsheet and then
compute projective revenues and profit. We then useGoal Seek to find places

https://www.youtube.com/watch?v=5gQrHSDUwlU
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where the projected profit is 0. The first break-even point goes from 1.83
million at price of $16.05 to 1.82 million at a price of $1602. The second
break even point goes from 14.15 million units at a price to $6.45 to 13.75
million at a price of $6.48.

The solution is to right click (Command click on amac) on the label and se-
lect “Format Trendline Label”. Then change category from general to number,
and choose 10 decimal places. This gives us the equations:

DemandPrice = −0.0000007796q + 17.4782059302

Cost = 5.02506q + 20161700.

We then go through the same process at get our original answers back.

2.2.6 Exercises: Modeling Revenue, Costs, and Profit
1. Reading check, Modeling Revenue, Costs, and Profit. This question checks

your reading comprehension of the material is section 2.2, Modeling Revenue,
Costs, and Profit, of Business Calculus with Excel. Based on your reading, select
all statements that are correct. There may be more than one correct answer.
The statements may appear in what seems to be a random order.

A Profit = Costs - Revenue.

B In real world cases the revenue function has a negative coefficient for the
quadratic term and is a downward facing parabola.

C The simple model for revenue is revenue =quantity*price.
D In our simplified model, the profit function is linear.

E We typically use the supply price in computing revenue.

⁶www.youtube.com/watch?v=5gQrHSDUwlU
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F In the real world variable costs are proportional to quantity.

G We typically use the demand price in computing revenue.

H Fixed costs include the costs of being in business. They might include li-
cense fees, rent for a store or plant, and the cost of furnishings and equip-
ment.

I For our simplified model, costs= fixed costs + unit costs*quantity.
J The point at which revenues equal expenses (cost) is called the break-
even point.

K None of the above

Exercise Group. For Exercise 2.2.6.2–2.2.6.9, given the equations of the cost and
demand price function:

(a) Identify the fixed and variable costs.

(b) Find the revenue and profit functions.

(c) Evaluate cost, demand price, revenue, and profit at q0.

(d) Find all break-even points.

(e) Graph the profit function over a domain that includes both break-even points.
Add a textbox and label to identify the first break-even point.

2. Given DemandPrice = −2Quantity+ 20 and Cost = 3Quantity+ 10, with
q0 = 6.

3. Given DemandPrice = −Quantity/10+50 and Cost = 10Quantity+1000,
with q0 = 300.

4. Given DemandPrice = −2.35Quantity + 250 and Cost = 54.6Quantity +
1234, with q0 = 59.

5. Given DemandPrice = −0.0023Quantity + 9 and Cost = 1.39Quantity +
1398.7, with q0 = 687.

6. Given demand price and cost are the linear functions that best fit the data
below and that q0 = 75.

Quantity 50 100
Demand price 10 8

Cost 300 450

7. Given demand price and cost are the linear functions that best fit the data
below and that q0 = 110.

Quantity 60 70 90 100
Demand Price 19 16

Cost 460 540

8. Given demand price and cost are the linear functions that best fit the data
below and that q0 = 75.

Quantity 4356 4792 6503 7038
Demand price $1.10 $.98

Cost $1190 $1860
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9. Given demand price and cost are the linear functions that best fit the data
below and that q0 = 7500.

Quantity 5378 7984 8352
Demand price $12.00 $10.00
Supply price $31,100 $45,100

10. Mary has been put in charge of a school function. She estimates that there is a
fixed cost of $1000 for the site plus a cost of $5 per person that attends. If she
charges $15 a ticket she can sell 250 tickets, but if she lowers the price to $10
she can sell 500 tickets. Assuming the demand price is linear, what price should
she charge to break even while maximizing attendance?

Exercise Group. For Exercise 2.2.6.11–2.2.6.13, given the cost and demand data:

(a) Find best fitting equations of the cost and demand curves, assuming they are
both linear.

(b) Find the revenue and profit functions and evaluate them at the extra given
value.

(c) Find the break-even points.

11. Given the cost and demand data:

Quantity 100 120 140 160 180 155
Cost 1015 1152 1327 1467 1651

Demand price 21.3 18.1 14.7 12.3 8.6

12. Given the cost and demand data:

Quantity 5021 6051 6968 7901 9023 9917 7500
Cost 80376 103874 128513 140258

Demand price 19.69 18.78 18.05 17.61

13. Given the cost and demand data:

Quantity 3160 3615 4092 4462 4837 5261 5579 6000
Cost (Thousands) 90.1 126.70 197.2 234.9
Demand price 25.31 20.91 17.04 14.37

2.3 Nonlinear Functions

Link to worksheets used in this section¹
For most of this chapter, we have restricted ourselves to functions that were ei-

ther linear functions or polynomial functions where they are built from the interac-
tion of linear functions. While this makes the economic models easier to understand,
it is pretty clear that the situations we care about are often better described by more
complicated functions. Suppliers of gasoline have a finite amount they can deliver re-
gardless of the price. That leads to a very nonlinear supply function. It is worthwhile
to review how we would enter other functions in a spreadsheet.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-2-3-Examples.xlsx

external/Examples/Section-2-3-Examples.xlsx
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2.3.1 Algebraic Functions
We start with the algebraic functions that should be familiar from previous courses.
These functions will let us use all the models that were mentioned in Chapter 1. For
this table, we will assume the input to the function has been stored in cell A1.

Algebraic Entry Spreadsheet Entry Notes
f(x) =

√
2x+ 7 =SQRT(2*A1+7) * needed for multipliciation

f(x) = 3
√
2x+ 7 =(2*A1+7)^(1/3) other roots done as fractional exponents

f(x) = x4 =A1^4

f(x) = −x4 =-1*(A1^4) Excel does negation before exponentiation
f(x) = ln(x) =LN(A1) Log base e or natural log

f(x) = log10(x) =LOG10(A1) Log base 10 or common log
f(x) = log2(x) =LOG(A1,2) Log to another base
f(x) = 1.06x =1.06^(A1)

f(x) = ex =EXP(A1)

f(x) = e(−x2) =EXP(-(A1^2)) Parentheses needed for correct evaluation
f(x) = |x| =ABS(A1) Absolute value

Consider a demand function and why it is probably not linear. We expect demand to
go up whenever we drop the price. However, with a linear function, if dropping the
price from $100 t0 $50 increases the demand by 20 from 100 to 120, then decreasing
the price from $50 to $0 and giving it away would only increase demand by another
20 to 140. A more reasonable model may be a power function where decreasing the
price by a fixed percentage increases consumption by a fixed percentage. Similarly,
when we think about the supply function, we often expect the limits on available
materials to make increasing the supply progressively more expensive.

Example 2.3.1 Exponential Supply and Demand Price.

Interactive²

Figure 2.3.2 Video presentation of this example
We are interested in selling gizmos. The most a consumer will pay is

$1,000. If we drop the cost by 10\%, we increase demand by 100. The cheap-
est that a supplier will sell for is $200. We find the market will produce an-
other 100 gizmos whenever we increase the price by 20%. Find the market
equilibrium.
Solution. We start by converting our information about supply and demand
into equations, plugging the equations into Excel, and sketching a graph. We
then use Goal Seek to find where the two equations are equal.

DemandPrice(Quantity) = 1000 ∗ (0.9)(Quantity/100)

https://www.youtube.com/watch?v=Ac0q2H7dlx4
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SupplyPrice(Quantity) = 200 ∗ (1.2)(Quantity/100).

We see that the equilibrium price is at $554.64. At that price the supply
and demand will both be 559.45.

Example 2.3.3 Nonlinear Functions From Data.

Interactive³

Figure 2.3.4 Video presentation of this example
We have the following table of data for demand price and costs for our

product.

Quantity 100 300 500 1000 1500
Demand Price $35.35 $21.63 $17.25 $12.70 $10.26

Costs $2347.67 $5040.00 $7481.67 $12469.67 $16196.00

We have reason to believe that my demand price is a power function of some
kind. Our cost function is close to linear, but we can get volume discounts
and reduce the per-unit cost with larger quantities. Thus, we expect my cost
function is actually quadratic, with the quadratic termmuch smaller than the
linear term. Find best fitting curves for cost and price. Derive functions for
revenue and profit. Find break-even points between 10 and 1500.
Solution. I start by finding best-fit curves of for cost and price.

²www.youtube.com/watch?v=Ac0q2H7dlx4

https://www.youtube.com/watch?v=Q0nJctuVNVc
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Thus we have:

Cost(q) = −0.0028q2 + 14.353q + 968.13

Price(q) = 286.02q−0.453.

Next, we follow our models to get equations for revenue and profit.

Revenue(q) = q ∗ Price(q) = q286.02q−0.453 = 286.02q0.547

Profit(q) = Revenue(q)− Cost(q) = 286.02q0.547 + 0.0028q2 − 14.353q − 968.13.

Finally, we load these equations back into Excel and use Goal Seek to find
the break-even points. Looking at projected profit on the chart we see a sign
change near 1000, so we suspect a break-even point there. We also note that
profit seems to be going up until q is about 300, so I test for a break-even point
for small values of q.

We see we have break-even points when q is 12.74 and 996.28.

2.3.2 Discontinuous Functions
All of the functions above have graphs without breaks. In mathematical terms, they
are continuous functions. When we are modeling real world phenomena, we also
want to use functions that have breaks in the graph. Paint is typically bought in gallon
containers, so the price to paint a room is based on the number of gallons rounded up
to the next whole number. Many businesses will give a volume discount to their best
customers, so there is one price for small quantities and a different price for large
quantities. The cost of labor changes if overtime pay is involved. In all of these cases,
the graph has a break in it.

Excel has several discontinuous functions that are of use to us.

Function Example Value Notes
ROUND ROUND(2.347,1) 2.3 2.35 would round to 2.4

ROUNDDOWN ROUNDDOWN(2.99,0) 2.0 0 for digits rounds to integers
ROUNDUP ROUNDUP(-2.132,2) -2.14 Up is away from 0.
CEILING CEILING(3.14159,1.5) 4.5 Rounds up to a multiple of 1.5
FLOOR FLOOR(3.14159,2) 2 Rounds down to a multiple of 2.
IF IF(2 < 1,5,10) 10 The condition is false.
MIN MIN(1, 3, 5) 1 The minimum of a list of values.
MAX MAX(1, 3, 5) 5 The maximum of a list of values.

³www.youtube.com/watch?v=Q0nJctuVNVc
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The functions ROUND, ROUNDUP, and ROUNDDOWN are all used for rounding. They
have a second argument that specifies the number of digits to which we are rounding.
It should be noted that Excel understands up and down as away from zero for negative
numbers. Thus it will round −1.5 up to −2. The CEILING and FLOOR functions also
do rounding, but with some different features. Instead of specifying the number of
digits in the answer, these functions round to a multiple of the second argument. As
expected, CEILING rounds to the next higher multiple, and FLOOR rounds to the next
lower multiple.

Interactive⁴

Figure 2.3.5 Video discussion of discontinuous functions in Excel

Example 2.3.6 Raw Materials in Blocks.

Interactive⁵

Figure 2.3.7 Video presentation of this example
The raw material needed to build widgets is sold in blocks that will make

100 widgets. A block costs $1000. The labor cost for building a widget is $7.
The fixed costs for widget production is $10,000. Find a formula for the costs

⁴www.youtube.com/watch?v=dH_2jZZygYw

https://www.youtube.com/watch?v=dH_2jZZygYw
https://www.youtube.com/watch?v=x_gEP5xo04w
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of producing widgets. Find the cost of producing 998 and 1009 widgets. You
should also find the cost per unit at those quantities.
Solution. To make the worksheet easier to follow, we break costs into three
pieces, fixed costs labor costs, and materials costs. The fixed coasts are con-
stant, and the labor costs are linear. For the materials costs we need to use
the CEILING function to round the number of widgets up to the next even 100,
then divide by 100 to obtain the number of blocks of raw material we want
to buy.

When we look at the numbers we see that the total cost of producing 998
widgets is $26,986 and the cost of producing 1009 widgets is $28,063. When
we look at the unit costs, we expect the cost per unit to generally go down
as we produce more, since the fixed costs are distributed over more units.
However the per unit cost is $27.04 when we produce 998 widgets, but that
goes up to $28.81 when wemake 1009 widgets, since we had to buy another
block of raw material.

The IF command is usedwhenwe use different formulas for different cases. Some
easy examples are overtime pay, benefits costs, and volume discount. In many work
situations employees are paid one rate up to a certain amount of work and a second
rate for additional work. It is also common for full time employees to receive certain
benefits, like retirement, that are not offered to part time employees. It is also com-
mon for certain industries to offer different rates for their biggest and best customers.
The basic syntax of the IF command is:

IF(test condition, value if condition is true, value if condition is false)

The values for true and false can be numbers, string, or formulas to evaluate.
⁵www.youtube.com/watch?v=x_gEP5xo04w
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Example 2.3.8 Computing Overtime Pay.

Interactive⁶

Figure 2.3.9 Video presentation of this example
I am a bookkeeper at a small firm. Company policy pays the employees

time and a half for working more than 40 hours per week. I need to compute
the weekly pay of 5 employees. The employees worked 35, 42, 43, 38, and
42.5 hours. Their base pay rates were respectively $8, $9, $10, $11, and $12
an hour. Compute the pay for each employee.
Solution. In setting up the worksheet, I will separate regular pay from over-
time pay. The regular pay is the base rate times the hours worked, unless
the employee worked more than 40 hours, in which case it is the base rate
times 40. Overtime pay is the base pay times 1.5 times the number of over-
time hours. Since overtime cannot be negative, we use the maximum of 0
and hours worked minus 40.

Looking at the computed values, the employees are owed $280, $387,
$445, $418, and $525, respectively.

If our functions are discontinuous, we need to exercise a bit of care with our eco-
nomic models and the points of interest we have been finding. The market equilib-
rium and break-even points are both places where two functions are equal. When
the mathematics does not give us a clear answer, we should think about the problem
and consider what answer makes the most sense. Consider a simplified example to
illustrate the point.

⁶www.youtube.com/watch?v=6O5cSUxwDcU

https://www.youtube.com/watch?v=6O5cSUxwDcU
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Example 2.3.10 Market Equilibrium with Discontinuous Supply Price.

Interactive⁷

Figure 2.3.11 Video presentation of this example
In the widget market, the supply is constrained. Obtaining more than

2 widgets means using a more expensive process. My supply and demand
curves are:

DemandPrice(q) = 4− q/2

SupplyPrice(q) =

{
1q/2 + 1 q ≤ 2

1q/2 + 3 q > 2
.

Find the market equilibrium price.
Solution. We would like to find the place where the two curves cross. How-
ever when we look at a graph of the two functions we see that they never
meet.

It is clear from the graph that the market should reach equilibrium at a
quantity of 2, but it is not clear what the equilibrium price should be. We
need to do some reasoning about the behavior described by the equations.
From our formula, the supply price for 2 widgets is $2. However if we look at
the supply prices of 2 + h for small values of h, we see that the limit of the
supply price from above is $4. In practical terms the suppliers will produce
2 widgets for any price from $2 to $4. If we offer $2, they are also willing to
produce 2 widgets. If we offer a price of $3.95, they are still only willing to
produce 2 widgets. The suppliers will be thus willing to produce 2 widgets at
a price of $3. The equilibrium price is 3.

If wewant to look at the graph in Excel, it is useful to plot points very close
to the discontinuity on both sides. For this problem, we might look at both 2
and 2.0001.

https://www.youtube.com/watch?v=ci90zlHUbP8
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A lesson to remember is that we need to pay attention to places where our func-
tions are discontinuous and that we need to understand what our economic model
should do when the curves do not cross. For example, we will understand the break-
even point to be the first point where revenue is greater than or equal to costs. In
the continuous case, this reduces to our old definition.

2.3.3 Exercises 2.3 Nonlinear functions

1. Reading check, Nonlinear Functions. This question checks your reading com-
prehension of thematerial is section 2.3, Nonlinear Functions, Costs, and Profit,
of Business Calculus with Excel. Based on your reading, select all statements
that are correct. There may be more than one correct answer. The statements
may appear in what seems to be a random order.

A The CEIL command can be used to roundup.

B For the FLOOR commandwe specify the number of digits past the decimal
point in the rounded number.

C The if construction can be used in Excel for a function with branches.

D For the ROUND command we specify the number of digits past the deci-
mal point in the rounded number.

E All real world cost functions are continuous.

F ln(x) is used for the natural log of x, or log base e.

G In the real world, the demand function is probably not linear.

H In Excel ex is written EXP(x).

I The commands ROUND, ROUNDUP, and ROUNDDOWN can be used in-
terchangeably.

J Excel does negation before exponentiation.

K None of the above

Exercise Group. For Exercise 2.3.3.2–2.3.3.6, given the equations of the supply and
demand curves:

(a) Evaluate the curves at q0.

(b) Find the market equilibrium.

2. Given SupplyPrice = 20∗(1.1)(q/10) and DemandPrice = 50∗(0.95)(q/10),
with q0 = 10.

⁷www.youtube.com/watch?v=ci90zlHUbP8
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3. Given supply Price = 10∗(1.05)(q/10) andDemandPrice = 60∗(0.96)(q/10),
with q0 = 10.

4. Given ps = 5 ln(q + 10) and pd = 1000/(q + 10)− 2, with q0 = 40.

5. Given SupplyPrice = 10 ln(q + 2) and DemandPrice = 60 ∗ (0.90)(q/100),
with q0 = 6000.

6. Given

SupplyPrice(q) =

{
20 ∗ (1.1)(q/10) q ≤ 50

20 ∗ (1.1)(q/10) q > 50

and
DemandPrice(q) = 50 ∗ (0.095)(q/10),

with q0 = 40.

Exercise Group. For Exercise 2.3.3.7–2.3.3.9, given the supply and demand data:

(a) Find best fitting equations of the supply and demand curves, using the assump-
tions given in the problem.

(b) Find the market equilibrium.

(c) Find the projected supply and demand prices for the extra quantities given.
7. Given the data

Quantity 100 120 140 160 180 155
Supply price 32 35.5 39 42.6 47
Demand price 47.2 42.5 38.3 34.5 31

and the assumption that supply price and demand price are both exponen-
tial.

8. Given the data

Quantity 5017 5937 7003 8070 9017 9943 7500
Supply price 17.5 19 20.4 23.7 25.1
Demand price 29.6 26.7 21.3 19.2 17.6

and the assumption that supply price is linear and demand price is expo-
nential.

9. Given the data

Quantity 1009 1469 2041 2462 3002 3517 3979 3200
Supply price 98 106 112 120 1231 126
Demand price 160 144 116 102 82

and the assumption that supply price is linear and demand price is expo-
nential.

Exercise Group. For Exercise 2.3.3.10–2.3.3.16, for the given functions:

(a) Give the excel command that will produce the following function with the as-
sumption that x is in cell A2.

(b) Give a chart of the values of the function evaluated as x goes from 0 to 100 in
steps of 5.

(c) A graph of the function.



2.3. NONLINEAR FUNCTIONS 87

(d) A list of x-valueswhere the function is discontinuous. (Where the graph jumps.)
10. Let

f(x) =

{
ln(2x) x ≤ 50

200 exp(−x/10) x > 50
.

11. Let

f(x) =

{√
2x+ 21 x ≤ 50

10 sin(x/5) x > 50
.

12. The cost of shipping an item is $2 per pound, or fraction thereof, with a
minimal cost of $5.

13. Widgets cost $10 each when purchased individually. They cost $9 each
when purchased in packages of 10. They cost $8 each when purchased in
cases of 50.

14. Gizmos cost $10 each for the first 9 on an order. The 10th through 49th
gizmo cost $9 each. Additional gizmos beyond that each cost $8.

15. Let f(x) be the minimum of (x− 50)2/25 and 50.

16. The cost of parking is $5 per hour rounded to the nearest half hour. For the
chart of the values let x goes from 0 to 4 in steps of 0.2.

Exercise Group. Profit model with nonlinear models
For Exercise 2.3.3.17–2.3.3.25, given the equations of the cost and demand price

function:

(a) Find the revenue and profit functions.

(b) Evaluate cost, demand price, revenue, and profit at q0.

(c) Find the first break-even point.

(d) Graph the profit function over a domain that includes the first break-even point.
Add a textbox and label to identify the break-even point.

17. Given DemandPrice = 30 ∗ (0.95)Quantity/10 and Cost = 3Quantity + 100,
with q0 = 6.

18. Given DemandPrice = 40 ∗ (0.90)(q/10) and Cost = 10q + 200, with q0 =
10.

19. Given DemandPrice = −q/10+50 and Cost = −2(q/1000)2+10q+1000,
with q0 = 300.

20. Given Price = 47 ∗ (0.96)(q/11) and Cost = −2(q/1000)2 + 17q + 1234,
with q0 = 59.

21. Given demand price is an exponential function and cost is a quadratic func-
tion fitting the data below and that q0 = 75.

Quantity 100 130 160 190 220 250
Demand price 48 41 35 30 26 22

Cost 3000 3280 3560 3860 4160 4470

22. Given demand price is an exponential function and cost is a quadratic func-
tion fitting the data below and that q0 = 300.

Quantity 200 600 1000 1400 1800 2200
Demand price 190 171 155 140 126 114

Cost 30000 69600 109000 148000 186800 225200
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23. Given demand price is a linear function and cost is a quadratic function
fitting the data below and that q0 = 800.

Quantity 200 600 1000 1400 1800 2200
Demand price 140 120 100 80 60 40

Cost 31600 52400 70000 84400 95600 103600

24. Given

DemandPrice(q) =

{
100− q/10 q ≤ 50

95− q/20 q > 50

and

Cost(q) =

{
3000 + 50q q ≤ 100

3000 + 47q q > 100
.

with q0 = 200.
25. Given

DemandPrice(q) =

{
200− 0.05q q ≤ 50

200− 0.07q q > 50

and

Cost(q) =

{
4000 + 40q q ≤ 100

4000 + 37q q > 100

with q0 = 300.



Chapter 3

Rate of Change and Derivatives

Calculus looks at two main ideas, the rate of change of a function and the accumula-
tion of a function, along with applications of those two ideas. In this course, since we
are interested in functions in the financial world, we look at those ideas in both the
discrete and continuous case.

3.1 Marginal Functions and Difference Quotients

Link to worksheets used in this section¹
There are a number of industries where it is common for people to pay signifi-

cantly different prices for the same product from the same vendor. (Airline tickets,
symphony seats, and doughnuts at different times of the day come to mind.) The
reason is generally not favoritism or an irrational vendor, but an analysis that looks
at the change in costs and profits for making an additional sale. Flying a plane with
51 passengers does not cost much more than flying the same plane with 50 passen-
gers. The same is true when playing a symphony. Selling an extra doughnut at half
price, just before closing when you would have to throw the doughnut out, adds to
the profit. In all of these cases, we are less concerned with total revenues and profits
and more concerned with how things change with one more sale.

In finance and economics this issue is dealt with using marginal functions.

3.1.1 Marginal Functions

Definition 3.1.1 Marginal value.

If f(x) is a function (i.e., cost, revenue, or profit), we define the marginal
value of f(x) to be the change in f(x) as x increases by 1. Thus

Marginal f(x+ 1) = f(x+ 1)− f(x).

It is worthwhile to point out a detail that may cause a bit of confusion. Note that
we are defining marginal functions of x + 1 rather than the marginal functions of x.
This is the standard convention in finance where the question is phrased in terms of
change associated with producing one more. I am more concerned about deciding
about what I should do rather than looking at what I have already done. The usual
functions with related marginal functions are Cost, Revenue, and Profit.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-3-1-Examples.xlsx
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• Marginal Cost at x, or MarginalCost(x + 1) is the change from Cost(x) to
Cost(x+ 1):

MarginalCost(x+ 1) = Cost(x+ 1)− Cost(x).

• MarginalRevenue(x+ 1) is the change from Revenue(x) to Revenue(x+ 1):

MarginalRevenue(x+ 1) = Revenue(x+ 1)− Revenue(x).

• MarginalProfit(x+ 1) is the change from Profit(x) to Profit(x+ 1):

MarginalProfit(x+ 1) = Profit(x+ 1)− Profit(x).

It is noteworthy that the three examples mentioned are all cases where the cost
of producing the goods has already been set, the goods cannot be saved and sold
later, and any change in revenue adds to the profit.

Example 3.1.2 Marginal functions for widgets.

Interactive²

Figure 3.1.3 Video presentation of marginal revenue for widgets
For my widget company, I have determined that the cost and demand

price functions are:

Cost(q) = 40 + 3q + q2/10

DemandPrice(q) = 30− q/2.

I want to compute the marginal cost, revenue, and profit to produce the
11th and 26th widget. I also want to understand the marginal cost of produc-
ing the 1st widget.

To set up the problem, I recall that we assume we are selling at the de-
mand price, the highest price consumers will pay and still have us sell all we
produce. Thus the formulas for revenue and profit are:

Revenue(q) = (DemandPrice(q)) ∗ q
Profit(q) = Revenue(q)− Cost(q).

I set up my worksheet to compute these values.

https://www.youtube.com/watch?v=ieyBmPqUBE4


3.1. MARGINAL FUNCTIONS AND DIFFERENCE QUOTIENTS 91

Figure 3.1.4
I then create additional columns for the marginal functions.

Figure 3.1.5
Now we simply go back to values and see the values.

MarginalCost(11) = Cost(11)− Cost(10) = 85.1− 80 = 5.1

MarginalRevenue(11) = Revenue(11)− Revenue(10) = 269.5− 250 = 19.5

MarginalProfit(11) = Profit(11)− Profit(10) = 184.4− 170 = 14.4

MarginalCost(26) = Cost(26)− Cost(25) = 185.6− 177.5 = 8.1

MarginalRevenue(26) = Revenue(26)− Revenue(25) = 442− 437.5 = 4.5

MarginalProfit(26) = Profit(26)− Profit(25) = 256.4− 260 = −3.6.

The last equation illustrates the use of marginal functions. While producing and
selling the 26th widget did increase total revenue, the marginal profit was negative,
so I would have been better off if I had made fewer widgets. Notice that the marginal
value of producing the 1st widget is not on the spreadsheet and needs to be dealt
with as a special case. Given our functions we have two reasonable ways to under-
stand the value Cost(0). Either we can assume that there is no cost to not being in a
business, so Cost(0) = 0, and our cost function was only valid for positive numbers,
or that the Cost(0) is understood as the fixed costs, which we have already under-
taken, like a tax or license fee, so Cost(0) = 40 for this problem. Both are reasonable
interpretations. We will need to look at the context of our problem to decide on the
correct interpretation.

²www.youtube.com/watch?v=ieyBmPqUBE4
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Many questions in business can be translated intomaking some function as big or
small as possible, depending on whether we think the value is good or bad. It is thus
often useful to see a graph of both the function of interest and the related marginal
function on the same graph.

Example 3.1.6 Profit and Marginal Profit Together.

Interactive³

Figure 3.1.7 Video presentation of this example
The function Profit(q) = −q2/20+100q−1000 expresses the profit atmy

gadget factory. Plot both profit andmarginal profit together to estimate both
the maximum profit at the factory, as well as the quantity I should produce
to get that profit.
Solution. In setting up the spreadsheet, there are some details to notice.

Since Excel does negation before powers, I need parentheses so −(q2)
is evaluated correctly. Since I suspect I will have to look at a large range of
numbers to find the maximum, I put Profit(q) and Profit(q + 1) as separate
columns. This keeps my marginal operation in a single row and allows com-
putation of Marginal Profit without evaluating for every value of q. We now
look at the graph with both Profit and Marginal Profit. To make the graph
easier to read, a secondary axis is used for profit. This allows us to see where
Marginal Profit crosses the axis.

We see that profit reaches a maximumwhere marginal profit is zero. This
occurs approximately when q is approximately 1000. In that case the profit is
about $50,000. Looking back at the numbers in the spreadsheet, we see that
the maximum profit is closer to $49,000.

https://www.youtube.com/watch?v=P-Y47M9eONI
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The more realistic situation for us to face is one where we are given a collection
of data points. In that situation, we need to first find a best fitting curve and use it
to make predicted values. Then, we can find the marginal function of interest and do
our comparison.

Example 3.1.8 Marginal Profit from Data.

Interactive⁴

Figure 3.1.9 Video presentation of this example
I have the following data on profit and production level for widgets.

Widgets produced 40 50 78 87 95
Profit $7,486.40 $14,505.60 $23,431.60 $23,014.30 $21,258.50

Use Marginal Profit to find the level of production that maximizes profit.
Solution. I put the data into a spreadsheet and find a best fitting curve to
produce a formula. Looking at the data, I will assume that profit is a quadratic
function of the amount produced.

With the formula from the trendline, I can add a column for PredictedProfit(x).
The obvious adjustment produces PredictedProfit(x + 1). It is then easy to
compute the value of MarginalProfit(x+ 1).

³www.youtube.com/watch?v=P-Y47M9eONI

https://www.youtube.com/watch?v=Vk-lG9Lysgo
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Looking at the graph, the maximum is close to x = 80. I simply add some
rows with appropriate values of x to get the desired answer.

When x = 80, the Marginal Profit turns negative. The maximum profit is
$23,492.96, obtained by producing 80 widgets.

3.1.2 Difference Quotients and Average Rate of Change
The marginal value,Mf(x+1), of a function f(x), measures the amount of change
from f(x) to f(x+1). It can also be understood as a special case of the average rate
of change of f(x).

It is easy to see that the average rate of change of f(x) as x goes from a to b
is

f(b)− f(a)

b− a
.

There are a number of situationswherewewant to look at average rate of change
for a period of some other change in the variable. We may have production in thou-
sands or millions of units. If we are looking at monthly or quarterly financial records,
we may want to look at the average rate of change over a year to take into account
the seasonal variation of production.

⁴www.youtube.com/watch?v=Vk-lG9Lysgo
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Example 3.1.10 Rate of Change when denominator is not 1.

Interactive⁵

Figure 3.1.11 Video presentation of this example
We have the following monthly sales data on gizmos.

We want to find the rate of change of monthly sales. If we look at a graph
of the sales data:

I can see that sales are trending upwards, but there is a seasonal varia-
tion added in. Excel will not do a good job of modeling this function with a
trendline. Thus, I want to find a rate of change over a period of 12 months to
eliminate the seasonal variation. To find themost recent trend I use themost
recent data with a time period of 12 months.

Monthly Rate of Change =
Sales(25)− Sales(13)

25− 13

=
1298− 1176

25− 13
=

122

12
≈ 10.

It is worth noting that the need to adjust for the right time period for comparisons
is probably the reason that company revenue reports typically show the previous
quarter as well as the quarter from a year earlier.

⁵www.youtube.com/watch?v=KZ8qy3Q4GWk

https://www.youtube.com/watch?v=KZ8qy3Q4GWk
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3.1.3 An Excel Trick for Difference Quotients

Interactive⁶

Figure 3.1.12 Video presentation of this topic
When creating marginal functions or other difference quotients, we often want

the computations kept in one row, particularly if we want to graph the function and
the marginal function together. A careful arrangement of the columns and the use of
quick fill will make our life easier.

Suppose my revenue function is Revenue(q) = −0.2q2 + 20q − 5 and I want to
compute marginal revenue. Then Revenue(q + 1) = −0.2(q + 1)2 + 20(q + 1) −
5. Experience shows that students will often make a typing mistake in the second
formula, often forgetting parentheses somewhere or forgetting to change one of the
copies of q to q + 1.

Figure 3.1.13
One solution is to add an extra column for q + 1 next to the column for q. Then

the formula for Revenue(q + 1) is obtained by quick filling form the formula for
Revenue(q).

Figure 3.1.14
This trick will be even more useful in the next section when we want to compute

the values of Revenue(q), Revenue(q + 0.001), and Revenue(q − 0.001).

3.1.4 Exercises: Marginal Functions and Difference Quotients Prob-
lems

1. Reading check, Marginal Functions and Difference Quotients. This question
checks your reading comprehension of the material is section 3.1, Marginal
Functions and Difference Quotients„ of Business Calculus with Excel. Based on
your reading, select all statements that are correct. There may be more than
one correct answer. The statements may appear in what seems to be a random
order.

A The marginal value of f(x) is defined to be the change in f(x) as x in-
creases by 1.

B Marginal functions are difference quotients with denominator 1.

⁶www.youtube.com/watch?v=N50HlMfvYSc

https://www.youtube.com/watch?v=N50HlMfvYSc
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C Marginal Revenue(x) is the change from Revenue(x) to Revenue(x+1).

D Marginal Cost at x, or Marginal Cost(x+1) is the change from Cost(x) to
Cost(x+1).

E Marginal Profit(x+1) is the change from Profit(x) to Profit(x+1).

F None of the above
2. If Revenue(q) = 5q, what is the marginal revenue from selling the 10th item?

3. If Profit(q) = −100 + 5q − 0.01q2, what is the marginal profit from selling the
20th item?

4. If Cost(q) = 100 + 7q, what is the marginal cost from selling the 30th item?

5. If Revenue(q) = −500 + 7q − 0.01
√

q3, what is the marginal revenue from
selling the 100th item?

6. If Cost(q) is a constant function what can you say about the marginal cost func-
tion? (Use algebra to find a formula for the marginal function.)

7. If Revenue(q) is a linear function with slope m, what can you say about the
marginal revenue function? (Use algebra to find a formula for the marginal
function.)

Exercise Group. For Exercise 3.1.4.8–3.1.4.13:

(a) Make a chart of the function and the marginal function as q goes from 0 to 30.

(b) Plot the function and the marginal function on the same graph.

(c) From the shape of the graph of the marginal function, decide what kind of
graph it appears to be.

(d) Find the formula for a best fitting curve for the marginal function.

(e) List the regions where the original function is increasing and the regions where
it is decreasing.

(f) List the regions where themarginal function is positive andwhere themarginal
function is negative.

8. Let Cost(q) = 5000 + 23q.

9. Let Revenue(q) = 16q.

10. Let Revenue(q) = −0.3q2 + 10q − 15.

11. Let Profit(q) = −2q2 + 100q − 500.

12. Let Cost(q) = q3 − 4.5q2 + 60q + 100.

13. Let value(q) = 100(0.9)q.

Exercise Group. For problems 13-16 you are given data for a function.

(a) Assuming the function is of the kind specified; find a best fitting curve for the
function and a formula.

(b) Plot the function and the marginal function on the same graph.

(c) From the shape of the graph of the marginal function, decide what kind of
graph it appears to be.

(d) In a textbox, describe your conclusions about the sign of the marginal function
and the rising or falling of the original function.
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14. Assume Profit(q) is a polynomial function of degree 2 and that you have
the following data:

Quantity 30 48 73 149 177
Profit 447 561 669 801 759

15. Assume Profit(q) is a polynomial function of degree 2 and that you have
the following data:

Quantity 105 203 349 535 644
Profit 339 1535 2429 2035 1029

16. Assume ResaleValue(q) is an exponential function and that you have the
following data:

Year 2 4 6 8 10
Resale Value $8,607 $7,593 $6,423 $5,684 $5,051

17. AssumeRetirementBalance(q) is an exponential function and that youhave
the following data:

Year 10 20 30 35 40
Amount $54,713 $143,909 $289,476 $395,709 $533,071

18. The monthly revenue, in thousands of dollars for your company is found to fol-
low:

Revenue(t) = 300 + 5t+ 30 sin(t/6 ∗ π()).

Plot the revenue and marginal revenue. Explain why marginal revenue is
not a good indicator of growth. Plot average rate of change over a 12-month
span and explain why it is a better measure of growth.

19. Historical data for quarterly revenue reports for Microsoft can be found online.
(A good source is http://www.microsoft.com/investor/EarningsAndFinancials/
TrendedHistory/default.asp⁷.) Plot 5 years of data.

(a) Explain why looking at marginal change of revenue from one quarter to
the next is misleading.

(b) Explain how to adjust for this problem.

3.2 Numeric Derivatives and Limits

Link to worksheets used in this section¹
In the previous section, we looked at marginal functions, the difference between

f(x + 1) and f(x). For functions that are only defined at integer values, this is the
obvious way to define a rate of change. However for functions that are defined on
an interval, we would like to use the information at values closer to our value of x.

Intuitively, we would like to be able to zoom in on the graph of f(x) at a point
until the graph looks like a straight line, then pick two points on that line, and find the
slope as the rise over the run. The rate of change is then the slope of the line we have
found. If we could zoom arbitrarily close, this process would give an instantaneous
rate of change, or the derivative of the function at that point.

⁷http://www.microsoft.com/investor/EarningsAndFinancials/TrendedHistory/
default.aspx

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-3-2-Examples.xlsx

http://www.microsoft.com/investor/EarningsAndFinancials/TrendedHistory/default.aspx
http://www.microsoft.com/investor/EarningsAndFinancials/TrendedHistory/default.aspx
external/Examples/Section-3-2-Examples.xlsx
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Definition 3.2.1 Formal derivative at a point.

For a function f(x), the instantaneous rate of change of f(x) at x = x0, or
the derivative of f(x), at x = x0, denoted as f ′(x), is defined as

f ′(x0) = lim
(∆x→0)

f(x0 +∆x)− f(x0)

∆x
,

where limx→a f(x) is understood to be value that f(x) gets arbitrarily close
to by making x arbitrarily close to a.

The symbol∆ is the captial Greek letter Delta, which is commonly used to sig-
nify change in the sciences. Since we can’t easily enter Greek letters into an
Excel worksheet, we will use del x to represent∆x in Excel.

Our task in this section is to turn our intuitive notion and definition and into a
process that lets us find the value, and to find it efficiently.

Example 3.2.2 A simple derivative at a point.

Let f(x) = x2. We would like to find f ′(1).

Interactive²

Figure 3.2.3 Simple Derivative at a Point

Solution 1 (Solution A - Intuitive Definition). We start with our intuitive no-
tion. We want to look at the graph of f(x), zoomed in far enough that the
graph looks like a straight line. I set up a worksheet to look at the graph of
f(x) = x2 near x0 = 1. Since I want to be able to zoom in, I set up the
graph so that it plots points that are multiples of ∆x from x = x0. I also
want to plot the line connecting the points (x0, f(x0)) and (x0, f(x0+∆x))
and notice that the slope of the line connecting these points, the secant line,
is

f(x0 +∆x)− f(x0)

∆x
.

For this example x0 = 1. If∆x = 1, we can see that the function and the
secant line are clearly distinct.

https://www.youtube.com/watch?v=7WCPeUwr8GY
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Figure 3.2.4
The worksheet is designed to make it easy to change the value of∆x.

Figure 3.2.5
Aswe can see, if we let∆x = 1, the slope is 3, but we have not zoomed in

far enough for the graph of f(x) to look like a straight line. Letting∆x = 0.01,
the slope is 2.01, and the graphs of the function and secant line seem to be
the same.

Figure 3.2.6
With some experimentation, taking both positive and negative values of

∆x, we get the following table of values:
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∆x slope ∆x slope
1 3 -1 1
0.1 2.1 -0.1 1.9
0.01 2.01 -0.01 1.99
0.001 2.001 -0.001 1.999

It is clear that as ∆x gets very small, the slope of the secant line gets closer
and closer to 2. Thus f ′(1) = 2.
Solution 2 (Solution B - Numerical Limit). The method of the first solution
takes too much work and requires us to reset a worksheet and keep track of
the slope aswe try a number of values for∆x. Wewould like to create awork-
sheet that simply shows the values of the slope of the secant line for values
of∆x and takes the value that this approaches. We can set up a worksheet
where each line takes∆x from the previous line and divides by 10.

Figure 3.2.7
We get the same value whether we start ∆x at 1 or -1. Once again, we

find f ′(1) = 2.
Solution 3 (Solution C - Calculator Definition). This method of finding the
derivative still has a number of difficulties. In the example above, the exact
answer we want (in this case 2) did not show up in any of our computations.
We also find that if wemake∆x too small, we run into a problem called round
off error. If the next chapter wewill look atmethods that compute derivatives
symbolically, but for this chapter we want an easy method of approximation.
We will use the approximation technique that is used by most graphing cal-
culators when they compute the derivative. They use a “balanced difference
quotient” where we find the slope of the secant line between points∆x be-
fore and after the point we are interested in. As the picture below shows,
compared to either the right secant or the left secant, for most functions the
balanced secant is closer to being parallel to the tangent line.
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We will use the default on calculators, that is we will use∆x = 0.001.

For our example this gives our familiar result that f ′(1) = 2.

We formalize this last approach.

Definition 3.2.8 Calculator Approximation of the Derivative.

f ′(x) ≈ f(x+ .001)− f(x− 0.001)

.002
.

For the rest of this text, when we need to compute a numerical approximation to
the derivative, we will use the calculator approximation of the derivative.

We should note that the calculator rule is an approximation technique, rather
than a definition. It will give a misleading answer for functions that do not approxi-
mate a straight line in a window that is 0.002 wide. In this course, the approximation
will only cause a problem with functions that have corners or cusps, like the func-
tions f(x) = |x| and f(x) = x(2/3) at x = 0. The main advantage of the using the
calculator rule is that it is straightforward enough to compute to allow us to plot a
function and its derivative on a single graph. This allows us to compare the graph of
the function with the graph of the derivative.

²www.youtube.com/watch?v=7WCPeUwr8GY
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Interactive³

Figure 3.2.9 Video Groahing a function and its derivative

Example 3.2.10 A Function and its Derivative.

Compare the graph of f(x) = x2 − 2x + 1 and the graph of its derivative,
using separate axes for the two graphs. What features of the graph of f(x)
can be located by using the graph of f ′(x)?
Solution. Since this problem will serve as a template for a question we will
look at many times, it is worthwhile to look at it in detail. We start by setting
up a workbook that will have the structure we need to compute a chart of
values for f(x) and f ′(x).

Figure 3.2.11
The picture above gives the minimal amount we need to type in. The rest

will be done with quick filling. The entry of cell B1 gives the formula for the
function. In cell D5 we evaluate the function using the first value of x from
cell A5. We have two values of x in cells A5 and A6 so that we can quick fill to
get a list of x values. We use absolute references for∆x, so it will not change
on quick fills. We then fill cells E5 and F5 from cell D5, then fill row 6 from
row 5, then fill the rest of the chart from rows 5 and 6.

It is then a straightforward task to plot the two curves. We notice that the

³www.youtube.com/watch?v=F_9rbxTwCXA

https://www.youtube.com/watch?v=F_9rbxTwCXA
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graph of the function is a parabola. If the derivative is negative, the graph of
f(x) is decreasing. If the derivative is positive, the graph of the function f(x)
is increasing. The graph of f(x) reaches its minimum at the vertex, which is
also where f ′(x) = 0. We also notice that the derivative of this parabola
seems to be a straight line.

Several of our observations from this example work in general.

• Looking at a single point, the derivative of a function is the slope of the line
tangent to the graph at that point.

• The tangent line is a best linear approximation to the graph at a point.

• Looking at the derivative at lots of points, the graph of a function is increasing
when the derivative is positive, and the graph of a function is decreasing when
the derivative is negative.

• For the graph to have a point that is locally a maximum or minimum, the deriv-
ative cannot be positive or negative, so the derivative must either be zero or
undefined for the graph of the function to have a maximum or minimum.

Finding places where functions reach their highest and lowest values is an impor-
tant activity in mathematics. We will look at these applications in more depth in up-
coming sections. The reader is warned that we can have places where the derivative
is zero but the function is still increasing or decreasing.

Example 3.2.12 The derivative of a more complicated function.

Compare the graph of f(x) = x3(x2 − 36) and the graph of its derivative,
using separate axes for the two graphs. What features of the graph of f(x)
can be located by using the graph of f ′(x)?
Solution. The setup for this example is very similar to the last problem.

Since the values of f(x) range between -500 and 1500, we note that f(x)
is the blue graph and uses the axis in the center of the graph. Similarly the
values of f ′(x) range between -500 and 2500, we note that f ′(x) is the red
graph and uses the axis on the side of the graph.

This time we notice three places where the derivative seems to be zero,
when x is near−5, 0, and 5. We use goal seek on the derivative and find that
the derivative is zero when x = −4.648, 0, or 4.648. Looking at the graph of
f(x) at those points, we see that f(x) has a maximumwhen x = −4.648, and
a minimum when x = −4.648. When x = 0, f(x) is neither a maximum nor
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a minimum.

In the next chapter, we will look at ways to find the derivative of a function sym-
bolically. We can already reason our way to symbolically finding the derivative of
simple functions. If our function f(x) is constant or linear, then the graph of the
function is its own tangent line, so the derivative is simply the slope of the graph. For
quadratic functions we noticed that the graph of the derivative seems to be linear. If
we can guess the form of the derivative, we can use trendlines to produce a formula.

Example 3.2.13 Using trendlines to get the formula of a derivative.

Interactive⁴

Figure 3.2.14 Video presentation of this example
Use trendlines to find a formula for the derivative of f(x) = 2x2+5x−7.

Solution. The setup for this example is very similar to the last problem. We
simply change the function. This involves changing the formulas in cells B1
and D5, then using quick copy to change the formulas for the cells in columns
D through F.

Once we have points for the derivative, we add a trendline using a linear
model. We set the options to showboth the formula for the trendline and the
value of R2. The fact that R2 = 1, indicates the trendline we found exactly
fits the data. In the workbook connected to this section there is a page for
Example 6B. It uses parameters for the coefficients on a quadratic formula, so
that you can explore the derivative of a general quadratic function.

A Note on Terminology. It is worthwhile to point out some ambiguity in the terms
used in this section and theprevious section. Wehavebeenusing the termMarginal f(x+
1) for the change f(x+ 1)− f(x), where f(x), might be revenue, or cost, or profit.

⁴www.youtube.com/watch?v=AXSJ1UwTSfk

https://www.youtube.com/watch?v=AXSJ1UwTSfk
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This is the standard definition of amarginal function fromfinance or economics. How-
ever, if you do a web search on “calculus marginal revenue” you will find that most
calculus books treat the marginal function as simply another name for the derivative.
While they are related, they are not the same thing. In the next chapter, we will find
that it is often easier to produce a formula for the derivative of a function rather than
the related marginal function, which is why the derivative is used for the marginal
function. However, in this text, we will stick to the correct definition of marginal
functions.

Summary. The notion of derivative is one of the key concepts of calculus. The con-
cept of the derivative of a function is closely connected to the concept of marginal
function. We gave three ways of understanding the derivative of a function at a point.

Intuitive
understanding

The derivative of f(x), at x = x0 denoted as f ′(x0), is the
slope of the line obtained by zooming in on the graph at
(x0, f(x0)) until it looks like a straight line.

Formal definition The derivative of f(x), denoted as f ′(x), is defined as

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
.

The calculator
approximation

The derivative of f(x), can be approximated using the for-
mula

f ′(x) ≈ f(x+ .001)− f(x− 0.001)

.002
.

Checkpoint 3.2.15 Reading check, 3.2, Numeric Derivatives and Limits,. This ques-
tion checks your reading comprehension of the material is section 3.2, Numeric De-
rivatives and Limits, of Business Calculus with Excel. Based on your reading, select
all statements that are correct. There may be more than one correct answer. The
statements may appear in what seems to be a random order.

A The calculator definition of derivative approximates f ′(x) by (f(x+ 0.001)−
f(x− 0.001))/(0.002).

B The calculator definition of derivative has problems with corners and cusps.

C If the derivative of f(x) is positive, the graph of the function f(x), is increasing.

D For a function f(x), the derivative f ′(x) is defined as the limit as del x ap-
proaches 0 of (f(x+ del x)− f(x))/(del x).

E If the derivative of f(x) is negative, the graph of the function f(x), is increas-
ing.

F The calculator definition of the derivative gives a good approximation for all
functions.).

G None of the above

Exercises: Numeric Derivatives and Limits

Exercise Group. For each specified function and x-value, do the following:
(a) Find a value of∆x small enough that graph of the function looks like a straight

line on the region from 5 ∗∆x before the x-value to 5 ∗∆x after the x-value.
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Graph the function in this region and find the slope of the corresponding secant
line

(b) Estimate the derivative by finding the slope of the secant when ∆x takes the
values 0.1, 0.01, 0.001, 0.0001, -0.1, -0.01, -0.001, and -0.0001. Give a value of
the limit of the slope.

(c) Use the calculator estimate to estimate the slope of the tangent.

(d) Compare the value of the derivative f ′(x)with the corresponding value of the
marginal functionmarginal f(x+ 1).

Comment: For problems 1-10 it makes sense to set up the table once with para-
meters that can be easily changed between problems.

Excel Commands Excel Output
Change∆x (delx) and x-value given depending on the problem, and adjust the

function and the rest will autofill. Once the graph has been added that will update as
well.

1. Use f(x) = x2 + 3 at x = 2.

2. Use f(x) = (3x)2 − 5 at x = −2.

3. Use f(x) = 5(x− 2)2 at x = 3.5.

4. Use f(x) = 7 at x = 5.

5. Use f(x) = 7x− 4 at x = 3.

6. Use f(x) = x3 − 5 at x = 2.

7. Use f(x) = e2x at x = 1.

8. Use f(x) = 2x at x = 3.

9. Use f(x) = ln(x) at x = 5.

10. Use f(x) = x3 − 5 at x = 2.

Exercise Group. For each specified function, do the following:

(a) On a single graph, but using separate axes, graph the function and its derivative.

(b) Using goal seek, identify places where the derivative is 0 in the interval−10 <
x < 10.

(c) For each point where the derivative is 0, tell whether the corresponding point
on the graph of the function is locally a maximum, minimum, or neither.

11. Let f(x) = x3 − 4x.
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12. Let f(x) = x4 − 49x2.

13. Let f(x) = x4 − 7x3.

14. Let f(x) = 5xe−x.

15. Let f(x) = 8xe−x2

.

16. Let f(x) = 3x+ 5.

17. Let f(x) = π2.

18. Let f(x) = x3 − 4x.

Exercise Group. For each specified function, do the following:

(a) On a single graph, but using separate axes, graph the function and its derivative.

(b) Looking at the graph of the derivative, decide what kind of function is an ap-
propriate model for the derivative.

(c) Add a trendline to produce a formula for the derivative.

19. Let f(x) = x3 − 6x2 + 3x.

20. Let f(x) = x4 − 36x2 + x.

21. Let f(x) = e3x.

22. Let f(x) = ln(x).

3.3 Local Linearity

Link to worksheets used in this section¹
The last two sections examined rate of change in both the discrete and continuous

case. The first application for rate of change at a point is to make projections for
values of the function close to that point. We want to find the equation of a linear
function that can be used to approximate our function. This is straightforward using
the point-slope version of a linear equation.

For the discrete case, given a function y = f(x), wherewe know value of,mf(a+
1), the marginal change in f(x) to get to x = a+ 1, then our discrete linear approxi-
mation has the form:

Note the use ofmf to denote the marginal change in f . This notation will be
used throughout this section. We will use linear fa(x) for the linear function
that intersects f(x) at x = a and x = a+ 1.

linear fa(x) = f(a) +mf(a+ 1) ∗ (x− a).

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-3-3-Examples.xlsx

external/Examples/Section-3-3-Examples.xlsx
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In the differentiable case, given a function y = f(x), where we know value of,
f ′(a), the derivative of f(x) at x = a, then our linear approximation has the form:

Linear fa(x) = f(a) + f ′(a) ∗ (x− a).

The two formulas are almost the same. The discrete case uses the slope of a
secant line obtained by looking at points where the x values differ by 1. In the differ-
entiable case we look at the slope of the tangent line. One of the reasons for looking
at the linear approximation of a function is that linear functions are easy to evaluate.

Example 3.3.1 Estimating profit.

The profit from selling 10,000 gizmos is $487,253. We also know that mar-
ginal profit(10001)=$45. Estimate the profit from selling 10,013 gizmos.
Solution. We use the formula from above:

discrete linear profita(x) = Profit(a) +MarginalProfit(a+ 1) ∗ (x− a).

Filling in the values from the problem yields:

discrete linear profit10000(x) = 487253 + 45 ∗ (x− 10000)

discrete linear profit10000(10013) = 487253 + 45 ∗ (13) = 487838.

Thus we estimate the profit from selling 10013 gizmos to be $487,838.
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Example 3.3.2 Estimating square roots.

Interactive²

Figure 3.3.3 Video on linear aproximation of square roots
Use information about f(x) =

√
x near x0 = 100 to estimate the square

roots of 96 through 104. Check the accuracy of your approximations.
Solution. We first use Excel to find the value of the function and its deriva-
tive at 100. For the derivative we use the calculator approximation.

Thus, the linear approximation is

Linear f(x) = f(100) + f ′(100)(x− 100)

= 10 + (0.05)(x− 100).

We can set up the worksheet to compute the approximation and to give
us the error, both as a number and as a percentage of the correct answer.

https://www.youtube.com/watch?v=hhl9vdXWAlk
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It is then straightforward to compute values and check accuracy. On the
given domain, the linear approximation has an error under 0.03%.

Example 3.3.4 Estimating reciprocals.

Interactive³

Figure 3.3.5 Video presentation of this example
Use information about f(x) = 100/x near x0 = 400 to estimate the

reciprocals of the integers from of 396 through 404. Check the accuracy of
your approximations.
Solution. Once again, we use Excel to find the value of the function and its
derivative at 400. For the derivative we use the calculator approximation.

Thus the linear approximation is

Linear f(x) = f(400) + f ′(400)(x− 400)

= .25 + (−0.000625)(x− 400).

It is then straightforward to compute values and check accuracy. On the
given domain, the linear approximation has an error under 0.01%.

²www.youtube.com/watch?v=hhl9vdXWAlk
³www.youtube.com/watch?v=yP4rEOI5xnM

https://www.youtube.com/watch?v=yP4rEOI5xnM
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Example 3.3.6 Estimating exponential functions.

Interactive⁴

Figure 3.3.7 Video presentation of this example
For approximating interestwith continual compounding it is useful to have

a linear approximation of f(r) = exp(r) when r is close to 0. Use informa-
tion about f(r) = exp(r) near r0 = 0 to estimate the exponential function
for numbers near 0. Check the accuracy of your approximations and give a
domain where the approximation is good enough to use.
Solution. Once again, we use Excel to find the value of the function and its
derivative at 0. For the derivative we use the calculator approximation.

Thus the linear approximation is

Linear f(x) = f(0) + f ′(0)(r − 0)

= 1 + (1)(r).

This is much easier to compute than the exponential function. However,
when we check accuracy, we find that it is not very accurate for other integer
values.

That brings us back to the last part of the question, which asks for a do-
main where the approximation is good enough to use. The phrase “good
enough to use” will depend on the setting, but we will be happy with an es-
timate that is within 1%. Since we are going to use this for interest rates, we
are interested in positive rates.

We modify the worksheet to allow a step size, ∆x, to be used. Then we
experiment with step sized till we get a domain where the error is under 1%.

https://www.youtube.com/watch?v=O4vpT6wOgoE
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We see that exp(r) ≈ 1 + r for 0 ≤ r < 0.15. This gives us an approxi-
mation we can use for rates of up to 15%.

The last example illustrates that linear approximations should only be used for
a limited domain. The size of the domain where the linear approximation is “good
enough” will depend on the definition of “good enough” or the acceptable error in
our approximation. The good domain will also depend on how far the graph is from
linear, or how fast it is bending.

Checkpoint 3.3.8 Reading check, Local Linearitys. This question checks your reading
comprehension of the material is section 3.3, Local Linearity, of Business Calculus
with Excel. Based on your reading, select all statements that are correct. There may
be more than one correct answer. The statements may appear in what seems to be
a random order.

A One of the reasons for looking at the linear approximation of a function is that
linear functions are easy to evaluate.

B Linear approximations can always be used for values within 5 of the base point.

C In the discrete case, the linear approximation is a secant line.

D In the discrete case we look at the the linear approximation is the tangent line.

E In the differentiable case, the the linear approximation is the tangent line.

F For a function f(x), the linear approximationof f(x) ata is f(a)+f ′(a)∗(x−a)
where f ′(a) is the derivative of f(x( at a .

G For a function f(x), the discrete linear approximation of f(x) at a is f(a) +
mf(a+ 1) ∗ (x− a) wheremf(a+ 1) is the marginal change of f(x( form a
to a+ 1.

H None of the above

Exercises: Local Linearity

Exercise Group. For Exercise 3.3.1–3.3.5, for the given function and value for x0:

(a) Give the formula for the discrete linear approximation.

(b) Evaluate the approximation at x1.

1. x0 = 10, f(10) = 50,mf(11) = 6, and x1 = 15.

2. x0 = 15, Profit(15) = 50, MarginalProfit(16) = 2, and x1 = 6.

3. x0 = 20, f(19) = 191, f(20) = 200, f(21) = 210, and x1 = 28.

⁴www.youtube.com/watch?v=O4vpT6wOgoE
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4. x0 = 50, Revenue(49) = 1007, Revenue(50) = 1000, Revenue(51) =
994, and x1 = 45.

5. x0 = 100, cost(99) = 3740, cost(100) = 3743, cost(101) = 3754, and
x1 = 112.

Exercise Group. For Exercise 3.3.6–3.3.10, for the given function and value for x0:

(a) Calculate the numeric approximation of the derivative at x0.

(b) Give the formula for the linear approximation at that point.

(c) Evaluate the approximation at x1.

(d) Evaluate the function at x1 and compute the accuracy of the approximation.

6. f(x) = ln(x), x0 = 100, and x1 = 105.

7. g(x) =
√
x, x0 = 81 and x1 = 85.

8. Profit(x) = −x2/10 + 3000x− 7862, x0 = 2000 and x1 = 2050.

9. Revenue(x) = x ∗ ln(x), x0 = 3000 and x1 = 3100.

10. cost(x) = (x ∗ ln(x))/2 + x2/300, x0 = 3000 and x1 = 3100.
11. Let f(x) = (1 + x)r and x0 = 0.

(a) Find the linear approximation of f(x) at x0 for r = 1/3, 1/2,−1 and 2.

(b) Give a rule for the linear approximation for a general value of r.

(c) How accurate is the linear approximation for square and cube roots of
1.1, obtained at x1 = 0.1?

3.4 Optimization

Link to worksheets used in this section¹
In Section 3.2 we noticed that the high and low points of the graph of a function

often coincided with a point where the derivative of the function was 0. In a business
setting, we are often concerned with finding the maximum and minimum values of
a function, because one or the other will be a best, or optimum value. We typically
want tomaximize functions like profit, utility, revenue, andmarket share. We typically
want to minimize functions like cost and liability. We will use the same basic process
to optimize, whether the extremum we are finding is a maximum and minimum.

Recall, we said that the derivative can be thought of as the slope of the apparent
line, obtained by zooming in on the graph of a function. Clearly, we cannot have an
extremum at an interior point of the domain if the derivative is nonzero, because we
could go either higher or lower bymoving a little to the right or left. Thus we can only
have extrema at a critical point, a place when the derivative is zero or undefined, or
at an endpoint where we cannot go both left and right. This gives us a small list of
candidate points for the optimum value.

Our process for optimization will be to find all the candidate points, then to see
which gives the highest and lowest values. When our curve has a point that is a max-
imum or minimum in some interval around the point, we call it a relative maximum
or minimum. If it is the highest or lowest point for the whole domain of the function
it is called a globalmaximum or minimum.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-3-4-Examples.xlsx

external/Examples/Section-3-4-Examples.xlsx
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Example 3.4.1 Profit function for widgets.

Interactive²

Figure 3.4.2 Video presentation of this example
We have determined that the profit function for selling widgets is

Profit(Quantity) = Quantity ∗ (400− Quantity)− 5000,

with the function valid on the interval 0 ≤ Quantity ≤ 500. Find the mini-
mum and maximum profit in the given interval.
Solution 1 (Solution A: without calculus). The first example was chosen be-
cause it can be done without using any calculus, so we solve it with easier
methods first. The profit function is a quadratic function in quantity, so it is a
downward pointing parabola. The location of the vertex is at Quantity = 200,
which we obtain from the coefficients of the quadratic and linear terms. Thus
we need to check this point and the two endpoints. Plugging in values, we get
(0,−5000), (200, 35000) and (500,−55000). Themaximum occurs whenwe
sell 200 widgets and our profit is $35,000, the minimum occurs when we sell
500 widgets and our loss is $55,000. A relative minimum occurs when we sell
0 widgets and our loss is $5,000.
Solution 2 (Solution B: with calculus). We want to set up the problem to be
able to graph the profit function and its derivative on the same graph. We
will us the calculator approximation of the derivative. As we did in the last
section, we set up a worksheet with columns for q, q + .001, q − 0.001, p(q),
p(q + .001), p(q − 0.001), and p′(q). This allows most of the worksheet to
be filled in with quick fill.

We then look at the values, and compare the table to a graph. We find the
same three candidate points and the same maximum and minimum values.

²www.youtube.com/watch?v=Q8w-CjhtcQE

https://www.youtube.com/watch?v=Q8w-CjhtcQE
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For a second example we want to look at a function where we can’t find the max-
imum by algebraic means.

Example 3.4.3 Cumquat oil.

Interactive³

Figure 3.4.4 Video presentation of this example
We have determined that the profit function for selling cumquat oil is

Profit(Quantity) = (10Quantity− 20) ∗ exp(−Quantity/50)− 10.

We understand that the function is valid on the interval 0 ≤ Quantity ≤
400, where the quantity is measured in thousands of pints and profit is mea-
sured in thousands of dollars. Find the minimum and maximum profit in the
given interval.
Solution. The spreadsheet is set up like it was in the first example, but with
the function changed.

Looking at the graph and the chart we expect to find local minima at the
endpoints, and the maximum when q is close to 50. We use goal seek to find
where the derivative is zero. As we see below, Goal Seek does not find a point
where the derivative is zero. Instead it finds a point where the derivative is
“close enough” to zero. By default, “close enough” is understood by Excel as
being within 0.001.

If the default definition of “close enough” is good enough for our pur-
poses, then themaximumprofit of $166,727 occurswhenwe sell 51,998 pints
of oil. (In fact, selling 2 more pints of oil will yield an extra 0.01 cents.) The

https://www.youtube.com/watch?v=6ICUxS6-g0Q
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minimum profit occurs when we sell no product, in which case we have a loss
of $30,000.

Oneof the things to notice about the last example is the robustness of themethod.
From an algebraic point of view, the function was rather ugly. All we needed to know
to use the method was that the function was smooth enough, that when we zoomed
in to a scale of x changing by 0.001 the graph looked like a straight line.

Throughout the section we have looked for places where the derivative is zero
when looking for extrema. We have not paid any attention to how we decide if the
point we find is a local maximum or a local minimum. There are several approaches
we could use. Since we are computing the derivative we could note that a local max-
imum is a place where the function goes from increasing to decreasing, so the deriv-
ative goes from positive to negative. (Similarly, a local minimum is at a place where
the derivative goes from positive to negative.) There is also a test that looks at the
derivative of the derivative. Those tests will be more useful in the next chapter when
we are finding a formula for the derivative by symbolic means. However, with the
numeric technique we are using, the easiest test is that a local maximum is greater
than or equal to points a little bit to both the left and right. We simply plug in points
a little bit to each side to test. Since a change in q of 0.001 makes the graph look like
a flat straight line, we change q by 0.01.

As expected, profit goes down as we move away from our expected maximum.

Example 3.4.5 Gizmo profit.

Interactive⁴

Figure 3.4.6 Video presentation of this example>
A plant can produce between 150 and 300 gizmos. The profit function for

the plant is:

Profit(Quantity) = 4Quantity2 − 1300Quantity+ 125000.

Find the production level that maximizes profit.
Solution. We set up the problemas before, using goal seek on the derivative
to find critical points, and checking the ends of the interval.

³www.youtube.com/watch?v=6ICUxS6-g0Q

https://www.youtube.com/watch?v=BG0W-F1oeXk
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We have three candidates for the extrema, the two endpoints and the
critical point at 162.5. However, by looking at the points to the side of the
critical point, we see it is a local minimum. We also see, that of our 3 can-
didate points, the one that gives the maximum profit is the right endpoint,
when quantity is 300.

For our first three examples we have been trying to find the minimum or
maximum of one-variable functions. Sometimes we need to do a bit of work
to get the function in that format.

Example 3.4.7 Minimizing material costs.

Interactive⁵

Figure 3.4.8 Video presentation of this example
I am manufacturing goop, a liquid that needs to be put in cans. We will

use cans that have a standard cylindrical shape. Find the height and radius of
a 1 liter can that uses a minimal amount of metal surface.

Solution. Using basic geometry we recall the formulas for the volume and
surface area of a cylinder.

volume = πradius2 ∗ height
area = 2πradius2 + 2π ∗ radius ∗ height.

⁴www.youtube.com/watch?v=BG0W-F1oeXk

https://www.youtube.com/watch?v=5MO904y3fOw
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Since I ammeasuring volume in liters, I want tomeasure radius and height
in decimeters so the units work correctly. In order to optimize, we need to
reduce the problem to a single function of a single variable. We are told that
the volume is 1, so we can solve for height as a function of radius, then plug it
into the equation for area. Then, area is a function of a single variable, radius,
and we can find the critical points and check for a minimum.

height = 1/(πradius2)

area = 2πradius2 +
2

radius
.

Since we now have area as a function of the single variable radius we can
take a derivative to find the critical point, then find the optimal shape.

Solving for where the derivative of area is zero, we find the radius of the
can should be 0.5419 deciliters. We plug that value back into the formula for
height in terms of radius and see that the height should be 1.083854 deciliters.
To understand the shape of the can we see that the height is twice the radius,
or the same thing as the diameter of the can. The can is optimally shaped
when it is the shape of a large paint can.

There are three technical details worth mentioning from the last example. First,
in Excel, the best way to put π in a formula is with the constant PI(). Second, the
function for area is defined on an open interval where the radius is positive. There
is no maximum area for a can of fixed volume. (However inefficient our can is, we
can always make it worse, by moving farther from the optimum.) Third, one should
also note that for this problem, we wanted several numbers as part of our answer.
The worksheet for the problem puts the best height and radius at the top, where the
reader can easily find it.

In this last example we had to reduce two equations in two unknowns to a single
equation in one unknown to be able to optimize. We may also need to produce an
equation from data.

⁵www.youtube.com/watch?v=5MO904y3fOw
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Example 3.4.9 Maximized profits and break-even points.

Interactive⁶

Figure 3.4.10 Video presentation of this example
For widget production and sales, we have the following data on profit

based on sales.

Quantity 10 100 200 250 300 400
Profit -$2,083 $31,040 $48,587 $49,845 $46,146 $23,670

Find the break even points and the quantity that maximizes profit.
Solution. From looking at a quick plot of the data, I am going to assume that
the profit function is a downward facing parabola, so I find the best fitting
quadratic polynomial for the data. Using trendlines, my profit function is

Profit(q) = −1.002q2 + 477.22q = 6720.9.

I now set up the table for special values with goal seek. I use starting
points of 20 and 450 for the break even points and 250 for the maximum. To
findbreak evenpoints, I goal seek on theprofit function. Tofind themaximum
point, I goal seek on the derivative of the profit function.

Rounding to the nearestwhole number in each case,mybreak evenpoints
are for selling 15 and 460 widgets. My maximum profit of $50,032 occurs
when I sell 238 widgets.

⁶www.youtube.com/watch?v=wimpz29YypU

https://www.youtube.com/watch?v=wimpz29YypU
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Example 3.4.11 Minimizing expenses.

Interactive⁷

Figure 3.4.12 Video presentation of this example
We are running a business and want to minimize equipment expenses.

For a particular piece of equipment the costs can be broken into initial outlays
to buy the equipment, fixed annual expenses to keep the equipment in the
inventory, and repair costs which we anticipate rising as the equipment gets
older. A widget press costs $10,000 to buy, and the operating expenses are
$500 a year, and the total repair costs are 300t2 over the first t years. What
is the optimal length of time to use a widget press before replacing it?
Solution. My annual cost equation is total cost divided by t. This annual
cost is:

AnnualCost(t) = 10000/t+ 500 + 300t.

I create a spreadsheet that calculates the cost and its derivative over the
first 10 years.

Looking at the data, the minimal annual cost is obtained by keeping the
press between 5.5 and 6.0 years. Using Goal seek on the derivative, I find the
minimal annual cost of $3,964.10 is obtained by keeping the press for 5.77
years.

Checkpoint 3.4.13 Reading check, Optimization. This question checks your reading
comprehension of the material is section 3.4, Optimization, of Business Calculus with
Excel. Based on your reading, select all statements that are correct. There may be
more than one correct answer. The statements may appear in what seems to be a
random order.

A The process for optimization is to find all the candidate points, then to see
which gives the highest and lowest values.

B When a curve has a point that is a maximum or minimum in some interval
around the point, we call it a relative maximum or minimum.

C Wecannot have an extremumat an interior point of the domain if the derivative
is nonzero.

D When a curve has a point that is amaximumorminimum for thewhole domain,

⁷www.youtube.com/watch?v=ioyz19BK6Vk

https://www.youtube.com/watch?v=ioyz19BK6Vk
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we call it an absolute maximum or minimum.

E At points where the derivative is zero we must have a relative maximum or
minimum.

F We can only have extrema at a critical point, a place when the derivative is zero
or undefined, or at an endpoint.

G Every function must have an absolute maximum.

H In a business setting, we are often concerned with finding the maximum and
minimum values of a function, because one or the other will be a best, or opti-
mum value.

I None of the above

Exercises: Optimization

Exercise Group. For the given function and domain:

(a) Plot the function and its derivative on the same graph.

(b) Identify the regions where the function is increasing and the regions where the
function is decreasing.

(c) Identify the local maximum and minimum for the given domain.

(d) Identify the global maximum and minimum for the given domain
1. f(x) = −2x2 + 17x+ 23 on the interval 0 ≤ x ≤ 50.

2. g(x) = −3x2 + 18x+ 25 on the interval 10 ≤ x ≤ 50.

3. h(x) = x3 − 9x+ 12 on the interval 0 ≤ x ≤ 10.

4. k(x) = x3 − 6x2 + 12x+ 5 on the interval 0 ≤ x ≤ 10.

5. m(x) = 5x+ 9 on the interval−10 ≤ x ≤ 30.

6. n(x) = 42 on the interval 0 ≤ x ≤ 10.

7. f(x) = (x− 3) exp(−0.02x) on the interval 0 ≤ x ≤ 100.

8. g(x) = (x3 − 9x)exp(−0.1x) on the interval0 ≤ x ≤ 100.

9. h(x) = 100/x+ 5x on the interval 1 ≤ x ≤ 50.

10. k(x) = 75/x+ 3x2 on the interval 1 ≤ x ≤ 50.
11. The demand price for widgets is given by Price(q) = 300−0.5q. The fixed costs

are $7,500 and the variable costs are $10 per widget.

(a) Give a profit function for widgets. Specify the domain on which the func-
tion makes sense.

(b) Identify the candidate points for maximizing profit.

(c) Give the quantity that maximizes profit along with the maximum profit.
12. The cost equation for gizmos is Cost(q) = 1000+ 3q and the demand function

is Price(q) = 500− 3q. Find the maximum profit.

13. The cost equation for gadgets is Cost(q) = 1000+2q+.0001q2 and the demand
function is Price(q) = 100/(1 + .01q). Find the maximum profit.

14. The cost equation for gizmos is Cost(q) = 10000+10q and thedemand function
is Price(q) = 100/

√
1 + .01q. Find the maximum profit.
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15. Suppose the cost function for your operation is Cost(q) = 10000 + 10q +
20000/(1 + .1q). Find the quantity that minimizes price.

16. Suppose your cost function is Cost(q) = 10000(0.8).1q+.1q2. Find the quantity
that minimizes price.

17. With rental property, a simplifiedmodel of costs spreads the purchase cost over
the time that the property is held and assume that repair costs will rise the
longer the property is held. This gives a formula for annual expenses as

AnnualExpense(t) = (PurchasePrice)/t+ RepairFactor ∗ tr,

where r is a positive number that depends on the type of property. Assume for
carpet cleaners that the replacement cost is $600, that the repair costs in the
first year are $50, and r = 1. Find the length of time the property should be
held to minimize the annual expense.

18. With rental property, a better model factors in the depreciation of the property
and howmuch can be recovered by selling the property used. If we use a 5 year
straight line depreciation the formula becomes

AnnualExpense(t) = (PurchasePrice ∗(1− 0.2t))/t+ RepairFactor ∗ tr.

Repeat the assumptions from the problem above. Assume for carpet cleaners
that the replacement cost is $600, that the repair costs in the first year are $50,
and r = 1. Find the length of time the property should be held to minimize the
annual expense.

19. The annual sales rate for a new toy is found tobe Sales(t) = 10000t2 exp(−t2/16).
Find the month that maximizes sales.

20. Consider the following sales data for your business.

Production level 1903 2424 3065 3424 4076
Profit $828,560.10 $942,625.40 $1,006,167.50 $987,980.40 $929,780.40

(a) Plot the data and find a reasonable best fitting curve for the data.

(b) Find the production level that maximizes profit.

(c) Find the maximum profit.

3.5 An Introduction to Solver

Link to worksheets used in this section¹
We should expect, whenever we look at an operation that is used a lot in the

business world, that Excel will have a fairly simple command to achieve the result.
In section 1.5, we introduced Goal Seek, a tool that is part of Excel, and that can be
used to solve an equation for a root from a given starting point. In the last section, we
noted that one can find candidates for a local maximum or minimum of a function
by finding the derivative and using Goal Seek to find where the derivative is 0. In
this section we introduce Solver, an Add-In to Excel. It is easiest to think of solver as
a more powerful version of Goal Seek. It will be easiest to walk through the use of
Solver while working an example.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-3-5-Examples.xlsx

external/Examples/Section-3-5-Examples.xlsx
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Example 3.5.1 Use Solver to gather information about the graph.

Interactive²

Figure 3.5.2 Using Solver on a simple function
Let f(x) = 9x− x2 + 7 on the interval−1 ≤ x ≤ 14.

Solution. As always, we start by using simpler tools. In this case it is use-
ful to have Excel sketch a graph and to use information we gathered in prior
course. From the form of the function we know the graph is a parabola that
points downwards.

Looking at the chart and the picture we see that the vertex is close to
x = 4.5. We also see that the x-intercepts are close to x = −0.5 and x = 9.5.

Next, we want to make sure that Solver is installed. It should be on the
Analysis section of the Data tab.

Figure 3.5.3
If you don’t find it there, you should go to the online help for Excel, and

look for help on Solver. Under the topic “Define and solve a problem by using
Solver”, select first “Define and solve a problem”, then “If you don’t see Solver
under Analysis on the Data tab”.

We first want to use Solver to find a root. Using the same approach we
usedwith Goal Seek, wewould like cell B5 to be set equal to 0 by changing the
value of cell A5. (As we have set up the problem, we could use solver starting
with any of the cells that give a value for f(x). I chose the one that has f(x)
closest to the desired result.)

https://www.youtube.com/watch?v=vBGPmtXB_VY
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Figure 3.5.4
Solver finds a solution with x = −0.72015. We are given a dialog box

that asks if we want to keep the solver solution or restore our original value.

As with Goal Seek, if we use Solver again, starting with x closer to 9, we
will find a solution x = 9.72015.

We introduce Solver because it can do things would bemore difficult with
Goal Seek. From the graph, and our knowledge or parabolas, we know the
graph has a single maximum. To find the maximum with Goal Seek, we need
to realize that the maximum occurs when the derivative is 0, define the nu-
merical derivative, then set the derivative equal to 0. With Solver, we simply
ask it to find the maximum. It finds the vertex at x = 4.5.

Figure 3.5.5
We also would like to be able to find a minimum. From the picture, we

know that a downward pointing parabola has no absolute minimum. How-
ever, in business, we are typically concerned with functions defined on a fi-
nite domain. For this problem, consider only the interval 0 ≤ x ≤ 15. We
want the minimum to appear in cell B7, so we want to constrain cell A7. If
we start Solver, then hit the add button, we get a dialog box to enter the first
constraint, that A7≥ 0.
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Figure 3.5.6
In a similar manner, we add the constraint that A7 ≥ 15 and ask solver

for a minimum.

Figure 3.5.7
Since we started the search for the minimum at x = 0.5, Solver finds the

minimum at x = 0. This is a “local minimum”. Any x value in the interval that
is close by gives a higher value for the function.

Wewould also like to find theminimumat the other endof the interval. To
do that it is useful to know a bit of the mathematics behind what solver is do-
ing. Solver uses derivatives from the starting point to decide on the direction
it should look and how far it should go to find the next guess for its answer.
This is a modification of a technique called Newton’s method. In terms of our
picture, depending on whether we tell it to find a maximum, minimum, or
specified value, Solver tries to slide up or down the graph until it finds a good
candidate, which it gives us as a solution. It is actually looking for the first
local maximum or minimum it gets to. It does not look for other candidates.
So if we started at x = 0.5, it will slide to the left to find an answer. To find
theminimum at the other end of the interval, we need a starting point where
the graph is already sloping down to the right. Starting at x = 8 should work.
We set up Solver.

Solver finds that the curve had a minimum at x = 15 with f(x) = −83.

To recap, using Solver on the interval 0 ≤ x ≤ 15, we found has a root at x =
9.72015, a maximum at x = 4.5, and local minimums at x = 0 and x = 15. We also
found the values of f(x) at all of those points.

It is worth pointing out that the default setting has ”Make unconstrained variables
non-negative. You generally want to turn that option off.

However, this example was chosen because we could get the same results with
work by simply using the properties of parabolas. Thus, we nowwant to ask the same

²www.youtube.com/watch?v=vBGPmtXB_VY
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questions about a problem we cannot solve algebraically.

Example 3.5.8 A deceptive graph.

Interactive³

Figure 3.5.9 Video presentation of this example
Use solver to gather information, on the interval 0 ≤ x ≤ 15, on the

graph of f(x) = (x3 − 4x2 + 4x+ 3)e(−x/2).
Solution. As always, start by looking at a graph.

From the graph I expect the function has no roots on the interval. It has
local minimums near 0, 2.5, and 10. It has local maximums near 0.5, and 8.
I will need to add constraints to find the local minimums at the boundaries.
To make my worksheet easy to read I add two extra columns for the x and y
values of interesting point, and fill in guesses.

After I use Solver, I find the local minimums occur at 0, 2.326, and 10, and
the local maximums occur at 0.29115 and 7.3827. The maximum value for
the function in the interval is 5.409 and the minimum is 1.0149. We verify
that the endpoints, x = 0 and x = 10, are both local minimums.

https://www.youtube.com/watch?v=80rgSBoubTk
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This function can be used to illustrate a limitation of our method. If we
had graphed the functions at intervals at intervals of size 1 rather than 0.5,
we get a different picture.

In that case, we miss the local maximum at 0.29 and confuse the left end-
point as a local maximum. Since Solver does not use the picture, it will not be
misled by it. This example points out that while the graph is useful for guid-
ance, we need to verify that we have not been misled by not graphing with
enough resolution.

Warning: In Example 3.5.8 we saw that relying on the graph could deceive us.
The flip side is an example where relying on Solver can deceive us. We mentioned
earlier that Solver uses a variant of Newton’s method to find values. In rough terms,
it repeatedly finds the linear approximation and slides up or down that line to the de-
sired answer. If we start close to the answer, this is a very effective method of finding
a numerical solution. However, it is easy to construct problems where this leads to
a blind alley or to the wrong answer. In particular, the method has great difficulty
with problems where the function is not differentiable or where it has several bends.
Consider the following example.

³www.youtube.com/watch?v=80rgSBoubTk
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Example 3.5.10 Deceiving Solver.

Interactive⁴

Figure 3.5.11 Video presentation of this example
Use solver to gather information, on the interval −2 ≤ x ≤ 2, on the

graph of

f(x) =

{
−5x− 3 x < 0

4(x− 1)2 x > 0
.

Solution. As always, start by looking at a graph. We use the IF function to
produce cases.

It is pretty easy to see that the function reaches a maximum of 7 at x =
−2, and has a root at x = −0.6. On this interval the function does not have a
minimum, but it gets close to -3 when x approaches 0 from the negative side.
If we start at x = 0.5 and try sliding up or down the curve, we are going in
the wrong direction to find the root or minimum. To find the maximum we
also need to go down before we can go up to the maximum.

When we look at solver, we get the wrong but expected results. The func-
tion not only fails to have a tangent line at x = 0, it has a jump there. Solver
finds the nearest localmaximumandminimum. For the root, it tells us it can’t
find a feasible solution.

https://www.youtube.com/watch?v=Bc9CGnk9X8I
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The lesson to learn is that solver will help us find our candidate points, but we still
need to understand the functions behavior well enough to give a good starting point.

A preview of things to come — Extrema of functions of two variables. There is
another feature of Solver that we will come back to later in the course. Goal Seek
asked which cell should be changed to reach our desired goal. Solver allows us to
specify a number of cells that we can change. This means it will work with functions
of several variables. This will allow us to shed some light on one of the “black boxes”
we used earlier in this course, the ability of Excel to find a trendline, or best fitting
curve to a set of data.

Example 3.5.12 Use solver to find a best fitting line to a data set.

Interactive⁵

Figure 3.5.13 Video presentation of this example
Find a best fitting line to the following data.

x 1 2 3 4 5
y 35 46 78 84 114

Solution. As wementioned in Section 1.4, when we are asked to find a best
fitting line, we are asked to create a predicting function p(x) = Ax+B, with
A and B chosen to minimize the sum of the squares of the error between
the actual values and the predicted values. We build a worksheet that finds
the sum of squared errors. We start with our variables, A and B, set at 5, an
arbitrary initial guess.

⁴www.youtube.com/watch?v=Bc9CGnk9X8I

https://www.youtube.com/watch?v=EAMhm1ALbv0
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We ask Solver to minimize D11 by changing B2 and B3. For comparison
we ask for the best fitting Trendline using the scatterplot.

We see that we get the same answers, subject to rounding rules.

The Trendline tool has the advantage of being easier to use inmany cases. Finding
the best fitting curvewith solver has the advantage of showingwhat wemean by best
fitting. It will also work with models that may not have been programmed into the
Trendline tool.

Checkpoint 3.5.14 Reading check, Optimization. This question checks your reading
comprehension of the material is section 3.5, An Introduction to Solver, of Business
Calculus with Excel. Based on your reading, select all statements that are correct.
There may be more than one correct answer. The statements may appear in what
seems to be a random order.

A Solver can run into problems when it has to move across a bend in the curve to
find a solution.

B Solver is more versatile than Goal Seek.

C Solver can be used on functions of 2 variables.

D Solver uses a version of Newton’s method to find extrema.

E Solver will only find a root if the function actually has one.

F Solver can find the minimum of any function.

G It is easiest to think of solver as a more powerful version of Goal Seek.

H None of the above

Exercises: An Introduction to Solver

Exercise Group. In Exercise 3.5.1–3.5.7 you are given a function and an interval it is
defined over:

⁵www.youtube.com/watch?v=EAMhm1ALbv0
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(a) Make a chart of values and plot a graph of the function.

(b) Find any roots for the function.

(c) Find relative maxima and minima for the function. (Remember to include the
endpoints.).

(d) Find the absolute maximum and minimum of the function on the interval.

1. f(x) = x2 − 10x+ 9, on the interval 0 ≤ x ≤ 10.

2. g(x) = 10x ∗ (4/5)x − 1, on the interval 0 ≤ x ≤ 10.

3. h(x) = (3000 + 200x)(0.97)x, on the interval 0 ≤ x ≤ 100.

4. The revenue function, Revenue(q) = (500 − 3q)(q), on the interval 0 ≤
q ≤ 200.

5. The profit function, Profit(q) = (500−3q)(q)−(12q+600), on the interval
0 ≤ q ≤ 200.

6. The profit function obtained as the best fitting quadratic curve for the fol-
lowing data.

Quantity 157 513 702 842 995
Profit 143,814 314,801 322,223 279,988 189,263

on the interval 0 ≤ Quantity ≤ 1200.
7. The cost function obtained as the best fitting cubic curve for the following

data.

Quantity 2 6 9 12 15
Cost 487 539 532 541 626

on the interval 0 ≤ Quantity ≤ 16.

Exercise Group. In Exercise 3.5.8–3.5.10 you are given a function that and an interval
it is defined over.

(a) Make a chart of values and plot a graph of the function.

(b) Visually identify approximate local maxima and minima.

(c) Find a reasonable range of starting points fromwhich Solver will find each local
maximum or minimum.

8. f(x) = −0.25x4 + 5.3x3 − 36x2 + 90x− 15, on the interval 0 ≤ x ≤ 15.
9.

g(x) =

{
4x− 10 x < 5

2(x− 7)2 x > 5

on the interval 0 ≤ x ≤ 10.
10.

h(x) =

{
−4 ∗ (x− 2)2 x < 6

2(x− 7)2 − 10 x > 6

on the interval 0 ≤ x ≤ 10.



Chapter 4

Symbolic Differentiation

In the last chapter we approximated derivatives by using a balanced difference quo-
tient. For most functions that gave an easy approximation without any rules other
than the conceptual understanding that we obtained the derivative by zooming in
far enough for the graph to look like a straight line. When we looked at the deriva-
tive at many points we found that for polynomials of degree 2 or less, the derivative
seems to be a polynomial of one degree lower. In this chapter we explore rules for
symbolic differentiation. This lets us move from a function defined by a formula to
its derivative defined by a formula without going through the work of finding best
fitting curves. It also will work with a many functions where Excel will not have the
appropriate choice available if we want to fit a curve.

4.1 Elementary Derivatives

4.1.1 Definition and Notation
Link to worksheets used in this section¹

We start by recalling the formal definition, with a slight adjustment in notation to
match the standard conventions:

Definition 4.1.1 Derivative.

For a function f(x), the instantaneous rate of change of f(x), or the deriva-
tive of f(x), denoted as f ′(x), is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

We also want to recall some alternate notations we may use.

Notation: Let y = f(x).
The derivative of f(x) is denoted as f ′(x) or d

dxf(x)or dy/dx.
The derivative at x = x0 is denoted as f ′(x0) or dy

dx |x=x0
.

As is typical in mathematics, when there are several forms, we use the one that
makes the most sense in the case on which we are working.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-4-1-Examples.xlsx
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4.1.2 Derivatives of monomials
Our first rule for symbolic differentiation gives the derivative of a monomial.

Claim 4.1.2 Monomial rule.

If f(x) = axn, then f ′(x) = n ∗ a ∗ xn−1.

This rule is a generalization of the rule we found in section 3.2 using trendlines.
There we noticed that the derivative is linear whenever the function is quadratic. The
rule is valid for all values of n, not just for positive whole numbers. We can now find
derivatives for expressions that can be converted into this form.

Example 4.1.3 Derivatives of monomials.

Using our first rule of symbolic differentiation, find the derivatives of the fol-
lowing functions:

(a) f(x) = 3x

(b) g(x) = 5x2

(c) h(x) = 7x25

(d) j(x) = 6
√
x

(e) k(x) =
4

x3

Solution. Using our rule:

(a)
d

dx
f(x) =

d

dx
(3x1) = 1 ∗ 3x0 = 3.

(b)
d

dx
g(x) =

d

dx
(5x2) = 2 ∗ 5x1 = 10x.

(c)
d

dx
h(x) =

d

dx
(7x25) = 25 ∗ 7x24 = 175x24.

(d)
d

dx
j(x) =

d

dx
(6
√
x) =

d

dx
(6x1/2) = 1/2 ∗ 6x−1/2 = 3x−1/2 =

3√
x

(e)
d

dx
k(x) =

d

dx

4

x3
= d/dx(4x(−3)) = −3 ∗ 4x−4 = −12x−4 =

−12

x4

For parts (d) and (e), we converted roots and fractions so they looked like mono-
mials with negative or fractional exponents and applied our rule.

Probably the most convincing demonstration of the truth of this rule is for us to
use Excel and the techniques of the last chapter to find a function, its numeric and
symbolic derivatives and see that the symbolic and numeric derivatives are the same
up to round off error. We would also like to see how the symbolic derivative can be
derived from the formal definition of derivative in simple cases.

Example 4.1.4 Derivatives of linear functions.

From the formal definition of derivative, if f(x) = ax+b, then show f ′(x) =
a.



4.1. ELEMENTARY DERIVATIVES 135

Solution. Using our definition:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(a(x+ h) + b)− (ax+ b)

h

= lim
h→0

(ax+ ah+ b)− (ax+ b)

h

= lim
h→0

ah

h
=

(
lim
h→0

a

1

)(
lim
h→0

h

h

)
= lim

h→0
a = a.

The last step is justified by noting that as h gets very small the value of a
simply stays a.

We want to look at a quadratic function, since we will need to take a limit in that
case.

Example 4.1.5 A quadratic derivative.

From the formal definition of derivative, if f(x) = ax2, then show f ′(x) =
2ax.
Solution. Using our definition:

f ′(x) = limh→0
f(x+ h)− f(x)

h

= lim
h→0

(a(x+ h)2)− (ax2)

h

= lim
h→0

(ax2 + 2ahx+ ah2)− (ax2)

h

= lim
h→0

2ahx+ ah2

h
= lim

h→0

h(2ax+ ah)

h

= lim
h→0

(2ax+ ah) = 2ax.

The last step is justified by noting that as h gets very small the value of ah
also gets very small.

We canmodify this last example to find a formula for the derivative of f(x) = xn

for any positive integer n. We recall that

(x+ h)n = xn + nx(n−1)h+ terms involving h2.

We are ready to generalize.

Example 4.1.6 Derivative of power function.

From the formal definition of derivative, if f(x) = axn, then show f ′(x) =
nax(n−1).
Solution. Using our definition:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
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= lim
h→0

(a(x+ h)n)− (axn)

h

= lim
h→0

(a(xn + nxn−1h+ terms involving h2)− (axn)

h

= lim
h→0

a(nxn−1h+ terms involving h2)

h

= lim
h→0

a(nxn−1 + terms involving h)

= anxn−1.

The last step is justified by noting that as h gets very small, the value of h
times a polynomial in h also gets very small.

4.1.3 Derivatives of Exponential Functions

Claim 4.1.7 Exponential Rule.

If f(x) = a ∗ ex, then f ′(x) = a ∗ ex.

The elegance of this rule is part of the reason why mathematicians and math
books like base e for exponential functions. However we more typically want to use
exponential functions based on a rate of growth or decay.

Claim 4.1.8 General Exponential Rule.

If f(x) = b ∗ ax, then f ′(x) = b ∗ ln(a) ∗ ax.

Example 4.1.9 Exponential examples.

Using the exponential rules of symbolic differentiation, find the derivatives of
the following functions:

(a) f(x) = 2ex

(b) g(x) = πex

(c) h(x) = 7 ∗ 2x

(d) j(x) = 5 ∗ (1.06)x

(e) k(x) = 9 ∗ (0.97)x

Solution. Using our rule:

(a)
d

dx
f(x) =

d

dx
(2ex) = 2ex.

(b)
d

dx
g(x) =

d

dx
(πex) = πex.

(c)
d

dx
h(x) =

d

dx
(7 ∗ 2x) = 7 ∗ ln(2) ∗ 2x

(d)
d

dx
j(x) =

d

dx
(5 ∗ (1.06)x) = 5 ∗ ln(1.06) ∗ (1.06)x

(e)
d

dx
k(x) =

d

dx
(9 ∗ (0.97)x) = 9 ∗ ln(0.97) ∗ (0.97)x
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In someways, themost convincing argument for these rules is to use Excel to plot
the function, its numeric derivative and its symbolic derivative for a variety of values
and see that the numeric and symbolic derivatives are the same up to rounding error.
We would also like to make an argument from the formal definition of the derivative.

Example 4.1.10 Justification of first exponential rule.

From the formal definition of derivative show that if f(x) = ex, then f ′(x) =
ex.
Solution. Using our definition:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

e(x+h) − ex

h

= lim
h→0

ex(eh − 1)

h

= ex
(
lim
h→0

eh − 1

h

)
.

It suffices to show that limh→0
eh−1
h = 1. This can be done by starting

with a formal definition of e. For this class it can also be done by using Excel
to evaluate the expression for smaller and smaller values of h.

It seems clear that limh→0
eh−1
h = 1.

Example 4.1.11 Justification of second exponential rule.

From the formal definition of derivative, if f(x) = ax, then show f ′(x) =
ln(a) ∗ ax.
Solution. We start by mimicking the last problem. At a key step we will
recall that by replacing h with h ln(a) in our previous justification, we obtain
ax =

(
eln(a)

)x
= eln(a)x = ex ln(a). We also want to note that(

lim
h ln(a)→0

eh ln(a) − 1

h ln(a)

)
=

(
lim
h→0

eh − 1

h

)
= 1.

Using our definition:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

a(x+h) − ax

h
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= lim
h→0

ax(ah − 1)

h

= (ax)

(
lim
h→0

ah − 1

h

)
= (ax)

(
lim
h→0

(ln(a))
eh ln(a) − 1

h ln(a)

)
= (ax ln(a))

(
lim

h ln(a)→0

eh ln(a) − 1

h ln(a)

)
= (ax ln(a))

(
lim
h→0

eh − 1

h

)
= ax ln(a).

We are most likely to see exponential functions in the context of continuously
compounding interest.

Example 4.1.12 Computing future rate of change.

If I have a dollar in the bank at an effective annual interest rate of 6%, com-
pounded continuously, at what rate is the principal increasing after ten years?
Solution. We know f(x) = (1.06)x. Thus f ′(x) = ln(1.06)(1.06)x. We
evaluate this at 10 years and get f ′(10) = ln(1.06)(1.06)10 = .10435074.
Thus after 10 years, I am earning a little more than 10 cents a year.

4.1.4 Derivatives of Logarithmic Functions
For a last rule for this section we want to find the derivative of f(x) = a ln(x).

Claim 4.1.13 Logarithmic Rule.

If f(x) = a ln(x), then f ′(x) = a/x.

Example 4.1.14 Derivatives of logarithmic functions.

Using the logarithmic rule of symbolic differentiation, find the derivatives of
the following functions:

(a) f(x) = 2 ln(x)

(b) g(x) = 3 ln(x2)

(c) h(x) = 5 ln(1/x)

Solution. Using our rule:

(a)
d

dx
f(x) =

d

dx
(2 ln(x)) = 2/x.

(b)
d

dx
g(x) =

d

dx
(3 ln(x2)) =

d

dx
(3 ∗ 2 ln(x)) = 6/x.

(c)
d

dx
h(x) =

d

dx
(5 ln(1/x)) =

d

dx
(−1 ∗ 5 ln(x)) = −5/x.
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Our argument for this derivative rule will be more geometric.

Example 4.1.15 Justification of logarithmic rule.

If f(x) = ln(x), then show f ′(x) = 1/x.
Solution. We start by noticing that y = ex and y = ln(x) are inverse func-
tions. That means their graphs can be obtained by reflecting across the line
y = x.

The slope of the tangent line at (a, ea) is ea by the exponential rule. Sym-
metry tells us the slope of the line tangent to y = ln(x) at (ea, a) is 1/ea.
Letting b = ea, the slope of the line tangent to y = ln(x) at (b, ln(b)) is 1/b.
Thus d

dx (ln(x)) = 1/x.

Example 4.1.16 Slope of a tangent line.

Find the slope of the line tangent to y = ln(x) at x = 10. Compare your
answer to the estimate given by the approximation techniques of the last
chapter.
Solution. Since f(x) = ln(x), f ′(10) = 1/10 = 0.1. When I use Excel to
compute (f(10.001)− f(9.999))/.002 I get 0.1000000003.

4.1.5 Exercises: Elementary Derivatives Problems
1. Reading check, Elementary Derivatives. This question checks your reading

comprehension of the material is section 4.1, Elementary Derivatives, of Busi-
ness Calculus with Excel. Based on your reading, select all statements that are
correct. There may be more than one correct answer. The statements may
appear in what seems to be a random order.

A If f(x) = a ∗ xπ then f ′(x) = a ∗ ln(pi) ∗ xπ.

B If f(x) = a ∗ ln(xn) then f ′(x) = a ∗ n/xn−1.

C If f(x) = a ∗ xn then f ′(x) = n ∗ a ∗ xn−1.

D If f(x) = a ∗ ex then f ′(x) = a ∗ ex.

E The monomial rule for taking the derivative of f(x) = a∗xn is only valid
when n is an integer.
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F If f(x) = b ∗ ax then f ′(x) = b ∗ ln(a) ∗ ax.

G If f(x) = a ∗ ln(x) then f ′(x) = a/x.

H None of the above

Exercise Group. In the following exercises, use the symbolic rules to find the deriva-
tive of the function.

2. f(x) = x5

3. g(x) = 7/x3

4. h(x) = 3
√
(x7)

5. f(x) = 2xπ

6. k(x) = 17

7. m(x) = 9x−5

8. f(x) = x2
√
x

9. g(x) = ln(x)

10. h(x) = ex

11. k(x) = 5x

12. m(x) = 1.03x

13. n(x) = (0.9)x

Exercise Group. For the following exercises, use the symbolic rules to find the deriv-
ative at the specified point. Use Excel to find the numeric approximation using the
“calculator formula.” To how many digits do the two methods agree?

14. f(x) = x2. Evaluate at x = 2.

15. g(x) = 5x. Evaluate at x = 7.

16. h(x) = 1.06x. Evaluate at x = 10.

17. f(x) = ex. Evaluate at x = 5.

18. k(x) = ln(x). Evaluate at x = 100.

19. m(x) = 3/x. Evaluate at x = π.

Exercise Group. Find tangent lines to the given curves at the indicated points.

20. f(x) = 3x4. At x = 1.

21. g(x) = ax. At x = b.

22. h(x) = 1.05x. At x = 20.

23. f(x) = ex. At x = 1.

4.2 Derivative Rules for Combinations of Functions

In the last section we learned rules to symbolically differentiate some elementary
functions. To summarize, we have established 5 rules.
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Elementary Formulas.

If f(x) = a, then f ′(x) = 0.
If f(x) = ax, then f ′(x) = a.
If f(x) = a ∗ xn, then f ′(x) = a ∗ n ∗ xn−1, for any nonzero number n.
If f(x) = ex, then f ′(x) = ex.
If f(x) = ax, then f ′(x) = ax ln(a).
If f(x) = ln(x), then f ′(x) = 1/x

However, we do not yet have a rule for taking the derivative of a function as sim-
ple as f(x) = x + 2. Rather than producing rules for each kind of function, we
wish to discover how to differentiate functions obtained by arithmetic on functions
we already know how to differentiate. This would let us differentiate functions like
f(x) = 5x3 +3x2 +1, or g(x) = (x+2)1.03x, or F (x) = ln(x)/(x+3), which are
built up from our elementary functions. We want rules for multiplying a known func-
tion by a constant, for adding or subtracting two known functions, and formultiplying
or dividing two known functions.

4.2.1 Derivatives of scalar products
We start by differentiating a constant times a function.

Claim 4.2.1 Scalar multiple rule.

The derivative of c ∗ f(x) is c ∗ f ′(x). In other words,

[c ∗ f(x)]′ = c ∗ f ′(x).

Example 4.2.2 Derivatives of constants times standard functions.

Find the derivatives of the following functions:

(a) f(x) = 2ex

(b) g(x) = 500(1.05)x

(c) h(x) = ln(x7)

Solution. Using our rule:

(a) f ′(x) = 2[ex]′ = 2ex.

(b) g′(x) = 500[(1.05)x]′ = 500(1.05)x ln(1.05).

(c) h′(x) = [ln(x7)]′ = [7 ln(x)]′ = 7[ln(x)]′ = 7/x.

4.2.2 Derivatives of sums and differences
Next we want to look at the sum or difference of two functions.

Claim 4.2.3 Sum and difference rule.

The derivative of f(x)± g(x) is f ′(x)± g′(x). In other words,

[f(x)± g(x)]′ = f ′(x)± g′(x).
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Example 4.2.4 Derivatives of sums and differences of standard functions.

Find the derivatives of the following functions:

(a) f(x) = 5x3 + 3x2 − 7

(b) g(x) = 100ex − 1000(1.03)x

(c) h(x) = 5
√
x+ 2/

√
x− 7x−3

Solution. Using our rule:

(a) f ′(x) = [5x3]′ + [3x2]′ − [7]′ = 15x2 + 6x− 0.

(b) g′(x) = 100[ex]′ − [1000(1.03)x]′ = 100ex − 1000(1.03)x ln(1.03).

(c)

h′(x) = 5[x1/2]′ + 2[x−1/2]′ − 7[x−3]′

= 5/2x−1/2 − x−3/2 + 21x−4

=
5

2
√
x
− 1√

x3
+

21

x4
.

Theory and justification. The basic argument for all of our rules starts with local
linearity. Recall that if f(x) is differentiable at x0, then in a region around x0, we
can approximate f(x) by a linear function, f(x) ≈ f ′(x0)(x− x0) + f(x0). To find
the derivative of a scalar product, sum, difference, product, or quotient of known
functions, we perform the appropriate actions on the linear approximations of those
functions. We then take the coefficient of the linear term of the result.

For our first rule we are differentiating a constant times a function. Following the
general method we look at how we multiply a constant times the linear approxima-
tion.

c ∗ (f ′(x0)(x− x0) + f(x0)) = (cf ′(x0))(x− x0) + (cf(x0)).
Taking the coefficient of the linear term gives the scalar multiple rule, the de-

rivative of a constant times a functions is the constant times the derivative of the
function.

Next, we want to look at the sum or difference of two functions. Following the
general method we look at the sum or difference of the linear approximations.

(f ′(x0)(x− x0) + f(x0))± (g′(x0)(x− x0) + g(x0))

= (f ′(x0)± g′(x0))(x− x0) + (f(x0)±g(x0)).

Taking the coefficient of the linear term gives the sumor difference rule, the deriv-
ative of a sumor difference of two functions is the sumor difference of the derivatives
of the functions.

4.2.3 Derivatives of products
We now turn our attention to the product of two functions.

Claim 4.2.5 Product rule.

The derivative of f(x) ∗ g(x) is f ′(x)g(x) + f(x)g′(x). In other words,

[f(x) ∗ g(x)]′ = f ′(x) ∗ g(x) + f(x) ∗ g′(x).
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Warning: Note that the derivative of a product is not the product of the deriva-
tives!

We start with an example that we can do by multiplying before taking the deriva-
tive. This gives us a way to check that we have the rule correct.

Example 4.2.6 Simple derivative of a product.

Let f(x) = x and g(x) = x2. Find the derivative of f(x) ∗ g(x).
Solution. Note that f(x)∗g(x) = x3. Using our rule for monomials (f(x)∗
g(x))′ = (x3)′ = 3x2. Using the same rule we see f ′(x) = 1, and g′(x) =
2x. We can now evaluate using the product rule:

(f(x) ∗ g(x))′ = f ′(x) ∗ g(x) + f(x) ∗ g′(x)
= (1) ∗ (x2) + (x) ∗ (2x) = 3x2.

Both methods give the same answer. Note that the product of the derivatives is
2x which is NOT the derivative of the product.

Example 4.2.7 General derivatives of products.

Find the derivatives of the following functions:

(a) f(x) = (6x+ 100) ∗ (1.06)x.

(b) g(x) =
√
x ln(x).

Solution.

(a)

f ′(x) = (6x+ 100)′ ∗ (1.06)x + (6x+ 100) ∗ ((1.06)x)′

= (6) ∗ (1.06)x + (6x+ 100) ∗ (1.06)x ln(1.06).

(b) g′(x) = [
√
x]′ ln(x) +

√
x[ln(x)]′ = [1/(2

√
x)] ln(x) +

√
x[1/x].

Theory and justification. Following the general rule we look at the linear term of
the product of the linear approximations. Consider the product of two linear expres-
sions.

(ax+ c)(bx+ d) = abx2 + (ad+ bc)x+ cd.

The coefficient of the linear term is (ad+ bc). Thus, when we take the product

(f ′(x0)(x− x0) + f(x0)) ∗ (g′(x0)(x− x0) + g(x0)),

the coefficient of the linear term is

f ′(x0)g(x0) + f(x0)g
′(x0).

4.2.4 Derivatives of quotients
Finally, we turn our attention to the quotient of two functions.
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Claim 4.2.8 Quotient rule.

The derivative of f(x)
g(x) is

f ′(x)g(x)−f(x)g′(x)
(g(x))2 . In other words,[

f(x)

g(x)

]′
=

f ′(x) ∗ g(x)− f(x) ∗ g′(x)
(g(x))2

.

Warning: Once again, note that the derivative of a quotient is NOT the quotient
of the derivatives!

Example 4.2.9 Simple derivative of a quotient.

For our first example we look at a case that we dane do without the quotient
rule by simplifying first. This lets us check our answer. Let f(x) = x2 and
g(x) = x. Find the derivative of f(x)/g(x).
Solution. We start by simplifying. Note that f(x)/g(x) = x. Using our rule
for monomials, (f(x) ∗ g(x))′ = (x)′ = 1.

Nowweuse thequotient rule directly. Using the same rulewe see f ′(x) =
2x, and g′(x) = 1. Using the quotient rule:

(f(x)/g(x))′ =
f ′(x) ∗ g(x)− f(x) ∗ g′(x)

(g(x))2

=
(2x) ∗ (x)− (x2) ∗ (1)

x2
=

x2

x2
= 1.

Both methods give the same answer.

Note that the quotient of the derivatives is 2x, which is not the same as the de-
rivative of the quotient.

Example 4.2.10 General derivatives of quotients.

Find the derivatives of the following functions:

(a) f(x) = ((6x2 + 100))/(x3 + x).

(b) g(x) = (1.07)x/(3x+ 5).

Solution.

(a) f ′(x) =

(
6x2 + 100

x3 + x

)′

=
(12x)(x3 + x)− (6x2 + 100)(3x2 + 1)

(x3 + x)2

(b) g′(x) =

(
1.07x

3x+ 5

)′

=
(ln(1.07)1.07x)(3x+ 5)− (1.07x)(3)

(3x+ 5)2

Theory and justification. Following the general method, we look at the linear term
of the quotient of the linear approximations. However, we need to do an algebraic
trick before we can find the linear term. Consider the quotient of two linear expres-
sions:

a+ cx

b+ dx
=

(a+ cx)(b− dx)

(b+ dx)(b− dx)
=

ab+ (cb− ad)x− cdx2

b2 − d2x2
.

When x is small enough, we get a good approximation by ignoring the x2 term.
In that approximation, the coefficient of the linear term is (cb−ad)

b2 . Thus, when we
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take the quotient,
f ′(x0)(x− x0) + f(x0)

g′(x0)(x− x0) + g(x0)
,

the coefficient of the linear term is

f ′(x0)g(x0)− f(x0)g
′(x0)

(g(x0))2
.

4.2.5 Exercises: Derivative Rules for Combinations of Functions Prob-
lems

1. Reading check, Derivative Rules for Combinations of Functions. This question
checks your reading comprehension of the material is section 4.2, Derivative
Rules for Combinations of Functions, of Business Calculus with Excel. Based on
your reading, select all statements that are correct. There may be more than
one correct answer. The statements may appear in what seems to be a random
order.

A The derivative of f(x) ∗ g(x) is f ′(x) ∗ g′(x).

B The derivative of f(x) ∗ g(x) is f ′(x) ∗ g(x) + f(x) ∗ g′(x).

C The derivative of f(x)− g(x) is f ′(x)− g′(x).

D The derivative of f(x)/g(x) is f(x)∗g′(x)−f ′(x)∗g(x)
(g(x)2 .

E The derivative of f(x)/g(x) is f ′(x)∗g(x)−f(x)∗g′(x)
(g(x)2 .

F The derivative of f(x)/g(x) is f ′(x)/g′(x).

G The derivative of f(x) + g(x) is f ′(x) + g′(x).

H The derivative of c ∗ f(x) is c ∗ f ′(x).

I None of the above

Exercise Group. Use the rules from the last two sections to find the derivatives of
the following functions.

2. f(x) = 3x5 + 7x4 + 5x+ 9.

3. g(x) = 10x123 + 19x50 − 5x4 − 2x−7.

4. h(x) = 2x+ 3
√
x− 5 3

√
x.

5. k(x) = ex + 8x + πx − 1.07x.

6. m(x) = (x3 + 5x2 − 7)(x2 − 3).

7. n(x) = (10x− 9)(x5 +
√
x).

8. f(x) = ex ln(x).

9. g(x) = 1.07x(10x− 15).

10. h(x) = (ax+ b)(cx+ d)(ex+ f).

11. k(x) = 1.04xex.

12. m(x) = (x2−5x)
(x2+3) .

13. n(x) = (x2−5x+3)
ex .
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14. f(x) = ln(x))
(2x+7) .

15. g(x) = (x3+2x+9)
1.07x .

16. h(x) = (ax+b)
(cx+d) .

17. k(x) = ((3x+5)(x2+7))
(x2+2x) .

18. m(x) = ln(x)(1.04x)
3x2+7 .

19. m(x) = 1.06xex

1.08x

Exercise Group. For the following problems, use the following data to find the indi-
cated derivative.

x 0 1 2 3 4 5 6 7 8 9
f(x) 3 5 7 1 9 8 4 2 0 6
f’(x) 7 6 5 4 3 2 1 0 9 8
g(x) 8 4 0 6 2 9 5 1 7 3
g’(x) 6 8 4 2 0 7 9 3 5 1

20. h′(2), where h(x) = f(x) ∗ g(x).
21. h′(5), where h(x) = f(x)− g(x).

22. h′(7), where h(x) = f(x)/g(x).

23. h′(4), where h(x) = g(x)/f(x).

24. The profit function at the widget factory is Profit(q) = −q2+300q−2500. Find
the maximum profit.

25. The demand function for a fad item is Demand(t) = 100t2(0.8)t, with t mea-
sured in months. When is the demand the highest?

26. The cost function for gizmo production is Cost(q) = 3000 + 10q − 0.02q2, for
q ≤ 200. Find the equation of the line tangent to the cost function at q = 200.

27. The formula for the current value of a particular revenue stream is Value(t) =
.95−t(3000 + 25t). Find the equation of the line tangent to the cost function
at t = 10.

4.3 The Chain Rule

In the last two sections we learned rules to symbolically differentiate some functions.
To summarize, we have established some elementary formulas and some arithmetic
rules.

Elementary Formulas.

If f(x) = a, then f ′(x) = 0.
If f(x) = ax, then f ′(x) = a.
If f(x) = a ∗ xn, then f ′(x) = a ∗ n ∗ xn−1, for any nonzero number n.
If f(x) = ex, then f ′(x) = ex.
If f(x) = ax, then f ′(x) = ax ln(a).
If f(x) = ln(x), then f ′(x) = 1/x
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Arithmetic derivative rules.

Arithmetic derivative rules:
Scalar multiple rule: The derivative of c ∗ f(x) is c ∗ f ′(x).
Sum and difference rule: The derivative of f(x)± g(x) is f ′(x)± g′(x).
Product Rule: The derivative of f(x)g(x) is f ′(x)g(x) + f(x)g′(x).
Quotient Rule: The derivative of f(x)/g(x) is f ′(x)g(x)−f(x)g′(x)

(g(x))2 .

The other way we traditionally build functions from simpler functions is by use
of composition. We want to be able to take derivatives of functions like (2x + 3)52,√
(x2) + 5x+ 7, and 1.06.2x.

Claim 4.3.1 Chain rule.

The derivative of f(g(x)) is f ′(g(x))g′(x). In other words,

[f(g(x))]
′
= f ′(g(x)) ∗ g′(x).

Example 4.3.2 Simple chain rule.

Find the derivative of the following functions:

(a) f(p) = (p3 + 2p+ 5)7.

(b) g(q) =
√
q2 + 6.

(c) h(x) = e2x+5.

Solution.

(a) We could do this problem by expanding it to a polynomial and using
rules from the previous section, but that is much too hard. We can
write f(p) as g(h(p)) where h(p) = p3 + 2p + 5 and g(p) = p7. We
use the rules from the previous section to compute h′(p) = 3p2 + 2
and g′(p) = 7p6. Composing we get g′(h(p)) = 7(p3+2p+5)6. Thus

f ′(p) = g′(h(p))h′(p) = 7(p3 + 2p+ 5)6(3p2 + 2).

(b) We can write g(q) as f(h(q)) where h(q) = q2 + 6 and f(q) =
√
q.

We use the rules from the previous section to compute h′(q) = 2q and
f ′(q) = 1/(2

√
q). Composing we get f ′(h(q)) = 1/(2

√
(q2 + 6)).

Thus
g′(q) = f ′(h(q))h′(q) = (2q)/(2

√
(q2 + 6))

(c) We can write h(t) as f(g(t)) where g(x) = 2t + 5 and f(x) = et.
We use the rules from the previous section to compute g′(t) = 2 and
f ′(t) = et. Composing we get f ′(h(t)) = e(2t+ 5). Thus

g′(t) = f ′(h(t))h′(t) = 2e2t+5.

Theory and justification. As in the previous section, we will use local linearity to
justify our derivative rule.

To simplify notation, we will let g(x) = u = bx+ d. We will be substituting g(x)
into f(x) and so we will be using the functions f(u) = au + c, with a = f ′(u) =
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f ′(g(x0)) and g(x) = bx+ d, with b = g′(x0).
The composition of f and g can then be written as

f(g(x)) = a(bx+ d) + c = (ab)x+ (ad+ c).

The coefficient of the linear term is the product of the coefficients of the two
linear terms we began with. Hence we find that [f(g(x0))]

′ = ab = f ′(g(x0)) ∗
g′(x0).

The Chain rule in other notation. For the problems above, we used the prime no-
tation, f ′(x), f ′(q), f ′(t), etc, for derivatives. There is also a fractional notation for
derivatives, df

dx ,
df
dq ,

df
dt or

dy
dx ,

dp
dq ,

dq
dt , etc. that is commonly used. Intuitively, whenwe

have zoomed in far enough for the graph of f(x) to look like a straight line, then the
derivative is the small unit of rise over the small unit of run. With that notation the
chain rule has a nice formulation where it reduces to the usual rules for multiplying
fractions.

Chain Rule (fractional notation version).

If z = g(x) and y = f(z) so y = f(g(x)), then

dy

dx
=

dy

dz

dz

dx
or

df

dx
=

df

dg

dg

dx
.

Example 4.3.3 Successive processes.

We have two processes that need to be run in succession to produce gizmos.
The yields of the two processes are given by:

intermediate(raw) = −25 + 7.3raw+ .2raw2

gizmos(intermediate) = −5 + 12intermediate.

Find the rate of production in terms of the amount of raw material.
Solution. We want to find the derivatives of the individual processes and
then use the chain rule.

dintermediate
draw

= 7.3 + .4raw

d gizmos
dintermediate

= 12.

Thus

d gizmos
draw

=
d gizmos

dintermediate
dintermediate

draw
= 12 ∗ (7.3 + .4raw) = 87.6 + 4.8raw.

The rate of production is a linear function of the amount of raw material
used.

Example 4.3.4 Chain rule with separate functions.

Find h′(x) for h(x) = f(g(x)) for the given f(z) and g(x).

(a) f(z) = 2z + 7 and z = g(x) = 3x+ 5.
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(b) f(z) = z3 and z = g(x) = x2 + 7.

(c) f(z) = ez and z = g(x) = x2 + 3.

Solution.

(a)
dh

dx
=

dh

dz

dg

dx
= 2 ∗ 3 = 6.

(b) dh
dx = dh

dz
dg
dx = 3z2 ∗ 2x = 3(x2 + 7)2 ∗ 2x.

(Notice that the two derivatives are in terms of different variables. We
need to convert to a single variable.)

(c)
dh

dx
=

dh

dz

dg

dx
= ez ∗ 2x = e(x

2+3) ∗ 2x.

Warning for this method:
We tend to use x as the variable for almost all functions. When we use the chain

rule we need to remember that the input for the second function is the output from
the first function. It is safest to use separate variable for the two functions.

Special cases:
Two special cases of the chain rule come up so often, it is worth explicitly noting

them.

The general power
rule

[(f(x))n]′ = n(f(x))n−1f ′(x). This is simply the chain
rule when the second function is a power.

The chain rule with
a linear function

[(f(ax+ b))]′ = (f ′(ax+ b)) ∗ a

Checkpoint 4.3.5 Reading check, The Chain Rule. This question checks your reading
comprehension of the material is section 4.3, The Chain Rule, of Business Calculus
with Excel. Based on your reading, select all statements that are correct. There may
be more than one correct answer. The statements may appear in what seems to be
a random order.

A If z = g(x), and y = f(z), so y = f(g(x)), then dy
dz = dy

dz
dz
dx .

B If z = g(x), and y = f(z), so y = f(g(x)), then dy
dx = dy

dz
dz
dx .

C The derivative of f(g(x)) is f ′(g′(x)).

D If g(x) = g(f(x)n then g′(x) = n ∗ (f(x)n−1 ∗ f ′(x).

E If g(x) = (f(a ∗ x+ b) then g′(x) = a ∗ f ′(a ∗ x+ b).

F The derivative of f(g(x)) is f ′(g(x)) ∗ g′(x).

G None of the above

Exercises: The Chain Rule

Exercise Group. Find the derivatives of the following functions.

1. f(x) = (x3 + 5x+ 7)4.

2. g(x) = (x2 − 6x+ 8)123.
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3. h(x) =
√
(5x7 + 3x− 2).

4. k(x) = ln(ex + 5).

5. m(x) = ln(ln(ln(x2 + 3))).

6. n(x) = (((x2 + 2)2 + 3)2 + 4)2 + 5.

7. f(x) = e2x+3.

8. g(x) = (ln(10x− 15))2.

9. h(x) = ln((10x− 15)2).

10. k(x) = ((ln(x))(ex))3.

11. m(x) = ln(e(x
2+x) + x).

12. n(x) =
(

x2−5x+3
ex

)5
.

13. f(x) =
(

ln(x)
(2x+7)

)4
.

14. g(x) = ln
(

x3+2x+9
1.07x

)
.

Exercise Group. For the following problems, use the following data to find the indi-
cated derivative.

x 0 1 2 3 4 5 6 7 8 9
f(x) 3 5 7 1 9 8 4 2 0 6
f’(x) 7 6 5 4 3 2 1 0 9 8
g(x) 8 4 0 6 2 9 5 1 7 3
g’(x) 6 8 4 2 0 7 9 3 5 1

15. h′(2), where h(x) = f(g(x)).

16. h′(5), where h(x) = f(f(x)).

17. h′(7), where h(x) = g(g(x)).

18. h′(4), where h(x) = g(f(x)).
19. The pretax profit function is Profit(q) = −q2 + 300q − 2500 at the widget

factory. The tax function is tax(Profit) = 0.4(Profit−1000). Find the equation
of the line tangent to the graph of after tax profits when q = 100.

20. The revenue function for gizmos is Revenue(q) = .2q2+500q. The commission
cost to the sales force is commissions(Revenue) = 0.1 Revenue+ Revenue2 /3, 000, 000.
Find the equation of the tangent line to commissions as a function of quantity,
when q = 1000.

4.4 Differentiation Using Computer Algebra

As we noted in Chapter 1, in this book we are limiting ourselves to mathematical
tools that the student can reasonably expect to find in a generic work environment.
That is one of the reasons for focusing on using spreadsheets and Excel. However,
we will also look at using free web tools, particularly as a means of doing symbolic
manipulation. Differentiation is one of those operations that can be done with free
tools available on the web. The student in this course will be expected to routinely do
symbolic differentiation by hand. However, it is good to be able to check your work.
We also want tools that will work reliably with messier problems.

In working with derivatives, we have looked at three basic problems:
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• Given a function, find a formula for its derivative. A related question is finding
the marginal function.

• Given a function, find the value of the derivative at a particular point. We do
this when we want a rate of change at a particular point.

• Given a function, find where the derivative is 0. We do this when we are trying
to find minimum or maximum values of the function.

There are a number of websites that will take symbolic derivatives. We start with
Wolfram|Alpha, which is available at http://www.wolframalpha.com¹.

Example 4.4.1 A simple derivative with Alpha.

Use Wolfram|Alpha to find the derivative of x3 + 5x+ 7.
Solution. When you call the website, you get an input bar much as you
would with your favorite search engine.

The interface for Wolfram|Alpha is rather robust. While Wolfram|Alpha
lets you use a Math Input pallette, we can ask the question in plain English.
In our case, we would like to find the derivative of x3 + 5x+ 7 with respect
to x. Some of the ways of asking that question are:

• find the derivative of (x^3+5x+7)

• find the derivative of (x^3+5x+7) with respect to x

• derivative of (x^3+5x+7)

• differentiate (x^3+5x+7) with respect to x

• differentiate (x^3+5x+7)

• D (x^3+5x+7)

• d/dx (x^3+5x+7)

• (x^3+5x+7)’

For all of these, the website provides the same answer.

¹http://www.wolframalpha.com

http://www.wolframalpha.com
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Note that the response tells us the question that Wolfram|Alpha is answering.
This helps us check that we have been properly understood.

It is worthwhile to note that Wolfram|Alpha has an option to show step-by-step
solutions with a paid subscription. Alternatives can be found by searching for ”sym-
bolic derivative calculator”.

Wolfram|Alpha understands the convention that the variable for math problems
is typically x. If we don’t specify the variable with respect to which we are differ-
entiating, it will guess that x is our variable. Other letters are treated as constants
unless we use function notation with parentheses. Thus we can use Wolfram|Alpha
to check our differentiation rules.

Example 4.4.2 Recalling the quotient rule.

Use Wolfram|Alpha to recall the quotient rule.
Solution. See the image below.

It should be noted that Wolfram|Alpha will not work with long variable names
like Principal or MonthlyPayment. We simply need to change variables to work with
Wolfram|Alpha.
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Example 4.4.3 Working with long variable names.

The cost of widgets is given by:

Cost = 2000 + 10 ∗ Quantity+ .001 ∗ Quantity2.

Find the rate of change of cost with respect to quantity when Quantity =
1000. (We are using the derivative to estimate the marginal cost.)
Solution. Since we will use Wolfram|Alpha, we want to convert the equa-
tion to use single letter variables:

c = 2000 + 10 ∗ q + .001 ∗ q2.

We can input this as c=2000+10*q+.001*q^2.
We want to evaluate the derivative with respect to q when q = 1000.

Thus, whenQuantity = 1000, increasing productionby1widget increases
cost by $12.

The third basic derivative problem was to find a maximum or minimum. For ex-
trema problems, we want to find where the derivative is 0, since the extrema can
only occur at endpoints and critical points.

Example 4.4.4 Exploring a business example.

The cost and demand price functions of widgets are given by:

Cost = 2000 + 10 ∗ Quantity+ .001 ∗ Quantity2

Revenue =
100 ∗ Quantity

1 + .01 ∗ Quantity
.

Find the quantity that maximizes profit.
Solution. We simplify variable names to q, c, p, and r for quantity, cost,
profit and revenue, respectively. Our formula for profit is:

p = r − c = 100q/(1 + .01q)− (2000 + 10q + .001q2).

When looking for a maximum, we always start by looking at a graph of
the function in question.
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From the graph, it is clear that we have a single maximum for the profit
function and it occurs near q = 200. To find this point, we want to take the
derivative and set it equal to zero, or we want to use the solve command on
the derivative. We enter the command

solve(derivative 100q/(1+.01q)-(2000+10q+.001q^2 ) with respect to q)

.

We need to do a bit of interpretation since Wolfram|Alpha is using nu-
merical methods with complex numbers. In particular, the answers have a
zero imaginary part. We are also looking for a positive number. Thus, we
conclude profit is maximized at 209.8 widgets.

In looking at free software on the web for taking derivatives we started with Wol-
fram|Alpha becausewe can use it throughout the bookwhen Excel does not solve our
needs. It is also supported by the company that producesMathematica®, so it should
stay available for the foreseeable future. Another useful source are the solvers from
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Symbolab https://www.symbolab.com/solver². Symbolab has a collection of solvers
for the topics in this course.

It also has a section that lets you do drill and practicewith the techniqueswe have
learned. Like Wolfram|Alpha, it gives the option of step-by-step solutions. I find the
site a bit more user friendly for math students.

For individual problems we may want to use other software. For finding deriva-
tives, a quick web search found http://www.derivative-calculator.net/³ which is nicer
if you are simply checking your work. As with Wolfram|Alpha, the derivative calcula-
tor shows you the problem in math form so you can check your syntax.

However, the show steps formatting is nicer since hovering over one step shows
the change for that step in the next line.

²https://www.symbolab.com/solver
³http://www.derivative-calculator.net/

https://www.symbolab.com/solver
http://www.derivative-calculator.net/
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You may find other websites for doing derivatives as well.

Checkpoint 4.4.5 Reading check, DifferentiationUsing Computer Algebra. This ques-
tion checks your reading comprehension of thematerial is section 4.4, Differentiation
Using Computer Algebra, of Business Calculus with Excel. Based on your reading, se-
lect all statements that are correct. There may bemore than one correct answer. The
statements may appear in what seems to be a random order.

A The free tools for differentiation all use the same syntax.

B Desmos is a free tool available on the web that does symbolic differentiation.

C Wolfram|Alpha is a free tool available on the web that does symbolic differen-
tiation.

D Differentiation can be done with free tools available on the web.

E Some free tools give step by step work for symbolic differentiation.

F Symbolab is a free tool available on the web that does symbolic differentiation.

G None of the above

Exercises: Differentiation Using Computer Algebra Problems

Exercise Group. Find the derivative of the given function.
1. f(x) = x ln(x)

2. g(t) = e.07t(−t2 + 3t+ 5)

3. h(t) = t2e−0.06t

4. k(x) = (2x+ 5)37
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5. m(x) = ln(ln(ln(x2 + 3)))

6. n(x) = ex

ln(x2+3)

7. Price = 10− Quantity
100 − Quantity2

10000

8. Revenue = Quantity ∗
(
20 ∗ .9(Quantity/200)

)
9. SupplyPrice = 10 ∗ 1.04(Quantity/100)

10. ConsumerSurplus = 10 ∗ (0.95)(Quantity/100) − 2 ∗ (1.07)(Quantity/100)

11. k(x) = f(x) ∗ g(x) ∗ h(x)
12. k(x) = f(f(f(x)))

Exercise Group. Evaluate the definite derivative at the given point.

13. f(t) = t2e(−0.06t) at t = 10.

14. g(x) = x2 + 6x+ 10 at x = 5.

15. h(q) = (ln(q + 5)) ∗ (1.07q) at q = 8.

16. DemandPrice = 20 ∗ (0.95)(Quantity/100) at Quantity = 200.

17. SupplyPrice = 20 ∗ (1.09)(Quantity/100) at Quantity = 300.

18. Revenue = Quantity ∗ (20− Quantity/500) at Quantity = 2000.

19. h(x) = f(g(x)) at x = 4.

Exercise Group. Find the critical points of the given function. Identify each as a local
minimum, local maximum, or neither.

20. f(x) = x3 − 5x2 + 7x− 2.

21. r(q) = q ∗ 100 ∗ (0.9)q.
22. TotalCost = 100000 + 5 ∗ OrderSize+ 4 ∗ 10000/OrderSize.

23. Revenue = 20 ∗ Quantity− (Quantity2)/100.

24. Revenue = Quantity ∗ 20 ∗ (0.95)(Quantity/100).

25. Profit = Quantity ∗ 20 ∗ (0.95)(Quantity/100) − (1000 + 10 ∗ Quantity)

4.5 The Second Derivative and Concavity

For an intuitive definition of the derivative, we talked about zooming in on the graph
until it looks like a straight line and taking the slope. For concavity, we want to zoom
out a bit, so the graph curves up or down from a line.

We say that a graph is concave up if the line between two points is above the
graph, or alternatively if the first derivative is increasing. (In finance, such a curve is
said to be convex.) Similarly, we say that a graph is concave down if the line between
two points is below the graph, or alternatively if the first derivative is decreasing. (In
finance, such a curve is said to be concave.)
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In determining is a curve is concave up or concave down, we want to take the
second derivative of a function, or the derivative of the derivative.

Definition 4.5.1

For a function f(x), the second derivative of f(x) or the derivative of f ′(x),
denoted as f ′′(x), is defined as

f ′′(x) =
d

dx

(
d

dx
(f(x))

)
.

We also want to recall some alternate notations we may use.

Notation: Let y = f(x).
The second derivative of f(x) is denoted as f ′′(x) or d2

dx2 f(x) or d2y
dx2 .

The second derivative at x = x0 is denoted as f ′′(x0) or d2y
dx2

∣∣∣
x=x0

.

As we have noted before, when there are several forms, we use the one that
makes the most sense in the case on which we are working.

Example 4.5.2 Finding second derivatives.

Find the second derivative for each of the following functions:

(a) f(x) = 3x5 + 4x2

(b) g(x) = 5x6 + 3x+ 9

(c) h(x) = xe2x

(d) j(x) = 6
√
x+

3

x

(e) k(x) =
ln(x)
x3

Solution. Using our rule:

(a) f ′′(x) =
d

dx
(
d

dx
(3x5 + 4x2))

d

dx
(15x4 + 8x) = 60x3 + 8.

(b) g′′(x) =
d

dx
(
d

dx
(5x6 + 3x+ 9)) =

d

dx
(30x5 + 3) = 150x4.

(c)
h′′(x) =

d

dx
(
d

dx
(xe2x)) =

d

dx
(e2x + 2xe2x)

= 2e2x + 2e2x + 4xe2x = 4e2x + 4xe2x.
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(d)

j′′(x) =
d

dx
(
d

dx
(6
√
x+ 3/x)) =

d

dx
(
d

dx
(6x1/2 + 3x−1))

=
d

dx
(3x−1/2 − 3x−2) = −3/2x−3/2 + 6x−3

=
3

2
√
x3

+
6√
x3

.

(e)

k′′(x) =
d

dx

(
d

dx

(
ln(x)
x3

))
=

d

dx

(
( 1xx

3 − 3(x2)ln(x))

x6

)
=

d

dx

(
(1− 3 ln(x))

x4

)
=

(− 3
xx

4 − (1− 3 ln(x))4x3)

x8

=
−3− (1− 3 ln(x))4

x5
=

−7 + 12 ln(x)
x5

.

As the last problem shows, it is often useful to simplify between taking the first
and second derivatives.

If our function is the position of x, then the first derivative is the rate of change
or the velocity of f(x). The second derivative is acceleration or how fast velocity
changes.

Graphically, the first derivative gives the slope of the graph at a point. The second
derivative tells whether the curve is concave up or concave down at that point. If the
second derivative is positive at a point, the graph is bending upwards at that point.
Similarly, if the second derivative is negative, the graph is concave down. This is of
particular interest at a critical point where the tangent line is flat and concavity tells
us if we have a relative minimum or maximum.

Insight 4.5.3 Second derivative test of extrema.

Let f(x) be a function with f ′(x0) = 0. Then if f ′′(x0) > 0, the function has
a local minimum at x = x0. If f ′′(x0) < 0, the function has a local maximum
at x = x0. If f ′′(x0) = 0, the second derivative test fails and we cannot tell
if we have a local maximum, local minimum, or neither.

Example 4.5.4 Second derivative tests.

For the designated function and point, determine if the graph has a local min-
imum, local maximum, or non-extreme point, or if the second derivative test
fails.

(a) f(x) = x3 − 12x, x0 = 2

(b) f(x) = x3 − 12x, x0 = −2

(c) f(x) = x3 − 12x, x0 = 4

(d) g(x) = x4, x0 = 0

(e) h(x) = x5, x0 = 0

Solution. Using our rule:

(a) f(x) = x3 − 12x, f ′(x) = 3x2 − 12, f ′′(x) = 6x.
At x0 = 2, we have f ′(x0) = 0 and f ′′(x0) = 12. We are at a critical
point, and the curve is concave up, so we have a local minimum.
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(b) f(x) = x3 − 12x, f ′(x) = 3x2 − 12, f ′′(x) = 6x.

At x0 = −2, we have f ′(x0) = 0 and f ′′(x0) = −12. We are at a criti-
cal point and the curve is concave down, so we have a local maximum.

(c) f(x) = x3 − 12x, f ′(x) = 3x2 − 12, f ′′(x) = 6x.

At x0 = 4, we have f ′(x0) = 36. The second derivative is positive, so
the curve is concave up, but since the derivative is not zero, this is not
an extreme point.

(d) g(x) = x4, g′(x) = 4x3, g′′(x) = 12x2.

At x0 = 0, we have g′(x0) = 0 and g′′(x0) = 0, so the second deriv-
ative test fails at this point. (However if we look a the graph, we can
see the curve is concave up everywhere, and that this point is a local
minimum.)

(e) h(x) = x5, h′(x) = 5x4, h′′(x) = 20x3.

At x0 = 0, we have h′(x0) = 0 and h′′(x0) = 0, so the second de-
rivative test fails at this point. (However if we look a the graph, we
can see this point is neither a local minimum or a local maximum. It
is a place where the graph switches from being concave up to being
concave down. This is called an inflection point.)

We will use the second derivative test for finding maximums and minimums in
the next chapter.

Second derivative with CAS. We can find second derivatives with our favorite CAS
programs.

With Symbolab

With WolframAlpha
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Second derivative in finance. The mathematical first and second derivatives are
used in pricing various financial products and options that are also called derivatives.
The first derivative is used to give a value to whether the underlying product has a
price that goes up or down. It looks at the slope of the pricing curve. The second
derivative is used to give a value to the volatility of the underlying product. It looks
at how much the pricing curve bends. We will return to these uses when we look at
integrals.

Checkpoint 4.5.5 Reading check, The Second Derivative and Concavity. This ques-
tion checks your reading comprehension of the material is section 4.5, The Second
Derivative and Concavity, of Business Calculus with Excel. Based on your reading, se-
lect all statements that are correct. There may bemore than one correct answer. The
statements may appear in what seems to be a random order.

A We say that a graph is concave up if the line between any two points is above
the graph.

B The second derivative test fails if we are not at a critical point.

C If the second derivative is positive we are at a local minimum.

D If the second derivative is zero we cannot have a local maximum.

E The second derivative of a function is the derivative of the derivative of the
function.

F We say that a graph is concave up if the first derivative is increasing.

G We say that a graph is concave down if the line between any two points is below
the graph.

H If the second derivative is positive we are at a local maximum.

I None of the above

Exercises: The Second Derivative and Concavity Problems

Exercise Group.

(a) Find the first and second derivatives of the given function.

(b) Determine where the function is concave up and where it is concave down.

(c) Find the critical points of the function. Classify each as a local minimum, a local
maximum, neither, or not a local extremum.

1. f(x) = (x− 3)2 − 4

2. g(t) = (x− 3)(x− 1)(x+ 4)
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3. h(t) = t2e−t

4. k(x) = (x2 − 9)3

5. m(x) = x2−4
x2−9

6. ConsumerSurplus = 10 ∗ (0.95) Quantity100 − 2 ∗ (1.07) Quantity100

7. Price = 10− Quantity
100 − Quantity2

10000

8. Revenue = Quantity ∗
(
20 ∗ .9(

Quantity
200 )

)
9. SupplyPrice = 10 ∗ 1.04(

Quantity
100 )

Exercise Group. Identify which curve is f , f ′, and f ′′.
10.

11.

12.

13.

Exercise Group. For the next set of problems, you need to know the formula for the
price of a zero coupon bond given the face value, the interest rate, and the time to
maturity. For such instruments we use the formula

Cost =
FaceValue

(1 + rate)years
.
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(Be aware that a rate of 4% is a rate of 0.04.)
For each problem give:

(a) The cost of the bond as described.

(b) The first derivative of cost as a function of rate. (This measures risk of interest
rate change.)

(c) The second derivative of cost as a function of rate. (This measures the value of
an option on the bond.)

14. The face value of the bond is $1000. The interest rate is currently 4%. The
bond matures in 10 years.

15. The face value of the bond is $1000. The interest rate is currently 4%. The
bond matures in 30 years.

16. The face value of the bond is $1000. The interest rate is currently 6%. The
bond matures in 10 years.

17. The face value of the bond is $1000. The interest rate is currently 3%. The
bond matures in 20 years.
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Chapter 5

DifferentiationTechniques andAp-
plications

In the previous chapter we have see how to symbolically compute the derivative of
functions. In an applied setting we do not always have a simple formula to work with.
Wemay have several equations, which are dependent on each other, or wemay have
equations that relate variables in ways that cannot be simplified as a simple function.
In this chapter we will consider these cases and provide techniques for computing
the rate of change.

5.1 Implicit Differentiation

We often run into situations where y is expressed not as a function of x, but as being
in a relation with x. A familiar example is the equation for a circle of radius 5,

x2 + y2 = 25.

We recall that a circle is not actually the graph of a function. It is, however, the
combined graph of the two functions representing the top and bottom halves of the
circle.

We have two approaches if we want to find the slope of the line tangent to the
circle at (4, 3). We could first use algebra to express y as a function of x, and then
use our rules to find the derivative. That approach works in this problem but will fail
with more complicated relations. The alternative method is to say that y is implicitly
a function of x. We can then use the chain rule to take the derivative of the relation,
with the derivative of y being designated as y′. We can then solve for y′ in terms of
x and y. This second method is called implicit differentiation.

We start by trying both approaches on the equation of a circle.

Example 5.1.1 Tangent to a circle.

Find the equation of the line tangent to x2 + y2 = 25 at (4, 3).
Solution 1 (Solution A). To find the equation of a line we need a point and a
slope. We already have the point at (4, 3). To find the slope, we can express
the circle as the graph of 2 functions. We first solve for y2:

y2 = 25− x2.

165
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We then take the square root to produce 2 functions.

f1(x) =
√
25− x2

f2(x) = −
√

25− x2.

The point is on the first function, which is the top half of the circle, so we
take its derivative and evaluate at x = 4.

f ′
1(x) = 1/2(25− x2)−1/2(−2x)

f ′
1(4) = 1/2(25− 42)−1/2(−8) = −4/3.

Thus the tangent line, in point-slope form, is:

y = 3− 4

3
(x− 4).

Solution 2 (Solution B). To find the equation of a line we need a point and a
slope. We already have the point at (4, 3). To find the slope, we take the de-
rivative of our equation. Since we do not have y as a function of x, we simply
note that its derivative is the placeholder y′. Recall that d

dxx, the derivative
of x with respect to x, is simply 1.

d

dx
(x2 + y2 = 25)

d

dx
(x2) +

d

dx
(y2) =

d

dx
(25)

2x
d

dx
(x) + 2y

d

dx
(y) = 0

2x+ 2yy′ = 0.

We then solve for y′ and substitute our point (4, 3) in for (x, y).

y′ = −2x

2y
= −x

y
.

When we substitute our point (4, 3) in for (x, y) we get the same value,
y′ = − 4

3 . Thus the tangent line, in point-slope form, is:

y = 3− 4

3
(x− 4).

For the equation of a circle, either method works. We may encounter relations
where solving for an explicit function is hard or impossible.

Example 5.1.2 Differentiation of a price-quantity relationship.

The quantity q and demand price p for widgets satisfy the relation

10p+ 2pq + q2 = 1000,

with 10 < q < 90, where quantity is in thousands of units. If I am currently
selling 20,000 widgets, what is the relationship between change in quantity
and change in price?
Solution. Instead of solving for quantity as an explicit function of price, we
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will implicitly differentiate.

d

dq
(10p+ 2pq + q2 = 1000)

10
dp

dq
+ 2 ∗ dp

dq
∗ q + 2p+ 2q = 0

dp

dq
(10 + 2q) = −2 ∗ (p+ q)

d p

d q
=

−2 ∗ (p+ q)

(10 + 2q)
.

Since quantity is in thousands of units, if we are selling 20,000 widgets,
Quantity : q = 20 and Price : p = 14.64. Substituting those values into the
formula for the derivative of price with respect to quantity, we see

d Price
dQuantity

=
−2(14.64 + 20)

(10 + 2 ∗ 20)
= −1.386.

We increase sales by 1000 by dropping price by $1.386.

For the first two examples, the relation was quadratic, so it was straightforward
to find the derivative by either solving for an explicit function or by differentiating im-
plicitly. However, if the relationmore complicated we will find implicit differentiation
easier than solving for the function.

Example 5.1.3 Another price-quantity relationship.

The quantity q and demand price p for gizmos satisfy the relation

5p+ 3 ∗ (pq)1.5 + 2q = 2000,

with 10 < q < 100, where quantity is in thousands of units. If I am currently
selling 25,000 widgets, what is the relationship between change in quantity
and change in price?
Solution. There is no easy method to solve this relation for either price or
quantity as an explicit function of the other. Instead, we will implicitly differ-
entiate.

d

d q
(5 ∗ p+ 3 ∗ (p ∗ q)1.5+2 ∗ q = 2000)

5
d p

d q
+ 3 ∗ (1.5 ∗ p.5 ∗ dp

dq
∗ q1.5 + p1.5 ∗ 1.5 ∗ q.5) + 2 = 0

d p

d q
∗ (5 + 4.5 ∗ p.5 ∗ q1.5) = −(2 + 4.5 ∗ p1.5 ∗ q.5)

d p

d q
= − (2 + 4.5 ∗ p1.5 ∗ q.5)

(5 + 4.5 ∗ p.5 ∗ q1.5)
.

Since quantity is in thousands of units, if we are selling 25,000 widgets,
Quantity = 25 and Price = 2.986. Substituting those values into the formula
for the derivative of price with respect to quantity, we see

d price

d quantity
=

−118.104

997.025
= −0.12088.

We increase sales by 1000 by dropping price by $0.121.
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A standard result from economics is the Cobb-Douglas equation that claims

Y = ALαKβ ,

whereY ,L, andK represent total production, labor, and capital, respectively.
In the classical model α+ β = 1.

This can be understood as a relation involving capital and labor. An interesting
question is to ask for the rate of change of capital with respect to labor, or how in-
creasing or reducing capital investment will raise or lower labor costs.

Example 5.1.4 Differentiation of Cobb-Douglas.

A widget manufacturer has a production function given by

Y = 50L0.75K0.25.

The manufacturer currently uses 81 units of labor and 16 units of capital.
Find the derivative of labor with respect to capital and interpret your result.
Solution. We implicitly differentiate our equation with respect to capital.

d

dK
(Y = 50L.75K .25)

0 = 50 ∗ (0.75 ∗ L−0.25 ∗ dL

dK
∗K .25 + L.75 ∗ .25 ∗K−0.75)

dL

dK
∗ (0.75 ∗ L−0.25 ∗K .25) = −(L.75 ∗ .25 ∗K−0.75)

dL

dK
∗ = −(L.75 ∗ .25 ∗K−0.75)/((0.75 ∗ L−0.25 ∗K .25)) = −L/3K.

Substituting in our values for L and K we see that Y = 50 ∗ 81.7516.25 =
2700 and (dL)/(dK) = −81/48 ≈ −1.6875. This means, if we want to keep
level production, changing capital investment by 1 unit allows us to change
labor by−1.6875 units.

Implicit differentiationusing CAS. Aswith regular differentiation, we can use online
computer algebra systems to do implicit differentiation. The easiest way to do this is
with a web search for implicit differentiation calculator.
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The first option we are given is a widget interface for WolframAlpha. It easily lets
us do the first example in this section.

The second option from the search takes us to a calculator from Symbolab. It will
easily do the second example from this section.

You should notice that the Symbolab calculator lets you use other variables and
has an easy option for showing step by step solutions.

Summary. Implicit differentiation is an application of the chain rule. To use this
technique we need an equation between two variables that we can think of as im-
plicitly defining one variable as a function of the other. If assume one variable is
implicitly a function of the other, differentiating the equation gives us an equation
in the two variables and the derivative. We can then use algebra to solve the new
equation for the derivative.

Checkpoint 5.1.5 Reading check, Implicit Differentiation. This question checks your
reading comprehension of the material is section 5.1, Implicit Differentiation, of Busi-
ness Calculus with Excel. Based on your reading, select all statements that are correct.
There may be more than one correct answer. The statements may appear in what
seems to be a random order.

A Implicit differentiation is used when we are given an equation between two
variables and it is not solved for one of the variables.
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B Implicit differentiation is an application of the chain rule.

C A relation involving two quantities implicitly defines one as a function of the
other in a small region.

D The textbook worked through examples of using implicit differentiation to find
tangent lines to hyperbolas.

E For implicit differentiation, you need to explicitly solve for one of the variables.

F The textbook worked through examples of using implicit differentiation to find
tangent lines to ellipses.

G The textbook worked through examples of using implicit differentiation to find
tangent lines to circles.

H None of the above

Exercises: Implicit Differentiation Problems

Exercise Group. For the following equations find the specified derivative.

1. 2x+ 3y = 23. Find dy
dx .

2. 7x+ 9y = 23. Find dy
dx . (You can use two different methods.)

3. x2 + 3xy + 5y2 = 23. Find dy
dx .

4. (x3 + x2 + 1)(y3 + 2y + 3) = 5. Find dy
dx .

5. 75 ∗ Price+(Quantity2)/100 = 2000. Find
(

d Price
dQuantity

)
.

6. 50 ∗ Price+5 ∗ Price ∗Quantity+ (Quantity2)/10 = 5000. Find d Price
dQuantity .

7. 40 ∗ Price+7 ∗ Price ∗Quantity+
√
Quantity = 2000. Find d Price

dQuantity .

8. 50 ∗ Price2 +5 ∗ Price ∗Quantity = 3000. Find d Price
dQuantity .

9. 1000 = 5L0.6K0.4. Find dK
dL .

10. 2000 = 7L0.3K0.7. Find dK
dL .

11. 3000 = 2L0.25K0.75. Find dL
dK .

12. 7000 = 11L0.8K0.2. Find dL
dK .

13. The production function for a widget factory is 1000 = 15L0.7K0.3. Find
dK
dL and dL

dK . Interpret what they mean.

14. Let 30 ∗ Price+3 ∗ Price ∗Quantity+ (Quantity2)/100 = 2000 be an equa-
tion relating supply and price for gizmos. Find d Price

dQuantity and
dQuantity
d Price . Explain

what each derivative means.

15. exy + 2x+ 3y = 17. Find dy
dx .

5.2 Related Rates

As we have seen, dy
dx is the instantaneous rate of change of y with respect to x. In

Chapter 4 we learned techniques for finding dy
dx when y is defined as a function of x.
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In the last section we learned how to use implicit differentiation to find dy
dx when we

were given an equation in x and y. In this section we want find dy
dx when x and y are

both described in terms of another variable. As with the section on related rates, we
will start with an example where we can solve the problem by eliminating the extra
variable before differentiating, and then look at how to solve with related rates.

Example 5.2.1 Change in revenue with respect to expense, doable two
ways.

We can buy widgets wholesale for $10 a widget. In the. retail market, the
demand price of widgets is $20 minus 0.1 times the quantity to be sold. Find
the derivative of revenue with respect to expense.
Solution 1 (Solution A). The revenue and cost functions for widgets depend
on the quantity q. The formulas for revenue and cost are:

Revenue = q(20− 0.1q) = 20q − 0.1q2

Cost = 10q.

We can solve the second equation for quantity and substitute back into
the first equation. This now gives us the revenue function in terms of cost (c).

Quantity = 0.1 ∗ c
Revenue = 2c− 0.001c2.

It is straightforward to take the derivative:

d Revenue
d Cost

= 2− 0.002 ∗ Cost .

Note that the derivative is positive for cost between $0 and $1000. This
implies that the revenue is rising until the cost is $1000. After we hit a cost of
$1000, the derivative becomes negative. This indicates that the revenue will
actually decrease.
Solution 2 (Solution B). The alternative method is to differentiate the equa-
tions for revenue (r) and cost (c) with respect to quantity (q), and find the two
derivatives dr

dq and
dc
dq , then treat them as fractions. The derivative we want

is the quotient of these fractions.
The revenue and cost functions for widgets are the same as above.

Revenue = 20q − 0.1q2

Cost = 10q

We now differentiate:

dr

dq
= 20− 0.2q

dc

dq
= 10

We divide these derivatives to get the desired derivative.

change in revenue
change in cost

:
dr

dc
=

dr

dq
/
dc

dq
= (20− 0.2q)/10.

Substituting q = 0.1c gives the same solutionwehad from thefirstmethod.
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When using the method of related rates, we act as if the derivatives are fractions
that we canmultiply or divide to obtain the appropriate fraction. Wewant to use a bit
of cautionwith that approach, because it does notworkwith higher order derivatives,
or with derivatives of functions of several variables. However, for derivatives of one
variable the intuition works. Once again, if we zoom in far enough, the curve will look
like a straight line and the derivative is the quotient of rise over run.

For the first example we could use both methods. We either use algebra to elim-
inate the extra variable, or find two rates of change and combine them to find the
rate we are interested in. For some problems we will only have one choice, either
because the algebra is too hard, or because we have been given partial information
and the algebraic method is impossible.

Example 5.2.2 Change in revenue with respect to expense, q elimination
hard.

The cost (c(q)) and revenue (r(q)) equations for gizmos are both given in
terms of quantity (q)

r(q) = 30q − 0.1q2 − 0.001q3

c(q) = 500 + 10q − 0.01q2

Find the derivative of revenue with respect to cost (i.e. drdc when q = 50.
Solution. Since the cost is quadratic in quantity, solving for revenue as a
function of cost involves more work than we need for this problem. The ap-
propriate derivatives are:

dr

dq
= 30− 0.2q − 0.003q2

dc

dq
= 10− 0.02q.

When q = 50, we have

dr

dq
= 30− 0.2 ∗ 50− 0.003 ∗ 502 = 12.5

dc

dq
= 10− 0.02 ∗ 50 = 9.

We divide these derivatives to get the desired derivative.

dr

dc
=

dr

dq
/
dc

dq
=

12.5

9
≈ 1.389.

This means that when Quantity = 50, there is an increase of $1.39 for
every dollar increase in cost of investment.

Example 5.2.3 Change in revenue with respect to expense, long variable
names.

We have the following cost and revenue information for whatchamacallits:

Revenue = 50 ∗ Quantity− 0.01 ∗ Quantity2

d Cost
dQuantity

= 15.
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Find the derivative of revenue with respect to cost when Quantity = 100.
Solution. In this example we do not have a formula that lets us solve for
revenue as a function of cost, so we must use the method of related rates.
The other derivatives is:

d Revenue
dQuantity

= 50− 0.02 ∗ Quantity.

When Quantity = 100, we have d Revenue
dQuantity = 50− 0.02 ∗ 100 = 48. Thus

d Revenue
d Cost

=
d Revenue
dQuantity

/
d Cost

dQuantity
=

48

15
= 3.2.

Related rates are also useful when we are looking at a two-step process and we
are interested in the rate of the combined process.

Example 5.2.4 Composition of functions.

Weare producingwidgets (w). Themanufacturing process turns goop (g) into
sludge (s) and sludge into widgets. The yield equations in the appropriate
units are:

widgets(sludge) = 4 ∗ sludge− 0.1 ∗ sludge2,

or in shorthand notation: w(s) = 4s− 0.1s2, and

sludge(goop) = 3 ∗ goop+ .1 ∗ goop2,

or in shorthand notation: s(g) = 3g + .1g2.
Find the derivative of widgets with respect to goop when g = 10.

Solution. We note that when g = 10, we have s = 3 ∗ 10 + .1 ∗ 102 = 40.
In this example we will take the derivatives of our equation. We will then
multiply them to get the derivative we want.

d widgets
d sludge

=
dw

ds
= 4− 0.02 ∗ s

d sludge
d goop

=
ds

dg
= 3 + .2 ∗ g.

When g = 10, dw
ds = (4 − 0.02 ∗ 40) = 3.2, and ds

dg = 3 + 0.2 ∗ 10 = 5.
We need to multiply the derivatives to cancel the ds.

dw

dg
=

dw

ds
∗ ds

dg
= (3.2)(5) = 16.

Thus the rate of widget production is increasing by 16 units per increase
in on unit of goop at that point.

We often run into situations where several quantities are related by some con-
straint or equation. In such situations we will want to know the rate at which quan-
tities are changing with time. The technique of related rates gives us a way to move
from one rate with respect to time to another. Recall the Cobb-Douglas equation
from the last section:

Y = ALαKβ ,

where Y , L, and K represent total production, labor, and capital, respectively. If
we know the rate of investment in capital equipment, we will be interested in the
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rate of change of labor with respect to time. An interesting question is to ask for the
rate of change of capital with respect to labor, or how increasing or reducing capital
investment will raise or lower labor costs.

Example 5.2.5 Cobb-Douglas.

A gizmo manufacturer has a production function given by

Y = 50L0.75K0.25.

The manufacturer currently uses 16 units of labor and 81 units of capital.
The total production is constant but the manufacturer is investing in automa-
tion. The derivative of capital with respect to time is 2. How fast is the amount
of labor needed changing?
Solution. We are going to assume that both labor and capital are functions
of time and the Y is a constant. We start by implicitly differentiating our
equation with respect to time.

d

dt
(Y = 50L0.75K0.25)

0 = 50 ∗ (0.75 ∗ L−0.25 ∗ dL

dt
∗K .25 + L.75 ∗ .25 ∗K−0.75 ∗ dK

dt
).

We now substitute in for the values ofK, L, and dK
dt , which were given.

0 = 50 ∗ (0.75 ∗ 16−0.25 ∗ d L

d t
∗ 810.25 + 160.75 ∗ .25 ∗ 81−0.75 ∗ 2)

0 = 3/4 ∗ 1/2 ∗ dL

dt
∗ 3 + 8 ∗ 1/4 ∗ 1/27 ∗ 2

dL

dt
= −32/243 ≈ −0.1317.

If capital is increasing at a rate of 2 per unit of time, then labor is decreas-
ing at a rate of−0.1317 per unit of time.

Summary. The related rates technique is an application of the chain rule. We use
this technique when we have either three variables. Wemay want the rate of change
of one variable with respect to a second, and those variables may be connected
through equations using a third variable. We may also want to relate the rate of
change of two variables with respect to time. We take advantage of the fact that we
can think of a derivative as a fraction of two small values. We either want to multiply
or divide theses fractions to obtain the desired derivative.

Checkpoint 5.2.6 Reading check, Related Rates. This question checks your reading
comprehension of thematerial is section 5.2, Related Rates, of Business Calculus with
Excel. Based on your reading, select all statements that are correct. There may be
more than one correct answer. The statements may appear in what seems to be a
random order.

A The related rates technique is an application of the chain rule.

B Related rates and implicit differentiation are interchangeable methods.

C Related rates are useful whenwe are looking at a two variables related by some
constraint or equation and both are varying with time.
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D Related rates are useful when we are looking at a two-step process and we are
interested in the rate of the combined process.

E We always can use algebra to reduce to two variables, so we do not really need
related rates.

F When using the method of related rates, we act as if the derivatives are frac-
tions that we can multiply or divide to obtain the appropriate fraction.

G None of the above

Exercises: Related Rates Problems

1. Let y = 3x + 5 and z = 4y + 7. Find dz
dx when x = 2 by solving for z as a

function of x and taking the derivative, and also by finding dz
dy and

dy
dx and using

related rates to apply the chain rule.

2. Let y = x2 − 3x + 5 and z = y2 − y + 6. Find dz/dx when x = 1 by solving
for z as a function of x and taking the derivative, and also by finding dz

dy and
dy
dx

and using related rates to apply the chain rule.

3. Let y = 1000 ∗ 1.06x and z = 200y + 3. Find dz
dx when x = 5.

4. Let y = 200 ∗ 1.08x + 500x and z = y2 + y. Find dz
dx when x = 3.

5. Let y = 3x + 5 and z = 4x + 7. Find dz
dy when x = 2 by solving for z as a

function of y and taking the derivative, and also by finding dz
dx and

dy
dx and using

related rates to apply the chain rule.

6. Let y = x2 − 3x+ 5 and z = x2 + 4x+ 5. Find dz
dy when x = 3.

7. Let y = 1000 ∗ 1.05x and z = 100 ∗ (1 + .5x). Find dz
dy when x = 10.

8. Let y = 100 ∗ 1.08x and z = 100 ∗ 1.02x. Find dz
dy when x=10.

9. Let y = x2 − 3x+ 5 and dz
dy = 3. Find dz

dx when x = 7.

10. Let y = 500 ∗ .96x and dz
dy = 5. Find dz

dx when x = 4.

11. Let y = x2 − 5x+ 7 and dz
dx = 8. Find dz

dy when x = 7.

12. Let z = x2 − 3x+ 5 and dy
dx = 3. Find dy/dz when x=7.

13. The revenue and expense equations for gizmos are

Revenue = 30 ∗ Quantity− 0.1 ∗ Quantity2

expense = 500 + 10 ∗ Quantity

Find the derivative of revenue with respect to expense when Quantity =
100.

14. The revenue and expense equations for widgets are

Revenue = 200 ∗ Quantity− 0.1 ∗ Quantity2 + .005 ∗ Quantity3

expense = 1000 + 20 ∗ Quantity.

Find the derivative of revenue with respect to expense when Quantity =
50.

15. The production of gadgets is a two step process:

productA = 50 ∗ RawMaterial+ .01 ∗ RawMaterial2
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gadgets = 4 ∗ productA− 0.0001 ∗ productA2.

Find the derivativeof gadgetswith respect to RawMaterialwhenproductA =
20.

16. The production of whatchamacallits is a three step process:

productA = 10 ∗ RawMaterial− 7

productB = 15 ∗ productA− 20

whatchamacallits = 6 ∗ productB− 5.

Find the derivative of whatchamacallits with respect to RawMaterial when
productA = 15.

Exercise Group. Find the indicated derivative for the production function.

17. Our production function is 960 = 5L0.25K0.75. Find dL
dt if L = 81, K =

256, dKdt = 5.

18. Our production function is 4000 = 4L.25K .75. Find dK
dt if L = 1000,

K = 1000, dLdt = 10.

5.3 Elasticity

Elasticity of demand is a concept from economics that looks at relative rate of change
rather than rate of change. We want to look at how we express this as a variant of
the derivative.

The law of demand states we increase demand by lowering price and lower de-
mand by raising price. The naive rate of change in that case would be the change in
quantity with respect to price. However that rate of change is not particularly useful.
If I am told that I can sell 100 more units if I lower the price by $1 a unit, I don’t know
if I should lower the price. I would definitely want to lower the price if I sell cars for
an average price of $20,000 and typically sell 200 cars a year. I would not want to
lower the price if I sell gasoline at $4.00 a gallon and sell 5,000,000 gallons a year.

Rather than looking at the derivative of quantity with respect to price, or the
rate of change with respect to price, we want to look at the relative rate of
change with respect to price, or the Elasticity of Demand.

If a small change in price causes a big change in demand, the demand is elastic.
In that case, I generally want to lower the price and get a lot more customers. If I
need to make a big change in price to get a small change in demand, the demand is
inelastic. With inelastic demand I can raise revenue by raising price. Thus, elasticity
of demand gives us a tool for maximizing revenue. We can look at this issue is either
the discrete case (arc elasticity) or the continuous case (point elasticity).

5.3.1 Point Elasticity
To understand elasticity we look at the simple case when the demand price function
is linear. In that case, we can use geometry to understand the problem.
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If (Q0, P (Q0)) is a point for a given price P (Q0) and quantityQ0, then revenue
isQ0 ∗P (Q0), the price times the quantity at that point, or the area of the rectangle
above. We want to know if we should pick a different point on the demand curve to
increase the area of the rectangle.

If the special case where the price and quantity are both 1, the revenue rectangle
is a square and we can simply look at the slope of the demand function. In that case,
when the demand curve is flatter than a slope of minus 1, increasing the quantity
increases the area because quantity increases faster than price decreases. Similarly,
when the demand curve is steeper than a slope of minus 1, increasing the quantity
causes the price to decrease even faster, so the area of the rectangle decreases.

We note that the slope of the demand curve is almost always negative. We also
note that we are reversing the normal roles, with price being the input and quantity
the output. We will It is thus convenient to talk about the negative reciprocal of the
slope of the normalized demand price curve.

We refer to that quantity as Elasticity of Demand.

E = − d(Quantity/Q0)

d(Price /P (Q0))
= − dQuantity/Q0

d Price /P (Q0)
= −dQuantity

d Price
∗ P (Q0)

Q0
.

If the elasticity is greater than 1, a small relative change in the price goes with a
large relative change in the quantity. Wewould expect high elasticity in products that
can easily be substituted. The demand for gasoline at one gas station, when there are
2 other gas stations at the same intersection, would be highly elastic.

When demand is elastic (E > 1), we raise revenue by lowering price.

We would expect low elasticity in products that are essential for which there is
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no reasonable substitute. Wedding rings and lifesaving medicine would have highly
inelastic demand.

When the demand is inelastic (E < 1), we increase revenue by increasing
price.

A relatively large change in price will produce a relatively small change in demand.
Revenue will be at a maximum when elasticity is 1. This condition is referred to as
unit elasticity.

Note that we have usually described price as a function of quantity, and in the
definition of elasticityweuse the derivative obtained frommaking quantity a function
of price. From related rates, we know that these derivatives are reciprocals of each
other.

Example 5.3.1 Point elasticity.

The demand price function for widgets is given in terms of quantity (q).

P (q) = 20− q/100.

(A) Find the elasticity when q = 800. Interpret what that means for the
strategy to raise revenue.

(B) Compare to the situation when q = 1500.

Solution.

(A) The formula for elasticity is:

E =
−dQ

dP
∗ P (Q0)

Q0
.

I need to computeP (Q0) and −dQ
dP . Substituting into the demand func-

tion,
P (800) = 20− 800/100 = 20− 8 = 12.

To find dQ
dP , I recall from related rates, that dQ

dP = 1/ dP
dQ .

dQ

dP
= 1/

(
dP

dQ

)
= 1/

(
−1

100

)
= −100.

Thus

Elasticity =
−dQ

dP
∗ P (Q0)

Q0
= −(−100) ∗ 12

800
= 1.5.

Since the demand is elastic when the quantity is 800, we should lower
the price, causing a relatively large increase in quantity, to raise rev-
enue.

(B) When the quantity is 1500, the demand price is 5 and the derivative of
quantity with respect to price is still−100.

Elasticity =
−dQuantity

d Price
∗ P (Q0)

Q0
= −(−100) ∗ 5

1500
= 1/3.
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Since the demand is inelastic when the quantity is 1500, we should
raise the price, causing a relatively small decrease in quantity, to raise
revenue.

In this example, the revenue function is

Revenue = Price ∗Quantity = 20q − q2/100.

We recognize that this is a downward parabola with a maximum when
q = 1000, which is consistent with our results.

5.3.2 Arc Elasticity
Point elasticitywas developed for usewith a continuous demandprice functionwhere
we could take a derivative. Often, our demand price function is a set of discrete
points, because our quantity has to be a whole number. We would like to adapt elas-
ticity to that case.

For arc elasticitywehave twoquantity-price points (Quantity1, Price1) and (Quantity2, Price2).
We want to adapt our formula for elasticity to the discrete case. We can think of the
derivative, dQdP , as the ratio of small changes in quantity and price. The best value for
price and quantity is the average value from the two points.

Our formula is converted to:

E =
−∆Quantity

∆ Price
∗ average price
average quantity

= −Quantity2 − Quantity1
Price2 − Price1

∗ (Price1 + Price2)/2
(Quantity1 + Quantity2)/2

.

Arc Elasticity.

E = −Quantity2 − Quantity1
Price2 − Price1

∗ Price1 + Price2
Quantity1 + Quantity2

.

Example 5.3.2 Elasticity from two points.

Two quantity-price points for gizmos are (5000, 20) and (5200, 18). What
is the arc elasticity between the two points? Which price produces higher
revenue?
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Solution. The formula for arc elasticity is:

E = −Quantity2 − Quantity1
Price2 − Price1

∗ Price1 + Price2
Quantity1 + Quantity2

E = −5200− 5000

18− 20
∗ 20 + 18

5000 + 5200
= −200

−2
∗ 38

10400
≈ .373

The market for gizmos is inelastic, as a price drop of about 10% only in-
creases the market by about 4%. To increase revenue, I should charge the
higher price.

Checking my work by computing the revenue at the two points, the first point,
with the higher price and lower quantity produces $100,000, while the second point,
with a lower price and higher quantity produces $93,600 in revenue.

We can use elasticity to approximate change in revenue form a change in price.

Example 5.3.3 Elasticity in terms of per cent change.

The short-term elasticity for gadgets is 0.6. What is the percentage change in
revenue if the price is raised by 5%?
Solution. An alternate formula for elasticity is:

E = −%change in quantity
%change in price

.

Thus we see the % change in quantity is −(0.6) ∗ 5% = −3%. Thus the
new price is 1.05 times the old price and the new quantity is 0.97 times the
old quantity.

NewRevenue = NewPrice ∗ NewQuantity
= (1.05 ∗ OldPrice) ∗ (0.97 ∗ OldQuantity)
= 1.0185 ∗ OldRevenue

Thus raising the price by 5% will raise revenue by 1.85%.

5.3.3 Exercises: Elasticity Problems
1. Reading check, 5.3, Elasticity. This question checks your reading comprehen-

sion of the material is section 5.3, Elasticity, of Business Calculus with Excel.
Based on your reading, select all statements that are correct. There may be
more than one correct answer. The statements may appear in what seems to
be a random order.

A When demand is inelastic (E is less than 1), we raise revenue by raising
price.

B Arc elasticity is computed from two points.

C We say elasticity is low we cannot easily change the price without chang-
ing the demand.

D Elasticity of demand is a concept from economics that looks at relative
rate of change rather than rate of change.

E The formula for Point elasticity is −dQ
dP ∗ P (Q0)

Q0
.
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F We say elasticity is high ifwe can easily change the pricewithout changing
the demand.

G Elasticity of demand is the relative rate of change with respect to price.

H When demand is elastic (E is greater than 1), we raise revenue by lower-
ing price.

I None of the above

Exercise Group. For the given demand-price function and quantity:

• Find the price associated with the given quantity.

• Find the elasticity for the given quantity.

• State which pricing strategy, raising, lowering, or holding steady on prices, in-
creases revenue.

• Find the price and quantity that maximizes profit.

2. Price = 30− Quantity
50 ; Quantity = 300.

3. Price = 40− Quantity
75 ; Quantity = 1600.

4. Price = 50− Quantity
100 ; Quantity = 2500.

5. Price = 30 ∗ (0.9) Quantity100 ; Quantity = 400.

6. Price = 20 ∗ (0.95) Quantity50 ; Quantity = 800.

7. Price = 40 ∗ (0.8) Quantity50 ; Quantity = 300.

Exercise Group. For the given demand-quantity points:

• Find the elasticity for the given pair of points.

• State which price-point, increases revenue.

8. First price-quantity point = ($50,1000) Secondprice-quantity point = ($51,900).
9. First price-quantity point = ($5.00,387) Secondprice-quantity point = ($4.95,410).
10. First price-quantity point = ($1.99,2500) Secondprice-quantity point = ($2.01,2385).
11. First price-quantity point = ($783,455) Secondprice-quantity point = ($792,442).
12. List 3 items where you would expect the demand price to be elastic and 3

items where you would expect the demand price to be inelastic. Explain
why you have put each item into its category.

13. Give reasons why a vendor might set a price that does not maximize rev-
enues.

14. If the short-term elasticity for widgets is 2.5 and the price is raised by 10%,
find the percent change in quantity and revenue.

15. If the short-term elasticity for thingamabobs is 0.8 and the price is raised
by 10%, find the percent change in quantity and revenue.
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Chapter 6

Functions of Several Variables

From a formal point of view, the first 5 chapters of this text have been concerned
with functions of one variable. More realistically, we have been looking at functions
of several variables all along. If we consider the formula for finding how much is in a
bank account in the future, we have the formula:

FutureAmount = InitialDeposit ∗
(
1 +

rate
ppy

)years∗ppy
,

where ppy is the number of periods per year, indicating how often we compound the
interest. From a simple point of view, the future amount is a function of 4 variables,
the initial deposit, annual rate, periods per year, and number of years. To consider
this as a function of a single variable, we fixed 3 of the 4 variables as constants for
a particular problem. In this chapter we want to address the more realistic situation
where we treat more than one quantity as a variable at a time. This approach has
the added advantage that most real world functions of interest have more than one
variable.

Before we look at functions of several variables, we want to create a list of tasks
we have learned to accomplish with functions of one variable:

(1) Evaluate the function at a particular point with Excel.

(2) Make a table of values at a series of points with Excel.

(3) Make a reasonable graph from a table of values.

(4) Zoom in on a graph until it looks like a straight line.

(5) Find the slope of the tangent line.

(6) Give a formula for the tangent line at a point.

(7) Identify the places where the tangent line is flat.

(8) Find local extrema for the function.

(9) Find global extrema for the function.

(10) Learn applications of the derivative.

We would like to look at how to extend these tasks to functions of several vari-
ables. Most of this chapter simply notes how to modify the rules we learned for
functions of a single variable to the multivariable case.

183
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6.1 EvaluatingandGraphing Functions of Several Variables

Link to worksheets used in this section¹
When we were evaluating functions of a single variable we had to replace the

variable with a cell reference. We do the same for functions of several variables. We
simply have to use several cell references.

Example 6.1.1 Bank balances.

Interactive²

Figure 6.1.2 Bank Balance Video
Find the amount of money I will have in the bank in 10 years if I deposit

$1000 and the bank pays 5% interest, compounded quarterly. Set the prob-
lem up in Excel so that I can use the worksheet for similar problems with
different numbers.
Solution. We use the formula for future value of a single deposit.

FutureAmount = InitialDeposit ∗
(
1 +

rate
ppy

)years∗ppy
.

Rather than typing the numbers into the formula, we place them in sepa-
rate cells, so we can easily change the values for any of the 4 variables.

Figure 6.1.3 Show formulas
version Figure 6.1.4 Unshow formulas

version
At the end of 10 years, we have $1,643.62 in the bank. By simply chang-

ing values in the worksheet, I find that compounding the interest annually re-
duces the final amount on 10 years to $1.628.89, while compounding weekly
increases the final amount to $1,648.33.

In this example we have four variables. We could vary the initial deposit, the rate,
the number of periods per year and the interest rate. In previous chapters we have a
variable (say q) and the function (such as profit) that depends on q. Such a function
might be written as something like Profit(q) = −3q2 + 500q − 1000.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-6-1-Examples.xlsx

²www.youtube.com/watch?v=JY8lnC5VvFY

external/Examples/Section-6-1-Examples.xlsx
https://www.youtube.com/watch?v=JY8lnC5VvFY
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If we simplify the notation a little bit in this example so that we have

FA(d, r, p, y) = d ∗
(
1 +

r

p

)(y∗p)

,

where FA is the future amount, and this is a function of four variables d (deposit), r
(interest rate), p (number of payments), and y (number of years).

Example 6.1.5 Demand price defined by 2 points.

Interactive³

Figure 6.1.6 Function from 2 points video
Find the revenue for 500 widgets if I know that the demand price for 100

widgets is $20, the demand price for 200 widgets is $18.75, and that the de-
mand price is a linear function. Set the problem up in Excel so that I can use
the worksheet for similar problems with different numbers.
Solution. To make our worksheet easier to read, we use named cells. We
first have to find an equation for the demand price formula. We compute a
slope and intercept for this line from the points (100, 20) and (200, 18.75).
Once we have this function, we find that the demand price is $15 when quan-
tity is 500. We then compute revenue as price times quantity.

In this problem, revenue is a function of 5 variables: Demand1, Demand2,
Price1, Price2, and NewDemand.

The next task to consider is making a table of values for a function of several
variables. Since our screens have 2 dimensions, we first look at the case when we
allow two values to change. Whenwemade a table for a single variable, wehad to use
both absolute and relative cell reference to distinguish between constant values used
for all entries and variables that changed in each case. With functions of two variables
our table will have rows where one variable is held constant and columns where the
other is held constant. We note that quick filling a formula with the reference $A5
will keep the column, A, constant but allow the row to change. Similarly with the
reference A$5 the column can change, but the row is constant.

³www.youtube.com/watch?v=9gUk3C5kizM

https://www.youtube.com/watch?v=9gUk3C5kizM
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Example 6.1.7 Building a table with two variables.

Interactive⁴

Figure 6.1.8 Video of table with two variables example
I want to produce a table that shows how much I need to put in the bank

to have $100,000 at some point in the future. I will assume that interest is
compounded annually. I want interest rate and number of years to be treated
as variables with interest rate ranging from 5% to 6% and the length of time
to vary from 5 to 40 years.
Solution. We use the formula for present value of a single deposit. Since
the interest is compounded annually, the formula simplifies.

PresentAmount =
FutureAmount
(1 + rate)years

.

As we build the table, the future amount will be a constant, so it needs
to be given as an absolute reference. The number of years will be down the
left side of the table and will be constant across a row, so its reference should
have a dollar sign before the letter. The interest rate will be listed across the
top of the table, so its reference should have a dollar sign before the number.

Figure 6.1.9
This lets us build the table we desire. From the complete table, we see

that we can have $100,000 in the bank in 40 years by making a deposit of
$9,722.22 at 6% interest. In contrast if we only earn 5% interest and can only
keep the money in the bank for 15 years, we need to start with $48,101.71.

Similarly, we might want to produce a table that shows the monthly payment on

⁴www.youtube.com/watch?v=TwY2oKUKo7I

https://www.youtube.com/watch?v=TwY2oKUKo7I
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a mortgage where both the annual interest rate and the number of years are treated
as variables. Such a chart would be useful in deciding how big a mortgage a person
can afford with different kinds of mortgages.

Example 6.1.10 Mortgage payments.

Interactive⁵

Figure 6.1.11 Video presentation of mortgage payments
I want to produce a table that shows themonthly payment on a $100,000

mortgage with a range of interest rates and lengths of the mortgage.
Solution. We use the PMT command to find the monthly payment.

We can see that the monthly payment is $421.60 for a 30-year fixed rate
mortgage at 3% compounded monthly. For a 10-year mortgage at 6% the
payment increases to $1,110.21.

After we build a table for a function we would also like to see a graph of the
function. Excel’s abilities to graph surfaces in not one of the program’s strong points.
Nevertheless, it is useful to be “able to see the big picture” by looking at a graph. We
will also note how to draw a graph of a surface with Wolfram Alpha.

When we looked at models of price, quantity, cost, revenue, and profit, we made
the simplifying assumption that a company only produces one product. We want to
consider what happens with two products.

⁵www.youtube.com/watch?v=SgewfMtKNDM

https://www.youtube.com/watch?v=SgewfMtKNDM
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Example 6.1.12 Table and graph.

Interactive⁶

Figure 6.1.13 Video Producing a graph from a table
I have a company that produces two products, widgets and gizmos. The

two demand functions are:

PriceGizmo = 10− QuantityGizmo/50
PriceWidget = 20− QuantityWidget/40.

Produce a table and a graph for revenue as a function of the quantity of
gizmos and widgets produced.
Solution. We need to start by producing a formula for revenue. To shorten
the equations we will abbreviate the terms or use initials. We need formulas
for revenue for each of our products:

RevG = PriceG ∗ QG =

(
10− QG

50

)
QG = 10QG− QG2

50

RevW = PriceW ∗ QW =

(
20− QW

40

)
QW = 20QW− QW2

40
.

Putting the equations together gives an equation for revenue.

Revenue = RevG+ RevW = 10QG− QG2

50
+ 20QW− QW2

40
.

Next we build a build a table for the function as we have done above.

Figure 6.1.14 First table
Finally, we would like to see a graph of the function. We notice that the

3D plots in Excel have a number of drawbacks. The plots do not label the
input variables. These first plots also don’t tell us what values of the variables
correspond to particular points on the graph. Some of these drawbacks can
be overcome, but only with more work than wewish to expend in this course.
We will only add one non-intuitive option to make the graphs work better.

https://www.youtube.com/watch?v=MmoLoUI-Ob4
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Figure 6.1.15 Second table
We will move the names of the variables out of the upper left corner of

the chart and into the row above and to the side of the data. We leave the
corner cell blank. This will let us see the values of the variables in the graphs.
In the table, we select the data we would like to graph. In this example we
select from cells B4 through M12. Finally, we select a chart to insert. The
charts we are interested in are surface charts. The types of interest are 3-D
Surface, Wireframe 3-D, and contour. Each of these chart types highlights
some useful information.

The 3-D Surface gives a fast picture. It is useful in seeing local minimums
and maximums.

Figure 6.1.16 Surface chart
The Wireframe 3-D chart emphasizes that we can build a reasonable pic-

ture from the curves obtained by treating either x or y as a constant. It lets
us understand a function of 2 variables by putting together a collection of sev-
eral functions of one variable. This point of view will be useful when we try
to take derivatives.

Figure 6.1.17Wire frame chart
The Contour chart emphasizes the level curves. The rate of change will

be fastest in a direction perpendicular to the level curves.
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Figure 6.1.18 Contour chart
Another alternative for seeing a graph is to use Wolfram Alpha. Unfortu-

nately variable names in Alpha seem to be limited to a single letter, or a letter
followed by a digit. Thuswe change the formula to one using the names g and
w.

The techniques of this section let us look at functions of two variables. In the
next section we explore techniques for understanding functions of several variables
by treating some of the variables as constants.

Checkpoint 6.1.19 Reading check, Evaluating and Graphing Functions of Several
Variables. This question checks your reading comprehension of thematerial is section
6.1, Evaluating and Graphing Functions of Several Variables, of Business Calculus with
Excel. Based on your reading, select all statements that are correct. There may be
more than one correct answer. The statements may appear in what seems to be a
random order.

A Wolfram Alpha will plot functions of two variables.

B In the text, bank balance was discussed as a function of 4 variables.

C The book showed how to make a table for functions of two variables.
⁶www.youtube.com/watch?v=MmoLoUI-Ob4
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D Excel easily graphs functions of three variables.

E All functions have a single input variable, x

F In the text, the demand price of an object was discussed as a function of 5
variables, 2 given demands with associated prices and the demand quantity in
question.

G None of the above

Exercises: Evaluating andGraphing Functionsof Several Variables Prob-
lems

Exercise Group. For the following exercises, set up an Excel notebook, and evaluate
the given function of several variables at the indicated values. T he workbook should
be set up so that the input values can be changed and the formula will re-compute
with the new values.

1. Evaluate the function f(x, y) = x2+3xy+4y2, when x = 4, and y = −2.

2. Evaluate the function f(x, y, z) = x2 + 3xy + 4y3 + 5xyz, when x = 3,
y = 5, and z = 7.

3. Express cost as a function of quantity, initial cost, and per-unit cost, when
the initial cost is $2,000, the per-unit cost is $25, and the quantity is 75.

4. Express revenue as a functionof twoquantity demand-price pairs andquan-
tity, assuming that demand price is a linear function, where the quantity
demand-price pairs are (0, $20) and (100, $18) and the quantity is 300.
(You may find it useful to have intermediate computations that find the
coefficients of the demand price function, and the demand price.)

5. Express revenue as a functionof twoquantity demand-price pairs andquan-
tity, assuming that demand price is an exponential function, here the quan-
tity price pairs are (0, $20) and (100, $18) and the quantity is 300. (Youmay
find it useful to have intermediate computations that find the coefficients
of the demand price function, and the demand price.)

6. Express profit as a function of two quantity demand-price pairs, quantity,
initial cost, and per-unit cost, assuming that demand price is a linear func-
tion, where the quantity demand-price pairs are (100, $30) and (200, $28),
the quantity is 300, the initial cost is $3000, and the per-unit cost is $8. (You
may find it useful to have intermediate computations that find the cost and
revenue.)

7. Express the future value of a deposit as a function of the initial deposit, the
annual interest rate, the number of years the deposit is held, and the num-
ber of times per year that the interest is compounded, where the deposit
of $10,000 is held for 20 years at 3% interest, compounded monthly.

8. Express the future value of a regular series of deposits as a function of the
periodic deposit amount, the annual interest rate, the number of years the
deposits accumulate, and the number of times per year that the deposits
are made, where the deposit of $200 is deposited weekly for 20 years at
3% interest, compounded weekly.

9. Express the current value of a bond as a function of the final value, the
annual interest rate, and the number of years the bond is held, where the
final value of the bond is $10,000, held for 15 years at 3.5% interest, com-
pounded monthly.
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Exercise Group. For the following exercises, set up an Excel notebook to produce a
table for the given function as a function of the two specified variables and the other
parameters. The workbook should be set up so that the input values can be changed
and the formula will recompute with the new values.

10. Create a table for the function f(x, y) = 3x2 + xy + 5y2, with x ranging
from−10 to 10, and y ranging from−5 to 15.

11. Create a table for the function f(x, y, z) = xyz + x2y − y2 + 5z, with x
ranging from−10 to 10, and y ranging from−5 to 15, with z = 2.

12. Create a table that expresses cost as a function of quantity, and per-unit
cost, with initial cost as a parameter, when the initial cost is $3,000, the
per-unit cost ranges from $20 to $40 by $2, and the quantity ranges from
50 to 100 by 5.

13. Create a table that expresses the future value of a deposit as a function of
the annual interest rate and the number of years the deposit is held, with
the amount of the initial deposit and the number of times per year that the
interest is compounded being treated as parameters, where the interest on
a deposit of $10,000 is compounded quarterly, and the deposit is held for
20 to 40 years at interest rates ranging from 3% to 5%.

14. Create a table that expresses the future value of a regular series of de-
posits as a function of the annual interest rate and the number of years
the deposit accumulate, with the amount of the deposits and the number
of times per year that the interest is compounded being treated as para-
meters, where a deposit of $2,000 is made monthly, and the deposits ac-
cumulate for 20 to 40 years at interest rates ranging from 3% to 5%.

15. Create a table that expresses the current value of a bond as a function of
the number of years the bond is held and the interest rate, where the final
value of the bond is $10,000, the number of years the bond is held runs
from 5 to 40 and the interest rate runs from 2% to 6%.

16. Create a table that expresses revenue as a function of the quantity of wid-
gets and gizmos sold as both quantities range from 0 to 1000, where the
demand price functions are:

PriceGizmos = 50− QuantityGizmos
40

− QuantityWidgets
300

PriceWidgets = 40− QuantityGizmos
400

− QuantityWidgets
50

.

17. Create a table that expresses revenue as a function of the quantity of wid-
gets and gizmos sold as both quantities range from 0 to 1000, where the
demand price functions are:

PriceGizmos = 60(0.9)QuantityGizmos/100 − QuantityWidgets
200

PriceWidgets = 40(0.85)QuantityWidgets/100 − QuantityGizmos
100

.

18. Use either Excel or WolframAlpha to produce a graph of the function described
in Exercise Group 6.1.10–17.

6.2 Wire Frames, Partial Derivatives, and Tangent Planes

Link to worksheets used in this section¹
¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

external/Examples/Section-6-2-Examples.xlsx
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A standard technique in mathematics courses is to try to break a complicated
problem into smaller and easier problems. For functions of several variables this can
be done by looking at the variables one at a time, and treating the other variables as
constants. Then we are back to considering functions of a single variable.

6.2.1 Wire frames
We start by returning to Example 6.1.12 from Section 6.1, and seeing what informa-
tion can be obtained by looking at one variable at a time.

Example 6.2.1 Optimizing Revenue with Two Products.

Interactive²

Figure 6.2.2 Video presentation this example
I have a company that produces two products, widgets and gizmos. The

two demand functions are:

PriceGizmos = 10− QuantityGizmos
50

= 10− QG
50

PriceWidgets = 20− QuantityWidgets
40

= 20− QW
40

.

This gives me the following revenue function:

Revenue(QG,QW) = 10QG− QG2

50
+ 20QW− QW2

40
.

Look at the functions of one variable obtained by treating either QG or
QW as a constant. Use this information to find where we maximize revenue.
Solution. In terms of the last example, we want to start with a table and a
wire frame chart.

Section-6-2-Examples.xlsx

https://www.youtube.com/watch?v=ibcRFnM6fn8
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The wires are obtained by intersecting the graph of the function with a
plane where QW or QG is held constant.

Thus, when we treat either QW or QG as a constant we effectively are
looking at one of the wires of the wire frame. To illustrate this, we will look
at the wires corresponding to QW = 400 and QG = 300. When QG = 300,
our revenue function simplifies to

Revenue(300,QW) = 3000− 1800 + 20QW− QW2

40

= 1200 + 20QW− QW2

40
.

Thus, the wire corresponding to QG = 300 is a parabola that bends down.
The interactive below shows how the wireframe is built from cuves de-

fined by slice curves defined by cut planes.

Figure 6.2.3Wire mesh
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To find the vertex of the parabola, we take the derivative of our function
of QW and set it equal to zero.

d

dQW
Revenue(300,QW) = 20− QW

20
.

This derivative is zero when QW = 400. That is the only possible place on
this wire where we can have a maximum.

Similarly, when QW = 400,

Revenue(QG, 400) = 10QG− QG2

50
+ 4000

d

dQG
Revenue(QG, 400) = 10− QG

25
.

This derivative is zero when QG = 250. That is the only possible place on this
wire where we can have a maximum.

Putting the information together, the maximummust occur at (250, 400).
Putting these values back in the original equation gives a maximum of $5250
for the revenue function.

6.2.2 Partial Derivatives
The procedure we used in the first example of replacing one variable with a constant
and then taking the derivative of the resulting single variable function is a bit cumber-
some. We can simplify the process by taking the derivative of the original function
with respect to one variable while treating the other variables as constants. This is
referred to as taking a partial derivative. There is also a change in notation. The famil-
iar derivative of f with respect to x uses the symbol d

dxf , while the partial derivative
with respect to x uses the symbol ∂

∂xf , or fx. Similarly, the partial derivative with
respect to y uses the symbol ∂∂yf , or fy.

Example 6.2.4 Finding and Interpreting Partial Derivatives.

Find the partial derivatives of f(x, y) = x2+2xy+3y2−4x−3y at (x, y) =
(3.5,−0.5). Explain what the partial derivatives mean in terms of the graph.
Solution. It is useful to look at a picture with the graph, the two curves ob-
tained by keeping x = 3.5 and y = 1.5, and the tangent lines to those curves.

²www.youtube.com/watch?v=ibcRFnM6fn8
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We also want to look at the slices corresponding keeping x = −3.5 and
y = .5.

The yellow curve is obtained by fixing y and letting x vary. The blue curve
is obtained by fixing y and letting x vary. We now take the partial derivatives
with respect to both variables.

∂

∂x
f(x, y) = 2x+ 2y + 0− 4− 0 = 2x+ 2y − 4

∂

∂x
f(3.5,−0.5) = 7− 1− 4 = 2

∂

∂y
f(x, y) = 0 + 2x+ 6y + 0− 3 = 2x+ 6y − 3

∂

∂y
f(3.5,−0.5) = 7− 3− 3 = 1.

The partial derivatives give the slopes of the purple and red lines above.
At the point (3.5,−0.5), the (yellow) curves obtained by treating y as a con-
stant and letting x vary has a (magenta) tangent line with a slope of 2, the
value ∂

∂xf(3.5,−0.5). At the point (3.5,−0.5), the (blue) curves obtained by
treating x as a constant and letting y vary has a (red) tangent line with a slope
of 1, the value ∂

∂yf(3.5,−0.5).
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6.2.3 Tangent Planes and Linear Approximation
For functions of one variable, we had two main uses of the derivative. One was to
identify candidate points for maxima and minima. We will look at critical points and
extrema in the next section. The other use of the derivative was to produce a linear
approximation or tangent line. We can generalize the tangent line for one variable to
a tangent plane for two variables. For a function f(x), we used the value of the point,
(x0, f(x0)) and the slope f(x0) to get the equation of the tangent line approximation
near x0.

Tangent line.

Linear f(x) = f ′(x0)(x− x0) + f(x0).

For a function, f(x, y), of two variables, we simply use partials for the slopes.

Tangent Plane.

Linear f(x, y) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0).

Example 6.2.5 Approximating with a Tangent Plane.

The general Cobb-Douglas production function determines the Production
(P), in terms of the variables Labor (L) and Capital (C):

Production(Labor,Capital) = cLaborαCapitalβ ,

or using short-hand notation:

P (L,C) = cLαCβ ,

where c, α, and β are constants. For our widget factory, this becomes

Production(Labor,Capital) = 10L0.75C0.25,

with labor production and capital in the appropriate units.
Find Production(81, 16). Use a linear approximation to estimate Production(85, 14).

Solution. We answer the first question by substituting the values into the
equation.

Production(81, 16) = 10 ∗ 810.75 ∗ 160.25 = 10 ∗ 27 ∗ 2 = 540.

To produce the tangent plane we take the partial derivatives and evaluate
them at our base point.

ProductionLabor(Labor, Capital) = 10 ∗ .75Labor−0.25Capital0.25

ProductionLabor(81, 16) = 10 ∗ .75(1/3) ∗ 2 = 5

ProductionCapital(Labor, Capital) = 10 ∗ 0.25Labor0.75Capital−0.75

ProductionCapital(81, 16) = 10 ∗ .25 ∗ 27(1/8) = 8.4375.

This gives us our tangent plane:

Production(Labor, Capital) ≈ 5(Labor− 81) + 8.4375(Capital− 16) + 540.

Substituting in values gives our estimate.

Production(85, 14) ≈ 5(85− 81) + 8.4375(14− 16) + 540 = 543.125.
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In the case of the last example, evaluating the linear approximation was nicer
than evaluating the function directly because the 4th roots of 16 and 81 are whole
numbers, while the 4th roots of 85 and 14 are harder to compute. For real world func-
tions, evaluating functions may involve a substantial investment of time and money,
depending on the nature of the function.

Linear Approximations of Functions ofMore than TwoVariables. In this sectionwe
have focused on functions of 2 variables since their graphs are surfaces in 3 dimen-
sions, which is a familiar concept. For real world functions, we are often concerned
with functions of many variables. The concept of partial derivative easily extends,
with one variable and multiple parameters. Finding the linear approximation also
extends without difficulty. We simply have a linear term for each variable.

6.2.4 Exercises: Wire Frames, Partial Derivatives, and Tangent Planes
Problems

Exercise Group. For the given functions and points P1 and P2:

(a) Give the 2 functions of one variable through P1 obtained by holding each vari-
able constant.

(b) Find the partial derivatives of the original function.

(c) Evaluate the partial derivatives at P1.

(d) Give the equation of the tangent plane through P1.

(e) The approximation at P2 obtained from the tangent plane.
1. The function is f(x, y) = x2 + 3xy + 4y2, P1 = (4, 2), and P2 = (3, 2.5).

2. The function is f(x, y) = (x + 3y)/(x2 + y2), P1 = (2, 3), and P2 =
(3, 2.5).

3. The function is f(x, y) = (x2)(x+ 2y), P1 = (3,−1), and P2 = (3, 0).

4. The function is the revenue function for selling widgets and gizmos with
demand price functions

PriceGizmos = 30− QuantityGizmos
50

− QuantityWidgets
300

PriceWidgets = 20− QuantityWidgets
40

− QuantityGizmos
500

,

and P1 = (QuantityGizmos,QuantityWidgets) = (1000, 500), and P2 =
(1050, 575).

5. The function is the revenue function for selling widgets and gizmos with
demand price functions

PriceGizmos = 30(0.95)(QuantityGizmos/100) − QuantityWidgets
300

PriceWidgets = 20(0.9)(QuantityWidgets/150) − QuantityGizmos
250

,

and P1 = (QuantityGizmos,QuantityWidgets) = (800, 400), and P2 =
(750, 425).

6. The function is the Cobb-Douglas production function in a widget factory,

Production(Labor, Capital) = 10Labor0.8Capital0.2,
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where labor is in workers, capital equipment is in units of $20,000, and pro-
duction is in units of 200widgets producedpermonth. In the (Labor, Capital)
plane, let P1 = (100, 30), and P2 = (110, 25).

7. The function is the Cobb-Douglas production function in a country,

Production(Labor, Capital) = 10Labor0.74Capital0.26,

where labor is inmillions of workers, capital equipment is in units of billions
of dollars, and production is in units of billions of dollars per year. In the
(Labor, Capital) plane, let P1 = (300, 30), and P2 = (310, 32).

Exercise Group. For the given functions and points P1 and P2:

(a) Give the 3 functions of one variable through P1 obtained by holding each vari-
able constant.

(b) Find the partial derivatives of the original function.

(c) Evaluate the partial derivatives at P1.

(d) Give the equation of the linear approximating function through P1.

(e) The approximation at P2 obtained from the function in d.

8. The function is f(x, y, z) = x2 + 3xy + 4y2 + 2z2 + 5xz, P1 = (4, 2, 1),
and P2 = (3, 2.5, 2).

9. The function is f(x, y, z) = (x+3y−2z)/(x2+y2+z2), P1 = (2, 3,−1),
and P2 = (3, 2.5, 0).

10. The function is f(x, y, z) = (x2z)(x + 2y + z3) P1 = (3,−1, 1), and
P2 = (2, 0, 1).

11. The function is the revenue function for selling widgets, gizmos, and gad-
gets with demand price functions

PriceGizmos = 30− QuantityGizmos
50

− QuantityWidgets
300

− QuantityGadgets
500

PriceWidgets = 20− QuantityWidgets
40

− QuantityGizmos
500

− QuantityGadgets
400

PriceGadgets = 40− QuantityWidgets
45

− QuantityGizmos
600

− QuantityGadgets
300

,

and in (QuantityGizmos,QuantityWidgets,QuantityGadgets) space, P1 =
(1000, 500, 700), and P2 = (1050, 575, 625).

6.3 Critical Points and Extrema

6.3.1 Critical Points
Link to worksheets used in this section¹

With functions of one variable we were interested in places where the derivative
is zero, since they made candidate points for the maximum or minimum of a func-
tion. If the derivative is not zero, we have a direction that is downhill and moving a

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-6-3-Examples.xlsx

external/Examples/Section-6-3-Examples.xlsx
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little in that direction gives a lower value of the function. Similarly, with functions of
two variables we can only find a minimum or maximum for a function if both partial
derivatives are 0 at the same time. Such points are called critical points.

The point (a, b) is a critical point for themultivariable function f(x, y), if both
partial derivatives are 0 at the same time.

In other words,
∂

∂x
f(x, y)|x=a,y=b = 0

and
∂

∂y
f(x, y)|x=a,y=b = 0.

Example 6.3.1 Finding a Local Minimum of a Function.

Interactive²

Figure 6.3.2 Video of finding local minimum
Use the partial derivatives of f(x, y) = x2+2xy+3y2− 4x− 3y to find

the minimum of the graph.

https://www.youtube.com/watch?v=nZdaPjC0VWQ


6.3. CRITICAL POINTS AND EXTREMA 201

Solution.

Critical Point by
Algebra

In the previous section, we already computed

∂

∂x
f(x, y) = 2x+ 2y − 4

∂

∂y
f(x, y) = 2x+ 6y − 3.

We need to find the places where both partial de-
rivatives are 0. With this simple system, I can solve
this system algebraically and find the only critical
point is (9/4,−1/4).

0 = 2x+ 2y − 4

0 = 2x+ 6y − 3.

Subtract the equations to eliminate x:

0 = 0− 4y − 1.

Solve for y:

4y = −1

y = −1/4.

Substitute back and solve for x:

0 = 2x+ 2(−1/4)− 4

2x = 9/2

x = 9/4.
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Critical Point by
Solver

If the partials are more complicated, I will want to
find the critical points another way. I can find the
point with Solver.

Figure 6.3.3 Critical point setup
To get solver to set both partials to 0 at the same
time, I ask it to solve for fy = 0, while setting fx =
0 as a constraint. Make sure to uncheck the box
that makes unconstrained variables non-negative.

Figure 6.3.4 Critical point setup
This finds our critical point within our error toler-
ance.

Critical Point by CAS Wecan also useWolfram|Alpha to find the solution
to our system of equations.
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Determining the
Critical Point is a

Minimum

We thus get a critical point at (9/4,−1/4) with
any of the three methods of solving for both par-
tial derivatives being zero at the same time. Once
we have a critical point we want to determine if it
is a maximum, minimum, or something else. The
easiest way is to look at the graph near the critical
point.

It is clear from the graph that this critical point is a
local minimum.

It is easy to see that f(x, y) = x2 + y2 has a critical point at (0, 0) and that that
point is a minimum for the function. Similarly, f(x, y) = −x2−y2 has a critical point
at (0, 0) and that that point is a maximum for the function. For some functions, like
f(x, y) = x2−y2, which has a critical point at (0, 0), we can have amaximum in one
direction and a minimum in another direction. Such a point is called a saddle point.
We note that we can have a saddle point even if the x and y slice curves both indicate
a minimum.

Example 6.3.5 A Saddle Point at a Minimum on Both Axes.

Interactive³

Figure 6.3.6 Video presentation of this example
Show that f(x, y) = x2 − 3xy + y2 has a critical point at (0, 0), which is

a minimum of both slice curves, but is not a local minimum.
Solution. We look at the two partial derivatives, and notice they are both
zero at the origin.

∂

∂x
f(x, y) = 2x− 3y

²www.youtube.com/watch?v=nZdaPjC0VWQ

https://www.youtube.com/watch?v=ThmQTWWOvYw
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∂

∂x
f(x, y) = −3x+ 2y.

We then see that both slice curves are parabolas that bend up, with a
minimum at 0.

f(x, 0) = x2

f(0, y) = y2.

However if we take the slice with x = y, we get a parabola bending down,
so we don’t have a minimum.

f(x,−x) = x2 − 3xx+ x2 = −x2.

Looking at the graph, we see that this graph does not have a minimum.

6.3.2 Second Partial Derivatives
With only first derivatives, we can just find the critical points. To check if a critical
point is maximum, a minimum, or a saddle point, using only the first derivative, the
best method is to look at a graph to determine the kind of critical point. For some
applications we want to categorize the critical points symbolically.

With functions of one variable we used the second derivative to test if a critical
point was a maximum or minimum. In the two variable case we need to define the
second derivatives and use them to define the discriminant of a function to test if a
critical point is aminimum,maximum, or saddle point. We first need to define second
partial derivatives.

Second partials.

fab = (fa)b =
∂

∂b
(
∂

∂a
f).

Note that fxx is simply the old second derivative of the curve f(x, y0) and fyy is
simply the old second derivative of the curve f(x0, y). For functions with continuous
second partial derivatives, the mixed partials, fyx and fxy are the same.

³www.youtube.com/watch?v=ThmQTWWOvYw
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Example 6.3.7 Finding Second Partial Derivatives.

Find the second partial derivatives of

f(x, y) = x2 + 3xy + 5y3 − 7x− 11y.

Solution. We start by computing the first partial derivatives.

fx =
∂

∂x
f(x, y) = 2x+ 3y − 7

fy =
∂

∂y
f(x, y) = 3x+ 15y2 − 11.

Then we compute the second partial derivatives.

fxx =
∂

∂x
fx = 2

fxy =
∂

∂y
fx = 3

fyx =
∂

∂x
fy = 3

fyy =
∂

∂y
fy = 30y.

As expected, the mixed partials are the same.

6.3.3 Using the Discriminant to Test Critical Points
To test if a critical point is a maximum, minimum, or saddle point we compute the
discriminant of the function.

Discriminant.

D(f(x, y)) = fxxfyy − f2
xy .

Example 6.3.8 Finding the Discriminant of a Function.

Find the discriminant of

f(x, y) = x2 + 3xy + 5y3 − 7x− 11y.

Solution. We have already computed the second partial derivatives.

fxx = 2, fxy = 3, fyy = 30y.

Substituting into the formula,

D = (2)(30y)− 32 = 60y − 9.

Discriminant test.

Let (a, b) be a critical point of f(x, y).
IfD(a, b) > 0 and fxx(a, b) > 0 then (a, b) is a local minimum of f(x, y).
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IfD(a, b) > 0 and fxx(a, b) < 0 then (a, b) is a local maximum of f(x, y).
IfD(a, b) < 0 then (a, b) is a saddle point of f(x, y).
IfD(a, b) = 0 we do not have enough information to classify the point.

Example 6.3.9 Using the Discriminant to Classify Critical Points.

Based on the information given, classify each of the following points as a local
maximum, local minimum, saddle point, not a critical point, or not enough
information to classify.

p fx fy fxx fxy fyy
A 0 0 0 0 1
B 0 1 3 2 4
C 1 0 0 2 3
D 0 0 1 2 0
E 0 0 -1 2 3
F 0 0 -3 1 -2
G 0 0 3 3 3

Solution. We need to compute the discriminant and apply the test.

p fx fy fxx fxy fyy Discriminant Classification
A 0 0 0 0 1 0 Not enough information
B 0 1 3 2 4 8 Not a critical point
C 1 0 0 2 3 -4 Not a critical point
D 0 0 1 2 0 -4 Saddle point
E 0 0 -1 2 3 -7 Saddle point
F 0 0 -3 1 -2 5 Maximum
G 0 0 3 3 3 0 Not enough information

Example 6.3.10 Finding and Classifying Critical Points.

Let f(x, y) = x3 − 3x+ y3 − 3y2. Find the critical points and classify them
using the discriminant.
Solution. We start by computing the first partial derivatives.

fx = 3x2 − 3 = 3(x− 1)(x+ 1)

fy = 3y2 − 6y = 3(y − 2)(y).

Then we compute the second partial derivatives and the discriminant.

fxx = 6x, fxy = 0, fyy = 6y−6, D = (6x)(6y−6)−02 = 36xy−36x.

We have critical points when both first partials are 0, so at (1, 2), (−1, 2),
(1, 0), and (−1, 0).

At (1, 2), bothD and fxx are positive, so we have a local minimum.
At (−1, 2) and (1, 0),D is negative, so we have a saddle point.
At (−1, 0),D is positive and fxx is negative, so we have a local maximum.
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6.3.4 Exercises: Critical Points and Extrema Problems

1. Reading check,Wire Frames, Critical Points and Extrema. This question checks
your reading comprehension of the material is section 6.3, Critical Points and
Extrema, of Business Calculuswith Excel. Based on your reading, select all state-
ments that are correct. There may be more than one correct answer. The state-
ments may appear in what seems to be a random order.

A If a function is a minimum in both the x and y directions, then it is a
minimum.

B We cannot have a maximum if the discriminant is zero.

C If the discriminant of f is positive at a critical point, and fxx is positive,
then we have a local minimum.

D The formula for the discriminant of f(x, y) is is fxxfyy − f2
xy .

E If the discriminant is negative at a critical point, then we have a saddle
point.

F If the discriminant of f is positive , and fxx is negative, then we have a
local maximum.

G A saddle point has a minimum in one direction and a maximum in a dif-
ferent direction.

H The point (a, b) is a critical point for the multivariable function f(x, y), if
both partial derivatives are 0 at the same time.

I None of the above

Exercise Group. For the given functions and region:

• Find the partial derivatives of the original function.

• Find any critical points in the region.

• Produce a small graph around any critical point.

• Determine if the critical points are maxima, minima, or saddle points.

2. The function is f(x, y) = x2+2xy+4y2+5x− 6y, for the region−10 ≤
x ≤ 10, and−10 ≤ y ≤ 10.

3. The function is f(x, y) = x2+7xy+2y2+4x− 3y, for the region−10 ≤
x ≤ 10, and−10 ≤ y ≤ 10.

4. The function is f(x, y) = −x2 + 2xy − 4y2 + 8x − 11y, for the region
−10 ≤ x ≤ 10, and−10 ≤ y ≤ 10.

5. The function is f(x, y) = x3−12x+y3−3y, for the region−10 ≤ x ≤ 10,
and−10 ≤ y ≤ 10.

6. The function is the revenue function for selling widgets and gizmos with
demand price functions

PriceGizmos = 25− QuantityGizmos
50

− QuantityWidgets
200

PriceWidgets = 30− QuantityWidgets
45

− QuantityGizmos
300

for the region 0 ≤ QuantityWidgets ≤ 1500, and 0 ≤ QuantityGizmos ≤
1500.
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7. The function is the revenue function for selling widgets and gizmos with
demand price functions

PriceGizmos = 30(0.9)(QuantityGizmos/150) − QuantityWidgets
250

PriceWidgets = 20(0.97)(QuantityWidgets/50) − QuantityGizmos
350

for the region 0 ≤ QuantityWidgets ≤ 1500, and 0 ≤ QuantityGizmos ≤
1500. (Warning: There are several critical points.)

8. Based on the information given, classify each of the following points as a lo-
cal maximum, local minimum, saddle point, not a critical point, or not enough
information to classify.

p fx fy fxx fxy fyy
A 1 2 3 4 5
B 0 0 0 0 0
C 0 1 2 5 3
D 0 0 2 2 2
E 0 0 1 2 3
F 0 0 0 1 0
G 0 0 0 -1 0

9. Based on the information given, classify each of the following points as a lo-
cal maximum, local minimum, saddle point, not a critical point, or not enough
information to classify.

p fx fy fxx fxy fyy
A 1 2 3 4 5
B 0 0 0 0 0
C 0 1 2 5 3
D 0 0 2 2 2
E 0 0 1 2 3
F 0 0 0 1 0
G 0 0 0 -1 0

10. Using polynomials of the form f(x, y) = ax3 + bx4 + cy3 + dy4, produce a
function that has a critical point at (0, 0), of each type.

(1) A local maximum.

(2) A local minimum.

(3) A saddle point where the function f(x,0) has a local maximum and f(0,y)
has a local minimum.

(4) A saddle point where the function f(x,0) and f(0,y) both have inflection
points.

6.4 Optimization and Best Fitting Curves

Link to worksheets used in this section¹
¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/

Section-6-4-Examples.xlsx

external/Examples/Section-6-4-Examples.xlsx
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In the last section we looked at using the partial derivatives to find the maximum
orminimumof a function in several variables. This is an extension of the optimization
problems we did with functions of a single variable. It is worthwhile to take another
look at best fitting curves or trendlines, a process Excel has been doing throughout
the course and see that it is a particular example of optimization. This will let us
to best fitting curves that use models other than the ones used by the trendline
command.

Definition of Best Fitting Curve.

Before we can find the curve that is best fitting to a set of data, we need
to understand how “best fitting” is defined. We start with the simplest non-
trivial example. We consider a data set of 3 points, (1, 0), (3, 5), (6, 5) and a
line that we will use to predict the y-value given the x-value, predicted(x) =
x/2 + 1. We want to determine how well the line matches that data. For
each point, (xi, yi), in the set we start by finding the corresponding point,
(xi, predicted(xi)), on the line.

This gives us a set of predicted points, (1, 1.5), (3, 2.5), (6, 4).

For each point we now compute the difference between the actual y-
values and the predicted y-values. Our errors are the lengths of the brown
segments in the picture, in this case 3/2, 3/2, 1. Finally we add the squares
of the errors, 9/4 + 9/4 + 1 = 11/2.

The best fitting line is defined to be the line that that minimizes the sum
of the squares of the error. If we are trying to fit the data with a different
model, we want to choose the equation from that model that minimizes the
sum of the squares of the error.

Now that we have a definition we want to look at fitting a line to a simple data
set in three ways. We will start with the data set of three points:

x 2 4 8
y 1 15 15

We want to start with the familiar method, using the trendline command from a
graph. Then we want to use solver to minimize the sum of squared errors. Finally,
we want to look at the function for sum of squared errors to see how we find the line
using partial derivatives. After we have looked at all three approaches for this first
example, we will consider more complicated examples.
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Interactive²

Figure 6.4.1 Video presentation of the first two examples>

Example 6.4.2 Finding a Best-Fit Curve with Trendline.

Use the trendline command to find the best fitting line for the data:

x 2 4 8
y 1 15 15

Solution. We start bymaking a table adding a scatterplot and adding a trend-
line to the graph. We remember to select the option tomake the formula visi-
ble. The trendline command tells us the slope should be 2 and the intercept
should be 1.

Example 6.4.3 Finding a Best-Fit Curve with the Definition and Solver.

Use solver and the definition of best fitting to find the best fitting line for the
data:

x 2 4 8
y 1 15 15

Solution. We need to add the predicting equation to use solver . We start
with a randomly chosen slope and intercept for our prediction line. Our table
has a PredictedY column, which gives the value that would be on the line with
our slope and intercept. We add in the error, which is the difference between

²www.youtube.com/watch?v=oBFOOrFfN1I

https://www.youtube.com/watch?v=oBFOOrFfN1I
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the predicted y and the actual y, and the square of the error. We then take
the sum of the squares of the errors.

Our use of Solver is similar to when we were looking for a minimum of
a function of one variable. We need to designate the cell with the value we
want tominimize. We select the button tominimize. Recall that Solver selects
the ”Make unconstrained variables non-negative” and we want to uncheck
that box. We now designate two cells that represent variables we can change.

Solver produces the same answer. The best fitting line is

y = 2x+ 1.

Example 6.4.4 Finding a Best-Fit Curve with the Definition and Calculus.

Use calculus, partial derivatives, and the definition of best fitting to find the
best fitting line for the data:

x 2 4 8
y 1 15 15

Solution. Before we can use partial derivatives to find a best fitting line, we
need a function whose derivatives we are taking. We start with the chart we
produced when we were using solver. This gives a formula for the squared
error at each point in terms of the slope and intercept of the line.

Point x y Predicted-y error error2

P1 2 1 m ∗ 2 + b m ∗ 2 + b− 1 (m ∗ 2 + b− 1)2

P2 4 15 m*4+b m*4+b-15 (m*4+b-15)
P3 8 15 m*8+b m*8+b-15 (m ∗ 8 + b− 15)2

We can expand the error squared term and add up those values. After a
straightforward but tedious computation, we see that we are trying to mini-
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mize

SumErrorSq(m, b) = 84m2 + 28mb+ 3b2 − 62b− 364m+ 451.

We take the partial derivative of this function with respect to the slopem
and the intercept b.

SumErrorSqm(m, b) = 168m+ 28b− 364

SumErrorSqb(m, b) = 28m+ 6b− 62.

Setting the two partials to zero and solving we see the partials are both
zero whenm = 2 and b = 1. One again, this method produces the same best
fitting line.

We can use the same methods with a larger problem.

Example 6.4.5 Use the Solver Method on a larger Data Set.

Interactive³

Figure 6.4.6 Video presentation of this example
The table below gives census data for a collection of 10 states. Find the

best fitting line to predict 2010 population based on 2000 population.

Pop 2000 Pop 2010
Wyoming 493,782 563,62
Delaware 783,600 897,934
Maine 1,274,923 1,328,361
Nevada 1,998,257 2,700,551
Iowa 2,926,324 3,046,355

Kentucky 4,041,769 4,339,367
Arizona 5,130,632 6,392,017

Washington 5,894,121 6,724,540
New Jersey 8,414,350 8,791,894
California 33,871,648 37,253,956

Solution. We set up a spreadsheet in the same way we set it up in the last
example. For an initial slope we will start with 1.1 for 10% growth. For a
starting point we will guess an intercept of 0. As we did in the last example,
the predicted population in 2010 is the slope times the population in 2000
plus the intercept. We add extra columns for the predicted population, the
error between the prediction and the actual population, the square of the
error. At the bottom of the last column, we add the squared errors. This
gives the value we want to minimize.

https://www.youtube.com/watch?v=SArudnSafCE
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When we use solver, the best fitting line is

2010population = 1.096 ∗ 2000population+ 98, 154.

The advantage of using the sum of squares definition is that we can find a best
fitting curve using a model not supported by Excel. For example, if we have money
investedwith interest, but a portion of the capital kept available as cashwithout earn-
ing interest, we are looking for a curve of the form:

TotalValue(time) = CashAmount+ DepositAmount ∗ ratetime.

The trendline command does not let us choose such a model to find a best
fitting curve. It is straightforward using the best fit construction.

Example 6.4.7 Finding a Best-Fit Curve for a Nonstandard Model Equation.

Interactive⁴

Figure 6.4.8 Video presentation of this example
We are given the following data on the value of a portfolio over time:

Year Amount
0 $10,000
2 $10,920
5 $12,490
8 $14,300
9 $14,960
12 $17,169
14 $18,820
17 $21,630
19 $23,740
20 $24,880

³www.youtube.com/watch?v=SArudnSafCE

https://www.youtube.com/watch?v=OzLKA8GnUiE
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We think the investor put some money in a secure account that does not
give interest (a coffee can) and the rest of the money in an account that bore
interest (an investment account). Find the amount deposited in each account
and the interest rate of the investment account.
Solution. We set this up much like we did for the linear model, except of
model equation is now

TotalValue(time) = CashAmount+ DepositAmount ∗ ratetime.

We then use Solver to minimize cell E26, by changing cells B20:B22. Our
solution indicates that CashAmount = $997.76, DepositAmount = $9, 005.51,
and rate = 1.05.

When we use this technique with other mathematical models, the only change is
in the formula used for the predicted y value.

Example 6.4.9 Finding a Best-Fit Logistic Curve.

Interactive⁵

Figure 6.4.10 Video presentation of this example
We are managing a wood harvesting business. The number of trees avail-

able in a plot is modeled as constrained growth. That means we expect it to
be modeled by a logistic equation.

AvailableTrees(time) = Capacity/(1 + C ∗ e(−rate∗time).

We have the following information. Find the best fitting curve.

⁴www.youtube.com/watch?v=OzLKA8GnUiE

https://www.youtube.com/watch?v=6JNwHvtAJjA
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Time Trees
0 150
5 400
10 1030
20 5300
30 12020
40 14510

Solution. We set this up much like we did for the linear model, but using
the logistic model.

We then use Solver to minimize cell E12, by changing cells B1:B3. Our
solution indicates that Capacity = 14996, C = 99.93, and rate = 0.200.

Strengths and weaknesses of the three methods of fitting curves. We have exam-
ined three methods for finding a best fitting curve. From Chapter 1, we reviewed the
method of plotting points and adding a trendline. Using the sum of least squared
error definition of best fit, we looked at creating an error function and using Solver to
minimize the error. We also looked at using partial derivatives to find critical points of
the error function. It is worthwhile to look at some of the strengths and weaknesses
of each method.

The method of graphing points and using the trendline command has the ad-
vantage of being the simplest method when it works. The biggest disadvantage of
this method is that it only works with a small collection of mathematical models.
(We can use this method if our desired equation is linear, y = mx + b, logarithmic,
y = a log(x)+ b, polynomial of degree no more than 6, power, y = axb, or exponen-
tial, y = aebx.) As we have seen in this section, it is not hard to find situations where
some other model should be used. This method also has the disadvantage of simply
giving an answer without showing intermediate steps thatmight provide other useful
information.

The method of using partial derivatives has the advantage of being mathemati-
cally clear. It shows us what is going on when we find a best fitting curve. However,
in all but the simplest cases, this method has the disadvantage of involving a daunting
flood of computations. This method is good for informing us about how the method
works, but not a method we want to use in practice for most realistic problems.

The middle method, using Solver, is a hybrid of the other two methods. We start
by deciding on the mathematical model that should fit our situation. As we saw, the
method is straightforward to adapt to any kind of equation. It is straightforward to
explicitly build our error function. This method also has the advantage of making the
error attributed to each point visible. We can see if another curve is almost as good
as the solution we find.

The disadvantages of the Solver method are the standard disadvantages of using
Solver to find a minimum. Recall that Solver simply finds a local minimum from a

⁵www.youtube.com/watch?v=6JNwHvtAJjA
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starting point. Since solver uses numerical methods it looks for places where the
partial derivatives are within our tolerance bounds of zero. We cannot expect Solver
to give an answer that is more precise than the tolerance bounds. With all of the
methods we should be aware that we need enough points to get a reasonable fit of
the curve. Intuitively, a small change in any point should not cause a big change in
the curve.

As a general rule, we will use the trendline command when it works with the
kind of equation we have decided to use as our model.

Checkpoint 6.4.11 Reading check, Optimization and Best Fitting Curves. This ques-
tion checks your reading comprehension of the material is section 6.4, Optimization
and Best Fitting Curves, of Business Calculus with Excel. Based on your reading, se-
lect all statements that are correct. There may bemore than one correct answer. The
statements may appear in what seems to be a random order.

A The method of using partial derivatives has the advantage of easiest to use.

B the trendline command only works with a limited number of kinds of functions.

C The best fitting line is defined to be the line that that minimizes the sum of the
squares of the error.

D The minimize sum of squared errors method works with a broader array of
functions.

E The method of graphing points and using the trendline command has the ad-
vantage of being the simplest method when it works.

F To find the best fitting curve we try to use the trendline command, even if the
curve is not a line.

G Solver always find the global minimum of a function.

H None of the above

Exercises: Optimization and Best Fitting Curves Problems

Exercise Group. For the given data sets:

(1) Plot the points and add a linear trendline. Show the equation of the line.

(2) Create a spreadsheet to compare the data to a linear function.

(3) Add error to your spreadsheet. Find the best fitting line, using Solver.

(4) Explicitly find the sum of squared errors function as a quadratic function of the
slope m, and the intercept b.

(5) Find the values of m and b that minimize the error function by taking partial
derivatives and setting them equal to 0.

1. The given points are:

x -2 0 6
y -7 5 15

2. The given points are:

x -2 0 6
y 24 10 20
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3. The given points are:

x -3 -1 1 3
y -2 6 10 10

4. The given points are:

x -2 0 2 4
y -7 5 11 11

Exercise Group. Find the curve of the indicated type that gives the best fit for the
data.

5. Sally has money invested in a single account that compounds the return
back into the account. Thus, the model we want to use for the amount is:

Amount(time) = InitialAmount ∗ ratetime.

With the data:

Time 0 2 5 10 15 20
Amount $5000 $5600 $6700 $9000 $12000 $16000

Find the best fitting curve of the given model.
6. Fred has put some of his money in a cash account that pays no interest and

the rest of his money a single account that compounds the return back into
the account. Thus, the model we want to use for the amount is

Amount(time) = CashAmount+ InvestmentAmount ∗ ratetime.

With the data:

Time 0 2 5 10 15 20
Amount $10000 $11000 $14000 $19000 $27000 $39000

Find the best fitting curve of the given model.
7. Mary has put some of hermoney in an investment that pays simple interest

and the rest of her money into a single account that compounds the return
back into the account. Thus, the model we want to use for the amount is

Amount(time) = Amount1 + Return1 ∗time+ Amount2 ∗rate2time.

With the data:

Time 0 2 5 10 15 20 30 40
Amount $10000 $11300 $13500 $18300 $24700 $33500 $62600 $118800

Find the best fitting curve of the given model.
8. John has divided his money between two accounts. They both compound

their returns, but they pay different rates. Thus, the formula that models
the investment is:

Amount(time) = Amount1 ∗ratetime1 + Amount2 ∗rate2time.

With the data:
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Time 0 2 5 10 15 20 30 40
Amount $10000 $11500 $14000 $20000 $29000 $41500 $87000 $183500

Find the best fitting curve of the given model.



Chapter 7

Integration

Suppose that for a given company the marginal cost has been determined to be

MarginalCost(x) = x3 + 3x2.

Wewould like to re-construct the cost function from this data. Suppose we also know
that the fixed cost is equal to $100. How do we find out the cost for producing x
items?

• Start with the fixed cost.

• Add the marginal cost for each consecutive item.

• Create a running cost column to keep track of the cost as we accumulate the
data.

For this example we would get:

We would like to relate this data to the original graph of the marginal cost. When
we consider this graph we see that the estimated cost actually corresponds to the
area underneath the Marginal Cost function MarginalCost(x).

219
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In other words, the cost function is the accumulation of the derivative (the mar-
ginal cost). Graphically, the cost function corresponds to the area underneath the
marginal cost function.

We want to consider the accumulation of continuous functions. In the language
of calculus this is called finding an integral.

7.1 Approximating Definite Integrals as Sums

Link to worksheets used in this section¹
The standard approach to accumulation is to reduce the problem to an area prob-

lem. If we let f(t) be a velocity function, then the area under the y = f(t) curve
between a starting value of t = a and a stopping value of t = b is the distance trav-
eled in that time period. In the easiest case, the velocity is constant and we use the
simple formula

distance = velocity ∗ time.

Example 7.1.1 Distance with Constant Speed.

Find the distance traveled if I go 60 mph from 12:30 until 3:00.
Solution. This problem is easy to do without any calculus. If we graph the
velocity function

we find the area of the rectangle by taking base times height and noting
60 ∗ (3 − 0.5) = 150. Note that we do the same computation if I ask how
much I earn over a period of 2.5 years if I make $60K a year, or how much oil
is produced in 2 and a half hours form an oil well that produces 60 barrels of
oil an hour.

In a similar manner, if the function I am accumulating is non-constant and linear,
I can find area by using the area formula of a triangle, one half base time height.

Example 7.1.2 Approximating Area under a Quadratic Functions.

The question becomes more difficult when I want to find the area under a
curve that is not linear. Suppose for example that we want to find the area
under the curve

y = x ∗ (4− x)

between x = 0 and x = 4.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-7-1-Examples.xlsx

external/Examples/Section-7-1-Examples.xlsx
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We no longer have a nice formula from geometry for the area. Thus we
start making approximations. The easiest approximation is to note that the
area has to be less than the area of the 4 by 4 rectangle we can draw around
the region.

We can improve our estimate by dividing the interval [0, 4] into 4 equal
subintervals and then taking the combined area of the 4 rectangles we need
to contain the region. This reduces our upper estimate from 16 to 14.

Similarly we could get a better estimate by looking at 8 subintervals and
seeing that the area under the parabola is no more than 12.5.
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If we continue the process with 100 subintervals, our estimate is down to
10.83. From the picture, it looks like a fairly good estimate.

We can change the number of subdivisions with the interactive below.

Figure 7.1.3 GeoGebra: Upper sum approximation
While this process would be very long and tedious by hand, the process of

finding the area of each of 100 rectangles and adding the areas is rather easy
in Excel. Before going to Excel, we want to make a small adjustment in our
method. The method we used always gives an overestimate. It also requires
that we knowwhere the function reaches a maximum on each subinterval. It
will be easier if we estimate area by always taking the height of the rectangle
at the right end of the subinterval. With 4 subintervals this gives an estimate
of 10 for our area.
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Whenwe increase the number of subintervals to 100, we once again get a
fairly good estimate of the area. From the picture, it is hard to see difference
between the area defined by the curve and the area defined by the rectan-
gles.

Example 7.1.4 Approximating an Area with a Riemann Sum with Excel.

Interactive²

Figure 7.1.5 Riemann Sum with Excel Video
Find the area under the curve y = x ∗ (4 − x) with x between 0 and 4

with Excel
Solution. We will approximate the area with 100 rectangles. We set up a
worksheet to find the area of the first rectangle.

https://www.youtube.com/watch?v=DKy519Caqys
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Figure 7.1.6
Following our standard practice, we set up the question and answer in

labeled areas at the top of the worksheet. The width of a subinterval is the
width of the whole interval divided by the number of subintervals. The col-
umn xn is for the x value at the right side of the n-th subinterval. We calculate
the value of xn by taking the starting point, xo, and adding n times the width
of a subinterval. We then evaluate the function at xn, which we label f(xn).
The area of the n-th rectangle is the height, or f(xn), times the width of the
subinterval. The last column is the total area for the first n rectangles. The
area for 100 rectangles is our area estimate. Since we don’t want to have to
look all over for our answer, we bring the area up to cell D2 with the OFFSET
command. The command OFFSET(E6,B3,0) starts in cell E6, goes down B3
(the number of subintervals) rows, and goes over 0 columns. In our case, it
finds the value in cell E106 and puts it in cell E6.

To find the area we quick fill our worksheet.

Figure 7.1.7
For a more accurate estimate we divide into smaller rectangles.

While 100 subintervals will be close enough for most of the problems we are
interested in, the ”area”, or definite integral, will be defined as the limit of this sum
as the number of subintervals goes to infinity. In other words, the definite integral is
the area under the curve as the rectangles get infinitely thinner. In math notation:

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x

²www.youtube.com/watch?v=DKy519Caqys
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with∆x = b−a
n and xi = a+ i ∗∆x.

The sums of the form,
∑n

i=1 f(xi)∆x with∆x = b−a
n and xi = a+ i ∗∆x, are

called Riemann sums. The limit, written
∫ b

a
f(x)dx, is called a definite integral.

As a memory aid, it is worth noting that the symbol used for the sum is an upper
case sigma, or S for sum in the Greek alphabet. When we take the limit we use an
integral sign, which is a stylized S in the Latin alphabet.

It is worth noting that in this definitionwe are finding “signed area under a curve.”
If the function f(x) is negative over the interval, the integral will also be negative, in
the samewewould have a negative change in our bank statement if we were steadily
removing money. Similarly we can get a negative integral when the ends of the in-
terval are reversed. If I am steadily adding money to an account, the net change is
negative if I measure from 5 years in the future back to today.

We should note that, for functions nice enough to be considered in this class, we
get to the same limit by using rectangles with the function evaluated on the right
side of the rectangle or the left side of the rectangle, or any point in the rectangle
we choose. Choosing the right hand side for evaluation makes our formulas a little
simpler.

Example 7.1.8 Present Value of a Revenue Stream.

Interactive³

Figure 7.1.9 Video presentation of this example
The estimated current value of the revenue stream, in billions of dollars,

of a company being bought out is f(x) = exp(−0.06∗x)∗0.235. The present
value of that revenue stream is the area of the region under the curve y =
f(x) from x = 0 to x = 15. Use 500 intervals to estimate the present value.
Solution. Although the data in the question for this example is quite differ-
ent from the previous example, the setup for the worksheet to evaluate the
Riemann sum is the same.

With 500 intervals we estimate the present value of the revenue stream
to be worth $2.3222 Billion. If we had only used 100 intervals, the estimate

https://www.youtube.com/watch?v=XNvyuCO-9eE
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would have been for $2.318 Billion, while 1000 intervals gives an estimate of
$2.3232 Billion.

Checkpoint 7.1.10 Reading check, Approximating Definite Integrals as Sums. This
question checks your reading comprehension of the material is section 7.1, Approx-
imating Definite Integrals as Sums, of Business Calculus with Excel. Based on your
reading, select all statements that are correct. There may be more than one correct
answer. The statements may appear in what seems to be a random order.

A This sections gave a list of formulas of definite integrals of nice functions.

B We can approximate the area under a curve with a sum of rectangular areas.

C The text mentioned a memory aid that uses the Greek and Latin alphabets.

D One of the examples in the section looked at finding the volume of a solid of
revolution.

E For functions in this class it does not matter is our sum uses right or left hand
points to form the rectangle in a subinterval.

F One of the examples in the section looked at finding the present value of a
revenue stream.

G The limit of a Riemann Sum is a Definite Integral.

H None of the above

Exercises: Approximating Definite Integrals as Sums Problems

1. Let f(x) = 4x + 5. Estimate the area under f(x) on the interval 0 ≤ x < 7
using 100 rectangles and a right hand rule.

2. Let f(x) = 5 − 3x. Estimate the area under f(x) on the interval 2 ≤ x < 10
using 200 rectangles and a right hand rule.

3. Let f(x) = x2 + 3x + 1. Estimate the area on the interval −10 ≤ x < −2
under f(x) using 200 rectangles and a right hand rule.

4. Let f(x) = −x2 + 7x − 10. Estimate the area below the curve y = f(x) and
above the x-axis using 100 rectangles and a right hand rule.

5. Let f(x) = 3 ln(x). Estimate the area under f(x) on the interval 1 ≤ x < 10
using 50 rectangles and a right hand rule.

6. Let f(x) = x exp(−0.7x). Estimate the area on the interval 1 ≤ x < 5 under
f(x) using 100 rectangles and a right hand rule.

7. Let f(x) = (5x+3) exp(−0.7x). Estimate the area under f(x) on the interval
0 ≤ x < 5 using 100 rectangles and a right hand rule.

8. Consider the area under the line y = 5x+ 7 on the interval 1 ≤ x ≤ 5.

(a) Using only what you know about areas of rectangles and triangles, find
the exact area.

(b) Find the approximations to the area using Riemann sums with 50, 100,
and 200 intervals.

(c) Find the error for each of the three approximations you made.

³www.youtube.com/watch?v=XNvyuCO-9eE
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(d) For this case, make an estimate of the error in terms of the number of
intervals used.

9. Consider the area under the line y = x2 on the interval 0 ≤ x ≤ 3. In later
sections we will show that the exact area is 9.

(a) Find the approximations to the area using Riemann sums with 1, 10, 100,
and 1000 intervals.

(b) Find the error for each of the four approximations you made.

(c) For this case, make an estimate of the error in terms of the number of
intervals used.

(d) How many intervals would we need for an error of less that 10−6?
10. You have a natural gas well. You have been told that as gas is extracted and the

pressure in the well lessens, the rate of extraction also decreases. The weekly
production is 10000 exp(−0.01t) cubic feet per week.

(a) Estimate the production in the first year.

(b) Estimate the production in the third year.

11. Sales of your new gadget are estimated at 500 ∗ 2.08t units per month.

(a) Estimate the total sales in the first year.

(b) Estimate the total sales in the fourth year.

(c) Estimate the total sales over the first 5 years.
12. You run a low cost, high volume widget manufacturing plant. For reports, you

write your reports in terms of millions of units. When measured in units of one
million widgets and one million dollars, the marginal profit function is p(x) =
−1 + 10x− x2.

(a) Find the profit from making 12 million widgets.

(b) What quantities have 0 marginal profit?

(c) What is the maximum profit to be made manufacturing widgets?

7.2 The Fundamental Theorem of Calculus

Link to worksheets used in this section¹
In the last section we defined the definite integral,

∫ b

a
f(t)dt, the signed area

under the curve y = f(t) from t = a to t = b, as the limit of the area found by
approximating the region with thinner and thinner rectangles. We also saw that we
can easily find a reasonable approximation to the area using Excel by finding such a
sum with a fairly large number of rectangles.

In the trivial case where we have a constant function f(t) = c, we can find the
area of the area with a simple formula,

∫ b

a
c dt = c(b− a) = cb− ca. If we define an

area function, F (x), as the area under the curve y = f(t) from t = 0 to t = x, then
the area function in this case is F (x) = c ∗ x. We would like to be able to evaluate
more integrals with a process like this, where we have a simple area function.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-7-2-Examples.xlsx

external/Examples/Section-7-2-Examples.xlsx
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Remark 7.2.1 Note on variables used. Weshifted the independent variable from t for
the function f to x for the function F because we have two independent variables
in our discussion and we want to keep them separate to avoid confusion. We will
consider f as a function of t, and want to find the area under the graph of f(t). We
will consider F as a function of x, and understand it as the area under the curve
y = f(t) from some starting point t = a to t = x.

We start by exploring cases where we can justify an area function without using
calculus. We will then look at some cases where we can experimentally verify the
area function with Excel. Finally we will give the general rule for the area function,
the Fundamental Theorem of Calculus, and will give some justification.

Example 7.2.2 Area function for constant by geometry.

Let f(t) = c. For a constant function, f(t) = c, the area under the curve
will be the area of a rectangle of height c and width b− a. The obvious area
function is F (x) = c ∗ x. Then∫ b

a

cdt = F (b)− F (a) = c ∗ b− c ∗ a = c(b− a).

It is worth noting that this formula gives “signed area.” If c or b − a is
negative, the “area” is negative.

Example 7.2.3 Area function for linear function by geometry.

Let f(t) = c ∗ t. For a linear function, f(t) = c ∗ t, the area under the curve
from 0 to b will be the area of a triangle of height c ∗ b and width b.

The obvious area function is F (x) = c ∗ x2/2. If a is also nonzero, the
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area is the difference of the areas of two triangles.∫ b

a

c ∗ tdt = F (b)− F (a) =
c ∗ b2

2
− c ∗ a2

2
=

c(b2 − a2)

2
.

Remark 7.2.4 A note on versions of Riemann sum used. As we consider finding area
with Excel and Riemann sums, rather than use a right-hand rule for the rectangles,
we are going to use a midpoint rule where we find the area of rectangles evaluated
at the middle of each interval.

The right-hand rule uses an easier formula, so we used it first. For the ith rec-
tangle we evaluate at xi = a + i∆x. For the midpoint formula, we evaluate at the
midpoint of the interval, at midi = a + i∆x − ∆x/2. As the picture suggests, the
midpoint formula gives a better approximation. The right-hand rule always overesti-
mates an increasing function. The midpoint rule is exact for linear functions where
the midpoint is the average value.

In both of the examples we have examined the area function has the original
function as its derivative. We would like to use Excel to test a few more cases. In the
worksheets we set up in the last section, SumArea is the area function we are looking
for. We will plot the area function and use a best-fit curve to find the equation of the
area function.

Example 7.2.5 Best fitting area function for a linear function.

Interactive²

Figure 7.2.6 Trendline to area function Video
Repeat the last example, finding the area under f(x) = 6x, with Excel.

https://www.youtube.com/watch?v=8j5_ara-niQ
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Solution. With a linear function we have use the following to produce an
area function.

Figure 7.2.7
Column C has our list of t values in the center of each interval. Column

D has the value of f(t) evaluated at those points. The area of the rectangle
is the height f(midn) times the width, Interval width. SumArea is our
running area function. When we plot the area function, we have something
that seems to be quadratic with leading coefficient c/2 and very small linear
and constant coefficients. In fact, the linear and constant coefficients are zero
up to a rounding factor for numbers of the size we are using.

This matches the result we had solving the problem with geometry. However, we
can repeat the process with Excel and use functions of higher order.

²www.youtube.com/watch?v=8j5_ara-niQ
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Example 7.2.8 Best fitting area function for a quadratic function.

Interactive³

Figure 7.2.9 Video presentation of this example
Find the area function when f(t) = 6t2.

Solution. For this problem we essentially repeat the work of the previous
example with a quadratic function for f(t).

When we plot the area function we get a very good fit with a cubic func-
tion. Once again, allowing for the way best-fit curves may return small ran-
dom values for coefficients that should be zero, we see that if f(t) = c ∗ t2,
then the related area function is

F (x) = c ∗ t3/3.

³www.youtube.com/watch?v=LD6coDN7Hm8

https://www.youtube.com/watch?v=LD6coDN7Hm8
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Example 7.2.10 Best fitting area function for a cubic function.

Interactive⁴

Figure 7.2.11 Video presentation of this example
Find the area when f(x) = 6x3.

Solution. Once again, we can use Excel to produce an area function. The
area function seems to be F (x) = 1.5x4.

In all the examples above, we note that the area function, F (x), has f(x), the
curve we are finding the area under, as its derivative. Thus, in these cases, the area is
an anti-derivative of f(x). This observation generalizes to the Fundamental Theorem
of Calculus, which has two versions:

Theorem 7.2.12 Fundamental Theorem of Calculus (first version).

Let f(x) be a continuous function on the interval [a, b]. On that interval define
an area function by F (x) =

∫ x

a
f(t)dt. Then d

dxF (x) = f(x).

Theorem 7.2.13 Fundamental Theorem of Calculus (second version).

Let f(x) be a continuous function on the interval [a, b]. Suppose F (x) is any
continuous, differentiable function with d

dxF (x) = f(x). Then
∫ b

a
f(t)dt =

F (b)− F (a).

In practice, we use the second version of the fundamental theorem to evaluate
definite integrals. Starting with a definite integral

∫ b

a
f(t) dt, we find a function F (x)

whose derivative is f(x), the integrand or function we are integrating, and then eval-
uate F (x) at the endpoints.

It is easier to prove or justify the first version of the fundamental theorem. The

⁴www.youtube.com/watch?v=_jJv47pi3II

https://www.youtube.com/watch?v=_jJv47pi3II
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basic argument notes that is F (x) =
∫ x

a
f(t) dt, then formally

d

dx
F (x) = lim

h→0

(F (x+ h)− F (x))

h
.

But ifh is small,F (x+h)−F (x) is approximately the area of a rectangle of height
f(x) and width h, so thenF ′(x) = f(x). We then note that any two anti-derivatives
of a function differ by a constant.

Example 7.2.14 Redoing an old area problem by the FTC.

In Example 7.1.4 in the previous section, we used Riemann sums with 100
and 1000 intervals to approximate the area under y = x ∗ (4 − x) with x
between 0 and 4. Find the area using the fundamental theorem of calculus.
Solution. We rewrite the curve as f(x) = 4x − x2 and note that one anti-
derivative of f(x) is F (x) = 2x2 − x3/3. Then∫ 4

0

f(x) dx = F (4)− F (0) =

(
32− 64

3

)
− (0) = 10

2

3
.

To get the same answer to 4 decimal places, we needed to use 1000 intervals
with Riemann sums. Clearly, it is easier to solve this problem with the fundamental
theorem of calculus than to make an approximation with that many intervals.

Example 7.2.15 Verifying an antiderivative to find area.

Let f(x) = x2e−x. We are told F (x) = (x2 + 2x + 2)(−e−x) is an anti-
derivative of f(x). Verify the anti-derivative andfind the area under the curve
with x between 0 and 2.
Solution. Using the product rule,

F ′(x) = (2x+ 2)(−e−x) + (x2 + 2x+ 2)(e−x) = x2e−x = f(x).

The area is

F (2)− F (0) = 10(−e−2)− 2(e0) = −2− 10/e2 = −3.3534.
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We also want to revisit our first three examples in light of the fundamental the-
orem if calculus. In all of those examples, we used Excel to find a best fitting curve
for an area function. We can now check our work by taking the derivative, adjusting
parameters as needed, to find an anti-derivative. For constant and linear functions
we have already done the adjusting because we could find the area function from
geometry.

Example 7.2.16 Using the FTC to guess and check area under a quadratic.

Find the area function when f(t) = 6t2.
Solution. We have already used Excel to find a best fitting curve.

We are thus suspicious that the anti-derivative should be a cubic polyno-
mial. We need

6t2 = d/dt(at3 + bt2 + ct+ d) = 3at2 + 2bt+ c.

Setting coefficients equal for each power, we see a = 2 and b = c = 0.
Thus our area function has the formF (t) = 2t3+d. SinceF (0) is the area of
a region between t = 0 and t = 0, we conclude d = 0 and our area function
is F (t) = 2t3.

Example 7.2.17 Verifying the best fitting function for area under a cubic
function.

Find the area when f(x) = 6x3.
Solution. Using Excel we guessed the area function F (x) = 1.5x4. We
can now verify that the derivative of F (x) is f(x), so we have found an anti-
derivative.

It is worth noting that using the fundamental theorem to evaluate integrals re-
quires us to be able to find an anti-derivative of a function. Finding an anti-derivative
may be quite hard or even an impossible task. Themethod we have just used is often
referred to as the “guess and check” method of finding anti-derivatives. We will look
at methods of finding anti-derivatives in the next several sections.

Checkpoint 7.2.18 Reading check, The Fundamental Theoremof Calculus. This ques-
tion checks your reading comprehension of the material is section 7.2, The Funda-
mental Theorem of Calculus, of Business Calculus with Excel. Based on your reading,
select all statements that are correct. There may be more than one correct answer.
The statements may appear in what seems to be a random order.

A The two versions of the fundamental theorem of calculus are interchangeable.
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B We can use guess and check to verify antiderivatives.

C Let f(x) be a continuous function on the interval [a, b]. On that interval, define
an area function by F (x) =

∫ x

a
d(t) dt. Then d

dxF (x) = f(x).

D The fundamental theorem can be used to evaluate the area under any function,

E The fundamental theorem of calculus says we can use antiderivatives to find
the area under a curve.

F Let f(x) be a continuous function on the interval [a, b]. Suppose F (x) is any
continuous, differentiable functionwith d

dxF (x) = f(x). ThenF (x) =
∫ x

a
d(t)dt =

F (b)− f(a)

G None of the above

Exercises: The Fundamental Theorem of Calculus Problems

1. Let f(x) = 4x+5. We are told that F (x) = 2x2 +5x+7 is an anti-derivative.
(a) Verify that f(x) is a derivative of F (x).

(b) Use the fundamental theorem of calculus to evaluate
∫ 5

1
f(x) dx.

(c) Approximate
∫ 5

1
f(x) dx, using Riemann sums and 100 intervals.

2. Let f(x) = 6x2+3. We are told thatF (x) = 2x3+3x−2 is an anti-derivative.

(a) Verify that f(x) is a derivative of F (x).

(b) Use the fundamental theorem of calculus to evaluate
∫ 4

−2
f(x) dx.

(c) Approximate
∫ 4

−2
f(x) dx, using Riemann sums and 100 intervals.

3. Let f(x) = 5/x. We are told that F (x) = ln(x5) + 9 is an anti-derivative.

(a) Verify that f(x) is a derivative of F (x).

(b) Use the fundamental theorem of calculus to evaluate
∫ 20

1
f(x) dx.

(c) Approximate
∫ 20

1
f(x) dx, using Riemann sums and 200 intervals.

4. Let f(x) = (2x + 3)4. We are told that F (x) = 0.1(2x + 3)5 is an anti-
derivative.

(a) Verify that f(x) is a derivative of F (x).

(b) Use the fundamental theorem of calculus to evaluate
∫ 1

−1
f(x) dx.

(c) Approximate
∫ 1

−1
f(x) dx, using Riemann sums and 100 intervals.

5. Let f(x) = xexp(−0.05x). Weare told thatF (x) = −20(x+20) exp(−0.05x)+
3 is an anti-derivative.

(a) Verify that f(x) is a derivative of F (x).

(b) Use the fundamental theorem of calculus to evaluate
∫ 10

0
f(x) dx.

(c) Approximate
∫ 10

0
f(x) dx, using Riemann sums and 100 intervals.

6. Explain why, if F (x) is an anti-derivative of f(x), then F (x) + 7 is also an anti-
derivative of f(x).
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7. Using an area function from Riemann sums and best fitting curves we have
guessed that a quadratic function will have a cubic anti-derivative.

(a) Find an anti-derivative of f(x) = −x2 + 6x− 2

(b) Use the fundamental theorem of calculus to evaluate

•
∫ 3

0

f(x) dx

•
∫ 4

−2

(x) dx

8. Using an area function from Riemann sums and best fitting curves we have
guessed that a cubic function will have a fourth degree anti-derivative.

(a) Find an anti-derivative of f(x) = x3 + 9x2 + 7x− 3.

(b) Use the fundamental theorem of calculus to evaluate
∫ 5

1
f(x) dx.

9. I am interested in finding an anti-derivative for f(x) = e2x.

(a) Using Excel and 100 subintervals of 0 ≤ x ≤ 2, compute an approximate
area function for f(x). Find a best fitting curve that fits the data well. (It
may help to use a secondary axis for the area data.)

(b) Based on your best fitting curve, use guess and check to find the anti-
derivative.

10. I am interested in finding an anti-derivative for f(x) = e−5x.

(a) Using Excel and 100 subintervals of 0 ≤ x ≤ 2, compute an approximate
area function for f(x). Find a best fitting curve that fits the data well. (It
may help to use a secondary axis for the area data.)

(b) Based on your best fitting curve, use guess and check to find the anti-
derivative.

11. I am interested in finding an anti-derivative for f(x) = 1/x.

(a) Using Excel and 100 subintervals of 1 ≤ x ≤ 5, compute an approximate
area function for f(x). Find a best fitting curve that fits the data well. (It
may help to use a secondary axis for the area data.)

(b) Based on your best fitting curve, use guess and check to find the anti-
derivative.

7.3 Basic Antidifferentiation

In the last section we looked at the fundamental theorem of calculus and saw that it
could be used to find definite integrals. We saw:

Fundamental Theorem of Calculus (second version).

Let f(x) be a continuous function on the interval [a, b]. Suppose F (x) is any
continuous, differentiable function with d

dxF (x) = f(x). Then
∫ b

a
f(t) dt =

F (b)− F (a).

We thus find it very useful to be able to systematically find an anti-derivative of
a function. The standard notation is to use an integral sign without the limits of in-
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tegration to denote the general anti-derivative. Thus,
∫ b

a
f(t)dt is referred to as the

definite integral of f(x) from a to b, and it is a number. In contrast,
∫
f(x)dx is the

indefinite integral of f(x), and it is a function. We use indefinite integrals or anti-
derivatives to evaluate definite integrals or areas.

We find anti-derivatives by startingwith the differentiation formulas of basic func-
tions and manipulating them so the derivative is a nice function.

Elementary Anti-derivative 1— Find a formula for
∫
xn dx.

We start with the closest differentiation formula d
dxx

n = nxn−1, andmanipulate
it so xn is on the right hand side. We first replace n with n + 1 to get d

dxx
n+1 =

(n + 1)xn. We then divide both sides by n + 1 to obtain xn = d
dxx

n+1/(n + 1).
Finally, we note that adding a constant C does not change the derivative, so xn =
d
dx (x

n+1/(n+1)+C). Sincewehavedivided byn+1, weneed to insist thatn+1 ̸= 0.
Using the notation of indefinite integrals we obtain our power rule formula:

∫
xn dx =

xn+1

n+ 1
+ C, assuming n ̸= −1.

Note that this matches the pattern we found in the last section.
Elementary Anti-derivative 2— Find a formula for

∫
1/x dx.

We start with the closest differentiation formula d
dx ln(x) = 1/x. In this case,

we need to note that natural logarithms are only defined positive numbers and we
would like a formula that is true for positive and negative numbers. We can do this
with an appropriate use of absolute value bars. Thus, d

dx (ln(|x|) + C) = 1/x, and
we have our second formula:

∫
1/x dx = ln |x|+ C.

Elementary Anti-derivative 3— Find a formula for
∫
ex dx.

Once again, we start with the closest differentiation formula d
dxe

x = ex. In this
case we don’t have to do any manipulation, and we have our formula:

∫
ex dx = ex + C.

Elementary Anti-derivative 4— Find a formula for
∫
ax dx for a positive number

a.
This formula requires a bitmorework. We start with the formula d

dxa
x = ln(a)ax.

Dividing both sides by the constant ln(a) gives ax = d
dx (a

x/ ln(a) + C). Thus our
integral is:

∫
axdx =

ax

ln(a)
+ C.

Sum, Difference, and ConstantMultiple rules—The ruleswe had for taking deriv-
atives of sums, differences, and constant multiples of functions translate into similar
rules for integrals.

The derivatives of a sum rule, d
dx (f(x) + g(x)) = d

dxf(x) +
d
dxg(x), becomes

the
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Integral of a Sum Rule.∫
(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx

The derivatives of a difference rule, d
dx (f(x) − g(x)) = d

dxf(x) −
d
dxg(x), be-

comes the

Integral of a Difference Rule.∫
(f(x)− g(x)) dx =

∫
f(x) dx−

∫
g(x) dx

Integral of a Constant Multiple Rule.∫
cf(x)dx = c

∫
f(x) dx

We can use these rules to find the indefinite integrals on a lot of functions. They
cover all polynomials.

Example 7.3.1 Antiderivative of integral powers.

Find the integral
∫
3x5 + 4x2 + 5 + 7

x dx.
Solution.∫

3x5 + 4x2 + 5 +
7

x
dx =

∫
3x5 dx+

∫
4x2 dx+

∫
5 dx+

∫
7

x
dx (sum rule)

= 3

∫
x5 dx+ 4

∫
x2 dx+ 5

∫
dx+

∫
7
1

x
dx (constant multiple rule)

= 3

∫
x5 dx+ 4

∫
x2 dx+ 5

∫
dx+ 7 ln |x|+ C (natural log rule)

=
3

6
x6 +

4

3
x3 + 5x+ 7 ln |x|+ C (power rule).

One might argue that the last line should have been

=
3

6
x6 + C1 +

4

3
x3 + C2 + 5x+ C3 + 7 ln |x|+ C4

since each indefinite integral gets a constant C. However all of the constants
used here are arbitrary constants and they can be collapsed together into a
single constant C.

We can also use these rules to find indefinite integrals for roots.

Example 7.3.2 Antiderivative of fractional powers.

Find the integral
∫ √

2x+ 3
√
4x dx.

Solution.∫ √
2x+

3
√
4x dx =

∫ √
2x dx+

∫
3
√
4x dx (sum rule)

=
√
2

∫ √
x dx+

3
√
4

∫
3
√
x dx (constant multiple rule)
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=
√
2

∫
x(1/2) dx+

3
√
4

∫
x(1/3) dx (rules of exponents)

=
√
2x(3/2)(2/3) +

3
√
4x(4/3)(3/4) + C (power rule).

We can also find anti-derivatives of exponential and power functions.

Example 7.3.3 Antiderivative of power and exponential functions.

Find the integral
∫
2 ∗ 3x + 4ex dx.

Solution.∫
2 ∗ 3x + 4ex dx =

∫
2 ∗ 3x dx+

∫
4ex dx (sum rule)

= 2

∫
3x dx+ 4

∫
ex dx (constant multiple rule)

=
2

ln(3)
3x + 4ex + C (exponential rules).

As we mentioned earlier in the section, the normal reason for wanting to find in-
definite integrals is to be able to use themwith the fundamental theorem of calculus
to find definite integrals.

Example 7.3.4 Area under a polynomial function.

Evaluate the definite integral
∫ 3

1
6x2 + 2 dx.

Solution. We first evaluate the indefinite integral to find an anti-derivative.∫
6x2 + 2 dx = 2x3 + 2x+ C.

Since we can use any anti-derivative, we simplify by setting C = 0 and
choosing the anti-derivative F (x) = 2x3 + 2x.∫ 3

1

6x2 + 2 dx = F (3)− F (1) = 60− 4 = 56.

If we choose a different value forC, it cancels out whenwe subract the values
at the endpoints.,

Example 7.3.5 Area under 1
x .

Evaluate the definite integral
∫ 100

1
1
xdx.

Solution. We first evaluate the indefinite integral to find an antiderivative.∫
1

x
dx = ln(|x|) + C.

Since we can use any antiderivative, we simplify by setting C = 0 and
choosing that anti-derivative F (x) = ln(|x|).∫ 100

1

1

x
dx = F (100)− F (1) = ln(100)− ln(1) = ln(100).
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Example 7.3.6 Using the FTC when the function is fit from data.

From experience, I know that the output of an oil well follows a model of
exponential decay. I have the following data for the production, in barrels,
for the first 5 months.

Month Jan Feb Mar Apr May
Production 1000 971 925 887 859

Find the production over the first 5 years.
Solution. The total production for 5 years will be the definite integral of the
production function for the first 60 months. We first use Excel to find a best
fitting exponential function.

The production function (P ) in terms of the number ofmonths (x) is given
by

P (x) = 1043e−0.03945x.

We would like to take an anti-derivative, but we don’t have a formula for
this anti-derivative yet. However, we note

e−0.03945x = (e−0.03945)x = 0.9613x

and we know that ln(0.9613) = −0.03945. We can now use our exponential
rule, and

AntiderivP (x) =
(1043 ∗ 0.9613x)

(−0.03945)
+ C.

Since we can use any anti-derivative, we simplify by setting C = 0. We
can do this without creating any problems because we are using the equation
where two values of the anti-derivative will be subtracted from one another,
and hence theC values would cancel anyways. We now evaluate our integral.

TotalP (60) = AntiderivP (60)− AntiderivP (0)

= (−2467)− (−26438) = 23962.

Thus over 5 years the well will produce 23,962 barrels.

Another application for anti-derivatives is solving an initial value problem. In that
case we want to a particular anti-derivative that has a particular value for a specified
x. In this situation we may not set C to zero. In fact, part of the problem will be to
find the appropriate value of C.
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Example 7.3.7 Finding a value of C to match initial conditions.

The marginal cost (MC) of producing a certain quantity (q) of widgets is given
by

MC(q) = 5− 0.002q.

The cost of producing 1000 widgets is $6,000. Assume that the derivative
of the cost function is approximated closely enough by the marginal cost to
be used interchangeably. Find a cost function for producing widgets.
Solution. Since Cost is an anti-derivativeof theMarginal CostwehaveCost(q) =
5q−0.001∗q2+C. We also know Cost(1000) = 6000. Plugging that in gives

Cost(1000) = 5 ∗ 1000− 0.001 ∗ 10002 + C = 6000.

Solving for C gives C = 2000. Thus our cost function is

Cost(q) = 5q − 0.001 ∗ q2 + 2000.

Example 7.3.8 Building a profit function form data.

Experience tells me that the marginal profit of producing gadgets is a linear
function. My start-up costs are $2 million. I have the following data with my
units being thousands of dollars per millions of units.

Production 0 1 2 3 4
Marginal Profit $3,3967 $3,603 $3,236 $2,795 $2,384

Produce a profit function, find the number of units that maximizes profit, and
find the maximum profit.
Solution. I start by finding a best fitting line to the data.

Excel tells me the marginal profit function is

MP(x) = −397.4x+ 3991.8.

We have maximum profit when the marginal profit is zero. Using Goal Seek,
theMarginal Profit is zero with a production of 10.0448 millions of units. The
anti-derivative of this function is

P (x) = −198.7x2 + 3991.8x+ C.

Plugging in the initial costs into the production model, recalling that our
function is written in thousands of dollars per millions of widgets, gives

P (0) = −2000 = C.
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So our profit function is

P (x) = −198.7x2 + 3991.8x− 2000.

We saw that MP(x) = 0, when x = 10.0448. The maximum profit is the
computed by evaluating P (x) at x = 10.0448. A quick computation shows
that the maximum profit is $18,049 thousands of dollars, or a bit more than
$18 million.

It is worthwhile summarizing our list of integration formulas.

f(x)
∫
f(x) dx

xn, assuming n ̸= 1
xn+1

n+ 1
+ C

1

x
ln |x|+ C

ex ex + C

ax
ax

ln(a)
+ C

(f + g)(x)

∫
f(x) dx+

∫
g(x)dx

(f − g)(x)

∫
f(x) dx−

∫
g(x)dx

c ∗ f(x) c ∗
∫

f(x) dx

A word of warning — The anti-differentiation formulas we have produced only
work for the functions given, allowing for changes in variables. At this point the only
way we have for finding

∫
(3x+5)2dx is expand the integrand getting

∫
(9x2+30x+

25)dx before applying our rules. In general, the process of finding anti-derivatives
symbolically is an art form that we only begin to work with in this course.

Checkpoint 7.3.9 Reading check, Basic Antidifferentiation. This question checks
your reading comprehension of the material is section 7.3, Basic Antidifferentiation,
of Business Calculus with Excel. Based on your reading, select all statements that are
correct. There may be more than one correct answer. The statements may appear in
what seems to be a random order.

A
∫
1/xdx = ln |x|+ C.

B
∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
(g(x)dx.

C
∫
xndx = xn+1

n+1 + C, assuming n ̸= +1.

D
∫
axdx = ax

ln(a) + C.

E
∫
axdx = ln(a) ∗ ax + C, assuming n ̸= −1.

F
∫
exdx = ex+1

x+1 + C, assuming n ̸= −1.

G
∫
(f(x) ∗ g(x))dx =

∫
f(x)dx ∗

∫
(g(x)dx.

H
∫
xndx = nxn−1 + C.

I
∫
xndx = xn+1

n+1 + C, assuming n ̸= −1.
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J
∫
exdx = ex + C.

K None of the above

Exercises: Basic Antidifferentiation Problems

Exercise Group. Find antiderivatives for the given functions.
1.

f(x) = 3x+ 5.
2.

f(x) = 5x3 + 4x+ 3.
3.

f(x) = x3,124,567 + 2x473 + 327x−2,786,534.
4.

f(x) =
√
11x+

5

x
.

5.
f(x) = ex +

(
1

2

)x

.

6.
f(x) = πx + ππ + xπ.

Exercise Group. Evaluate the definite integrals by first finding an antiderivative.
7. ∫ 5

0

x+ 7 dx.

8. ∫ 10

1

1

x
dx.

9. ∫ 10

2

3x+
5

x
dx.

10. ∫ 100

1

(
1

2

)x

dx.

11. ∫ 2

−10

ex + e dx.

12. ∫ 5

−2

x−2 + x−1 dx.

Exercise Group. Solve the Initial value problem.
13. Let f(x) = 4x+ 3. The function F (x) is an antiderivative, and F (0) = 7.

14. Let f(x) = 3x2 − 6x + 5. The function F (x) is an antiderivative, and
F (3) = 17.

15. Let f(x) = 100(0.95)x. The functionF (x) is an antiderivative, andF (5) =
9.

16. Let f(x) = 7/x+ x2. The function F (x) is an antiderivative, and F (1) =
11.
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17. An investment provides an income stream of 1000(0.95)t dollars per year. How
much is received in the first 10 years?

18. A firm has a marginal profit function of MP (x) = 50 − 3x in thousands of
dollars per thousands of units. How much is profit increased if production is
shifted from 10 to 15 thousand units?

19. After the first year, the rate of sales of a fad product are sales(t) = 1000
| t| with

time in years. Howmany units are sold from the end of the first year to the end
of the tenth year?

20. A software company allows your company to expand the number of licenses
your company owns by charging a marginal rate of MR(licenses) = 200√

licenses
.

How much does it cost to increase your license from 1000 to 2000 licenses?

21. The production function for a given oil well is rate(t) = 400(0.9)t with time
measured in years and production measured in millions of barrels of oil.

(a) How much oil is produced in the first year?

(b) How much oil is produced in the tenth year?

(c) If I need to produce 75 thousand barrels of oil per year for the well to be
financially viable, what is the life of the well?

(d) How much oil will the well produce before being shut down?
22. The expected value received from a particular revenue stream should be an

exponential function. I have the following data for income received over the
past 5-year period.

Year 1 2 3 4 5
Income $1,030 $1,078 $1,110 $1,169 $1,225

How much do I expect to receive over the next 10 years?
23. From experience, I expect the marginal revenue for my firm to be a quadratic

function. I have the following data on revenue at a variety of levels, with pro-
duction in thousands of units and marginal profit in millions of dollars.

Production $4.90 $7.04 9.00 11.03 14.00
MProfit 7.40 9.12 9.90 9.89 8.40

What is the expected change in revenue as I increase production from 15 to 20
thousand units?

7.4 Integration by Change of Variables or Substitution

At the end of the last section, we warned that the symbolic integration techniques
we have developed only work for problems that exactly fit our formulas. When we
tried integrating an exponential function where the exponent was a constant times t,
we had to change the base to get a function with only t in the exponent. We want to
develop onemore technique of integration, called change of variables or substitution,
to handle integrals that are pretty close to our stated rules. This technique is often
called u-substitution and is related to the chain rule for differentiation.



7.4. INTEGRATION BY CHANGE OF VARIABLES OR SUBSTITUTION 245

7.4.1 Change of variables for indefinite integrals
We start by exploring some examples where we can get the desired result by the
guess and check technique.

Example 7.4.1 Power of a linear by guess and check.

Find
∫
(3x+ 5)7 dx.

Solution. We could do this problem by rewriting the integrand as an explicit
seventh degree polynomial and then using the power and sum rules, but that
is toomuchwork. Instead, Iwill notice the integrand looks almost like a power,
and thus guess an answer of 1

8 (3x+ 5)8 +C. I then check by differentiating.
Using the chain rule,

d

dx
(
1

8
(3x+ 5)8 + C) =

1

8
∗ 8(3x+ 5)8−1 ∗ 3 = 3(3x+ 5)7.

Thus our guess was off by a factor of 3 and the correct antiderivative is

1

3
∗ 1

8
(3x+ 5)8 + C =

1

24
(3x+ 5)8 + C.

We can easily use the same trick to produce a rule for powers of a linear polyno-
mial.

Example 7.4.2 Power of a generic linear by guess and check.

Find
∫
(ax+ b)ndx.

Solution. As we did in the previous example, we first guess the antideriva-
tive to be 1

n+1 (ax+b)n+1+C. We then take the derivative of that expression
and obtain a(ax+ b)n. This misses our integrand by a factor of a. We adjust
by that factor and find the antiderivative is 1

a
1

(n+1) (ax+ b)n+1 + C.

We can use the same trick to produce a rule for functions that are the exponential
of a linear function.

Example 7.4.3 Antidifferentiation of an exponential function by guess and
check.

Find
∫
eax+bdx.

Solution. As we did in the last example, our first guess uses the basic rule
without worrying about the linear term, so we guess eax+b + C. We then
take the derivative of that expression and obtain aeax+b. This misses our
integrand by a factor of a. We adjust by that factor and find the antiderivative
is 1

ae
ax+b + C.

We run into a problem if we try to extend this methodwith quadratic terms. If we
start with (x2+5)3 and guess an antiderivative of 1

4 (x
2+5)4, when we differentiate

we get (x2 + 5)32x and are off by a factor of 8x. However, when we divide by that
factor to get (x2+5)4

8x as a proposed antiderivative, and then differentiate again, we
get

4 ∗ 2x(x2 + 5)3 ∗ 8x− (x2 + 5)4 ∗ 8
8x

,
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which is not what we want. The key is to start by recalling the chain rule:

d

dx
(f(g(x))) = f ′(g(x))g′(x).

We want to use the same rule with a different notation, using implicit differenti-
ation and a new variable u:

d

dx
(f(u)) = f ′(u)

du

dx
.

By the fundamental theorem of calculus, we can convert this to an integration for-
mula: ∫

f ′(u)
du

dx
dx = f(u) + C.

We will generally simplify du
dxdx to du, so our substitution rule is∫
f ′(u)du = f(u) + C.

Let us rework some earlier examples with this method and then illustrate the
method with a more difficult problem.

Example 7.4.4 Power of linear example redone with change of variables.

Find
∫
(3x+ 5)7dx.

Solution. The obvious candidate for u is 3x+ 5. Then du = 3 dx. Thus∫
(3x+ 5)7 dx =

1

3

∫
(3x+ 5)7(3 dx) (Make u and duexplicit.)

=
1

3

∫
(u)7 du (Do the substitution.)

=
1

3 ∗ 8
(u)8 + C (Find the integral in terms of u.)

=
1

24
(3x+ 5)8 + C (Substitute back.).

This is easy to generalize for a power of a linear term.

Example 7.4.5 Power of generic linear example redone with change of vari-
ables.

Find
∫
(ax+ b)ndx.

Solution. The obvious candidate for u is ax+ b. Then du = a dx. Hence∫
(ax+ b)n dx =

1

a

∫
(ax+ b)n(a dx) (Make u and du explicit.)

=
1

a

∫
(u)n du (Do the substitution.)

=
1

a ∗ (n+ 1)
(u)n+1 + C (Find the integral in terms of u.)

=
1

a ∗ (n+ 1)
(ax+ b)n+1 + C (Substitute back.).

To use this method with u replacing something more complicated than a linear
term, we need to have du available, with the possible addition of multiplying by a
scalar constant.
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Example 7.4.6 Power of cubic function with change of variables.

Find
∫
(2x3 + 11)7x2dx.

Solution. The obvious candidate for u is 2x3 + 11, since it is an expression
taken to a large power. Then du = 6x2 dx. Thus∫
(2x3 + 11)7x2 dx =

1

6

∫
(2x3 + 11)7(6x2 dx) (Make u and du explicit.)

=
1

6

∫
(u)7 du (Do the substitution.)

=
1

6 ∗ 8
(u)8 + C (Find the integral in terms of u.)

=
1

48
(2x3 + 11)8 + C (Substitute back.).

By convention, u is often used the new variable used with this change of variables
technique, so the technique is often called u-substitution.

7.4.2 Change of variables for definite integrals
In the definite integral, we understand that a and b are the x-values of the ends of
the integral. We could be more explicit and write x = a and x = b. The last step in
solving a definite integral is to substitute the endpoints back into the antiderivative
we have found. We can either change the variables for the endpoints as well, or
we can convert the antiderivative back to the original variables before substituting.
Consider the following example.

Example 7.4.7 A definite integral with change of variables.

Evaluate
∫ 3

1
e2x+5dx.

Solution 1. Solution 1: Convert everything to u. The obvious candidate for
u is 2x + 5. Then du = 2 dx. For the lower endpoint, x = 1 becomes
u = 2(1)+5 = 7. For the upper endpoint x = 3 becomes u = 2(3)+5 = 11.
Substituting,∫ 3

1

e2x+5 dx =

(
1

2

)
(2)

∫ 3

1

e2x+5 dx) (Add needed factors.)

=
1

2

∫ 3

1

e2x+5(2 dx) (Make u and du explicit.)

=
1

2

∫ u=11

u=7

eu du (Do the substitution.)

=
1

2
eu
∣∣∣∣11
7

(Find the antiderivative.)

=
1

2
e11 − 1

2
e7. (Evaluate.).

Solution 2. Solution 2: Keeping, but labeling, the endpoints. We have the
same u and du, but do not convert the endpoints. To reduce confusion we
make sure to label the variable when we are using both x and u. Thus,∫ 3

1

e2x+5 dx =
1

2

∫ 3

1

e2x+5(2 dx) (Make u and du explicit.)
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=
1

2

∫ x=3

x=1

eu du (Do the substitution.)

=
1

2
eu
∣∣∣∣x=3

x=1

(Find the antiderivative.)

=
1

2
e2x+3

∣∣∣∣x=3

x=1

(Convert back.)

=
1

2
e11 − 1

2
e7. (Evaluate.).

It should be noted that when we change variables we may find ourselves looking
at an integral from a to b where the b < a. We do not change the order of the
endpoints.

Example 7.4.8 A second definite integral with change of variables.

Evaluate
∫ 1

−2
xe(x

2)dx

Solution. (Convert everything tou.) The obvious candidate foru isx2. Then
du = 2x dx. For the lower endpoint, x = −2 becomes u = (−2)2 = 4. For
the upper endpoint x = 1 becomes u = 12 = 1. Substituting,∫ 1

−2

xe(x
2) dx =

1

2

∫ 1

−2

e(x
2)(2x dx) (Make u and duexplicit.)

=
1

2

∫ 1

4

eu du (Do the substitution.)

=
1

2
eu
∣∣∣∣1
4

(Find the antiderivative.)

=
1

2
(1− e4). (Evaluate.).

7.4.3 Exercises: Integration by Change of Variables or Substitution
Problems

1. Reading check, Integration by Change of Variable or Substitution. This ques-
tion checks your reading comprehension of the material is section 7.4, Inte-
gration by Change of Variable or Substitution, of Business Calculus with Excel.
Based on your reading, select all statements that are correct. There may be
more than one correct answer. The statements may appear in what seems to
be a random order.

A Substitution for integration is related to the chain rule for integration.

B One of the methods in this section is called Guess and Check.

C We can pick any expression for u when doing substitution.

D For the method of substitution, we want to make both u and du explicit.

E We can also do change of variables with definite integrals.

F None of the above

Exercise Group. Evaluate the following integrals. In each case identify the term that
will be treated as u.
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2. ∫
(5x+ 3)4dx.

3. ∫
(7x− 9)11dx.

4. ∫
(x/5− 2)2/3dx.

5. ∫
(143567x+ 98736)2578965dx.

6. ∫ √
(8x− 3)dx.

7. ∫
1√

3x+ 7
dx.

8. ∫
100e.06t−5dt.

9. ∫
150(1/2)t/5dt.

10. ∫
(2x+ 5)(x2 + 5x+ 3)5dx.

11. ∫
50xe−x2

dx.

12. ∫
3x2 + 1

x3 + x+ 9
dx.

13. ∫
x
√
x2 − 9dx.

14. ∫ 3

0

e3x+1dx.

15. ∫ 1

0

0100e−0.04tdt.

16. ∫ 5

0

e(−0.05(t+1))dt.

17. ∫ 3

1

(2x+ 5)−2dx.

18. ∫ 6

1

x
√
3x2 + 7dx.
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19. ∫ 2

0

x2e(1−0.2x3)dx.

20. Find an antiderivative F (x) for f(x) = x2(x3 + 7)3 such that F (0) = 5.

21. Find an antiderivative F (x) for f(x) = (4x3 + 5) exp(x4 + 5x − 9) such that
F (0) = 2.

22. An investment stream pays out at a rate of $10,000 per year. In computing
present value, I assume an investment return rate of 5% compounded continu-
ously. What is the present value of the first 10 years of the payout?

23. My gas well is returning a payout of $10,000. The well output is expected to
decay exponentially with half as much output in 7 years. How much do I make
over the next 10 years?

24. The sales rate on a book is s(t) = 1000t exp(−t2/4), with time in years.

(a) What are the total sales over 10 years?

(b) When does the sales rate drop to 10?

(c) What is the maximum sales rate?

25. The marginal profit on an item isMp(q) = (100q)
(q2+1) − 2, measured in thousands

of dollars per thousands of units.

(a) How much should I produce to maximize profits?

(b) What is my profit function if my start up cost is $60,000?

(c) What is the maximum profit?

7.5 Integration using Computer Algebra

Recall that the fundamental theorem of calculus states that if F (x) is a function with
its derivative equal to f(x) on the region a ≤ x ≤ b, then

∫ b

a
f(x) dx = F (b)−F (a).

We say
∫ b

a
f(x) dx is the definite integral of f(x) from a to b. If f(x) is a derivative

of F (x), then F (x) is an anti-derivative of f(x), and any anti-derivative of f(x) has
the formF (x)+c, for some constant c. We use the symbol

∫
f(x) dx, without limits

of integration, for the indefinite integral.
In Section 7.1 we looked at approximating definite integrals with a Riemann sum

that added up the area of a bunch of rectangles. In Section 7.2 we saw that the
fundamental theorem of calculus lets us use an antiderivative or indefinite integral
to evaluate a definite integral. In Section 7.3–7.4 we saw how to compute indefinite
integrals by hand for a limited number of functions. In this section, we will look at
how to use computer software at a web site to find antiderivatives.

We startwithWolfram|Alpha, available at http://www.wolframalpha.com. We can
give Wolfram|Alpha the question we want solved in plain English. In our case we
would like to find the antiderivative of xn with respect to x.

http://www.wolframalpha.com
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The Alpha provides an answer.

Note that the response tells us the question the Wolfram|Alpha is answering.
That helps us check that we have been properly understood. We may find it useful
to give a formula without the extra words.

The interface is fairly robust. It understands the convention that the variable for
math problems is typically x, so it will generally guess that x is our variable if we don’t
specify the variable with respect to which we are integrating.

It is worth noting that Wolfram|Alpha is connected with Mathematica, so it will
understand questions in Mathematica syntax. On the right side to the screen there
is a link for related links. In particular, there will be a link for the related command in
Mathematica.
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Following that link givesmore information on the syntax of theMathematica com-
mand. We generally don’t need to know the syntax, but it is useful if we want to use
specific options.

We should note thatWolfram|Alphawill easily find antiderivatives that wewould
find very hard to do or beyond the scope of this class.

The output also has a link for showing steps on complicated problems.
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The show steps link only works on the paid version of Alpha. However we can
find other tools by searching for integral calculator. Such a search reveals Symbolab,
https://www.symbolab.com/solver/definite-integral-calculator, whichwealso used
in Chapter 4.

In Chapter 4, we found a derivative calculator. Similarly we can find an integral cal-
culator (http://www.integral-calculator.com/) that will show steps. For problems

https://www.symbolab.com/solver/definite-integral-calculator
http://www.integral-calculator.com/
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of at the level of difficulty we have been doing, Wolfram|Alpha also produces plots
of the integral.

7.5.1 Definite integrals
One of the reasons we wanted to find antiderivatives was to be able to use them
to evaluate definite integrals. We can ask Wolfram|Alpha for the definite integral
directly. In that case, Wolfram|Alpha will give the numeric answer and will also pro-
duce the relevant graph. (Symbolab will also do definite integrals.)

This is particularly useful when finding the antiderivative is beyond the scope of
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this course. Consider for example if we want to find the area under a portion of a
curve that has the shape of a normal curve.

Another example when we can easily set up integrals we cannot solve by hand
occurs when we are trying to find the current value of a revenue stream. A value,
V , that we get t years in the future, has a present value of V exp(−rt) where r is
an investment return rate. Thus the current value of a revenue stream, V (t), from
time a to time b, is

∫ b

a
V (t) ∗ e(−r∗t)dt. However we only have a rule for finding the

antiderivative when V (t) is either a constant or exponential function. With a CAS
program it is straightforward to compute such integrals for a broad range of value
stream functions.

If you are going to use Wolfram|Alpha in doing work, you should realize that the
terms of use of the site require you to appropriately cite Wolfram|Alpha. (This is
standard academic procedure.) Your citation should include that date that you got
your answer from the site. The results above were obtained on Feb 29, 2012.

In business situations, we are rarely asked to simply find an integral. Instead,
finding an integral is generally part of a larger problem. Thus we often use CAS for
part of a problem.

7.5.2 Initial value problems
We often want to choose a particular antiderivative of a function. We typically do
this when we have the value of the antiderivative for some value. We simply plug
that value into the general antiderivative and solve for C.
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Example 7.5.1 Finding the antiderivative, then the constant.

The rate of change profit with respect to quantity is given by P ′(q) = −q2 +
5q + 50 and the break-even point occurs when q = 5. Find the formula for
profit as a function of q. Find the maximum profit.
Solution. We can do this by putting together things we have already done.
First we use Wolfram|Alpha to find an antiderivative.

Thus we know P (q) = 1q3

3 + 5q2

2 + 50q + C for some constant C. We
also know P (5) = 0.

Thus, 0 = P (5) = 53

3 + 5∗52
2 +50∗5+C, or−−C = 53

3 + 5∗52
2 +50∗5.

Using Excel, we now plug the function, without theC, into Excel and eval-
uate at q = 5.

We make C the negative of our answer and modify our function accord-
ingly. We now use solver to maximize the function.

Thus the maximum profit is $145.83, and it occurs when q = 10.

Example 7.5.2 The previous example in one step.

The rate of change profit with respect to quantity is given by P ′(q) = −q2 +
5q + 50 and the break-even point occurs when q = 5. Find the formula for
profit as a function of q. Find the maximum profit.
Solution. We can also do this with Wolfram|Alpha bysetting up the bound-
ary value problem. We give the alpha bot the derivative we want integrated
and the fixed value of the original function. (Notice that the answer does not
include a+C, since we have computed a particular constant.)
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We then ask Alpha to maximize the function.

This gives the same answer of $145.83.

This first example could easily havebeendonebyhand. We can repeat the process
with an example that could not be easily been by hand.

Example 7.5.3 A more complicated initial value problem.

The rate of change of profit with respect to quantity is given by P ′(q) =
q2 exp(−q/10) − q/10 and a break-even point occurs when q = 5. Find
the formula for profit as a function of q. Find the maximum profit.
Solution. In structure, this example is very similar to the first example. How-
ever, where in the first example, the function would have been easy to do by
hand, in this case, the problem is very hard to do by hand. We use Wolfram/
Alpha to find the antiderivative.

P (q) = exp(−q/10) ∗ (−10 ∗ q2 − 200 ∗ q − 2000)− q2/20 + C.

We then use Excel to find C, noting that if we use P (q) without the C,
then C is the value of−P (5) = 1972.474.
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We plug in 5 and note P (5) = 0 = C − 1972.474, thus C = 1972.474.
We use solver to maximize and find the maximum profit of $1675.17 occurs
at q = 64.72775.

7.5.3 Riemann Sums
We can also use Alpha to do Riemann sums. We need to give a starting and ending
point and the number of intervals.

Example 7.5.4 Riemann sums with Wolfram|Alpha.

Find the current value of a revenue stream V (t) = 2000 + 5t for 10 years
with an investment rate of r = 1.03, assuming payments are made daily.
Solution. We approximate the current value with the integral

CurrentValue =
∫ stop

start
r−tV (t)dt =

∫ 10

0

1.03−t(2000 + 5t) dt.

What we really want is the Riemann sum with one interval per day. Over
10 years we have 3652 days.

If we assume payments start at the beginning of the first day, we would
use the left endpoint method.

7.5.4 Exercises: Integration using Computer Algebra Problems
1. Reading check, IntegrationUsing Computer Algebra. This question checks your

reading comprehension of the material is section 7.5, Integration Using Com-
puter Algebra, of Business Calculus with Excel. Based on your reading, select
all statements that are correct. There may be more than one correct answer.
The statements may appear in what seems to be a random order.
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A The section uses Symbolab as a computer algebra system that will do
integration.

B The section uses GeoGebra as a computer algebra system that will do
integration.

C Wolfram|Alpha will also do definite integrals.

D The computer algebra systems used in this section cannot do Riemann
sums.

E In initial value problems, we have to solve for the value of the integration
constant C.

F The section uses Wolfram|Alpha as a computer algebra system that will
do integration.

G None of the above

Exercise Group. Find the antiderivative of the given function.
2.

f(x) = x ln(x).
3.

f(t) = e.07t(−t2 + 3t+ 5).
4.

f(t) = t2e( − 0.06t).
5.

f(x) = ln(x).
6.

f(t) = (t+ 1)e−0.06t.
7.

f(x) =
1

(1 + 2x)(3 + x)(5 + 6x)
.

8.
f(x) =

1√
1 + x2

.

9.
f(x) =

1

(3 + 2x)2
.

10.
f(x) =

5

9 + x2
.

11.
f(x) =

1

(5x+ 4)2(7x+ 9)
.

Exercise Group. Evaluate the definite integral.
12. ∫ 10

0

t2e−0.06tdt.

13. ∫ 10

1

dt

t
.
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14. ∫ 8

1

(x− 1)(x− 8)dx.

15. ∫ 10

0

t2e.05(10−t)dt.

16. ∫ 2

0

e−x2

dx.

17. ∫ 16

9

1√
2π

e−(x−10)2dx.

Exercise Group. Do the initial value problem.
18.

P ′(q) = −q2 + 3q + 5 and P (3) = 5. Find P (q).
19.

F ′(t) = t2e−0.1t and F (10) = 2. Find F (t).
20.

P ′(q) =
√

q2 + 5q + 7 and P (0) = 7. Find P (q).
21.

P ′(q) = −(q2 + 2q + 3)2 and P (10) = −7. Find P (q).
22. I have an investment that produces income at a rate of P (t) = 5000 + 100t.

I assume the present value of an asset decreases continuously at a rate of 2%
per year for the length of time I have to wait for the asset. What is the present
value of the first 7 years of return from my investment?

23. My oil well is producing revenue at a rate of P (t) = 5000(0.09t). I assume the
present value of an asset decreases continuously at a rate of 3% per year for
the length of time I have to wait for the asset. What is the present value of the
first 10 years of return from my investment?

24. The rate of marginal profit isMP (q) = 100− 12 ln(q) and a break-even point
occurs at q = 100. Find the quantity that produces the most profit and the
amount of profit generated at that point.

25. Our marginal cost function is MC(q) = 10q ln(q) and the startup costs are
$23,000. Produce a cost function.

7.6 TheNormal Distribution: An extended numeric exam-
ple

Link to worksheets used in this section¹
We want to look at an extended example where we realistically want to find a

definite integral, but need to use numerical methods rather than solving for the anti-
derivative and using the fundamental theorem of calculus. Most students are famil-
iar with the concept of a course that is graded on a curve. Formally, that means that
there is a preset distribution of grades available in the class, with a certain percentage
of the students getting an A, a certain percentage getting a B, and so forth. Most col-
lege students are also familiar with the ACT, SAT, or other standardized tests, where

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-7-6-Examples.xlsx

external/Examples/Section-7-6-Examples.xlsx
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the score typically follow a normal or ”bell” curve. The result we pull from more ad-
vanced mathematics is that many phenomena such as height, weight, and hat size,
also follow a bell curve. In a business setting, we are often concerned whether or
not a portion of a market will be big enough to support a specialty store. We also
want to know howmuch of my production should be allocated to a range of sizes of a
product. This question often boils down to finding the area under a specified portion
of the normal curve.

7.6.1 Background from probability
We want to pull some definitions and results from the theory of probability. In par-
ticular we want a description of the function we are finding the area under and also
of the related area function.

Definition 7.6.1

A Probability Density Function is a function that spreads the area 1 over the
entire real line, with the obvious understanding that no value can have a neg-
ative probability.

In calculus terms, a Probability Density Function is a function f(x) de-
fined for−∞ < x < ∞ such that f(x) ≥ 0 and

∫∞
−∞ f(x) dx = 1.

A probability density function is also called a continuous distribution function.
The probability density function that is of most interest to us is the normal distribu-
tion. The normal density function is given by

f(x) =
1

σ
√
2π

exp
(
−(x− µ)2

2σ2

)
where σ (sigma), and µ (mu), are respectively the standard deviation and mean of
the distribution. For this course the mean is the center of the distribution and the
standard deviation is a measure of how tightly packed the distribution is. If we set
the mean to 0 and the standard deviation to 1 we have the standardized normal dis-
tribution, or the familiar bell curve.

Thus, when I note that the adult men in the United States have a height distrib-
ution that is normal with a mean of 70 inches and a standard deviation of 3 inches,
the distribution is

f(x) =
1

3
√
2π

exp
(
−(x− 70)2

2 ∗ 32

)
.

Thus finding the percentage of men less than 5 feet tall, reduces to evaluating
the appropriate integral. Since finding the percentage of the population that fits in
our market reduces to finding the area under a specified portion of this curve, we are
also interested in the anti-derivative of the distribution.
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Definition 7.6.2

Given a probability density function, f(x), the related Cumulative Distribu-
tion Function, CDFf(x), is a function that measures how much area is over
the interval (−∞, x].

In calculus terms, CDFf(x), the Cumulative Distribution Function of f(x),
is
∫ x

−∞ f(t)dt.

You will notice the techniques we have for anti-differentiation will not work with
the normal distribution. In fact, the normal distribution has no closed form anti-
derivative using the functions we are familiar with. Thus we need to use numeric
methods.

7.6.2 Examples

Example 7.6.3 Tall men in an area.

Interactive²

Figure 7.6.4 Video presentation of this example
In the United States, the height of men follows a normal distribution with

a mean of 70 inches (5’ 10”) and a standard deviation of 3 inches. I want to
set up a specialty shop for men who are at least 6’ tall, but no more than 7’
tall. In an area with 100,000 adult men, how big is my potential market?
Solution.

• Set up.

My distribution function is 1
3
√
2π
exp

(
−(x−70)2

2∗33

)
. Since I have a pop-

ulation of 100,000 and am interested in the men who are between 72
and 84 inches tall, my potential market is

100000

∫ 84

72

1

3
√
2π

exp
(
−(x− 70)2

2 ∗ 32

)
dx.

As an alternative, I can convert the problem so it is expressed in terms
of standard deviations. Then I use the standardized normal distribution
and my limits of integration are

low bound in SD = (low bound−mean)/(SD) = (72− 70)/3 = 2/3

upper bound in SD = (upper bound−mean)/(SD) = (84− 70)/3 = 14/3.

Then my potential market is

100000

∫ 14/3

2/3

1√
2π

exp(−x2/2)dx.

https://www.youtube.com/watch?v=NItxIRjOmZk
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• Using Excel and Riemann Sums.

I want to set up a spreadsheet to find the area under the curve. Since I
think I may do this for several problems, I want to set up the worksheet
as a template that I can simply fill in. It will makemy life easier if I recast
the problem in terms of standard deviations. My potential market is
100000

∫ 14/3

2/3
1√
2π
exp(−x2/2)dx. I am ready to set up a Riemann sum

worksheet as we did in Section 7.1.

In cells F3 through F5 we convert the lower bound, upper bound, and
del x to standard deviations. We recall that we get better accuracy by
evaluating the rectangles with a midpoint. The midpoint of the nth
rectangle is (n-0.5)*del x above the lower bound. As we did in previous
sections, we use the offset command to bring our answer into the top
region. Whenwe look at the numbers we see that the potential market
is 25,249.

• Using Excel Statistics Commands.

By this point in the course you should expect that if we claim a compu-
tation is important and done by business many times, that there is an
Excel command to do the computation.

The function we are interested in is

NORM.DIST(x, mean, standard deviation, cumulative).

.

Where x, mean, and standard deviation have the obvious meanings.
The cumulative parameter is either true or false. If it is true we get
the cumulative distribution function. If it is false we get the probabil-
ity density function. If we are working with the standardized normal
distribution, where the mean is 0 and the standard deviation is 1, the
command is

NORM.S.DIST(x, cumulative).

(If you are using older versions of Excel, the syntax of the command
is a little different. Check the appropriate help page if you are using
an older version of Excel.) With these commands, our spreadsheet is
noticeably simpler.
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When we look at the values, we get a target population of 25,249. This
agrees with our estimate to 5 significant figures.

• Using Wolfram alpha.

Once I have reduced the problem to evaluating a definite integral, I can
find a numeric solution with a CAS package like Wolfram|Alpha.

100000

∫ 84

72

1

3
√
2π

exp
(
−(x− 70)2

2 ∗ 32

)
dx

becomes

100000*integrate(exp(-(x-70)^2/(2*3^2))/(3*sqrt(2*pi))) from 72 to 84.

We get our familiar answer of 25,249.

When we compute a target population, we sometimes want to include
the tail of the distribution. We might, for example be concerned with
all women who are 5 feet tall or less. This sets up an integral over
an infinite interval, which we can’t do as a Riemann sum. The first
workaround notes that the tails are very small. If all humans who have
ever lived are normally distributed, less than 1 is more than 7 standard
deviations from the mean. Taking the integral down to −7 will practi-
cally be the same as integrating down to−∞. The second workaround
uses the symmetry of the normal distribution.∫ a

−∞
SND(x)dx =

∫ 0

−∞
SND(x)dx+

∫ a

0

SND(x)dx = .5+

∫ a

0

SND(x)dx.

²www.youtube.com/watch?v=NItxIRjOmZk
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Example 7.6.5 Finding short women.

Interactive³

Figure 7.6.6 Video presentation of this example
In the United States, the height of women follows a normal distribution

with a mean of 64 inches (5’ 4”) and a standard deviation of 2.75 inches. I
want to set up a specialty shop for women who are no more than 5’ tall. In
an area with 500,000 adult women, how big is my potential market?
Solution.

• Set up.

Using the reasoning as above, I want to estimate my market if it is 50%
of the population plus the percentage between 0 and (−4/2.75) stan-
dard deviations below the mean.

• Using Excel and Riemann Sums.

One advantage of having set up the first exercise well, is the Riemann
sum problem is now amatter of changing the parameters and subtract-
ing from 0.5 before multiplying by the market size.

We notice that since we are finding the area under the standardized
normal distribution from 0 to a negative number, we get a negative
area. Our potential market is composed of 3,645 women.

• Using Excel Statistics Commands.

When using the statistics commands, the area function is zero at −∞.
Thus we simply have to evaluate NORM.S.DIST(right hand limit,
cumulative).

Once again, we get a potential market of 3,645 women.

While the normal distribution spreads a population over the real numbers, most

³www.youtube.com/watch?v=t4XABMbHO4k

https://www.youtube.com/watch?v=t4XABMbHO4k
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objects come in discrete sizes. Depending on the kind of shoes, the sizes are either
whole or half numbers. You can’t buy a shoe of size 8.764. The normal procedure is
to divide the population at the middle between the sizes.

Example 7.6.7 Women’s shoes.

Interactive⁴

Figure 7.6.8 Video presentation of this example
In the United States, the shoe sizes of women follows a normal distribu-

tion with a mean of 8 and a standard deviation of 1.5. I want to order 1000
pairs of shoes. If the shoes are only available in full sizes, how many pairs
should I order of size 7?
Solution. I want the portion of the population between size 6.5 and 7.5. I
fit it into my worksheet for Riemann sums.

Of the 1000 pairs of shoes, 211 should be size 7.

We have looked at three methods for finding a portion of a normally distributed
population, which we describe as Excel with Riemann sums, Excel with statistics com-
mands, and CAS. It is worthwhile to consider the advantages and disadvantages of
the methods. The Riemann sums method takes the most work to set up. It is also
conceptually themost straightforward and themost flexible. It is the easiest to adapt
if we are doing some nonstandard distribution of a population. It also shows inter-
mediate values if we have a less sharp question and are trying to see what is going on
and are still deciding on the business question we want to ask. The Excel with statis-
tics command approach requires us to learn special commands. It is also less work. It
would probably be the favored method if we were doing a lot of these computations.
It should be noted that Excel has corresponding commands for the other standard
probability distributions. The CAS method does not require special commands, but
it takes us out of our Excel environment. It does not let us leave a worksheet that
is well documented and that can be easily modified by someone else asking similar
questions.

⁴www.youtube.com/watch?v=QI-BKnONrRE

https://www.youtube.com/watch?v=QI-BKnONrRE
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7.6.3 Exercises: Normal Distribution Problems

1. Reading check, The Normal Distribution: An Extended Numeric Example. This
question checks your reading comprehension of thematerial is section 7.6, The
Normal Distribution: An Extended Numeric Example, of Business Calculus with
Excel. Based on your reading, select all statements that are correct. There may
be more than one correct answer. The statements may appear in what seems
to be a random order.

A The section uses Symbolab as a computer algebra system that will do
integration.

B One method in the sections was described as CAS.

C One method in the sections was described as Integration by parts.

D One method in the sections was described as Statistical Averaging.

E Each method described has advantages and disadvantages. C.

F One method in the sections was described as Excel with formulas.

G One method in the sections was described as Excel with Riemann sums.

H Themethod of using Excel with Riemann sums is always the best method.

I The method of using CAS is always the best method.

J None of the above
2. Assume that women’s shoe sizes are normally distributed with a mean of 8 and

a standard deviation of 1.5. A particular style of shoes in available in full and
half sizes. I plan to make 10,000 pairs of this style.

(a) Express, as an integral, the number of pairs I should make of size 9.

(b) How many pairs of size 9 shoes should I make?

(c) Howdo your answers change if the shoes are only to bemade in full sizes?
3. Men’s shoes in Europe are made if full sizes with a different measuring system

than we use in the United States. They are normally distributed with a mean
of 43 and a standard deviation of 2/3. I plan to buy 1,000 pairs of shoes for my
store.

(a) Express, as an integral, the number of pairs I should order of size 45.

(b) Express, as an Excel command, the number of pairs I should order of size
45.

(c) How many pairs should I order of size 44? (Give a number, not an equa-
tion.)

4. Assume that women’s dress sizes are normally distributed with a mean of 14
and a standard deviation of 3. For a particular style, 5000 dresses will be made,
and they are available in even integer sizes. (2, 4,…).

(a) Express, as an integral, the number of dresses I should make of size 10.

(b) How many size 6 dresses should I make?

(c) How many size 10 dresses should I make?
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5. Assume that men’s suit coat sizes are normally distributed with a mean of 44
and a standard deviation of 4. For a particular style, 2000 suit coats will be
made, and they are available in even integer sizes. (2, 4 …).

(a) Express, as an integral, the number of suit coats I should make of size 44.

(b) How many size 44 suit coats should I make?
6. A study of the size of male soldiers found the headband lengths were normally

distributed with a mean of 22.1 inches and a standard deviation of 0.85 inches.
Standard sized caps will fit headbands lengths of 20-25 inches.

(a) Express, as an integral, the percentage of soldiers for whowill fit the stan-
dard sized caps.

(b) Cap sizes come in quarter sizes with a full size corresponding to a change
in headband size of 3 inches, with a size 8 corresponding to 25 inches.
Out of 1,000 soldiers, how many need a size 8 cap?

7. A study of the size of male soldiers found the hip breadths were normally dis-
tributed with a mean of 13.45 inches and a standard deviation of 0.64 inches.
Seats on one airline measure 17 inches between the armrests. Express, as an
integral, the percentage of soldiers who hips are too wide for the seats.

8. Assume that women’s shoe sizes are normally distributed with a mean of 8 and
a standard deviation of 1.5. A particular style of shoes is available in full and
half sizes. I plan to make 1,000 pairs of this style. Using the Excel statistics
commands, make a chart telling me many pairs I should make of each size.

9. Assume that men’s suit coat sizes are normally distributed with a mean of 44
and a standard deviation of 4. For a particular style, 2,000 suit coats will be
made, and they are available in even integer sizes. (2, 4, …). Using the Excel
statistics commands, make a chart telling me many suits I should make of each
size.

10. Assume that results on an intelligence test are normally distributedwith amean
of 100 and a standard deviation of 15. Using the Excel statistics commands,
make a chart distributing 1,000,000 people between intervals of size 10 (90-
100, 100-110, etc.). What is the highest IQ score I should expect to find in my
population of 1 million?

11. I have been informed that the distance from the back of a chair to the front of
the knee of a man sitting is normally distributed with a mean of 24 inches and a
standard deviation of 1.3 inches. I want to design airline chairs to fit 99% of the
male passengers with 1 inch between the knee and the back of the next chair.
Howmuch distance do I need between the front of one chair seat and the back
of the next?

12. I have been informed that the breadth at the shoulders of an adult male is nor-
mally distributed with a mean of 17.9 inches and a standard deviation of 1 inch.
The standard coach seat on a plane is 17.2 inches wide. What percentage of
adult males fit in such a seat without overflow?

13. The techniques used in this section can easily be adapted to other distributions.
For example, the mean time to failure of a brand of hard drives, measured
in units of 10,000 hours, has been found to follow a Weibull distribution with
shape variable 3 and scale variable 5. The probability density function of failure
is

FailureDensity(x) = (3/5)(x/5)2 exp(−(x/5)3).

(a) Our warranty is for 10,000 hours of use. (This is approximately 1 year.)
What percentage of drives get replaced under warrantee?
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(b) We offer an extended warrantee that replaces the hard drive if it fails
in under 30,000 hours of use. What percentage of users who buy the
extended warranty will have their hard drive fail in the period of time
between the expiration of the original warrantee and the end of the ex-
tended warranty?

(c) Some credit cards double themanufacturer’s warranty. What percentage
of the people who use this plan will have their hard drive replaced by the
credit card company?

(d) What percentageof customers see their hard drives last for 100,000hours
of use?

14. Project — Pick a product and find evidence on the kind of function that de-
scribes its failure rate. Based on that data, determine how long we expect it to
take until 10% , 50% , and 90% of the products fail.

7.7 Applications of the integral: Investment and depreci-
ation

Link to worksheets used in this section¹
Having looked at several ways to evaluate definite integrals, we return to practical

problems that we can solve be evaluating an integral. We will break our applications
in this section into two groups. Problems in the first group reduce to accumulation
over time, and are analogous to finding the area under a curve, or finding a definite
integral. Problems in the second group ask you to find a specific anti-derivative of a
function. They are called boundary value problems.

7.7.1 Basic Accumulation
The most straightforward problem for integration is one where I have a function for
some value, like an income stream, or materials produced, or a cost, and I am inter-
ested if calculating how much accumulates in a specified interval. We work through
a series of examples where the accumulation function gets progressively more com-
plicated.

Example 7.7.1 Accumulating a constant function over time.

Mary runs a small shop that is temporarily disconnected from the power net-
work. A generator that provides power uses 2 gallons of fuel per hour. How
much fuel does she need to keep the shop running from 8 in the morning
until 6 in the afternoon.
Solution. We started with a problem that is easy to do without calculus to
give us confidence in our method. We solve it with algebra first. Mary wants
to run the generator for 10 hours and it consumes 2 gallons of fuel per hour.
She needs (10 hours)(2 gallons/hour) = 20 gallons of fuel.

To set the problem up for calculus, we use a 24-hour clock to put time on
a number line. We are accumulating FuelConsumption(t) = 2 from t = 8 to
t = 18. We need∫ 18

8

2dt = 2t|188 = (2 ∗ 18)− (2 ∗ 8) = 20.

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-7-7-Examples.xlsx

external/Examples/Section-7-7-Examples.xlsx
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gallons of fuel.

Example 7.7.2 Accumulating marginal cost.

MarginalCost(Quantity) = 50 + Quantity/1000.

Find the increase in cost as production goes from 50,000 to 80,000.
Solution. Since the change in cost looks like a Riemann sum with 30,000
intervals, we will approximate the change in cost with the integral of the mar-
ginal cost. With this functionwe can easily find an antiderivative and evaluate.
The change in cost is∫ 80000

50000

50 +
q

1000
dq =

(
50q +

q2

2000

)∣∣∣∣80000
50000

= (7, 200, 000)− (3, 750, 000) = 3, 450, 000.

The change in cost of production is $3,450,000.

Example 7.7.3 Oil production.

An oil well in Texas initially produces oil at a rate of 2 million barrels of oil
per year. The production rate will typically fall 15% per year. How much oil is
produced over a 5-year period?
Solution. We want to integrate our production rate of 2(0.85)t as t goes
from 0 to 5. We can use our antidifferentiation formulas for this problem.∫ 5

0

2(0.85)tdt =

(
2(0.85)t

ln(0.85)

)∣∣∣∣5
0

=
2

ln(0.85)
(0.855 − 1) = 6.846.

Over 5 years, the well will produce 6.846 million barrels of oil.
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Example 7.7.4 Discounted revenue stream.

Your company is interested in acquiring a revenue stream that is currently
producing are a rate of 50+5t thousand dollars per year, where t is measured
in years. To obtain current value, you are discounting at a rate of 6% per year
compounded continuously. What is the current value of the first 10 years of
income from the stream?
Solution. To find the total income we would want to integrate (50 + 5t) as
t goes from 0 to 10. To find the current value we must discount the income
based in when we receive it. Thus we want to integrate (50 + 5t)e−0.06t as t
goes from 0 to 10. We set up the integral

∫ 10

0
(50+5t)e−0.06tdt. Since we do

not know how to find the anti-derivative for this function, we find the area
either with Excel and Riemann sums, or with Wolfram Alpha.

With eithermethod, we find that the present value of the revenue stream
to be $545,298.

7.7.2 Boundary value problems
The accumulation problems asked you to find the area under a curve between two
specific points. For those problems, we are not interested in a formulation of a gen-
eral area function. A second set of applications starts with a derivative and is in-
terested in finding the particular anti-derivative that meets certain initial conditions.
(We use the conditions to find the correct value of ”+C” in the general anti-derivative.)
These problems are often solved once to find the general anti-derivative for a partic-
ular kind of problem, and the general solution is then used as a formula to find the
constant C.
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Example 7.7.5 Proportional growth and continuous reinvestment.

I put $20,000 in a retirement account that earns 4% interest compounded
continuously. I reinvest all my earnings from the account back into the retire-
ment account. I would like a simple formula for the principal at sometime in
the future.
Solution. Wealready have the formula for continuous growth, but it isworth-
while to derive it again. We are told

Principal′(time) = .05 ∗ Principal(time).

or
Principal′(time)
Principal(time)

= .05.

Integrating both sides with respect to time, we get

ln(Principal(time)) = .05 ∗ time+ C.

Exponentiating both sides gives

Principal(time) = exp(0.05 ∗ time) ∗ exp(C) = eCe.05∗time.

Since we know that the Principal is $20,000 at time 0, we see that eC =
20000 and our equation simplifies to

Principal(time) = 20000e.05∗time.

This is the formula we took on faith in the last chapter.

7.7.3 Depreciation
When computing costs of a business, we need to evaluate the depreciation cost of
capital equipment. There are a number of reasonable ways of computing deprecia-
tion.

• Straight-line depreciation.

Assumes that a piece of equipment loses the same amount of value each year
until it is worthless.

Annual Depreciation Expense =
Cost of fixed Asset− Residual Value

Useful life of Asset (in years)

• The sum of digits method of depreciation.

Assumes the rate of depreciation is proportional to the expected remaining
useful life of the piece of equipment. For example with a sum of years method
and defining V (t) as the value, EL is the expected lifetime, k is a constant, and
t is time, we would have:

V ′(t) = −k(EL− t)

• The declining balance depreciation.

This method assumes the rate of depreciation is proportional to the current
value, with the initial rate of depreciation twice the straight-line rate, with de-



7.7. APPLICATIONS OF THE INTEGRAL: INVESTMENT AND DEPRECIATION 273

preciation stopping when the value is the scrap value. We let N be the esti-
mated life of the asset and we let the rate of depreciation be:

Depreciation rate = 1− N

√
residual value

cost of fixed asset

Example 7.7.6 Straight Line Depreciation.

You buy a car for $18,000 and you want to depreciate it to $0 over 5 years.
Find a formula for the value of the car. We assume the value decreases a
constant rate, so we use straight-line depreciation. Give a simple formula to
find the book value of the equipment after 3.5 years.
Solution. The easiest way to do this problem is not to use calculus, but to
realize we want the equation of a line and we have two points.

Value(0) = 18000 and Value(5) = 0.

Taking slope as rise over run, the slope is −3, 600 and the intercept is
18,000. Thus our equation is

Value(time) = 18000− 3600 ∗ time
Value(3.5) = 5, 400.

Using calculus on the same problem we have

Value′(time) = −k for some constant k,
Value(0) = 18000 and Value(5) = 0.

Integrating the first equation gives

Value(time) = −k ∗ time+ C.

Thus, straight-line depreciation gives a value function, which is a straight
line. We now plug in known values to find the constants. We plug in for
time = 0 to see C = 18, 000. We plug in for time = 5 to see k = 3.600.
This gives us the same equation using calculus as we obtained using algebra.
The book value of the equipment at 3.5 years is $5,400 with this method of
depreciation.

Example 7.7.7 Sum of years method.

After buying the same car from the example above, we assume that the de-
preciation is proportional to the amount of useful life that the equipment has
left. (A car losesmore value in its first year than in its last year of life.) Produce
an equation for the book value of the same $18,000 car with this method.
Solution. We start with the observation that we are given that V ′(t) =
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−k(EL − t) for some constant k, and we know that V (0) = 18, 000 and
V (5) = 0.

With an expected lifetime of 5, integrating the first equation gives

Value(time) = −k ∗ 5 ∗ t+ k ∗ t2/2 + C.

Thus the sum of years method gives a value function which is quadratic.
Once again, we plug in known points to find the constants. We plug in for
time = 0 to see C = 18, 000. We plug in for time = 5 and get

0 = −k ∗ 25 + k ∗ 25/2 + 18, 000.

Solving this we get k = 1, 440. Our book value formula is then

Value(time) = −7, 200t+ 720t2 + 18000.

At 3.5 years the value will be

Value(3.5) = −7, 200 ∗ 3.5 + 720 ∗ 12.25 + 18000 = 1620.

The book value at 3.5 years is $1,620 with this method of depreciation.

Example 7.7.8 Declining Balance depreciation.

This method of depreciation says an item loses value in proportion to its cur-
rent value. The standard method uses a rate that is twice the rate of straight-
line depreciation until we reach scrap value, when depreciation stops. Use
this method to find the book value of our $100,000 piece of equipment at
3.5 years if the scrap value is $10,000 and the useful life is 5 years.
Solution. In Example 7.7.5 we saw that proportional growth or decay give
an exponential function. The basic value function is

Value(time) = 100000(1− 2 ∗ .20)time = 100000(0.6)time.

Howeverweneed to findwhen the piece of equipment stops depreciating.
Solving

10000 = 100000(0.6)time,

we get
0.1 = (0.6)time,

or
time = ln(0.1)/ ln(0.6) = 4.508.

Since 3.5 is less than 4.5 years, the equipment is still depreciating. Its
book value is 100, 000 ∗ (0.6)3.5 = $16, 731.
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7.7.4 Exercises: Applications of the integral: Investment and depre-
ciation Problems

1. Reading check, Applicationsof the Integral, Investment andDepreciation. This
question checks your reading comprehension of the material is section 7.7, Ap-
plications of the Integral, Investment and Depreciation, of Business Calculus
with Excel. Based on your reading, select all statements that are correct. There
may be more than one correct answer. The statements may appear in what
seems to be a random order.

A to find the current value of a revenue stream we take the integral of the
revenue stream times a discounting functions that represents howmuch
a future payment is worth today.

B This section explained how to use calculus to predict the future value of
the stock market.

C Accumulating a function over time is simply taking a definite integral.

D We can accumulate marginal cost over time to find change in cost.

E The example on oil production took the integral of an exponential func-
tion.

F If we can set up the integral of an application, we can use CAS to evaluate
the integral.

G None of the above
2. The marginal costs for producing widgets is

MarginalCost(q + 1) = 20− q

10000
.

Find the increase in cost in going from producing 60,000 units to producing
80,000 units.

3. The marginal profit for producing gizmos is

MarginalProfit(q + 1) = 200− q

1000
− q2

100, 000, 000
.

Find the change in profit in going from producing 70,000 units to producing
90,000 units.

4. The daily sales projections for a fad item are:

Daily Sales(t) = 100t2e−t/5.

Find the estimated total sales over the first 100 days.
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5. The daily sales projections for a new item are:

Daily Sales(t) = 100 + 10t− t2

100
.

Find the estimated total sales over the first 200 days.
6. The production from an oil well starts at a rate of 10,000 barrels per year and

declines exponentially at a rate of 10% per year. How much is produced in 6
years?

7. An oil well is producing 15,000 barrels per year. The rate of production is con-
tinuously declining at a rate of 10% per year. The well will be capped as un-
productive when it produces 3,000 barrels per year. How much will it produce
before being capped?

8. A stream of revenue produces at a rate of $40,000 per year. We assume that
the risk free investment rate is 3% per year. What is the current value of the
revenue stream over 20 years?

9. A stream of revenue produces at a rate of 40,000+2, 000t dollars per year with
t measured in years. We assume that the risk free investment rate is 3% per
year. What is the current value of the revenue stream over 20 years?

7.8 Economics Applications of the Integral

Link to worksheets used in this section¹
We have looked at the definite integral as the signed area under a curve. This lets

us compute total profit, or revenue, or cost, from the related marginal functions. We
have looked at a number of applications where this was interpreted as an accumula-
tion over time, including total production of an oil well and present value of a revenue
stream. For some applications we want to look at the area between two curves. For
example, considering profit as the area between the cost and revenue curves.

In this section we will look at more applications from finance and economics
where the concepts can easily be described in terms as of the area between curves.

7.8.1 Consumer and Producer Surplus
When we looked at supply and demand curves we found an equilibrium point where
the amount being offered for sale was equal to the amount people wanted to buy.

However, in that model, there were people who were willing to sell for less than
the equilibrium price and people who were willing to buy for more than the equilib-
riumprice. These people got an exceptionally good deal in the transaction. Wewould

¹mathstat.slu.edu/~may/ExcelCalculus/external/Examples/
Section-7-8-Examples.xlsx

external/Examples/Section-7-8-Examples.xlsx
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like to measure that benefit, since we can think of it as the extra profit the suppliers
and buyers make on the transaction. We note that each side will have an incentive
to maximize that benefit.

Focus first on the consumer side. The area under the demand function, from
0 to the quantity sold, measures the consumers’ willingness to spend. The area in
the rectangle with that same base and height equal to the sale price measures the
actual consumer expenditure. The difference between the two is a quantity we will
call consumer surplus.

In calculus terms:

Willingness To Spend =

∫ qs

0

demand function(q) dq

consumer expenditure =
∫ qs

0

ps dq

consumer surplus =
∫ qs

0

(demand function(q)− ps) dq

As long as the price stays on the demand function curve, a lower price means a
greater quantity sold, and a greater consumer surplus.

In a similarmanner, we can focus on the producer side. The area under the supply
function, from 0 to the quantity sold, measures the producers’ need for revenue. The
area in the rectangle with that same base and height equal to the sale pricemeasures
the actual producer revenue. The difference between the two is a quantity we will
call producer surplus.

In calculus terms:
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Needed revenue =
∫ qs

0

supply function(q) dq

producer revenue =
∫ qs

0

ps dq

producer surplus =
∫ qs

0

(ps − supply function(q)) dq

As long as the price stays on the supply function curve, a higher price means
a greater quantity sold, and a greater producer surplus. Consider first an example
where the supply and demand functions are simple enough that the computations
can all be done by hand.

Example 7.8.1 Producer surplus with linear functions.

I am trying to sell widgets and have determined the supply and demand func-
tions to be:

supply price(Quantity) = 4 + Quantity
demand price(Quantity) = 106− 2 ∗ Quantity.

Find the equilibrium price and quantity. Find the producer and consumer
surpluses when the shirts are sold at the equilibrium price. If the producers
form a cartel, find the price that maximizes producer surplus.
Solution. By setting supply price and demand price equal to each other we
find an equilibrium quantity of 34 and an equilibrium price of 38. The formu-
las for the consumer and producer surpluses become:

consumer surplus =
∫ 34

0

((106− 2q)− 38) dq

producer surplus =
∫ 34

0

(38− (4 + q)) dq

To evaluate the integrals we can notice that each is a triangle of base 34.
One has height of 34 and the other has a height of 68. Using geometry, the
consumer surplus is $1,156 and the producer surplus is $578.

To find themaximumproducer surplus, we need to turn the endpoint into
a variable. If the producers act as a cartel,

producer surplus =
∫ x

0

((106− 2x)− (4 + q)) dq =

∫ x

0

(102− 2x− q) dq

=

(
(102− 2x)q − q2

2

)∣∣∣∣x
0

= ((102− 2x)x− x2

2
= 102x− 5x2

2

We can find the maximum of this by taking its derivative and setting it
equal to 0. The maximum occurs when x = 102

5 = 20.4. At that point the
producer surplus is $1,040.40.

We now try an example where we need other techniques to evaluate the inte-
grals.
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Example 7.8.2 Producer surplus with numeric integration.

A store trying to sell t-shirts on campus has determined the supply and de-
mand functions to be:

supply price(Quantity) = 5 + ln(Quantity+ 10)

demand price(Quantity) = 10 + 100/(Quantity+ 2).

Find the equilibrium price and quantity. Find the producer and consumer
surpluses when the shirts are sold at the equilibrium price.
Solution. We load the supply and demand price functions into excel and use
Goal Seek to find an equilibrium price. Rounding to the nearest unit for quan-
tity and cent for price, we have an equilibrium price of $10.45 for a quantity
of 222 shirts.

We then substitute these values into the equations for consumer and pro-
ducer surplus.

consumer surplus =
∫ qs

0

(demand function(q)− ps) dq

consumer surplus =
∫ 222

0

((10 + 100/(Quantity+ 2))− 10.45) dq

producer surplus =
∫ qs

0

(ps − supply function(q)) dq

producer surplus =
∫ 222

0

(10.45− (5 + ln(Quantity+ 10))) dq.

To evaluate these integrals we either use a Riemann sum approximation,
like the one found on the exampleworksheet, or useWolframAlpha. In either
case, rounded to the nearest dollar, we have a consumer surplus of $372 and
a producer surplus of $191.

The sum of the consumer surplus and the producer surplus is referred to as the
total social gain. As we looked at consumers’ surplus, we assumed that the sales
were determined by supply and the price-quantity point was on the supply curve.
Similarly, when looking at producers’ surplus we assume price is set by demand and
the price-quantity point was on the demand curve. If both sides are made up of
many individuals acting independently, the price-quantity point is the equilibrium
point, which is on both curves. Selling at that point also maximizes the total social
gain.



280 CHAPTER 7. INTEGRATION

If however, either the producers or consumers can organize and act as a unit, they
can form a cartel and limit the amount sold. If the producers form a cartel, they can
lower production and raise the price.

As we can see from the picture, this always lowers the total social gain. However
for some reductionof quantity the producers’ surplus is increased. In the equation for
producer surplus the price ps is demand function(qs) rather than supply function(qs).
If the quantity goes down too far the producer surplus will also go down.

Example 7.8.3 Computing loss of social gain.

A store trying to sell t-shirts on campus has determined the supply and de-
mand functions to be:

supply price(Quantity) = 5 + ln(Quantity+ 10)

demand price(Quantity) = 10 + 100/(Quantity+ 2)

The store owner has amonopoly on campus and decides to limit the quan-
tity sold to 200 shirts and charge what the market will bear. Find the price,
the producer surplus, and consumer surpluses. Find these numbers if the
owner decides to limit sales to 50. How many shirts should the owner sell at
what price to maximize producer surplus? If producer surplus is maximized,
how much is the total social gain reduced?
Solution. The formulas involved for supply and demand are the same ones
we used in Example 7.8.2. With a slight modification if the worksheet from
that example we can set it to compute the Riemann sums approximating the
surpluses. In particular, we use the demand function for finding the height of
producer surplus. (See cell D7.)
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If we only want to sell 200 shirts, we can raise the price to from $10.45
to $10.50. The producer surplus rises from $191 to $199. However the con-
sumer surplus falls from $372 to $362.

If we only want to sell 50 shirts, we can raise the price from$10.45 to
$11.92. The producer surplus falls from $191 to $174. The consumer surplus
falls from $372 to $230.

We can use solver to maximize the Producer surplus by varying the quan-
tity. A quantity of 140 maximizes the producer surplus at $210, but is doing
that the total social gain is down to $537 from $563.

Similarly, if the consumers form a cartel, they can artificially reduce the demand.
Since they will then pay the supply price the total social gain will be decreased, but
the consumers’ surplus may be increased. In this case the consumer surplus is the
integral of the difference between the demand function and the supply price of the
quantity that will be sold.
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In the examplewe just looked at, both the supply and demand curves have a small
slope, so the market is quite elastic from both the producers and consumers point of
view. Is such a case there is less incentive to form a cartel. In other markets, like
gas and oil, where the market is more inelastic, there is more incentive to engage in
monopolistic practices.

7.8.2 Lorenz Curves and the Gini Index
A question that arises in economics looks at the equity of income or wealth distribu-
tion in a country. In standard economic theories either too much or too little equity
indicates a lack of opportunity and is a hindrance to growth. However, before being
able to address the advantages or disadvantages of a level of inequity we need to be
able to quantify the level of equity or inequity. The standard method is to use the
Lorenz curve and the Gini index.

The Lorenz curve is defined by a function L(x), with 0 ≤ x ≤ 1, that measures
the proportion of something is held by the bottom x proportion of the population.
Thus, ifL(0.2) = .1, for the Lorenz function for income in a country, then the bottom
20% of the population earns 10% of the income in the country. Since, under usual
definitions, a person cannot have negative income, the Lorenz functions are nonneg-
ative and increasing. Since the Lorenz functions are measured from the bottom, we
also have L(x) ≤ x for all x.

We can make a few more observations. The population as a whole has the entire
income of the population. An empty set of the population has none of the popula-
tion’s income. Any bottom segment will have nonnegative income. In formulas these
observations become L(1) = 1, L(0) = 0, and L(x) ≥ 0, for all x, respectively.

If we had perfect equity, our Lorenz function would be L(x) = x. Any Lorenz
curve we find for a real population will be below this curve. The Gini index (or Gini
coefficient)measures the percentage that a real Lorenz curve is below the ideal curve.
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Computationally,

G =

∫ 1

0
(x− L(x))dx∫ 1

0
xdx

= 2

∫ 1

0

(x− L(x))dx.

In practice this number is often multiply by 100, reporting the percentage (0 to
100) rather than proportion (0 to 1) of the area under the ideal function and above
the measured function.

Example 7.8.4 Gini index with a formula for income distribution.

The Lorenz curve for income in a certain country is given byL(x) = .8x3+.2x.
What proportion of the income is earned by the bottom half of the popula-
tion? Find the Gini index.
Solution. To find the proportion earned by the bottom half of the popula-
tion we substitute 0.5 in the equation.

L(0.5) = (0.8)(0.5)3 + (0.2)(0.5) = 0.1 + 0.1 = 0.2.

Thus the bottom 50% of the population earns 20.% of the total income.
To compute the Gini index, we compute:

G = 2

∫ 1

0

(x− 0.8x3 − 0.2x)dx = (2)(0.4x2 − 0.2x4)|10 = .4.

So the Gini index in this hypothetical country is 40. To put this number in
context, the reported Gini index for the United States in 2009 was 46.8.

In practice, the Gini index is an application where a numeric approximation of an
integral is the method most likely to be used. We are unlikely to get a formula for
income distribution. Instead we are likely to find data points. Since there is no good
model for how the income will be distributed, we can simply connect the points with
line segments and find the area using the area formula for a trapezoid.

Example 7.8.5 Gini index with a chart for income distribution.

We have the following data from the census bureau on income distribution
in the US in 2008. Compute the Gini index.

Population %tile 0 20 40 60 80 90 100
Income %tile 0 3.4 12.0 26.7 50.0 78.5 100

Solution. We recall that the area of a trapezoid is (width)(average height).
We put the data into a spreadsheet.

Then we evaluate the formulas.
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In percentages, the Gini index is approximated at 45.

7.8.3 Exercises Business Applications of the Integral Problems

1. Reading check, Economics Applications of the integral. This question checks
your reading comprehension of the material is section 7.8, Economics Applica-
tions of the integral, of Business Calculus with Excel. Based on your reading,
select all statements that are correct. There may be more than one correct
answer. The statements may appear in what seems to be a random order.

A to find the current value of a revenue stream we take the integral of the
revenue stream times a discounting functions that represents howmuch
a future payment is worth today.

B If we can set up the integral of an application, we can use CAS to evaluate
the integral.

C The example on oil production took the integral of an exponential func-
tion.

D Accumulating a function over time is simply taking a definite integral.

E We can accumulate marginal cost over time to find change in cost.

F This section explained how to use calculus to predict the future value of
the stock market.

G None of the above

Exercise Group. For the following exercises, assume we have a free market and that
goods are sold at market equilibrium. Find the consumer surplus, producer surplus,
and total social gain.

2. SupplyPrice(q) = 50 + q/2 and DemandPrice(q) = 150− q/5.

3. SupplyPrice(q) = ln(q + 10) and DemandPrice(q) = 100− q.

4. SupplyPrice(q) = 50(1− (0.99)q) and DemandPrice(q) = 100(0.99)q.

5. SupplyPrice(q) = 50(1−(0.95)q/10 andDemandPrice(q) = 150(0.95)q/10.
6.

SupplyPrice(q) =

{
5 q ≤ 10

q2/20 q > 10

and

DemandPrice(q) =

{
100 q ≤ 10

110− q q > 10
.
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7. SupplyPrice(q) = q/2 and

DemandPrice(q) =

{
200 q ≤ 10

250 ∗ .8q/10 q > 10
.

8. Assume SupplyPrice(q) = 30 + q and DemandPrice(q) = 170− q.

(a) Find the consumer surplus, producer surplus, and total social gain at mar-
ket equilibrium.

(b) If the producers can form a cartel and restrict the available quantity to
50, selling at the supply price for 50, what are the consumer surplus, pro-
ducer surplus, and total social gain?

(c) Find the pricewhere a producer cartelwillmaximize the producer surplus.
Find the producer surplus at that price.

9. Assume SupplyPrice(q)= 10+q/2 and DemandPrice(q)= 110-q/3.

(a) Find the consumer surplus, producer surplus, and total social gain at mar-
ket equilibrium.

(b) If the producers can form a cartel and restrict the available quantity to
400, selling at the supply price for 400, what are the consumer surplus,
producer surplus, and total social gain?

(c) Find the pricewhere a producer cartelwillmaximize the producer surplus.
Find the producer surplus at that price.

10. Assume SupplyPrice(q) = 10 + q2 andDemandPrice(q) = 210− q2.

(a) Find the consumer surplus, producer surplus, and total social gain at mar-
ket equilibrium.

(b) If the producers can form a cartel and restrict the available quantity to
5, selling at the demand price for 5 (for a price of 185), what are the
consumer surplus, producer surplus, and total social gain?

(c) Find the pricewhere a producer cartelwillmaximize the producer surplus.
Find the producer surplus at that price.

11. Consider the Lorenz curve L(x) = 0.2x+ 0.8x2. Find the Gini index.

12. Consider the Lorenz curve L(x) = .03x+ 0.7x4. Find the Gini index.

13. You research a country and find the following information on income share:

Population %tile 20 40 60 80
Income %tile 5 15 30 50

Compute an approximation of the Gini index.
14. You research a country and find the following information on income share:

Population %tile 20 40 60 80 90 95 99
Income %tile 5 15 30 50 65 75 90

Compute an approximation of the Gini index.
15. Find data online on the income distribution in the United States. Good sources

are theCensus Bureau, at http://www.census.gov/hhes/www/income/data/historical/
inequality/index.html², andhttp://www.wealthandwant.com/issues/income/income_distribution.html³.

http://www.census.gov/hhes/www/income/data/historical/inequality/index.html
http://www.census.gov/hhes/www/income/data/historical/inequality/index.html
http://www.wealthandwant.com/issues/income/income_distribution.html
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Compute an approximation of the Gini index from your data.

²http://www.census.gov/hhes/www/income/data/historical/inequality/index.
html

³http://www.wealthandwant.com/issues/income/income_distribution.html



Appendix A

Spreadsheet Skills introduced in
chapter 1

This appendix accumulates the spreadsheet skills introduced in chapter 1 of this text-
book.

A.1 From Section 1-3 - Entering and Copying Formulas

Spreadsheet skills introduced in Section 1.3 Introduction to Excel Spreadsheets 1.3

• Basic Arithmetic in a cell - Addition, subtraction, multiplication, and exponenti-
ation are donewith +, 1 , *, /, and ^. The variable is replaced by a cell reference.
Multiplication needs to be explicit. (We need x*y) rather than xy.) Raising to
a power of e is done with the EXP() function.

One feture to remember is that Excel uses a slightly different order of opera-
tions compared to what is used in all math classes. Excel interprets -5^2 as
(-5)^2 rather than -(5^2).

The Basic Arithmetic video 1.3.1 demonstrates basic arithmetic.

• Arithmetic with commands - Excel has commands for normal aritmetic opera-
tions, SUM(), PRODUCT(), QUOTIENT(), and POWER(). In practice, we will only
use SUM(), which cam be used on a list.

• Showing all the formulas on apageUnder the Formulas tab, the show formulas
item from the show button shows all the formulas on the page. An image of
the button 1.3.2 is in the section.

• Quick fill Is used when we want to repeat a cell or collection of cells many
times. You select a group of cells, then position the cursor over the dot in the
lower right corner of the selection. The shape of the curve will change. Click
and drage to fill. Formulas are modified according to the rules of relative and
absolute references. A screencast is in the Basic Arithmetic video 1.3.1

• Relative and absolute references - When Copying formulae from one cell to
another, either with copy and paste, or with quickfil, it is important to under-
stand relative and absolute cell references. Suppose we are moving a formula
from cell A1 to cell B3. (We are going one column over and two rows down.)
A relative reference changes with the formula location. =F5 becomes =G7. An

287



288 APPENDIX A. SPREADSHEET SKILLS INTRODUCED IN CHAPTER 1

absolute reference stays the same and has dollar signs, $, to fix an index. For
the same move, =$F$5 stays =$F$5.
We can also fix either the rows or columns by using dollar signs, $. Moving from
cell A1 to cell B3, the formula =F$5 becomes =G$5 and =$F5 becomes =$F7
See an explanation at Relative and Absolute reference discussion 1.3.2 and a
video at Relative and Absolute reference video. 1.3.3

• We can name a cell with a name that describes its contents. 1.3.3 The name
is put in the box in the upper right corned of the worksheet 1.3.4. This makes
The formulas in the cells easier to read and understand 1.3.5.

A.2 FromSection1.4Graphing Functions in a Spreadsheet

• Graph a functionWe graph a function in Excel by first making a table of input
and output values. We then select the values for both the x and y values, then
select the button to insert a scatter plot. The most common error is to only
selct the output, in which case Excel assumes the sequence 1, 2, 3, ... is the
input. A screencast of the production of a graph of a simple function. 1.4.1 An
image of the table with selections made. 1.4.3

• Graph multiple functions Two graph multiple functions we start with a chart
that has the input and the output of the multiple functions, Select the column
for the input and the outputs to be graphed and then insett a scatterplot. If
the input variable is not included, Excel will interpret the first output varaiable
as the input and give a very different graoph. If the input and functions are not
next to each other in the table, you need to right click (control-click on a Mac)
to select cells that are not adjacent. A screencast of the production of a graph
of with several function. 1.4.7 An image of the table with multiple functions
selection made. 1.4.8

• Use a secondary axis. If the scales of the graphs are noticably differnt we want
to use a secondary axis for one of the graphs. For example is we are graphung
f(x) = x2 and g(x) = x5 for the interval [−10, 10], the scale of g(x) is so large
that we cannot see what happens fith f(x). To use a secondary axis, double
click a point and then select secondary axis from the axes tab. An image of two
functions and secondary axes. 1.4.9

• Formatting a chart. 1.4.5 Excel gives you the ability to format your chart. Clcik-
ing on a chart brings up the ”Chart Design” tab. There are menus for ”Add
Chart Element”, ”Quick Layout”, and ”Change Chart Type”.

• Graph functions with parameters in the definition. We can add parameters
to the table we are creating to either look at a variety of curves or to change
the domain of the graph. Parameters and values that will be used throguhout
the table are written as absolute references. A screencast of producing a graph
with parameters. 1.4.4 An image of the table with selections made. 1.4.5

A.3 From Section 1.5 Adding and Using Best Fit Curves
(Trendlines)

• Add a trendline to a chart To add a trendline, we build a chart with the data,
select the data and add a scatterplot, then right-click on a ploint and select ”Add
Trendline” from the drop down menu 1.5.2. By defualt, Excel will add the best
fitting line. (pic AddTrendlineMenu )
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• Find the equation of the trendline. We use the options pallette to format the
trendline. Scroll down and select the option to Display Equation on Chart 1.5.3.
If you do not make this selection when creating the trendline, you can right-
click (Control-click on a mac) to bring the menu up again.

• Although Excel uses the term Trenline, twe can Find a best fit curve for some
non-linear models. Select the approriate option from the Trendline Oprions
Menu 1.5.3. Options will be grayed out if the trendline model will not fit the
given data. (E.g., we cannot make an exponential fit for data that includes neg-
ative values.)

• When we try toadd the predicted function back to the chartwe need to trans-
late from mathematical notation to Excel notation. (E.g., we need to use * to
make multiplication explicit and ^ to make exponantiation explicit.)

• Sometimes we want to change the precision of the coefficients in the trend-
line, particularly when using the equation tomake prediction far from the base-
point. You right-click (Control-click on a mac) on the label to ”Format Trendline
Label” 1.5.8. Choose Number, then category Number or Scientific, and choose
the number of digits.

A.4 From Section 1.6 Using Goal Seek

Goal Seek is a tool forWhat If Analysis. Given a formula f(x) = y, it asks what value
of x will produce a desired value of y. It should be noted that, by defualt, it thinks
values are equal if within 0.001 of each other.

• To find Goal Seek, select the ”Data” tab, then select the ”What-If Analysis”
menu and the ”Goal Seek” item. You need to identify an input cell with a num-
ber in to be the variable to change. You also need to identify an output cell to
that contains a formula that depend on the input cell.

In terms of screenshots we have a starting point 1.6.2 where the input is A3 and
the output is B3 and the mune is visible in the menu bar. After choosing Goal
Seekwe are presentedwith aGoal Seekmenu1.6.3wherewe identify the input
and output cells and the desired vaule of the output. Excel responds with the
desired results 1.6.4. There is also a screencast of the Goal Seek example 1.6.1.

• We often want to use Goal Seek to find the intersection of two curves 1.6.5.We
simply define the difference of the fuunctions as a new formula and ust it for
the output.

• Avoiding traps of Goal Seek Since Goal Seek finds results numerically, using a
variant of Newton’s method, there are several cautions to keep in mind:

◦ Goal Seek thinks two values are equal when they are within 0.001 of each
other. It will produce an answer to 1

x4 = 0.

◦ Goal seek works best when given a starting point close to an actual solu-
tion. On a function with several solutions, different starting points lead
to different solutions.

◦ Goal seek is confused by corners and discontinuities.
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A.5 Google Sheets Notes for Chapter 1 skills

This text was written with the assumption it would use Excel as the spreadsheet tool.
Other institutions may decide they want to do the same approach, but using Google
sheets. This section addresses the places where the spreadsheet instructions differ.

Skills that work the same in Excel and Sheets

• Basic Arithmetic in a cell

• Arithmetic with commands

• Quick Fill

• Relative and absolute references

• Naming a Cell

• Graphmultiple functions (Given the differences for graphing a single function.)

• Graph functions with parameters in the definition.

• Add the predicted function back to the chart

• Using Goal Seek.

• Avoiding traps with Goal Seek.

• Finding the intersection of two curves with Goal Seek.

Skills that work differently in Excel and Sheets:

• Showing all the formulas on a page is found by selecting the ”view” tab, then
the ”Show” menu, and the ”formulas” item.

• Graph a function is found by selecting the ”chart” item from the insert tab.
Sheets defaults to a line graph. It brings up a chart editor. Scatterplot is a chart
type.

• Use a secondary axis. Double click on the graph to bring up the ”Chart Editor”.
Use the ”Series” menu to selct the function that wiill use the left axis for scale.
Scroll down to find the ”Axis” menu. Choose ”Right Axis”.

• Formatting a chart. In Sheets, double click on a chart to bring up a Chart editor.
THere are a variety on menus. You need to scroll down to see them all.

• Showing all the formulas on a page is found by selecting the ”view” tab, then
the ”Show” menu, and the ”formulas” item.

• Add a trendline to a chart In the ”Chart editor”, scroll down and select the
”Trendline” option.

• Find a best fit curve for some non-linear models In the ”Chart editor”, scroll
down and make a selection from the ”Type” menu.

• Change the precision of the coefficients in the trendline, Google Sheets does
not seem to have a reasonable way to do this.

• Finding Goal Seek Goal Seek is an Extension. From the ”Extensions” menu,
select ”Add-ons”, then ”Get Add-ons”. Serch for and select ”Goal Seek”.



Appendix B

Spreadsheet Skills Introduced in
Chapter 2

The only new spreadsheet skill introduced in Chapter 2 is the use of nonlinear func-
tions.

Spreadsheets let you use Algebraic functions that you have encountered in previ-
ous courses 2.3.1. There are a few details to keep in mind:

• Multiplication need to be explicit with * rather then implicit putting terms and
numbers next to each other.

• Exponentiation uses ^

• Square root uses sqrt

• ex is EXP(x)

• x needs to be replaced by a cell reference

• In reading -A1^2, Excel interprets the minus sign as a negation symbol which is
evaluated as eponentiation. The normalmeaning of−x2 required parentheses,
so -(A1^2)

Wealso introduceDiscontinuous functions that are common in business settings 2.3.2.
There are a few details to keep in mind:

• Business transactions are generally in whole dollars or cents, so rounding is
common.ROUND and its variants round to a specified number of digits before or
after he decimal place.

• Transactions are often in terms of multiples of a unit size. (Eggs are usually
sold in dozens.) CEILING and FLOOR round up or down to multiples of a given
quatity.

• Transactions often have different rules for different sizes. (Overtime hours pay
at a different rate than regualr hours.) IF lets you have a formula with cases..

For all these functions Excel and Sheets operate the same.
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Appendix C

Spreadsheet Skills introduced in
chapter 3

This appendix accumulates the spreadsheet skills introduced in chapter 3 of this text-
book.

C.1 From Section 3.1- Comparing Functions and Related
Marginal Functions

The spreadsheet skill in this section was to make a table and graph of a function and
its related marginal function. This was done several ways.

C.1.1 Marginal Functions with q increasing by 1
The easist contruction is to build a table where the value of q increases by 1 3.1.4
from one row to the next. SinceMf(q + 1) = f(q + 1)− f(q), we simply subtract
values in successive rows 3.1.5. Screencast of eaxmaple using this approach. 3.1.3

C.1.2 Marginal Functions using Columns
The next easist contruction is to build a table computing f(q+1) and f(q) as separate
columnswith the cell reference replaced by the reference plus 1 3.1.13. SinceMf(q+
1) = f(q + 1) − f(q), we simply subtract values in successive columns. Screencast
of eaxmaple using this approach. 3.1.3

In practice, students often make formula mistakes when using this approach.

C.1.3 Marginal Functions using Quick Fill
The preferred construction builds a template that is easy to reuse. We set up succes-
sive colummes for , q, q+1, f(q) and f(q+1) 3.1.14. I then only have the enter the
formula for the function one, under f(q). Quick fill then provides the correct formula
for f(q+1). Screencast of eaxmaple using this approach. 3.1.12 The approach starts
at the 3 minute markIn practice, students often make formula mistakes when using
this approach.
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C.2 From Section 3.2- Comparing Functions and Numeric
Derivatives

The spreadsheet skill in this section was to make a table and graph of a function and
its derivative. We use a variety of approaches to find numeric derivatives.

C.2.1 Derivatives from the Intuitive Approach
We build a worksheet that plotsthe function and a secant curve with control over del
x 3.2.5. We then reduce del x until the the graphs appear to be the same the graphs
appear to be the same 3.2.6. Screencast of example using this approach. 3.2.3

C.2.2 Derivatives from Numerical Limits
Without using graphs, we can also look at the slope of the secant line as del x gets
small. 3.2.7. fromone row to thenext. Screencast of example using this approach. 3.2.3

C.2.3 Graphing a Function with its Numeric Derivative
To build a chart of a function and its derivative and to grpah the functions together,
we use a variant of the approach from the previous section. We set up successive
colummes for x, x+del x, x-del x, f(x), f(x+del x)f(x-del x), and f'(x)3.2.11.
I then only have the enter the formula for the function one time, under f(x). Quick
fill then provides the correct formula for f(x+del x) and f(x-del x). Screencast
of example using this approach. 3.2.9

In practive, we usually set delx = 0.001.

C.2.4 Using Trendline to find Derivative Formulas
If the grpah of the numerical deerivative looks like a model we know, and one that
trendline will produce, we can try to obtaina formula useing Trendline. Add a trend-
line and display the formula of the trendline and R2 If the model is correct, R2 = 1.
Screencast of example using this approach. 3.2.14

C.3 From Section 3.3- Building Linear Approximations

using skills from earlier sections, I compute f(a) and f ′(a) for a given function and
value a> I then use the point-slope formula:

Linearf(x) = f ′(a) ∗ (x− a) + f(a)

A screencast of linear approximation of square roots 3.3.3.

C.4 From Section 3.5 - An introduction to Solver 3.5

Solver can be thought of as amore powerful version of GoalSeek 1.6. If it is installed, it
will be on the Analysis section of the Data tab 3.5.3. If is is not installed, it is easiest to
google ”Install solver Excel” to get instructions that work with your operating system
and version of Excel



C.5. GOOGLE SHEETS NOTES FOR CHAPTER 3 SKILLS 295

As with Goal Seek, we can have Excel find the input value that makes a function
have a desired output value. The setup of Solver 3.5.4 is a bit different thant the setup
of Goal Seek 1.6.2. The function to be set is the ”objective function”. The objective
functions can depend onmore than one cells. By default, it assumes variables should
have non-negative values.

While Goal Seek only let you find where a function reached a specified value,
Solver also lets you search for a local maximum 3.5.5 or a local minimum 3.5.7. There
is a screencast of basic solver functionality 3.5.2. As with Goal Seek, Solver’s algo-
rithm can be thought of as rolling downhill to the hearest answer. It can be confused
if the function has discontinuities or bends too frequently.

Solver allows you to add constraints to the problem 3.5.6. It should be noted, that
by default Solver will assume unconstrained variables are nonnegative.

C.5 Google Sheets Notes for Chapter 3 Skills

Solver works the same way on both Excel and Sheets. In Sheets, it is an Add-in. If
Solver is loaded, it is a choice in the ”Extensions” menu. If not it is added by using
the extensions item ”Add-Ons” and select ”Get Sdd-ons”
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Appendix D

Spreadsheet Skills introduced in
chapter 6

This appendix accumulates the spreadsheet skills introduced in chapter 6 of this text-
book.

D.1 From Section 6.1 - Evaluating and graphing functions
of several varaibles

D.1.1 Evaluating a function of several variables
Formulas in a cell can refer to several cells 6.1.3, allowing you to create and evaluate
functions of several variables. You can see a screencast of the example 6.1.2.

D.1.2 Making a table for a function of 2 variable
To make a table of values 6.1.9 I need to construck an array where one variable is
horizontal (Row 2 in the example), and the other variable is vertical (Column A in
the example). The variabkles are then semi-absolute in the formula, with a dollar
sign before either the row or column as needed. You can see a screencast of the
example 6.1.2.

D.1.3 Turning a table of a function of 2 variables into a surface graph
Once we have made a table of of values for a function of two variables, we would
like to turn it into a 3-D graph. We start with a table like found above 6.1.14.We then
move the varable names out of the corner 6.1.15 into adjacent rows and columns.
Highlight the table, including the values of hte cariables. Then insert a chart, choos-
ing the appropriate chart type. You can choose 3-D surface chart 6.1.16, a 3_D wire
frame chart 6.1.17, or a contour chart 6.1.18. You can see a screencast of the exam-
ple 6.1.13.

D.2 From Section 6.3 - Critical points and extrema

You can use solver to solve a system of equations. You need to set the problem up
with the set of input variables and the equation of the system 6.3.3. Then you call
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Solver and use all but one of the fromulas as constraints on the system 6.3.4. You can
see a screencast of the example 6.3.2.

D.3 Google Sheets Notes for Chapter 6 Skills

Sheets does not seem to hae a reasonableway of producing 3-D graphs. For the other
spreadsheet skills in this chapter, Excel and Sheets behave the same way.



Appendix E

Spreadsheet Skills introduced in
chapter 7

This appendix accumulates the spreadsheet skills introduced in chapter 7 of this text-
book.

The main skill in this chapter was to Construct a right-hand rule Riemann sum
template We recount the example from the section 7.1.4. In the set-up of the ex-
ample 7.1.6. We follow our standard practice of putting the question and answer in
labeled areas at the top of theworksheet. Wewant to see the start a and end b of the
interval, along with number of subintervals. Thewidth of a subinterval is the width of
the whole interval divided by the number of subintervals. The column xn is for the x
value at the right side of the n-th subinterval. We calculate the value of xn by taking
the starting point, a = xo, and adding n times the width of a subinterval. We then
evaluate the function at xn, which we label f(xn). The area of the n-th rectangle is
the height, or f(xn), times the width of the subinterval. The last column is the total
area for the first n rectangles. The sum is taken from the top of the block (with a
semi-absolute reference) to the current row. The area for 100 rectangles is our area
estimate. Since we don’t want to have to look all over for our answer, we bring the
area up to cell D2with theOFFSET command. The command OFFSET(E6,B3,0) starts
in cell E6, goes down B3 (the number of subintervals) rows, and goes over 0 columns.
In our case, it finds the value in cell E106 and puts it in cell D2. A Screencast of the
Riemann sum axample 7.1.5 is available.

The variant of right-hand Riemann summs is to Construct a midpoint rule Rie-
mann sum templateWe recount the example from the section 7.2.5. In the set-up
of the example 7.2.7 we added an extra colum for the midpoint. The midpoint is the
right hand edge of the interval minus half the length of the subinterval. We then
evaluate at the midpoint.

Excel and Sheets work identically with respect to setting up these templates.
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