
Elementary Linear Algebra

For University of Lethbridge Math 1410





Elementary Linear Algebra
For University of Lethbridge Math 1410

Gregory Hartman, Ph.D.
Virginia Military Institute

Carl Stitz, Ph.D
Lakeland Community College

Jeff Zeager, Ph.D.
Lorain County Community College

Sean Fitzpatrick, Ph.D.
University of Lethbridge

Sean Fitzpatrick, Ph.D., Editor
University of Lethbridge

July 17, 2025



Source for Chapter 1: Precalculus, by Stitz and Zeager
Source for Chapter 2: APEX Calculus, by Greg Hartman
Primary text source: Fundamentals of Matrix Algebra, by Greg Hartman
Author for supplmental material: Sean Fitzpatrick

©2024 Authors as indicated above

Licensed to the public under Creative Commons Attribution-Noncommercial 4.0
International Public License



Contents

1 The Real and Complex Numbers 1

1.1 Some Basic Set Theory Notions . . . . . . . . . . . . 1
1.2 Real Number Arithmetic . . . . . . . . . . . . . . 4
1.3 The Cartesian Coordinate Plane. . . . . . . . . . . . 13
1.4 Complex Numbers . . . . . . . . . . . . . . . . 19

2 Vectors 29

2.1 Introduction to Cartesian Coordinates in Space . . . . . . 29
2.2 An Introduction to Vectors . . . . . . . . . . . . . 33
2.3 The Dot Product . . . . . . . . . . . . . . . . . 45
2.4 The Cross Product . . . . . . . . . . . . . . . . 59
2.5 Lines . . . . . . . . . . . . . . . . . . . . 71
2.6 Planes . . . . . . . . . . . . . . . . . . . . 84
2.7 Span and Linear Independence . . . . . . . . . . . . 95

3 Systems of Linear Equations 107

3.1 Introduction to Linear Equations . . . . . . . . . . . 107
3.2 Using Matrices To Solve Systems of Linear Equations. . . . . 112
3.3 Elementary Row Operations and Gaussian Elimination . . . . 120
3.4 Existence and Uniqueness of Solutions . . . . . . . . . 131
3.5 Applications of Linear Systems . . . . . . . . . . . . 143
3.6 Vector Solutions to Linear Systems. . . . . . . . . . . 157

4 Matrix Algebra 175

4.1 Matrix Addition and Scalar Multiplication . . . . . . . . 175
4.2 Matrix Multiplication . . . . . . . . . . . . . . . 185
4.3 Solving Matrix Equations AX = B . . . . . . . . . . 198
4.4 The Matrix Inverse . . . . . . . . . . . . . . . . 206
4.5 Properties of the Matrix Inverse . . . . . . . . . . . 215
4.6 Elementary Matrices . . . . . . . . . . . . . . . 222

5 Matrix Transformations 229

5.1 Matrix Transformations . . . . . . . . . . . . . . 229
5.2 Properties of Linear Transformations . . . . . . . . . . 246
5.3 Subspaces of Rn . . . . . . . . . . . . . . . . 259
5.4 Null Space and Column Space . . . . . . . . . . . . 269

v



vi CONTENTS

6 Operations on Matrices 283

6.1 The Matrix Transpose . . . . . . . . . . . . . . . 283
6.2 The Matrix Trace . . . . . . . . . . . . . . . . 292
6.3 The Determinant . . . . . . . . . . . . . . . . 296
6.4 Properties of the Determinant . . . . . . . . . . . . 307
6.5 Applications of the Determinant . . . . . . . . . . . 319

7 Eigenvalues and Eigenvectors 327

7.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . 327
7.2 Properties of Eigenvalues and Eigenvectors . . . . . . . . 344
7.3 Eigenvalues and Diagonalization . . . . . . . . . . . 351

Appendices

A Answers to Selected Exercises 365

B Quick Reference 383

B.1 Trigonometry Reference . . . . . . . . . . . . . . 383
B.2 Areas and Volumes . . . . . . . . . . . . . . . . 386
B.3 Algebra. . . . . . . . . . . . . . . . . . . . 387

Back Matter

Index 389



Chapter 1

TheReal andComplexNumbers

We begin with some basic set theory terminology that may pop up from time to
time, followed by a reminder on the rules for arithmetic with real numbers, and
a tour of the Cartesian coordinate plane. Students who are already comfortable
with these topics can feel free to jump ahead to Section 1.4, where we introduce
the complex numbers.

1.1 Some Basic Set Theory Notions

Definition 1.1.1 Set.

A set is a well-defined collection of objects which are called the “el-
ements” of the set. Here, “well-defined” means that it is possible to
determine if something belongs to the collection or not, without preju-
dice.

For example, the collection of letters that make up the word “pronghorns”
is well-defined and is a set, but the collection of the worst math teachers in the
world is notwell-defined, and so is not a set. In general, there are three ways to
describe sets.

One thing that student evalua-
tions teach us is that any given
Mathematics instructor canbe si-
multaneously the best andworst
teacher ever, depending onwho
is completing the evaluation.

Key Idea 1.1.2 Ways to Describe Sets.

1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a left brace “{”, list each element
of the set only once and then end with a right brace “}”.

3. The Set-Builder Method: A combination of the verbal and roster
methods using a “dummy variable” such as x.

For example, let S be the set described verbally as the set of letters that
makeup theword “pronghorns”. A rosterdescriptionofSwould be {p, r, o, n, g, h, s}.
Note that we listed “r”, “o”, and “n” only once, even though they appear twice in
“pronghorns.” Also, the order of the elements doesn’tmatter, so {o, n, p, r, g, s, h}
is also a roster description of S. A set-builder description of S is:

{x |x is a letter in the word “pronghorns”}.

1



2 CHAPTER 1. THE REAL AND COMPLEX NUMBERS

The way to read this is: “The set of elements x such that x is a letter in the
word ‘pronghorns.’” We define to sets to be equal if they have exactly the same
elements, and denote this using the familiar equals sign “=”. Thus, wemaywrite
S = {p, r, o, n, g, h, s}orS = {x |x is a letter in the word “pronghorns”.}. Clearly
r is an element of S and q is not an element S. We express these sentiments
mathematically by writing r ∈ S and q /∈ S.

More precisely, we have the following.

Definition 1.1.3 Notation for set inclusion.

Let A be a set.

• If x is an element ofA then we write x ∈ A, which is read “x is in
A”.

• If x is not an element of A then we write x /∈ A, which is read “x
is not in A”.The notation x ∈ A can be read

as “x is inA”, or “x is an element
of A”, or “x belongs to A”, with
similar readings for x /∈ A.

Now let’s consider the set

C = {x |x is a consonant in the word “pronghorns’}.

A roster description of C is C = {p, r, n, g, h, s}. Note that by construction,
every element of C is also in S. We express this relationship by stating that the
set C is a subset of the set S, which is written in symbols as C ⊆ S. The more
formal definition is given below.

Definition 1.1.4 Subset.

Given sets A and B, we say that the set A is a subset of the set B
and write “A ⊆ B” if every element in A is also an element of B.

Note that in our example above C ⊆ S, but not vice-versa, since o ∈ S but
o /∈ C. Additionally, the set of vowels V = {a, e, i, o, u}, while it does have an
element in common with S, is not a subset of S. (As an added note, S is not a
subset of V , either.) We could, however, build a set which contains both S and
V as subsets by gathering all of the elements in both S and V together into a
single set, say U = {p, r, o, n, g, h, s, a, e, i, u}. Then S ⊆ U and V ⊆ U . The
setU we have built is called the union of the sets S and V and is denoted S∪V .
Furthermore, S and V aren’t completely different sets since they both contain
the letter “o.” (Since the word “different” could be ambiguous, mathematicians
use the word disjoint to refer to two sets that have no elements in common.)
The intersection of two sets is the set of elements (if any) the two sets have in
common. In this case, the intersection of S and V is {o}, written S ∩ V = {o}.
We formalize these ideas below.

Definition 1.1.5 Intersection and Union.

Suppose A andB are sets.

• The intersection ofA andB isA∩B = {x |x ∈ A and x ∈ B}.

• The union ofA andB isA∪B = {x |x ∈ A or x ∈ B (or both)}.

The key words in Definition 1.1.5 to focus on are the conjunctions: “intersec-
tion” corresponds to “and” meaning the elements have to be in both sets to be
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in the intersection, whereas “union” corresponds to “or” meaning the elements
have to be in one set, or the other set (or both). In other words, to belong to
the union of two sets an element must belong to at least one of them.

Returning to the sets C and V above, C ∪ V = {p, r, n, g, h, s, a, e, i, o, u}.
When it comes to their intersection, however, we run into a bit of notational
awkwardness since C and V have no elements in common. While we could
write C ∩ V = {}, this sort of thing happens often enough that we give the set
with no elements a name.

Definition 1.1.6 Empty set.

The Empty Set ∅ is the set which contains no elements. That is,

∅ = {} = {x |x ̸= x}.

As promised, the empty set is the set containing no elements since nomatter
what “x” is, “x = x.” Like the number “0,” the empty set plays a vital role in
mathematics. We introduce it heremore as a symbol of convenience as opposed
to a contrivance.

The full extent of the empty set’s
role will not be explored in this
text, but it is of fundamental im-
portance in Set Theory. In fact,
the empty set canbeused to gen-
erate numbers –mathematicians
can create something fromnoth-
ing! If you’re interested, read about
the von Neumann construction
of the natural numbers¹.

Using this new bit of notation, we have for the sets C and V above that
C∩V = ∅. A niceway to visualize relationships between sets and set operations
is to draw a Venn Diagram² . A Venn Diagram for the sets S, C and V is drawn
in Figure 1.1.7.

S V

C

p r n g h s o a e i u

U

Figure 1.1.7 A Venn diagram forC, S,
and V

In Figure 1.1.7 we have three circles – one for each of the sets C, S and
V . We visualize the area enclosed by each of these circles as the elements of
each set. Here, we’ve spelled out the elements for definitiveness. Notice that
the circle representing the set C is completely inside the circle representing S.
This is a geometric way of showing that C ⊆ S. Also, notice that the circles
representing S and V overlap on the letter “o”. This common region is how we
visualize S ∩V . Notice that sinceC ∩V = ∅, the circles which representC and
V have no overlap whatsoever.

All of these circles lie in a rectangle labelledU (for “universal” set). A univer-
sal set contains all of the elements under discussion, so it could always be taken
as the union of all of the sets in question, or an even larger set. In this case, we
could takeU = S∪V orU as the set of letters in the entire alphabet. The usual
triptych of Venn Diagrams indicating generic setsA andB along withA∩B and
A ∪B is given in Figure 1.1.8.

(The reader may well wonder if there is an ultimate universal set which con-
tains everything. The short answer is “no”. Our definition of a set turns out to
be overly simplistic, but correcting this takes us well beyond the confines of this
course. If you want the longer answer, you can begin by reading about Russell’s
Paradox³ on Wikipedia.)

²en.wikipedia.org/wiki/Venn_diagram
³en.wikipedia.org/wiki/Russell's_paradox

https://en.wikipedia.org/wiki/Natural_number\#von_Neumann_construction
https://en.wikipedia.org/wiki/Natural_number\#von_Neumann_construction
https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/Russell's_paradox
https://en.wikipedia.org/wiki/Russell's_paradox
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A B

U

A B

U

A ∩B

A BA B

U

A ∪B

Figure 1.1.8 Venn diagrams for intersection and union

In the next section, we will review the algebraic properties of the real num-
ber system. Other properties of the real numbers (such as the order property
that allows us to picture the set of real numbers as a “number line”) are essen-
tial to Calculus, but not that important for Linear Algebra, so we will leave it to
other courses to handle the discussion of these topics.

1.2 Real Number Arithmetic

In this section we list the properties of real number arithmetic. We will focus
on those aspects that are most needed for linear algebra (things like the alge-
braic axioms, and working with fractions), and gloss over those that are more
calculus related (exponents, roots, etc.). In particular, since this is an algebra
textbook, we will assume that the reader has encountered the real number sys-
tem before, and omit a definition, focusing instead on the algebraic properties
of real numbers. We begin with the axioms for addition of real numbers.

The set of real numbers is de-
notedusually denotedR. A care-
ful definitionofR is actually quite
complicated, and even most cal-
culus classes choose not to include
it. If you want to really under-
standwhat the real numbers are,
you’ll need to take a course in
Real Analysis.

Definition 1.2.1 Properties of Real Number Addition.

Closure For all real numbers a and b, a+b is also a real
number.

Commutativity For all real numbers a and b, a+ b = b+ a.
Associativity For all real numbers a, b and c, a+ (b+ c) =

(a+ b) + c.

Identity There is a real number “0” so that for all real
numbers a, a+ 0 = a.

Inverse For all real numbers a, there is a real number
−a such that a+ (−a) = 0.

Definition of
Subtraction

For all real numbers a and b, a−b = a+(−b).

Next, we give real number multiplication a similar treatment. Recall that
we may denote the product of two real numbers a and b a variety of ways: ab,
a · b, a(b), (a)(b) and so on. We’ll refrain from using a × b for real number
multiplication in this text.

While it is true that ab = ba for
any pair of real numbers a and b,
there are plenty of algebraic sys-
tems where this property does
not hold. In particular, in Chap-
ter 4 we’ll learn how to multiply
matrices A and B, and see that
in most cases, the matrix prod-
uctAB is not equal to the prod-
uctBA. (We’ll also see that such
products are not even guaranteed
to be defined!)

Definition 1.2.2 Properties of Real Number Multiplication.

Closure For all real numbers a and b, ab is also a real
number.

Commutativity For all real numbers a and b, ab = ba.
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Associativity For all real numbers a, b and c, a(bc) = (ab)c.

Identity There is a real number “1” so that for all real
numbers a, a · 1 = a.

Inverse For all real numbers a ̸= 0, there is a real num-

ber
1

a
such that a

(
1

a

)
= 1.

Definition of
Division

For all real numbers a and b ̸= 0, a÷b =
a

b
=

a

(
1

b

)
.

Whilemost students (and some faculty) tend to skip over these properties or
give them a cursory glance at best, it is important to realize that the properties
stated above are what drive the symbolic manipulation for all of algebra. When
listing a tally of more than two numbers,

1 + 2 + 3 (1.2.1)

for example, we don’t need to specify the order in which those numbers are
added. Notice though, try as we might, we can add only two numbers at a time
and it is the associative property of addition which assures us that we could or-
ganize this sum as (1+2)+3 or 1+(2+3). This brings up a note about “group-
ing symbols”. Recall that parentheses and brackets are used in order to specify
which operations are to be performed first. In the absence of such grouping
symbols, multiplication (and hence division) is given priority over addition (and
hence subtraction). For example, 1+2 ·3 = 1+6 = 7, but (1+2) ·3 = 3 ·3 = 9.
As you may recall, we can “distribute” the 3 across the addition if we really
wanted to do the multiplication first: (1 + 2) · 3 = 1 · 3 + 2 · 3 = 3 + 6 = 9.
More generally, we have the following.

Definition 1.2.3 The Distributive Property and Factoring.

For all real numbers a, b and c:

Distributive
Property

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

Factoring ab+ ac = a(b+ c) and ac+ bc = (a+ b)c.

Warning: A common source of errors for beginning students is the misuse
(that is, lack of use) of parentheses. When in doubt, more is better than less:
redundant parentheses add clutter, but do not changemeaning, whereaswriting
2x+ 1 when you meant to write 2(x+ 1) is almost guaranteed to cause you to
make a mistake. (Even if you’re able to proceed correctly in spite of your lack of
proper notation, this is the sort of thing that will get you on your grader’s bad
side, so it’s probably best to avoid the problem in the first place.)

Taken together, the axioms for
addition andmultiplicationof real
numbers, along with the distrib-
utive property, tell us that alge-
braically, the set of real numbers
is a field¹.

It is worth pointing out that we didn’t really need to list the Distributive Prop-
erty both for a(b+ c) (distributing from the left) and (a+ b)c (distributing from
the right), since the commutative property of multiplication gives us one from
the other. Also, “factoring” really is the same equation as the distributive prop-
erty, just read from right to left. These are the first of many redundancies in

https://en.wikipedia.org/wiki/Field_(mathematics)
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this section, and they exist in this review section for one reason only – in our
experience, many students see these things differently so we will list them as
such.

It is hard to overstate the importance of the Distributive Property. For ex-
ample, in the expression 5(2 + x), without knowing the value of x, we cannot
perform the addition inside the parentheses first; we must rely on the distribu-
tive property here to get 5(2 + x) = 5 · 2 + 5 · x = 10 + 5x. The Distributive
Property is also responsible for combining “like terms”. Why is 3x + 2x = 5x?
Because 3x+ 2x = (3 + 2)x = 5x.

We continue our review with summaries of other properties of arithmetic,
each of which can be derived from the properties listed above. First up are prop-
erties of the additive identity 0.

Theorem 1.2.4 Properties of Zero.

Suppose a and b are real numbers.

Zero Product
Property

ab = 0 if and only if a = 0 or b = 0 (or both)
Note: This not only says that 0 · a = 0 for

any real number a, it also says that the only
way to get an answer of “0” when multiplying
two real numbers is to have one (or both) of
the numbers be “0” in the first place.

Zeros in Fractions
If a ̸= 0,

0

a
= 0 ·

(
1

a

)
= 0.

Note: The quantity
a

0
is undefined.

The Zero Product Property dri-
vesmost of the equation solving
algorithms in algebra because it
allowsus to take complicated equa-
tions and reduce them to simpler
ones. For example, you may re-
call that one way to solve x2 +
x− 6 = 0 is by factoring the left
hand side of this equation to get
(x − 2)(x + 3) = 0. From here,
we apply the Zero Product Prop-
erty and set each factor equal to
zero. This yields x − 2 = 0 or
x + 3 = 0 so x = 2 or x = −3.
This type of calculation is key to
finding the eigenvalues of a ma-
trix, as we’ll see in Section 7.1.

We now continue with a review of arithmetic with fractions.

Key Idea 1.2.5 Properties of Fractions.

Suppose a, b, c and d are real numbers. Assume them to be nonzero
whenever necessary; for example, when they appear in a denominator.

Identity Properties a =
a

1
and

a

a
= 1.

Fraction Equality a

b
=

c

d
if and only if ad = bc.

Multiplication of
Fractions

a

b
· c
d
=

ac

bd
. In particular:

a

b
· c = a

b
· c
1
=

ac

b
.

Division of Fractions a

b

/ c

d
=

a

b
· d
c
=

ad

bc
.

In particular: 1
/a

b
=

b

a
and

a

b

/
c =

a

b

/ c

1
=

a

b
· 1
c
=

a

bc
.

Note: A common denominator is not re-
quired to multiply or divide fractions!

Addition and
Subtraction of

Fractions

a

b
± c

b
=

a± c

b
.

Note: A common denominator is required
to add or subtract fractions!
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Equivalent Fractions a

b
=

ad

bd
, since

a

b
=

a

b
· 1 =

a

b
· d
d
=

ad

bd
.

Note: The onlyway to change the denomi-
nator is to multiply both it and the numerator
by the same nonzero value because we are, in
essence, multiplying the fraction by 1.

“Reducing” Fractions a�d
b�d

=
a

b
, since

ad

bd
=

a

b
· d
d
=

a

b
· 1 =

a

b
.

In particular,
ab

b
= a since

ab

b
=

ab

1 · b
=

a�b
1 · �b

=
a

1
= a and

b− a

a− b
=

(−1)����(a− b)

����(a− b)
=

−1.

It’s always worth remembering
thatdivision is the sameasmulti-
plicationby the reciprocal. You’d
be surprised howoften this comes
in handy.

We reduce fractions by “can-
celling” common factors – this is
really just reading the previous
property “from right to left”.

Caution: We may only can-
cel common factors frombothnu-
merator and denominator: we
can cancel the twos in

3(2)

5(2)
, but

not in
3 + 2

5 + 2
.

Next up is a review of the arithmetic of “negatives”. In Definition 1.2.1 we
first introduced the dash which we all recognize as the “negative” symbol in
terms of the additive inverse. For example, the number −3 (read “negative 3”)
is defined so that 3+(−3) = 0. We then defined subtraction using the concept
of the additive inverse again so that, for example, 5− 3 = 5 + (−3).

Key Idea 1.2.6 Properties of Negatives.

Given real numbers a and b we have the following.

Additive Inverse
Properties

−a = (−1)a and−(−a) = a.

Products of
Negatives

(−a)(−b) = ab.

Negatives and
Products

−ab = −(ab) = (−a)b = a(−b).

Negatives and
Fractions If b is nonzero, −a

b
=

−a

b
=

a

−b
and

−a

−b
=

a

b
.

“Distributing”
Negatives

−(a+ b) = −a− b and−(a− b) = −a+ b =
b− a.

“Factoring”
Negatives

−a− b = −(a+ b) and b− a = −(a− b).

In this textwedonot distinguish
typographically between thedashes
in the expressions “5 − 3” and
“−3” even though they aremath-
ematically quite different. In the
expression “5− 3,” the dash is a
binary operation (that is, an op-
eration requiring two numbers)
whereas in “−3”, the dash is a
unary operation (that is, an op-
eration requiring only one num-
ber). Youmight ask, “Who cares?”
Your calculator does - that’swho!
In the text we can write −3 −
3 = −6 but that will not work
in your calculator. Instead you’d
need to type −3 − 3 to get −6
where the first dash comes from
the “+/−” key.

An important point here is that when we “distribute” negatives, we do so
across addition or subtraction only. This is because we are really distributing a
factor of−1 across each of these terms: −(a+ b) = (−1)(a+ b) = (−1)(a) +
(−1)(b) = (−a)+(−b) = −a−b. Negatives do not “distribute” across multipli-
cation: −(2 ·3) ̸= (−2) ·(−3). Instead,−(2 ·3) = (−2) ·(3) = (2) ·(−3) = −6.
The same sort of thing goes for fractions: − 3

5 can be written as
−3
5 or 3

−5 , but
not −3

−5 . It’s about timewe did a few examples to see how these properties work
in practice.
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Example 1.2.7 Arithmetic with fractions.

Perform the indicated operations and simplify. By “simplify” here,
we mean to have the final answer written in the form a

b where a and b
are integers which have no common factors. Said another way, we want
a
b in “lowest terms”.

(a)
1

4
+

6

7

Solution. Itmay seem silly to startwith an example this basic but
experience has taught us not to take much for granted. We start
by finding the lowest common denominator and then we rewrite
the fractions using that new denominator. Since 4 and 7 are rela-
tively prime, meaning they have no factors in common, the lowest
common denominator is 4 · 7 = 28.

1

4
+

6

7

1

4
· 7
7
+

6

7
· 4
4

(Equivalent Fractions)

7

28
+

24

28
(Multiplication of Fractions)

31

28
(Addition of Fractions).

The result is in lowest terms because 31 and 28 are relatively prime
so we’re done.

(b)
5

12
−
(
47

30
− 7

3

)
Solution. We could begin with the subtraction in parentheses,
namely 47

30 − 7
3 , and then subtract that result from

5
12 . It’s eas-

ier, however, to first distribute the negative across the quantity in
parentheses and then use the Associative Property to perform all
of the addition and subtraction in one step. The lowest common
denominator for all three fractions is 60.

5

12
−
(
47

30
− 7

3

)
=

5

12
− 47

30
+

7

3
(Distribute the Negative)

=
5

12
· 5
5
− 47

30
· 2
2
+

7

3
· 20
20

(Equivalent Fractions)

=
25

60
− 94

60
+

140

60
(Multiplication of Fractions)

=
71

60
(Addition and Subtraction of Fractions)

The numerator and denominator are relatively prime so the frac-
tion is in lowest terms and we have our final answer.

(c)

12

5
− 7

24

1 +

(
12

5

)(
7

24

)
Solution. Whatwe are asked to simplify in this problem is known
as a “complex” or “compound” fraction. Simply put, we have frac-
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tions within a fraction. The longest division line (also called a “vin-
culum”) performs the same sort of grouping function as parenthe-
ses:

12

5
− 7

24

1 +

(
12

5

)(
7

24

) =

(
12

5
− 7

24

)
(
1 +

(
12

5

)(
7

24

)) .
The first step to simplifying a compound fraction like this one is to
see if you can simplify the little fractions inside it. There are two
ways to proceed. One is to simplify the numerator and denomi-
nator separately, and then use the fact that division is the same
thing as multiplication by the reciprocal, as follows:(

12

5
− 7

24

)
(
1 +

(
12

5

)(
7

24

)) =

(
12

5
· 24
24

− 7

24
· 5
5

)
(
1 · 120

120
+

(
12

5

)(
7

24

)) (Equivalent Fractions)

=
288/120− 35/120

120/120 + 84/120
(Multiplication of fractions)

=
253/120

204/120
(Addition and subtraction of fractions)

=
253

��120
·�

�120
204

(Division of fractions and cancellation)

=
253

204
.

Since 253 = 11 ·23 and 204 = 2 ·2 ·3 ·17 have no common factors
our result is in lowest terms which means we are done.
While there is nothing wrong with the above approach, we can
also use our Equivalent Fractions property to rid ourselves of the
“compound” nature of this fraction straight away. The idea is to
multiply both the numerator and denominator by the lowest com-
mon denominator of each of the “smaller” fractions – in this case,
24 · 5 = 120.(

12

5
− 7

24

)
(
1 +

(
12

5

)(
7

24

)) =

(
12

5
− 7

24

)
· 120(

1 +

(
12

5

)(
7

24

))
· 120

(Equivalent Fractions)

=

(
12

5

)
(120)−

(
7

24

)
(120)

(1)(120) +

(
12

5

)(
7

24

)
(120)

(Distributive Property)

=

12 · 120
5

− 7 · 120
24

120 +
12 · 7 · 120

5 · 24

(Multiply fractions)

=

12 · 24 · �5
�5

− 7 · 5 ·��24
��24

120 +
12 · 7 · �5 ·��24

�5 ·��24

(Factor and cancel)
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=
(12 · 24)− (7 · 5)
120 + (12 · 7)

=
288− 35

120 + 84
=

253

204
,

which is the same as we obtained above.

(d)
(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)

Solution. This fraction may look simpler than the one before it,
but the negative signs and parentheses mean that we shouldn’t
get complacent. Again we note that the division line here acts as
a grouping symbol. That is,

(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)
=

((2(2) + 1)(−3− (−3))− 5(4− 7))

(4− 2(3))
.

This means that we should simplify the numerator and denomi-
nator first, then perform the division last. We tend to what’s in
parentheses first, giving multiplication priority over addition and
subtraction.
(2(2) + 1)(−3− (−3))− 5(4− 7)

4− 2(3)
=

(4 + 1)(−3 + 3)− 5(−3)

4− 6

=
(5)(0) + 15

−2
=

15

−2

= −15

2
(Properties of Negatives).

Since 15 = 3 · 5 and 2 have no common factors, we are done.

(e)
(
3

5

)(
5

13

)
−
(
4

5

)(
−12

13

)
Solution. In this problem, we have multiplication and subtrac-
tion. Multiplication takes precedence so we perform it first. Re-
call that to multiply fractions, we do not need to obtain common
denominators; rather, we multiply the corresponding numerators
together along with the corresponding denominators. However,
when we perform the subtraction, we do need a common denom-
inator, so we will resist the temptation to cancel the fives in the
first term straight away.(
3

5

)(
5

13

)
−
(
4

5

)(
−12

13

)
=

3 · 5
5 · 13

− 4 · (−12)

5 · 13
(Multiply fractions)

=
15

65
− −48

65

=
15

65
+

48

65
(Properties of Negatives)

=
15 + 48

65
(Add numerators)

=
63

65
.

Since 64 = 3 · 3 · 7 and 65 = 5 · 13 have no common factors, our
answer

63

65
is in lowest terms and we are done.



1.2. REAL NUMBER ARITHMETIC 11

Of the issues discussed in the previous set of examples none causes students
more trouble than simplifying compound fractions. We presented two different
methods for simplifying them: one in which we simplified the overall numerator
anddenominator and then performed the division andone inwhichwe removed
the compound nature of the fraction at the very beginning. We encourage the
reader to go back and use both methods on each of the compound fractions
presented. Keep in mind that when a compound fraction is encountered in the
rest of the text it will usually be simplified using only one method and we may
not choose your favouritemethod. Feel free to use the other one in your notes.
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1.2.1 Exercises

Exercise Group. Perform the indicated operations and simplify.

1.
3− 4

9

−2− (−3)
2.

2

3
− 4

7

3.
(
− 32

9

)−3/5

4.
1− 2(−3)

5(−3) + 7

5.
1 + 2−3

3− 4−1
6.

3

8
+

5

12

7.
−12 +

√
18

21

8. 3−1 − 4−2

9.
√
(2− (−1))2 +

(
1
2 − 3

)2
10.

−(−4) +
√
(−4)2 − 4(1)(−1)

2(1)

11.
2
(
4
3

)
1−

(
4
3

)2 12. 3
√

2(4) + 1 + 3(4)
(
1
2

)
(2(4) + 1)−1/2(2)

13. 5− 2 + 3 14. 2(−7) 3
√
1− (−7) + (−7)2

(
1
3

)
(1−

(−7))−2/3(−1)

15.
4− 5.8

2− 2.1
16.

5(3)− 7

2(3)2 − 3(3)− 9

17.
(−2)2 − (−2)− 6

(−2)2 − 4

18.
√
12−

√
75

19. 2(−5)(−5 + 1)−1 + (−5)2(−1)(−5 + 1)−2 20. (−8)2/3 − 9−3/2

21.
2(3)− (4− 1)

22 + 1
22.

√
(
√
5− 2

√
5)2 + (

√
18−

√
8)2

23.
2(−3)

3− (−3) 24.
(
2

3

)−5

25.
√
32 + 42 26.

2((−1)2 − 1)

((−1)2 + 1)2

27.
√
(3− 4)2 + (5− 2)2 28.

2
3 − 4

5

4− 7
10

29.
−2−

√
(2)2 − 4(3)(−1)

2(3)
30.

1−
(
5
3

) (
3
5

)
1 +

(
5
3

) (
3
5

)
31.

5− 3

−2− 4

32. 5− (2 + 3)

33.
3 · 5100

12 · 598
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1.3 The Cartesian Coordinate Plane

As awarm-up for the discussions of vectors and three-dimensional geometry yet
to come, we will make a quick review of the Cartesian Coordinate Plane. Imag-
ine two real number lines crossing at a right angle at 0 as shown in Figure 1.3.1.

The Cartesian Plane is named in
honour of René Descartes¹.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 1.3.1 The Cartesian coordinate
plane

The horizontal number line is usually called the x axiswhile the vertical num-
ber line is usually called the y axis. As with the usual number line, we imagine
these axes extending off indefinitely in both directions. Having two number lines
allows us to locate the positions of points offof the number lines aswell as points
on the lines themselves.

Usually extending off towards in-
finity is indicated by arrows, but
here, the arrows are used to in-
dicate thedirectionof increasing
values of x and y.

The namesof the coordinates
can vary depending on the con-
text of the application. If, for ex-
ample, the horizontal axis repre-
sented time wemight choose to
call it the t-axis. The first num-
ber in the orderedpairwould then
be the t-coordinate.

For example, consider the pointP in Figure 1.3.2. To use the numbers on the
axes to label this point, we imagine dropping a vertical line from the x-axis to P
and extending a horizontal line from the y-axis to P . This process is sometimes
called “projecting” the point P to the x (respectively y) axis. We then describe
the point P using the ordered pair (2,−4). The first number in the ordered pair
is called the abscissa or x coordinate and the second is called the ordinate or
y coordinate. Taken together, the ordered pair (2,−4) comprise the Cartesian
coordinates of the point P . In practice, the distinction between a point and its
coordinates is blurred; for example, we often speak of “the point (2,−4).” We
can think of (2,−4) as instructions on how to reach P from the origin (0, 0) by
moving 2 units to the right and 4 units downwards. Notice that the order in the
ordered pair is important— if wewish to plot the point (−4, 2), we wouldmove
to the left 4 units from the origin and then move upwards 2 units, as below on
the right.

−4 −2 2 4

−4

−2

2

4

P

x

y

−4 −2 2 4

−4

−2

2

4

P (2,−4)

(−4, 2)

x

y

Figure 1.3.2 Plotting points in Cartesian coordinates

When we speak of the Cartesian Coordinate Plane, we mean the set of all
possible ordered pairs (x, y) as x and y take values from the real numbers. Be-
low is a summary of important facts about Cartesian coordinates.

Key Idea 1.3.3 Important Facts about the Cartesian Coordinate Plane.

• (a, b) and (c, d) represent the same point in the plane if and only
if a = c and b = d.

• (x, y) lies on the x-axis if and only if y = 0.

• (x, y) lies on the y-axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to both
axes.

https://en.wikipedia.org/wiki/Descartes
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Example 1.3.4 Plotting points in the Cartesian Plane.

Plot the following points: A(5, 8), B
(
− 5

2 , 3
)
, C(−5.8,−3),

D(4.5,−1), E(5, 0), F (0, 5),G(−7, 0),H(0,−9),O(0, 0).
Solution. To plot these points, we start at the origin and move to the
right if the x coordinate is positive; to the left if it is negative. Next, we
move up if the y coordinate is positive or down if it is negative. If the
x-coordinate is 0, we start at the origin and move along the y-axis only.
If the y-coordinate is 0 we move along the x-axis only.

−10 −5 5 10

−10

−5

5

10

A(5, 8)

B
(
− 5

2 , 3
)

C(−5.8,−3)

D(4.5,−1)

E(5, 0)

F (0, 5)

G(−7, 0)

H(0,−9)

O(0, 0) x

y

Figure 1.3.5 Plotting points in Exam-
ple 1.3.4

The axes divide the plane into four regions called quadrants. They are la-
belled with Roman numerals and proceed counterclockwise around the plane:
see Figure 1.3.6.

−4 −2 2 4

−4

−2

2

4
Quadrant I
x > 0, y > 0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x > 0, y < 0

x

y

Figure 1.3.6 The four quadrants of the
Cartesian plane

For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in
Quadrant III and (1,−2) in Quadrant IV. If a point other than the origin happens
to lie on the axes, we typically refer to that point as lying on the positive or
negative x axis (if y = 0) or on the positive or negative y axis (if x = 0). For
example, (0, 4) lies on the positive y axis whereas (−117, 0) lies on the negative
x axis. Such points do not belong to any of the four quadrants.

Distance in the Plane. Another important concept in Geometry is the notion
of length. If we are going to unite Algebra and Geometry using the Cartesian
Plane, then we need to develop an algebraic understanding of what distance
in the plane means. Suppose we have two points, P (x0, y0) and Q (x1, y1) ,
in the plane. By the distance d between P and Q, we mean the length of the
line segment joining P withQ. (Remember, given any two distinct points in the
plane, there is a unique line containing both points.) Our goal now is to create an
algebraic formula to compute the distance between these two points. Consider
the generic situation in Figure 1.3.7(a).

P (x0, y0)

Q(x1, y1)

d

(a)

P (x0, y0)

Q(x1, y1)

(x1, y0)

d

(b)

Figure 1.3.7 Distance between P andQ

With a little more imagination, we can envision a right triangle whose hy-
potenuse has length d as drawn in Figure 1.3.7(b). From the latter figure, we
see that the lengths of the legs of the triangle are |x1 − x0| and |y1 − y0| so the
Pythagorean Theorem² gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)
2
+ (y1 − y0)

2
= d2.

Recall that the absolute value
of a real number a, denoted by
|a|, measures the distance of a
from the origin. Since we never
want a negativedistance, thismeans
|a| = a if a ≥ 0, while if a < 0,
|a| = −a. For example, |4| = 4,
and |−7| = −(−7) = 7. Given
two real numbersa and b, |a− b|
measures the distance between
them.

(Since the square of a number is always positive, we can drop the absolute
value signs.) By extracting the square root of both sides of the second equation
and using the fact that distance is never negative, we get the following result.

²en.wikipedia.org/wiki/Pythagorean_Theorem

https://en.wikipedia.org/wiki/Pythagorean_Theorem
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Key Idea 1.3.8 The Distance Formula.

The distance d between the points P (x0, y0) andQ (x1, y1) is:

d =

√
(x1 − x0)

2
+ (y1 − y0)

2. (1.3.1)

It is not always the case that the points P and Q lend themselves to con-
structing such a triangle. If the points P and Q are arranged vertically or hori-
zontally, or describe the exact same point, we cannot use the above geometric
argument to derive the distance formula. It is left to the reader in Exercise Exer-
cise 1.3.15 to verify Equation (1.3.1) for these cases.

Example 1.3.9 Distance between two points.

Find and simplify the distance between P (−2, 3) andQ(1,−3).
Solution. Using The Distance Formula, we have

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

=
√
(1− (−2))2 + (−3− 3)2

=
√
9 + 36

= 3
√
5,

so the distance is 3
√
5.

Example 1.3.10 Finding points at a given distance.

Find all of the points with x-coordinate 1 which are 4 units from the
point (3, 2).
Solution. We shall soon see that the points we wish to find are on the
line x = 1, but for now we’ll just view them as points of the form (1, y).

We require that the distance from (3, 2) to (1, y) be 4. The Distance
Formula, Equation (1.3.1), yields

d =

√
(x1 − x0)

2
+ (y1 − y0)

2

4 =
√
(1− 3)2 + (y − 2)2

4 =
√
4 + (y − 2)2

42 =
(√

4 + (y − 2)2
)2

(squaring both sides)

16 = 4 + (y − 2)2

12 = (y − 2)2

(y − 2)2 = 12

y − 2 = ±
√
12 (extracting the square root)

y = 2± 2
√
3.

We obtain two answers: (1, 2 + 2
√
3) and (1, 2− 2

√
3). The reader

is encouraged to think about why there are two answers.

−1 1 2 3 4

−4

−2

2

4

(1, y)

(3, 2)

distance is 4 units
x

y

Figure 1.3.11 Diagram for Exam-
ple 1.3.10Related to finding the distance between two points is the problem of find-
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ing the midpoint of the line segment connecting two points. Given two points,
P (x0, y0) andQ (x1, y1), themidpointM ofP andQ is defined to be the point
on the line segment connecting P and Q whose distance from P is equal to its
distance fromQ.

P (x0, y0)

Q(x1, y1)

M

Figure 1.3.12 The midpoint of a line
segment

If we think of reachingM by going “halfway over” and “halfway up” we get
the following formula.

Key Idea 1.3.13 The Midpoint Formula.

The midpoint M of the line segment connecting P (x0, y0) and
Q (x1, y1) is

M =

(
x0 + x1

2
,
y0 + y1

2

)
.

If we letddenote the distancebetweenP andQ, we leave it as Exercise 1.3.16
to show that the distance between P andM is d/2, which is the same as the
distance betweenM andQ. This suffices to show that Key Idea 1.3.13 gives the
coordinates of the midpoint.

Example 1.3.14 Finding the midpoint of a line segment.

Find the midpoint of the line segment connecting P (−2, 3) and
Q(1,−3).
Solution. Using The Midpoint Formula, we have

M =

(
x0 + x1

2
,
y0 + y1

2

)
=

(
(−2) + 1

2
,
3 + (−3)

2

)
=

(
−1

2
,
0

2

)
=

(
−1

2
, 0

)
.

The midpoint is
(
− 1

2 , 0
)
.

We close with a more abstract application of the Midpoint Formula.

Example 1.3.15 An abstract midpoint problem.

If a ̸= b, prove that the line y = x equally divides the line segment
with endpoints (a, b) and (b, a).
Solution. To prove the claim, we use TheMidpoint Formula to find the
midpoint.

M =

(
a+ b

2
,
b+ a

2

)
=

(
a+ b

2
,
a+ b

2

)
.

Since the x and y coordinates of this point are the same, we find that
the midpoint lies on the line y = x, as required.
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1.3.1 Exercises

1. Plot and label the pointsA(−3,−7),B(1.3,−2),C(π,
√
10),D(0, 8),E(−5.5, 0), F (−8, 4),G(9.2,−7.8) and

H(7, 5) in the Cartesian Coordinate Plane given below.

−10 −5 5 10

−10

−5

5

10

x

y

Exercise Group. Find the distance d between the points and the midpointM of the line segment which connects
them.

2. (1, 2), (−3, 5) 3. (3,−10), (−1, 2)

4.
(
1

2
, 4

)
,
(
3

2
,−1

)
5.

(
−2

3
,
3

2

)
,
(
7

3
, 2

)
6.

(
24

5
,
6

5

)
,
(
−11

5
,−19

5

)
. 7.

(√
2,
√
3
)
,
(
−
√
8,−

√
12
)

8.
(
2
√
45,

√
12
)
,
(√

20,
√
27
)
. 9. (0, 0), (x, y)

10. Find all of the points of the form (x,−1) which are 4 units from the point (3, 2).

11. Find all of the points on the y-axis which are 5 units from the point (−5, 3).

12. Find all of the points on the x-axis which are 2 units from the point (−1, 1).

13. Find all of the points of the form (x,−x) which are 1 unit from the origin.

14. Let’s assume for a moment that we are standing at the origin and the positive y-axis points due North while the
positive x-axis points due East. Our Sasquatch-o-meter tells us that Sasquatch is 3 miles West and 4 miles South
of our current position. What are the coordinates of his position? How far away is he from us? If he runs 7miles
due East what would his new position be?

15. Verify The Distance Formula for the cases when:

(a) The points are arranged vertically. (Hint: Use P (a, y0) andQ(a, y1).)

(b) The points are arranged horizontally. (Hint: Use P (x0, b) andQ(x1, b).)

(c) The points are actually the same point. (You shouldn’t need a hint for this one.)
16. Verify the Midpoint Formula by showing the distance between P (x1, y1) andM and the distance betweenM

andQ(x2, y2) are both half of the distance between P andQ.

17. Show that the points A, B and C below are the vertices of a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8)

(b) A(−3, 1), B(4, 0) and C(0,−3)

³en.wikipedia.org/wiki/Pythagorean_theorem\#Converse
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18. Find a point D(x, y) such that the points A(−3, 1), B(4, 0), C(0,−3) and D are the corners of a square.
Justify your answer.

19. The world is not flat. (There are those who disagree with this statement. Look them up on the Internet some
time when you’re bored.) Thus the Cartesian Plane cannot possibly be the end of the story. Discuss with your
classmates how youwould extend Cartesian Coordinates to represent the three dimensional world. Whatwould
the Distance and Midpoint formulas look like, assuming those concepts make sense at all?
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1.4 Complex Numbers

We nowmove on to the study of the set of complex numbers. As youmay recall,
the complex numbers fill an algebraic gap left by the real numbers. There is no
real number x with x2 = −1, since for any real number x2 ≥ 0. However, we
could formally extract square roots and write x = ±

√
−1. We build the com-

plex numbers by relabelling the quantity
√
−1 as i, the unfortunately misnamed

imaginary unit, i. The number i, while not a real number, is defined so that it
plays along well with real numbers and acts very much like any other radical ex-
pression. For instance, 3(2i) = 6i, 7i − 3i = 4i, (2 − 7i) + (3 + 4i) = 5 − 3i,
and so forth. The key properties which distinguish i from the real numbers are
listed below.

Historically, the lack of solutions
to the equation x2 = −1 had
nothing to do with the develop-
ment of the complex numbers. Un-
til the 19th century, equations
such as x2 = −1 would have
been considered in the context
of the analytic geometry of Descartes.
The lack of solutions simply indi-
cated that the graph y = x2 did
not intersect the line y = −1.
The more remarkable case was
that of cubic equations, of the
form x3 = ax+ b. In this case a
real solution is guaranteed, but
there are caseswhereoneneeds
complex numbers to find it! For
details, see the excellent bookVi-
sual ComplexAnalysis, by Tristan
Needham.

Definition 1.4.1 The imaginary unit.

The imaginary unit i satisfies the two following properties:

1. i2 = −1

2. If c is a real number with c ≥ 0 then
√
−c = i

√
c

Note the use of the indefinite ar-
ticle “a”. Whatever beast is cho-
sen to be i,−i is the other square
root of−1.

Some technicalmathematics
textbooks label the imaginary unit
“j”, usually to avoid confusionwith
the use of the letter i to denote
electric current. While it carries
the adjective “imaginary”, these
numbers have essential real-world
implications. For example, every
electronic device owes its existence
to the study of “imaginary” num-
bers.

Property 1 in Definition 1.4.1 establishes that i does act as a square root of
−1, and property 2 establisheswhatwemean by the “principal square root” of a
negative real number. In property 2, it is important to remember the restriction
on c. For example, it is perfectly acceptable to say

√
−4 = i

√
4 = i(2) = 2i.

However,
√

−(−4) ̸= i
√
−4, otherwise, we’d get

2 =
√
4 =

√
−(−4) = i

√
−4 = i(2i) = 2i2 = 2(−1) = −2,

which is unacceptable. The moral of this story is that the general properties of
radicals do not apply for even roots of negative quantities. With Definition 1.4.1
in place, we are now in position to define the complex numbers.

Definition 1.4.2 Complex numbers.

A complex number is a number of the form a+bi, where a and b are
real numbers and i is the imaginary unit. The set of complex numbers is
denoted C.

Complex numbers include things you’d normally expect, like 3 + 2i and 2
5 −

i
√
3. However, don’t forget that a or b could be zero, which means numbers like

3i and 6 are also complex numbers. In other words, don’t forget that the com-
plex numbers include the real numbers, so 0 and π −

√
21 are both considered

complex numbers. We want to study the arithmetic of complex numbers, but
before we can do so, we first need to make sure we understand what it means
for two complex numbers to be equal.

Definition 1.4.3 Equality of complex numbers.

Let z = a + ib and w = c + id be two complex numbers. We say
that z and w are equal, and write z = w, if and only if a = c and b = d.

The arithmetic of complex numbers is as you would expect. The definitions
of addition and multiplication are as follows.
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Definition 1.4.4 Addition of complex numbers.

Given two complex numbers z = a+ ib and w = c+ id, we define
their sum to be the complex number given by

z + w = (a+ c) + i(b+ d).

Definition 1.4.5 Multiplication of complex numbers.

Given two complex numbers z = a+ ib and w = c+ id, we define
their product to be the complex number

zw = (ac− bd) + i(ad+ bc).

Addition of complex numbers is defined by simply adding the corresponding
parts. The definition of multiplication looks complicated, but it’s simply an appli-
cation of the “F.O.I.L.” rule for multiplying binomials, where we have to account
for the fact that i2 = −1.

As long as we remember the two properties in Definition 1.4.1, we can treat
expressions involving i =

√
−1 as we would with any other radical. Let’s work

through an example to see how this works.

Example 1.4.6 Arithmetic with complex numbers.

Perform the indicated operations.

1. (1− 2i)− (3 + 4i)

2. (1− 2i)(3 + 4i)

3.
1− 2i

3− 4i

4.
√
−3

√
−12

5.
√

(−3)(−12)

6. (x− [1 + 2i])(x− [1− 2i])

Solution.

1. Subtraction is simply a variation on addition: We distribute the
minus sign across the second complex number and combine like
terms:

(1− 2i)− (3 + 4i) = 1− 2i− 3− 4i (Distribute)
= −2− 6i (Gather like terms)

Technically, we’d have to rewrite our answer −2 − 6i as (−2) +
(−6)i to be (in the strictest sense) “in the form a+ bi”. That being
said, even pedants have their limits, and we’ll consider −2 − 6i
good enough.

2. The key to multiplying complex numbers is to forget about Defini-
tion 1.4.5 above, and simply treat this as a product of two binomi-
als. Using the Distributive Property (a.k.a. F.O.I.L.), we get

(1− 2i)(3 + 4i) = (1)(3) + (1)(4i)− (2i)(3)− (2i)(4i) (F.O.I.L.)

= 3 + 4i− 6i− 8i2

= 3− 2i− 8(−1) i2 = −1
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= 3− 2i+ 8

= 11− 2i.

3. How in theworld arewe supposed to simplify 1−2i
3−4i? Well, we deal

with the denominator 3− 4i as we would any other denominator
containing two terms, one of which is a square root: we then mul-
tiply both numerator and denominator by 3 + 4i, the (complex)
conjugate of 3− 4i. Doing so produces

1− 2i

3− 4i
=

(1− 2i)(3 + 4i)

(3− 4i)(3 + 4i)
(Equivalent Fractions)

=
3 + 4i− 6i− 8i2

9− 16i2
(F.O.I.L.)

=
3− 2i− 8(−1)

9− 16(−1)
(i2 = −1)

=
11− 2i

25
=

11

25
− 2

25
i.

4. We use property 2 of Definition 1.4.1 first, then apply the rules
of radicals applicable to real numbers to get

√
−3

√
−12 =(

i
√
3
) (

i
√
12
)
= i2

√
3 · 12 = −

√
36 = −6.

5. We adhere to the order of operations here and perform the mul-
tiplication before the radical to get

√
(−3)(−12) =

√
36 = 6.

6. We can brute force multiply using the distributive property and
see that

(x− [1 + 2i])(x− [1− 2i]) = x2 − x[1− 2i]− x[1 + 2i] + [1− 2i][1 + 2i]

= x2 − x+ 2ix− x− 2ix+ 1− 2i+ 2i− 4i2

= x2 − 2x+ 1− 4(−1)

= x2 − 2x+ 5.

In the previous example, we used the idea of a “conjugate” to divide two
complex numbers. More generally, the complex conjugate of a complex number
a+bi is the numbera−bi. The notation commonly used for complex conjugation
is a “bar”: a+ bi = a− bi. For example,

3 + 2i = 3− 2i and 3− 2i = 3 + 2i.

To find 6, we note that 6 = 6 + 0i = 6 − 0i = 6, so 6 = 6. Similarly,
4i = −4i, since 4i = 0 + 4i = 0 − 4i = −4i. The properties of the conjugate
are summarized in the following theorem.

Theorem 1.4.7 Properties of the Complex Conjugate.

Let z and w be complex numbers.

• z = z

• z + w = z + w

• zw = z w
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• zn = (z)
n, for any natural number n

• z is a real number if and only if z = z.

You may recall using conjugates
to rationalize expressions involv-
ing square roots. For example,
we have

3√
2 + 1

=
3(
√
2− 1)

(
√
2 + 1)(

√
2− 1)

= 3
√
3− 3.

The key observation is that
multiplying by the conjugate sets
up a difference of squares: the
terms involving the radical can-
cel out. In some ways, multipli-
cation by a complex conjugate is
evenmore convenient thanwith
real radicals: since

(a+ ib)(a− ib) = a2 − iab+ iab− i2b2

= a2 + b2,

the product zz is never negative,
and only vanishes if z = 0.

Essentially, Theorem 1.4.7 says that complex conjugation works well with
addition, multiplication and powers. The proofs of these properties can best be
achieved by writing out z = a+ bi andw = c+di for real numbers a, b, c and d.
Next, we compute the left and right sides of each equation and verify that they
are the same.

Verifying the first property is a very quick exercise. To prove the second prop-
erty, we compare z + w with z + w. We have z + w = a+ bi + c+ di =
a− bi+ c− di. To find z + w, we first compute

z + w = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i,

so

z + w = (a+ c) + (b+ d)i

= (a+ c)− (b+ d)i

= a− bi+ c− di

= z + w.

As such, we have established z + w = z + w.
The proof for multiplication works similarly: we have

zw = (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (ac− (−b)(−d)) + i(a(−d) + b(−c))

= (a− ib)(c− id)

= z w.

The proof that the conjugate works well with powers can be viewed as a re-
peated application of the product rule.

The last property is a characterization of real numbers. If z is real, then z =
a+0i, so z = a−0i = a = z. On the other hand, if z = z, then a+ bi = a− bi
which means b = −b so b = 0. Hence, z = a+ 0i = a and is real.

It is worth noting that although the arithmetic of complex numbers seems,
at first impression, to be very different and strange compared to the arithmetic
of real numbers, it actually satisfies all the same properties, as outlined in the
following theorem.

Theorem 1.4.8 Properties of Complex Arithmetic.

The addition and multiplication of complex numbers satisfy the fol-
lowing properties:

Closure under
addition

For any complex numbers z and w, z + w is a
complex number.

Commutativity of
addition

For any complex numbers z and w, z + w =
w + z.



1.4. COMPLEX NUMBERS 23

Associativity of
addition

For any complex numbers z1, z2, z3, z1+(z2+
z3) = (z1 + z2) + z3.

Additive identity There exists a complex number 0 such that z+
0 = 0 + z = z for every complex number z.

Additive inverses For every complex number z there exists a
complex number −z such that z + (−z) =
−z + z = 0.

Closure under
multiplication

For any complex numbers z and w, zw is a
complex number.

Commutativity of
multiplication

For any complex numbers z and w, zw = wz.

Assiciativity of
multiplication

For any complex numbers z1, z2, z3,
z1(z2z3) = (z1z2)z3

Multiplicative
identity

There exists a complex number 1 such that 1 ·
z = z · 1 = z for every complex number z.

Multiplicative
inverses

For every complex number z ≠ 0, there ex-
ists a complex number z−1 such that zz−1 =
z−1z = 1.

Distributive property For all complex numbers z1, z2, z3, we have
z1(z2 + z3) = z1z2 + z1z3.

We leave the proof of Theorem 1.4.8 as a long (but straightforward) exercise.
Working through the proof is a good way to confirm for yourself that you under-
stand the corresponding rules for real number arithmetic from Section 1.2, and
how the properties for complex arithmetic are inherited from their real counter-
parts.

We now consider the problem of solving quadratic equations. Consider x2−
2x+5 = 0. The discriminant b2 − 4ac = −16 is negative, so we know from the
quadratic formula that there are no real solutions, since the Quadratic Formula
would involve the term

√
−16. Complex numbers, however, are built just for

such situations, so we can go ahead and apply the Quadratic Formula to get:

x =
−(−2)±

√
(−2)2 − 4(1)(5)

2(1)
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

Example 1.4.9 Finding complex solutions.

Find the complex solutions to the following equations.

1.
2x

x+ 1
= x+ 3 2. 2t4 = 9t2 + 5 3. z3 + 1 = 0

Solution.

1. Clearing fractions yields a quadratic equation so we collect all
terms on one side and apply the quadratic formula.

2x

x+ 1
= x+ 3

2x = (x+ 3)(x+ 1) (Clear denominators)
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2x = x2 + x+ 3x+ 3 (F.O.I.L.)

2x = x2 + 4x+ 3 (Gather like terms)

0 = x2 + 2x+ 3 (Subtract 2x).

From here, we apply the Quadratic Formula

x =
−2±

√
22 − 4(1)(3)

2(1)
(Quadratic Formula)

=
−2±

√
−8

2
(Simplify)

=
−2± i

√
8

2
(Definition of i)

=
−2± i2

√
2

2
(Product Rule for Radicals)

= �2(−1± i
√
2)

�2
(Factor and reduce)

= −1± i
√
2.

We get two answers: x = −1 + i
√
2 and its conjugate x = −1−

i
√
2. Checking both of these answers reviews all of the salient

points about complex number arithmetic and is therefore strongly
encouraged.

2. Since we have three terms, and the exponent on one term (“4” on
t4) is exactly twice the exponent on the other (“2” on t2), we have
a “Quadratic in Disguise”. We proceed accordingly.

2t4 = 9t2 + 5

2t4 − 9t2 − 5 = 0 (Subtract 9t2 and 5)

(2t2 + 1)(t2 − 5) = 0 (Factor)

2t2 + 1 = 0 or t2 = 5 (Zero Product Property).

From 2t2 + 1 = 0 we get 2t2 = −1, or t2 = − 1
2 . We extract

square roots as follows:

t = ±
√
−1

2
= ±i

√
1

2
= ±i

√
1√
2
= ±i

1√
2
= ± i

√
2

2
,

where we have rationalized the denominator per convention.
From t2 = 5, we get t = ±

√
5. In total, we have four complex

solutions - two real: t = ±
√
5 and two non-real: t = ± i

√
2

2 .

3. To find the real solutions to z3 + 1 = 0, we can subtract the 1
from both sides and extract cube roots: z3 = −1, so z = 3

√
−1 =

−1. It turns out there are two more non-real complex number
solutions to this equation. To get at these, we factor:

z3 + 1 = 0

(z + 1)(z2 − z + 1) = 0 (Factor (Sum of Two Cubes))

z + 1 = 0 or z2 − z + 1 = 0.
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From z+1 = 0, we get our real solution z = −1. From z2−z+1 =
0, we apply the Quadratic Formula to get:

z =
−(−1)±

√
(−1)2 − 4(1)(1)

2(1)
=

1±
√
−3

2
=

1± i
√
3

2
.

Thus we get three solutions to z3 + 1 = 0 - one real: z = −1 and
two non-real: z = 1±i

√
3

2 . As always, the reader is encouraged to
test their algebraic mettle and check these solutions.

It is no coincidence that the non-real solutions to the equations in Exam-
ple 1.4.9 appear in complex conjugate pairs. Any time we use the Quadratic For-
mula to solve an equationwith real coefficients, the answers will form a complex
conjugate pair owing to the ± in the Quadratic Formula. This is stated formally
in the following theorem.

Theorem 1.4.10 Discriminant Theorem.

Given a Quadratic Equation AX2 + BX + C = 0, where A, B and
C are real numbers, letD = B2 − 4AC be the discriminant.

• IfD > 0, there are two distinct real number solutions to the equa-
tion.

• IfD = 0, there is one (repeated) real number solution.

Note: “Repeated” here comes from the fact that “both” solutions
−B±0
2A reduce to− B

2A .

• If D < 0, there are two non-real solutions which form a complex
conjugate pair.

Theorem 1.4.10 tells us that if ever we obtain non-real zeros to a quadratic
function with real coefficients, the zeros will be a complex conjugate pair. (Do
you see why?) Next, we note that in Example 1.4.6, part 6, we found (x − [1 +
2i])(x − [1 − 2i]) = x2 − 2x + 5. This demonstrates that the factor theorem
holds even for non-real zeros, i.e, x = 1 + 2i is a zero of f(x) = x2 − 2x + 5,
and, sure enough, (x− [1 + 2i]) is a factor of f(x). It turns out that polynomial
division works the same way for all complex numbers, real and non-real alike,
so the Factor and Remainder Theorems hold as well. But how do we know if a
general polynomial has any complex zeros at all? We have many examples of
polynomials with no real zeros. Can there be polynomials with no zeros whatso-
ever? The answer to that last question is “No.” and the theoremwhich provides
that answer is The Fundamental Theorem of Algebra.

Theorem 1.4.11 The Fundamental Theorem of Algebra.

If f is a polynomial function with complex number coefficients of de-
gree n ≥ 1, then f has at least one complex zero.

The Fundamental Theorem of Algebra is an example of an “existence” theo-
rem in mathematics. It guarantees the existence of at least one zero, but gives
us no algorithm to use in finding it. It took mathematicians literally hundreds
of years to prove the theorem in its full generality, and some of that history can
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be found by looking up the Fundamental Theorem onWikipedia¹. Note that the
Fundamental Theorem of Algebra applies to not only polynomial functions with
real coefficients, but to those with complex number coefficients as well.

The Fundamental Theoremof Algebra has since been provedmany times, us-
ing many different methods, by many mathematicians. There are probably very
few, if any, results in mathematics with the variety of proofs this result has. Un-
fortunately, none of the proofs can be understood within the realm of this text,
but if the reader is sufficiently interested, a collection of proofs can be found at
www.cut-the-knot.org/fta/analytic.shtml

Suppose f is a polynomial of degree n ≥ 1. The Fundamental Theorem
of Algebra guarantees us at least one complex zero, z1, and as such, the Fac-
tor Theorem guarantees that f(x) factors as f(x) = (x− z1) q1(x) for a poly-
nomial function q1, of degree exactly n − 1. If n − 1 ≥ 1, then the Funda-
mental Theorem of Algebra guarantees a complex zero of q1 as well, say z2, so
then the Factor Theorem gives us q1(x) = (x− z2) q2(x), and hence f(x) =
(x− z1) (x− z2) q2(x). We can continue this process exactly n times, at which
point our quotient polynomial qn has degree 0 so it’s a constant. This argument
gives us the following factorization theorem.

Theorem 1.4.12 Complex Factorization Theorem.

Suppose f is a polynomial functionwith complex number coefficients.
If the degree of f is n and n ≥ 1, then f has exactly n complex ze-
ros, counting multiplicity. If z1, z2, \ldots, zk are the distinct zeros of
f , with multiplicities m1, m2, \ldots, mk, respectively, then f(x) =
a (x− z1)

m1 (x− z2)
m2 · · · (x− zk)

mk .

¹en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://www.cut-the-knot.org/fta/analytic.shtml
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1.4.1 Exercises

Exercise Group. Use the given complex numbers z and w to find and simplify the following:

• z + w

• zw

• z2

•
1

z

•
z

w

•
w

z

• z

• zz

• (z)2

1. z = 2 + 3i, w = 4i 2. z = 1 + i, w = −i

3. z = i, w = −1 + 2i 4. z = 4i, w = 2− 2i

5. z = 3− 5i, w = 2 + 7i 6. z = −5 + i, w = 4 + 2i

7. z =
√
2− i

√
2, w =

√
2 + i

√
2 8. z = 1− i

√
3, w = −1− i

√
3

9. z =
1

2
+

√
3

2
i, w = −1

2
+

√
3

2
i 10. z = −

√
2

2
+

√
2

2
i, w = −

√
2

2
−

√
2

2
i

Exercise Group. Simplify the given quantity.
11.

√
−49 12.

√
−9

13.
√
−25

√
−4 14.

√
(−25)(−4)

15.
√
−9

√
−16 16.

√
(−9)(−16)

17.
√
−(−9) 18. −

√
(−9)

Exercise Group. We know that i2 = −1 which means i3 = i2 · i = (−1) · i = −i and i4 = i2 · i2 = (−1)(−1) = 1.
Use this information to simplify the given power of i.

19. i5 20. i6

21. i7 22. i8

23. i15 24. i26

25. i117 26. i304

Exercise Group. Find all complex solutions.
27. 3x2 + 6 = 4x 28. 15t2 + 2t+ 5 = 3t(t2 + 1)

29. 3y2 + 4 = y4 30.
2

1− w
= w

31.
y

3
− 3

y
= y 32.

x3

2x− 1
=

x

3

33. x =
2√
5− x

34.
5y4 + 1

y2 − 1
= 3y2

35. z4 = 16

36. Multiply and simplify:
(
x− [3− i

√
23]
) (

x− [3 + i
√
23]
)





Chapter 2

Vectors

This chapter introduces a new mathematical object, the vector. Defined in Sec-
tion 2.2, we will see that vectors provide a powerful language for describing
quantities that have magnitude and direction aspects. A simple example of
such a quantity is force: when applying a force, one is generally interested in
howmuch force is applied (i.e., the magnitude of the force) and the direction in
which the force was applied. Vectors will play an important role in many of the
subsequent chapters in this text.

Until the last sectionof this chap-
terwe’ll restrict ourselves to vec-
tors in twoand threedimensions
so thatwe’re able to understand
things visually. However, we’ll
also see that thealgebraicbehav-
iour of vectors is the same in any
dimension, including dimension
four or greater. The only thing
that changes is the number of co-
ordinates involved. This is one
of the great powers ofmathemat-
ics: we are aided by our visual
imagination, but not limited by
it.

This chapter begins with moving our mathematics out of the plane and into
“space.” That is, we begin to think mathematically not only in two dimensions,
but in three. With this foundation, we can explore vectors both in the plane and
in space.

2.1 Introduction to Cartesian Coordinates in Space

We reviewed the two-dimensional Cartesian Plane in Section 1.3. This is the
familiar background on which much of your high school mathematics played
out, and it provides the setting for the Calculus of one variable encountered
in an introductory calculus course.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple,P = (a, b, c),
where a, b and c represent the relative position of P along the x-, y- and z-axes,
respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2-dimensional medium. We cannot
draw three lines representing the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conventions exist for plotting
shapes in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y axis, then the extended thumb
will point in the direction of the positive z axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

29
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As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

Figure 2.1.1 Plotting the point P =
(2, 1, 3) in space

In Figure 2.1.1 we see the point P = (2, 1, 3) plotted on a set of axes. The
basic convention here is that the xy-plane is drawn in its standard way, with
the z-axis down to the left. The perspective is that the paper represents the xy-
plane and the positive z axis is coming up, off the page. This method is preferred
by many engineers. Because it can be hard to tell where a single point lies in
relation to all the axes, dashed lines have been added to let one see how far
along each axis the point lies.

One can also consider the xy-plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 2.1.2. The same point
P is drawn, again with dashed lines. This point of view is preferred by most
mathematicians, and is the convention adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y,
and z are positive is called the first octant. We do not name the other seven
octants in this text.

Figure 2.1.2 Plotting the point P =
(2, 1, 3) in space with a perspective
used in this text

2.1.1 Measuring Distances
It is of critical importance to know how to measure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 2.1.3 Distance In Space.

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The
distanceD between P andQ is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P andQ in space as PQ,
and refer to the length of this segment as

∥∥PQ
∥∥. The above distance formula

allows us to compute the length of this segment.

Example 2.1.4 Length of a line segment.

Let P = (1, 4,−1) and letQ = (2, 1, 1). Draw the line segment PQ
and find its length.
Solution. The points P and Q are plotted in Figure 2.1.5; no special
consideration need be made to draw the line segment connecting these
two points; simply connect them with a straight line. One cannot actu-
ally measure this line on the page and deduce anything meaningful; its
true lengthmust bemeasured analytically. Applying Definition 2.1.3, we
have∥∥PQ

∥∥ =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

Figure 2.1.5 Plotting points P and Q
in Example 2.1.4
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2.1.2 Introduction to Planes in Space
The coordinate axes naturally define three planes (shown in Figure 2.1.6), the
coordinate planes: the xy-plane, the yz-plane and the xz-plane. The xy-plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equation that describes this plane: z = 0. Likewise, the
xz-plane is all points where the y-value is 0, characterized by y = 0.

(a) (b) (c)

Figure 2.1.6 The xy-plane in (a), the yz-plane in (b) and the xz-plane in (c)

The equation x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the yz-coordinate plane, shown in Figure 2.1.7. Figure 2.1.7 The plane x = 2

Example 2.1.8 Regions defined by planes.

Sketch the region defined by the inequalities−1 ≤ y ≤ 2.
Solution. The region is all points between the planes y = −1 and y =
2. These planes are sketched in Figure 2.1.9, which are parallel to the
xz-plane. Thus the region extends infinitely in the x and z directions,
and is bounded by planes in the y direction.

Figure 2.1.9 Sketching the boundaries
of a region in Example 2.1.8
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2.1.3 Exercises

1. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1) form a triangle in space. Find the distances between
each pair of points and determine if the triangle is a right triangle.∥∥AB∥∥ =∥∥BC

∥∥ =∥∥CA
∥∥ =

The three points (□ ? □ do □ do not) form a right triangle.
2. The pointsA = (1, 1, 3),B = (3, 2, 7), C = (2, 0, 8) andD = (0,−1, 4) form a quadrilateralABCD in space.

Is this a parallelogram?

Exercise Group. In the following exercises, describe the region in space defined by the inequalities.
3. 0 ≤ x ≤ 3 4. x ≥ 0, y ≥ 0, z ≥ 0

5. y ≥ 3
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2.2 An Introduction to Vectors

Many quantities we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster often describes wind with its speed and its direction (“. . .
with winds from the southeast gusting up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direction of that force. In
both of these examples, direction is important. Because of this, we study vectors,
mathematical objects that convey both magnitude and direction information.

One “bare-bones” definition of a vector is based on what we wrote above:
“a vector is a mathematical object with magnitude and direction parameters.”
This definition leaves much to be desired, as it gives no indication as to how
such an object is to be used. Several other definitions exist; we choose here a
definition rooted in a geometric visualization of vectors. It is very simplistic but
readily permits further investigation.

Definition 2.2.1 Vector.

A vector is a directed line segment.
Given points P and Q (either in the plane or in space), we denote

with
−−→
PQ the vector from P to Q. The point P is said to be the initial

point of the vector, and the pointQ is the terminal point.
The magnitude, length or norm of

−−→
PQ is the length of the line seg-

ment PQ:
∥∥∥−−→PQ

∥∥∥ =
∥∥PQ

∥∥.
Two vectors are equal if they have the samemagnitude and direction.

Figure 2.2.2 shows multiple instances of the same vector. Each directed line
segment has the same direction and length (magnitude), hence each is the same
vector.
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Figure 2.2.2 Drawing the same vector
with different initial points

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.
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Figure 2.2.3 Illustrating how equal
vectors have the same displacement

Consider the vectors
−−→
PQ and

−→
RS as shown in Figure 2.2.3. The vectors look

to be equal; that is, they seem to have the same length and direction. Indeed,
they are. Both vectors move 2 units to the right and 1 unit up from the initial
point to reach the terminal point. One can analyze this movement to measure
the magnitude of the vector, and the movement itself gives direction informa-
tion (one could also measure the slope of the line passing through P and Q or
R and S). Since they have the same length and direction, these two vectors are
equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z directions the terminal point is from the initial
point. Both the vectors

−−→
PQ and

−→
RS in Figure 2.2.3 have an x-displacement of

2 and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the initial point is the origin, (0, 0). This
leads us to a definition of a standard and concise way of referring to vectors.

Definition 2.2.4 Component Form of a Vector.

1. The component form of a vector v⃗ in R2, whose terminal point is
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(a, b) when its initial point is (0, 0), is
[
a

b

]
.

2. The component form of a vector v⃗ in R3, whose terminal point is

(a, b, c) when its initial point is (0, 0, 0), is

ab
c

.
The numbers a, b (and c, respectively) are the components of v⃗.

It follows from the definition that the component form of the vector
−−→
PQ,

where P = (x1, y1) andQ = (x2, y2) is

−−→
PQ =

[
x2 − x1

y2 − y1

]
;

in space, where P = (x1, y1, z1) andQ = (x2, y2, z2), the component form of
−−→
PQ is

−−→
PQ =

x2 − x1

y2 − y1
z2 − z1

 .

The component form of a vec-
tor allows us to identify a point
(a, b) (or (a, b, c)) with the corre-

sponding vec- tor
[
a

b

]
(or

ab
c

),
so that vectors and points con-
tain essentially the same informa-
tion, presented in different con-
texts. This iswhymathematicians
don’tmindusing thenotationRn

to refer to both a set of vectors
and the set of points containing
those vectors.

We practice using this notation in the following example.

Example 2.2.5 Using component form notation for vectors.

1. Sketch the vector v⃗ =

[
2

−1

]
starting at P = (3, 2) and find its

magnitude.

2. Find the component form of the vector w⃗ whose initial point is
R = (−3,−2) and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ =

 2

−1

3

 starting at the point Q = (1, 1, 1)

and find its magnitude.

Solution.

1. Using P as the initial point, we move 2 units in the positive x-
direction and −1 units in the positive y-direction to arrive at the
terminal point P ′ = (5, 1), as drawn in Figure 2.2.6(a). The mag-
nitude of v⃗ is determined directly from the component form:

∥v⃗∥ =
√
22 + (−1)2 =

√
5.
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Figure 2.2.6 Graphing vectors in Example 2.2.5

2. Using the note following Definition 2.2.4, we have

−→
RS =

[
−1− (−3)

2− (−2)

]
=

[
2

4

]
.

One can readily see from Figure 2.2.6(a) that the x- and y-
displacement of

−→
RS is 2 and 4, respectively, as the component

form suggests.

3. Using Q as the initial point, we move 2 units in the positive x-
direction, −1 unit in the positive y-direction, and 3 units in the
positive z-direction to arrive at the terminal point Q′ = (3, 0, 4),
illustrated in Figure 2.2.6(b). The magnitude of u⃗ is:

∥u⃗∥ =
√
22 + (−1)2 + 32 =

√
14.

Now thatwehave defined vectors, and have created a nice notationbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

In this section we restrict our-
selves to vectors in twoand three
dimensions, since our ability to
visualize is limited to these dimen-
sions. However, our ability towork
with vectors algebraically extends
to anynumber of dimensions. For
a general treatment of vectors in
Rn , see Section 2.7.

Definition 2.2.7 Vector Algebra.

1. Let u⃗ =

[
u1

u2

]
and v⃗ =

[
v1
v2

]
be vectors inR2, and let c be a scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ =

[
u1 + v1
u2 + v2

]
.

(b) The multiplication of a scalar c and a vector v⃗ is the vector

cv⃗ = c

[
v1
v2

]
=

[
cv1
cv2

]
.

2. Let u⃗ =

u1

u2

u3

 and v⃗ =

v1v2
v3

 be vectors in R3, and let c be a

scalar.
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(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ =

u1 + v1
u2 + v2
u3 + v3

 .
(b) The multiplication of a scalar c and a vector v⃗ is the vector

cv⃗ = c

v1v2
v3

 =

cv1cv2
cv3

 .
In short, we say addition and scalarmultiplication are computed “component-

wise.”

Example 2.2.8 Adding vectors.

Sketch the vectors u⃗ =

[
1

3

]
, v⃗ =

[
2

1

]
and u⃗+ v⃗ all with initial point

at the origin.
Solution. We first compute u⃗+ v⃗.

u⃗+ v⃗ =

[
1

3

]
+

[
2

1

]
=

[
3

4

]
.

u⃗

v⃗

u⃗
+
v⃗
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Figure 2.2.9 Graphing the sum of vec-
tors in Example 2.2.8

These are all sketched in Figure 2.2.9.

As vectors convey magnitude and direction information, the sum of vectors
also convey length and magnitude information. Adding u⃗ + v⃗ suggests the fol-
lowing idea-

“Starting at an initial point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure 2.2.10, where the initial point of v⃗ is the terminal
point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addition is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acting on a body, the sum u⃗ + v⃗ gives the resulting force. Because of various
physical applications of vector addition, the sum u⃗+ v⃗ is often referred to as the
resultant vector, or just the “resultant.”
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Figure 2.2.10 Illustrating how to add
vectors using the Head to Tail Rule
and Parallelogram Law

Analytically, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 2.2.10 also gives a
graphical representation of this, using gray vectors. Note that the vectors u⃗ and
v⃗, when arranged as in the figure, form a parallelogram. Because of this, the
Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗ + v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the initial
point of u⃗ + v⃗ is the common initial point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properties of the real numbers and Definition 2.2.7 that

u⃗− v⃗ = u⃗+ (−1)v⃗.
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The Parallelogram Law gives us a good way to visualize this subtraction. We
demonstrate this in the following example.

Example 2.2.11 Vector Subtraction.

Let u⃗ =

[
3

1

]
and v⃗ =

[
1

2

]
. Compute and sketch u⃗− v⃗.

Solution. The computation of u⃗− v⃗ is straightforward, andwe show all
steps below. Usually the formal step of multiplying by (−1) is omitted
and we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)v⃗

=

[
3

1

]
+

[
−1

−2

]
=

[
2

−1

]
.

u⃗

v⃗

u⃗− v⃗ −v⃗

u⃗− v⃗
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Figure 2.2.12 Illustrating how to sub-
tract vectors graphically

Figure 2.2.12 illustrates, using the Head to Tail Rule, how the subtrac-
tion can be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how
u⃗− v⃗ can be obtained by looking only at the terminal points of u⃗ and v⃗
(when their initial points are the same).

Example 2.2.13 Scaling vectors.

1. Sketch the vectors v⃗ =

[
2

1

]
and 2v⃗ with initial point at the origin.

2. Compute the magnitudes of v⃗ and 2v⃗.

Solution.

1. We compute 2v⃗:

2v⃗ = 2

[
2

1

]
=

[
4

2

]
. 2v⃗

v⃗

1 2 3 4
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Figure 2.2.14 Graphing vectors v⃗ and
2v⃗ in Example 2.2.13

Both v⃗ and 2v⃗ are sketched in Figure 2.2.14. Make note that 2v⃗
does not start at the terminal point of v⃗; rather, its initial point is
also the origin.

2. The figure suggests that 2v⃗ is twice as long as v⃗. We compute their
magnitudes to confirm this.

∥v⃗∥ =
√
22 + 12

=
√
5.

∥2v⃗∥ =
√
42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2v⃗ is twice as long as v⃗.
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Scalar multiplication of a vector v⃗ produces a new vector that is in the same
(or opposite) direction, but of a possibly different length. This leads us to the
following definition.

Definition 2.2.15 Parallel Vectors.

We say that a vector w⃗ is parallel to a vector v⃗ if there exists a scalar
c such that w⃗ = cv⃗.

The zero vector is the vector whose initial point is also its terminal point. It

is denoted by 0⃗. Its component form, in R2, is
[
0

0

]
; in R3, it is

00
0

. Usually the
context makes is clear whether 0⃗ is referring to a vector in the plane or in space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to multiply vectors by a scalar. The following the-
orem states formally the properties of these operations.

Theorem 2.2.16 Properties of Vector Operations.

The following are true for all scalars c and d, and for all vectors u⃗, v⃗
and w⃗, where u⃗, v⃗ and w⃗ are all inR2 or where u⃗, v⃗ and w⃗ are all inR3:

1. u⃗+ v⃗ = v⃗ + u⃗ Commutative Property

2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) Associative Property

3. v⃗ + 0⃗ = v⃗ Additive Identity

4. (cd)v⃗ = c(dv⃗)

5. c(u⃗+ v⃗) = cu⃗+ cv⃗ Distributive Property

6. (c+ d)v⃗ = cv⃗ + dv⃗ Distributive Property

7. 0v⃗ = 0⃗

8. ∥cv⃗∥ = |c| · ∥v⃗∥

9. ∥u⃗∥ = 0 if, and only if, u⃗ = 0⃗.

As stated before, each nonzero vector v⃗ conveys magnitude and direction
information. We have a method of extracting the magnitude, which we write as
∥v⃗∥. Unit vectors are a way of extracting just the direction information from a
vector.

Definition 2.2.17 Unit Vector.

A unit vector is a vector v⃗ with a magnitude of 1; that is,

∥v⃗∥ = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a
vector of length 10 in the direction of v⃗. How does one do that? If we knew that
u⃗ was the unit vector in the direction of v⃗, the answer would be easy: 10u⃗. So
how do we find u⃗ ?
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Property 8 of Theorem 2.2.16 holds the key. If we divide v⃗ by its magnitude,
it becomes a vector of length 1. Consider:∥∥∥∥ 1

∥v⃗∥
v⃗

∥∥∥∥ =
1

∥v⃗∥
∥v⃗∥ (we can pull out

1

∥v⃗∥
as it is a positive scalar)

= 1.

So the vector of length 10 in the direction of v⃗ is 10
1

∥v⃗∥
v⃗. An example will

make this more clear.

Example 2.2.18 Using Unit Vectors.

Let v⃗ =

[
3

1

]
and let w⃗ =

[
1

2, 2

]
.

1. Find the unit vector in the direction of v⃗.

2. Find the unit vector in the direction of w⃗.

3. Find the vector in the direction of v⃗ with magnitude 5.

Solution.

1. We find ∥v⃗∥ =
√
10. So the unit vector u⃗ in the direction of v⃗ is

u⃗ =
1√
10

v⃗ =

[
3√
10
1√
10

]
.

2. We find ∥w⃗∥ = 3, so the unit vector z⃗ in the direction of w⃗ is

u⃗ =
1

3
w⃗ =

 1
3
2
3
2
3

 .
3. To create a vector with magnitude 5 in the direction of v⃗, we mul-

tiply the unit vector u⃗ by 5. Thus 5u⃗ =

[
15/

√
10

5/
√
10

]
is the vector

we seek. This is sketched in Figure 2.2.19.

5u⃗

v⃗

u⃗

1 2 3 4 5
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Figure 2.2.19 Graphing vectors in Ex-
ample 2.2.18. All vectors shown have
their initial point at the origin

The basic formation of the unit vector u⃗ in the direction of a vector v⃗ leads
to a interesting equation. It is:

v⃗ = ∥v⃗∥ 1

∥v⃗∥
v⃗.

We rewrite the equation with parentheses to make a point:

v⃗ = ∥v⃗∥︸︷︷︸
magnitude

·
(

1

∥v⃗∥
v⃗

)
︸ ︷︷ ︸
direction

.

This equation illustrates the fact that a nonzero vector has both magnitude
and direction, where we view a unit vector as supplying only direction informa-
tion.

Direction and the zero vector. 0⃗
is directionless; because

∥∥∥0⃗∥∥∥ =

0, there is no unit vector in the
“direction” of 0⃗.

Some texts define twovectors
as being parallel if one is a scalar
multiple of the other. By this de-
finition, 0⃗ is parallel to all vectors
as 0⃗ = 0v⃗ for all v⃗.

We define what it means for
two vectors to be perpendicular
inDefinition2.3.11, which iswrit-
ten to exclude 0⃗. It could bewrit-
ten to include 0⃗; by such a defi-
nition, 0⃗ is perpendicular to all
vectors. While counter-intuitive,
it is mathematically sound to al-
low 0⃗ to be both parallel and per-
pendicular to all vectors.

Weprefer the givendefinition
of parallel as it is grounded in the
fact that unit vectors provide di-
rection information. Onemay adopt
the convention that 0⃗ is parallel
to all vectors if they desire. (See
also the aside in Section 2.4.)
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If one graphed all unit vectors in R2 with the initial point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is
[
cos(θ)
sin(θ)

]
for some angle θ.

A similar construction inR3 shows that the terminal points all lie on the unit
sphere. These vectors also have a particular component form, but its derivation
is not as straightforward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 2.2.20 Unit Vectors.

1. The unit vector in the direction of a nonzero vector v⃗ is

u⃗ =
1

∥v⃗∥
v⃗.

2. A vector u⃗ inR2 is a unit vector if, and only if, its component form

is
[
cos θ
sin θ

]
for some angle θ.

3. A vector u⃗ inR3 is a unit vector if, and only if, its component form

is

sin(θ) cos(φ)sin(θ) sin(φ)
cos(θ)

 for some angles θ and φ.
These formulas can come in handy in a variety of situations, especially the

formula for unit vectors in the plane.

Example 2.2.21 Finding Component Forces.

Consider a weight of 50lb hanging from two chains, as shown in Fig-
ure 2.2.22. One chain makes an angle of 30◦ with the vertical, and the
other an angle of 45◦. Find the force applied to each chain.

50lb

45◦
30◦

Figure 2.2.22 A diagram of a weight
hanging from 2 chains in Exam-
ple 2.2.21

Solution. Knowing that gravity is pulling the 50lbweight straight down,
we can create a vector F⃗ to represent this force.

F⃗ = 50

[
0

−1

]
=

[
0

−50

]
.

We can vieweach chain as “pulling” theweight up, preventing it from
falling. We can represent the force from each chain with a vector. Let
F⃗1 represent the force from the chain making an angle of 30◦ with the
vertical, and let F⃗2 represent the force form the other chain. Convert all
angles to be measured from the horizontal (as shown in Figure 2.2.23),
and apply Key Idea 2.2.20. As we do not yet know the magnitudes of
these vectors, (that is the problem at hand), we usem1 andm2 to rep-
resent them.

F⃗1 = m1

[
cos(120◦)
sin(120◦)

]
F⃗2 = m2

[
cos(45◦)
sin(45◦)

]
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As the weight is not moving, we know the sum of the forces is 0⃗. This
gives:

F⃗ + F⃗1 + F⃗2 = 0⃗[
0

−50

]
+m1

[
cos(120◦)
sin(120◦)

]
+m2

[
cos(45◦)
sin(45◦)

]
= 0⃗

F⃗1 F⃗2

F⃗

120◦ 45◦

Figure 2.2.23 A diagram of the force
vectors from Example 2.2.21

The sumof the entries in the first component is 0, and the sumof the
entries in the second component is also 0. This leads us to the following
two equations:

m1 cos(120◦) +m2 cos(45◦) = 0

m1 sin(120◦) +m2 sin(45◦) = 50

This is a simple 2-equation, 2-unknown system of linear equations.
We leave it to the reader to verify that the solution is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1 +
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains
is more than 50lb. We leave it to a physics class to discuss the full de-
tails, but offer this short explanation. Our equations were established so
that the vertical components of each force sums to 50lb, thus support-
ing the weight. Since the chains are at an angle, they also pull against
each other, creating an “additional” horizontal force while holding the
weight in place.

Unit vectorswere very important in the previous calculation; they allowed us
to define a vector in the proper direction but with an unknown magnitude. Our
computationswere then computed component-wise. Because such calculations
are often necessary, the standard unit vectors can be useful.

Definition 2.2.24 Standard Unit Vectors.

1. In R2, the standard unit vectors are

i⃗ =

[
1

0

]
and j⃗ =

[
0

1

]
.

2. In R3, the standard unit vectors are

i⃗ =

10
0

 and j⃗ =

01
0

 and k⃗ =

00
1

 .

Example 2.2.25 Using standard unit vectors.

1. Rewrite v⃗ =

[
2

−3

]
using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j + 2k⃗ in component form.
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Solution.

1.

v⃗ =

[
2

−3

]
=

[
2

0

]
+

[
0

−3

]
= 2

[
1

0

]
− 3

[
0

1

]
= 2⃗i− 3⃗j

2.

w⃗ = 4⃗i− 5⃗j + 2k⃗

=

40
0

+

 0

−5

0

+

00
2


=

 4

−5

2


These two examples demonstrate that converting between compo-

nent form and the standard unit vectors is rather straightforward. Many
mathematicians prefer component form, and it is the preferred notation
in this text. Many engineers prefer using the standard unit vectors, and
many engineering text use that notation.

The algebra we have applied to vectors is already demonstrating itself to be
very useful. There are two more fundamental operations we can perform with
vectors, the dot product and the cross product. The next two sections explore
each in turn.
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2.2.1 Exercises

Exercise Group. In the following exercises, points P and Q are given. Write the vector
−−→
PQ in component form and

using the standard unit vectors.
1. If P = (2,−1) andQ = (3, 5), write the vector

−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

2. If P = (3, 2) andQ = (7,−2), write the vector
−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.
3. If P = (0, 3,−1) andQ = (6, 2, 5), write the

vector
−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

4. If P = (2, 1, 2) andQ = (4, 3, 2), write the
vector

−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

5. Let u⃗ =

[
1

−2

]
and v⃗ =

[
1

1

]
.

(a) Find u⃗+ v⃗, u⃗− v⃗, 2u⃗− 3v⃗.

(b) Sketch the above vectors on the same axes, along with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2v⃗ − x⃗.

6. Let u⃗ =

 1

1

−1

 and v⃗ =

21
2

.
(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−

√
2v⃗.

(b) Sketch the above vectors on the same axes, along with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗ + 2x⃗.

Exercise Group. In the following exercises, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same axes.
7.

u⃗

v⃗

x

y
8.

u⃗

v⃗

x

y
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9.

u⃗

v⃗

x y

z

10.

u⃗

v⃗x y

z

Exercise Group. In the following exercises, find ∥u⃗∥, ∥v⃗∥, ∥u⃗+ v⃗∥ and ∥u⃗− v⃗∥.

11. u⃗ =

[
2

1

]
, v⃗ =

[
3

−2

]
.

12. u⃗ =

−3

2

2

 , v⃗ =

 1

−1

1

 .
13. u⃗ =

[
1

2

]
, v⃗ =

[
−3

−6

]
.

14. u⃗ =

 2

−3

6

 , v⃗ =

 10

−15

30

 .
15. Under what conditions is ∥u⃗∥+ ∥v⃗∥ = ∥u⃗+ v⃗∥?

Exercise Group. In the following exercises, find the unit vector u⃗ in the direction of v⃗.
16. Find the unit vector u⃗ in the direction of

v⃗ =

[
3

7

]
.

17. Find the unit vector u⃗ in the direction of

v⃗ =

[
6

8

]
.

18. Find the unit vector u⃗ in the direction of

v⃗ =

 1

−2

2

 .
19. Find the unit vector u⃗ in the direction of

v⃗ =

 2

−2

2

 .
20. Find the unit vector in the first quadrant of R2 that makes a 50◦ angle with the x-axis.

21. Find the unit vector in the second quadrant of R2 that makes a 30◦ angle with the y-axis.
22. Verify, from Key Idea 2.2.20, that

u⃗ =

sin(θ) cos(φ)sin(θ) sin(φ)
cos(θ)


is a unit vector for all angles θ and φ.
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2.3 The Dot Product

The previous section introduced vectors and described how to add them to-
gether and how to multiply them by scalars. This section introduces a multi-
plication on vectors called the dot product.

Definition 2.3.1 Dot Product.

1. Let u⃗ =

[
u1

u2

]
and v⃗ =

[
v1
v2

]
in R2. The dot product of u⃗ and v⃗,

denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ =

u1

u2

u3

 and v⃗ =

v1v2
v3

 in R3. The dot product of u⃗ and v⃗,

denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
practice evaluating a dot product in the following example, then we will discuss
why this product is useful.

Example 2.3.2 Evaluating dot products.

1. Let u⃗ =

[
1

2

]
, v⃗ =

[
3

−1

]
in R2. Find u⃗ · v⃗.

2. Let x⃗ =

 2

−2

5

 and y⃗ =

−1

0

3

 in R3. Find x⃗ · y⃗.

Solution.

1. Using Definition 2.3.1, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definition, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definition gives no hint as to why
we would care about this operation, there is an amazing connection between
the dot product and angles formed by the vectors. Before stating this connec-
tion, we give a theorem stating some of the properties of the dot product.



46 CHAPTER 2. VECTORS

Theorem 2.3.3 Properties of the Dot Product.

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ {Commutative Property}

2. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ {Distributive Property}

3. c(u⃗ · v⃗) = (cu⃗) · v⃗ = u⃗ · (cv⃗)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = ∥v⃗∥2

The last statement of the theorem makes a handy connection between the
magnitude of a vector and the dot product with itself. Our definition and theo-
rem give properties of the dot product, but we are still likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecting the dot product
to magnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is
clearly formed when u⃗ and v⃗ are drawn with the same initial point as illustrated
in Figure 2.3.4(a). (We always take θ to be the angle in [0, π] as two angles are
actually created.)

u⃗

v⃗

θ

(a) (b)

Figure 2.3.4 Illustrating the angle formed by two vectors with the same initial
point

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with the
same initial point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle θ between them (and again, 0 ≤ θ ≤ π). This
is illustrated in Figure 2.3.4(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Theorem 2.3.5 The Dot Product and Angles.

Let u⃗ and v⃗ be nonzero vectors in R2 or R3. Then

u⃗ · v⃗ = ∥u⃗∥ ∥v⃗∥ cos(θ),
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where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Using Theorem 2.3.3, we can rewrite this theorem as
u⃗

∥u⃗∥
· v⃗

∥v⃗∥
= cos(θ).

Note how on the left hand side of the equation, we are computing the dot
product of two unit vectors. Recalling that unit vectors essentially only provide
direction information, we can informally restate Theorem 2.3.5 as saying “The
dot product of two directions gives the cosine of the angle between them.”

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos(θ) is positive; when
θ = π/2, cos(θ) = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos(θ) is
negative. Thus the sign of the dot product gives a general indication of the angle
between the vectors, illustrated in Figure 2.3.6.

u⃗ · v⃗ > 0
u⃗

v⃗

θ

u⃗ · v⃗ = 0
u⃗

v⃗

θ = π/2

u⃗ · v⃗ < 0
u⃗

v⃗

θ

Figure 2.3.6 Illustrating the relationship between the angle between vectors and
the sign of their dot product

We can use Theorem 2.3.5 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equation
as

cos(θ) =
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥
⇔ θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
.

We practice using this theorem in the following example.

Example 2.3.7 Using the dot product to find angles.

Let u⃗ =

[
3

1

]
, v⃗ =

[
−2

6

]
and w⃗ =

[
−4

3

]
, as shown in Figure 2.3.8.

Find the angles α, β and θ.
u⃗

v⃗

w⃗

αβ

θ

−4 −2 2 4

2

4

6

x

y

Figure 2.3.8 Vectors used in Exam-
ple 2.3.7

Solution. We start by computing the magnitude of each vector.

∥u⃗∥ =
√
10; ∥v⃗∥ = 2

√
10; ∥w⃗∥ = 5.

We now apply Theorem 2.3.5 to find the angles.

α = cos−1

(
u⃗ · v⃗

(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1

(
v⃗ · w⃗

(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.
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θ = cos−1

(
u⃗ · w⃗

(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

We see from our computation that α + β = θ, as indicated by Figure 2.3.8.
While we knew this should be the case, it is nice to see that this non-intuitive
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example 2.3.9 Using the dot product to find angles.

Let u⃗ =

11
1

, v⃗ =

−1

3

−2

 and w⃗ =

−5

1

4

, as illustrated in Fig-
ure 2.3.10. Find the angle between each pair of vectors.

Figure 2.3.10 Vectors used in Exam-
ple 2.3.9

Solution.

1. Between u⃗ and v⃗:

θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
= cos−1

(
0√

3
√
14

)
=

π

2
.

2. Between u⃗ and w⃗:

θ = cos−1

(
u⃗ · w⃗

∥u⃗∥ ∥w⃗∥

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1

(
v⃗ · w⃗

∥v⃗∥ ∥w⃗∥

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these
angles looks to be a right angle in Figure 2.3.10. Such is the case when
drawing three-dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. Notice the common
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feature in each calculation (and also the calculation of α in Example 2.3.7): the
dot products of each pair of angles was 0. We use this as a basis for a definition
of the term orthogonal, which is essentially synonymous to perpendicular.

Note: the termperpendicular orig-
inally referred to lines. As math-
ematics progressed, the concept
of “being at right angles”was ap-
plied to other objects, such as vec-
tors and planes, and the term or-
thogonal was introduced. It is
especially used when discussing
objects that are hard, or impos-
sible, to visualize. Two vectors in
5-dimensional space are orthog-
onal if their dot product is 0. It
is not wrong to say that they are
perpendicular, but commoncon-
vention gives preference to the
word orthogonal.

Also note thatDefinition2.3.11
makes sense if u⃗ or v⃗ is the zero
vector, but this is not the case
for the usual use of thewordper-
pendicular.

Definition 2.3.11 Orthogonal.

Nonzero vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

Example 2.3.12 Finding orthogonal vectors.

Let u⃗ =

[
3

5

]
and v⃗ =

[
1

2, 3

]
.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non-parallel vectors in R3 that are orthogonal to v⃗.

Solution.

1. Recall that a line perpendicular to a line with slope m has slope
−1/m, the “opposite reciprocal slope.” We can think of the slope
of u⃗ as 5/3, its “rise over run.” A vector orthogonal to u⃗ will have
slope−3/5. There are many such choices, though all parallel:[

−5

3

]
or
[
5

−3

]
or
[
−10

6

]
or
[
15

−9

]
, etc.

2. There are infinitely many directions in space orthogonal to any
given direction, so there are an infinite number of non-parallel
vectors orthogonal to v⃗. Since there are so many, we have great
leeway in finding some. Oneway is to arbitrarily pick values for the
first two components, leaving the third unknown. For instance, let

v⃗1 =

27
z

. If v⃗1 is to be orthogonal to v⃗, then v⃗1 · v⃗ = 0, so

2 + 14 + 3z = 0 ⇒ z =
−16

3
.

So v⃗1 =

 2

7

−16/3

 is orthogonal to v⃗. We can apply a similar tech-
niqueby leaving the first or second component unknown. Another
method of finding a vector orthogonal to v⃗mirrors what we did in

part 1. Let v⃗2 =

−2

1

0

. Here we switched the first two compo-
nents of v⃗, changing the sign of one of them (similar to the “oppo-
site reciprocal” concept before). Letting the third component be 0
effectively ignores the third component of v⃗, and it is easy to see
that

v⃗2 · v⃗ =

−2

1

0

 ·

12
3

 = 0.

Clearly v⃗1 and v⃗2 are not parallel.
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An important construction is illustrated in Figure 2.3.13, where vectors u⃗ and
v⃗ are sketched. In Figure 2.3.13(a), a dotted line is drawn from the tip of u⃗ to the
line containing v⃗, where the dotted line is orthogonal to v⃗. In Figure 2.3.13(b),
the dotted line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is
clear by the diagram that u⃗ = w⃗+ z⃗. What is important about this construction
is this: u⃗ is decomposed as the sum of two vectors, one of which is parallel to v⃗
and one that is perpendicular to v⃗. It is hard to overstate the importance of this
construction (as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 2.3.13(b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

∥w⃗∥ = ∥u⃗∥ cos(θ). (2.3.1)

v⃗

u⃗

θ

(a)

v⃗

u⃗

w⃗

z⃗

θ

(b)

Figure 2.3.13 Developing the construction of the orthogonal projection

We also know that w⃗ is parallel to to v⃗ ; that is, the direction of w⃗ is the
direction of v⃗, described by the unit vector v⃗/ ∥v⃗∥. The vector w⃗ is the vector in
the direction v⃗/ ∥v⃗∥ with magnitude ∥u⃗∥ cos(θ):

w⃗ =
(
∥u⃗∥ cos(θ)

) 1

∥v⃗∥
v⃗

=

(
∥u⃗∥ u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
1

∥v⃗∥
v⃗ (Replacing cos(θ) using Theorem 2.3.5)

=
u⃗ · v⃗
∥v⃗∥2

v⃗

=
u⃗ · v⃗
v⃗ · v⃗ v⃗ (Applying Theorem 2.3.3).

Since this construction is so important, it is given a special name.

Definition 2.3.14 Orthogonal Projection.

Let nonzero vectors u⃗ and v⃗ be given. The orthogonal projection of
u⃗ onto v⃗, denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗ v⃗.

Example 2.3.15 Computing the orthogonal projection.

1. Let u⃗ =

[
−2

1

]
and v⃗ =

[
3

1

]
. Find proj v⃗ u⃗, and sketch all three

vectors with initial points at the origin.
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2. Let w⃗ =

21
3

 and x⃗ =

11
1

. Find proj x⃗ w⃗, and sketch all three

vectors with initial points at the origin.

Solution.

1. Applying Definition 2.3.14, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗ v⃗

=
−5

10

[
3

1

]
=

[
− 3

2

− 1
2

]
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 2.3.16. Note how
the projection is parallel to v⃗; that is, it lies on the same line
through the origin as v⃗, although it points in the opposite direc-
tion. That is because the angle between u⃗ and v⃗ is obtuse (i.e.,
greater than 90◦).

u⃗ v⃗

proj v⃗ u⃗
−2 −1 1 2 3

1

2

−1

−2

x

y

Figure 2.3.16 Sketching the three vec-
tors in Part 1 of Example 2.3.15

2. Apply the definition:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗ x⃗

=
6

3

11
1


=

22
2

 .
These vectors are sketched in Figure 2.3.17(a), and again in Fig-
ure 2.3.17(b) from a different perspective. Because of the nature
of graphing these vectors, the sketch in Figure 2.3.17(a) makes it
difficult to recognize that the drawn projection has the geomet-
ric properties it should. The graph shown in Figure 2.3.17(b) illus-
trates these properties better.

(a) (b)

Figure 2.3.17 Sketching the three vectors in Part 2 of Exam-
ple 2.3.15
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We can use the properties of the dot product found in Theorem 2.3.3 to
rearrange the formula found in Definition 2.3.14:

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗ v⃗

=
u⃗ · v⃗
∥v⃗∥2

v⃗

=

(
u⃗ · v⃗

∥v⃗∥

)
v⃗

∥v⃗∥
.

The above formula shows that the orthogonal projection of u⃗ onto v⃗ is only
concerned with the direction of v⃗, as both instances of v⃗ in the formula come in
the form v⃗/ ∥v⃗∥, the unit vector in the direction of v⃗.

A special case of orthogonal projection occurs when v⃗ is a unit vector. In this
situation, the formula for the orthogonal projection of a vector u⃗ onto v⃗ reduces
to just proj v⃗ u⃗ = (u⃗ · v⃗)v⃗, as v⃗ · v⃗ = 1.

This gives us a newunderstanding of the dot product. When v⃗ is a unit vector,
essentially providing only direction information, the dot product of u⃗ and v⃗ gives
“how much of u⃗ is in the direction of v⃗.” This use of the dot product will be very
useful in future sections.v⃗

u⃗

proj v⃗ u⃗

z⃗

Figure 2.3.18 Illustrating the orthogo-
nal projection

Now consider Figure 2.3.18 where the concept of the orthogonal projection
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (2.3.2)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite Equation (2.3.2) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (u⃗− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (Notation
note: the expression “∥ y⃗” means “is parallel to y⃗.” We can use this notation to
state “x⃗ ∥ y⃗” which means “x⃗ is parallel to y⃗.” The expression “⊥ y⃗” means “is
orthogonal to y⃗,” and is used similarly.)

Key Idea 2.3.19 Orthogonal Decomposition of Vectors.

Let nonzero vectors u⃗ and v⃗ be given. Then u⃗ can be written as the
sum of two vectors, one of which is parallel to v⃗, and one of which is
orthogonal to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (u⃗− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 2.3.20 Orthogonal decomposition of vectors.

1. Let u⃗ =

[
−2

1

]
and v⃗ =

[
3

1

]
as in Example 2.3.15. Decompose u⃗

as the sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.
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2. Let w⃗ =

21
3

 and x⃗ =

11
1

 as in Example 2.3.15. Decompose w⃗
as the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

Solution.

1. In Example 2.3.15, we found that proj v⃗ u⃗ =

[
−1.5

−0.5

]
. Let

z⃗ = u⃗− proj v⃗ u⃗ =

[
−2

1

]
−
[
−1.5

−0.5

]
=

[
−0.5

1.5

]
.

Is z⃗ orthogonal to v⃗ ? (i.e., is z⃗ ⊥ v⃗ ?) We check for orthogonality
with the dot product:

z⃗ · v⃗ =

[
−0.5

1.5

]
·
[
3

1

]
= 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (u⃗− proj v⃗ u⃗)[
−2

1

]
=

[
−1.5

−0.5

]
︸ ︷︷ ︸

∥ v⃗

+

[
−0.5

1.5

]
︸ ︷︷ ︸

⊥ v⃗

.

2. We found in Example 2.3.15 that proj x⃗ w⃗ =

22
2

. Applying the
Key Idea, we have:

z⃗ = w⃗ − proj x⃗ w⃗ =

21
3

−

22
2

 =

 0

−1

1

 .
We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ =

 0

−1

1

 ·

11
1

 = 0.

Since the dot product is 0, we know the two vectors are orthogo-
nal. We now write w⃗ as the sum of two vectors, one parallel and
one orthogonal to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗ − proj x⃗ w⃗)21
3

 =

22
2


︸︷︷︸
∥ x⃗

+

 0

−1

1


︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposition is useful.
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Example 2.3.21 Orthogonally decomposing a force vector.

Consider Figure 2.3.22(a), showing a box weighing 50lb on a ramp
that rises 5ft over a span of 20ft. Find the components of force, and
their magnitudes, acting on the box (as sketched in Figure 2.3.22(b)):

5

20

r⃗

g⃗

(a)

5

20

r⃗

g⃗

z⃗

proj r⃗ g⃗

(b)

Figure 2.3.22 Sketching the ramp and box in Example 2.3.21. Note: The
vectors are not drawn to scale.

1. in the direction of the ramp, and

2. orthogonal to the ramp.

Solution. As the ramp rises 5ft over a horizontal distance of 20ft, we

can represent the direction of the ramp with the vector r⃗ =

[
20

5

]
. Grav-

ity pulls down with a force of 50lb, which we represent with g⃗ =

[
0

−50

]
.

1. To find the force of gravity in the direction of the ramp, we com-
pute proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗ r⃗

=
−250

425

[
20

5

]
=

[
− 200

17

− 50
17

]
≈
[
−11.76

−2.94

]
.

The magnitude of proj r⃗ g⃗ is ∥proj r⃗ g⃗∥ = 50/
√
17 ≈ 12.13 lb .

Though the box weighs 50lb, a force of about 12lb is enough to
keep the box from sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use
Key Idea 2.3.19.

z⃗ = g⃗ − proj r⃗ g⃗

=

[
200
17

− 800
17

]
≈
[
11.76

−47.06

]
.

The magnitude of this force is ∥z⃗∥ ≈ 48.51lb. In physics and engi-
neering, knowing this force is important when computing things
like static frictional force. (For instance, we could easily compute
if the static frictional force alonewas enough to keep the box from
sliding down the ramp.)
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2.3.1 Application to Work
In physics, the application of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in
the direction of travel). The orthogonal projection allows us to compute work
when the force is not in the direction of travel.

d⃗

F⃗

proj d⃗ F⃗

Figure 2.3.23 Finding work when the
force and direction of travel are given
as vectors

Consider Figure 2.3.23, where a force F⃗ is being applied to an object moving
in the direction of d⃗. (The distance the object travels is the magnitude of d⃗.) The
work done is the amount of force in the direction of d⃗,

∥∥∥proj d⃗ F⃗
∥∥∥, times ∥∥∥d⃗∥∥∥:

∥∥∥proj d⃗ F⃗
∥∥∥ · ∥∥∥d⃗∥∥∥ =

∥∥∥∥∥ F⃗ · d⃗
d⃗ · d⃗

d⃗

∥∥∥∥∥ · ∥∥∥d⃗∥∥∥
=

∣∣∣∣∣∣∣
F⃗ · d⃗∥∥∥d⃗∥∥∥2

∣∣∣∣∣∣∣ ·
∥∥∥d⃗∥∥∥ · ∥∥∥d⃗∥∥∥

=

∣∣∣F⃗ · d⃗
∣∣∣∥∥∥d⃗∥∥∥2
∥∥∥d⃗∥∥∥2

=
∣∣∣F⃗ · d⃗

∣∣∣ .
The expression F⃗ · d⃗ will be positive if the angle between F⃗ and d⃗ is acute;

when the angle is obtuse (hence F⃗ · d⃗ is negative), the force is causing motion
in the opposite direction of d⃗, resulting in “negative work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

Definition 2.3.24 Work.

Let F⃗ be a constant force that moves an object in a straight line from
point P to point Q. Let d⃗ =

−−→
PQ. The work W done by F⃗ along d⃗ is

W = F⃗ · d⃗.

Example 2.3.25 Computing work.

A man slides a box along a ramp that rises 3ft over a distance of 15ft
by applying 50lb of force as shown in Figure 2.3.26. Compute the work
done.

15

3

F⃗

30◦

Figure 2.3.26 Computing work when
sliding a box up a ramp in Exam-
ple 2.3.25

Solution. The figure indicates that the force applied makes a 30◦ an-

gle with the horizontal, so F⃗ = 50

[
cos(30◦)
sin(30◦)

]
≈
[
43.3

25

]
. The ramp is

represented by d⃗ =

[
15

3

]
. The work done is simply

F⃗ · d⃗ = 50

[
cos(30◦)
sin(30◦)

]
·
[
15

3

]
≈ 724.5 ft–lb .

Note how we did not actually compute the distance the object trav-
eled, nor the magnitude of the force in the direction of travel; this is all
inherently computed by the dot product!

The dot product is a powerful way of evaluating computations that depend
onangleswithout actually using angles. Thenext sectionexplores another “prod-
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uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.
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2.3.2 Exercises

Exercise Group. In the following exercises, find the dot product of the given vectors.

1. u⃗ =

[
2

−4

]
, v⃗ =

[
3

7

]
2. u⃗ =

[
5

3

]
, v⃗ =

[
6

1

]

3. u⃗ =

 1

−1

2

 , v⃗ =

25
3

 4. u⃗ =

 3

5

−1

 , v⃗ =

 4

−1

7


5. u⃗ =

[
1

1

]
, v⃗ =

12
3

 6. u⃗ =

12
3

 , v⃗ =

00
0


u⃗ · v⃗ =

7. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗.

8. Create your own vectors u⃗ and v⃗ in R3 and scalar c and show that c(u⃗ · v⃗) = u⃗ · (cv⃗).

Exercise Group. In the following exercises, find the measure of the angle between the two vectors in radians.

9. u⃗ =

[
1

1

]
and v⃗ =

[
1

2

]
. 10. u⃗ =

[
−2

1

]
and v⃗ =

[
3

5

]
.

11. u⃗ =

 8

1

−4

 and v⃗ =

22
0

 . 12. u⃗ =

17
2

 and v⃗ =

 4

−2

5

 .
Exercise Group. In the following exercises, a vector v⃗ is given. Give two vectors that are orthogonal to v⃗.

13. Find two nonzero vectors orthogonal to

v⃗ =

[
4

7

]
.

14. Find two nonzero vectors orthogonal to

v⃗ =

[
−3

5

]
.

15. Find two nonzero vectors orthogonal to

v⃗ =

11
1

 .
16. Find two nonzero vectors orthogonal to

v⃗ =

 1

−2

3

 .
Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗, the orthogonal projection of u⃗
onto v⃗, and sketch all three vectors with the same initial point.

17. u⃗ =

[
1

2

]
and v⃗ =

[
−1

3

]
. 18. u⃗ =

[
5

5

]
and v⃗ =

[
1

3

]
.

19. u⃗ =

[
−3

2

]
and v⃗ =

[
1

1

]
20. u⃗ =

[
−3

2

]
and v⃗ =

[
2

3

]
.

21. u⃗ =

15
1

 and v⃗ =

12
3

 . 22. u⃗ =

 3

−1

2

 and v⃗ =

22
1

 .
Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Write u⃗ as the sum of two vectors, one of which
is parallel to v⃗ (or is zero) and one of which is orthogonal to v⃗. Note: these are the same pairs of vectors as found in
Exercises 17–22.
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23. Write u⃗ =

[
1

2

]
as the sum of two vectors, one

parallel to v⃗ =

[
−1

3

]
(or zero) and the other

perpendicular.
u⃗ = +

24. Write u⃗ =

[
5

5

]
as the sum of two vectors, one

parallel to v⃗ =

[
1

3

]
(or zero) and the other

perpendicular.
u⃗ = +

25. Write u⃗ =

[
−3

2

]
as the sum of two vectors, one

parallel to v⃗ =

[
1

1

]
(or zero) and the other

perpendicular.
u⃗ = +

26. Write u⃗ =

[
−3

2

]
as the sum of two vectors, one

parallel to v⃗ =

[
2

3

]
(or zero) and the other

perpendicular.
u⃗ = +

27. Write u⃗ =

15
1

 as the sum of two vectors, one

parallel to v⃗ =

12
3

 (or zero) and the other
perpendicular.

u⃗ = +

28. Write u⃗ =

 3

−1

2

 as the sum of two vectors,

one parallel to v⃗ =

22
1

 (or zero) and the other
perpendicular.

u⃗ = +

29. A 10lb box sits on a ramp that rises 4ft over a distance of 20ft. Howmuch force is required to keep the box from
sliding down the ramp?

30. A 10lb box sits on a 15ft ramp that makes a 30◦ angle with the horizontal. How much force is required to keep
the box from sliding down the ramp?

31. How much work is performed in moving a box horizontally 10ft with a force of 20lb applied at an angle of 45◦
to the horizontal?

32. How much work is performed in moving a box horizontally 10ft with a force of 20lb applied at an angle of 10◦
to the horizontal?

33. Howmuch work is performed in moving a box up the length of a ramp that rises 2ft over a distance of 10ft, with
a force of 50lb applied horizontally?

34. Howmuch work is performed in moving a box up the length of a ramp that rises 2ft over a distance of 10ft, with
a force of 50lb applied at an angle of 45◦ to the horizontal?

35. How much work is performed in moving a box up the length of a 10ft ramp that makes a 5◦ angle with the
horizontal, with 50lb of force applied in the direction of the ramp?
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2.4 The Cross Product

“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two non-parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is an operation,
called the cross product, that creates such a vector. This section defines the cross
product, then explores its properties and applications.

The definition of the cross prod-
uct may look strange (and com-
plicated) at first, but it’s more or
less forced by the requirement
that it be orthogonal to both u⃗
and v⃗. To begin to see why, sup-
pose w⃗ = a⃗i+ b⃗j+ck⃗ is an arbi-
trary vector such that u⃗ · v⃗ = 0
and u⃗ · w⃗ = 0. This gives us the
pair of equations

u1a+ u2b+ u3c = 0

v1a+ v2b+ v3c = 0.

This is a systemof linear equa-
tions in the variables a, b, and
c. We’ll learn the techniques for
solving such a system in Chapter 3,
at which point we’ll be able to
see that (up to a scalarmultiple),
the common solution to this pair
of equations is given by Defini-
tion 2.4.1.

Definition 2.4.1 Cross Product.

Let u⃗ =

u1

u2

u3

 and v⃗ =

v1v2
v3

 be vectors inR3. The cross product of

u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ =

 u2v3 − u3v2
−(u1v3 − u3v1)

u1v2 − u2v1

 .
This definition can be a bit cumbersome to remember. After an example we

will give a convenient method for computing the cross product. For now, careful
examination of the products and differences given in the definition should reveal
a pattern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s practice using this definition by computing a cross product.

Example 2.4.2 Computing a cross product.

Let u⃗ =

 2

−1

4

 and v⃗ =

32
5

. Find u⃗× v⃗, and verify that it is orthog-

onal to both u⃗ and v⃗.
Solution. Using Definition 2.4.1, we have

u⃗× v⃗ =

 (−1)5− (4)2

−
(
(2)5− (4)3

)
(2)2− (−1)3

 =

−13

2

7

 .
(We encourage the reader to compute this product on their own,

then verify their result.)
We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot

product: (
u⃗× v⃗

)
· u⃗ =

−13

2

7

 ·

 2

−1

4

 = 0,

(
u⃗× v⃗

)
· v⃗ =

−13

2

7

 ·

32
5

 = 0.
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Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both
u⃗ and v⃗.

We now introduce a method for computing the cross-product that is easier
to remember, and has the added benefit of allowing us to preview determinants,
which we will return to in earnest in Section 6.3.

Consider a rectangular array
[
a b

c d

]
of four real numbers a, b, c, and d. A

2× 2 determinant takes any such array and assigns the number ad− bc. This is
commonly denoted as follows:∣∣∣∣a b

c d

∣∣∣∣ = ad− bc.

Most people find it easiest to remember this in terms of the two diagonals
of the array: we take the product of the two numbers on themain diagonal (top-
left to bottom-right), and subtract the product of the two numbers on the other
diagonal. ∣∣∣∣a b

c d

∣∣∣∣
adbc

For example, we have
∣∣∣∣4 −2

6 3

∣∣∣∣ = 4(3) − (−2)(6) = 24. Once we get com-

fortable with 2 × 2 determinants, we can write the cross product in terms of
them, as follows:

u⃗× v⃗ =

∣∣∣∣u2 u3

v2 v3

∣∣∣∣ i⃗− ∣∣∣∣u1 u3

v1 v3

∣∣∣∣ j⃗ + ∣∣∣∣u1 u2

v1 v2

∣∣∣∣ k⃗ (2.4.1)

= (u2v3 − u3v2)⃗i− (u3v1 − u1v3)⃗j + (u1v2 − u2v1)k⃗, (2.4.2)

as before. Now, this might not seem like much of an improvement over the
previous formula, so we take things one step further. First, we form a 3×3 array
as shown below. ∣∣∣∣∣∣

i⃗ j⃗ k⃗

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ .
The first row comprises the standard unit vectors i⃗, j⃗, and k⃗. The second and
third rows are the vectors u⃗ and v⃗, respectively. Next, we expand our 3×3 array
as a vector, where the coefficient of each standard unit vector is given by the 2×2
determinant that’s left over whenwe delete the row and column containing that
unit vector.

For example, if we use u⃗ and v⃗ from Example 2.4.2, we obtain the array∣∣∣∣∣∣
i⃗ j⃗ k⃗

2 −1 4

3 2 5

∣∣∣∣∣∣ .
The expansion process used to obtain the coefficients of i⃗, j⃗, k⃗ looks like the
following: ∣∣∣∣∣∣∣

i⃗ j⃗ k⃗

2 −1 4

3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣−1 4

2 5

∣∣∣∣ i⃗ = −13⃗i
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∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

2 −1 4

3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣2 4

3 5

∣∣∣∣ j⃗ = −2⃗j

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

2 −1 4

3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣2 −1

3 2

∣∣∣∣ k⃗ = 7k⃗

There is one more important detail to note: notice in Equation (2.4.1) that
there is aminus sign in front of the coefficient of the unit vector j⃗. We need to
make sure that the signs in front of each 2× 2 determinant follow this+, −, +
pattern when we expand our array as a vector. For the vectors u⃗ and v⃗ in Exam-
ple 2.4.2, we end up with the following:

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

2 −1 4

3 2 5

∣∣∣∣∣∣ =
∣∣∣∣−1 4

2 5

∣∣∣∣ i⃗− ∣∣∣∣2 4

3 5

∣∣∣∣ j⃗ + ∣∣∣∣2 −1

3 2

∣∣∣∣ k⃗
= −13⃗i− (−2)⃗j + 7k⃗ =

−13

2

7

 ,
as before. The method will become more clear with a bit of practice.

Note: If the minus sign in front
of the j⃗ coefficient seems out of
place to you, itmight help to imag-
inewrapping our 3×3 array around
a cylinder (like the label on a tin
can). Ifwe read from left to right,
beginning in the j⃗ column, then
we should place the k⃗ columnfirst,
followed by the i⃗ column. For
the vectors u⃗ and v⃗ in Example 2.4.2,
thiswould result in the coefficient∣∣∣∣4 2

5 2

∣∣∣∣ = 2 for the j⃗ component,

which has the correct sign. How-
ever, since our habit is to read
starting from the far left, we tend
to write the i⃗ column first, and
then introduce theminus sign to
compensate.

Example 2.4.3 Computing a cross product.

Let u⃗ =

13
6

 and v⃗ =

−1

2

1

. Compute both u⃗× v⃗ and v⃗ × u⃗.

Solution. To compute u⃗ × v⃗, we form the 3 × 3 array as prescribed
above, and expand it into a vector.

u⃗× v⃗ =

∣∣∣∣ i⃗ j⃗ k⃗1 3 6

−1 2 1

∣∣∣∣ = ∣∣∣∣3 6

2 1

∣∣∣∣ i⃗− ∣∣∣∣ 1 6

−1 1

∣∣∣∣ j⃗ + ∣∣∣∣ 1 3

−1 2

∣∣∣∣ k⃗
= (3(1)− 6(2))⃗i− (1(1)− 6(−1))⃗j + (1(2)− 3(−1))k⃗

= −9⃗i− 7⃗j + 5k⃗ =

−9

−7

5

 .
To compute v⃗× u⃗, we switch the second and third rows of the above

matrix, then expand as before:

v⃗ × u⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

−1 2 1

1 3 6

∣∣∣∣∣∣ =
∣∣∣∣2 1

3 6

∣∣∣∣ i⃗− ∣∣∣∣−1 1

1 6

∣∣∣∣ j⃗ + ∣∣∣∣−1 2

1 3

∣∣∣∣ k⃗
= (2(6)− 1(3))⃗i− ((−1)(6)− 1(1))⃗j + ((−1)(3)− 2(1))k⃗

= 9⃗i+ 7⃗j − 5k⃗ =

 9

7

−5

 = −u⃗× v⃗.

Note how with the rows being switched, the products that once ap-
peared on the right now appear on the left, and vice-versa, so that the
result is the opposite of u⃗× v⃗
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2.4.1 Properties of the Cross Product
It is not coincidence that v⃗ × u⃗ = −(u⃗ × v⃗) in the preceding example; one
can show using Definition 2.4.1 that this will always be the case. The following
theorem states several useful properties of the cross product, each of which can
be verified by referring to the definition.

Theorem 2.4.4 Properties of the Cross Product.

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following
identities hold:

1. u⃗× v⃗ = −(v⃗ × u⃗) Anticommutative Property

2. (a) (u⃗+ v⃗)× w⃗ = u⃗× w⃗ + v⃗ × w⃗ Distributive Properties

(b) u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗

3. c(u⃗× v⃗) = (cu⃗)× v⃗ = u⃗× (cv⃗)

4. (a) (u⃗× v⃗) · u⃗ = 0 Orthogonality Properties

(b) (u⃗× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗ Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to two
given vectors, but we did not give a proof that the construction given in Defini-
tion 2.4.1 satisfies this property. Theorem 2.4.4 asserts this property holds; we
leave it as a problem in the Exercise section to verify this.

Property 5 from the theorem is also left to the reader to prove in the Exercise
section, but it reveals something more interesting than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = cu⃗. Consider their cross product:

u⃗× v⃗ = u⃗× (cu⃗)

= c(u⃗× u⃗) (by Property 3 of Theorem 2.4.4)

= 0⃗ (by Property 5 of Theorem 2.4.4).

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 2.3.5 related the angle between two vectors and
their dot product; there is a similar relationship relating the cross product of two
vectors and the angle between them, given by the following theorem.

Theorem 2.4.5 The Cross Product and Angles.

Let u⃗ and v⃗ be nonzero vectors in R3. Then

∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin(θ),

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Parallel vectors and the cross prod-
uct. Wecould rewriteDefinition2.3.11
and Theorem 2.4.5 to include 0⃗,
then define that u⃗ and v⃗ are par-
allel if u⃗× v⃗ = 0⃗. Since 0⃗ · v⃗ = 0
and 0⃗× v⃗ = 0⃗, this would mean
that 0⃗ is both parallelandorthog-
onal to all vectors. Apparent para-
doxes such as this are not uncom-
mon in mathematics and can be
very useful. (See also the aside
in Section 2.2.)

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
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the magnitude of the cross product is 0. The only vector with a magnitude of
0 is 0⃗ (see Property 9 of Theorem 2.2.16), hence the cross product of parallel
vectors is 0⃗.

We demonstrate the truth of this theorem in the following example.

Example 2.4.6 The cross product and angles.

Let u⃗ =

13
6

 and v⃗ =

−1

2

1

 as in Example 2.4.3. Verify Theo-
rem 2.4.5 by finding θ, the angle between u⃗ and v⃗, and the magnitude
of u⃗× v⃗.
Solution. We use Theorem 2.3.5 to find the angle between u⃗ and v⃗.

θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
= cos−1

(
11√
46
√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 2.4.3 showed that u⃗ × v⃗ =

−9

−7

5

, hence
∥u⃗× v⃗∥ =

√
155. Is ∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin(θ)? Using numerical ap-

proximations, we find:

∥u⃗× v⃗∥ =
√
155 ∥u⃗∥ ∥v⃗∥ sin(θ) =

√
46
√
6 sin(0.8471)

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show
that

sin
(
cos−1

(
11√
46
√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly.

Right Hand Rule. The anticommutative property of the cross product demon-
strates that u⃗× v⃗ and v⃗× u⃗ differ only by a sign — these vectors have the same
magnitude but point in the opposite direction. When seeking a vector perpen-
dicular to u⃗ and v⃗, we essentially have two directions to choose from, one in the
direction of u⃗ × v⃗ and one in the direction of v⃗ × u⃗. Does it matter which we
choose? How can we tell which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same initial point, point
the index finger of your right hand in the direction of u⃗ and let yourmiddle finger
point in the direction of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direction of u⃗× v⃗. One can “practice” this using Figure 2.4.7. If you switch,
and point the index finder in the direction of v⃗ and the middle finger in the di-
rection of u⃗, your thumb will now point in the opposite direction, allowing you
to “visualize” the anticommutative property of the cross product.

Figure 2.4.7 Illustrating the Right
Hand Rule of the cross product
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2.4.2 Applications of the Cross Product
There are a number of ways in which the cross product is useful in mathematics,
physics and other areas of science beyond “just” finding a vector perpendicular
to two others. We highlight a few here.

Area of a Parallelogram. It is a standard geometry fact that the area of a par-
allelogram is A = bh, where b is the length of the base and h is the height of
the parallelogram, as illustrated in Figure 2.4.8(a). As shown when defining the
Parallelogram Law of vector addition, two vectors u⃗ and v⃗ define a parallelo-
gram when drawn from the same initial point, as illustrated in Figure 2.4.8(b).
Trigonometry tells us that h = ∥u⃗∥ sin(θ), hence the area of the parallelogram
is

A = ∥u⃗∥ ∥v⃗∥ sin(θ) = ∥u⃗× v⃗∥ , (2.4.3)

where the second equality comes from Theorem 2.4.5.

b

h

(a)

v⃗
θ

u⃗

h

(b)

Figure 2.4.8 Using the cross product to find the area of a parallelogram

We illustrate using Equation (2.4.3) in the following example.

Example 2.4.9 Finding the area of a parallelogram.

1. Find the area of the parallelogram defined by the vectors u⃗ =

[
2

1

]
and v⃗ =

[
1

3

]
.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3)
and D = (3, 3, 2) are the vertices of a parallelogram. Find the
area of the parallelogram.

Solution.

1. Figure 2.4.10(a) sketches the parallelogram defined by the vectors
u⃗ and v⃗. We have a slight problem in that our vectors exist in R2,
notR3, and the cross product is only defined on vectors inR3. We
skirt this issue by viewing u⃗ and v⃗ as vectors in the x− y plane of

R3, and rewrite them as u⃗ =

21
0

 and v⃗ =

13
0

. We can now
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compute the cross product. It is easy to show that u⃗× v⃗ =

00
5

;
therefore the area of the parallelogram is A = ∥u⃗× v⃗∥ = 5.

u⃗

v⃗

1 2 3 4

1

2

3

4

5

x

y

(a) (b)

Figure 2.4.10 Sketching the parallelograms in Example 2.4.9

2. To show that the quadrilateral ABCD is a parallelogram (shown
in Figure 2.4.10(b)), we need to show that the opposite sides are

parallel. We can quickly show that
−−→
AB =

−−→
DC =

12
1

 and−−→BC =

−−→
AD =

22
1

. We find the area by computing themagnitude of the
cross product of

−−→
AB and

−−→
BC:

−−→
AB ×

−−→
BC =

 0

1

−2

⇒
∥∥∥−−→AB ×

−−→
BC

∥∥∥ =
√
5 ≈ 2.236.

This application is perhaps more useful in finding the area of a triangle (in
short, triangles are used more often than parallelograms). We illustrate this in
the following example.

Example 2.4.11 Area of a triangle.

Find the area of the triangle with vertices A = (1, 2), B = (2, 3)
and C = (3, 1), as pictured in Figure 2.4.12.

A

B

C

1 2 3

1

2

3

x

y

Figure 2.4.12 Finding the area of a tri-
angle in Example 2.4.11

Solution. We can choose any two sides of the triangle to use to form

vectors; we choose
−−→
AB =

[
1

1

]
and

−→
AC =

[
2

−1

]
. As in the previous

example, we will rewrite these vectors with a third component of 0 so
that we can apply the cross product. The area of the triangle is

1

2

∥∥∥−−→AB ×
−→
AC
∥∥∥ =

1

2

∥∥∥∥∥∥
11
0

×

 2

−1

0

∥∥∥∥∥∥ =
1

2

∥∥∥∥∥∥
 0

0

−3

∥∥∥∥∥∥ =
3

2
.

We arrive at the same answer as before with less work.
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Volume of a Parallelepiped. The three dimensional analogue to the parallel-
ogram is the parallelepiped. Each face is parallel to the opposite face, as illus-
trated in Figure 2.4.13. By crossing v⃗ and w⃗, one gets a vector whose magnitude
is the area of the base. Dotting this vector with u⃗ computes the volume of the
parallelepiped! (Up to a sign; take the absolute value.)

Theword “parallelepiped” is pro-
nounced “parallel-eh-pipe-ed.”

Figure 2.4.13 A parallelepiped is the
three dimensional analogue to the
parallelogram

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |u⃗ · (v⃗ × w⃗)| . (2.4.4)

Note how this is the Triple Scalar Product, first seen in Theorem 2.4.4. Apply-
ing the identities given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |u⃗ · (v⃗ × w⃗)| = |u⃗ · (w⃗ × v⃗)| = |(u⃗× v⃗) · w⃗| , etc.

Example 2.4.14 Finding the volume of parallelepiped.

Find the volume of the parallelepiped defined by the vectors u⃗ =11
0

, v⃗ =

−1

1

0

 and w⃗ =

01
1

.
Solution. We apply Equation (2.4.4). We first find v⃗ × w⃗ =

 1

1

−1

.
Then

|u⃗ · (v⃗ × w⃗)| =

∣∣∣∣∣∣
11
0

 ·

 1

1

−1

∣∣∣∣∣∣ = 2.

So the volume of the parallelepiped is 2 cubic units.

Figure 2.4.15 A parallelepiped in Ex-
ample 2.4.14

Let’s take another look at how Equation (2.4.4) is computed in terms of our

formulas for the dot and cross products. With u⃗ =

u1

u2

u3

 , v⃗ =

v1v2
v3

, and
w⃗ =

w1

w2

w3

, we have

u⃗ · (v⃗ × w⃗) =

u1

u2

u3

 ·



∣∣∣∣v2 v3
w2 w3

∣∣∣∣
−
∣∣∣∣v1 v3
w1 w3

∣∣∣∣∣∣∣∣v1 v2
w1 w2

∣∣∣∣


= u1

∣∣∣∣v2 v3
w2 w3

∣∣∣∣− u2

∣∣∣∣v1 v3
w1 w3

∣∣∣∣+ u3

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ .
Compare this with our determinant formula for computing the cross prod-

uct,

v⃗ × w⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ =
∣∣∣∣v2 v3
w2 w3

∣∣∣∣ i⃗− ∣∣∣∣v1 v3
w1 w3

∣∣∣∣ j⃗ + ∣∣∣∣v1 v2
w1 w2

∣∣∣∣ k⃗.
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If we replace the unit vectors i⃗, j⃗, k⃗ in the above equation with the components
of u⃗, we arrive at our first instance of a 3× 3 determinant, along with a method
for computing such an object:∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ = u1

∣∣∣∣v2 v3
w2 w3

∣∣∣∣− u2

∣∣∣∣v1 v3
w1 w3

∣∣∣∣+ u3

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ = u⃗ · (v⃗ × w⃗).

We will return to our study of determinants in Section 6.3, where we will
learn techniques for efficiently computing determinants of any size.

Torque. Torque is a measure of the turning force applied to an object. A classic
scenario involving torque is the application of awrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in
a direction orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek
letter τ , or tau, and has units of N·m, a Newton–meter, or ft·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulting torque is

τ⃗ = ℓ⃗× F⃗ . (2.4.5)

Example 2.4.16 Computing torque.

A lever of length 2ft makes an angle with the horizontal of 45◦. Find
the resulting torque when a force of 10lb is applied to the end of the
level where:

ℓ⃗

90◦

F⃗

ℓ⃗

60◦

F⃗

Figure 2.4.17 Showing a force being
applied to a lever in Example 2.4.16

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Fig-
ure 2.4.17.

Solution.

1. We start by determining vectors for the force and lever arm. Since
the lever armmakes a 45◦ angle with the horizontal and is 2ft long,

we can state that ℓ⃗ = 2

[
cos(45◦)
sin(45◦)

]
=

[√
2√
2

]
. Since the force

vector is perpendicular to the lever arm (as seen in the left hand
side of Figure 2.4.17), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10lb, we can

state F⃗ = 10

[
cos(−45◦)

sin(−45◦)

]
=

[
5
√
2

−5
√
2

]
. Using Equation (2.4.5)

to find the torque requires a cross product. We again let the third
component of each vector be 0 and compute the cross product:

τ⃗ = ℓ⃗× F⃗

=


√
2√
2

0

×

 5
√
2

−5
√
2

0


=

 0

0

−20


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This clearly has a magnitude of 20 ft-lb. We can view the force
and lever arm vectors as lying “on the page”; our computation of τ⃗
shows that the torque goes “into the page.” This follows the Right
Hand Rule of the cross product, and it also matches well with the
example of the wrench turning the bolt. Turning a bolt clockwise
moves it in.

2. Our lever arm can still be represented by ℓ⃗ =
[√

2√
2

]
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right
hand side of the figure) that F⃗ makes a−15◦ angle with the hori-
zontal. Thus

F⃗ = 10

[
cos−15◦

sin−15◦

]
=

 5(1+
√
3)√

2
5(−1+

√
3)√

2


≈
[
9.659

−2.588

]
.

We again make the third component 0 and take the cross product
to find the torque:

τ⃗ = ℓ⃗× F⃗

=


√
2√
2

0

×


5(1+

√
3)√

2
5(−1+

√
3)√

2

0


=

 0

0

−10
√
3


≈

 0

0

−17.321

 .
As one might expect, when the force and lever arm vectors are or-
thogonal, themagnitude of force is greater than when the vectors
are not orthogonal.

While the cross product has a variety of applications (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equations of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
matics. We study lines and planes in the next two sections.
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2.4.3 Exercises

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Compute u⃗ × v⃗ and check that this vector is
orthogonal to both u⃗ and v⃗.

1. Let u⃗ =

 3

2

−2

 , v⃗ =

01
5

 . 2. Let u⃗ =

 5

−4

3

 , v⃗ =

 2

−5

1

 .
3. Let u⃗ =

 4

−5

−5

 , v⃗ =

33
4

 . 4. Let u⃗ =

 −4

7

−10

 , v⃗ =

44
1

 .
5. Let u⃗ =

10
1

 , v⃗ =

50
7

 . 6. Let u⃗ =

 1

5

−4

 , v⃗ =

 −2

−10

8

 .
7. u⃗ =

ab
0

, v⃗ =

cd
0

 8. u⃗ = ı̂, v⃗ = ȷ̂.
Check this is orthogonal to both u⃗ and v⃗.

9. u⃗ = ı̂, v⃗ = k̂. 10. u⃗ = ȷ̂, v⃗ = k̂.
u⃗× v⃗ =

11. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗.

12. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗.

Exercise Group. In the following exercises, the magnitudes of vectors u⃗ and v⃗ in R3 are given, along with the angle
θ between them. Use this information to find the magnitude of u⃗× v⃗.

13. If ∥u⃗∥ = 2, ∥v⃗∥ = 5, and θ = 30◦ is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

14. If ∥u⃗∥ = 3, ∥v⃗∥ = 7, and θ = π/2 is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

15. If ∥u⃗∥ = 3, ∥v⃗∥ = 4, and θ = π is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

16. If ∥u⃗∥ = 2, ∥v⃗∥ = 5, and θ = 5π/6 is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

Exercise Group. In the following exercises, find the area of the parallelogram defined by the given vectors.
17. Find the area of the parallelogram defined by

u⃗ =

11
2

 , and v⃗ =

20
3

 .
18. Find the area of the parallelogram defined by

u⃗ =

−2

1

5

 , and v⃗ =

−1

3

1

 .
19. Find the area of the parallelogram defined by

u⃗ =

[
1

2

]
, and v⃗ =

[
2

1

]
.

20. Find the area of the parallelogram defined by

u⃗ =

[
2

0

]
, and v⃗ =

[
0

3

]
.

Exercise Group. In the following exercises, find the area of the triangle with the given vertices.
21. Find the area of the triangle with vertices

(0, 0, 0), (1, 3,−1) and (2, 1, 1).
22. Find the area of the triangle with vertices

(5, 2,−1), (3, 6, 2) and (1, 0, 4).
23. Find the area of the triangle with vertices (1, 1),

(1, 3) and (2, 2).
24. Find the area of the triangle with vertices (3, 1),

(1, 2) and (4, 3).

Exercise Group. In the following exercises, find the area of the quadrilateral with the given vertices. (Hint: break the
quadrilateral into two triangles.)

25. Find the area of the quadrilateral with vertices
(0, 0), (1, 2), (3, 0), and (4, 3).

26. Find the area of the quadrilateral with vertices
(0, 0, 0), (2, 1, 1), (−1, 2,−8), and (1,−1, 5).

Exercise Group. In the following exercises, find the volume of the parallelepiped defined by the given vectors.
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27. Find the volume of the parallelepiped defined

by u⃗ =

11
1

 , v⃗ =

12
3

 , and w⃗ =

10
1

 .
28. Find the volume of the parallelepiped defined

by u⃗ =

−1

2

1

 , v⃗ =

22
1

 , and w⃗ =

31
3

 .
Exercise Group. In the following exercises, find a unit vector orthogonal to both u⃗ and v⃗.

29. Find a unit vector orthogonal to both u⃗ =

11
1

 ,
and v⃗ =

20
1

 .

30. Find a unit vector orthogonal to both

u⃗ =

 1

−2

1

 , and v⃗ =

32
1

 .

31. Find a unit vector orthogonal to both u⃗ =

50
2

 ,
and v⃗ =

−3

0

7

 .

32. Find a unit vector orthogonal to both

u⃗ =

 1

−2

1

 , and v⃗ =

−2

4

−2

 .

33. A bicycle rider applies 150lb of force, straight down, onto a pedal that extends 7in horizontally from the crank-
shaft. Find the magnitude of the torque applied to the crankshaft.

34. A bicycle rider applies 150lb of force, straight down, onto a pedal that extends 7in from the crankshaft, making
a 30◦ angle with the horizontal. Find the magnitude of the torque applied to the crankshaft.

35. To turn a stubborn bolt, 80lb of force is applied to a 10in wrench. What is the maximum amount of torque that
can be applied to the bolt?

36. To turn a stubborn bolt, 80lb of force is applied to a 10in wrench in a confined space, where the direction of
applied force makes a 10◦ angle with the wrench. How much torque is subsequently applied to the wrench?

37. Show, using the definition of the Cross Product, that u⃗ · (u⃗ × v⃗) = 0; that is, that u⃗ is orthogonal to the cross
product of u⃗ and v⃗.

38. Show, using the definition of the Cross Product, that u⃗× u⃗ = 0⃗.
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2.5 Lines

To find the equation of a line in the xy-plane, we need two pieces of information:
a point and the slope. The slope conveys direction information. As vertical lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direction of the line.
This holds true for lines in space.

2.5.1 Lines in space
Let P be a point in space, let p⃗ be the vector with initial point at the origin and
terminal point at P (i.e., p⃗ “points” to P ), and let d⃗ be a vector. Consider the
points on the line through P in the direction of d⃗.

Clearly one point on the line is P ; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direction parallel to d⃗. For instance, starting at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 2.5.1 where certain
points along the line are indicated.

Figure 2.5.1 Defining a line in space
The figure illustrates how every point on the line can be obtained by starting

with p⃗ and moving a certain distance in the direction of d⃗. That is, we can define
the line as a function of t:

ℓ⃗(t) = p⃗+ t d⃗. (2.5.1)

In many ways, this is not a new concept. Compare Equation (2.5.1) to the
familiar “y = mx+ b” equation of a line:

y = b + mx ℓ⃗(t) = p⃗ + td⃗

Starting Point Direction

How Far To Go In That Direction

Figure 2.5.2 Understanding the vec-
tor equation of a line

The equations exhibit the same structure: they give a starting point, define
a direction, and state how far in that direction to travel.

There are other ways to represent a line. Let P = (x0, y0, z0), p⃗ =

x0

y0
z0

,
and let d⃗ =

ab
c

. Then the equation of the line through P in the direction of d⃗

is:

ℓ⃗(t) = p⃗+ td⃗

=

x0

y0
z0

+ t

ab
c


=

x0 + at

y0 + bt

z0 + ct

 .
The last line states that the x values of the line are given by x = x0+at, the

y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equations, taken together, are the parametric equations of the line
through p⃗ in the direction of d⃗.

Finally, each of the equations for x, y and z above contain the variable t. We
can solve for t in each equation:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y − y0

b
,
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z = z0 + ct ⇒ t =
z − z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equations of the line through
p⃗ in the direction of d⃗:

x− x0

a
=

y − y0
b

=
z − z0

c
.

Each representation has its own advantages, depending on the context. We
summarize these three forms in the following definition, then give examples of
their use.

Definition 2.5.3 Equations of Lines in Space.

Let P = (x0, y0, z0) and let p⃗ =

x0

y0
z0

. Consider the line in space
that passes through P in the direction of d⃗ =

ab
c

.
1. The vector equation of the line is

ℓ⃗(t) = p⃗+ td⃗.

2. The parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equations of the line are

x− x0

a
=

y − y0
b

=
z − z0

c
.

Example 2.5.4 Finding the equation of a line.

Give all three equations, as given in Definition 2.5.3, of the line

through P = (2, 3, 1) in the direction of d⃗ =

−1

1

2

. Does the point
Q = (−1, 6, 6) lie on this line?

Solution. We identify the pointP = (2, 3, 1)with the vector p⃗ =

23
1

.
Following the definition, we have

• the vector equation of the line is ℓ⃗(t) =

23
1

+ t

−1

1

2

;
• the parametric equations of the line are

x = 2− t, y = 3 + t, z = 1 + 2t; and
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• the symmetric equations of the line are

x− 2

−1
=

y − 3

1
=

z − 1

2
.

Figure 2.5.5 Graphing a line in Exam-
ple 2.5.4

The first two equations of the line are useful when a t value is
given: one can immediately find the corresponding point on the line.
These forms are good when calculating with a computer; most soft-
ware programs easily handle equations in these formats. (For instance,
the graphics program that made Figure 2.5.5 can be given the input
“(2-t,3+t,1+2*t)” for−1 ≤ t ≤ 3.).

Does the point Q = (−1, 6, 6) lie on the line? The graph in Fig-
ure 2.5.5 makes it clear that it does not. We can answer this question
without the graph using any of the three equation forms. Of the three,
the symmetric equations are probably best suited for this task. Simply
plug in the values of x, y and z and see if equality is maintained:

−1− 2

−1

?
=

6− 3

1

?
=

6− 1

2
⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not satisfy the sym-
metric equations.

Example 2.5.6 Finding the equation of a line through two points.

Find the parametric equations of the line through the points P =
(2,−1, 2) andQ = (1, 3,−1).
Solution. Recall the statement made at the beginning of this section:
to find the equation of a line, we need a point and a direction. We have
two points; either one will suffice. The direction of the line can be found

by the vector with initial point P and terminal pointQ:
−−→
PQ =

−1

4

−3

.
The parametric equations of the line ℓ through P in the direction of−−→

PQ are:
ℓ : x = 2− ty = −1 + 4tz = 2− 3t.

Figure 2.5.7 A graph of the line in Ex-
ample 2.5.6

A graph of the points and line are given in Figure 2.5.7. Note how in
the given parametrization of the line, t = 0 corresponds to the point P ,
and t = 1 corresponds to the pointQ. This relates to the understanding
of the vector equation of a line described in Figure 2.5.2. The parametric
equations “start” at the point P , and t determines how far in the direc-
tion of

−−→
PQ to travel. When t = 0, we travel 0 lengths of

−−→
PQ; when

t = 1, we travel one length of
−−→
PQ, resulting in the pointQ.

2.5.2 Parallel, Intersecting and Skew Lines
In the plane, two distinct lines can either be parallel or they will intersect at
exactly one point. In space, given equations of two lines, it can sometimes be
difficult to tell whether the lines are distinct or not (i.e., the same line can be
represented in differentways). Given lines ℓ⃗1(t) = p⃗1+td⃗1 and ℓ⃗2(t) = p⃗2+td⃗2,
we have four possibilities: ℓ⃗1 and ℓ⃗2 are
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the same line they share all points

intersecting lines they share only 1 point;

parallel lines d⃗1 ∥ d⃗2, no points in common;

skew lines d⃗1 ∦ d⃗2, no points in common.

The next two examples investigate these possibilities.

Example 2.5.8 Comparing lines.

Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :

x = 1 + 3t

y = 2− t

z = t

ℓ2 :

x = −2 + 4s

y = 3 + s

z = 5 + 2s

.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are paral-
lel, or skew.
Solution. We start by looking at the directions of each line. Line ℓ1 has

the direction given by d⃗1 =

 3

−1

1

 and line ℓ2 has the direction given by
d⃗2 =

41
2

. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1
and ℓ2 are not the same line, nor are they parallel. Figure 2.5.9 verifies
this fact (where the points and directions indicated by the equations of
each line are identified).

Figure 2.5.9 Sketching the lines from
Example 2.5.8

We next check to see if they intersect (if they do not, they are skew
lines). To find if they intersect, we look for t and s values such that the
respective x, y and z values are the same. That is, we want s and t such
that:

1 + 3t = −2 + 4s

2− t = 3 + s

t = 5 + 2s

.

This is a relatively simple system of linear equations. Since the last
equation is already solved for t, substitute that value of t into the equa-
tion above it:

2− (5 + 2s) = 3 + s ⇒ s = −2, t = 1.

We say that a system of equa-
tions with no solution, such as
the one in Example 2.5.8, is in-
consistent. Although it is possi-
ble to find values that work for
any two of the three equations,
there is no set of values of s
and t that works for all three
equations simultaneously. We’ll
develop general techniques for
investigating such systems in
Chapter 3.

A key to remember is thatwehave three equations; weneed to check
if s = −2, t = 1 satisfies the first equation as well:

1 + 3(1) ̸= −2 + 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.
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Example 2.5.10 Comparing lines.

Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :

x = −0.7 + 1.6t

y = 4.2 + 2.72t

z = 2.3− 3.36t

ℓ2 :

x = 2.8− 2.9s

y = 10.15− 4.93s

z = −5.05 + 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are paral-
lel, or skew.
Solution. It is obviously very difficult to simply look at these equations
and discern anything. This is done intentionally. In the “real world,”
most equations that are used do not have nice, integer coefficients.
Rather, there are lots of digits after the decimal and the equations can
look “messy.”

We again start by deciding whether or not each line has the same

direction. The direction of ℓ1 is given by d⃗1 =

 1.6

2.72

−3.36

 and the di-
rection of ℓ2 is given by d⃗2 =

 −2.9

−4.93

6.09

. When it is not clear through
observation whether two vectors are parallel or not, the standard way
of determining this is by comparing their respective unit vectors. Using
a calculator, we find:

u⃗1 =
d⃗1∥∥∥d⃗1∥∥∥ =

 0.3471

0.5901

−0.7289


u⃗2 =

d⃗2∥∥∥d⃗2∥∥∥ =

−0.3471

−0.5901

0.7289

 .
The two vectors seem to be parallel (at least, their components are

equal to 4 decimal places). In most situations, it would suffice to con-
clude that the lines are at least parallel, if not the same. One way to be
sure is to rewrite d⃗1 and d⃗2 in terms of fractions, not decimals. We have

d⃗1 =

 16
10
272
100

− 336
100

 d⃗2 =

− 29
10

− 493
100

609
100

 .
One can then find the magnitudes of each vector in terms of frac-

tions, then compute the unit vectors likewise. After a lot ofmanual arith-
metic (or after briefly using a computer algebra system), one finds that

u⃗1 =


√

10
83

17√
830

− 21√
830

 u⃗2 =

−
√

10
83

− 17√
830

21√
830

 .
We can now say without equivocation that these lines are parallel.
Are they the same line? The parametric equations for a line de-

scribe one point that lies on the line, so we know that the point P1 =
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(−0.7, 4.2, 2.3) lies on ℓ1. To determine if this point also lies on ℓ2, plug
in the x, y and z values of P1 into the symmetric equations for ℓ2:

(−0.7)− 2.8

−2.9

?
=

(4.2)− 10.15

−4.93

?
=

(2.3)− (−5.05)

6.09

1.2069 = 1.2069 = 1.2069.

Figure 2.5.11 Graphing the lines in Ex-
ample 2.5.10

ThepointP1 lies on both lines, sowe conclude they are the same line,
just parametrized differently. Figure 2.5.11 graphs this line along with
the points and vectors described by the parametric equations. Note how
d⃗1 and d⃗2 are parallel, though point in opposite directions (as indicated
by their unit vectors above).

2.5.3 Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + td⃗ in space, it is often useful to know
the distance from the point to the line. (Here we use the standard definition
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Identifying p⃗ with the point P , Figure 2.5.12 will help establish a general
method of computing this distance h.

Our method will be based on the Orthogonal Projection from Section 2.3.
Although it is possible to derive a formula that gives the distance immediately,
our method will help develop geometric intuition that we can adapt to later sit-
uations, and it also has the advantage of letting us identify the point R on the
line that is closest toQ.

It is possible to obtain a formula
for the distance from Q to the
line using a clever trick: consider
the triangle that has d⃗ and

−−→
PQ

as two of its sides. The area of
this triangle can be found using
the usual formulaA = 1

2bh, but
it can also be computed in terms
of a cross product. See if you can
use this observation to come up
with a formula, but be cautioned
that youwill probably be expected
to use the method outlined be-
low.

The basic idea is that the vector
−→
PR must be the orthogonal projection of

the vector
−−→
PQ onto the direction vector d⃗.

d⃗

Q

P

h−−→
PQ

θ

Figure 2.5.12 Establishing the dis-
tance from a point to a line

Example 2.5.13 Finding the distance from a point to a line.

Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = 1

−1

1

+ t

23
1

 .

Solution. From the equation of the line, we know that the point P =

(1,−1, 1) is on the line, and that the vector d⃗ =

23
1

 is in the direciton
of the line. Let

v⃗ =
−−→
PQ =

 1− 1

1− (−1)

3− 1

 =

02
2

 .
We know that if R is the point on the line closest to Q, then the projec-
tion of v⃗ onto d⃗ will equal

−→
PR.

We compute

proj d⃗ v⃗ =
v⃗ · d⃗
d⃗ · d⃗

d⃗ =
0 + 6 + 2

4 + 9 + 1

23
1

 =
4

7

23
1

 .
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Now, ifR = (x1, y1, z1), we know that
−→
PR =

 x1 − 1

x2 − (−1)

x3 − 1

, since P =

(1,−1, 1). This gives us

 x1 − 1

x2 − (−1)

x3 − 1

 = 4
7

23
1

, so x1 = 1 + 8
7 = 15

7 ,

x2 = −1 + 12
7 = 5

7 , and x3 = 1 + 4
7 = 11

7 . Therefore,

R =

(
15

7
,
5

7
,
11

7

)
is the point on the line that is closest toQ.

The desired distance is therefore the distance from Q to R, which
can be found using the distance formula:

h =

√(
1− 15

7

)2

+

(
1− 5

7

)2

+

(
3− 11

7

2)

=

√(
−8

7

)2

+

(
2

7

)2

+

(
10

7

)2

=
1

7

√
82 + 22 + 102

=

√
168

7
= 2

√
6

7
.

We summarize the steps involved to give the following general advice:

Key Idea 2.5.14 Steps for solving shortest distance problems.

Suppose you are asked to find the distance between two objects, or
to determine an object (such as a point) that is closest to a given object
(a line or plane). Your solution to the problem should always include the
following steps:

1. Make a list of all the information provided in the problem.

2. Make a note of what quantities you’re asked to determine.

3. Draw a diagram. Label all relevant points and vectors, including
those you know, and those you want to find.

4. Using your diagram as a reference, compute any unknown points
or vectors.

Note: We can’t overemphasize
the fact that the diagram referred
to in Key Idea 2.5.14does not have
to be accuratewith respect to the
coordinates anddirections involved.
It simply has to be capable of rep-
resenting the information in the
problem. Note that in Figure 2.5.16
in Example 2.5.15 we’ve drawn
a line, somepoints, and somevec-
tors that represent the problem,
without reference to a coordinate
system. The goal is to provide
enough detail to allow us to set
up the problem.

Example 2.5.15 Finding the closest point on a line.

Find the distance from the point Q = (1, 3,−2) to the line ℓ⃗ that

passes through the point P = (2, 0,−1) in the direction of d⃗ =

 1

−1

0

,
and find the point R on ℓ⃗ that is closest toQ.
Solution. We’re given a point P on the line, along with a direction vec-
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tor d⃗, and a point Q not on the line. We seek the point R on the line
that is closest to Q, as well as the distance from Q to R. We begin by
diagramming the information in Figure 2.5.16.

P

ℓ

R

Q

−−→
PQ

h

d⃗
−→
PR = projd⃗

−−→
PQ

Figure 2.5.16 Setting up the solution
in Example 2.5.15

From the given points P and Q we can immediately construct the
vector

−−→
PQ =

 1− 2

3− 0

−2− (−1)

 =

−1

3

−1

 .
We begin by finding the point R on the line that is closest to Q. From
our diagram, we can see that the vector

−→
PR from P toR is equal to the

projection of
−−→
PQ onto the distance vector d⃗:

−→
PR = projd⃗

−−→
PQ =



−1

3

−1

 ·

 1

−1

0


 1

−1

0

 ·

 1

−1

0




 1

−1

0

 =

−2

2

0

 .

Now, we need to pause and take care that we don’t make a very
commonmistake: the vector

−→
PR does \textbf{not} give the coordinates

of the point R. Instead,
−→
PR tells us how to get from the point P to the

point R. Letting O denote the origin, we can write
−−→
OP and

−−→
OR for the

position vectors of P andR, respectively. Since
−→
PR =

−−→
OR−

−−→
OP using

the “tip minus tail” rule for computing the vector between two points,
we have

−−→
OR =

−−→
OP +

−→
PR =

 2

0

−1

+

−2

2

0

 =

 0

2

−1

 .
Thus, we have R = (0, 2,−1) as the point on the line closest to

the pointQ. We can now find the distance fromQ to the line using the
distance formula:

D =
√
(1− 0)2 + (3− 2)2 + (−2− (−1))2 =

√
3.

An alternativeway of computing the distance is tomake use of the or-
thogonal decomposition in Key Idea 2.3.19. By definition of the distance
from a point to a line, we know that the vector

−−→
RQmust be orthogonal

to the line, and thus to the direction vector d⃗. Using Key Idea 2.3.19, we
have that

−−→
RQ =

−−→
PQ−

−→
PR =

−1

3

−1

−

−2

2

0

 =

−1

1

1

 ,
and the shortest distance is given by

∥∥∥−−→RQ
∥∥∥ =

√
3, as before.

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
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lines ℓ⃗1(t) = p⃗1 + td⃗1 and ℓ⃗2(t) = p⃗2 + td⃗2 be given, as shown in Figure 2.5.17.
To find the direction orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projection of

−−−→
P1P2 onto c⃗ is the

distance h we seek:

h =
∥∥∥proj⃗c −−−→P1P2

∥∥∥ =

∥∥∥∥∥
−−−→
P1P2 · c⃗
c⃗ · c⃗ c⃗

∥∥∥∥∥ (2.5.2)

=

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥2
∥c⃗∥ =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥
. (2.5.3)

Figure 2.5.17 Establishing the dis-
tance between lines

A problem in the exercises of this section is to show that this distance is 0
when the lines intersect. Note the use of the Triple Scalar Product:

−−−→
P1P2 · c⃗ =−−−→

P1P2 · (d⃗1 × d⃗2).

It turns out that skew lines al-
ways lie in parallel planes. In the
next section, we’ll see that a plane
can be determined by two non-
parallel direction vectors and a
point on the plane. The distance
between two skew lines is then
equal to the distance between
the parallel planes.

Example 2.5.18 Finding the distance between lines.

Find the distance between the lines

ℓ1 :

x = 1 + 3t

y = 2− t

z = t

ℓ2 :

x = −2 + 4s

y = 3 + s

z = 5 + 2s.

Solution. These are the sames lines as given in Example 2.5.8, where
we showed them to be skew. The equations allow us to identify the
following points and vectors:

P1 = (1, 2, 0)P2 = (−2, 3, 5) ⇒
−−−→
P1P2 =

−3

1

5

 .

d⃗1 =

 3

−1

1

 d⃗2 =

41
2

⇒ c⃗ = d⃗1 × d⃗2 =

−3

−2

7

 .
Using Equation (2.5.3) we have the distance h between the two lines

is

h =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart.

Once again, we do not recommend attempting tomemorize Equation (2.5.3).
Unless you somehow find yourself at a point in your life where you need to find
the distances between awhole lot of pairs of skew lines, youwill be better served
by learning the skills required to set up and think through a problem than youwill
be by memorizing a formula to plug numbers into. In the case of skew lines, the
key observation is that if we take the vector between any pair of points, one on
each line, and project it onto the vector c⃗ = d⃗1 × d⃗2, the length of the resulting
vector is the distance we seek.

Somewhatmore challenging is the problemof finding the points on each line
that actually realize this shortest distance.
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Example 2.5.19 Finding the closest points on skew lines.

Find the pointsR1 on ℓ⃗1 andR2 on ℓ⃗2, where ℓ⃗1 and ℓ⃗2 are the lines
from Example 2.5.18, such that the distance from R1 to R2 is a mini-
mum.
Solution. SinceR1 is a point on ℓ⃗1, we know that

R1 = (1 + 3t, 2− t, t), for some real number t, (2.5.4)

and similarly,

R2 = (−2 + 4s, 3 + s, 5 + 2s), for some real number s. (2.5.5)

The vector
−−−→
R1R2 is therefore given by

−−−→
R1R2 =

−3 + 4s− 3t

1 + s+ t

5 + 2s− t

 ,
for some pair of real numbers s and t.

We know that the line segmentR1R2must be perpendicular to both
ℓ⃗1 and ℓ⃗2 in order to minimize the distance, so the vector

−−−→
R1R2 must be

orthogonal to both d⃗1 and d⃗2. Thus,

0 = d⃗1 ·
−−−→
R1R2 = 3(−3 + 4s− 3t)− 1(1 + s+ t) + 1(5 + 2s− t)

= 13s− 11t− 5, and

0 = d⃗2 ·
−−−→
R1R2 = 4(−3 + 4s− 3t) + 1(1 + s+ t) + 2(5 + 2s− t)

= 21s− 13t− 1.

We end up having to solve a system of two linear equations in the
two variables, s and t, given by

13s − 11t = 5

21s − 13t = 1
.

You probably had to solve such systems in high school. One option is to
solve graphically, by plotting the lines given by each equation, and seeing
where they intersect. However, this method has little hope of providing
an accurate answer. Instead, we try a little algebra.

Multiplying the first equation by 21 and the second by 13 gives us
the equations 273s − 231t = 105 and 273s − 169t = 13, respectively.
Subtracting the second equation from the first, we have −62t = 92,
so t = − 92

62 = − 46
31 . Plugging this value back into any of the previous

equations gives us s = − 351
403 = − 27

31 . (We didn’t promise that the num-
bers would work out nicely!) Plugging these values back into equations
(2.5.4) and (2.5.5), we find

R1 =

(
−107

31
,
108

31
,−46

31

)
and R2 =

(
−170

31
,
66

31
,
101

31

)
.

Our vector
−−−→
R1R2 is then given by

−−−→
R1R2 =

− 63
31

− 42
31

147
31

 =
1

31

−63

−42

147

 ,
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and the distance between the two lines is given by∥∥∥−−−→R1R2

∥∥∥ =
1

31

√
632 + 422 + 1472 =

42√
62

,

as before.

Example 2.5.19 required us to solve a system of two linear equations in two
unknowns s and t. Although this involved some messy fractions, the algebra
involved was fairly straightforward. In many real life problems it is necessary to
be able to solve systems involving hundreds or even thousands of equations and
variables. We will begin our study of how to systematically solve such systems
in the next chapter.

One of the key points to understand from this section is this: to describe a
line, we need a point and a direction. Whenever a problem is posed concern-
ing a line, one needs to take whatever information is offered and glean point
and direction information. Many questions can be asked (and are asked in the
Exercise section) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next section. Many
complex three dimensional objects are studied by approximating their surfaces
with lines and planes.
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2.5.4 Exercises

Exercise Group. Write the vector, parametric and symmetric equations of the lines described.
1. Passes through P = (2,−4, 1), parallel to

d⃗ =

92
5

.
2. ℓ is a line that passes through P = (6, 1, 7),

parallel to d⃗ =

−3

2

5

 .
3. Passes through P = (2, 1, 5) and

Q = (7,−2, 4).
4. ℓ is a line that passes through P = (1,−2, 3)

andQ = (5, 5, 5).
5. Passes through P = (0, 1, 2) and orthogonal to

both

d⃗1 =

 2

−1

7

 and d⃗2 =

71
3

.
6. ℓ is a line that passes through P = (5, 1, 9) and

is orthogonal to both d⃗1 =

10
1

 and d⃗2 =

20
3

 .
7. ℓ is a line that passes through the intersection

of ℓ⃗1(t) =

21
1

+ t

 5

1

−2

 and
ℓ⃗2(t) =

−2

−1

2

+ t

 3

1

−1

 , and is orthogonal to
both lines.

8. ℓ is a line that passes through the intersection

of ℓ⃗1(t) =


x = t

y = −2 + 2t

z = 1 + t

and

ℓ⃗2(t) =


x = 2 + t

y = 2− t

z = 3 + 2t

, and is orthogonal to

both lines.

9. Passes through P = (1, 1), parallel to d⃗ =

[
2

3

]
.

10. ℓ is a line that passes through P = (−2, 5),

parallel to d⃗ =

[
0

1

]
.

Exercise Group. Determine if the described lines are the same line, parallel lines, intersecting or skew lines. If
intersecting, give the point of intersection.

11. ℓ⃗1(t) =

12
1

+ t

 2

−1

1

 and
ℓ⃗2(t) =

33
3

+ t

−4

2

−2

 .
12. ℓ⃗1(t) =

21
1

+ t

51
3

 and
ℓ⃗2(t) =

145
9

+ t

11
1

 .
13. ℓ⃗1(t) =

34
1

+ t

 2

−3

4

,
ℓ⃗2(t) =

−3

3

−3

+ t

 3

−2

4

.
14. ℓ⃗1(t) =

11
1

+ t

31
3

 and
ℓ⃗2(t) =

73
7

+ t

62
6

 .

15. ℓ⃗1(t) =


x = 1 + 2t

y = 3− 2t

z = t

and

ℓ⃗2(t) =


x = 3− t

y = 3 + 5t

z = 2 + 7t

.

16. ℓ⃗1(t) =


x = 1.1 + 0.6t

y = 3.77 + 0.9t

z = −2.3 + 1.5t

and

ℓ⃗2(t) =


x = 3.11 + 3.4t

y = 2 + 5.1t

z = 2.5 + 8.5t

.
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17. ℓ1 =


x = 0.2 + 0.6t

y = 1.33− 0.45t

z = −4.2 + 1.05t

and

ℓ2 =


x = 0.86 + 9.2t

y = 0.835− 6.9t

z = −3.045 + 16.1t

18. ℓ⃗1(t) =


x = 0.1 + 1.1t

y = 2.9− 1.5t

z = 3.2 + 1.6t

and

ℓ⃗2(t) =


x = 4− 2.1t

y = 1.8 + 7.2t

z = 3.1 + 1.1t

.

Exercise Group. Find the distance from the point to the line.

19. Q = (1, 1, 1), ℓ⃗(t) =

21
3

+ t

 2

1

−2

 20. Find the distance from the pointQ = (2, 5, 6)

to the line ℓ⃗(t) =

−1

1

1

+ t

10
1

 .
21. Q = (0, 3), ℓ⃗(t) =

[
2

0

]
+ t

[
1

1

] 22. Find the distance from the pointQ = (1, 1) to

the line ℓ⃗(t) =
[
4

5

]
+ t

[
−4

3

]
.

Exercise Group. Find the distance between the two lines.

23. ℓ⃗1(t) =

12
1

+ t

 2

−1

1

,
ℓ⃗2(t) =

33
3

+ t

 4

2

−2

.

24. Find the distance between the line

ℓ⃗1(t) =

00
1

+ t

10
0

 and the line
ℓ⃗2(t) =

00
3

+ t

01
0

 .
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2.6 Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and stick it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 2.6.1.

Figure 2.6.1 Illustrating defining a
plane with a sheet of cardboard and
a nail

This nail provides a “handle” for the cardboard. Moving the cardboard around
movesP to different locations in space. Tilting the nail (but keepingP fixed) tilts
the cardboard. Both moving and tilting the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the location of P in space, and 2)
the direction of the nail.

The previous section showed that one can define a line given a point on the
line and the direction of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direction the plane “faces” (using the description above, the
direction of the nail). Once again, the direction information will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane” mean? Choose any two points
P andQ in the plane, and consider the vector

−−→
PQ. We say a vector n⃗ is orthog-

onal to the plane if n⃗ is perpendicular to
−−→
PQ for all choices of P andQ; that is,

if n⃗ ·
−−→
PQ = 0 for all P andQ.
This gives us way of writing an equation describing the plane. Let P =

(x0, y0, z0) be a point in the plane and let n⃗ =

ab
c

 be a normal vector to the
plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only if,

−−→
PQ is orthogonal to n⃗. Knowing

−−→
PQ =

x− x0

y − y0
z − z0

, consider:
−−→
PQ · n⃗ = 0x− x0

y − y0
z − z0

 ·

ab
c

 = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0. (2.6.1)

Equation (2.6.1) defines an implicit function describing the plane. More algebra
produces:

ax+ by + cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by + cz = d. (2.6.2)

As long as c ̸= 0, we can solve for z:

z =
1

c
(d− ax− by). (2.6.3)

Equation (2.6.3) is especially useful as many computer programs can graph
functions in this form. Equations (2.6.1) and (2.6.2) have specific names, given
next.
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Definition 2.6.2 Equations of a Plane in Standard and General Forms.

The plane passing through the point P = (x0, y0, z0) with normal

vector n⃗ =

ab
c

 can be described by an equation with standard form
a(x− x0) + b(y − y0) + c(z − z0) = 0;

the equation’s general form is

ax+ by + cz = d.

A key to remember throughout this section is this: to find the equation of a
plane, we need a point and a normal vector. We will give several examples of
finding the equation of a plane, and in each one different types of information
are given. In each case, we need to use the given information to find a point on
the plane and a normal vector.

Example 2.6.3 Finding the equation of a plane.

Write the equation of the plane that passes through the points P =
(1, 1, 0),Q = (1, 2,−1) andR = (0, 1, 2) in standard form.
Solution. We need a vector n⃗ that is orthogonal to the plane. Since P ,
Q and R are in the plane, so are the vectors

−−→
PQ and

−→
PR;

−−→
PQ×

−→
PR is

orthogonal to
−−→
PQ and

−→
PR and hence the plane itself.

It is straightforward to compute n⃗ =
−−→
PQ×

−→
PR =

21
1

. We can use
any point we wish in the plane (any of P , Q or R will do) and we arbi-
trarily choose P . Following Definition 2.6.2, the equation of the plane
in standard form is

2(x− 1) + (y − 1) + z = 0.

The plane is sketched in Figure 2.6.4.

Figure 2.6.4 Sketching the plane in Ex-
ample 2.6.3

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 2.6.5 Finding the equation of a plane.

Verify that lines ℓ1 and ℓ2, whose parametric equations are given
below, intersect, then give the equation of the plane that contains these
two lines in general form.

ℓ1 :

x = −5 + 2s

y = 1 + s

z = −4 + 2s

ℓ2 :

x = 2 + 3t

y = 1− 2t

z = 1 + t

Solution. The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If
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they do intersect, there is such a plane.
To find their point of intersection, we set the x, y and z equations

equal to each other and solve for s and t:

−5 + 2s = 2 + 3t

1 + s = 1− 2t

−4 + 2s = 1 + t

⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P =
(−1, 3, 0).

Let d⃗1 =

21
2

 and d⃗2 =

 3

−2

1

 be the directions of lines ℓ1 and ℓ2,
respectively. A normal vector to the plane containing these the two lines
will also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by

computing n⃗ = d⃗1 × d⃗2 =

[
5

4− 7

]
.

We can pick any point in the plane with which to write our equation;
each line gives us infinite choices of points. We choose P , the point of
intersection. We follow Definition 2.6.2 to write the plane’s equation in
general form:

5(x+ 1) + 4(y − 3)− 7z = 0

5x+ 5 + 4y − 12− 7z = 0

5x+ 4y − 7z = 7.

The plane’s equation in general form is 5x + 4y − 7z = 7; it is
sketched in Figure 2.6.6.

Figure 2.6.6 Sketching the plane in Ex-
ample 2.6.5

We can think of the point P =
(−1, 3, 0) in Example 2.6.5 as defin-
ing a point of “origin” on theplane,
and even though they are not per-
pendicular, we can think of the
lines ℓ1 and ℓ2 as a pair of co-
ordinate axes on the plane. Any
other point on the plane can be
locatedwith respect to these two
lines. (Any twonon-parallel lines
define a coordinate system in a
plane; perpendicular lines just hap-
pen to bemore convenient than
other options.)

The two previous examples hint at an alternative method for describing a
plane in R3: instead of providing a single direction orthogonal to the plane
(given by the normal vector), we can give two directions that are parallel to the
plane, such as the vectors

−−→
PQ and

−→
PR in Figure 2.6.4, or the direction vectors

d⃗1 and d⃗2 to the lines in Figure 2.6.6.
Suppose (x, y, z) is a point on the plane 5x + 4y − 7z = 7 from Exam-

ple 2.6.5. We can treat the point (−1, 3, 0) where the lines ℓ⃗1 and ℓ⃗2 intersect
as our point of reference on the plane. From this point, we can reach the point
(x, y, z) by first travelling some distance in the direction of d⃗1 (parallel to ℓ⃗1),
and then some distance in the direction of d⃗2 (parallel to ℓ⃗2). We can express
this mathematically as follows:xy

z

 =

−1

3

0

+ sd⃗1 + td⃗2 (2.6.4)

=

−1 + 2s+ 3t

3 + s− 2t

2s+ t

 . (2.6.5)

Equation (2.6.4) can be viewed as a two-dimensional analogue of the vec-
tor equation of a line given in the previous section. It tells us that to get from
the origin (0, 0, 0) to the point (x, y, z) on the plane, we should first travel to
the point (−1, 3, 0) on the plane, and then move parallel to the lines ℓ⃗1 and ℓ⃗2
until we reach our point. This vector equation for a plane is not particularly
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useful in Science or Engineering applications, but it is useful mathematically.
In particular, if we wanted to describe a two-dimensional plane in R4 (or any
higher-dimensional space), we would have to resort to this method. (Keeping
this method for describing a plane in mind will also help us to access some geo-
metric intuitionwhenwe discuss span and linear independence later in the text.)

Example 2.6.7 Finding the equation of a plane.

Give the equation, in standard form, of the plane that passes through
the point P = (−1, 0, 1) and is orthogonal to the line with vector equa-

tion ℓ⃗(t) =

−1

0

1

+ t

12
2

.
Solution. As the plane is to be orthogonal to the line, the plane must

be orthogonal to the direction of the line given by d⃗ =

12
2

. We use this
as our normal vector. Thus the plane’s equation, in standard form, is

(x+ 1) + 2y + 2(z − 1) = 0.

The line and plane are sketched in Figure 2.6.8.

Figure 2.6.8 The line and plane in Ex-
ample 2.6.7

Example 2.6.9 Finding the intersection of two planes.

Give the parametric equations of the line that is the intersection of
the planes p1 and p2, where:

p1 : x− (y − 2) + (z − 1) = 0

p2 : −2(x− 2) + (y + 1) + (z − 3) = 0

Solution. To find an equation of a line, we need a point on the line and
the direction of the line.

We can find a point on the line by solving each equation of the planes
for z:

p1 : z = −x+ y − 1

p2 : z = 2x− y − 2

We can now set these two equations equal to each other (i.e., we
are finding values of x and y where the planes have the same z value):

−x+ y − 1 = 2x− y − 2

2y = 3x− 1

y =
1

2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines
that y = 1. We can now use the equations of either plane to find z:
when x = 1 and y = 1, z = −1 on both planes. We have found a point
P on the line: P = (1, 1,−1).

We now need the direction of the line. Since the line lies in each
plane, its direction is orthogonal to a normal vector for each plane. Con-
sidering the equations for p1 and p2, we can quickly determine their
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normal vectors. For p1, n⃗1 =

 1

−1

1

 and for p2, n⃗2 =

−2

1

1

. A
direction orthogonal to both of these directions is their cross product:

d⃗ = n⃗1 × n⃗2 =

−2

−3

−1

.
The parametric equations of the line through P = (1, 1,−1) in the

direction of d =

−2

−3

−1

 is:
ℓ : x = −2t+ 1y = −3t+ 1z = −t− 1.

The planes and line are graphed in Figure 2.6.10.

Figure 2.6.10 Graphing the planes
and their line of intersection in Exam-
ple 2.6.9

The method used to solve for
the pointP in Example 2.6.9would
not be considered best practice
in a linear algebra course, butwe
have not yet developed system-
aticmethods for solving systems
of equations.

Another option would be to
pick a value for one coordinate
(like the choice x = 1), and then
solve the remaining set of two
equations in two variables (y and
z).

Laterwewill see that the gen-
eral algorithm for solving systems
of equations leads directly to para-
metric equations for the line of
intersection of the two planes.

Example 2.6.11 Finding the intersection of a plane and a line.

Find the point of intersection, if any, of the line ℓ(t) =

 3

−3

−1

 +

t

−1

2

1

 and the plane with equation in general form 2x+ y + z = 4.

Solution. The equation of the plane shows that the vector n⃗ =

21
1


is a normal vector to the plane, and the equation of the line shows that

the line moves parallel to d⃗ =

−1

2

1

. Since these are not orthogonal,
we know there is a point of intersection. (If there were orthogonal, it
would mean that the plane and line were parallel to each other, either
never intersecting or the line was in the plane itself.)

To find the point of intersection, we need to find a t value such that
ℓ(t) satisfies the equation of the plane. Rewriting the equation of the
line with parametric equations will help:

ℓ(t) =


x = 3− t

y = −3 + 2t

z = −1 + t

.

Replacingx, y and z in the equationof the planewith the expressions
containing t found in the equation of the line allows us to determine a t
value that indicates the point of intersection:

2x+ y + z = 4

2(3− t) + (−3 + 2t) + (−1 + t) = 4

t = 2.

When t = 2, the point on the line satisfies the equation of the plane;
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that point is ℓ(2) =

11
1

. Thus the point (1, 1, 1) is the point of intersec-
tion between the plane and the line, illustrated in Figure 2.6.12.

Figure 2.6.12 Illustrating the intersec-
tion of a line and a plane in Exam-
ple 2.6.11

2.6.1 Distances
Just as it was useful to find distances between points and lines in the previous
section, it is also often necessary to find the distance from a point to a plane.

Note: Equation (2.6.6) is useful
as it doesmore than just give the
distance between a point and a
plane. We will see how it allows
us to find several other distances
aswell: the distance betweenpar-
allel planes and thedistance from
a line to a plane.

However, aswith the distance
problems in the previous section,
learning to follow the steps in Key
Idea 2.5.14 will pay off more in
the long run than memorizing a
formula. Here, our key steps are
to draw a diagram such as Fig-
ure 2.6.13, which doesn’t need
to be accurate, but does need to
contain all the informationneeded
to construct the projectionwhose
length gives us the desired dis-
tance.

Consider Figure 2.6.13, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projection of

−−→
PQ

onto n⃗. That is, we want:∥∥∥ proj n⃗ −−→PQ
∥∥∥ =

∥∥∥∥∥ n⃗ ·
−−→
PQ

∥n⃗∥2
n⃗

∥∥∥∥∥ =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥
(2.6.6)

Equation (2.6.6) is important as it does more than just give the distance be-
tween a point and a plane. We will see how it allows us to find several other
distances as well: the distance between parallel planes and the distance from
a line and a plane. Because Equation (2.6.6) is important, we restate it as a Key
Idea.

Figure 2.6.13 Illustrating finding the
distance from a point to a plane

Example 2.6.14 Distance between a point and a plane.

Find the distance between the point Q = (2, 1, 4) and the plane
with equation 2x− 5y + 6z = 9.
Solution. Using the equation of the plane, we find the normal vector

n⃗ =

 2

−5

6

. To find a point on the plane, we can let x and y be anything
we choose, then let z be whatever satisfies the equation. Letting x and

y be 0 seems simple; this makes z = 1.5. Thus we let P =

 0

0

1.5

, and
−−→
PQ =

 2

1

2.5

.
The distance h fromQ to the plane is given by the length of the pro-

jection of
−−→
PQ onto n⃗:

h =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥

=

∣∣∣∣∣∣
 2

−5

6

 ·

 2

1

2.5

∣∣∣∣∣∣∥∥∥∥∥∥
 2

−5

6

∥∥∥∥∥∥
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=
|14|√
65

≈ 1.74.

Although it was not requested in Example 2.6.14, note that we can also find
the point R on the plane that is closest to Q. The desired point must be such
that

−−→
RQ = projn⃗

−−→
PQ. Since we know the point Q and the vector

−−→
RQ, we can

find the point R: since
−−→
RQ =

−−→
OQ−

−−→
OR, we find that

−−→
OR =

−−→
OQ−

−−→
RQ

=

21
4

− 14

65

 2

−5

6


=

1

65

102135

176

 .
The desired point R thus has coordinates

(
102

65
,
135

65
,
176

65

)
. To make sure

that we haven’t made any mistakes, let’s make sure that this point is indeed on
the plane. We have

2

(
102

65

)
− 5

(
135

65

)
+ 6

(
176

65

)
=

1

65
(204− 675 + 1056) =

585

65
= 9,

as expected.

Example 2.6.15 Distance between a line and a plane.

Let ℓ be the line with vector equation

ℓ⃗(t) =

 3

2

−4

+ t

 3

1

−1

 ,
and let p be the plane with equation x−2y+ z = 4. Verify that the line
ℓ is parallel to the plane p, and find the distance between them.
Solution. From the vector equation for ℓ we have the direction vector

d⃗ =

 3

1

−1

, and from the equation for p we can read off the normal

vector n⃗ =

 1

−2

1

. Since
d⃗ · n⃗ = 3(1) + 1(−2)− 1(1) = 0,

we know that d⃗ is orthogonal to n⃗, and thus ℓ is parallel to p. To find the
distance from ℓ to p, we first choose a point on each object. From the
vector equation for ℓwe have the point P = (2, 0,−4), and setting y =
z = 0 in the equation for p, we get x = 4 and the pointQ = (4, 0, 0).
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From these two points we can construct the vector

v⃗ =
−−→
PQ =

 1

−2

4


which begins on ℓ and ends on p. The distance from ℓ to p is then given
by the normal component of v⃗: we have

h = ∥projn⃗ v⃗∥ =
|n⃗ · v⃗|
∥n⃗∥

=
9

6
=

3

2
.

In the previous sectionwe used Equation (2.5.3) to find the shortest distance
between a pair of skew lines. Althoughwe provided some discussion of how this
formulawas obtained, it’s once again the case thatmemorizing such a formula is
not as effective as understanding the process that leads to it. In the next exam-
ple, we repeat Example 2.5.18, but this time we try to understand the problem
using planes.

Example 2.6.16 Distance between skew lines.

Find the distance between the skew lines

ℓ1 :

xy
z

 =

12
0

+ t

 3

−1

1


ℓ2 :

xy
z

 =

−2

3

5

+ t

41
2

 .
Solution. We already found the distance between these two lines in
Example 2.5.18 using Equation (2.5.3) Supposing that we forgot this for-
mula, how would we proceed? The key is to realize that whenever we
have a pair of skew lines, we also have a pair of parallel planes, each of
which contains one of the lines. To see this, we first compute the cross

product of the direction vectors d⃗1 =

 3

−1

1

 and d⃗2 =

41
2

 for the two
lines. We find

n⃗ = d⃗1 × d⃗2 =

−3

−2

7

 ,
which is the same as the cross product we computed in Example 2.5.18.
Since n⃗ is orthogonal to d⃗1, the plane through the point (1, 2, 0)with nor-
mal vector n⃗ contains the line ℓ1. Similarly, the plane through (−2, 3, 5)
with normal vector n⃗ contains ℓ2. We now have our parallel planes.

The next step is to realize that at this point, the problem is no dif-
ferent from the one we solved in Example 2.6.14: the distance from ℓ1
to ℓ2 is the same as the distance between the parallel planes, and the
distance between parallel planes is equal to the distance between the
first plane, and any point on the second plane.

By definition, the pointP1 = (1, 2, 0)on ℓ1 lies on the first plane, and
the point P2 = (−2, 3, 5) on ℓ2 lies on the second plane. We compute
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the vector
−−−→
P1P2 =

−3

1

5

, and then find the projection of this vector
onto n⃗, as in Example 2.6.14. We have

projn⃗
−−−→
P1P2 =

(−−−→
P1P2 · n⃗
∥n⃗∥2

)
n⃗

=



−3

1

5

 ·

−3

−2

7


(32 + 22 + 72)


−3

−2

7



=
42

62

−3

−2

7

 .
The distance is then given by∥∥∥projn⃗ −−−→P1P2

∥∥∥ =
42√
62
,

as before.

Given two parallel planes, we can find the distance between these planes
by letting P be a point on one plane and Q a point on the other. If ℓ is a line
parallel to a plane, we can use the Key Idea to find the distance between them
as well: again, let P be a point in the plane and let Q be any point on the line.
The Exercise section contains problems of these types.

These past two sections have not explored lines and planes in space as an ex-
ercise of mathematical curiosity. However, there are many, many applications
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraft may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air friction. Many
equations that help determine air flow and heat dissipation are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximating a surface
withmillions of small planes one canmore readilymodel the needed behavior.
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2.6.2 Exercises

Exercise Group. In the following exercises, give any two points in the given plane.
1. 2x− 4y + 7z = 2 2. List any two points in the plane with equation

3(x+ 2) + 5(y − 9)− 4z = 0.
3. x = 2 4. List any two points in the plane with equation

4(y + 2)− (z − 6) = 0.

Exercise Group. In the following exercises, give the equation of the described plane in standard and general forms.
5. Passes through (2, 3, 4) and has normal vector

n⃗ =

 3

−1

7

.
6. A plane passes through (1, 3, 5) and has normal

vector n⃗ =

02
4

 .
7. Passes through the points (1, 2, 3), (3,−1, 4)

and (1, 0, 1).
8. A plane passes through the points (5, 3, 8),

(6, 4, 9) and (3, 3, 3).
9. Contains the intersecting lines

ℓ⃗1(t) =

21
2

+ t

12
3

 and
ℓ⃗2(t) =

21
2

+ t

25
4

.

10. A plane contains the intersecting lines

ℓ⃗1(t) =

50
3

+ t

−1

1

1

 and
ℓ⃗2(t) =

14
7

+ t

 3

0

−3

 .
11. Contains the parallel lines

ℓ⃗1(t) =

11
1

+ t

12
3

 and
ℓ⃗2(t) =

11
2

+ t

12
3

.

12. A plane contains the parallel lines

ℓ⃗1(t) =

11
1

+ t

41
3

 and
ℓ⃗2(t) =

22
2

+ t

41
3

 .
13. Contains the point (2,−6, 1) and the line

ℓ⃗(t) =


x = 2 + 5t

y = 2 + 2t

z = −1 + 2t

14. A plane contains the point (5, 7, 3) and the line

ℓ⃗(t) =


x = t

y = t

z = t

.

15. A plane contains the point (5, 7, 3) and is

orthogonal to the line ℓ⃗(t) =

45
6

+ t

11
1

 .
16. A plane contains the point (4, 1, 1) and is

orthogonal to the line


x = 4 + 4t

y = 1 + t

z = 1 + t

.

17. A plane contains the point (−4, 7, 2) and is
parallel to the plane
3(x− 2) + 8(y + 1)− 10z = 0.

18. A plane contains the point (1, 2, 3) and is
parallel to the plane x = 5.

Exercise Group. In the following exercises, give the equation of the line that is the intersection of the given planes.
19. p1 : 3(x− 2) + (y − 1) + 4z = 0, and

p2 : 2(x− 1)− 2(y + 3) + 6(z − 1) = 0.
20. Give the equation of the line (in vector form)

that is the intersection of the planes
5(x− 5) + 2(y + 2) + 4(z − 1) = 0, and
3x− 4(y − 1) + 2(z − 1) = 0.

Exercise Group. Find the point of intersection between the line and the plane.
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21.

line:

 5

1

−1

+ t

22
1


plane: 5x− y − z = −3

22.

• line:

41
0

+ t

 1

0

−1


• plane: 3x+ y − 2z = 8

23.

line:

12
3

+ t

 3

5

−1


plane: 3x− 2y − z = 4

24.

• line:

12
3

+ t

 3

5

−1


• plane: 3x− 2y − z = −4

Exercise Group. Find the indicated distance.
25. The distance from the point (1, 2, 3) to the

plane
3(x− 1) + (y − 2) + 5(z − 2) = 0.

26. Find the distance from the point (2, 6, 2) to the
plane 2(x− 1)− y + 4(z + 1) = 0.

27. The distance between the parallel planes
x+ y + z = 0 and
(x− 2) + (y − 3) + (z + 4) = 0

28. Find the distance between the parallel planes
2(x− 1) + 2(y + 1) + (z − 2) = 0 and
2(x− 3) + 2(y − 1) + (z − 3) = 0.

29. Show why if the pointQ lies in a plane, then the distance formula correctly gives the distance from the point to
the plane as 0.



2.7. SPAN AND LINEAR INDEPENDENCE 95

2.7 Span and Linear Independence

So far in this chapter, we have restricted our attention to vectors in two or three
dimensions, wherewe are able to visualize things geometrically. Something that
you may have noticed is that the algebraic rules for the addition and scalar mul-
tiplication vectors are the same in both dimensions.

In this section, we consider this algebra of vectors abstractly, whichwill allow
us to move beyond three dimensions to vectors with an arbitrary number of
components.

Despite the fact that we cannot easily visualize them, higher-dimensional
vectors frequently arise in applications where there are many variables involved.
The fact that the rules of algebra remain the same mean that we can continue
to manipulate these objects, even though we can no longer picture them.

2.7.1 The vector space Rn

For each positive integer n, a column vector x⃗ is formed by arranging n real

numbers x1, x2, . . . , xn into a column x⃗ =


x1

x2

...
xn

. In Chapter 4 we will see
that this is a special type ofmatrix; for now, we can think of a column vector as

an alternative to the notation

 x1

x2

. . . , xn

 encountered earlier in this chapter. In
particular, we still refer to the numbers x1, x2, . . . , xn in x⃗ as the components
of x⃗, andwe define addition and scalarmultiplication of column vectors in terms
of their components, as we did for vectors in R2 and R3.

That is, given vectors x⃗ =


x1

x2

...
xn

 and y⃗ =


y1
y2
...
yn

, and a scalar c, we define

x⃗+ y⃗ =


x1

x2

...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn


and

cx⃗ = c


x1

x2

...
xn

 =


cx1

cx2

...
cxn

 .
With these operations, the set of all n×1 column vectors provides an exam-

ple of what is known as a vector space.
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Definition 2.7.1 The vector space Rn.

The space of all column vectors of real numbers is denoted by

Rn =



x1

x2

...
xn


∣∣∣∣∣∣∣∣∣ x1, x2, . . . , xn ∈ R

 .

As with the vectors inR2 andR3 we encountered in Chapter 2, we allow the
notation Rn to represent both the space of points (x1, x2, . . . , xn), and the set
of vectors defined within that space. Since we can identify any point P with the
position vector

−−→
OP , the difference between viewing Rn as a set of points or as

a set of vectors is primarily one of perspective.
When n ≥ 4 we can no longer visualize vectors in Rn as we did in Chap-

ter 2, but we can handle them algebraically exactly as we did before, and we
can extend the definitions of Chapter 2 to apply to vectors in Rn.

In particular, we can define the length of a vector

x⃗ =


x1

x2

...
xn

 ∈ Rn

by
∥x⃗∥ =

√
x2
1 + x2

2 + · · ·+ x2
n,

and the dot product of vectors x⃗, y⃗ ∈ Rn by

x⃗ · y⃗ = x1y1 + x2y2 + · · ·+ xnyn.

Having defined the dot product, we can still declare two vectors x⃗ and y⃗ to be
orthogonal if x⃗ · y⃗ = 0, and define the angle between two vectors by requiring
that the identity

x⃗ · y⃗ = ∥x⃗∥ ∥y⃗∥ cos θ
remain valid. Using these definitions, along with Theorem 4.1.10, we can see
that all of the properties of vector operations given in Theorem 2.2.16 remain
valid in Rn.

Theorem 2.7.2 Algebraic properties of Rn.

The following properties hold for the space Rn of n× 1 column vec-
tors:

1. If v⃗ and w⃗ are vectors in Rn, v⃗ + w⃗ is also a vector in Rn.

2. For any vectors v⃗, w⃗, v⃗ + w⃗ = w⃗ + v⃗.

3. For any vectors u⃗, v⃗, w⃗, (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗).

4. For any vector v⃗, v⃗ + 0⃗ = v⃗.

5. For any vector v⃗, we can define−v⃗ such that v⃗ + (−v⃗) = 0⃗.

6. If k is a scalar and v⃗ is a vector in Rn, then kv⃗ is also a vector in
Rn.
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7. For any vector v⃗, 1 · v⃗ = v⃗.

8. For any scalars c, d and any vector v⃗, c(dv⃗) = (cd)v⃗).

9. For any scalar c and vectors v⃗, w⃗, c(v⃗ + w⃗) = cv⃗ + cw⃗.

10. For any scalars c, d and vector v⃗, (c+ d)v⃗ = cv⃗ + dv⃗.

Vector spaces are defined in gen-
eral to be sets on which one can
define addition and scalar multi-
plication satisfying the algebraic
properties given in Theorem2.7.2.
Examples of vector spaces other
thanRn include the space ofm×
nmatrices (each choice ofm and
n gives a different space), and
the space of all polynomial func-
tions of a real variable.

Then ten properties listed in Theorem 2.7.2 are known as the vector space
axioms. Any set of objects satisfying these axioms is known as a vector space.
There aremany interesting examples of vector spaces other thanRn, but wewill
not study vector spaces in general in this text.

2.7.2 Linear combinations and span
One of the key insights of linear algebra is that a space such as Rn, which con-
tains infinitely many objects, can be generated using the operations of addition
and scalar multiplication from a finite set of basic objects. We saw in Chapter 2,
for example, that every vector in R3 can be written in terms of just three basic
unit vectors i⃗, j⃗, and k⃗.

Since addition and scalar multiplication are the main operations of linear
algebra, it’s not too surprising (if a little unimaginative) that any combination of
these operations is called a linear combination.

Definition 2.7.3 Linear combination in Rn.

A linear combination in Rn is any expression of the form

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k,

where c1, c2 . . . , ck ∈ R are scalars, and v⃗1, v⃗2, . . . , v⃗k ∈ Rn are vec-
tors.

Example 2.7.4 Forming linear combinations.

Let u⃗ =

 2

−1

3

 , v⃗ =

−4

6

3

 , w⃗ =

 2

3

12

 be vectors in R3. Form the

following linear combinations:

1. 3u⃗− 4w⃗

2. u⃗+ v⃗ − 2w⃗

3. 7v⃗ + 3v⃗

4. 3u⃗+ v⃗ − w⃗

Solution.

1. To simplify the linear combination, we first take care of the scalar
multiplication, and then perform the addition. (We choose to in-
terpret this expression as 3u⃗+ (−4)w⃗, and multiply by−4 in the
first step, and add in the second step, rather than multiplying by 4
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and then subtracting.)

3u⃗− 4w⃗ = 3

 2

−1

3

− 4

 2

3

12

 =

 6

−3

9

+

 −8

−12

−48

 =

 −2

−15

−39

 .
2. We proceed as with the previous problem, this time performing
the scalar multiplication of w⃗ by−2 in our heads:

u⃗+ v⃗ − 2w⃗ =

 2

−1

3

+

−4

6

3

+

 −4

−6

−24

 =

 −6

−1

−18

 .
3. We find

7u⃗+ 3v⃗ = 7

 2

−1

3

+ 3

−4

6

3

 =

14−7

21

+

−12

18

9

 =

 2

11

30

 .
4. For our last example, we compute

3u⃗+ v⃗ − w⃗ =

 6

−3

9

+

−4

6

3

−

 2

3

12

 =

00
0

 .
Notice that in the last example above, our linear combination works out to

be the zero vector. Let’s think about this geometrically for a second: using the
“tip-to-tail” method for adding vectors and beginning with the tail of 3u⃗ at the
origin, if we add the vector v⃗ at the tip of 3u⃗, and then subtract w⃗, we end up
back at the origin. The vectors 3u⃗, v⃗, and w⃗must therefore lie in the same plane,
since they form three sides of a triangle, as depicted in Figure 2.7.5.

w⃗

3u⃗

u⃗

v⃗

Figure 2.7.5 Depicting the last linear
combination in Example 2.7.4

Viewed another way, notice that we can solve the equation 3u⃗+ v⃗− w⃗ = 0⃗
for w⃗: we have

w⃗ = 3u⃗+ v⃗.

What this tells us is that when we’re being asked to form linear combinations of
the vectors u⃗, v⃗, and w⃗ in Example 2.7.4, then vector w⃗ is redundant. Suppose
the vector x⃗ is an arbitrary linear combination of these vectors; that is,

x⃗ = au⃗+ bv⃗ + cw⃗

for some scalars a, b, c. If we plug in w⃗ = 3u⃗+ v⃗, then we get

x⃗ = au⃗+ bv⃗ + c(3u⃗+ v⃗)

= au⃗+ bv⃗ + 3cu⃗+ cv⃗ (distribute the scalar)
= (a+ 3c)u⃗+ (b+ c)v⃗ (collect terms).

Thus, x⃗ has been written in terms of u⃗ and v⃗ only.
These ideas come up frequently enough in Linear Algebra that they have

associated terminology. The definitions that follow seem innocent enough, but
their importance to the theory of Linear Algebra cannot be understated.
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Definition 2.7.6 The span of a set of vectors.

Let A = {v⃗1, v⃗2, . . . , v⃗k} be a set of vectors in Rn. The span of
the vectors in A, denoted span(A), is the set S of all possible linear
combinations of the vectors in A. That is,

S = span(A) = {c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k | c1, c2, . . . , ck ∈ R}.

Example 2.7.7 Describing spans in R3.

Let u⃗, v⃗, w⃗ be as in Example 2.7.4. Describe the following spans:

1. span{u⃗}

2. span{u⃗, v⃗}

3. span{u⃗, v⃗, w⃗}

Solution.

1. As a set, we have

span{u⃗} =

 t

 2

−1

3

 ∣∣∣∣∣∣ t ∈ R

 ,

the set of all scalar multiplies of the vector u⃗.

If we think back to Section 2.5, we can do a bit better with our

description. The set span{u⃗} consists of all vectors

xy
z

 such that
xy
z

 = t

 2

−1

3

 =

00
0

+ t

 2

−1

3

 ,
which we recognize as the equation of a line through the origin in
R3 in the direction of the vector u⃗.

2. Again, as a set we can write

span{u⃗, v⃗} =

s

 2

−1

3

+ t

−4

6

3

 ∣∣∣∣∣∣ s, t ∈ R

 ,

so span{u⃗, v⃗} consists of all vectors of the form

2s− 4t

−s+ 6t

3s+ 3t

,
where s and t can be any real numbers. Again, with a bit of
thought, we can come up with a geometric description of this set.
Consider an arbitrary vector

x⃗ = su⃗+ tv⃗ ∈ span{u⃗, v⃗}.
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Any such vector can be obtained by moving some distance (mea-
sured by the scalar s) in the direction of u⃗, and then moving an-
other distance (measured by the scalar t) in the direction of v⃗. We
now have two directions in which to move, and if we haven’t for-
gotten what we learned in Section 2.6, this probably reminds us
of the description of a plane.

To see that span{u⃗, v⃗} is indeed a plane, we compute

n⃗ = u⃗× v⃗ =

−21

−18

8

 ,
which we know is orthogonal to both u⃗ and v⃗. It follows from the
properties of the dot product that for any other vector x⃗ = su⃗+tv⃗
we have

n⃗ · x⃗ = n⃗ · (su⃗+ tv⃗) = s(n⃗ · s⃗) + t(n⃗ · v⃗) = s(0) + t(0) = 0,

so with x⃗ =

xy
z

, we have
−21x− 18y + 8z = 0,

which is the equation of a plane through the origin.

3. In the discussion following Example 2.7.4 we saw that any vector
that can be written as a linear combination of u⃗, v⃗, and w⃗ can be
written as a linear combination of u⃗ and v⃗ alone. Thus, the span
of u⃗, v⃗, and w⃗ doesn’t contain anything we didn’t already have in
the span of u⃗ and v⃗; that is,

span{u⃗, v⃗, w⃗} = span{u⃗, v⃗}.
For any plane through the ori-
gin, the sum of two vectors that
lie in that plane (or indeed, any
linear combination of vectors in
the plane) is again a vector in that
plane. We’ll see shortly that this
is the distinguishing characteris-
tic of any subspace of Rn.

Example 2.7.8 Determining membership in a span.

Given the vectors u⃗ =

 2

−1

1

, v⃗ =

32
5

, and w⃗ =

−2

5

3

, determine
whether or not the following vectors belong to span{u⃗, v⃗, w⃗}:

1. x⃗ =

36
9

 2. y⃗ =

 4

1

−3


Solution. We do not yet have a general technique for solving problems
of this type. Notice that the question “Does x⃗ belong to the span of
{u⃗, v⃗, w⃗}?” is equivalent to the question, “Do there exist scalars a, b, c
such that

au⃗+ bv⃗ + cw⃗ = x⃗?

” Answering this question amounts to solving a system of linear equa-
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tions: if we plug in our vectors, we have

a

 2

−1

1

+ b

32
5

+ c

−2

5

3

 =

2a+ 3b− 2c

−a+ 2b+ 5c

a+ 5b+ 3c

 =

36
9

 .
By definition of the equality of vectors, this amounts to the system of
equations

2a + 3b − 2c = 3

−a + 2b + 5c = 6

a + 5b + 3c = 9

.

We will develop systematic techniques for solving such systems in
the next chapter. Until then, is there anything we can say? The very
astute reader might notice that the vectors u⃗, v⃗, w⃗ all have something in
common: their third component is the sumof the first two: 1 = 2+(−1)
for u⃗, 5 = 3 + 2 for v⃗, and 3 = −2 + 5 for w⃗. Thus, all three vectors

are of the form

 x

y

x+ y

. Now, notice what happens if we combine two
such vectors:

s

 a

b

a+ b

+t

 c

d

c+ d

 =

 sa+ tc

sb+ td

s(a+ b) + t(c+ d)

 =

 sa+ tc

sb+ td

(sa+ tc) + (sb+ td)

 ,

which is another vector of the same form. The same will be true for
combinations of three or more such vectors.

For the vector x⃗, we check that 3 + 6 = 9, so x⃗ has the correct
form, and indeed (with a bit of “guess and check” work), we find that
a = b = c = 1 works, since u⃗+ v⃗+ w⃗ = x⃗. Thus, we can conclude that

x⃗ ∈ span{u⃗, v⃗, w⃗}.

For the vector y⃗, we add the first two components, getting 4 + 1 = 5 ̸=
−3. Since the third component is not the sum of the first two, there is
no way that y⃗ could belong to the span of u⃗, v⃗, and w⃗.

2.7.3 Linear independence
Notice in Example 2.7.7 that the span did not change when we added the vector
w⃗ to the set of spanning vectors. This was probably not too surprising, since we
saw that w⃗ = 3u⃗ + v⃗, meaning that w⃗ is a linear combination of u⃗ and v⃗, and
thus,

w⃗ ∈ span{u⃗, v⃗}.

We don’t get anything new when we include the vector w⃗ since it lies in the
plane spanned by u⃗ and v⃗. We say that the vector w⃗ depends on u⃗ and v⃗, in
the same way that the total of a sum depends on the numbers being added.
Since this dependence is defined in terms of linear combinations, we say that
the vectors u⃗, v⃗, w⃗ are linearly dependent.

In general, a set of vectors v⃗1, v⃗2 . . . , v⃗k is linearly dependent of one of the
vectors can be written as a linear combination of the others. If this is impossible,
we say that the vectors are linearly independent.
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The formal definition is as follows.
For reasons that become appar-
ent as soon as one begins a dis-
cussion of basis and dimension
(somethingwewon’t really cover
in this text), we must consider
any set containing the zero vec-
tor to be linearly dependent. If
weuse Equation (2.7.1) to define
linear independence, this is included
in the definition: if (for example)
v⃗1 = 0⃗, then we can let c1 be
any real number we want, and
c1v⃗1 = 0⃗, so it is possible to find
a linear combination where not
all of the scalars are zero.

Definition 2.7.9 Linear dependence.

We say that a set of vectors

A = {v⃗1, v⃗2, . . . , v⃗k}

in Rn is linearly dependent if 0⃗ ∈ A, or if one of the vectors v⃗i inA can
be written as a linear combination of the other vectors inA. If the setA
is not linearly dependent, we say that it is linearly independent.

Example 2.7.10 Determining linear independence.

Determine whether or not following sets of vectors are linearly inde-
pendent:

1. The vectors u⃗ =

 2

−1

1

, v⃗ =

32
5

, and w⃗ =

−2

5

3

 from Exam-

ple 2.7.8.

2. The vectors

x⃗ =

 2

−1

0

 , y⃗ =

−2

3

1

 , and z⃗ =

11
0

 .
Solution. Like problems involving span, a general approach to answer-
ing questions like these about linear independencewill have towait until
we develop methods for solving systems of equations in the next chap-
ter. However, for these two sets of vectors, we can reason our way to
an answer.

1. Here, we noticed that all three vectors satisfy the condition z =
x+ y, if we label their respective components as x, y, and z. But
this condition is simply the equationof a plane; namely, x+y−z =
0. Intuition tells us that any plane can be written as the span of
two vectors, so we can expect that any one of the three vectors
can be written in terms of the other two, and indeed, this is the
case. With a bit of guesswork (or by asking a computer), we can
determine that

w⃗ = −19

7
u⃗+

8

7
v⃗,

showing that w⃗ can be written as a linear combination of u⃗ and v⃗,
and thus, that our vectors are linearly dependent.

2. Here, we make the useful observation that two of our three vec-
tors have zero as their third component. Since x⃗ and z⃗ have third
component zero, it is impossible for y⃗ to be written as a linear
combination of x⃗ and z⃗, since any such linear combination would
still have a zero in the third component. To see that x⃗ cannot be
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written in terms of y⃗ and z⃗, notice that for any a and b,

ay⃗ + bz⃗ =

−2a+ b

3a+ b

a

 .
If this is to equal x⃗, then we must have a = 0, giving us x⃗ = bz⃗,
but it’s clear that x⃗ is not a scalarmultiple of z⃗. A similar argument
shows that z⃗ cannot be written in terms of x⃗ and y⃗, and thus our
vectors are linearly independent.

Another way to characterize linear independence is as follows: suppose we
have a linear combination equal to the zero vector:

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k = 0⃗. (2.7.1)

This is always possible of course, since we can simply set each of the scalars
equal to zero. The condition of linear independence tells us that if our vectors
are independent, then this is the only way to obtain a linear combination equal
to the zero vector.

To seewhy this ruleworks, supposewe can choose our scalars in Equation (2.7.1)
so that at least one of them is non-zero. For simplicity, let’s say c1 ̸= 0. Then
we can rewrite Equation (2.7.1) as

c1v⃗1 = −c2v⃗2 − · · · − ckv⃗k,

and since c1 ̸= 0, we can divide both sides by c1, andwe’ve written v⃗1 as a linear
combination of the remaining vectors.

For example, fromExample 2.7.10we can conclude (with a bit of rearranging)
that the vectors u⃗, v⃗, and w⃗ satisfy the relationship

19u⃗− 8v⃗ + 7w⃗ = 0⃗.

Linear independence can be a difficult concept at first, but in three dimen-
sions we can use Equation (2.7.1) to provide a visual interpretation on a case-by-
case basis.

Key Idea 2.7.11 Linearly independent sets of vectors in R3.

• Any set {u⃗} containing a single vector inR3 is linearly dependent if
u⃗ = 0⃗, and independent otherwise. (Here \eqref{eq-linearindep}
becomes cu⃗ = 0⃗. If u⃗ ̸= 0⃗, the only solution is to take c = 0.)

• Any set {u⃗, v⃗} containing two non-zero vectors in R3 is linearly
dependent if u⃗ is parallel to v⃗, and independent otherwise. (In
other words, two dependent vectors lie on the same line. Two
independent vectors span a plane.)

• Any set {u⃗, v⃗, w⃗} of three non-zero vectors inR3 is linearly depen-
dent if all three vectors lie in the same plane, and independent
otherwise.

• Any set of four or more vectors in R3 is automatically linearly de-
pendent.

At this point in the text, we’re
not in a position to prove that
any set of four vectors in R3 (or
more generally, k vectors in Rn,
where k > n) is automatically
independent. However, we’ll soon
see in Chapter 3 that in this case,
the test for independence given
by Equation (2.7.1) results in a
“homogeneous” systemof linear
equationswithmore variables than
equations, and that such a sys-
tem is guaranteed to have non-
trivial solutions.

This section introduced several new ideas. Some, like linear combinations,
are straightforward. Others, like span and linear independence, take some get-
ting used to. There remain two very obvious questions to address:
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1. How do we tell whether or not a given vector belongs to the span of a set
of vectors?

2. How do we tell if a set of vectors is linearly independent?

It turns out that both questions lead to systems of linear equations. As
we saw in Example 2.7.8, we are currently unable to systematically solve such
problems. In Chapters Chapter 3 and Chapter 4 we will develop the techniques
needed to systematically solve such systems, at which point we will be able to
easily answer questions about linear independence and span.

To see how such systems arise, suppose we want to know whether or not

the vector w⃗ =


2

−1

3

0

 ∈ R4 belongs to the set V = span{v⃗1, v⃗2, v⃗3}, where

v⃗1 =


0

2

−1

4

 , v⃗2 =


3

1

0

−4

 , v⃗3 =


−3

6

7

2

 .
By definition, V is the set of all possible linear combinations of the vectors

v⃗1, v⃗2, v⃗3, so saying that w⃗ ∈ V is the same as saying that we can write w⃗ as a
linear combination of these vectors. Thus, what we want to know is whether or
not there exist scalars x1, x2, x3 such that

w⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3.

Substituting in the values for our vectors, this gives

x1


0

2

−1

4

+ x2


3

1

0

−4

+ x3


−3

6

7

2

 =


3x2 − 3x3

2x1 + x2 + 6x3

−x1 + 7x3

4x1 − 4x2 + 2x3

 =


2

−1

3

0

 .
Since two vectors are equal if and only if each component is equal, the above

vector equation leads to the following system of four equations:

3x2 − 3x3 = 2

2x1 + x2 + 6x3 = −1

−x1 + 7x3 = 3

4x1 − 4x2 + 2x3 = 0

.

Thus, the question “Is the vector w⃗ an element of V ?” is equivalent to the ques-
tion “Is there a solution to the above system of equations?”

Questions about linear independence are similar, but not quite the same.
With the above example involving span, what we wanted to know is “Does a
solution exist?” With linear independence, it is not whether a solution exists
that is in doubt, but whether or not that solution is unique. For example, sup-
pose we wanted to know if the vectors in our span example above are linearly
independent. We would start with the vector equation

x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗,

and ask whether or not there are any solutions other than x1 = x2 = x3 = 0.
This vector equation leads to a system just like the one above, except that the

numbers to the right of the = signs would all be zeros. The techniques needed
to answer these and other questionswill be developed beginning in Chapter 3.
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2.7.4 Exercises

Exercise Group. Simplify the given linear combinations, where

u⃗ =


−1

0

2

4

 , v⃗ =


3

4

−5

0

 , and w⃗ =


−3

2

0

7

 .
1. 3u⃗− 2v⃗ 2. −2u⃗+ 3v⃗ + w⃗

3. u⃗− 2v⃗ + 5w⃗ 4. 4v⃗ − 3w⃗

Exercise Group. Calculate the given quantity, where

u⃗ =


2

0

−1

3

7

 , v⃗ =


−3

5

0

−6

1

 , and w⃗ =


0

−3

5

2

−4

 .

5. ∥v⃗∥ 6. u⃗ · v⃗
7. w⃗ · (2u⃗− 3v⃗) 8. 2(w⃗ · u⃗)− 3(w⃗ · v⃗)

Exercise Group. Determine if the given statement is true or false. Give a proof for any true statements, and give a
counterexample for any false statements.

9. A subset of a linearly independent set is linearly independent.
10. A subset of a linearly dependent set is linearly dependent.
11. Any set of vectors that contains the zero vector is linearly dependent.
12. If the vector w⃗ belongs to the span of the set {v⃗1, . . . , v⃗k}, then the set {w⃗, v⃗1, . . . , v⃗k} is linearly depen-

dent.
13. If the set {w⃗, v⃗1, . . . , v⃗k} is linearly dependent, then w⃗ belongs to the span of {v⃗1, . . . , v⃗k}.





Chapter 3

Systems of Linear Equations

In Section 2.7, we encountered the concepts of span and linear independence,
and saw that these lead naturally to certain systems of equations. %, the column
space of a matrix, and the null space of a matrix.

In each casewewere able to explain the concept, but unable to compute any
examples, since we lacked the machinery for solving the systems of equations
that arose.

Chapter 2 also presenteduswith
a few situations where the abil-
ity to solve systems of equations
would have come in handy, such
as the derivationof the cross prod-
uct formula, andwhenwewanted
to compute the point of intersec-
tion of two lines, or the line of
intersection of two planes.

You have probably encountered simple systems of linear equations in high
school; you can might be able to remember solving systems of equations where
you had two or three equations in two or three unknowns, and you tried to
find the value of the unknowns. In this chapter we will uncover some of the
fundamental principles guiding the solution to such problems.

Solving such systems was a bit time consuming, but not terribly difficult. So
why bother? Webother because, in addition to the theoretical applicationsmen-
tioned above, there are many, many,many practical applications where systems
of linear equations arise, from business and finance to engineering to computer
graphics to understanding more mathematics. And not only are there many ap-
plications of systems of linear equations, on most occasions where these sys-
tems arise we are using farmore than three variables. (Engineering applications,
for instance, often require thousands of variables.) So getting a good under-
standing of how to solve these systems effectively is important.

3.1 Introduction to Linear Equations

We’ll begin this section by examining a problem you probably already know how
to solve.

Example 3.1.1 Counting marbles in a jar.

Suppose a jar contains red, blue and green marbles. You are told
that there are a total of 30 marbles in the jar; there are twice as many
red marbles as green ones; the number of blue marbles is the same as
the sumof the red and greenmarbles. Howmanymarbles of each colour
are there?
Solution. We could attempt to solve this with some trial and error, and
we’d probably get the correct answer without too much work. However,
thiswon’t lend itself towards learning a good technique for solving larger
problems, so let’s be more mathematical about it.

107
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Let’s let r represent the number of red marbles, and let b and g de-
note the number of blue and green marbles, respectively. We can use
the given statements about the marbles in the jar to create some equa-
tions.

Since we know there are 30 marbles in the jar, we know that

r + b+ g = 30. (3.1.1)

Also, we are told that there are twice asmany redmarbles as green ones,
so we know that

r = 2g. (3.1.2)

Finally, we know that the number of bluemarbles is the same as the sum
of the red and green marbles, so we have

b = r + g. (3.1.3)

From this stage, there isn’t one “right” way of proceeding. Rather,
there are many ways to use this information to find the solution. One
way is to combine ideas from equations (3.1.2) and (3.1.3); in (3.1.3)
replace r with 2g. This gives us

b = 2g + g = 3g. (3.1.4)

We can then combine equations (3.1.1), (3.1.2) and (3.1.4) by replacing
r in (3.1.1) with 2g as we did before, and replacing b with 3g to get

r + b+ g = 30 (3.1.5)
2g + 3g + g = 30 (3.1.6)

6g = 30 (3.1.7)
g = 5. (3.1.8)

We can now use equation (3.1.8) to find r and b; we know from
(3.1.2) that r = 2g = 10 and then since r + b + g = 30, we easily
find that b = 15.

Mathematicians often see solutions to given problems and then ask “What
if. . .?” It’s an annoying habit that we would do well to develop — we should
learn to think like a mathematician. What are the right kinds of “what if” ques-
tions to ask? Here’s another annoying habit of mathematicians: they often ask
“wrong” questions. That is, they often ask questions and find that the answer
isn’t particularly interesting. But asking enough questions often leads to some
good “right” questions. So don’t be afraid of doing something “wrong;” we
mathematicians do it all the time.

So what is a good question to ask after seeing Example 3.1.1? Here are two
possible questions:

1. Did we really have to call the red balls “r”? Could we call them “q”?

2. What if we had 60 balls at the start instead of 30?

Let’s look at the first question. Would the solution to our problem change if
we called the red balls q? Of course not. At the end, we’d find that q = 10, and
we would know that this meant that we had 10 red balls.

Here’s another “What if?” ques-
tion: what if we had a total of
20 marbles in the jar? Could we
still solve the problem? Chances
are that you can still work out a
solution to the system, but what
does it mean? (In this case it’s
probably safe to assume that it
doesn’t make physical sense to
deal with fractions of a marble.)
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Now let’s look at the second question. Suppose we had 60 balls, but the
other relationships stayed the same. How would the situation and solution
change? Let’s compare the “original” equations to the “new” equations.

Original New
r + b+ g = 30 r + b+ g = 60

r = 2g r = 2g

b = r + g b = r + g

By examining these equations, we see that nothing has changed except the first
equation. It isn’t too much of a stretch of the imagination to see that we would
solve this new problem exactly the same way that we solved the original one,
except that we’d have twice as many of each type of ball.

A conclusion from answering these two questions is this: it doesn’t mat-
ter what we call our variables, and while changing constants in the equations
changes the solution, they don’t really change themethodof howwe solve these
equations.

In fact, it is a great discovery to realize that all we care about are the con-
stants and the coefficients of the equations. By systematically handling these,
we can solve any set of linear equations in a very nice way. Before we go on, we
must first define what a linear equation is.

Definition 3.1.2 Linear Equation.

A linear equation is an equation that can be written in the form

a1x1 + a2x2 + · · ·+ anxn = c

where the xi are variables (the unknowns), the ai are coefficients, and
c is a constant.

A system of linear equations is a set of linear equations that involve
the same variables.

A solution to a system of linear equations is a set of values for the
variables xi such that each equation in the system is satisfied.

So in Example 3.1.1, when we answered “how many marbles of each colour
are there?” wewere also answering “find a solution to a certain system of linear
equations.”

The following are examples of linear equations:

2x+ 3y − 7z = 29

x1 +
7

2
x2 + x3 − x4 + 17x5 = 3

√
−10

y1 + 142y4 + 4 = y2 + 13− y1
√
7r + πs+

3t

5
= cos(45◦).

Notice that the coefficients and constants can be fractions and irrational
numbers (like π, 3

√
−10 and cos(45◦)). The variables only come in the form of

aixi; that is, just one variable multiplied by a coefficient. (Note that 3t
5 = 3

5 t,
just a variable multiplied by a coefficient.) Also, it doesn’t really matter what
side of the equation we put the variables and the constants, although most of
the time we write them with the variables on the left and the constants on the
right.
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We would not regard the above collection of equations to constitute a sys-
tem of equations, since each equation uses differently named variables. An ex-
ample of a system of linear equations is

x1 − x2 + x3 + x4 = 1

2x1 + 3x2 + x4 = 25

x2 + x3 = 10.

It is important to notice that not all equations used all of the variables (it is
more accurate to say that the coefficients can be 0, so the last equation could
have been written as 0x1 + x2 + x3 + 0x4 = 10). Also, just because we have
four unknowns does not mean we have to have four equations. We could have
had fewer, even just one, and we could have had more.

To get a better feel for what a linear equation is, we point out some examples
of what are not linear equations.

2xy + z = 1

5x2 + 2y5 = 100

1

x
+

√
y + 24z = 3

sin2 x1 + cos2 x2 = 29

2x1 + lnx2 = 13.

The first example is not a linear equation since the variables x and y are
multiplied together. The second is not a linear equation because the variables
are raised to powers other than 1; that is also a problem in the third equation
(remember that 1/x = x−1 and

√
x = x1/2). Our variables cannot be the

argument of function like sin, cos or ln, nor can our variables be raised as an
exponent.

At this stage, we have yet to discuss how to efficiently find a solution to a
system of linear equations. That is a goal for the upcoming sections. Right now
we focus on identifying linear equations. It is also useful to “limber” up by solv-
ing a few systems of equations using anymethod we have at hand to refresh our
memory about the basic process.
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3.1.1 Exercises

Exercise Group. State whether or not the equation is linear.
1. x+ y + z = 10 2. xy + yz + xz = 1

3. −3x+ 9 = 3y − 5z + x− 7 4.
√
5y + πx = −1

5. (x− 1)(x+ 1) = 0 6.
√
x2
1 + x2

2 = 25

7. x1 + y + t = 1 8. 1
x + 9 = 3 cos(y)− 5z

9. cos(15)y + x
4 = −1 10. 2x + 2y = 16

Exercise Group. Solve the system of linear equations.

11. x + y = −1

2x − 3y = 8
12. 2x − 3y = 3

3x + 6y = 8

13.
x − y + z = 1

2x + 6y − z = −4

4x − 5y + 2z = 0

14.
x + y − z = 1

2x + y = 2

y + 2z = 0

15. A jar contains 100 marbles. We know there are twice as many green marbles as red; that the number of blue
and yellow marbles together is the same as the number of green; and that three times the number of yellow
marbles together with the red marbles gives the same numbers as the blue marbles. How many of each color
of marble are in the jar?

16. A farmer looks out his window at his chickens and pigs. He tells his daughter that he sees 62 heads and 190 legs.
How many chickens and pigs does the farmer have?

17. A lady buys 20 trinkets at a yard sale. The cost of each trinket is either $0.30 or $0.65. If she spends $8.80, how
many of each type of trinket does she buy?
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3.2 Using Matrices To Solve Systems of Linear Equa-
tions

In Section 3.1 we solved a linear system using familiar techniques. Later, we
commented that in the linear equations we formed, the most important infor-
mation was the coefficients and the constants; the names of the variables really
didn’t matter. In Example 3.1.1 we had the following three equations:

r + b+ g = 30

r = 2g

b = r + g.

Let’s rewrite these equations so that all variables are on the left of the equal
sign and all constants are on the right. Also, for a bit more consistency, let’s list
the variables in alphabetical order in each equation. Therefore we can write the
equations as

b + g + r = 30

− 2g + r = 0

−b + g + r = 0

. (3.2.1)

As we mentioned before, there isn’t just one “right” way of finding the solu-
tion to this system of equations. Here is another way to do it, a way that is a bit
different from our method in Section 3.1.

First, let’s add the first and last equations together, and write the result as a
new third equation. This gives us:

b + g + r = 30

− 2g + r = 0

2g + 2r = 30

.

A nice feature of this is that the only equation with a b in it is the first equation.
Now let’s multiply the second equation by− 1

2 . This gives

b + g + r = 30

g − 1/2r = 0

2g + 2r = 30

.

Note: when we multiplied the
secondequationby− 1

2 in our third
step, wewereproceeding accord-
ing to awell-knownalgorithm (which
we will soon explain) that is es-
pecially efficientwhen implemented
on a computer. We should point
out, however, that since humans
tend tobe less happy aboutwork-
ing with fractions than comput-
ers, wemight reasonably decide
that our third step should be to
first add the second equation to
the third, so that the 2g in the
third equation is cancelled by the
−2g in the second.

Let’s now do two steps in a row; our goal is to get rid of the g’s in the first
and third equations. In order to remove the g in the first equation, let’s multiply
the second equation by−1 and add that to the first equation, replacing the first
equation with that sum. To remove the g in the third equation, let’s multiply the
second equation by −2 and add that to the third equation, replacing the third
equation. Our new system of equations now becomes

b + 3/2r = 30

g − 1/2r = 0

3r = 30

.

Clearly we can multiply the third equation by 1
3 and find that r = 10; let’s

make this our new third equation, giving

b + 3/2r = 30

g − 1/2r = 0

r = 10

.

Now let’s get rid of the r’s in the first and second equation. To remove the r
in the first equation, let’s multiply the third equation by − 3

2 and add the result
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to the first equation, replacing the first equation with that sum. To remove the
r in the second equation, we can multiply the third equation by 1

2 and add that
to the second equation, replacing the second equationwith that sum. This gives
us:

b = 15

g = 5

r = 10

.

Clearly we have discovered the same result as when we solved this problem in
Section 3.1.

Now again revisit the idea that all that really matters are the coefficients and
the constants. There is nothing special about the letters b, g and r; we could have
used x, y and z or x1, x2 and x3. And even then, since we wrote our equations
so carefully, we really didn’t need to write the variable names at all as long as
we put things “in the right place.”

Let’s look again at our system of equations in Equation (3.2.1) and write the
coefficients and the constants in a rectangular array. This time we won’t ignore
the zeros, but rather write them out.

b + g + r = 30

0b − 2g + r = 0

−b + g + r = 0

⇔

 1 1 1 30

0 −2 1 0

−1 1 1 0

 .
Notice how even the equal signs are gone; we don’t need them, for we know
that the last column contains the coefficients.

Themathematical object we have created on the right is called amatrix. We
will give a formal mathematical definition in Chapter 4, where we will see that
matrices are interesting objects in their own right, with numerous interesting
properties and applications. For now we can think of a matrix simply as a rec-
tangular table of numbers that allows us to keep track of certain information;
namely, the constants that define our systemof linear equations. Note that each
row in our matrix represents one of the equations, while each column (except
for the last) represents a variable. We will often want to distinguish between
the coefficient matrix of a system; that is, the matrix containing the coefficients
(the numbers in front of the variables) of a system of linear equations, and the
matrix that also includes the column of constants, as above. When we include
the constants, we refer to the resulting matrix as an augmented matrix.

It is common (but not mandatory) to place a vertical line separating the fi-
nal column of an augmented matrix (containing the constants) from the other
columns (containing the coefficients). One advantage of doing so is that we can
quickly recognize that we’re dealing with an augmented matrix rather than a
coefficient matrix. For example, the augmented matrix for the system Equa-
tion (3.2.1) would be written as seen below on the right: 1 1 1 30

0 −2 1 0

−1 1 1 0

  1 1 1 30

0 −2 1 0

−1 1 1 0


Without the vertical line With the vertical line

Figure 3.2.1 Two ways of writing an augmented matrix

We can use augmented matrices to find solutions to linear equations by us-
ing essentially the same steps we used above. Every time we used the word
“equation” above, substitute the word “row,” as we show below. The comments
explain how we get from the current set of equations (or matrix) to the one on
the next line.
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Let us look back at the steps we used to solve the system of equations at
the beginning of this section. Clearly, the order in which we right down our
equations does not affect the solution; in terms of our matrix, this means we
can rearrange the rows as we please. Note, however, that we cannot rearrange
the columns. To do so wouldmix up our variables, causing us to lose track of our
system.

In addition to changing the order of our equations, we also saw that we can
multiply both sides of any equation by a constant, and we can add a multiple
of one equation to another. These three manipulations are known as the ele-
mentary operations used to solve a system of linear equations. We will see that
with these three elementary operations, we can determine the solution (if any)
to any linear system.

Eachof these elementary operations corresponds to anoperationperformed
on the corresponding augmented matrix known as an elementary row opera-
tion. We use a shorthand notation to describe these matrix operations; let R1,
R2 represent “row 1” and “row 2,” respectively. We can write “add row 1 to
row 3, and replace row 3 with that sum” as “R1 + R3 → R3.” The expression
“R1 ↔ R2” means “interchange row 1 and row 2.”

b + g + r = 30

− 2g + r = 0

−b + g + r = 0

 1 1 1 30

0 −2 1 0

−1 1 1 0



Replace equation 3 with the
sum of equations 1 and 3

Replace row 3 with the
sum of rows 1 and 3.
(R1 +R3 → R3)

b + g + r = 30

− 2g + r = 0

2g + 2r = 30

 1 1 1 30

0 −2 1 0

0 2 2 30



Multiply equation 2 by − 1

2
Multiply row 2 by − 1

2

(− 1
2R2 → R2)

b + g + r = 30

g + −1/2r = 0

2g + 2r = 30

 1 1 1 30

0 1 − 1
2 0

0 2 2 30



Replace equation 1 with the
sum of − 1 times equation 2

plus equation 1;
Replace equation 3 with the
sum of − 2 times equation 2

plus equation 3

Replace row 1 with the sum of
−1 times row 2 plus row 1

(−R2 +R1 → R1)

Replace row 3 with the sum of
−2 times row 2 plus row 3

(−2R2 +R3 → R3)

b + 3/2r = 30

g − 1/2r = 0

3r = 30

 1 0 3
2 30

0 1 − 1
2 0

0 0 3 30


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Multiply equation 3 by
1

3
Multiply row 3 by 1

3

( 13R3 → R3)

b + 3/2r = 30

g − 1/2r = 0

r = 10

 1 0 3
2 30

0 1 − 1
2 0

0 0 1 10



Replace equation 2 with the
sum of 1

2 times equation 3
plus equation 2;

Replace equation 1 with the
sum of − 3

2 times equation 3
plus equation 1

Replace row 2 with the sum
of 1

2 times row 3 plus row 2
( 12R3 +R2 → R2)

Replace row 1 with the sum
of − 3

2 times row 3 plus row 1
(− 3

2R3 +R1 → R1)

b = 15

g = 5

r = 10

 1 0 0 15

0 1 0 5

0 0 1 10


The final matrix contains the same solution information as we have on the

left in the formof equations. Recall that the first column of ourmatrices held the
coefficients of the b variable; the second and third columns held the coefficients
of the g and r variables, respectively. Therefore, the first row of the matrix can
be interpreted as “b+ 0g + 0r = 15,” or more concisely, “b = 15.”

Let’s practice this manipulation again.

Example 3.2.2 Solving a system using augmented matrices.

Find a solution to the following systemof linear equations by simulta-
neously manipulating the equations and the corresponding augmented
matrices.

x1 + x2 + x3 = 0

2x1 + 2x2 + x3 = 0

−1x1 + x2 − 2x3 = 2

.

Solution. We’ll first convert this system of equations into a matrix,
then we’ll proceed by manipulating the system of equations (and hence
the matrix) to find a solution. Again, there is not just one “right” way
of proceeding; we’ll choose a method that is pretty efficient, but other
methods certainly exist (and may be “better”!). The method use here,
though, is a good one, and it is the method that we will be learning in
the future.

The given system and its corresponding augmented matrix are seen
below.

Original system of equations Corresponding matrix

x1 + x2 + x3 = 0

2x1 + 2x2 + x3 = 0

−1x1 + x2 − 2x3 = 2

 1 1 1 0

2 2 1 0

−1 1 −2 2


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We’ll proceed by trying to get the x1 out of the second and third
equation.

Replace equation 2 with the
sum of− 2 times equation 1

plus equation 2;
Replace equation 3 with
the sum of equation 1

and equation 3

Replace row 2 with the sum of
−2 times row 1 plus row 2

(−2R1 +R2 → R2)

Replace row 3 with the sum of
row 1 and row 3
(R1 +R3 → R3)

x1 + x2 + x3 = 0

−x3 = 0

2x2 − x3 = 2

 1 1 1 0

0 0 −1 0

0 2 −1 2


Notice that the second equation no longer contains x2. We’ll ex-

change the order of the equations so that we can follow the convention
of solving for the second variable in the second equation.

Interchange equations 2 and 3 Interchange rows 2 and 3
(R2 ↔ R3)

x1 + x2 + x3 = 0

2x2 − x3 = 2

−x3 = 0

 1 1 1 0

0 2 −1 2

0 0 −1 0



Multiply equation 2 by
1

2
Multiply row 2 by 1

2

( 12R2 → R2)

x1 + x2 + x3 = 0

x2 − 1
2x3 = 1

−x3 = 0

 1 1 1 0

0 1 − 1
2 1

0 0 −1 0



Multiply equation 3 by− 1
Multiply row 3 by − 1

(−1R3 → R3)

x1 + x2 + x3 = 0

x2 − 1
2x3 = 1

x3 = 0

 1 1 1 0

0 1 − 1
2 1

0 0 1 0


Notice that the last equation (and also the last row of the matrix)

show that x3 = 0. Knowing this would allow us to simply eliminate the
x3 from the first two equations. However, we will formally do this by
manipulating the equations (and rows) as we have previously.

Replace equation 1 with the
sum of − 1 times equation 3

plus equation 1;
Replace equation 2 with the
sum of 1

2 times equation 3
plus equation 2

Replace row 1 with the sum of
−1 times row 3 plus row 1

(−R3 +R1 → R1)

Replace row 2 with the sum of
1
2 times row 3 plus row 2

( 12R3 +R2 → R2)
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x1 + x2 = 0

x2 = 1

x3 = 0

 1 1 0 0

0 1 0 1

0 0 1 0


Notice how the second equation shows that x2 = 1. All that remains

to do is to solve for x1.

Replace equation 1 with the
sum of− 1 times equation 2

plus equation 1

Replace row 1 with the sum of
−1 times row 2 plus row 1

(−R2 +R1 → R1)

x1 = −1

x2 = 1

x3 = 0

 1 0 0 −1

0 1 0 1

0 0 1 0


Obviously the equations on the left tell us that x1 = −1, x2 = 1

and x3 = 0, and notice how the matrix on the right tells us the same
information.
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3.2.1 Exercises

Exercise Group. Convert the system of equations into an augmented matrix.

1.
3x + 4y + 5z = 7

−x + y − 3z = 1

2x − 2y + 3z = 5

2.
2x + 5y − 6z = 2

9x − 8z = 10

−2x + 4y + z = −7

3.
x1 + 3x2 − 4x3 + 5x4 = 17

−x1 + 4x3 + 8x4 = 1

2x1 + 3x2 + 4x3 + 5x4 = 6
4.

3x1 − 2x2 = 4

2x1 = 3

−x1 + 9x2 = 8

5x1 − 7x2 = 13

Exercise Group. Convert the given augmented matrix into a system of linear equations. Use the variables x1, x2, etc.

5.
[

1 2 3

−1 3 9

]
6.

[
−3 4 7

0 1 −2

]
7.

[
1 1 −1 −1 2

2 1 3 5 7

]
8.


1 0 0 0 2

0 1 0 0 −1

0 0 1 0 5

0 0 0 1 3



9.


1 0 0 0 2

0 1 0 0 −1

0 0 1 0 5

0 0 0 1 3

 10.
[

1 0 1 0 7 2

0 1 3 2 0 5

]

Exercise Group. Perform the given row operations on A, where

A =

2 −1 7

0 4 −2

5 0 3

 .
11. −1R1 → R1 12. R2 ↔ R3

13. R1 +R2 → R2 14. 2R2 +R3 → R3

15. 1
2R2 → R2 16. − 5

2R1 +R3 → R3

Exercise Group. A matrix A is given below:

A =

1 1 1

1 0 1

1 2 3

 .
For the given matrixB, give the row operation that transforms A intoB.

17. B =

1 1 1

2 0 2

1 2 3

 18. B =

1 1 1

2 1 2

1 2 3


19. B =

3 5 7

1 0 1

1 2 3

 20. B =

1 0 1

1 1 1

1 2 3


21. B =

1 1 1

1 0 1

0 2 2


Exercise Group. Rewrite the system of equations in matrix form. Find the solution to the linear system by simultane-
ously manipulating the equations and the matrix.
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22. x + y = 3

2x − 3y = 1
23. 2x + 4y = 10

−x + y = 4

24. −2x + 3y = 2

−x + y = 1
25. 2x + 3y = 2

−2x + 6y = 1

26.
−5x1 + 2x3 = 14

x2 = 1

−3x1 + x3 = 8

27.
− 5x2 + 2x3 = −11

x1 + 2x3 = 15

− 3x2 + x3 = −8
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3.3 Elementary Row Operations and Gaussian Elimi-
nation

In our examples thus far, we have essentially used just three types of manipula-
tions in order to find solutions to our systems of equations. These three manip-
ulations are:

1. Add a scalar multiple of one equation to a second equation, and replace
the second equation with that sum

2. Multiply one equation by a nonzero scalar

3. Swap the position of two equations in our list

We saw earlier how we could write all the information of a system of equa-
tions in a matrix, so it makes sense that we can perform similar operations on
matrices (as we have done before). Again, simply replace the word “equation”
above with the word “row.”

We didn’t justify our ability to manipulate our equations in the above three
ways; it seems rather obvious that we should be able to do that. In that sense,
these operations are “elementary.” These operations are elementary in another
sense; they are fundamental— they form the basis for much of what we will do
in matrix algebra. Since these operations are so important, we list them again
here in the context of matrices.

Key Idea 3.3.1 Elementary Row Operations.

1. Add a scalar multiple of one row to another row, and replace the
latter row with that sum

2. Multiply one row by a nonzero scalar

3. Swap the position of two rows

Given any system of linear equations, we can find a solution (if one exists)
by using these three row operations. Elementary row operations give us a new
linear system, but the solution to the new system is the same as the old. We
can use these operations as much as we want and not change the solution. This
brings to mind two good questions:

1. Since we can use these operations as much as we want, how do we know
when to stop? (Where are we supposed to “go” with these operations?)

2. Is there an efficientwayof using these operations? (Howdoweget “there”
the fastest?)

We’ll answer the first question first. Most of the time (unless one prefers
obfuscation to clarification) we will want to take our original matrix and, using
the elementary row operations, put it into something called reduced row ech-
elon form. This is our “destination,” for this form allows us to readily identify
whether or not a solution exists, and in the case that it does, what that solution
is.

In the previous section, when wemanipulatedmatrices to find solutions, we
were unwittingly putting the matrix into reduced row echelon form. However,
not all solutions come in such a simple manner as we’ve seen so far. Putting
a matrix into reduced row echelon form helps us identify all types of solutions.
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We’ll explore the topic of understanding what the reduced row echelon form of
a matrix tells us in the following sections; in this section we focus on finding it.

Definition 3.3.2 Reduced Row Echelon Form.

A matrix is in reduced row echelon form if its entries satisfy the fol-
lowing conditions:

1. The first nonzero entry in each row is a 1 (called a leading 1).

2. Each leading 1 comes in a column to the right of the leading 1s in
rows above it.

3. All rows of all 0s come at the bottom of the matrix.

4. If a column contains a leading 1, then all other entries in that col-
umn are 0.

A matrix that satisfies the first three conditions is said to be in row
echelon form.

Example 3.3.3 Determining if a matrix is in reduced row echelon form.

Which of the following matrices is in reduced row echelon form?

(a)
[
1 0

0 1

]

(b)
[
1 0 1

0 1 2

]

(c)
[
0 0

0 0

]

(d)
[
1 1 0

0 0 1

]

(e)

1 0 0 1

0 0 0 0

0 0 1 3



(f)

1 2 0 0

0 0 3 0

0 0 0 4



(g)

0 1 2 3 0 4

0 0 0 0 1 5

0 0 0 0 0 0



(h)

1 1 0

0 1 0

0 0 1


Solution. The matrices in (a), (b), (c), (d) and (g) are all in reduced row
echelon form. Check to see that each satisfies the necessary conditions.
If your instincts were wrong on some of these, correct your thinking ac-
cordingly.

The matrix in (e) is not in reduced row echelon form since the row
of all zeros is not at the bottom. The matrix in (f) is not in reduced row
echelon form since the first nonzero entries in rows 2 and 3 are not 1.
Finally, the matrix in (h) is not in reduced row echelon form since the
first entry in column 2 is not zero; the second 1 in column 2 is a leading
one, hence all other entries in that column should be 0.

We end this example with a preview of what we’ll learn in the future.
Consider the matrix in (b). If this matrix came from the augmented ma-
trix of a system of linear equations, then we can readily recognize that
the solution of the system is x1 = 1 and x2 = 2. Again, in previous
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examples, when we found the solution to a linear system, we were un-
wittingly putting our matrices into reduced row echelon form.

We began this section discussing how we can manipulate the entries in a
matrix with elementary row operations. This led to two questions, “Where do
we go?” and “How do we get there quickly?” We’ve just answered the first
question: most of the time we are “going to” reduced row echelon form. We
now address the second question.

There is no one “right” way of using these operations to transform a ma-
trix into reduced row echelon form. However, there is a general technique that
works very well in that it is very efficient (so we don’t waste time on unnecessary
steps). This technique is called Gaussian elimination. It is named in honour of
the great mathematician Karl Friedrich Gauss.

While this technique isn’t very difficult to use, it is one of those things that is
easier understood by watching it being used than explained as a series of steps.
With this in mind, we will go through one more example highlighting important
steps and then we’ll explain the procedure in detail.

Example 3.3.4 Using row operations to simplify an augmented matrix.

Put the augmented matrix of the following system of linear equa-
tions into reduced row echelon form.

−3x1 − 3x2 + 9x3 = 12

2x1 + 2x2 − 4x3 = −2

−2x2 − 4x3 = −8

.

Solution. We start by converting the linear system into an augmented
matrix.  −3 −3 9 12

2 2 −4 −2

0 −2 −4 −8

 .
Our next step is to change the entry in the box to a 1. To do this, let’s

multiply row 1 by− 1
3 .

−1

3
R1 → R1

 1 1 −3 −4

2 2 −4 −2

0 −2 −4 −8

 .
We have now created a leading 1; that is, the first entry in the first

row is a 1. Our next step is to put zeros under this 1. To do this, we’ll use
the elementary row operation given below.

−2R1 +R2 → R2

 1 1 −3 −4

0 0 2 6

0 −2 −4 −8

 .
Once this is accomplished, we shift our focus from the leading one

down one row, and to the right one column, to the position that is boxed.
We againwant to put a 1 in this position. We can use any elementary row
operations, but we need to restrict ourselves to using only the second
row and any rows below it. Probably the simplest thing we can do is
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interchange rows 2 and 3, and then scale the new second row so that
there is a 1 in the desired position.

R2 ↔ R3

 1 1 −3 −4

0 −2 −4 −8

0 0 2 6


−1

2
R2 → R2

 1 1 −3 −4

0 1 2 4

0 0 2 6

 .
We have now created another leading 1, this time in the second row.

Our next desire is to put zeros underneath it, but this has already been
accomplished by our previous steps. Therefore we again shift our atten-
tion to the right one column and down one row, to the next position put
in the box. We want that to be a 1. A simple scaling will accomplish this.

1

2
R3 → R3

 1 1 −3 −4

0 1 2 4

0 0 1 3


This ends what we will refer to as the forward steps. Our next task is

to use the elementary row operations and go back and put zeros above
our leading 1s. This is referred to as the backward steps. These steps
are given below.

3R3 +R1 → R1

−2R3 +R2 → R2

 1 1 0 5

0 1 0 −2

0 0 1 3


−R2 +R1 → R1

 1 0 0 7

0 1 0 −2

0 0 1 3

 .
It is now easy to read off the solution as x1 = 7, x2 = −2 and x3 = 3.

Technically, Gaussian elimination
consists only of the “forward steps”;
including the “backwards steps”
results in an algorithm known as
Gauss-Jordan elimination. InGauss-
ian elimination, insteadof the back-
ward steps, one uses back sub-
stitution. At the end of the for-
ward steps, we can immediately
read off x3 = 3 from the third
row. The second rowcorresponds
to the equation x2 + 2x3 = 4,
and plugging in x3 = 3 to this
equation, we get x2 + 6 = 4,
so x2 = −2. Finally, the first
row gives the equationx1+x2−
3x3 = −4, and plugging in x2 =
−2 and x3 = 3, we get x1−2−
9 = −4, so x1 = 7. Using back
substitution is slightly more effi-
cient than including the backward
steps, but once we get to exam-
ples with free parameters, you’ll
probably find that it’s easier to
go all the way to reduced row-
echelon form.

We now formally explain the procedure used to find the solution above. As
you read through the procedure, follow along with the example above so that
the explanation makes more sense.
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Forward Steps
1. Working from left to right, consider the first col-
umn that isn’t all zeros that hasn’t already been
worked on. Then working from top to bottom,
consider the first row that hasn’t been worked
on.

2. If the entry in the row and column that we
are considering is zero, interchange rows with
a row below the current row so that that entry
is nonzero. If all entries below are zero, we are
done with this column; start again at step 1.

3. Multiply the current row by a scalar to make its
first entry a 1 (a leading 1).

4. Repeatedly use Elementary Row Operation 1 to
put zeros underneath the leading one.

5. Go back to step 1 andwork on the new rows and
columns until either all rows or columns have
been worked on.

If the above steps have been followed properly,
then the following should be true about the current
state of the matrix:

1. The first nonzero entry in each row is a 1 (a lead-
ing 1).

2. The entries under each leading 1 are all zeros.

3. Each leading 1 is in a column to the right of the
leading 1s above it.

4. All rows of all zeros come at the bottom of the
matrix.

Note that thismeanswehave just put amatrix into
row echelon form. The next steps finish the conver-
sion into reduced row echelon form. These next steps
are referred to as thebackward steps. These aremuch
easier to state.

Backward Steps
1. Starting from the right and working left, use Ele-
mentary Row Operation 1 repeatedly to put ze-
ros above each leading 1.

The basic method of Gaussian elimination is this: create leading ones and
then use elementary row operations to put zeros above and below these leading
ones. We can do this in any order we please, but by following the “Forward
Steps” and “Backward Steps,” we make use of the presence of zeros to make
the overall computations easier. This method is very efficient, so it gets its own
name (which we’ve already been using).
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Definition 3.3.5 Gaussian Elimination.

Gaussian elimination is the technique for finding the reduced row
echelon form of a matrix using the above procedure. It can be abbrevi-
ated to:

1. Create a leading 1.

2. Use this leading 1 to put zeros underneath it.

3. Repeat the above steps until all possible rows have leading 1s.

4. Put zeros above these leading 1s.

Let’s practice some more.

In Example 3.3.6, we create our
first leading 1bymultiplying Row
1 by − 1

2 . On a computer, this
is the most efficient option, and
it’s a good choice in this exam-
ple, since every entry in Row 1
is even, so no fractions are intro-
duced. Most people like to avoid
fractions if they can, and in some
cases that’s impossible with this
typeof rowoperation. Theother
option we could have tried here
is adding Row 3 to Row 1: since
−2 + 3 = 1, the row operation
R1 → R1+R3 also would have
created a leading 1 for us.

Example 3.3.6 Using Gaussian elimination.

Use Gaussian elimination to put the matrix A into reduced row ech-
elon form, where

A =

−2 −4 −2 −10 0

2 4 1 9 −2

3 6 1 13 −4

 .
Solution. We start by wanting to make the entry in the first column
and first row a 1 (a leading 1). To do this we’ll scale the first row by a
factor of− 1

2 .

−1

2
R1 → R1

1 2 1 5 0

2 4 1 9 −2

3 6 1 13 −4


Next we need to put zeros in the column below this newly formed

leading 1.

−2R1 +R2 → R2

−3R1 +R3 → R3

1 2 1 5 0

0 0 −1 −1 −2

0 0 −2 −2 −4


Our attention now shifts to the right one column and down one row

to the position indicated by the box. We want to put a 1 in that position.
Our only options are to either scale the current row or to interchange
rows with a row below it. However, in this case neither of these options
will accomplish our goal. Therefore, we shift our attention to the right
one more column.

We want to put a 1where there is a−1. A simple scaling will accom-
plish this; once done, we will put a 0 underneath this leading one.

−R2 → R2

1 2 1 5 0

0 0 1 1 2

0 0 −2 −2 −4


2R2 +R3 → R3

1 2 1 5 0

0 0 1 1 2

0 0 0 0 0


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Our attention now shifts over one more column and down one row
to the position indicated by the box; we wish tomake this a 1. Of course,
there is no way to do this, so we are done with the forward steps.

Our next goal is to put a 0 above each of the leading 1s (in this case
there is only one leading 1 to deal with).

−R2 +R1 → R1

1 2 0 4 −2

0 0 1 1 2

0 0 0 0 0


This final matrix is in reduced row echelon form.

Example 3.3.7 Gaussian elimination, again.

Put the matrix 1 2 1 3

2 1 1 1

3 3 2 1


into reduced row echelon form.
Solution. Here we will show all steps without explaining each one.

−2R1 +R2 → R2

1 2 1 3

0 −3 −1 −5

0 −3 −1 −8


−1

3
R2 → R2

1 2 1 3

0 1 1/3 5/3

0 −3 −1 −8


3R2 +R3 → R3

1 2 1 3

0 1 1/3 5/3

0 0 0 −3


−1

3
R3 → R3

1 2 1 3

0 1 1/3 5/3

0 0 0 1


−3R3 +R1 → R1

− 5
3R3 +R2 → R2

1 2 1 0

0 1 1/3 0

0 0 0 1


−2R2 +R1 → R1

1 0 1/3 0

0 1 1/3 0

0 0 0 1

 .
The last matrix in the above example is in reduced row echelon form.

If one thinks of the originalmatrix as representing the augmentedmatrix
of a system of linear equations, this final result is interesting. What does
it mean to have a leading one in the last column? We’ll figure this out in
the next section.
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Example 3.3.8 Using back substitution.

Put the matrix A into reduced row echelon form, where

A =

2 1 −1 4

1 −1 2 12

2 2 −1 9

 .
Solution. We’ll again show the stepswithout explanation, althoughwe
will stop at the end of the forward steps and make a comment.

1

2
R1 → R1

1 1/2 −1/2 2

1 −1 2 12

2 2 −1 9


−R1 +R2 → R2

−2R1 +R3 → R3

1 1/2 −1/2 2

0 −3/2 5/2 10

0 1 0 5


−2

3
R2 → R2

1 1/2 −1/2 2

0 1 −5/3 −20/3

0 1 0 5


−R2 +R3 → R3

1 1/2 −1/2 2

0 1 −5/3 −20/3

0 0 5/3 35/3


3

5
R3 → R3

1 1/2 −1/2 2

0 1 −5/3 −20/3

0 0 1 7

 .
Let’s take a break here and think about the state of our linear system

at this moment. Converting back to linear equations, we now know

x1 + 1/2x2 − 1/2x3 = 2

x2 − 5/3x3 = −20/3

x3 = 7

.

Since we know that x3 = 7, the second equation turns into

x2 − (5/3)(7) = −20/3,

telling us that x2 = 5.
Finally, knowing values for x2 and x3 lets us substitute in the first

equation and find

x1 + (1/2)(5)− (1/2)(7) = 2,

so x1 = 3.
This process of substituting known values back into other equations

is called back substitution. This process is essentially what happens
whenwe perform the backward steps of Gaussian elimination. Wemake
note of this below aswe finish out finding the reduced row echelon form
of our matrix.

5

3
R3 +R2 → R2

1 1/2 −1/2 2

0 1 0 5

0 0 1 7


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(knowing x3 = 7 allows us to find x2 = 5)

1
2R3 +R1 → R1

− 1
2R2 +R1 → R1

1 0 0 3

0 1 0 5

0 0 1 7


(knowing x2 = 5 and x3 = 7 allows us to find x1 = 3)

We did our operations slightly “out of order” in that we didn’t put
the zeros above our leading 1 in the third column in the same step, high-
lighting how back substitution works.

In all of our practice, we’ve only encountered systems of linear equations
with exactly one solution. Is this always going to be the case? Could we ever
have systems with more than one solution? If so, how many solutions could
there be? Could we have systems without a solution? These are some of the
questions we’ll address in the next section.
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3.3.1 Exercises

Exercise Group. State whether or not the given matrices are in reduced row echelon form. If it is not, state why.
1.

(a)
[
1 0

0 1

]

(b)
[
0 1

1 0

]

(c)
[
1 1

1 1

]

(d)
[
1 0 1

0 1 2

]

2.

(a)
[
1 0 0

0 0 1

]

(b)
[
1 0 1

0 1 1

]

(c)
[
0 0 0

1 0 0

]

(d)
[
0 0 0

0 0 0

]
3.

(a)

1 1 1

0 1 1

0 0 1



(b)

1 0 0

0 1 0

0 0 0



(c)

1 0 0

0 0 1

0 0 0



(d)

1 0 0 −5

0 1 0 7

0 0 1 3



4.

(a)

2 0 0 2

0 2 0 2

0 0 2 2



(b)

0 1 0 0

0 0 1 0

0 0 0 0



(c)

0 0 1 −5

0 0 0 0

0 0 0 0



(d)

1 1 0 0 1 1

0 0 1 0 1 1

0 0 0 1 0 0


Exercise Group. Use Gaussian Elimination to put the given matrix into reduced row echelon form.

5.
[
1 2

−3 −5

]
6.

[
2 −2

3 −2

]
7.

[
4 12

−2 −6

]
8.

[
−5 7

10 14

]
9.

[
−1 1 4

−2 1 1

]
10.

[
7 2 3

3 1 2

]
11.

[
3 −3 6

−1 1 −2

]
12.

[
4 5 −6

−12 −15 18

]

13.

−2 −4 −8

−2 −3 −5

2 3 6

 14.

2 1 1

1 1 1

2 1 2


15.

 1 2 1

1 3 1

−1 −3 0

 16.

1 2 3

0 4 5

1 6 9


17.

 1 1 1 2

2 −1 −1 1

−1 1 1 0

 18.

2 −1 1 5

3 1 6 −1

3 0 5 0


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19.

1 1 −1 7

2 1 0 10

3 2 −1 17

 20.

4 1 8 15

1 1 2 7

3 1 5 11


21.

[
2 2 1 3 1 4

1 1 1 3 1 4

]
22.

[
1 −1 3 1 −2 9

2 −2 6 1 −2 13

]
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3.4 Existence and Uniqueness of Solutions

So far, whenever we have solved a system of linear equations, we have always
found exactly one solution. This is not always the case; wewill find in this section
that some systems do not have a solution, and others have more than one.

We start with a very simple example. Consider the following linear system:

x− y = 0.

There are obviously infinitelymany solutions to this system; as long as x = y,
we have a solution. We can picture all of these solutions by thinking of the graph
of the equation y = x on the traditional x, y coordinate plane.

Let’s continue this visual aspect of considering solutions to linear systems.
Consider the system

x+ y = 2

x− y = 0.

Each of these equations can be viewed as lines in the coordinate plane, and
since their slopes are different, we know they will intersect somewhere (see
Figure 3.4.1(a)). In this example, they intersect at the point (1, 1) — that is,
when x = 1 and y = 1, both equations are satisfied and we have a solution to
our linear system. Since this is the only place the two lines intersect, this is the
only solution.

Now consider the linear system

x+ y = 1

2x+ 2y = 2.

It is clear that while we have two equations, they are essentially the same
equation; the second is just a multiple of the first. Therefore, when we graph
the two equations, we are graphing the same line twice (see Figure 3.4.1(b); the
thicker line is used to represent drawing the line twice). In this case, we have an
infinite solution set, just as if we only had the one equation x+y = 1. We often
write the solution as x = 1 − y to demonstrate that y can be any real number,
and x is determined once we pick a value for y.

Finally, consider the linear system

x+ y = 1

x+ y = 2.

We should immediately spot a problemwith this system; if the sum of x and
y is 1, how can it also be 2? There is no solution to such a problem; this linear
system has no solution. We can visualize this situation in Figure 3.4.1(c); the two
lines are parallel and never intersect.

(a) (b) (c)

Figure 3.4.1 The three possibilities for two linear equations with two unknowns
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If we were to consider a linear system with three equations and two un-
knowns, we could visualize the solution by graphing the corresponding three
lines. We can picture that perhaps all three lines would meet at one point, giv-
ing exactly 1 solution; perhaps all three equations describe the same line, giving
an infinite number of solutions; perhaps we have different lines, but they do
not all meet at the same point, giving no solution. We further visualize similar
situations with, say, 20 equations with two variables.

On the other hand, if we increase the number of variables to three, then we
know from Section 2.6 that the correct geometric visualization of the situation
involves planes. A single equation such as

2x− 3y + 4z = 7

describes a plane in R3 with normal vector n⃗ =

 2

−3

4

. (By inspection, we can
also choose a point on the plane. Since 3(−1) + 4(1) = 7, we know that the
point (0,−1, 1) lies on the plane.)

If we have two equations in three unknowns, three possibilities arise. The
second equation could be a multiple of the first, in which case we still have our
original plane. The second equation could also describe a parallel plane; for
example, we might have

2x − 3y + 4z = 7

2x − 3y + 4z = 3
.

In this case we know that there is no possible solution to the system, since
there can be nopoint in common to these twoparallel planes. The last possibility
is that the planes are non-parallel, in which case they intersect in a line. For
example, the system

2x − 3y + 4z = 7

−x + 3y − z = 1

describes a pair of planes that intersect in the line (exercise)xy
z

 =

113
0

+ t

−9

−2

1

 .
From here, we can go on to consider three or more equations in three vari-

ables; there might be no solution, or the planes might intersect in a single point,
or along a common line, or they might even all describe the same plane.

While it becomes harder to visualize when we add variables, no matter how
many equations and variables we have, solutions to linear equations always
come in one of three forms: exactly one solution, infinitelymany solutions, or no
solution. This is a fact that we will not prove here, but it deserves to be stated.

Theorem 3.4.2 Solution Forms of Linear Systems.

Every linear system of equations has exactly one solution, infinitely
many solutions, or no solution.

This leads us to a definition. Herewe don’t differentiate between having one
solution and infinitely many solutions, but rather just whether or not a solution
exists.
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Definition 3.4.3 Consistent and Inconsistent Linear Systems.

A system of linear equations is consistent if it has a solution (perhaps
more than one). A linear system is inconsistent if it does not have a
solution.

How can we tell what kind of solution (if one exists) a given system of linear
equations has? The answer to this question lies with properly understanding
the reduced row echelon form of a matrix. To discover what the solution is to a
linear system, we first put the matrix into reduced row echelon form and then
interpret that form properly.

Before we start with a simple example, let us make a note about finding the
reduced row echelon form of a matrix.

Technology Note: In the previ-
ous section, we learned how to
find the reduced rowechelon form
of a matrix using Gaussian elim-
ination — by hand. We need to
knowhow todo this; understand-
ing the process has benefits. How-
ever, actually executing theprocess
by hand for every problem is not
usually beneficial. In fact, with
large systems, computing the re-
duced rowechelon formbyhand
is effectively impossible. The abil-
ity to use theRREF to quickly read
off the solution to a system is prob-
ably more important than being
able to find the RREF in the first
place. There are plenty of pro-
grams available for free online that
will do the Gaussian elimination
for you, but use these with cau-
tion: you probably won’t have
access to a computer on the ex-
ams, so you’d better not become
overly reliant on using software.

As a general rule, when we are learning a new technique, it is best to not
use technology to aid us. This helps us learn not only the technique but some of
its “inner workings.” We can then use technology once we have mastered the
technique and are now learning how to use it to solve problems.

From here on out, in our examples, when we need the reduced row echelon
form of a matrix, we will not show the steps involved. Rather, we will give the
initialmatrix, then immediately give the reduced rowechelon formof thematrix.
We trust that the reader can verify the accuracy of this form by both performing
the necessary steps by hand or utilizing some technology to do it for them.

Our first example explores officially a quick example used in the introduction
of this section.

Example 3.4.4 Solving a linear system.

Find the solution to the linear system

x1 + x2 = 1

2x1 + 2x2 = 2
.

Solution. Create the corresponding augmented matrix, and then put
the matrix into reduced row echelon form.[

1 1 1

2 2 2

]
−→
rref

[
1 1 1

0 0 0

]
.

Now convert the reduced matrix back into equations. In this case,
we only have one equation,

x1 + x2 = 1,

or, equivalently,

x1 = 1− x2

x2 is a free parameter.

We have just introduced a new term, free parameter, or free vari-
able, or simply, parameter. It is used to stress that idea that x2 can take
on any value; we are “free” to choose any value for x2. Once this value is
chosen, the value of x1 is determined. We have infinitely many choices
for the value of x2, so therefore we have infinitely many solutions. The
variable x1 is also known as a leading variable, since the column corre-
sponding to x1 contains a leading 1 in the reduced row echelon form of
our augmented matrix.

In other words, any free pa-
rameters in our system can be
regarded as independent vari-
ables; the remaining variables
are then seen as dependent vari-
ables, and the equations deter-
mined by the reduced row ech-
elon form of our system tell
us how the dependent variables
depend on the parameters.
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For example, if we set x2 = 0, then x1 = 1; if we set x2 = 5,
then x1 = −4. Common practice is to assign a new name to our free
parameter; t is always a good choice. Doing so, we canwrite the solution
to our system as follows:

x1 = 1− t

x2 = t,

where t can be any real number. (Writing the solution in this way is
meant to be reminiscent of the parametric equations for a line in Sec-
tion 2.5.)

Let’s try another example, one that uses more variables.

Example 3.4.5 Solving another linear system.

Find the solution to the linear system

x2 − x3 = 3

x1 + 2x3 = 2

−3x2 + 3x3 = −9

.

Solution. To find the solution, put the corresponding matrix into re-
duced row echelon form. 0 1 −1 3

1 0 2 2

0 −3 3 −9

 −→
rref

 1 0 2 2

0 1 −1 3

0 0 0 0

 .
Now convert this reduced matrix back into equations. We have

x1 + 2x3 = 2

x2 − x3 = 3

or, equivalently,

x1 = 2− 2t

x2 = 3 + t

x3 = t,

where the parameter t can be any real number.
These two equations tell us that the values of x1 and x2 depend on

what t = x3 is. As we saw before, there is no restriction on what tmust
be; it is “free” to take on the value of any real number. Once t is chosen,
we obtain a solution (x1, x2, x3) to our system. Since we have infinitely
many choices for the value of t, we have infinitely many solutions.

As examples, x1 = 2, x2 = 3, x3 = 0 is one solution; x1 = −2,
x2 = 5, x3 = 2 is another solution. Try plugging these values back
into the original equations to verify that these indeed are solutions. (By
the way, since infinitely many solutions exist, this system of equations is
consistent.)

Examples such as these are known as particular solutions to our sys-
tem of equations; they correspond to a particular choice for the para-
meter t. The solution written in terms of the parameter t is known as
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the general solutionto the system of equations. Note that we’re not re-
stricted to verifying particular solutions: we can go whole hog and plug
the general solution into our system to make sure it works. For example,
in the first equation, we have

x2 − x3 = (3 + t)− t = 3,

so the first equation is satisfied.
In the second equation, we have

x1 + 2x3 = (2− 2t) + 2t = 2,

so the second equation is satisfied. The reader can just as easily verify
that our solution works in the third equation as well.

In the two previous examples we have used the word “free” to describe cer-
tain variables. What exactly is a free variable? How do we recognize which vari-
ables are free and which are not?

Look back to the reduced matrix in Example 3.4.4. Notice that there is only
one leading 1 in that matrix, and that leading 1 corresponded to the x1 variable.
That told us that x1 was not a free variable; since x2 did not correspond to a
leading 1, it was a free variable.

Look also at the reduced matrix in Example 3.4.5. There were two leading
1s in that matrix; one corresponded to x1 and the other to x2. This meant that
x1 and x2 were not free variables; since there was not a leading 1 that corre-
sponded to x3, it was a free variable.

We formally define this and a few other terms in this following definition.

Definition 3.4.6 Dependent and Independent Variables.

Consider the reduced row echelon form of an augmented matrix of
a linear system of equations. Then:

• A variable that corresponds to a leading 1 is a leading, or depen-
dent, variable

• A variable that does not correspond to a leading 1 is a non-leading,
or free, or independent, variable. Free variables are also known
as parameters.

These definitions help us understand when a consistent system of linear
equations will have infinitely many solutions. If there are no free variables, then
there is exactly one solution; if there are any free variables, there are infinitely
many solutions.

Key Idea 3.4.7 Consistent Solution Types.

A consistent linear systemof equationswill have exactly one solution
if and only if there is a leading 1 for each variable in the system.

If a consistent linear system of equations has a free variable, it has
infinitely many solutions.

If a consistent linear system hasmore variables than leading 1s, then
the system will have infinitely many solutions.

A consistent linear system with more variables than equations will
always have infinitely many solutions.
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Note: Key Idea 3.4.7 applies only to consistent systems. If a system is in-
consistent, then no solution exists and talking about free and basic variables is
meaningless.

When a consistent system has only one solution, each equation that comes
from the reduced row echelon form of the corresponding augmented matrix
will contain exactly one variable. If the consistent system has infinitely many
solutions, then there will be at least one equation coming from the reduced row
echelon form that contains more than one variable. The “first” variable will be
the basic (or dependent) variable; all others will be free variables.

We have now seen examples of consistent systems with exactly one solution
and others with infinitely many solutions. How will we recognize that a system
is inconsistent? Let’s find out through an example.

Example 3.4.8 An inconsistent system.

Find the solution to the linear system

x1 + x2 + x3 = 1

x1 + 2x2 + x3 = 2

2x1 + 3x2 + 2x3 = 0

.

Solution. We start by putting the corresponding matrix into reduced
row echelon form. 1 1 1 1

1 2 1 2

2 3 2 0

 −→
rref

 1 0 1 0

0 1 0 0

0 0 0 1

 .
Now let us take the reduced matrix and write out the corresponding

equations. The first two rows give us the equations

x1 + x3 = 0

x2 = 0.

So far, so good. However the last row gives us the equation

0x1 + 0x2 + 0x3 = 1,

or, more concisely, 0 = 1. Obviously, this is not true; we have reached a
contradiction. Therefore, no solution exists; this system is inconsistent.

In previous sections we have only encountered linear systems with unique
solutions (exactly one solution). Now we have seen three more examples with
different solution types. The first two examples in this section had infinitely
many solutions, and the third had no solution. How can we tell if a system is
inconsistent?

A linear system will be inconsistent only when it implies that 0 equals 1. We
can tell if a linear system implies this by putting its corresponding augmented
matrix into reduced row echelon form. If we have any row where all entries are
0 except for the entry in the last column, then the system implies 0 = 1. More
succinctly, if we have a leading 1 in the last column of an augmented matrix,
then the linear system has no solution.
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Key Idea 3.4.9 Inconsistent Systems of Linear Equations.

A system of linear equations is inconsistent if the reduced row ech-
elon form of its corresponding augmented matrix has a leading 1 in the
last column.

Example 3.4.10 Verifying that a system is inconsistent.

Confirm that the linear system

+ y = 0

2x + 2y = 4

has no solution.
Solution. We can verify that this system has no solution in two ways.
First, let’s just think about it. If x + y = 0, then it stands to reason, by
multiplying both sides of this equation by 2, that 2x+2y = 0. However,
the second equation of our system says that 2x + 2y = 4. Since 0 ̸=
4, we have a contradiction and hence our system has no solution. (We
cannot possibly pick values for x and y so that 2x + 2y equals both 0
and 4.)

Now let us confirm this using the prescribed technique from above.
The reduced row echelon form of the corresponding augmented matrix
is [

1 1 0

0 0 1

]
.

We have a leading 1 in the last column, so therefore the system is incon-
sistent.

Let’s summarize what we have learned up to this point. Consider the re-
duced row echelon form of the augmented matrix of a system of linear equa-
tions. (That sure seems like a mouthful in and of itself. However, it boils down
to “look at the reduced form of the usual matrix.”) If there is a leading 1 in the
last column, the system has no solution. Otherwise, if there is a leading 1 for
each variable, then there is exactly one solution; otherwise there are infinitely
many solutions. (i.e., there are free variables.)

Systems with exactly one solution or no solution are the easiest to deal with;
systems with infinitely many solutions are a bit harder to deal with. Therefore,
we’ll do a little more practice. First, a definition: if there are infinitely many
solutions, what do we call one of those infinitely many solutions?

Definition 3.4.11 Particular Solution.

Consider a linear system of equations with infinitely many solutions.
A particular solution is one solution out of the infinitely many set of
possible solutions.

The easiest way to find a particular solution is to pick values for the free
variables which then determines the values of the dependent variables. Again,
more practice is called for.
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Example 3.4.12 Finding general and particular solutions.

Give the general solution to a linear systemwhose augmentedmatrix
in reduced row echelon form is 1 −1 0 2 4

0 0 1 −3 7

0 0 0 0 0

 ,
and give two particular solutions.
Solution. We can essentially ignore the third row; it does not divulge
any information about the solution.

Why include the row of zeros
in Example 3.4.12? Rows of
zeros sometimes appear “unex-
pectedly” in matrices after they
have been put in reduced row
echelon form. When this hap-
pens, we do learn something; it
means that at least one equa-
tion was a combination of some
of the others.

The first and second rows can be rewritten as the following equa-
tions:

x1 − x2 + 2x4 = 4

x3 − 3x4 = 7.

Notice how the variables x1 and x3 correspond to the leading 1s of
the givenmatrix. Therefore x1 and x3 are dependent variables; all other
variables (in this case, x2 and x4) are free variables.

We generally write our solution with the dependent variables on the
left and independent variables and constants on the right. It is also a
good practice to acknowledge the fact that our free variables are, in fact,
free. So our final solution would look something like

x1 = 4 + s− 2t

x2 = s is free
x3 = 7 + 3t

x4 = t is free.

Note that in this case we have two free variables, x2 and x4, so we
introduce two parameters, s and t, in our general solution. While we
would be correct in saying that this system has infinitely many solutions,
we can be more precise about the nature of those solutions. Here, we
say that we have a two-parameter family of solutions, to indicate the
fact that two different parameters are required to describe themost gen-
eral solution.

Note: It’s useful to state the
number of parameters in the
general solution to a system
with infinitely many solutions,
since the number of parame-
ters has geometric significance.
A one-parameter family of solu-
tions defines a line, while a two-
parameter family of solutions
defines a plane.

To find particular solutions, choose values for our free variables.
There is no “right” way of doing this; we are “free” to choose whatever
we wish.

By setting x2 = 0 = x4, we have the solution x1 = 4, x2 = 0,
x3 = 7, x4 = 0. By setting x2 = 1 and x4 = −5, we have the solution
x1 = 15, x2 = 1, x3 = −8, x4 = −5. It is easier to read this when are
variables are listed vertically, so we repeat these solutions:

One particular solution is:

x1 = 4

x2 = 0

x3 = 7

x4 = 0.

Another particular solution is:

x1 = 15

x2 = 1

x3 = −8

x4 = −5.
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Example 3.4.13 Finding general and particular solutions.

Find the solution to a linear system whose augmented matrix in re-
duced row echelon form is[

1 0 0 2 3

0 1 0 4 5

]
and give two particular solutions.
Solution. Converting the two rows into equations we have

x1 + 2x4 = 3

x2 + 4x4 = 5.

We see that x1 and x2 are our dependent variables, for they corre-
spond to the leading 1s. Therefore, x3 and x4 are independent variables.
This situation feels a little unusual, for x3 doesn’t appear in any of the
equations above, but cannot overlook it; it is still a free variable since
there is not a leading 1 that corresponds to it. We write our solution as:

x1 = 3− 2t

x2 = 5− 4t

x3 = s is free
x4 = t is free.

What kind of situation would
lead to a column of all zeros? To
have such a column, the original
matrix needed to have a column
of all zeros, meaning that while
we acknowledged the existence
of a certain variable, we never
actually used it in any equation.
In practical terms, we could re-
spond by removing the corre-
sponding column from the ma-
trix and just keep in mind that
that variable is free. In very
large systems, it might be hard
to determine whether or not a
variable is actually used and one
would not worry about it.

When we learn about eigen-
vectors and eigenvalues, we will
see that under certain circum-
stances this situation arises. In
those cases we leave the vari-
able in the system just to remind
ourselves that it is there.

To find two particular solutions, we pick values for our free variables.
Again, there is no “right” way of doing this (in fact, there are . . . infinitely
many ways of doing this) so we give only an example here.

One particular solution is:

x1 = 3

x2 = 5

x3 = 1000

x4 = 0.

Another particular solution is:

x1 = 3− 2π

x2 = 5− 4π

x3 = e2

x4 = π.

(In the second particular solution we picked “unusual” values for x3

and x4 just to highlight the fact that we can.)

Example 3.4.14 Finding general and particular solutions.

Find the solution to the linear system

x1 + x2 + x3 = 5

x1 − x2 + x3 = 3

and give two particular solutions.
Solution. The corresponding augmented matrix and its reduced row
echelon form are given below.[

1 1 1 5

1 −1 1 3

]
−→
rref

[
1 0 1 4

0 1 0 1

]
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Converting these two rows into equations, we have

x1 + x3 = 4

x2 = 1

giving us the solution

x1 = 4− t

x2 = 1

x3 = t is free.

Once again, we get a bit of an “unusual” solution; while x2 is a de-
pendent variable, it does not depend on any free variable; instead, it is
always 1. (We can think of it as depending on the value of 1.) By picking
two values for x3, we get two particular solutions.

One particular solution is:

x1 = 4

x2 = 1

x3 = 0.

Another particular solution is:

x1 = 3

x2 = 1

x3 = 1.

The constants and coefficients of amatrixwork together to determinewhether
a given system of linear equations has one, infinitely many, or no solution. The
concept will be fleshed out more in later chapters, but in short, the coefficients
determine whether a matrix will have exactly one solution or not. In the “or
not” case, the constants determine whether or not infinitely many solutions or
no solution exists. (So if a given linear system has exactly one solution, it will al-
ways have exactly one solution even if the constants are changed.) Let’s look at
an example to get an idea of how the values of constants and coefficients work
together to determine the solution type.

Example 3.4.15 Solving a system with a variable coefficient.

For what values of k will the given system have exactly one solution,
infinitely many solutions, or no solution?

x1 + 2x2 = 3

3x1 + kx2 = 9

Solution. We answer this question by forming the augmented matrix
and starting the process of putting it into reduced row echelon form. Be-
low we see the augmented matrix and one elementary row operation
that starts the Gaussian elimination process.[

1 2 3

3 k 9

]
−−−−−−−−−−−−−→
−3R1 +R2 → R2

[
1 2 3

0 k − 6 0

]
This is as far as we need to go. In looking at the second row, we

see that if k = 6, then that row contains only zeros and x2 is a free
variable; we have infinitely many solutions. If k ̸= 6, then our next step
would be to make that second row, second column entry a leading one.
We don’t particularly care about the solution, only that we would have
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exactly one as both x1 and x2 would correspond to a leading one and
hence be dependent variables.

Our final analysis is then this. If k ̸= 6, there is exactly one solution;
if k = 6, there are infinitely many solutions. In this example, it is not
possible to have no solutions.

As an extension of the previous example, consider the similar augmented
matrix where the constant 9 is replaced with a 10. Performing the same ele-
mentary row operation gives[

1 2 3

3 k 10

]
−−−−−−−−−−−−−→
−3R1 +R2 → R2

[
1 2 3

0 k − 6 1

]
.

As in the previous example, if k ̸= 6, we can make the second row, second
column entry a leading one and hence we have one solution. However, if k = 6,
then our last row is [0 0 1], meaning we have no solution.

We have been studying the solutions to linear systems mostly in an “acade-
mic” setting; we have been solving systems for the sake of solving systems. In
the next section, we’ll look at situations which create linear systems that need
solving (i.e., “word problems”).
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3.4.1 Exercises

Exercise Group. Find the solution to the given linear system. If the system has infinitely many solutions, give 2
particular solutions. Then give a geometric description of the system and its solution in terms of points, lines, and
planes.

1. 2x1 + 4x2 = 2

x1 + 2x2 = 1
2. −2x1 + 4x2 + 4x3 = 6

x1 − 3x2 + 2x3 = 1

3.
2x1 + x2 + 2x3 = 0

x1 + x2 + 3x3 = 1

3x1 + 2x2 + 5x3 = 3

4. 2x1 + 3x2 = 1

−2x1 − 3x2 = 1

5. −x1 − x2 + x3 + x4 = 0

−2x1 − 2x2 + x3 = −1
6. −x1 + 2x2 + 2x3 = 2

2x1 + 5x2 + x3 = 2

7. x1 + x2 + 6x3 + 9x4 = 0

−x1 − x3 − 2x4 = −3
8. −x1 + 5x2 = 3

2x1 − 10x2 = −6

9. x1 + x2 = 3

2x1 + x2 = 4 10.
x1 + 3x2 + 3x3 = 1

2x1 − x2 + 2x3 = −1

4x1 + 5x2 + 8x3 = 2

11. −3x1 + 7x2 = −7

2x1 − 8x2 = 8
12. x1 + 2x2 = 1

−x1 − 2x2 = 5

13.
x1 + 2x2 + 2x3 = 1

2x1 + x2 + 3x3 = 1

3x1 + 3x2 + 5x3 = 2

14.
2x1 + 4x2 + 6x3 = 2

1x1 + 2x2 + 3x3 = 1

−3x1 − 6x2 − 9x3 = −3

Exercise Group. State the values of k for which the given system will have exactly one solution, infinitely many
solutions, or no solution.

15. x1 + 2x2 = 1

x1 + kx2 = 1
16. x1 + 2x2 = 1

x1 + 3x2 = k

17. x1 + 2x2 = 1

2x1 + 4x2 = k
18. x1 + 2x2 = 1

x1 + kx2 = 2
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3.5 Applications of Linear Systems

We’ve started this chapter by addressing the issue of finding the solution to
a system of linear equations. In subsequent sections, we defined matrices to
store linear equation information; we described how we can manipulate matri-
ces without changing the solutions; we described how to efficiently manipulate
matrices so that a working solution can be easily found.

We shouldn’t lose sight of the fact that our work in the previous sectionswas
aimed at finding solutions to systems of linear equations. In this section, we’ll
learn how to apply what we’ve learned to actually solve some problems.

Many, problems that are addressed by engineers, businesspeople, scientists
andmathematicians can be solved by properly setting up systems of linear equa-
tions. In this section we highlight only a few of the wide variety of problems that
matrix algebra can help us solve.

We start with a simple example.

Example 3.5.1 Counting marbles, again.

A jar contains 100 blue, green, red and yellow marbles. There are
twice as many yellow marbles as blue; there are 10 more blue marbles
than red; the sum of the red and yellow marbles is the same as the sum
of the blue and green. How many marbles of each color are there?
Solution. Let’s call the number of blue balls b, and the number of the
other balls g, r and y, each representing the obvious. Since we know
that we have 100 marbles, we have the equation

b+ g + r + y = 100.

The next sentence in our problem statement allows us to create
three more equations.

We are told that there are twice as many yellow marbles as blue.
One of the following two equations is correct, based on this statement;
which one is it?

2y = b or 2b = y

The first equation says that if we take the number of yellowmarbles,
then double it, we’ll have the number of blue marbles. That is not what
we were told. The second equation states that if we take the number of
blue marbles, then double it, we’ll have the number of yellow marbles.
This is what we were told.

The next statement of “there are 10 more blue marbles as red” can
be written as either

b = r + 10 or r = b+ 10.

Which is it?
The first equation says that if we take the number of red marbles,

then add 10, we’ll have the number of blue marbles. This is what we
were told. The next equation is wrong; it implies there are more red
marbles than blue.

The final statement tells us that the sum of the red and yellow mar-
bles is the same as the sum of the blue and green marbles, giving us the
equation

r + y = b+ g.

We have four equations; altogether, they are

b+ g + r + y = 100
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2b = y

b = r + 10

r + y = b+ g.

We want to write these equations in a standard way, with all the
unknowns on the left and the constants on the right. Let us also write
them so that the variables appear in the same order in each equation
(we’ll use alphabetical order to make it simple). We now have

b+ g + r + y = 100

2b− y = 0

b− r = 10

−b− g + r + y = 0.

To find the solution, let’s form the appropriate augmented matrix
and put it into reduced row echelon form. We do so here, without show-
ing the steps.

1 1 1 1 100

2 0 0 −1 0

1 0 −1 0 10

−1 −1 1 1 0

 −→
rref


1 0 0 0 20

0 1 0 0 30

0 0 1 0 10

0 0 0 1 40

 .
We interpret from the reduced row echelon form of the matrix that

we have 20 blue, 30 green, 10 red and 40 yellow marbles.

Even if you had a bit of difficulty with the previous example, in reality, this
type of problem is pretty simple. The unknowns were easy to identify, the equa-
tionswere pretty straightforward towrite (maybe a bit tricky for some), and only
the necessary information was given.

Most problems that we face in the world do not approach us in this way;
most problems do not approach us in the form of “Here is an equation. Solve
it.” Rather, most problems come in the form of:

Here is a problem. I want the solution. To help, here is lots of infor-
mation. It may be just enough; it may be too much; it may not be
enough. You figure out what you need; just give me the solution.

Faced with this type of problem, how do we proceed? Like much of what we’ve
done in the past, there isn’t just one “right” way. However, there are a few steps
that can guide us. You don’t have to follow these steps, “step by step,” but if you
find that you are having difficulty solving a problem,working through these steps
may help. (Note: while the principles outlined here will help one solve any type
of problem, these steps are written specifically for solving problems that involve
only linear equations.)

Key Idea 3.5.2 Mathematical Problem Solving.

1. Understand the problem. What exactly is being asked?

2. Identify the unknowns. What are you trying to find? What units
are involved?

3. Give names to your unknowns (these are your variables).
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4. Use the information given to write as many equations as you can
that involve these variables.

5. Use the equations to form an augmented matrix; use Gaussian
elimination to put the matrix into reduced row echelon form.

6. Interpret the reduced row echelon form of the matrix to identify
the solution.

7. Ensure the solution makes sense in the context of the problem.

Having identified some steps, let us put them into practice with some exam-
ples.

Example 3.5.3 Arranging seating.

A concert hall has seating arranged in three sections. As part of a
special promotion, guests will receive two of three prizes. Guests seated
in the first and second sections will receive Prize A, guests seated in the
second and third sections will receive Prize B, and guests seated in the
first and third sections will receive Prize C. Concert promoters told the
concert hall managers of their plans, and asked how many seats were
in each section. (The promoters want to store prizes for each section
separately for easier distribution.) The managers, thinking they were
being helpful, told the promoters they would need 105 A prizes, 103 B
prizes, and 88 C prizes, and have since been unavailable for further help.
How many seats are in each section?
Solution. Before we rush in and start making equations, we should be
clear about what is being asked. The final sentence asks: “How many
seats are in each section?” This tells us what our unknowns should be:
we should name our unknowns for the number of seats in each section.
Let x1, x2 and x3 denote the number of seats in the first, second and
third sections, respectively. This covers the first two steps of our general
problem solving technique.

(It is tempting, perhaps, to name our variables for the number of
prizes given away. However, when we think more about this, we realize
that we already know this — that information is given to us. Rather, we
should name our variables for the things we don’t know.)

Having our unknowns identified and variables named, we now pro-
ceed to forming equations from the information given. Knowing that
Prize A goes to guests in the first and second sections and that we’ll need
105 of these prizes tells us

x1 + x2 = 105.

Proceeding in a similar fashion, we get two more equations,

x2 + x3 = 103 and x1 + x3 = 88.

Thus our linear system is

x1 + x2 = 105

x2 + x3 = 103

x1 + x3 = 88

,
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and the corresponding augmented matrix is 1 1 0 105

0 1 1 103

1 0 1 88

 .
To solve our system, let’s put this matrix into reduced row echelon

form.  1 1 0 105

0 1 1 103

1 0 1 88

 −→
rref

 1 0 0 45

0 1 0 60

0 0 1 43

 .
We can now read off our solution. The first section has 45 seats, the

second has 60 seats, and the third has 43 seats.

Example 3.5.4 Determining river speed.

A lady takes a 2-mile motorized boat trip down the Highwater River,
knowing the trip will take 30 minutes. She asks the boat pilot “How fast
does this river flow?” He replies “I have no idea, lady. I just drive the
boat.”

She thinks for a moment, then asks “How long does the return trip
take?” He replies “The same; half an hour.” She follows up with the
statement, “Since both legs take the same time, you must not drive the
boat at the same speed.”

“Naw,” the pilot said. “While I really don’t know exactly how fast I go,
I do know that since we don’t carry any tourists, I drive the boat twice
as fast.”

The lady walks away satisfied; she knows how fast the river flows.
(How fast does it flow?)
Solution. This problem forces us to think about what information is
given and how to use it to find what we want to know. In fact, to find
the solution, we’ll find out extra information that we weren’t asked for!

We are asked to find how fast the river is moving (step 1). To find
this, we should recognize that, in some sense, there are three speeds at
work in the boat trips: the speed of the river (which we want to find),
the speed of the boat, and the speed that they actually travel at.

We know that each leg of the trip takes half an hour; if it takes half
an hour to cover 2 miles, then they must be travelling at 4 mph, each
way.

The other two speeds are unknowns, but they are related to the over-
all speeds. Let’s call the speed of the river r and the speed of the boat
b. (And we should be careful. From the conversation, we know that
the boat travels at two different speeds. So we’ll say that b represents
the speed of the boat when it travels downstream, so 2b represents the
speed of the boat when it travels upstream.) Let’s let our speed be mea-
sured in the units of miles/hour (mph) as we used above (steps 2 and
3).

What is the rate of the people on the boat? When they are travelling
downstream, their rate is the sumof thewater speed and the boat speed.
Since their overall speed is 4 mph, we have the equation r + b = 4.
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When the boat returns going against the current, its overall speed is
the rate of the boat minus the rate of the river (since the river is working
against the boat). The overall trip is still taken at 4 mph, so we have
the equation 2b − r = 4. (Recall: the boat is travelling twice as fast as
before.)

The corresponding augmented matrix is[
1 1 4

2 −1 4

]
.

Note that we decided to let the first column hold the coefficients of b.
Putting this matrix in reduced row echelon form gives us:[

1 1 4

2 −1 4

]
−→
rref

[
1 0 8/3

0 1 4/3

]
.

We finish by interpreting this solution: the speed of the boat (going
downstream) is 8/3 mph, or 2.6 mph, and the speed of the river is 4/3
mph, or 1.3 mph. All we really wanted to know was the speed of the
river, at about 1.3mph.

Example 3.5.5 Fitting a quadratic curve.

Find the equation of the quadratic function that goes through the
points (−1, 6), (1, 2) and (2, 3).
Solution. This may not seem like a “linear” problem since we are talk-
ing about a quadratic function, but closer examination will show that it
really is.

We normally write quadratic functions as y = ax2 + bx + c where
a, b and c are the coefficients; in this case, they are our unknowns. We
have three points; consider the point (−1, 6). This tells us directly that if
x = −1, then y = 6. Therefore we know that 6 = a(−1)2 + b(−1) + c.
Writing this in a more standard form, we have the linear equation

a− b+ c = 6.

The second point tells us that a(1)2 + b(1) + c = 2, which we can
simplify as a+ b+ c = 2, and the last point tells us a(2)2+ b(2)+ c = 3,
or 4a+ 2b+ c = 3. Thus our linear system is

a− b+ c = 6

a+ b+ c = 2

4a+ 2b+ c = 3.

.

Again, to solve our system, we find the reduced row echelon form
of the corresponding augmented matrix. We don’t show the steps here,
just the final result. 1 −1 1 6

1 1 1 2

4 2 1 3

 −−→
rref

 1 0 0 1

0 1 0 −2

0 0 1 3


This tells us that a = 1, b = −2 and c = 3, giving us the quadratic

function y = x2 − 2x+ 3.
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One thing interesting about the previous example is that it confirms for us
something that we may have known for a while (but didn’t know why it was
true). Why do we need two points to find the equation of the line? Because in
the equation of the a line, we have two unknowns, and hence we’ll need two
equations to find values for these unknowns.

A quadratic has three unknowns (the coefficients of the x2 term and the x
term, and the constant). Therefore we’ll need three equations, and therefore
we’ll need three points.

What happens if we try to find the quadratic function that goes through 3
points that are all on the same line? The fast answer is that you’ll get the equa-
tion of a line; there isn’t a quadratic function that goes through 3 colinear points.
Try it and see! (Pick easy points, like (0, 0), (1, 1) and (2, 2). You’ll find that the
coefficient of the x2 term is 0.)

Of course, we can do the same type of thing to find polynomials that go
through 4, 5, etc., points. In general, if you are given n+ 1 points, a polynomial
that goes through all n+ 1 points will have degree at most n.

Example 3.5.6 A money counting problem.

A woman has 32 $1, $5, and $10 bills in her purse, giving her a total
of $100. How many bills of each denomination does she have?
Solution. Let’s name our unknowns x, y and z for our ones, fives and
tens, respectively (it is tempting to call them o, f and t, but o looks too
much like 0). We know that there are a total of 32 bills, so we have the
equation

x+ y + z = 32.

We also know that we have $100, so we have the equation

x+ 5y + 10z = 100.

We have three unknowns but only two equations, so we know that
we cannot expect a unique solution. Let’s try to solve this systemanyway
and see what we get.

Putting the system into a matrix and then finding the reduced row
echelon form, we have[

1 1 1 32

1 5 10 100

]
−→
rref

[
1 0 − 5

4 15

0 1 9
4 17

]
.

Reading from our reduced matrix, we have the infinite solution set

x = 15 +
5

4
z

y = 17− 9

4
z

z is free.

While we do have infinitely many solutions, most of these solutions
really don’t make sense in the context of this problem. (Setting z = 1

2
doesn’t make sense, for having half a ten dollar bill doesn’t give us $5.
Likewise, having z = 8 doesn’t make sense, for then we’d have “−1” $5
bills.) Sowemustmake sure that our choice of z doesn’t give us fractions
of bills or negative amounts of bills.

To avoid fractions, z must be a multiple of 4 (−4, 0, 4, 8, . . .). Of
course, z ≥ 0, for a negative number wouldn’t make sense. If z = 0,
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then we have 15 one dollar bills and 17 five dollar bills, giving us $100.
If z = 4, then we have x = 20 and y = 8. We already mentioned that
z = 8 doesn’t make sense, nor does any value of z where z ≥ 8.

So it seems that we have two answers; one with z = 0 and one with
z = 4. Of course, by the statement of the problem, we are led to believe
that the lady has at least one$10 bill, so probably the “best” answer is
that we have 20 $1 bills, 8 $5 bills and 4 $10 bills. The real point of this
example, though, is to address how infinitelymany solutionsmay appear
in a real world situation, and how surprising things may result.

Example 3.5.7 Recreating a football score.

In a football game, teams can score points through touchdowns
worth 6 points, extra points (that follow touchdowns) worth 1 point, two
point conversions (that also follow touchdowns) worth 2 points and field
goals, worth 3 points. You are told that in a football game, the two com-
peting teams scored on 7 occasions, giving a total score of 24 points.
Each touchdown was followed by either a successful extra point or two
point conversion. In what ways were these points scored?
Solution. The question asks how the points were scored; we can inter-
pret this as asking how many touchdowns, extra points, two point con-
versions andfield goalswere scored. We’ll need to assign variable names
to our unknowns; let t represent the number of touchdowns scored; let
x represent the number of extra points scored, letw represent the num-
ber of two point conversions, and let f represent the number of field
goals scored.

Now we address the issue of writing equations with these variables
using the given information. Since we have a total of 7 scoring occasions,
we know that

t+ x+ w + f = 7.

The total points scored is 24; considering the value of each type of
scoring opportunity, we can write the equation

6t+ x+ 2w + 3f = 24.

Finally, we know that each touchdown was followed by a successful
extra point or two point conversion. This is subtle, but it tells us that the
number of touchdowns is equal to the sum of extra points and two point
conversions. In other words,

t = x+ w.

To solve our problem, we put these equations into a matrix and put
the matrix into reduced row echelon form. Doing so, we find 1 1 1 1 7

6 1 2 3 24

1 −1 −1 0 0

 −→
rref

 1 0 0 0.5 3.5

0 1 0 1 4

0 0 1 −0.5 −0.5

 .
Therefore, we know that

t = 3.5− 0.5f

x = 4− f
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w = −0.5 + 0.5f .

We recognize that this means there are “infinitely many solutions,”
but of course most of these will not make sense in the context of a real
football game. Wemust apply some logic to make sense of the situation.

Progressing in no particular order, consider the second equation,
x = 4 − f . In order for us to have a positive number of extra points,
we must have f ≤ 4. (And of course, we need f ≥ 0, too.) Therefore,
right away we know we have a total of only 5 possibilities, where f = 0,
1, 2, 3 or 4.

From the first and third equations, we see that if f is an even number,
then t and w will both be fractions (for instance, if f = 0, then t = 3.5)
which does not make sense. Therefore, we are down to two possible
solutions, f = 1 and f = 3.

If f = 1, we have 3 touchdowns, 3 extra points, no two point con-
versions, and (of course), 1 field goal. (Check to make sure that gives
24 points!) If f = 3, then we 2 touchdowns, 1 extra point, 1 two point
conversion, and (of course) 3 field goals. Again, check to make sure this
gives us 24 points. Also, we should check each solution tomake sure that
we have a total of 7 scoring occasions and that each touchdown could
be followed by an extra point or a two point conversion.

We have seen a variety of applications of systems of linear equations. We
would do well to remind ourselves of the ways in which solutions to linear sys-
tems come: there can be exactly one solution, infinitely many solutions, or no
solutions. While we did see a few examples where it seemed like we had only
2 solutions, this was because we were restricting our solutions to “make sense”
within a certain context.

We should also remind ourselves that linear equations are immensely impor-
tant. The examples we considered here ask fundamentally simple questions like
“How fast is the water moving?” or “What is the quadratic function that goes
through these three points?” or “How were points in a football game scored?”
The real “important” situations ask much more difficult questions that often re-
quire thousands of equations! (Gauss began the systematic study of solving sys-
tems of linear equations while trying to predict the next sighting of a comet; he
needed to solve a system of linear equations that had 17 unknowns. Today, this
a relatively easy situation to handle with the help of computers, but to do it by
hand is a real pain.) Once we understand the fundamentals of solving systems
of equations, we can move on to looking at solving bigger systems of equations;
this text focuses on getting us to understand the fundamentals.

Span and linear independence. We mentioned in Section 2.7 that the tech-
niques of this chapter were necessary to answer questions about vectors, includ-
ing those involving span and linear independence. We complete this section by
including a few examples involving these concepts.

Example 3.5.8 Determining which vectors belong to a span.

Let v⃗1 =

 1

−2

0

, v⃗2 =

34
8

, and v⃗3 =

 3

−1

4

. Determine which
of the following vectors can be written as a linear combination of the
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vectors v⃗1, v⃗2, v⃗3.

1. a⃗ =

 2

−14

−8

 2. b⃗ =

 1

0

−4

 3. c⃗ =

−4

3

1


Solution. Put another way, this problem is asking us which, if any, of
the vectors a⃗, b⃗, c⃗ belong to the span of the vectors v⃗1, v⃗2, v⃗3. Recall that

a⃗ ∈ span{v⃗1, v⃗2, v⃗3}

if and only if there exist scalars x1, x2, x3 such that

x1v⃗1 + x2v⃗2 + x3v⃗3 = a⃗.

Plugging in values for our vectors, we are trying to solve

x1

 1

−2

0

+ x2

34
8

+ x3

 3

−1

4

 =

 2

−14

−8

 .
If we combine the vectors on the left-hand side above into a single

vector and equate coefficients, we obtain the system

x1 + 3x2 + 3x3 = 2

−2x1 + 4x2 − x3 = −14

8x2 + 4x3 = −8

.

We nowwhat to do from here: we set up our augmentedmatrix and
reduce: 1 3 3 2

−2 4 −1 −14

0 8 4 −8

 −→
rref

 1 0 3
2 5

0 1 1
2 −1

0 0 0 0

 ..

The reduced row echelon form of our matrix tells us that there are
infinitely many solutions; in particular, there is a solution. Our general
solution is

x1 = 5− 3

2
t

x2 = −1− 1

2
t

x3 = t,

but any particular solution will do. Taking t = 0, we get x1 = 5, x2 =
−1, and x3 = 0, telling us that

a⃗ = 5v⃗1 − v⃗2 + 0v⃗3.

The reader is encouraged to verify that this is indeed the case.
For the vector b⃗, we proceed as above. It should be clear that the

system of equations we obtain differs from the one above only in the
constants on the right-hand side (since these are defined by the vector b⃗),
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sowe can proceed by replacing the right-hand column in our augmented
matrix above by the vector b⃗, and reducing: 1 3 3 1

−2 4 −1 0

0 8 4 −4

 −→
rref

 1 0 3
2

2
5

0 1 1
2

1
5

0 0 0 − 7
10

 .
This time, we see that the third row in the reduced row echelon form

of our augmented matrix corresponds to the impossible equation 0 =
− 7

10 , so no solution exists. Thismeans that it is impossible to find scalars
x1, x2, x3 such that

b⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3,

and therefore the vector b⃗ cannot be written as a linear combination of
the vectors v⃗1, v⃗2, and v⃗3.

The solution for the vector c⃗ is similar. We replace the right-hand
column in our augmented matrix by c⃗ and reduce: 1 3 3 −4

−2 4 −1 3

0 8 4 1

 −→
rref

 1 0 3
2 − 5

2

0 1 1
2 − 1

2

0 0 0 5
8

 .
Again, the third row in the reduced row echelon form of our aug-

mented matrix tells us that our system of equations is inconsistent, and
therefore, the vector c⃗ does not belong to the span of the vectors v⃗1, v⃗2,
and v⃗3.

Let us make a couple of observations before proceeding to the next exam-
ple. First, let us write out the result for the vector a⃗ using the general solution,
written in terms of the parameter t, and manipulate things a bit:

a⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3

=

(
5− 3

2
t

)
v⃗1 +

(
−1− 1

2
t

)
v⃗3 + tv⃗3

= 5v⃗1 − v⃗2 + t

(
v⃗3 −

3

2
v⃗1 −

1

2
v⃗2

)
.

Setting t = 0 gives us the particular solution we chose. What happens if
we choose other values of t? Well, nothing happens to the left-hand side of the
equation above, so it must be that nothing happens on the right either. How can
this be? Look at the vector in parentheses: we have

v⃗3 −
3

2
v⃗1 −

1

2
v⃗2 =

 3

−1

4

− 3

2

34
8

+
1

2

 3

−1

4

 =

00
0

 !
Of course nothing happens: choosing different values for t simply means

we’re adding different multiples of the zero vector to our particular solution!

Note:In Section 3.6, we’ll start
writingour solutions to linear sys-
tems in vector form, and doing
so gives us additional insight into
what’s going on when there are
infinitelymany solutions. We see
something of a preview in Exam-
ple 3.5.8. Theparameter t resulted
because the vectors v⃗1, v⃗2, and
v⃗3werenot linearly independent:
wedon’t really need the variable
x3 since the vector v⃗3 is redun-
dant. In general, we will end up
with one or more parameters in
a consistent systemwhenever the
columnsof the coefficientmatrix
are not linearly independent.

The other thing to note, now that we’ve done a few examples, is that once
we have our vectors, we can jump straight to our augmented matrix, since the
columns of this matrix are simply the vectors we started with. It’s important to
do it once the long way, however, so that we understand where everything is
coming from. (Otherwise, you’ll find yourself staring at the solution to a system,
and having no idea what that solution is telling you!)
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On the subject of saving time, if you went through the row operations for
each of the vectors above (if you didn’t, maybe you should: working through
the examples is good practice if you haven’t yet got the hang of row operations),
you probably noticed that you used the exact same row operations for each of
the three vectors. This is because the row operations in an augmented matrix
[A|⃗b] are dictated by thematrixA, and not by the vector b⃗. With this observation
in place, we can speed things up considerably by solving the problem for all three
vectors at once. We simply set up and reduce an augmented matrix with three
columns on the right, like so: 1 3 3 2 1 −4

−2 4 −1 −14 0 3

0 8 4 −8 −4 1

 −→
rref

 1 0 3
2 5 2

5 − 5
2

0 1 1
2 −1 1

5 − 1
2

0 0 0 0 − 7
10

5
8

 .
If we then consider each column on the right of the reduced row echelon

form separately, we obtain the same results as before.
We conclude this section with a pair of examples involving linear indepen-

dence.

Example 3.5.9 Determining linear independence.

Determine whether or not the vectors

v⃗1 =

 1

−3

4

 , v⃗2 =

−2

1

−3

 , v⃗3 =

 2

0

−1


are linearly independent.
Solution. We test for linear independence by setting up and solving
Equation (2.7.1): we suppose that there exist scalars x1, x2, x3 such that

x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗,

and determine what values of x1, x2, x3 are possible. Putting in our vec-
tors we have

x1

 1

−3

4

+ x2

−2

1

−3

+ x3

 2

0

−1

 =

x1 − 2x2 + 2x3

−3x1 + 2x2

4x1 − 3x2 − x3

 =

00
0

 ,
leading to the system of linear equations

x1 − 2x2 + 2x3 = 0

−3x1 + 2x2 = 0

4x1 − 3x2 − z3 = 0

.

As with the examples involving span above, we end up with a sys-
tem of linear equations. As we’ll see in Section 3.6, this is an example
of a homogeneous system of equations. Any problem involving linear
independence results in such a system, and as you’ve probably already
noticed, we don’t need to worry about whether or not the system is
consistent. The so-called trivial solution x1 = x2 = x3 = 0 is always
a possibility. With linear independence, we don’t care about whether a
solution exists; what we want to know is whether or not that solution is
unique.
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Since a homogeneous system is, after all, a linear system, we know
how to proceed: set up the corresponding augmented matrix and re-
duce.  1 −2 2 0

−3 1 0 0

4 −3 −1 0

 −→
rref

 1 0 0 0

0 1 0 0

0 0 1 0

 .
From the reduced row echelon form of the augmented matrix, we

can see that our system has the unique solution x1 = x2 = x3 = 0.
Since this is the only possible solution, we can conclude that our vectors
are linearly independent.

Example 3.5.10 Determining linear independence.

Determine whether the vectors

w⃗1 =

 2

−3

1

 , w⃗2 =

30
4

 , w⃗3 =

 1

12

8


in R3 are linearly independent.
Solution. As with Example 3.5.9, we know that Equation (2.7.1) leads
to a system of linear equations with zeros on the right-hand sides, and
the vectors w⃗1, w⃗2, w⃗3 make up the columns on the left of the corre-
sponding augmented matrix. We find 2 3 1 0

−3 0 12 0

1 4 8 0

 −→
rref

 1 0 −4 0

0 1 3 0

0 0 0 0

 .
In this case, lack of leading 1 in the x3 column of the reduced row

echelon form of the augmented matrix tells us that we should expect
infinitely many solutions. Setting x3 = t as a free parameter, we have

x1 = 4t

x2 = −3t

x3 = t.

Choosing any value of t ̸= 0 gives us a non-trivial solution. For exam-
ple, setting t = 1 gives us 4w⃗1 − 3w⃗2 + w⃗3 = 0⃗, so w⃗3 can be written
as the linear combination

w⃗3 = −4w⃗1 + 3w⃗2,

which shows that the given vectors are not linearly independent.

In these last examples we’ve started to explore the connection between vec-
tors and systems of linear equations. We’ll continue to do so in the next section,
where we begin to write our solutions in vector form.
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3.5.1 Exercises

Exercise Group. Find the polynomial with the smallest degree that goes through the given points.
1. (1, 3) and (3, 15)

2. (−2, 14) and (3, 4)

3. (1, 5), (−1, 3) and (3,−1)

4. (−4,−3), (0, 1) and (1, 4.5)

5. (−2, 15), (−1, 4), (1, 0) and (2,−5)

6. (−2,−7), (1, 2), (2, 9) and (3, 28)

7. (−1,−8), (1,−2) and (3, 4)

8. (−3, 3), (1, 3) and (2, 3)

9. (−3, 10), (−1, 2), (1, 2) and (2, 5)

10. (0, 1), (−3,−3.5), (−2,−2) and (4, 7)

11. The general exponential function has the form f(x) = aebx, wherea and b are constants and e is Euler’s constant
(≈ 2.718). We want to find the equation of the exponential function that goes through the points (1, 2) and
(2, 4).

(a) Show why we cannot simply subsitute in values for x and y in y = aebx and solve using the techniques
we used for polynomials.

(b) Show how the equality y = aebx leads us to the linear equation ln y = ln a+ bx.

(c) Use the techniques we developed to solve for the unknowns ln a and b.

(d) Knowing ln a, find a; find the exponential function f(x) = aebx that goes through the points (1, 2) and
(2, 4).

12. In a football game, 24 points are scored from 8 scoring occasions. The number of successful extra point kicks
is equal to the number of successful two point conversions. Find all ways in which the points may have been
scored in this game.

13. In a football game, 29 points are scored from 8 scoring occasions. There are 2 more successful extra point kicks
than successful two point conversions. Find all ways in which the points may have been scored in this game.

14. In a basketball game, where points are scored either by a 3 point shot, a 2 point shot or a 1 point free throw,
80 points were scored from 30 successful shots. Find all ways in which the points may have been scored in this
game.

15. In a basketball game, where points are scored either by a 3 point shot, a 2 point shot or a 1 point free throw,
110 points were scored from 70 successful shots. Find all ways in which the points may have been scored in this
game.

16. Describe the equations of the linear functions that go through the point (1,3). Give 2 examples.
17. Describe the equations of the linear functions that go through the point (2,5). Give 2 examples.
18. Describe the equations of the quadratic functions that go through the points (2,−1) and (1,0). Give 2 examples.

19. Describe the equations of the quadratic functions that go through the points (−1, 3) and (2,6). Give 2 examples.

Exercise Group. Determine whether or not the vector x⃗ belongs to span{v⃗1, v⃗2}.

20. v⃗1 =

 2

0

−1

, v⃗2 =

−3

2

4

, x⃗ =

−5

6

10

 21. v⃗1 =

 2

0

−1

, v⃗2 =

−3

2

4

, x⃗ =

 8

−4

−2


22. v⃗1 =

 1

3

−2

, v⃗2 =

 0

5

−3

, x⃗ =

34
0

 23. v⃗1 =

 1

3

−2

, v⃗2 =

 0

5

−3

, x⃗ =

−2

4

−2


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Exercise Group. Determine whether or not the given vectors are linearly independent.

24. v⃗1 =

 1

3

−2

, v⃗2 =

 0

5

−3

, v⃗3 =

−2

4

−2

 25. v⃗1 =

 1

0

−2

, v⃗2 =

 0

2

−1

, v⃗3 =

−2

1

0


26. v⃗1 =

11
1

, v⃗2 =

20
3

, v⃗3 =

01
2

 27. v⃗1 =

12
3

, v⃗2 =

32
1

, v⃗3 =

−3

2

7


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3.6 Vector Solutions to Linear Systems

So far in this chapter, we’ve learned a systematic method for solving systems of
linear equations. Some of the applied examples we considered in the previous
section led naturally to systems of equations, and had solutions that were best
interpreted in that context. Other examples, such as those involving span and
linear independence, were stated in terms of vectors. In this section, we discuss
how to write a system of linear equations in terms of vectors and matrices, and
express solutions as vectors.

Expressing the solutions of linear systems in terms of vectors will give us
additional insight into the behaviour of those systems, and provides a stepping-
off point for the study of the algebra of matrices.

We have often relied on previous algebra experience to help us understand
linear algebra concepts. We do that again here. Consider the equation ax = b,
where a = 3 and b = 6. If we asked one to “solve for x,” what exactly would we
be asking? We would want to find a number, which we call x, where a times x
gives b; in this case, it is a number, when multiplied by 3, returns 6. As long as
a ̸= 0 (what if a does equal zero?), we know that we can multiply both sides of
the equation by 1

a to get x = 1
a (b) =

b
a .

Consider a general system of linear equations, of the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

. (3.6.1)

Notice that the information we place into our augmented matrix can be di-
vided into two pieces: the coefficient matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


and the column vector

b⃗ =


b1
b2
...
bm

 .
Moreover, instead of writing our solution as a list (x1 =, x2 = . . .), we can
arrange our variables into a vector

x⃗ =


x1

x2

...
xn

 ,
and express our solution as a single vector rather than a list of numbers.

To create an analogy with the single variable equation ax = b, we ask: Is
there a way to define the productAx⃗ of a matrix and a column vector in such a
way that the system (3.6.1) can be written in the form

Ax⃗ = b⃗?
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Fortunately for us, the answer is yes! Even better, we’ll see that the definition
we give here turns out to be a special case (and motivating example) for the
general definition of matrix multiplication given in Section 4.2.

The definition of the product Ax⃗ is straightforward. We want the result to
be a column vector of sizem (that is, withm entries), so that we can set it equal
to the column vector b⃗. Furthermore, each entry in b⃗ is the right-hand side of an
equation in (3.6.1), sowewant the corresponding entry inAx⃗ to be the left-hand
side. We are immediately forced to adopt the following rule.

Definition 3.6.1 The productAx⃗.

The product of the matrix A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 and the

vector x⃗ =


x1

x2

...
xn

 is given by

Ax⃗ =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

A few remarks about Definition 3.6.1 are needed here. First, note that the
number of columns in the matrixAmatches the number of entries in the vector
x⃗, and the number of rows in A matches the number of entries in the vector b⃗.
Moreover,

The ith entry in the vectorAx⃗ is obtained by forming the dot prod-
uct of row i in the matrix A (viewed as a vector in Rn) with the
vector x⃗.

That is, since each row ofA has n entries, as does the vector x⃗, we can form the
dot product of x⃗ with any of the rows of A. Each such dot product forms the
corresponding entry in the vector Ax⃗.

Second, the right-hand side of the equation defining Ax⃗ in Definition 3.6.1
can be rewritten as follows:

Ax⃗ =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 = x1


a11
a12
...

am1

+x2


a21
a22
...

am2

+· · ·+xx


a1n
a2n
...

amn

 .
That is, the product Ax⃗ is a linear combination of the columns of A, with the
entries of x⃗ as coefficients.

Or equivalently, using the language of Section 2.7, the vectorAx⃗ belongs to
the span of the columns of A. This will be a useful observation when solving
questions about span.
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To help understand what this is asking, we’ll consider an example. Let

A =

1 1 1

1 −1 2

2 0 1

 , b⃗ =

 2

−3

1

 and x⃗ =

x1

x2

x3

 .
(We don’t know what x⃗ is, so we have to represent its entries with the variables
x1, x2 and x3.) Let’s “solve for x⃗,” given the equation Ax⃗ = b⃗.

Wemultiply out the lefthand side of this equationaccording toDefinition3.6.1.
The first row of A is the row vector a⃗1 =

[
1 1 1

]
. Treating this as a column

vector, we form the dot product with x⃗, giving us

a⃗1 · x⃗ = x1 + x2 + x3.

Similarly, letting a⃗2 and a⃗3 denote the second and third rows of A, respectively,
we find

a⃗2 · x⃗ = x1 − x2 + 2x3

a⃗3 · x⃗ = 2x1 + x3.

Putting things together, we find that

Ax⃗ =

 x1 + x2 + x3

x1 − x2 + 2x3

2x1 + x3

 .
Be sure to note that the product is just a vector; it has just one column.

If you prefer to think in terms of the columns of A, we can use the obser-
vation above, that Ax⃗ is a linear combination of the columns of A. This gives
us

Ax⃗ = x1

11
2

+ x2

 1

−1

0

+ x3

12
1

 =

 x1

x1

2x1

+

 x2

−x2

0

+

 x3

2x3

x3

 .
When we add these three columns together, we get the same result as above.

Setting Ax⃗ equal to b⃗, we have x1 + x2 + x3

x1 − x2 + 2x3

2x1 + x3

 =

 2

−3

1

 .
Since two vectors are equal only when their corresponding entries are equal, we
know

x1 + x2 + x3 = 2

x1 − x2 + 2x3 = −3

2x1 + x3 = 1.

This should look familiar; it is a system of linear equations! Given the matrix-
vector equation Ax⃗ = b⃗, we can recognize A as the coefficient matrix from a
linear system and as the vector of the constants from the linear system. Given a
system of equations, rewriting it in matrix form is equally straightforward.

To solve amatrix--vector equation (and the corresponding linear system), we
simply augment thematrixAwith the vector b⃗, put this matrix into reduced row
echelon form, and interpret the results.
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We convert the above linear system into an augmented matrix and find the
reduced row echelon form: 1 1 1 2

1 −1 2 −3

2 0 1 1

 −→
rref

 1 0 0 1

0 1 0 2

0 0 1 −1

 .
This tells us that x1 = 1, x2 = 2 and x3 = −1, so

x⃗ =

 1

2

−1

 .
We should check our work; multiply outAx⃗ and verify that we indeed get b⃗:1 1 1

1 −1 2

2 0 1

 1

2

−1

 does equal

 2

−3

1

 .
Example 3.6.2 Solving a matrix equation.

Solve the equation Ax⃗ = b⃗ for x⃗ where

A =

 1 2 3

−1 2 1

1 1 0

 and

 5

−1

2

 .
Solution. The solution is rather straightforward, even though we did
a lot of work before to find the answer. Form the augmented matrix[
A b⃗

]
and interpret its reduced row echelon form.

 1 2 3 5

−1 2 1 −1

1 1 0 2

 −→
rref

 1 0 0 2

0 1 0 0

0 0 1 1

 .
In previous sections we were fine stating that the result as

x1 = 2, x2 = 0, x3 = 1,

but we were asked to find x⃗; therefore, we state the solution as

x⃗ =

20
1

 .
This probably seems all well and good. While asking one to solve the equa-

tion Ax⃗ = b⃗ for x⃗ seems like a new problem, in reality it is just asking that we
solve a system of linear equations. Our variables x1, etc., appear not individu-
ally but as the entries of our vector x⃗. We are simply writing an old problem in
a new way.

In line with this new way of writing the problem, we have a new way of
writing the solution. Instead of listing, individually, the values of the unknowns,
we simply list them as the elements of our vectorx⃗.

These are important ideas, so we state the basic principle once more: solv-
ing the equation Ax⃗ = b⃗ for x⃗ is the same thing as solving a linear system of
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equations. Equivalently, any system of linear equations can be written in the
form Ax⃗ = b⃗ for some matrix A and vector⃗b.

Since these ideas are equivalent, we’ll refer to Ax⃗ = b⃗ both as a matrix–
vector equation and as a system of linear equations: they are the same thing.

We’ve seen two examples illustrating this idea so far, and in both cases the
linear system had exactly one solution. We know from Theorem 3.4.2 that any
linear system has either one solution, infinitely many solutions, or no solution.
So how does our new method of writing a solution work with infinitely many
solutions and no solutions?

Certainly, if Ax⃗ = b⃗ has no solution, we simply say that the linear system
has no solution. There isn’t anything special to write. So the only other option
to consider is the case where we have infinitely many solutions. We’ll learn how
to handle these situations through examples.

Example 3.6.3 Finding the vector solution to a linear system.

Solve the linear systemAx⃗ = 0⃗ for x⃗ andwrite the solution in vector
form, where

A =

[
1 2

2 4

]
and 0⃗ =

[
0

0

]
.

Note: Our convention is always
that 0⃗ denotes the vector of the
appropriate size whose entries
are all zero, so we didn’t really

need to specify that 0⃗ =

[
0

0

]
,

but we did just to eliminate any
uncertainty.

Solution. To solve this system, put the augmentedmatrix into reduced
row echelon form, which we do below.[

1 2 0

2 4 0

]
−→
rref

[
1 2 0

0 0 0

]
We interpret the reduced row echelon form of this matrix to write

the solution as

x1 = −2t

x2 = t is free.

We are not done; we need to write the solution in vector form, for
our solution is the vectorx⃗. Recall that

x⃗ =

[
x1

x2

]
.

From above we know that x1 = −2x2, where x2 = t, so we replace the
x1 in x⃗ with−2t and replace x2 by t. This gives our solution as

x⃗ =

[
−2t

t

]
.

Note that we can now pull the t out of the vector (it is just a scalar)
and write x⃗ as

x⃗ = t

[
−2

1

]
.

For convenience, if we set

v⃗ =

[
−2

1

]
,

then our solution can be simply written as

x⃗ = tv⃗.



162 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

Recall that since our system was consistent and had a free variable,
we have infinitely many solutions. This form of the solution highlights
this fact; pick any value for t and we get a different solution.

For instance, by setting t = −1, 0, and 5, we get the solutions

x⃗ =

[
2

−1

]
,

[
0

0

]
, and

[
−10

5

]
,

respectively.
We should check our work; multiply each of the above vectors by A

to see if we indeed get 0⃗. Or, we can save ourselves some time and check
the general solution. We have

Ax⃗ = A(tv⃗) = t(Av⃗) = t

[
1 2

2 4

] [
−2

1

]
= t

[
0

0

]
=

[
0

0

]
for every value of t.

We have officially solved this problem; we have found the solution
to Ax⃗ = 0⃗ and written it properly. One final thing we will do here is
graph the solution, using our skills learned in the previous section.

Our solution is

x⃗ = x2

[
−2

1

]
.

This means that any scalar multiple of the vector v⃗ =

[
−2

1

]
is a solu-

tion; we know how to sketch the scalar multiples of v⃗. This is done in
Figure 3.6.4.x

y

v⃗

Figure 3.6.4 The solution, as a line, to
Ax⃗ = 0⃗ in Example 3.6.3

Here vector v⃗ is drawn aswell as the line that goes through the origin
in the direction of v⃗. Any vector along this line is a solution. So in some
sense, we can say that the solution to Ax⃗ = 0⃗ is a line.

A few comments are in order here. First, matrix equations (or the corre-
sponding system of linear equations) such as the above where the vector on the
right-hand side is the zero vector form a special case that is important enough
to have its own name: these are known as homogeneous systems of equations.
The formal definition is as follows.

Definition 3.6.5 Homogeneous Linear System of Equations.

A system of linear equations is homogeneous if the constant term in
each equation is zero.

Note: a homogeneous system of equations can be written in vector
form as Ax⃗ = 0⃗.

The termhomogeneous comes from twoGreekwords; homomeaning “same”
and genus meaning “type.” A homogeneous system of equations is a system in
which each equation is of the same type — all constants are 0. In mathematics,
objects that are considered homogeneous often have some sort of scale invari-
ance, and that is the case here: if x⃗ is a solution toAx⃗ = 0⃗, then so is cx⃗ for any
scalar c. (Do you see why?)

Notice that the line x⃗ = tv⃗ in the solution of Example 3.6.3 above passes
through the origin. This is an important characteristic of homogeneous systems:
since A0⃗ = 0⃗ for any matrix A, we always have (at least) the solution x⃗ = 0⃗.
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(We’ll have more to say about this below.)

Example 3.6.6 Determining the solution of a homogeneous system.

Determine the solution to the system Ax⃗ = 0⃗, where

A =

[
2 −3

−2 3

]
.

Solution. We proceed exactly as we did in Example 3.6.3, by forming
the proper augmented matrix and putting it into reduced row echelon
form, which we do below.[

2 −3 0

−2 3 0

]
−→
rref

[
1 −3/2 0

0 0 0

]
We interpret the reduced rowechelon formof thismatrix to find that

x1 = 3/2t

x2 = t is free.

As before, we can say thatAx⃗ = 0⃗ provided that

x⃗ =

[
x1

x2

]
=

[
3
2 t

t

]
= t

[
3
2

1

]
.

If we set

v⃗ =

[
3/2

1

]
,

then our solution can be written as{
tv⃗ | t ∈ R and v⃗ =

[
3/2

1

]}
.

Again, we have infinitely many solutions to the equation Ax⃗ = 0⃗;
any choice of x2 gives us one of these solutions. For instance, picking
x2 = 2 gives the solution

x⃗ =

[
3

2

]
.

This is a particularly nice solution, since there are no fractions! In fact,
since the parameter t can take on any real value, there is nothing pre-
venting us from defining a new parameter s = t/2, and then

x⃗ = t

[
3/2

1

]
= t

(
1

2

[
3

2

])
=

t

2

[
3

2

]
= s

[
3

2

]
= sw⃗,

where w⃗ = 2v⃗.
As in the previous example, our solutions are multiples of a vector,

and hence we can graph this, as done in Figure 3.6.7.
x

y

v⃗

Figure 3.6.7 The solution, as a line, to
Ax⃗ = 0⃗ in Example 3.6.6

In the last two examples, we saw that the general solution could be written
in the form x⃗ = tv⃗ for a vector v⃗ such that Av⃗ = 0⃗. Such vectors are known as
the basic solutions to a homogeneous linear system.
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Definition 3.6.8 Basic solution.

Let Ax⃗ = 0⃗ be a homogeneous linear system of equations with infi-
nitely many solutions and free variables

xi1 = t1, xi2 = t2, . . . , xik = tk.

The basic solutions to the system Ax⃗ = 0⃗ are the vectors
v⃗1, v⃗2, . . . , v⃗k such that the general solution to the system is given by

x⃗ = t1v⃗1 + t2v⃗2 + · · ·+ tkv⃗k.

To help clarify Definition 3.6.8, let’s do one more example where we have
more than one basic solution.

Example 3.6.9 A homogeneous system with two basic solutions.

Find the general solution to the homogeneous system Ax⃗ = 0⃗,
where

A =

 1 −2 0 4

3 −1 5 2

−2 −6 −10 12

 .
Solution. As usual, to find the basic solutions, we set up the aug-
mented matrix of the system and reduce: 1 −2 0 4 0

3 −1 5 2 0

−2 −6 −10 12 0

 −→
rref

 1 0 2 0 0

0 1 1 −2 0

0 0 0 0 0

 .
From the reduced row echelon form of the augmented matrix, we

can read off the following general solution:

x1 = −2s

x2 = −s+ 2t

x3 = s is free
x4 = t is free.

In this case, we have two parameters, so we expect two basic solutions.
To find these, we write our solution in vector form:

x⃗ =


x1

x2

x3

x4

 =


−2s

−s+ 2t

s

t

 = s


−2

−1

1

0

+ t


0

2

0

1

 .
From the above, we see that the general solution can be written as x⃗ =
sv⃗ + tw⃗, where

v⃗ =


−2

−1

1

0

 and w⃗ =


0

2

0

1


are the basic solutions to Ax⃗ = 0⃗.
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Let’s practice finding vector solutions again; this time, we won’t solve a sys-
tem of the form Ax⃗ = 0⃗, but instead Ax⃗ = b⃗, for some vector b⃗ ̸= 0⃗. Such
systems are known (unsurprisingly) as non-homogeneous systems.

Example 3.6.10 A non-homogeneous linear system.

Solve the linear system Ax⃗ = b⃗, where

A =

[
1 2

2 4

]
and b⃗ =

[
3

6

]
.

Solution. (Note that this is the same matrix A that we used in Exam-
ple 3.6.3. This will be important later.)

Our methodology is the same as before; we form the augmented
matrix and put it into reduced row echelon form.[

1 2 3

2 4 6

]
−→
rref

[
1 2 3

0 0 0

]
Interpreting this reduced row echelon form, we find that

x1 = 3− 2t

x2 = t is free.

Putting things into vector form, we have

x⃗ =

[
x1

x2

]
=

[
3− 2t

t

]
.

This solution is different than what we’ve seen in the past two ex-
amples; we can’t simply pull out a t since there is a 3 in the first entry.
Using the properties of matrix addition, we can “pull apart” this vector
and write it as the sum of two vectors: one which contains only con-
stants, and one that contains only terms involving the parameter t. We
do this below.

x⃗ =

[
3− 2t

t

]
=

[
3

0

]
+

[
−2t

t

]
=

[
3

0

]
+ t

[
−2

1

]
.

Once again, let’s give names to the different component vectors of
this solution (we are getting near the explanation of why we are doing
this). Let

x⃗p =

[
3

0

]
and v⃗ =

[
−2

1

]
.

We can then write our solution in the form

x⃗ = x⃗p + tv⃗.

We still have infinitely many solutions; by picking a value for twe get
one of these solutions. For instance, by letting t = −1, 0, or 2, we get
the solutions [

5

−1

]
,

[
3

0

]
and

[
−1

2

]
.
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We have officially solved the problem; we have solved the equation
Ax⃗ = b⃗ for x⃗ and have written the solution in vector form. As an addi-
tional visual aid, we will graph this solution.

Each vector in the solution can be written as the sum of two vectors:
x⃗p and a multiple of v⃗. In Figure 3.6.11, x⃗p is graphed and v⃗ is graphed
with its origin starting at the tip of x⃗p. Finally, a line is drawn in the
direction of v⃗ from the tip of x⃗p; any vector pointing to any point on this
line is a solution to Ax⃗ = b⃗.

x

y

x⃗p

v⃗

Figure 3.6.11 The solution, as a line,
to Ax⃗ = b⃗ in Example 3.6.10

Notice that in this case our line does not pass through the origin, so
the set of solutions is not a subspace. On the other hand, every solution
to the system Ax⃗ = b⃗ can be obtained by adding the vector x⃗p to an
element of the set of solutions to the homogeneous system Ax⃗ = 0⃗.
We’ll elaborate on this shortly.

The previous examples illustrate some important concepts. One is that (at
least, when x⃗ ∈ R2 or R3) we can visualize the solution to a system of linear
equations. Before, when we had infinitely many solutions, we knew we could
arbitrarily pick values for our free variables and get different solutions. We knew
this to be true, and we even practised it, but the result was not very “tangible.”
Now, we can view our solution as a vector; by picking different values for our
free variables, we see this as multiplying certain important vectors by a scalar
which gives a different solution.

Note: Visually, the solutions in
Examples Example 3.6.3 and Ex-
ample 3.6.10were both lines; from
our experience with Section 2.5
we know that this makes sense,
since the solutions involved a sin-
gle parameter t. The reader can
similarly expect that a solution
involving twoparameters can be
visualized as a plane. Such was
the case in Example 3.6.9, except
that here, our solution is a plane
inR4, making it somewhat harder
to visualize.

Another important concept that these examples demonstrate comes from
the fact that Examples 3 and 10 were only “slightly different” and hence had
only “slightly different” answers. Both solutions had

t

[
−2

1

]
in them; in Example 3.6.10 the solution also had another vector added to this.
The addition of the vector x⃗p in Example 3.6.10 is needed to account for the fact
that we were dealing with a non-homogeneous system of linear equations.

Recall that for a homogeneous system of linear equations, we know that
x⃗ = 0⃗will be a solution, since nomatter what the matrixA is, we can be certain
that A0⃗ = 0⃗. This fact is important; the zero vector is always a solution to a
homogeneous linear system. Therefore a homogeneous system is always con-
sistent; we need only to determine whether we have exactly one solution (just
0⃗) or infinitely many solutions. This idea is important, so we give it its own box.

Key Idea 3.6.12 Homogeneous Systems and Consistency.

All homogeneous linear systems are consistent.

How do we determine if we have exactly one or infinitely many solutions?
Recall Key Idea 3.4.7: if the solution has any free variables, then it will have infi-
nitelymany solutions. How canwe tell if the systemhas free variables? Form the
augmented matrix

[
A 0⃗

]
, put it into reduced row echelon form, and interpret

the result.
It may seem that we’ve brought up a new question, “When does Ax⃗ = 0⃗

have exactly one or infinitely many solutions?” only to answer with “Look at the
reduced row echelon form of A and interpret the results, just as always.” Why
bring up a new question if the answer is an old one?

While the new question has an old solution, it does lead to a great idea. Let’s
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refresh our memory; earlier we solved two linear systems,

Ax⃗ = 0⃗ and Ax⃗ = b⃗

where

A =

[
1 2

2 4

]
and b⃗ =

[
3

6

]
.

The solution to the first system of equations, Ax⃗ = 0⃗, is

x⃗ = t

[
−2

1

]
= tv⃗

and the solution to the second set of equations, Ax⃗ = b⃗, is

x⃗ =

[
3

0

]
+ t

[
−2

1

]
= x⃗p + tv⃗,

for all t ∈ R, where x⃗p =

[
3

0

]
and v⃗ =

[
−2

1

]
.

To see why the general solution to Ax⃗ = b⃗ works, note that

Ax⃗p =

[
1 2

2 4

] [
3

0

]
=

[
3

6

]
= b⃗,

so x⃗p is a solution. (The subscript p of “x⃗p” is used to denote that this vector
is a particular solution: see Definition 3.4.11.) What about the general solution
x⃗ = x⃗p + tv⃗? Recalling that Av⃗ = 0⃗, we have

Ax⃗ = A(x⃗p + tv⃗) = Ax⃗p + t(Av⃗)

= b⃗+ t(⃗0) = b⃗,

for any value of t, so there are infinitely many solutions to our system, one for
each t ∈ R. The whole point is that x⃗p itself is a solution to Ax⃗ = b⃗, and we
could find more solutions by adding vectors “that go to zero” when multiplied
by A.

So we wonder: does this mean that Ax⃗ = b⃗ will have infinitely many so-
lutions? After all, if x⃗p and x⃗p + v⃗ are both solutions, don’t we have infinitely
many solutions?

No. If Ax⃗ = 0⃗ has exactly one solution, then v⃗ = 0⃗, and x⃗p = x⃗p + v⃗; we
only have one solution.

So here is the culmination of all of our fun that started a few pages back. If
v⃗ is a solution to Ax⃗ = 0⃗ and x⃗p is a solution to Ax⃗ = b⃗, then x⃗p + v⃗ is also a
solution to Ax⃗ = b⃗. If Ax⃗ = 0⃗ has infinitely many solutions, so does Ax⃗ = b⃗;
if Ax⃗ = 0⃗ has only one solution, so does Ax⃗ = b⃗. This culminating idea is of
course important enough to be stated again.

Key Idea 3.6.13 Solutions of Consistent Systems.

Let Ax⃗ = b⃗ be a consistent system of linear equations.

1. If Ax⃗ = 0⃗ has exactly one solution (x⃗ = 0⃗), then Ax⃗ = b⃗ has
exactly one solution.

2. IfAx⃗ = 0⃗ has infinitelymany solutions, thenAx⃗ = b⃗ has infinitely
many solutions.
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A key word in the above statement is consistent. If Ax⃗ = b⃗ is inconsistent
(the linear system has no solution), then it doesn’t matter how many solutions
Ax⃗ = 0⃗ has; Ax⃗ = b⃗ has no solution.

We can elaborate on Key Idea 3.6.13 above, as well as Key Idea 3.4.7 from
Section 3.4 by introducing one more piece of important terminology. By now
it is probably clear that the leading 1s in the reduced row echelon form of a
matrix play a key role in understanding the system. In fact, it turns out that we
can describe all of the different possibilities for a linear system in terms of one
number: the number of leading 1s in the reduced row echelon form of a matrix.

Definition 3.6.14 The rank of a matrix.

The rank of a matrix A is denoted by rank(A) and defined as the
number of leading 1s in the reduced row echelon form of A.

Although we do not prove it in this textbook, the reduced row echelon form
of any matrix is unique; it follows from this fact that the rank of a matrix is a
well-defined number. The importance of rank is outlined in the following result.

Theorem 3.6.15 Rank and solution types.

LetAbeanm×nmatrix. For any linear systemAx⃗ = b⃗ inn variables,
we have the following possibilities:

1. If rank(A) < rank
[
A b⃗

]
, then the system Ax⃗ = b⃗ is inconsis-

tent.

2. If rank(A) = rank
[
A b⃗

]
= n (where n is the number of vari-

ables), then the system Ax⃗ = b⃗ has a unique solution.

3. If rank(A) = rank
[
A b⃗

]
=< n, then the system Ax⃗ = b⃗ has

infinitely solutions. Moreover, the general solution to Ax⃗ = b⃗ will
involve k parameters, where

k = n− rank(A).

To understand Item 1 above, note that if

rank(A) < rank
[
A b⃗

]
,

then there must be a leading 1 in the right-hand column of the reduced row
echelon form of

[
A b⃗

]
, meaning that we have a row of the form[

0 0 · · · 0 1
]
,

which is exactly what we expect in a system with no solutions.
Items 2 and 3 in Theorem 3.6.15 simply give another way of stating the fact

that the free variables are those variables that do not have a leading 1 in their
column. This seems like an obvious fact, but it is very important. We will see in
Section 5.4 that this observation leads to a major theorem, sometimes known
as the Fundamental Theorem of Linear Transformations: see Theorem 5.4.12.

Let us explore this result with a series of examples.
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Example 3.6.16 Using matrices and vectors to solve a system of equa-
tions.

Rewrite the linear system

x1 + 2x2 − 3x3 + 2x4 + 7x5 = 2

3x1 + 4x2 + 5x3 + 2x4 + 3x5 = −4

as amatrix--vector equation, solve the systemusing vector notation, and
give the solution to the related homogeneous equations.
Solution. Rewriting the linear system in the form of Ax⃗ = b⃗, we have
that

A =

[
1 2 −3 2 7

3 4 5 2 3

]
, x⃗ =


x1

x2

x3

x4

x5

 and b⃗ =

[
2

−4

]
.

To solve the system, we put the associated augmented matrix into
reduced row echelon form and interpret the results.[

1 2 −3 2 7 2

3 4 5 2 3 −4

]
−→
rref

[
1 0 11 −2 −11 −8

0 1 −7 2 9 5

]

x1 = −8− 11r + 2s+ 11t

x2 = 5 + 7r − 2s− 9t

x3 = r is free
x4 = s is free
x5 = t is free.

We use this information to writex⃗, again pulling it apart. Since we
have three free variables and also constants, we’ll need to pull x⃗ apart
into four separate vectors.

x⃗ =


x1

x2

x3

x4

x5

 =


−8− 11r + 2s+ 11t

5 + 7r − 2s− 9t

r

s

t



=


−8

5

0

0

0

+


−11r

7r

r

0

0

+


2s

−2s

0

s

0

+


11t

−9t

0

0

t



=


−8

5

0

0

0

+ r


−11

7

1

0

0

+ s


2

−2

0

1

0

+ t


11

−9

0

0

1


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= x⃗p︸︷︷︸
particular solution

+ ru⃗+ sv⃗ + tw⃗︸ ︷︷ ︸
solution to homogeneous equationsAx⃗=0⃗

.

So x⃗p is a particular solution; Ax⃗p = b⃗. (Multiply it out to verify
that this is true.) The other vectors, u⃗, v⃗ and w⃗, that are multiplied by
our free variables x3 = r, x4 = s and x5 = t, are each solutions to
the homogeneous equations, Ax⃗ = 0⃗. Any linear combination of these
three vectors, i.e., any vector found by choosing values for r, s and t in
ru⃗+ sv⃗ + tw⃗ is a solution to Ax⃗ = 0⃗.

Example 3.6.17 Finding vector solutions.

Let

A =

[
1 2

4 5

]
and b⃗ =

[
3

6

]
.

Find the solutions to Ax⃗ = b⃗ and Ax⃗ = 0⃗.
Solution. We go through the familiar work of finding the reduced row
echelon form of the appropriate augmentedmatrix and interpreting the
solution. [

1 2 3

4 5 6

]
−→
rref

[
1 0 −1

0 1 2

]

x1 = −1

x2 = 2.

Thus

x⃗ =

[
x1

x2

]
=

[
−1

2

]
.

This may strike us as a bit odd; we are used to having lots of different
vectors in the solution. However, in this case, the linear system Ax⃗ = b⃗
has exactly one solution, and we’ve found it. What is the solution to
Ax⃗ = 0⃗? Since we’ve only found one solution to Ax⃗ = b⃗, we can con-
clude from Key Idea 3.6.13 the related homogeneous equationsAx⃗ = 0⃗
have only one solution, namely x⃗ = 0⃗. We can write our solution vector
x⃗ in a form similar to our previous examples to highlight this:

x⃗ =

[
−1

2

]
=

[
−1

2

]
+

[
0

0

]
= x⃗p︸︷︷︸

particular solution

+ 0⃗︸︷︷︸
solution toAx⃗=0⃗

.

Again, in light of Theorem 3.6.15, this should not be too surprising.

The reduced row echelon form ofA is
[
1 0

0 1

]
, so the rank ofA is 2, and

there are 2 variables in our system, so we expect 2− 2 = 0 parameters
in our general solution.
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Example 3.6.18 Further vector solutions.

Let

A =

[
1 1

2 2

]
and b⃗ =

[
1

1

]
.

Find the solutions to Ax⃗ = b⃗ and Ax⃗ = 0⃗.
Solution. To solve Ax⃗ = b⃗, we put the appropriate augmented matrix
into reduced row echelon form and interpret the results.[

1 1 1

2 2 1

]
−→
rref

[
1 1 0

0 0 1

]
We immediately have a problem; we see that the second row tells us

that 0x1 + 0x2 = 1, the sign that our system does not have a solution.
ThusAx⃗ = b⃗has no solution. Of course, this does notmean thatAx⃗ = 0⃗
has no solution; it always has a solution.

As previously noted, the fact
that Ax⃗ = b⃗ has no solution in
Example 3.6.18 simply indicates
the fact that b⃗ is not in the col-
umn space of A. Since the rank
of A is equal to one, we know
that col(A) is spanned by the

single vector v⃗ =

[
1

2

]
. Thus, we

can only expect Ax⃗ = b⃗ to have
a solution if b⃗ is a scalar multiple
of v⃗.

To find the solution to Ax⃗ = 0⃗, we interpret the reduced row eche-
lon form of the appropriate augmented matrix.[

1 1 0

2 2 0

]
−→
rref

[
1 1 0

0 0 0

]

x1 = −x2

x2 is free.

Thus,

x⃗ =

[
x1

x2

]
=

[
−x2

x2

]
= x2

[
−1

1

]
= x2u⃗.

We have no solution to Ax⃗ = b⃗, but infinitely many solutions to
Ax⃗ = 0⃗.

The previous example may seem to violate the principle of Key Idea 3.6.13.
After all, it seems that having infinitely many solutions to Ax⃗ = 0⃗ should imply
infinitely many solutions to Ax⃗ = b⃗. However, we remind ourselves of the key
word in the idea that we observed before: consistent. If Ax⃗ = b⃗ is consistent
andAx⃗ = 0⃗ has infinitely many solutions, then so willAx⃗ = b⃗. But ifAx⃗ = b⃗ is
not consistent, it does not matter how many solutions Ax⃗ = 0⃗ has; Ax⃗ = b⃗ is
still inconsistent.

In this chapter, we developed a systematic method for solving systems of
linear equations. A key tool in this method was the augmented matrix corre-
sponding to a given system. In this final section, we’ve seen that further insight
into the structure of solutions can be gained by considering our systems in terms
of matrices and vectors.

In the next chapter, wewill begin the study of matrices as objects unto them-
selves. We will see that they can be added and multiplied by scalars in exactly
the sameway as vectors, and in addition to this, matrices of the correct sizes can
bemultiplied in a way that reproduces Definition 3.6.1 above as a special case.

One question that may have occurred to you as you worked through this
section is the following: in the one-variable linear equation ax = b, we know
that as long as a ̸= 0, we can divide both sides by a, giving us the solution x =
b/a. Now, given thematrix equationAx⃗ = b⃗, is there some equivalent means of
“dividing by A” to obtain the solution x⃗? The short answer is no. Indeed, there
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is no such thing as matrix division; the algebraic rules for matrix multiplication
are much more complicated than they are for numbers. (In particular, we’ll see
that for matrices, AB is usually not the same thing asBA!)

The slightly longer answer to our question might be phrased as “Sometimes.
Well, sort of.” To obtain the correct (and much longer) answer, we will be led in
the next chapter to the definition of the inverse of a matrix.
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3.6.1 Exercises

Exercise Group. A matrix A and vectors b⃗, u⃗ and v⃗ are given. Verify that u⃗ and v⃗ are both solutions to the equation
Ax⃗ = b⃗; that is, show that Au⃗ = Av⃗ = b⃗.

1. A =
[
1 −2 − 3 6

]
, b⃗ =

[
0

0

]
, u⃗ =

[
2

1

]
,

v⃗ =

[
−10

−5

] 2. A =
[
1 0 2 0

]
, b⃗ =

[
0

0

]
, u⃗ =

[
0

−1

]
,

v⃗ =

[
0

59

]
3. A =

[
1 0 2 0

]
, b⃗ =

[
−3

−6

]
, u⃗ =

[
−3

−1

]
,

v⃗ =

[
−3

59

] 4. A =
[
1 −2 − 3 6

]
, b⃗ =

[
2

−6

]
, u⃗ =

[
0

−1

]
,

v⃗ =

[
2

0

]
5. A =

[
0 −3 −1 −3 − 4 2 −3 5

]
,

b⃗ =

[
0

0

]
, u⃗ =


11

4

−12

0

, v⃗ =


9

−12

0

12


6. A =

[
0 −3 −1 −3 − 4 2 −3 5

]
,

b⃗ =

[
48

36

]
, u⃗ =


−17

−16

0

0

, v⃗ =


−8

−28

0

12



Exercise Group. A matrix A and vectors b⃗, u⃗ and v⃗ are given. Verify that Au⃗ = 0⃗, Av⃗ = b⃗ and A(u⃗+ v⃗) = b⃗.

7. A =

[
2 −2 −1 − 1 1 −1

−2 2 −1

]
, b⃗ =

11
1

, u⃗ =

11
0

, v⃗ =

 1

1

−1



8. A =

[
1 −1 3 3 −3 −3

−1 1 1

]
, b⃗ =

−1

−3

1

, u⃗ =

22
0

, v⃗ =

23
0



9. A =

[
2 0 0 0 1 −3

3 1 −3

]
, b⃗ =

 2

−4

−1

, u⃗ =

06
2

, v⃗ =

 1

−1

1


Exercise Group. A matrix A and vector are given.

(a) Solve the equation Ax⃗ = 0⃗.

(b) Solve the equation Ax⃗ = b⃗.

In each of the above, be sure towrite your answer in vector format. Also, when possible, give 2 particular solutions
to each equation.

10. A =
[
0 2 − 1 3

]
, b⃗ =

[
−2

−1

]
11. A =

[
−4 −1 − 3 −2

]
, b⃗ =

[
1

4

]
12. =

[
1 −2 0 1

]
, b⃗ =

[
0

−5

]
13. =

[
1 0 5 −4

]
, b⃗ =

[
−2

−1

]
14. =

[
2 −3 − 4 6

]
, b⃗ =

[
1

−1

]
15. A =

[
−4 3 2 − 4 5 0

]
, b⃗ =

[
−4

−4

]
16. A =

[
1 5 −2 1 4 5

]
, b⃗ =

[
0

1

]
17. A =

[
−1 −2 −2 3 4 −2

]
, b⃗ =

[
−4

−4

]
18. A =

[
2 2 2 5 5 −3

]
, b⃗ =

[
3

−3

]
19. A =

[
1 5 −4 −1 1 0 −2 1

]
,

b⃗ =

[
0

−2

]
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20. A =
[
−4 2 −5 4 0 1 −1 5

]
,

b⃗ =

[
−3

−2

] 21. A =[
0 0 2 1 4 − 2 −1 −4 −1 5

]
,

b⃗ =

[
3

4

]
22. A =

[
3 0 −2 −4 5 2 3 2 0 2

−5 0 4 0 5

]
,

b⃗ =

−1

−5

4


23. A =[

−1 3 1 −3 4 3 −3 −1 1 −4

−2 3 −2 −3 1

]
,

b⃗ =

 1

1

−5


Exercise Group. A matrix A and vector are given. Solve the equation Ax⃗ = b⃗, write the solution in vector format,
and sketch the solution as the appropriate line on the Cartesian plane.

24. =

[
2 4

−1 −2

]
, b⃗ =

[
0

0

]
25. A =

[
2 −5

−4 −10

]
, b⃗ =

[
1

2

]
26. =

[
2 4

−1 −2

]
, b⃗ =

[
−6

3

]
27. A =

[
2 −5

−4 −10

]
, b⃗ =

[
0

0

]



Chapter 4

Matrix Algebra

In the last chapter we learned how to solve systems of equations, and along
the way, we saw that a key tool for solving systems efficiently was the use of
matrices. In this chapter, we will finally give a proper definition of what, exactly,
a matrix is, after which we will proceed to develop the algebraic properties of
matrices, just as we did for vectors in Chapter 2.

A fundamental topic of mathematics is arithmetic; adding, subtracting, mul-
tiplying and dividing numbers. After learning how to do this, most of us went on
to learn how to add, subtract, multiply and divide “x”. We are comfortable with
expressions such as

x+ 3x− x · x2 + x5 · x−1

and know that we can “simplify” this to

4x− x3 + x4.

This chapter deals with the idea of doing similar operations, but instead of
an unknown number x, we will be using a matrix A. So what exactly does the
expression

A+ 3A−A ·A2 +A5 ·A−1

mean? Before we can do anything, we need to actually define what a matrix
is! Once we’ve taken care of that, we are going to need to learn to define what
matrix addition, scalar multiplication, matrix multiplication andmatrix inversion
are. We will learn just that, plus some more good stuff, in this chapter.

4.1 Matrix Addition and Scalar Multiplication

As mentioned above, amatrix is a construction that allows us to organize infor-
mation in a tabular form. For example, we may be interested in the following
(made up) data involving crop yields on several Southern Alberta farms, given in
tabular form:

Table 4.1.1 2014 crop yields, in metric tonnes

Corn Potatoes Soybeans Wheat
Farm A 48 18 92 0
Farm B 0 0 73 152
Farm C 34 203 0 88

Someone in charge of compiling data on farms and crops probably already
has a program or spreadsheet set up with all of the farms and crops pre-defined;
what they are interested in are the numbers giving the crop yields. Thus, when
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they enter their data into the computer, they are probably more interested in
the array

A =

48 18 92 0

0 0 73 152

34 203 0 88

 . (4.1.1)

As long as we’re consistent and always assign each farm to the same row, and
each crop to the same column, we can dispensewith the labels andwork directly
with the data.

Matrices work well in situations
such as our farming examplewhere
thedataweneed toorganize falls
into two categories, in this case,
farms and crops. What if our data
depends on three or more cate-
gories? (Perhaps we also want
to track typeof fertilizer?) It turns
out that alongwithmatrices,math-
ematicians have inventedhigher-
dimensional arrays called tensors,
that can handle almost any data
organization scenario you can think
of. Tensors are usually encoun-
tered in more advanced courses
in abstract algebra.

The array above is our first example of a matrix, which we now define. The
definition of matrix is remarkable only in how unremarkable it seems — it is
simply a way of organizing information (usually numbers) into an array.

Definition 4.1.2 Matrix.

Amatrix is a rectangular array of numbers.
The horizontal lines of numbers form rows and the vertical lines of

numbers form columns. A matrix withm rows and n columns is said to
be anm× nmatrix (“anm by nmatrix”, or a matrix of sizem× n).

The entries of anm× nmatrix are indexed as follows:
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .

That is, a32means “the number in the third row and second column.”
To save space, we will sometimes use the shorthand notation A = [aij ]
to denote a matrixA with entries aij . If we need to specify the size, we
can also write A = [aij ]m×n.

Two special types of matrix are worth noting: those with a single row or
column. Such matrices are known as vectors.

Definition 4.1.3 Row and column vectors.

A row vector is a 1× nmatrix of the form

R =
[
r1 r2 · · · rn

]
.

A column vector is am× 1matrix of the form

C =


c1
c2
...
cm

 .

In particular, we can obtain row or column vectors by isolating any row or
column of a givenm × n matrix. For example, given our matrix of crop data in
Equation (4.1.1), we might be interested only in Farm B, in which case we would
want the row vector

RB =
[
0 0 73 152

]
.
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Similarly, we might only be interested in yields for soybean crops, in which case
the column vector

Csoy =

9273
0


is our object of interest.

Continuing with our farming example, suppose that in addition to thematrix
A of 2014 crop yields above we also have data for 2015 crop yields given by

B =

41 25 15 20

0 72 0 165

47 193 0 77

 .
Wemight be interested in quantities such as the total crop yields over two years.
If we arrange these totals into a matrix T , it seems like it should be reasonable
to define matrix addition in such a way that we can write

T = A+B.

This leads to two questions. First, how do we definematrix addition in order
to ensure this outcome? Second, and perhaps more fundamentally, what do we
mean by “=” in the context of matrices? Let us tackle the second question first.

Definition 4.1.4 Matrix Equality.

Twom×nmatricesA andB are equal if their corresponding entries
are equal.

Notice that our more formal definition specifies that if matrices are equal,
they have the same size. This should make sense.

Now we move on to describing how to add two matrices together. To start
off, take a wild stab: how do you think we should add our matrices of crop data
above? Well, if wewant the sum to represent the total yields for each crop, then
it stands to reason that to add the two matrices, we add together each of the
corresponding crop yields within them:

T = A+B

=

48 18 92 0

0 0 73 152

34 203 0 88

+

41 25 15 20

0 72 0 165

47 193 0 77


=

48 + 41 18 + 25 92 + 15 0 + 20

0 + 0 0 + 72 73 + 0 152 + 165

34 + 47 203 + 193 0 + 0 88 + 77


=

89 43 107 20

0 72 73 317

81 396 0 165

 .
So to add the two matrices, we added their corresponding entries. This is

exactly how we define matrix addition in general:
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Definition 4.1.5 Matrix Addition.

Let A = [aij ] and B = [bij ] bem × n matrices. The sum of A and
B, denoted A+B, is

a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

For another example, suppose we wanted to know the total production for
each farm in 2014, assuming that our matrices represent all of the crops each
farm produces. This would be obtained by simply calculating the total for each
row in the matrixA. Another way to accomplish the same task is as follows: let

C1 =

480
34

 , C2 =

 18

0

203

 , C3 =

9273
0

 , C4 =

 0

152

88


denote the columns of thematrixA; note that each column represents the yields
across all three farms for each crop.

The total yield for each farm can then be calculated according to

Y = C1 + C2 + C3 + C4480
34

+

 18

0

203

+

9273
0

+

 0

152

88

 =

158225

325

 .
The column vector Y then contains the total yields for each farm. Notice that
although we only defined the sum of two matrices in Definition 4.1.5, it makes
sense to add any number of matrices, and there is no need to add parentheses.

Recall fromChapter 2 thatwe defined themultiplication of a vector v⃗ =

ab
c


by a scalar t ∈ R by

tv⃗ = t

ab
c

 =

tatb
tc

 .
It stands to reason that scalar multiplication should be defined in exactly the

same way for row and column vectors; after all, in most cases these are just
different ways of writing down the same mathematical object. Thus, in order to
multiply a row or column vector by a scalar, we shouldmultiply each entry in the
vector by that scalar. From here, it’s not too much of a stretch to conclude that
the same definition is reasonable for matrices in general.
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Definition 4.1.6 Scalar Multiplication.

Let A = [aij ] be an m × n matrix and let k be a scalar. The scalar
multiplicationA by k, denoted kA, is defined by

ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n
...

...
. . .

...
kam1 kam2 · · · kamn

 .

Note: In Linear Algebra, a scalar
is simply a number. For most of
this text, the scalars we consider
are real numbers, although one
can also use complex numbers
as scalars. (Complex numberswere
introduced in Section1.4.) Aswe
saw in Chapter 2, multiplying a
vector by a scalar scales the length
of that vector.

Referring one last time to our farming data, we could imagine that a fertilizer
company is advertising a newproduct they claimwill increase crop yields by 30%.
Increasing the yield of each crop by 30\% amounts to multiplying each of the
entries in the matrices A or B by a factor of 1.3; according to Definition 4.1.6,
this is the same as forming the scalar multiples 1.3A and 1.3B.

Since we have two years’ worth of crop data, we could also ask for the aver-
age yield for each crop on each farm. For example, Farm A produced 48 tonnes
of corn in 2014, and 41 tonnes of corn in 2015. The two-year average for corn
on Farm A is thus

48 + 41

2
=

89

2
= 44.5 tonnes.

Notice that we can obtain the average for each entry by dividing each entry in
T = A + B by 2, which is the same thing as multiplying by 1

2 . Our matrix of
averages is

1

2
T =

1

2

89 43 107 20

0 72 73 317

81 396 0 165

 =

89/2 43/2 107/2 10

0 36 73/2 317/2

81/2 198 0 165/2

 .
Finally, notice also that since

48 + 41

2
=

1

2
(48) +

1

2
(41),

with similar considerations for the other entries, we also could have obtained
the average by first dividing A andB by 1

2 , and then adding the result. That is,

1

2
T =

1

2
(A+B) =

1

2
A+

1

2
B.

We’ll see shortly that this result is due to a general property of matrix arithmetic,
called the distributive property.

Expressions such as 1
2A + 1

2B that use both addition and scalar multiplica-
tion together occur frequently in Linear Algebra, and are known as linear com-
binations. In general, a linear combination can be formed from any number of
matrices, as long as they’re all of the same size.

Definition 4.1.7 Linear combination.

Givenm×nmatricesA1, A2, . . . , Ak, a linear combination of these
matrices is any expression of the form

B = c1A1 + c2A2 + · · ·+ ckAk,

where c1, c2, . . . , ck are scalars.
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It is time to forget our farm data andmove into some abstract computational
examples to make sure we have the hang of these new operations.

Example 4.1.8 Matrix addition and scalar multiplication.

Let

A =

 1 2 3

−1 2 1

5 5 5

 , B =

 2 4 6

1 2 2

−1 0 4

 , C =

[
1 2 3

9 8 7

]
.

Simplify the following matrix expressions.

1. A+B

2. B +A

3. A−B

4. A+ C

5. −3A+ 2B

6. A−A

7. 5A+ 5B

8. 5(A+B)

Solution.

1. Adding the corresponding entries of A andB, we have

A+B =

 1 + 2 2 + 4 3 + 6

−1 + 1 2 + 2 1 + 2

5− 1 5 + 0 5 + 4

 =

3 6 9

0 4 3

4 5 9

 .
2. To compute B + A, we again add the corresponding entries, but
in the opposite order:

B +A =

2 + 14 + 2 6 + 3

1− 1 2 + 2 2 + 1

−1 + 5 0 + 5 4 + 5

 =

3 6 9

0 4 3

4 5 9

 .
3. In this case, we have to subtract the entries ofB from those ofA.
This gives us

A−B =

−1 −2 −3

−2 0 −1

6 5 1

 .
4. A + C is not defined. If we look at our definition of matrix addi-
tion, we see that the twomatrices need to be the same size. Since
A and C have different dimensions, we don’t even try to create
something as an addition; we simply say that the sum is not de-
fined.

5. To compute this linear combination we first carry out the scalar
multiplication, followed by the addition:

−3A+ 2B = −3

 1 2 3

−1 2 1

5 5 5

+ 2

 2 4 6

1 2 2

−1 0 4


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=

 −3 −6 −9

3 −6 −3

−15 −15 −15

+

 4 8 12

2 4 4

−2 0 8


=

 1 2 3

5 −2 1

−17 −15 −7

 .
6. Subtracting each entry of A from itself, we get

A−A =

0 0 0

0 0 0

0 0 0

 .
7. Carrying out the scalar multiplication followed by the addition, we
find

5A+5B =

 5 10 15

−5 10 5

25 25 25

+
10 20 30

5 10 10

−5 0 20

 =

15 30 45

0 20 15

20 25 45

 .
8. In this case, we first perform the addition, followed by the scalar
multiplication. We obtain:

5

 1 2 3

−1 2 1

5 5 5

+

 2 4 6

1 2 2

−1 0 4

 = 5 ·

3 6 9

0 4 3

4 5 9


=

15 30 45

0 20 15

20 25 45

 .
Our example raised a few interesting points. Notice howA+B = B+A. We

probably aren’t surprised by this, since we know that when dealing with num-
bers, a+ b = b+a. Also, notice that 5A+5B = 5(A+B). In our example, we
were careful to compute each of these expressions following the proper order of
operations; knowing these are equal allows us to compute similar expressions
in the most convenient way.

Another interesting thing that came from our previous example is that

A−A =

0 0 0

0 0 0

0 0 0

 .
It seems like this should be a special matrix; after all, every entry is 0 and 0 is a
special number.

In fact, this is a special matrix. We define 0, which we read as “the zero
matrix,” to be the matrix of all zeros. We should be careful; this previous “defini-
tion” is a bit ambiguous, for we have not stated what size the zero matrix should

be. Is
[
0 0

0 0

]
the zero matrix? How about

[
0 0

]
?

Let’s not get bogged down in semantics. If we ever see 0 in an expression,
we will usually know right away what size 0 should be; it will be the size that
allows the expression to make sense. IfA is a 3× 5matrix, and we writeA+ 0,



182 CHAPTER 4. MATRIX ALGEBRA

we’ll simply assume that 0 is also a 3× 5matrix. If we are ever in doubt, we can
add a subscript; for instance, 02×7 is the 2× 7matrix of all zeros.

Since the zero matrix is an important concept, we give it its own definition
box.

Definition 4.1.9 The Zero Matrix.

Them× nmatrix of all zeros, denoted 0m×n, is the zero matrix.
When the dimensions of the zero matrix are clear from the context,

the subscript is generally omitted.
We use the bold face to distin-
guish the zeromatrix, 0, from the
number zero, 0.

The following presents some of the properties of matrix addition and scalar
multiplication that we discovered above, plus a few more.

Theorem 4.1.10 Properties of Matrix Addition and Scalar Multiplica-
tion.

The following equalities hold for allm× nmatricesA,B andC and
scalars k.

1. A+B = B +A (Commutative Property)

2. (A+B) + C = A+ (B + C) (Associative Property)

3. k(A+B) = kA+kB (ScalarMultiplication Distributive Property)

4. kA = Ak

5. A+ 0 = 0+A = A (Additive Identity)

6. 0A = 0

Be sure that this last property makes sense; it says that if we multiply any
matrix by the number 0, the result is the zero matrix, or 0. (You now have more
than one kind of zero to keep track of!)

It’s important to understand that since matrix addition and scalar multiplica-
tion are defined in terms of the entries of our matrices, the properties in The-
orem 4.1.10 follow directly from the properties of real number arithmetic in
Section 1.2. For example to prove item 1 above, let A = [aij ] and B = [bij ] be
m× nmatrices. We then have

A+B = [aij ] + [bij ]

= [aij + bij ] (by Definition 4.1.5)
= [bij + aij ] (since addition of real numbers commutes)
= [bij ] + [aij ] (by Definition 4.1.5)
= B +A.

Similarly, the distributive property in item 3 is valid since

k(A+B) = k([aij ] + [bij ])

= k[aij + bij ] (definition of matrix addition)
= [k(aij + bij)] (definition of scalar multiplication)
= [k · aij + k · bij ] (distributive property of real numbers)
= [k · aij ] + [·bij ] (definition of matrix addition)
= k[aij ] + k[bij ] (definition of scalar multiplication)
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= kA+ kB.

The verification of the remaining properties in Theorem 4.1.10 is similar, and
left as an exercise for the reader.

We began this section with the concept of matrix equality. Let’s put our
matrix addition properties to use and solve a matrix equation.

Example 4.1.11 Solving a matrix equation.

Let

A =

[
2 −1

3 6

]
.

Find the matrixX such that

2A+ 3X = −4A.

Solution. We can use basic algebra techniques to manipulate this
equation forX first, let’s subtract 2A from both sides. This gives us

3X = −6A.

Now divide both sides by 3 to get

X = −2A.

Now we just need to compute−2A; we find that

X =

[
−4 2

−6 −12

]
.

Our matrix properties identified 0 as the Additive Identity; i.e., if you add 0
to any matrix A, you simply get A. This is similar in notion to the fact that for
all numbers a, a + 0 = a. AMultiplicative Identity would be a matrix I where
I ×A = A for all matricesA. (What would such a matrix look like? A matrix of
all 1s, perhaps?) However, in order for this to make sense, we’ll need to learn to
multiply matrices together, which we’ll do in the next section.
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4.1.1 Exercises

Exercise Group. For the matrices A andB given below, simplify the given expression.

A =

[
1 −1

7 4

]
B =

[
−3 2

5 9

]
.

1. A+B 2. 2A− 3B

3. 3A−A 4. 4B − 2A

5. 3(A−B) +B 6. 2(A−B)− (A− 3B)

Exercise Group. For the matrices A andB given below, simplify the given expression.

A =

[
3

5

]
B =

[
−2

4

]
.

7. 4B − 2A 8. −2A+ 3A

9. −2A− 3A 10. −B + 3B − 2B

Exercise Group. For the matrices A andB given below, findX that satisfies the given equation.

A =

[
3 −1

2 5

]
B =

[
1 7

3 −4

]
11. 2A+X = B 12. A−X = 3B

13. 3A+ 2X = −1B 14. A− 1
2X = −B

Exercise Group. Find values for the scalars a and b that satisfy the given equation.

15. a

[
1

2

]
+ b

[
−1

5

]
=

[
1

9

]
16. a

[
−3

1

]
+ b

[
8

4

]
=

[
7

1

]
17. a

[
4

−2

]
+ b

[
−6

3

]
=

[
10

−5

]
18. a

[
1

1

]
+ b

[
−1

3

]
=

[
5

5

]
19. a

[
1

3

]
+ b

[
−3

−9

]
=

[
4

−12

]
20. a

12
3

+ b

11
2

 =

 0

−1

−1


21. a

10
1

+ b

51
2

 =

34
7


22. Complete the proof of Theorem 4.1.10.
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4.2 Matrix Multiplication

In the previous section we found that the definition of matrix addition was very
intuitive, and we ended that section discussing the fact that eventually we’d like
to know what it means to multiply matrices together.

In the spirit of the last section, take another wild stab: what do you think[
1 2

3 4

]
×
[
1 −1

2 2

]
means?

You are likely to have guessed [
1 −2

6 8

]
but this is, in fact, not right. (You could definemultiplication this way; you’ll even
find that it satisfies plenty of nice properties. Unfortunately, nice properties
don’tmake up for the fact that this definition just isn’t useful.) The actual answer
is [

5 3

11 5

]
.

If you can look at this one example and suddenly understand exactly howma-
trix multiplication works, then you are probably smarter than the author. While
matrix multiplication isn’t hard, it isn’t nearly as intuitive as matrix addition is.

To further muddy the waters (before we clear them), consider[
1 2

3 4

]
×
[
1 −1 0

2 2 −1

]
.

Our experience from the last section would lend us to believe that this is not
defined, but our confidence is probably a bit shaken by now. In fact, this multi-
plication is defined, and it is [

5 3 −2

11 5 −4

]
.

You may see some similarity in this answer to what we got before, but again,
probably not enough to really figure things out.

Before diving in to the general definition of matrix multiplication, let’s start
simple, with row and column vectors. Recall from Definition 4.1.3 in Section 4.1
that a row vector is a 1 × n matrix of the form a⃗ =

[
a1 a2 · · · an

]
, and a

column vector is anm× 1matrix of the form b⃗ =


b1
b2
...
bm

.

In this text, row vectors are only
used in this sectionwhenwe dis-
cussmatrixmultiplication, whereas
we’ll make extensive use of col-
umn vectors. Other texts make
great use of row vectors, but lit-
tle use of column vectors. It is
a matter of preference and tra-
dition: “most” texts use column
vectors more. In some more ad-
vanced textbooks, rowvectors are
considered to be “dual” to col-
umn vectors. Abstractly, a dual
vector is an object that eats a vec-
tor and spits out a number. Here,
we see that theway a row vector
eats a columnvector andproduces
a number is via multiplication.

Definition 4.2.1 Multiplying a row vector by a column vector.

Let u⃗ be an 1 × n row vector with entries u1, u2, · · · , un and let v⃗
be an n × 1 column vector with entries v1, v2, · · · , vn. The product of
u⃗ and \vvv, denoted u⃗ · v⃗ or u⃗v⃗, is

u⃗v⃗ =

n∑
i=1

uivi = u1v1 + u2v2 + · · ·+ unvn.
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Notice that this is essentially the same as the definition of the dot product
given at the beginning of Section 2.7. There are two key points to notice about
the product defined in Definition 4.2.1:

1. In order for the product u⃗v⃗ to be defined, u⃗ and v⃗ need to have the same
number of entries.

2. To multiply u⃗ and v⃗, wemultiply the corresponding entries, and then add
up the resulting values.

Example 4.2.2 Multiplying row and column vectors.

Let

u⃗ =
[
1 2 3

]
, v⃗ =

[
2 0 1 −1

]
, x⃗ =

−2

4

3

 , y⃗ =


1

2

5

0

 .
Find the following products.

1. u⃗x⃗

2. v⃗y⃗

3. u⃗y⃗

4. u⃗v⃗

5. x⃗u⃗

Solution.

1. u⃗x⃗ =
[
1 2 3

] −2

4

3

 = 1(−2) + 2(4) + 3(3) = 15

2. v⃗y⃗ =
[
2 0 1 −1

] 
1

2

5

0

 = 2(1) + 0(2) + 1(5)− 1(0) = 7

3. u⃗y⃗ is not defined; Definition 4.2.1 specifies that in order to mul-
tiply a row vector and column vector, they must have the same
number of entries.

4. u⃗v⃗ is not defined; we only know how tomultipy row vectors by col-
umn vectors. We haven’t defined how tomultiply two row vectors
(in general, it can’t be done).

5. The product x⃗u⃗ is defined, but we don’t know how to do it yet.
Right now, we only know how to multiply a row vector times a
column vector; we don’t know how to multiply a column vector
times a row vector. (That’s right: u⃗x⃗ ̸= x⃗u⃗!)

Now that we understand how to multiply a row vector by a column vector, we
are ready to define matrix multiplication.
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Definition 4.2.3 Matrix Multiplication.

LetA be anm× r matrix, and letB be an r × nmatrix. Thematrix
product of A andB, denotedA ·B, or simply AB, is them× nmatrix
M whose entry in the ith row and jth column is the product of the ith
row of A and the jth column of B.

It may help to illustrate it in this way. Let matrixA have rows a⃗1, a⃗2, · · ·, a⃗m
and letB have columns b⃗1, b⃗2, · · ·, b⃗n. Thus A looks like

− a⃗1 −
− a⃗2 −

...
− a⃗m −

 ,
where the “−” symbols just serve as reminders that the a⃗i represent rows, and
B looks like  | | |

b⃗1 b⃗2 · · · b⃗n
| | |

 ,
where again, the “|” symbols just remind us that the b⃗i represent column vectors.
Then

AB =


a⃗1⃗b1 a⃗1⃗b2 · · · a⃗1⃗bn
a⃗2⃗b1 a⃗2⃗b2 · · · a⃗2⃗bn
...

...
. . .

...
a⃗mb⃗1 a⃗mb⃗2 · · · a⃗mb⃗n

 .
Two quick notes about this definition. First, notice that in order tomultiplyA

andB, the number of columns ofAmust be the same as the number of rows of
B (we refer to these as the “inner dimensions”). Secondly, the resulting matrix
has the same number of rows as A and the same number of columns as B (we
refer to these as the “outer dimensions”).

final dimensions are the outer dimensions︷ ︸︸ ︷
(m×r)× (r︸ ︷︷ ︸

these inner dimensions must match

×n)

Of course, this will make much more sense when we see an example.

Example 4.2.4 A more general matrix product.

Revisit the matrix product we saw at the beginning of this section;
multiply [

1 2

3 4

] [
1 −1 0

2 2 −1

]
.

Solution. Let’s call our firstmatrixA and the secondB. We should first
check to see that we can actually perform this multiplication. Matrix A
is 2 × 2 and B is 2 × 3. The “inner” dimensions match up, so we can
compute the product; the “outer” dimensions tell us that the product
will be 2× 3. Let

AB =

[
m11 m12 m13

m21 m22 m23

]
.
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Let’s find the value of each of the entries.
The entrym11 is in the first row and first column; therefore to find

its value, we need to multiply the first row ofA by the first column ofB.
Thus

m11 =
[
1 2

] [1
2

]
= 1(1) + 2(2) = 5.

So now we know that

AB =

[
5 m12 m13

m21 m22 m23

]
.

Finishing out the first row, we have

m12 =
[
1 2

] [−1

2

]
= 1(−1) + 2(2) = 3

using the first row of A and the second column of B, and

m13 =
[
1 2

] [ 0

−1

]
= 1(0) + 2(−1) = −2

using the first row of A and the third column of B. Thus we have

AB =

[
5 3 −2

m21 m22 m23

]
.

To compute the second row ofAB, wemultiply with the second row
of A. We find

m21 =
[
3 4

] [1
2

]
= 11,

m22 =
[
3 4

] [−1

2

]
= 5, and

m23 =
[
3 4

] [ 0

−1

]
= −4.

Thus

AB =

[
1 2

3 4

] [
1 −1 0

2 2 −1

]
=

[
5 3 −2

11 5 −4

]
.

Example 4.2.5 Multiplying matrices.

Multiply  1 −1

5 2

−2 3

[1 1 1 1

2 6 7 9

]
.

Solution. Let’s first check to make sure this product is defined. Again
calling the firstmatrixA and the secondB, we see thatA is a 3×2matrix
and B is a 2 × 4 matrix; the inner dimensions match so the product is
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defined, and the product will be a 3× 4matrix,

AB =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 .
We will demonstrate how to compute some of the entries, then give

the final answer. The reader can fill in the details of how each entry was
computed.

m11 =
[
1 −1

] [1
2

]
= −1

m13 =
[
1 −1

] [1
7

]
= −6

m23 =
[
5 2

] [1
7

]
= 19

m24 =
[
5 2

] [1
9

]
= 23

m32 =
[
−2 3

] [1
6

]
= 16

m34 =
[
−2 3

] [1
9

]
= 25.

So far, we’ve computed this much of AB:

AB =

−1 m12 −6 m14

m21 m22 19 23

m31 16 m33 25

 .
The final product is

AB =

−1 −5 −6 −8

9 17 19 23

4 16 19 25

 .

Example 4.2.6 An undefined product.

Multiply, if possible, [
2 3 4

9 8 7

] [
3 6

5 −1

]
.

Solution. Again, we’ll call the first matrix A and the second B. Check-
ing the dimensions of each matrix, we see that A is a 2 × 3 matrix,
whereasB is a 2× 2matrix. The inner dimensions do not match, there-
fore this multiplication is not defined.
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Example 4.2.7 A vector product revisited.

In Example 4.2.2, we were told that the product x⃗u⃗ was defined,
where

x⃗ =

−2

4

3

 and u⃗ =
[
1 2 3

]
,

although we were not shown what that product was. Find x⃗u⃗.
Solution. Again, we need to check to make sure the dimensions work
correctly (remember that even though we are referring to u⃗ and x⃗ as
vectors, they are, in fact, just matrices).

The column vector x⃗ has dimensions 3× 1, whereas the row vector
u⃗ has dimensions 1 × 3. Since the inner dimensions match, the matrix
product is defined; the outer dimensions tell us that the product will be
a 3× 3matrix, as shown below:

x⃗u⃗ =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 .
To compute the entrym11, we multiply the first row of x⃗ by the first

column of u⃗. What is the first row of x⃗? Simply the number −2. What
is the first column of u⃗? Just the number 1. Thus m11 = −2. (This
does seem odd, but through checking, you can see that we are indeed
following the rules.)

What about the entrym12? Again, we multiply the first row of x⃗ by
the first column of u⃗; that is, we multiply−2(2). Som12 = −4.

What aboutm23? Multiply the second row of x⃗ by the third column
of u⃗; multiply 4(3), som23 = 12.

One final example: m31 comes from multiplying the third row ofx⃗,
which is 3, by the first column of u⃗, which is 1. Thereforem31 = 3.

So far we have computed

x⃗u⃗ =

−2 −4 m13

m21 m22 12

3 m32 m33

 .
After performing all 9 multiplications, we find

x⃗u⃗ =

−2 −4 −6

4 8 12

3 6 9

 .
In this last example, we saw a “nonstandard” multiplication (at least, it felt

nonstandard). Studying the entries of this matrix, it seems that there are sev-
eral different patterns that can be seen amongst the entries. (Remember that
mathematicians like to look for patterns. Also remember that we often guess
wrong at first; don’t be scared and try to identify some patterns.)

In Section 4.1, we identified the zero matrix 0 that had a nice property in
relation to matrix addition (i.e., A + 0 = A for any matrix A). In the following
example we’ll identify a matrix that works well with multiplication as well as
some multiplicative properties. For instance, we’ve learned how 1 · A = A; is
there amatrix that acts like the number 1? That is, canwe find amatrixX where
X ·A = A? (Wemade a guess in Section 4.1 that maybe amatrix of all 1s would
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work, but you can probably already see that this guess is doomed to failure.)

Example 4.2.8 Computing matrix products.

Let

A =

 1 2 3

2 −7 5

−2 −8 3

 , B =

1 1 1

1 1 1

1 1 1


C =

1 0 2

2 1 0

0 2 1

 , I =

1 0 0

0 1 0

0 0 1

 .
Find the following products.

1. AB

2. BA

3. A03×4

4. AI

5. IA

6. I2

7. BC

8. B2

Solution. We will find each product, but we leave the details of each
computation to the reader.

1. AB =

 1 2 3

2 −7 5

−2 −8 3

1 1 1

1 1 1

1 1 1

 =

 6 6 6

0 0 0

−7 −7 −7



2. BA =

1 1 1

1 1 1

1 1 1

 1 2 3

2 −7 5

−2 −8 3

 =

1 −13 11

1 −13 11

1 −13 11


3. A03×4 = 03×4.

4. AI =

 1 2 3

2 −7 5

−2 −8 3

1 0 0

0 1 0

0 0 1

 =

 1 2 3

2 −7 5

−2 −8 3



5. IA =

1 0 0

0 1 0

0 0 1

 1 2 3

2 −7 5

−2 −8 3

 =

 1 2 3

2 −7 5

−2 −8 3


6. We haven’t formally defined what I2 means, but we could proba-
bly make the reasonable guess that I2 = I · I . Thus

I2 =

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

 =

1 0 0

0 1 0

0 0 1

 .

7. BC =

1 1 1

1 1 1

1 1 1

1 0 2

2 1 0

0 2 1

 =

3 3 3

3 3 3

3 3 3



8. B2 = BB =

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

 =

3 3 3

3 3 3

3 3 3


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This example is simply chock full of interesting ideas; it is almost hard to think
about where to start.

Interesting Idea #1 Notice that in our example,AB ̸= BA! Whendealing
with numbers, we were used to the idea that ab = ba.
With matrices, multiplication is not commutative. (Of
course, we can find special situations where it does
work. In general, though, it doesn’t.)

Interesting Idea #2 Right before this example we wondered if there was
a matrix that “acted like the number 1,” and guessed
it may be a matrix of all 1s. However, we found out
that such a matrix does not work in that way; in our
example, AB ̸= A. We did find that AI = IA = A.
There is a Multiplicative Identity; it just isn’t what we
thought it would be. And just as 12 = 1, I2 = I .

Interesting Idea #3 When dealing with numbers, we are very familiar with
the notion that “If ax = bx, then a = b.” (As long as
x ̸= 0.) Notice that, in our example, BB = BC, yet
B ̸= C. In general, just because AX = BX , we
cannot conclude that A = B.

Matrix multiplication is turning out to be a very strange operation. We are
very used to multiplying numbers, and we know a bunch of properties that hold
when using this type of multiplication. When multiplying matrices, though, we
probably find ourselves asking two questions, “What does work?” and “What
doesn’t work?” We’ll answer these questions; first we’ll do an example that
demonstrates some of the things that do work.

Example 4.2.9 Exploring properties of matrix multiplication.

Let

A =

[
1 2

3 4

]
, B =

[
1 1

1 −1

]
and C =

[
2 1

1 2

]
.

Find the following:

1. A(B + C)

2. AB +AC

3. A(BC)

4. (AB)C

Solution. We’ll compute each of these without showing all the inter-
mediate steps. Keep in mind order of operations: things that appear
inside of parentheses are computed first.

1.

A(B + C) =

[
1 2

3 4

]([
1 1

1 −1

]
+

[
2 1

1 2

])
=

[
1 2

3 4

] [
3 2

2 1

]
=

[
7 4

17 10

]
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2.

AB +AC =

[
1 2

3 4

] [
1 1

1 −1

]
+

[
1 2

3 4

] [
2 1

1 2

]
=

[
3 −1

7 −1

]
+

[
4 5

10 11

]
=

[
7 4

17 10

]
3.

A(BC) =

[
1 2

3 4

]([
1 1

1 −1

] [
2 1

1 2

])
=

[
1 2

3 4

] [
3 3

1 −1

]
=

[
5 1

13 5

]
4.

(AB)C =

([
1 2

3 4

] [
1 1

1 −1

])[
2 1

1 2

]
=

[
3 −1

7 −1

] [
2 1

1 2

]
=

[
5 1

13 5

]
In looking at our example, we should notice two things. First, it looks like the

“distributive property” holds; that is, A(B + C) = AB + AC. This is nice as
many algebraic techniques we have learned about in the past (when doing “or-
dinary algebra”) will still work. Secondly, it looks like the “associative property”
holds; that is, A(BC) = (AB)C. This is nice, for it tells us that when we are
multiplying several matrices together, we don’t have to be particularly careful
in what order we multiply certain pairs of matrices together.

Be careful: in computing ABC
together, we canfirstmultiplyAB
or BC, but we cannot change
the order in which these matri-
ces appear. We cannot multiply
BA or AC, for instance.

In leading to an important theorem, let’s define amatrix we saw in an earlier
example.

Definition4.2.10 uses a termwe
won’t defineuntil Definition6.1.4:
diagonal. In short, a “diagonal
matrix” is one in which the only
nonzero entries are the “diago-
nal entries.” The examples given
here and in the exercises should
suffice until we meet the full de-
finition later.

Definition 4.2.10 Identity Matrix.

The n × n matrix with 1s on the diagonal and zeros elsewhere is
the n × n identity matrix, denoted In. When the context makes the
dimension of the identity clear, the subscript is generally omitted.

Note that while the zero matrix can come in all different shapes and sizes,
the identity matrix is always a square matrix. We show a few identity matrices
below.

I2 =

[
1 0

0 1

]
, I3 =

1 0 0

0 1 0

0 0 1

 , I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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In our examples above, we have seen examples of things that do and do not
work. We should be careful about what examples prove, though. If someone
were to claim that AB = BA is always true, one would only need to show
them one example where they were false, and we would know the person was
wrong. However, if someone claims thatA(B+C) = AB+AC is always true,
we can’t prove this with just one example. We need something more powerful;
we need a true proof.

In this text, we forgo most proofs. The reader should know, though, that
when we state something in a theorem, there is a proof that backs up what we
state. Our justification comes from something stronger than just examples.

Now we give the good news of what does work when dealing with matrix
multiplication.

Theorem 4.2.11 Properties of Matrix Multiplication.

Let A, B and C be matrices whose sizes are such that the following
operations make sense, and let k be a scalar. The following equalities
hold:

1. A(BC) = (AB)C (Associative Property)

2. A(B+C) = AB+AC and (B+C)A = BA+CA (Distributive
Property)

3. k(AB) = (kA)B = A(kB)

4. AI = IA = A

The above box contains some very good news, and probably some very sur-
prising news. Matrix multiplication probably seems to us like a very odd opera-
tion, soweprobablywouldn’t havebeen surprised ifwewere told thatA(BC) ̸=
(AB)C. It is a very nice thing that the Associative Property does hold.

As we near the end of this section, we raise one more issue of notation. We
define A0 = I . If n is a positive integer, we define

An = A ·A · · · · · A︸ ︷︷ ︸
n times

.

With numbers, we are used to a−n = 1
an . Do negative exponents work with

matrices, too? The answer is yes, sort of. We’ll have to be careful, andwe’ll cover
the topic in detail once we define the inverse of a matrix. For now, though, we
recognize the fact thatA−1 ̸= 1

A , for
1
A makes no sense; we don’t know how to

“divide” by a matrix.

With numbers, we canmake sense
of the expression a

b , becauseab
−1 =

b−1a. But the expression A
B makes

no sense formatrices, evenonce
we knowhow to defineB−1, be-
cause in general,B−1A ̸= AB−1,
andwedon’t knowwhich of these
two is meant by A

B .

We end this section with a reminder of some of the things that do not work
withmatrixmultiplication. The good news is that there are really only two things
on this list.

1. Matrix multiplication is not commutative; that is, AB ̸= BA.

2. In general, just because AX = BX , we cannot conclude that A = B.

The bad news is that these ideas pop up in many places where we don’t
expect them. For instance, we are used to

(a+ b)2 = a2 + 2ab+ b2.

What about (A+B)2? All we’ll say here is that

(A+B)2 ̸= A2 + 2AB +B2;

we leave it to the reader to figure out why.
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4.2.1 Exercises

Exercise Group. Row and column vectors u⃗ and v⃗ are given. Find the product u⃗v⃗, where possible.

1. u⃗ =
[
1 −4

]
v⃗ =

[
−2

5

]
2. u⃗ =

[
2 3

]
v⃗ =

[
74
]

3. u⃗ =
[
1 −1

]
v⃗ =

[
3

3

]
4. u⃗ =

[
0.6 0.8

]
v⃗ =

[
0.6

0.8

]

5. u⃗ =
[
1 2 −1

]
v⃗ =

 2

1

−1

 6. u⃗ =
[
3 2 −2

]
v⃗ =

−1

0

9


7. u⃗ =

[
8 −4 3

]
v⃗ =

24
5

 8. u⃗ =
[
−3 6 1

]
\ v⃗ =

[
11

1

]

9. u⃗ =
[
1 2 3 4

]
v⃗ =


1

−1

1

−1

 10. u⃗ =
[
6 2 −1 2

]
v⃗ =


3

2

9

5


11. u⃗ =

[
1 2 3

]
v⃗ =

[
3

2

]
12. u⃗ =

[
2 −5

]
v⃗ =

11
1


Exercise Group. Matrices A andB are defined.

(a) Give the dimensions of A andB. If the dimensions properly match, give the dimensions of AB andBA.

(b) Find the products AB andBA, if possible.

13. A =

[
1 2

−1 4

]
,B =

[
2 5

3 −1

]
14. A =

[
3 7

2 5

]
,B =

[
1 −1

3 −3

]
15. A =

[
3 −1

2 2

]
,B =

[
1 0 7

4 2 9

]
16. A =

 0 1

1 −1

−2 −4

,B =

[
−2 0

3 8

]

17. A =

[
9 4 3

9 −5 9

]
,B =

[
−2 5

−2 −1

]
18. A =

−2 −1

9 −5

3 −1

,B =

[
−5 6 −4

0 6 −3

]

19. A =

2 6

6 2

5 −1

,B =

[
−4 5 0

−4 4 −4

]
20. A =

−5 2

−5 −2

−5 −4

,B =

[
0 −5 6

−5 −3 −1

]

21. A =

8 −2

4 5

2 −5

,B =

[
−5 1 −5

8 3 −2

]
22. A =

[
1 4

7 6

]
,B =

[
1 −1 −5 5

−2 1 3 −5

]

23. A =

[
−1 5

6 7

]
,B =

[
5 −3 −4 −4

−2 −5 −5 −1

]
24. A =

−1 2 1

−1 2 −1

0 0 −2

,B =

0 0 −2

1 2 −1

1 0 0


25. A =

−1 1 1

−1 −1 −2

1 1 −2

,B =

−2 −2 −2

0 −2 0

−2 0 2

 26. A =

−4 3 3

−5 −1 −5

−5 0 −1

,B =

 0 5 0

−5 −4 3

5 −4 3


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27. A =

−4 −1 3

2 −3 5

1 5 3

,B =

−2 4 3

−1 1 −1

4 0 2


Exercise Group. A diagonalmatrixD and a matrix A are given. Find the productsDA and AD, where possible.

28. D =

−1 0 0

0 2 0

0 0 3

, A =

1 2 3

4 5 6

7 8 9

 29. D =

 1 1 1

2 2 2

−3 −3 −3

, A =

2 0 0

0 −3 0

0 0 5


30. D =

[
3 0

0 −1

]
, A =

[
2 4

6 8

]
31. D =

[
4 0

0 −3

]
, A =

[
1 2

1 2

]
32. D =

[
d1 0

0 d2

]
, A =

[
a b

c d

]
33. D =

d1 0 0

0 d2 0

0 0 d3

, A =

a b c

d e f

g h i


Exercise Group. A matrix A and a vector x⃗ are given. Find the product Ax⃗.

34. A =

[
2 3

1 −1

]
, x⃗ =

[
4

9

]
35. A =

[
−1 4

7 3

]
, x⃗ =

[
2

−1

]

36. A =

2 0 3

1 1 1

3 −1 2

, x⃗ =

14
2

 37. A =

−2 0 3

1 1 −2

4 2 −1

, x⃗ =

43
1


38. A =

1 2 3

1 0 2

2 3 1

, x⃗ =

x1

x2

x3

 39. A =

[
2 −1

4 3

]
, x⃗ =

[
x1

x2

]

40. Let A =

[
0 1

1 0

]
. Find A2 and A3.

41. Let A =

[
2 0

0 3

]
. Find A2 and A3.

42. Let A =

−1 0 0

0 3 0

0 0 5

. Find A2 and A3.

43. Let A =

0 1 0

0 0 1

1 0 0

. Find A2 and A3.

44. Let A =

0 0 1

0 0 0

0 1 0

. Find A2 and A3.

45. In the text we state that (A+B)2 ̸= A2 + 2AB +B2. We investigate that claim here.

(a) Let A =

[
5 3

−3 −2

]
and letB =

[
−5 −5 − 2 1

]
. Compute A+B.

(b) Find (A+B)2 by using your answer from (a).

(c) Compute A2 + 2AB +B2.

(d) Are the results from (a) and (b) the same?

(e) Carefully expand the expression

(A+B)2 = (A+B)(A+B)
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and show why this is not equal to A2 + 2AB +B2.
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4.3 Solving Matrix Equations AX = B

We concluded the last chapter with a discussion about solving numerical equa-
tions like ax = b forx. We have seen how to solve equations of the formAx⃗ = b⃗
by identifying them as systems of linear equations. In this section we will learn
how to solve the general matrix equation AX = B forX .

We will start by considering the best case scenario when solving Ax⃗ = b⃗;
that is, when A is square and we have exactly one solution. For instance, sup-
pose we want to solve Ax⃗ = b⃗ where

A =

[
1 1

2 1

]
and b⃗ =

[
0

1

]
.

We knowhow to solve this; put the appropriatematrix into reduced rowechelon
form and interpret the result.[

1 1 0

2 1 1

]
−→
rref

[
1 0 1

0 1 −1

]
We read from this that

x⃗ =

[
1

−1

]
.

Written in a more general form, we found our solution by forming the aug-
mented matrix [

A b⃗
]

and interpreting its reduced row echelon form:[
A b⃗

] −→
rref

[
I x⃗

]
.

Notice that when the reduced row echelon form ofA is the identity matrix I we
have exactly one solution. This, again, is the best case scenario.

We apply the same general technique to solving the matrix equationAX =
B forX . We’ll assume thatA is a square matrix (B need not be) and we’ll form
the augmented matrix [

A B
]
.

Putting this matrix into reduced row echelon form will give usX , much like we
found x⃗ before. [

A B
] −→

rref
[
I X

]
.

As long as the reduced row echelon form of A is the identity matrix, this
technique works great. After a few examples, we’ll discuss why this technique
works, and we’ll also talk just a little bit about what happens when the reduced
row echelon form of A is not the identity matrix.

First, some examples.

Example 4.3.1 Solving a matrix equation.

Solve the matrix equation AX = B where

A =

[
1 −1

5 3

]
and B =

[
−8 −13 1

32 −17 21

]
.

Solution. To solve AX = B for X , we form the proper augmented
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matrix, put it into reduced row echelon form, and interpret the result.[
1 −1 −8 −13 1

5 3 32 −17 21

]
−→
rref

[
1 0 1 −7 3

0 1 9 6 2

]
We read from the reduced row echelon form of the matrix that

X =

[
1 −7 3

9 6 2

]
.

We can easily check to see if our answer is correct by multiplying AX .

Example 4.3.2 Another matrix equation.

Solve the matrix equation AX = B where

A =

1 0 2

0 −1 −2

2 −1 0

 and B =

−1 2

2 −6

2 −4

 .
Solution. To solve, let’s again form the augmented matrix[

A B
]
,

put it into reduced row echelon form, and interpret the result.1 0 2 −1 2

0 −1 −2 2 −6

2 −1 0 2 −4

 −→
rref

1 0 0 1 0

0 1 0 0 4

0 0 1 −1 1


We see from this that

X =

 1 0

0 4

−1 1

 .
Why does this work? To see the answer, let’s define five matrices.

A =

[
1 2

3 4

]
, u⃗ =

[
1

1

]
, v⃗ =

[
−1

1

]
, w⃗ =

[
5

6

]
and X =

[
1 −1 5

1 1 6

]
.

Notice that u⃗, v⃗ and w⃗ are the first, second and third columns ofX , respec-
tively. Now consider this list of matrix products: Au⃗, Av⃗, Aw⃗ and AX .

Au⃗ =

[
1 2

3 4

] [
1

1

]
=

[
3

7

]
Aw⃗ =

[
1 2

3 4

] [
5

6

]
=

[
17

39

]
Av⃗ =

[
1 2

3 4

] [
−1

1

]



200 CHAPTER 4. MATRIX ALGEBRA

=

[
1

1

]
AX =

[
1 2

3 4

] [
1 −1 5

1 1 6

]
=

[
3 1 17

7 1 39

]
.

So again note that the columns ofX are u⃗, v⃗, and w⃗; that is, we can write

X =
[
u⃗ v⃗ w⃗

]
.

Notice also that the columns of AX areAu⃗,Av⃗ andAw⃗, respectively. Thus we
can write

AX = A
[
u⃗ v⃗ w⃗

]
=
[
Au⃗ Av⃗ Aw⃗

]
=

[[
3

7

] [
1

1

] [
17

39

]]
=

[
3 1 17

7 1 39

]
.

This is exactly the same sort of thing we did in Section 3.5 when we had several
vectors and we wanted to determine whether or not each of them belonged
to a given span. Rather than perform the same set of row operations for each
vector separately, we can do them all together. (See the discussion following
Example 3.5.8.)

Thus, we are once again making use of the following fact:

The columns of a matrix product AX are A times the columns of
X .

How does this help us solve the matrix equation AX = B for X? Assume
that A is a square matrix (that forces X and B to be the same size). We’ll
let x⃗1, x⃗2, · · · x⃗n denote the columns of the (unknown) matrix X , and we’ll let
b⃗1, b⃗2, · · · b⃗n denote the columns of B. We want to solve AX = B forX . That
is, we wantX where

AX = B (4.3.1)

A
[
x⃗1 x⃗2 · · · x⃗n

]
=
[⃗
b1 b⃗2 · · · b⃗n

]
(4.3.2)[

Ax⃗1 Ax⃗2 · · · Ax⃗n

]
=
[⃗
b1 b⃗2 · · · b⃗n

]
. (4.3.3)

If the matrix on the left hand side is equal to the matrix on the right, then
their respective columns must be equal. This means we need to solve n equa-
tions:

Ax⃗1 = b⃗1

Ax⃗2 = b⃗2

... =
...

Ax⃗n = b⃗n.

We already know how to do this; this is what we learned in the previous
section. Let’s do this in a concrete example. In our above work we defined
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matricesA andX , and looked at the productAX . Let’s call the productB; that
is, set B = AX . Now, let’s pretend that we don’t know whatX is, and let’s try
to find the matrixX that satisfies the equation AX = B. As a refresher, recall
that

A =

[
1 2

3 4

]
and B =

[
3 1 17

7 1 39

]
.

SinceA is a 2×2matrix andB is a 2×3matrix, what dimensions mustX be
in the equationAX = B? The number of rows ofX must match the number of
columns ofA; the number of columns ofX must match the number of columns
ofB. Therefore we know thatX must be a 2× 3matrix.

We’ll call the three columns of X x⃗1, x⃗2 and x⃗3. Our previous explanation
tells us that if AX = B, then:

AX = B

A
[
x⃗1 x⃗2 x⃗3

]
=

[
3 1 17

7 1 39

]
[
Ax⃗1 Ax⃗2 Ax⃗3

]
=

[
3 1 17

7 1 39

]
.

Hence

Ax⃗1 =

[
3

7

]
Ax⃗2 =

[
1

1

]
Ax⃗3 =

[
17

39

]
.

To find x⃗1, we form the proper augmented matrix and put it into reduced
row echelon form and interpret the results.[

1 2 3

3 4 7

]
−→
rref

[
1 0 1

0 1 1

]
This shows us that

x⃗1 =

[
1

1

]
.

To find x⃗2, we again form an augmented matrix and interpret its reduced
row echelon form. [

1 2 1

3 4 1

]
−→
rref

[
1 0 −1

0 1 1

]
.

Thus

x⃗2 =

[
−1

1

]
,

which matches with what we already knew from above.
Before continuing on in this manner to find x⃗3, we should stop and think.

If the matrix vector equation Ax⃗ = b⃗ is consistent, then the steps involved in
putting [

A b⃗
]
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into reduced row echelon form depend only on A; it does not matter what is.
So when we put the two matrices[

1 2 3

3 4 7

]
and

[
1 2 1

3 4 1

]
from above into reduced row echelon form, we performed exactly the same
steps! (In fact, those steps are: −3R1+R2 → R2;− 1

2R2 → R2;−2R2+R1 →
R1.)

This is just as we noted after Example 3.5.8. Instead of solving for each col-
umn ofX separately, performing the same steps to put the necessary matrices
into reduced row echelon form three different times, why don’t we just do it
all at once? (Unless you enjoy doing unnecessary work.) Instead of individually
putting [

1 2 3

3 4 7

]
,

[
1 2 1

3 4 1

]
and

[
1 2 17

3 4 39

]
into reduced row echelon form, let’s just put[

1 2 3 1 17

3 4 7 1 39

]
into reduced row echelon form.[

1 2 3 1 17

3 4 7 1 39

]
−→
rref

[
1 0 1 −1 5

0 1 1 1 6

]
.

By looking at the last three columns, we seeX:

X =

[
1 −1 5

1 1 6

]
.

In each of the examples we’ve considered so far, the reduced row echelon
form R of the matrix A was equal to the n × n identity matrix: R = I . It
follows from Definition 3.6.14 in Section 3.6 that for an n×nmatrixA, we have
R = I if and only if the rank of A is equal to n. At this point we should recall
Theorem 3.6.15 from Section 3.6, and the discussion that followed. One of the
things Theorem 3.6.15 tells us is that if A is an n × n matrix and rank(A) = n,
then the equation Ax⃗ = b⃗ is guaranteed to have a unique solution, no matter
what the vector b⃗ is.

But what if rank(A) < n? In this case, the reduced row echelon form of A
is an n × n matrix R with at least row of zeros on the bottom. Our experience
with solving systems of the form Ax⃗ = b⃗ tells us that in this case, the matrix
equation AX = B may have infinitely many solutions, or no solution at all. Let
us consider an example.

Example 4.3.3 SolvingAX = B when rank(A) < n.

Solve the matrix equations AX = B and AX = C, where

A =

 1 0 −3

−2 3 4

0 6 −4

 , B =

1 2 0

1 1 3

6 3 0

 , and C =

 4 −2 −3

−6 5 7

4 2 2

 .
Solution. We proceed as in the previous examples. For the equation
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AX = B, we have

[
A B

]
=

 1 0 −3 1 2 0

−2 3 4 1 1 3

0 6 −4 6 3 0


→

 1 0 −3 1 2 0

0 3 −2 3 5 3

0 0 0 0 −7 −6

 .
We stopped before reaching the reduced row echelon form, but there’s
no reason to continue: we already have a row of zeros on the left-hand
side of the augmented matrix, and two non-zero entries in that same
row, on the right. What this tells us is that it will be impossible to solve
for the second and third columns ofX; thus, there is no solution in this
case.

For the equation AX = C, we have

[
A C

]
=

 1 0 −3 4 −2 −3

−2 3 4 −6 5 7

0 6 −4 4 2 2


−→
rref

 1 0 −3 4 −2 3

0 1 −2/3 2/3 1/3 1/3

0 0 0 0 0 0

 .
In this case, we are able to solve for each column of X , but in each
case there are infinitely many possibilities: we findX =

[
x⃗1 x⃗2 x⃗3

]
,

where

x⃗1 =

4 + 3r
2
3 + 2

3r

r

 , x⃗2 =

−2 + 3s
1
3 + 2

3s

s

 , x⃗3 =

−3 + 3t
1
3 + 2

3 t

t

 ,

for parameters r, s, t. Any choice of values for each of these parameters
provides us with a solution. For simple example, we can set all three
parameters equal to zero, giving us

X =

 4 −2 −3

2/3 1/3 1/3

0 0 0

 .
It’s easy to check that indeed, AX = C in this case.

In the previous example, we saw that the equationAX = B had no solution,
while we were able to solve AX = C. How do we know which of these will be
the case? Let’s go back to Equation (4.3.2) above. From this equation, we can
see that each column of B is of the form b⃗i = Ax⃗i for some vector x⃗i. Now
recall from Section 2.7 that the set of vectors of the form Ax⃗ is precisely the
column space of A. In the case of the matrix C, we can check that if we write

A =
[
a⃗1 a⃗2 a⃗3

]
and C =

[
c⃗1 c⃗2 c⃗3

]
,

then c⃗1 = a⃗1− a⃗2, c⃗2 = a⃗1+ a⃗2+ a⃗3, and c⃗3 = a⃗2+ a⃗3. Thus, all three columns
of C are linear combinations of the columns of A, which is what allowed us to
find a solution to AX = C even though the rank of A was less than n.
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Now that we’ve justified the technique we’ve been using in this section to
solve AX = B forX , we reinforce its importance by restating it as a Key Idea.

Key Idea 4.3.4 SolvingAX = B.

Let A be an n × n matrix, where the reduced row echelon form of
A is I . To solve the matrix equation AX = B forX ,

1. Form the augmented matrix
[
A B

]
.

2. Put this matrix into reduced row echelon form.

(a) If it is of the form
[
I C

]
, for some matrix C that appears

in the columns whereB once was, then C = X .

(b) If it is of the form
[
R C

]
, where the matrixR (the reduced

row echelon form ofA) has one or more rows of zeros, then
there will be either no solution or infinitely many solutions,
depending on whether or not the columns of B belong to
the column space of A.

These simple steps cause us to ask certain questions. One of these we asked
(and answered) above: What if A does not have maximum rank, so that the
reduced row echelon form ofA is not equal to I? Second, we specify above that
A should be a square matrix. What happens if A isn’t square? Is a solution still
possible? If you studywhat happens in Example 4.3.3 carefully, you can probably
guess that a similar argument applies, by applying the ideas of Section 3.6 to
each column of B individually.

These questions are good to ask, and we leave it to the reader to discover
their answers. Instead of tackling these questions, we instead tackle the prob-
lem of “Why do we care about solving AX = B?” The simple answer is that,
for now, we only care about the special case when B = I . By solving AX = I
forX , we find a matrixX that, when multiplied byA, gives the identity I . That
will be very useful.
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4.3.1 Exercises

Exercise Group. Matrices A andB are given. Solve the matrix equation AX = B.

1. A =
[
−3 −6 4 0

]
,B =

[
48 −30

0 −8

]
2. A =

[
0 −2 1 0 2 2

1 2 −3

]
,B = I3

3. A =
[
−4 1 − 1 −2

]
,

B =

[
−2 −10 19

13 2 −2

] 4. A =
[
1 −3 − 3 6

]
,B =

[
12 −10

−27 27

]

5. A =
[
−1 −2 − 2 −3

]
,B =

[
13 4 7

22 5 12

]
6. A =

[
3 3 6 4

]
,B =

[
15 −39

16 −66

]
7. A =

[
4 −1 − 7 5

]
,B =

[
8 −31

−27 38

]
8. A =

[
2 2 3 1

]
,B = I2

9. A =

[
−2 0 4 − 5 −4 5

−3 5 −3

]
,

B =

−18 2 −14

−38 18 −13

10 2 −18


10. A =

[
−5 −4 −1 8 −2 −3

6 1 −8

]
,

B =

−21 −8 −19

65 −11 −10

75 −51 33


11. A =

[
−3 3 −2 1 −3 2

−1 −1 2

]
,B = I3

12. A =
[
1 0 3 −1

]
,B = I2
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4.4 The Matrix Inverse

Once again we visit the old algebra equation, ax = b. How do we solve for x?
We know that, as long as a ̸= 0,

x =
b

a
, or, stated in another way, x = a−1b.

What is a−1? It is the number that, when multiplied by a, returns 1. That is,

a−1a = 1.

Let us now think in terms ofmatrices. We have learned of the identitymatrix
I that “acts like the number 1.” That is, if A is a square matrix, then

IA = AI = A.

If we had a matrix, which we’ll call A−1, where A−1A = I , then by analogy
to our algebra example above it seems like we might be able to solve the linear
system Ax⃗ = b⃗ for x⃗ by multiplying both sides of the equation by A−1. That is,
perhaps

x⃗ = A−1⃗b.

There is no guarantee that such a matrix is going to exist for an arbitrary n × n
matrix A, but if it does, we say that A is invertible.

Definition 4.4.1 Invertible Matrices and the Inverse of A.

We say that an n×nmatrixA is invertible if there exists a matrixX
such that

AX = XA = In.

When this is the case, we call the matrix X the inverse of A and write
X = A−1.

Of course, there is a lot of speculation here. We don’t know in general that
such a matrix like A−1 exists. (And if it does, whether that matrix is unique,
despite the use of the definite article in stating that X is “the” inverse of A.)
However, we do know how to solve the matrix equation AX = B, so we can
use that technique to solve the equation AX = I forX . This seems like it will
get us close to what we want. Let’s practice this once and then study our results.

Example 4.4.2 SolvingAX = I.

Let

A =

[
2 1

1 1

]
.

Find a matrixX such that AX = I .
Solution. We know how to solve this from the previous section: we
form the proper augmented matrix, put it into reduced row echelon
form and interpret the results.[

2 1 1 0

1 1 0 1

]
−→
rref

[
1 0 1 −1

0 1 −1 2

]
We read from our matrix that

X =

[
1 −1

−1 2

]
.
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Let’s check our work:

AX =

[
2 1

1 1

] [
1 −1

−1 2

]
=

[
1 0

0 1

]
= I

Sure enough, it works.

Looking at our previous example, we are tempted to jump in and call the
matrixX that we found “A−1.” However, there are two obstacles in the way of
us doing this.

First, we know that in general AB ̸= BA. So while we found that AX = I ,
we can’t automatically assume thatXA = I .

Secondly, we have seen examples of matrices where AB = AC, but B ̸=
C. So just because AX = I , it is possible that another matrix Y exists where
AY = I . If this is the case, using the notation A−1 would be misleading, since
it could refer to more than one matrix.

These obstacles that we face are not insurmountable. The first obstacle was
that we know that AX = I but didn’t know thatXA = I . That’s easy enough
to check, though. Let’s look at A andX from our previous example.

XA =

[
1 −1

−1 2

] [
2 1

1 1

]
=

[
1 0

0 1

]
= I .

Perhaps this first obstacle isn’t much of an obstacle after all. Of course, we
only have one example where it worked, so this doesn’t mean that it always
works. We have good news, though: it always does work. The only “bad” news
is that this is a bit harder to prove. For now, we will state it as theorem, but the
proof will have to wait until later: see the proof of Theorem 4.5.1.

Theorem 4.4.3 Special Commuting Matrix Products.

Let A be an n× nmatrix.

1. If there is a matrixX such that AX = In, thenXA = In.

2. If there is a matrixX such thatXA = In, then AX = In.

Note: Theorem 4.4.3 only ap-
plies to square matrices. If A is
anm×nmatrix, withm ̸= n, it
is sometimes possible to find an
n×mmatrixB such thatAB =
Im (in this caseB is called a “right
inverse” forA), or an n×mma-
trixC such thatCA = In (a “left
inverse” for A). However, the
only casewhereAhas both a left
and a right inverse is whenm =
n, in which caseB = C. Ifm <
n, only a right inverse is possi-
ble, while if m > n, only a left
inverse is possible.

The second obstacle is easier to address. We want to know if another matrix
Y exists whereAY = I = Y A. Let’s suppose that it does. Consider the expres-
sionXAY . Since matrix multiplication is associative, we can group this any way
we choose. We could group this as (XA)Y ; this results in

(XA)Y = IY

= Y .

We could also groupXAY asX(AY ). This tells us

X(AY ) = XI
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= X .

Combining the two ideas above, we see thatX = XAY = Y ; that is,X =
Y . We conclude that there is only one matrixX whereXA = I = AX . (Even
if we think we have two, we can do the above exercise and see that we really
just have one.)

We have just proved the following theorem.

Theorem 4.4.4 Uniqueness of Solutions toAX = In.

Let A be an n × n matrix and let X be a matrix where AX = In.
ThenX is unique; it is the onlymatrix that satisfies this equation. In other
words, ifA is ann×nmatrix andAX = AY = In, thenX = Y = A−1.

Thus, we were justified in Definition 4.4.1 in calling A−1 “the” inverse of
A (rather than merely “an” inverse). Theorem 4.4.4 is incredibly important in
practice. It tells us that if we are able to establish that either AX = In or
XA = In for some matrix X , then we can immediately conclude two things:
first, that A is invertible, and second, that A = A−1. We put this observation
to use in the next example.

Example 4.4.5 Using Theorems Theorem 4.4.3 and Theorem 4.4.4.

Suppose A is an n × n matrix such that A5 = In. Prove that A is
invertible, and find an expression for A−1.
Solution. Using Theorem 4.4.4, we can quickly kill two birds with one
stone. Using properties of exponents (and the fact that 5 = 1 + 4), we
have

A5 = A · (A ·A ·A ·A) = A(A4) = In.

Thus, if we setX = A4, thenAX = In, so by Theorems Theorem 4.4.3
and Theorem 4.4.4, A is invertible, and A−1 = A4.

At this point, it is natural to wonder which n× nmatrices will be invertible.
Will any non-zero matrix do? (No.) Are such matrices a rare occurrence? (No.)
Asweproceed through this chapter and the next, wewill see that there aremany
different conditions one can place on an n×nmatrix that are equivalent to the
statement “The matrix A is invertible.” Before we begin our attempt to answer
this question in general, let’s look at a particular example.

Example 4.4.6 A non-invertible matrix.

Find the inverse of A =

[
1 2

2 4

]
.

Solution. By solving the equation AX = I for X will give us the in-
verse of A. Forming the appropriate augmented matrix and finding its
reduced row echelon form gives us[

1 2 1 0

2 4 0 1

]
−→
rref

[
1 2 0 1/2

0 0 1 −1/2

]
Yikes! We were expecting to find that the reduced row echelon form of
this matrix would look like [

I A−1
]
.
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However, we don’t have the identity on the left hand side. Our conclu-
sion: A is not invertible.

Example 4.4.6 shows that not
all squarematrices (or even non-
zero square matrices) are invert-
ible, henceDefinition4.4.1 is nec-
essary: why bother callingA “in-
vertible” if every square matrix
is? If everyone is special, then
no one is. Then again, everyone
is special.

We have just seen that not all matrices are invertible. The attentive reader
might have been able to spot the source of the trouble in the previous exam-
ple: notice that the second row of A is a multiple of the first, so that the row
operation R2 − 2R1 → R2 created a row of zeros. Can you think what sort of
condition would signal trouble for a general n × n matrix? Here, we need to
think back to our discussions of the various theoretical concepts we’ve encoun-
tered, such as rank, span, linear independence, and so on. Let us think of the
rows of A as row vectors.

The elementary rowoperations thatweperformon amatrix either rearrange
these vectors, or create new vectors that are linear combinations of the old ones.
The only way we end up with a row of zeros in the reduced row echelon form of
A is if one of the rows ofA can be written as a linear combination of the others;
that is, if the rows of A are linearly dependent. We also know that if there is a
row of zeros in the reduced row echelon form ofA, then not every row contains
a leading 1. Recalling that the rank of A is equal to the number of leading 1s in
the reduced row echelon form of A, we have the following:

Theorem 4.4.7 Inverses and rank.

Let A be an n × n matrix. Then the following statements are equiv-
alent:

1. The matrix A is invertible.

2. The rank of A is equal to n.

3. The rows of A are linearly independent.

4. The columns of A are linearly independent.

Here’s a useful exercise for the
reader to consider: can youprove
in general that for a 2 × 2 ma-
trixA, if one row ofA is a multi-
ple of the other, then the same
is true of the columns? (We can
see that this is the case in Exam-
ple 4.4.6.) A fundamental theo-
rem in linear algebra states that
for a generalm × n matrix, the
number of linearly independent
rows is equal to the number of
linearly independent columns.

Theproof of this fact is rather
technical, sowehavenot included
it in this book. However, the rough
idea is to follow the leading 1s:
in the reduced rowechelon form
ofA, each leading 1occupies both
a rowand a column, and the rows
(or columns) that endupwith lead-
ing 1s are the ones that are lin-
early independent.

The claim that “the following statements are equivalent” in Theorem 4.4.7
means that as soon as we know that one of the statements on the list is true,
we can immediately conclude that the others are true as well. This is also the
case if we know one of the statements is false. For example, if we know that
rank(A) < n, then we can immediately conclude that A will not be invertible.

Let’s sum up what we’ve learned so far. We’ve discovered that if a matrix
has an inverse, it has only one. Therefore, we gave that special matrix a name,
“the inverse.” Finally, we describe the most general way to find the inverse of a
matrix, and a way to tell if it does not have one.

Key Idea 4.4.8 FindingA−1.

Let A be an n× nmatrix. To find A−1, put the augmented matrix[
A In

]
into reduced row echelon form. If the result is of the form[

In X
]
,

thenA−1 = X . If not, (that is, if the first n columns of the reduced row
echelon form are not In), then A is not invertible.
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Let’s try again.

Example 4.4.9 Computing the inverse of a matrix.

Find the inverse, if it exists, of A =

1 1 −1

1 −1 1

1 2 3

.
Solution. We’ll try to solve AX = I forX and see what happens.1 1 −1 1 0 0

1 −1 1 0 1 0

1 2 3 0 0 1

 −→
rref

1 0 0 1/2 1/2 0

0 1 0 1/5 −2/5 1/5

0 0 1 −3/10 1/10 1/5


We have a solution, so

A−1 =

 1/2 1/2 0

1/5 −2/5 1/5

−3/10 1/10 1/5

 .
Multiply AA−1 to verify that it is indeed the inverse of A.

In general, given a matrix A, to find A−1 we need to form the augmented
matrix

[
A I

]
and put it into reduced row echelon form and interpret the result.

In the case of a 2 × 2 matrix, though, there is a shortcut. We give the shortcut
in terms of a theorem.

Theorem 4.4.10 The Inverse of a 2×2 Matrix.

Let

A =

[
a b

c d

]
.

Then A is invertible if and only if ad− bc ̸= 0.
If ad− bc ̸= 0, then

A−1 =
1

ad− bc

[
d −b

−c a

]
.

We can’t divide by 0, so if ad − bc = 0, we don’t have an inverse. Recall
Example 4.4.6, where

A =

[
1 2

2 4

]
.

Here, ad− bc = 1(4)− 2(2) = 0, which is why A didn’t have an inverse.
Although this idea is simple, we should practice it.

Wedon’t prove Theorem4.4.10here,
but it really isn’t hard to do. Put
the matrix[

a b 1 0

c d 0 1

]
into reduced row echelon form
and you’ll discover the result of
the theorem. Alternatively, mul-
tiplyAbywhatwepropose is the
inverse and see that we indeed
get I . It turns out that Theorem4.4.10
is a special case of a general for-
mula for the inverse of a matrix
in termsofdeterminants. Wewill
discuss determinants in the next
chapter. While useful in certain
theoretical situations, the deter-
minant formula for the inverse is
only a shortcut in the 2× 2 case.
For larger matrices, the method
given in this section is computa-
tionally much faster.

Example 4.4.11 Computing a 2× 2 inverse using Theorem 4.4.10.

Use Theorem 4.4.10 to find the inverse of

A =

[
3 2

−1 9

]
if it exists.
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Solution. Since ad− bc = 29 ̸= 0, A−1 exists. By Theorem 4.4.10,

A−1 =
1

3(9)− 2(−1)

[
9 −2

1 3

]
=

1

29

[
9 −2

1 3

]
.

We can leave our answer in this form, or we could “simplify” it as

A−1 =
1

29

[
9 −2

1 3

]
=

[
9/29 −2/29

1/29 3/29

]
.

We started this section out by speculating that just as we solved algebraic
equations of the form ax = b by computing x = a−1b, we might be able to
solve matrix equations of the form Ax⃗ = b⃗ by computing x⃗ = A−1⃗b. If A−1

does exist, then we can solve the equation Ax⃗ = b⃗ this way. Consider:

Ax⃗ = b⃗ (original equation)

A−1Ax⃗ = A−1⃗b (multiply both sides on the left by A−1)

Ix⃗ = A−1⃗b (since A−1A = I)

x⃗ = A−1⃗b (since Ix⃗ = x⃗).

Let’s step back and think about this for a moment. The only thing we know
about the equation Ax⃗ = b⃗ is that A is invertible. We also know that solutions
to Ax⃗ = b⃗ come in three forms: exactly one solution, infinitely many solutions,
and no solution. We just showed that ifA is invertible, thenAx⃗ = b⃗ has at least
one solution. We showed that by setting x⃗ equal to A−1⃗b, we have a solution.
Is it possible that more solutions exist?

No. Suppose we are told that a known vector v⃗ is a solution to the equation
Ax⃗ = b⃗; that is, we know that Av⃗ = b⃗. We can repeat the above steps:

Av⃗ = b⃗

A−1Av⃗ = A−1⃗b

Iv⃗ = A−1⃗b

v⃗ = A−1⃗b.

This shows that all solutions to Ax⃗ = b⃗ are exactly x⃗ = A−1⃗b when A is
invertible. We have just proved the following theorem.

Theorem 4.4.12 Invertible Matrices and Solutions toAx⃗ = b⃗.

Let A be an invertible n × n matrix, and let be any n × 1 column
vector. Then the equation Ax⃗ = b⃗ has exactly one solution, namely

x⃗ = A−1⃗b. A corollaryis an idea that follows
directly froma theorem; typically,
all the hard work is done in prov-
ing the theorem, and any result-
ing corollaries are easy consequences.

A corollary to this theorem is: If A is not invertible, then Ax⃗ = b⃗ does not
have exactly one solution. It may have infinitely many solutions and it may have
no solution, and we would need to examine the reduced row echelon form of
the augmented matrix

[
A b⃗

]
to see which case applies.

We demonstrate our theorem with an example.
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Example 4.4.13 Using a matrix inverse to solve a system.

Solve Ax⃗ = b⃗ by computing x⃗ = A−1⃗b, where

A =

 1 0 −3

−3 −4 10

4 −5 −11

 and b⃗ =

−15

57

−46

 .The method employed in Exam-
ple 4.4.13 is useful in theory, but
not in practice: the amount of
work required to solve a system
this way is significantly greater
than the amount of work in-
volved in Gaussian Elimination.
The only scenario where you
should consider using the in-
verse to solve a system (aside
from being asked to do so on a
test!) is when there are several
systems you need to solve that
all have the same coefficientma-
trix.

Solution. Without showing our steps, we compute

A−1 =

94 15 −12

7 1 −1

31 5 −4

 .
We then find the solution to Ax⃗ = b⃗ by computing A−1⃗b:

x⃗ = A−1⃗b

=

94 15 −12

7 1 −1

31 5 −4

−15

57

−46


=

[
−3− 2

4

]
.

We can easily check our answer: 1 0 −3

−3 −4 10

4 −5 −11

−3

−2

4

 =

−15

57

−46

 .
Knowing a matrix is invertible is incredibly useful. Among many other rea-

sons, if you know A is invertible, then you know for sure that Ax⃗ = b⃗ has a
solution (as we just stated in Theorem 4.4.12). In the next section we’ll demon-
strate many different properties of invertible matrices, including stating several
different ways in which we know that a matrix is invertible.

As odd as it may sound, know-
ing a matrix is invertible is use-
ful; actually computing the inverse
isn’t. This is discussed at the end
of the next section.
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4.4.1 Exercises

Exercise Group. A matrix A is given. Find A−1 using Theorem 4.4.10, if it exists.

1.
[
1 5

−5 −24

]
2.

[
1 −4

1 −3

]
3.

[
3 0

0 7

]
4.

[
2 5

3 4

]
5.

[
1 −3

−2 6

]
6.

[
3 7

2 4

]
7.

[
1 0

0 1

]
8.

[
0 1

1 0

]

Exercise Group. A matrix A is given. Find A−1 using Key Idea 4.4.8, if it exists.

9.
[
−2 3

1 5

]
10.

[
−5 −2

9 2

]
11.

[
1 2

3 4

]
12.

[
5 7

5/3 7/3

]

13.

 25 −10 −4

−18 7 3

−6 2 1

 14.

 1 0 0

4 1 −7

20 7 −48


15.

 −4 1 5

−5 1 9

−10 2 19

 16.

 1 −5 0

−2 15 4

4 −19 1


17.

 25 −8 0

−78 25 0

48 −15 1

 18.

 1 0 0

7 5 8

−2 −2 −3


19.

0 0 1

1 0 0

0 1 0

 20.

0 1 0

1 0 0

0 0 1


21.

 2 3 4

−3 6 9

−1 9 13

 22.

 5 −1 0

7 7 1

−2 −8 −1



23.


1 0 0 0

−19 −9 0 4

33 4 1 −7

4 2 0 −1

 24.


1 0 0 0

27 1 0 4

18 0 1 4

4 0 0 1



25.


−15 45 −3 4

55 −164 15 −15

−215 640 −62 59

−4 12 0 1

 26.


1 0 2 8

0 1 0 0

0 −4 −29 −110

0 −3 −5 −19



27.


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 28.


1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 −4


Exercise Group. A matrix A and a vector are given. Solve the equation Ax⃗ = b⃗ using Theorem 4.4.12.
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29. A =

 1 2 12

0 1 6

−3 0 1

 30. A =

 1 0 −3

8 −2 −13

12 −3 −20


31. A =

 5 0 −2

−8 1 5

−2 0 1

 32. A =

1 −6 0

0 1 0

2 −8 1


33. A =

[
3 5

2 3

]
, b⃗ =

[
21

13

]
34. A =

[
1 −4

4 −15

]
35. A =

[
9 70

−4 −31

]
36. A =

[
10 −57

3 −17

]
, b⃗ =

[
−14

−4

]
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4.5 Properties of the Matrix Inverse

We ended the previous section by stating that invertible matrices are important.
Since they are, in this section we study invertible matrices in two ways. First, we
look at ways to tell whether or not a matrix is invertible, and second, we study
properties of invertible matrices (that is, how they interact with other matrix
operations).

In the last section we stated Theorem 4.4.7, in which we listed several prop-
erties of a matrix that equivalent to that matrix being invertible, including the
fact that an n× nmatrix must have rank n in order to be invertible.

We begin this section by collecting additional properties that are equivalent
to matrix a matrix being invertible. Some of these results were established in
the previous section, but we state them again here for ease of reference.

Theorem 4.5.1 Invertible Matrix Theorem.

Let A be an n× nmatrix. The following statements are equivalent.

(a) A is invertible.

(b) The equation Ax⃗ = 0⃗ has exactly one solution (namely, x⃗ = 0⃗).

(c) The reduced row echelon form of A is I .

(d) The equation Ax⃗ = b⃗ has exactly one solution for every n × 1
vector⃗b.

(e) There exists a matrix C such that AC = I .

(f) There exists a matrixB such thatBA = I .

Note: Theorem 4.5.1 gives us
several different ways of saying
what is essentially the same thing
(logically speaking). Theorems like
this are very useful, since it’s of-
ten the case that, in a given situ-
ation, one of the conditions can
easily be checked, allowing us to
immediately obtain information
that might be difficult (or impos-
sible) to verify directly.

Also note: If we know that
A is invertible, then we already
know that there is amatrixBwhere
BA = I . That is part of the de-
finition of invertible. Part of the
significance of Theorem 4.5.1 is
that as soon as we find a matrix
B such that AB = I , we imme-
diately know thatA is invertible,
and that BA = I as well. We
made this claim in Theorem4.4.3,
but did not provide a proof at the
time.

Note that the theorem uses the phrase “the following statements are equiv-
alent.” Recall that when two or more statements are equivalent, it means that
the truth of any one of them implies that the rest are also true; if any one of the
statements is false, then they are all false. So, for example, if we determined
that the equationAx⃗ = 0⃗ had exactly one solution (andAwas an n×nmatrix)
then we would know that A was invertible, that Ax⃗ = b⃗ had only one solution,
that the reduced row echelon form of A was I , etc.

Let’s see exactly why all of these statements are equivalent. What we will
do is establish the following chain of logic:

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a).

Since this chain of implications circles back on itself, each of the statements im-
plies the others. (For example, to show (e) implies (c), we start at (e) and circle
around through (a) until we get to (c).)

• (a)⇒ (b): Suppose Ax⃗ = 0⃗ for some vector x⃗. Since A is invertible, we
can multiply both sides of this equation by A−1, giving us

x⃗ = Ix⃗ = (A−1A)x⃗ = A−1(Ax⃗) = A−10⃗ = 0⃗

Thus, the only possible solution to the system is x⃗ = 0⃗.

• (b)⇒ (c): Suppose the only solution to Ax⃗ = 0⃗ is x⃗ = 0⃗. Why must the
reduced row echelon form of A be equal to I? If we let R denote the
reduced row echelon form of A, we know that to solve Ax⃗ = 0⃗, we form
the augmented matrix

[
A 0⃗

]
and reduce:[

A 0⃗
] −→

rref
[
R 0⃗

]
.
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If the R ̸= I , then R has a row of zeros, and thus, so does
[
R 0⃗

]
, in

which case the system Ax⃗ = 0⃗ would have at least one parameter, and
thus infinitely many solutions. Since we’re assuming thatAx⃗ = 0⃗ has the
unique solution x⃗ = 0⃗, it follows that R cannot have a row of zeros, and
thusR = I .

• (c)⇒ (d): Suppose that the reduced row echelon form of A is equal to I .
It follows that when solving the system Ax⃗ = b⃗, we would have[

A b⃗
] −→

rref
[
I c⃗

]
for some column vector c⃗, and thus x⃗ = c⃗ is the unique solution toAx⃗ =
b⃗.

• (d)⇒ (e): Suppose that Ax⃗ = b⃗ has a unique solution for every column
vector b⃗. Then in particular, we have a unique solution c⃗j to the systems
Ax⃗ = e⃗j for j = 1, . . . , n, where e⃗1, e⃗2, . . . , e⃗n are the standard basis
vectors in Rn (and also the columns of In). If we let

C =
[
c⃗1 c⃗2 · · · c⃗n

]
,

then

AC =
[
Ac⃗1 Ac⃗2 · · · Ac⃗n

]
=
[
e⃗1 e⃗2 · · · e⃗n

]
= In.

• (e)⇒ (f): Suppose that AC = In for some n × n matrix C. We claim
that Property Item b holds for the matrix C. To see this, note that since
AC = In, if Cx⃗ = 0⃗, then

x⃗ = In(x⃗) = (AC)x⃗ = A(Cx⃗) = A0⃗ = 0⃗.

Since Property Item b holds for the matrix C, it follows that Properties
Item c, Item d, and Item e do as well, by what we’ve proven so far. Thus,
there exists a matrixD such that CD = In. We can complete our proof
by showing that D = A, and this is the case since (recalling that we’ve
assumed AC = In)

A = A(In) = A(CD) = (AC)D = InD = D.

Thus, (f) holds. (Note that this argument finally establishes the truth of
Theorem 4.4.3.)

• (f) ⇒ (a): Suppose that BA = In for some matrix B. Using the same
argument we just gave, it then follows thatAB = In, and ifAB = BA =
In, then by definition A is invertible and B = A−1.

Think about how we, up to this
point, determined the solution
to Ax⃗ = b⃗. We set up the aug-
mentedmatrix

[
A b⃗

]
andput

it into reduced rowechelon form.
We know that getting the iden-
titymatrix on the leftmeans that
we had a unique solution (and
not getting the identitymeanswe
either haveno solutionor infinitely
many solutions). So getting I on
the left means having a unique
solution; having I on the leftmeans
that the reduced rowechelon form
of A is I , which we know is the
same as A being invertible.

So we came up with a list of statements that are all equivalent to the state-
ment “A is invertible.” Again, if we know that if any one of them is true (or false),
then they are all true (or all false).

Theorem 4.5.1 states formally that ifA is invertible, thenAx⃗ = b⃗ has exactly
one solution, namely A−1⃗b. What if A is not invertible? What are the possibili-
ties for solutions to Ax⃗ = b⃗?

We know that Ax⃗ = b⃗ cannot have exactly one solution; if it did, then by
our theorem it would be invertible. Recalling that linear equations have either
one solution, infinitely many solutions, or no solution, we are left with the latter
optionswhenA is not invertible. This idea is important and sowe’ll state it again
as a Key Idea.
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Key Idea 4.5.2 Solutions toAx⃗ = b⃗ and the Invertibility ofA.

Consider the system of linear equations Ax⃗ = b⃗.

1. If A is invertible, then Ax⃗ = b⃗ has exactly one solution, namely
A−1⃗b.

2. If A is not invertible, then Ax⃗ = b⃗ has either infinitely many solu-
tions or no solution.

In Theorem 4.5.1 we’ve come up with a list of ways in which we can tell
whether or not a matrix is invertible. At the same time, we have come up with
a list of properties of invertible matrices — things we know that are true about
them. (For instance, if we know thatA is invertible, then we know thatAx⃗ = b⃗
has only one solution.)

We now go on to discover other properties of invertible matrices. Specif-
ically, we want to find out how invertibility interacts with other matrix opera-
tions. For instance, if we know that A and B are invertible, what is the inverse
of A + B? What is the inverse of AB? What is “the inverse of the inverse?”
We’ll explore these questions through an example.

Example 4.5.3 Exploring properties of the inverse.

Let

A =

[
3 2

0 1

]
andB =

[
−2 0

1 1

]
.

Find:

1. A−1

2. B−1

3. (AB)−1

4. (A−1)−1

5. (A+B)−1

6. (5A)−1

In addition, try to find connections between each of the above.
Solution.

1. Computing A−1 is straightforward; we’ll use Theorem 4.4.10.

A−1 =
1

3

[
1 −2

0 3

]
=

[
1/3 −2/3

0 1

]
.

2. We computeB−1 in the same way as above.

B−1 =
1

−2

[
1 0

−1 −2

]
=

[
−1/2 0

1/2 1

]
.

3. To compute (AB)−1, we first computeAB:

AB =

[
3 2

0 1

] [
−2 0

1 1

]
=

[
−4 2

1 1

]
.

We now apply Theorem 4.4.10 to find (AB)−1.

(AB)−1 =
1

−6

[
1 −2

−1 −4

]
=

[
−1/6 1/3

1/6 2/3

]
.
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4. To compute (A−1)−1, we simply apply Theorem 4.4.10 to A−1:

(A−1)−1 =
1

1/3

[
1 2/3

0 1/3

]
=

[
3 2

0 1

]
.

5. To compute (A+B)−1, we first computeA+B then apply The-
orem 4.4.10:

A+B =

[
3 2

0 1

]
+

[
−2 0

1 1

]
=

[
1 2

1 2

]
.

We notice immediately that the two rows ofA+B are the same!
Subtracting Row 1 from Row 2 would produce a row of zeros, so
A+B has rank 1 < 2, and therefore cannot be invertible.

6. To compute (5A)−1, we compute 5A and then apply Theo-
rem 4.4.10.

(5A)−1 =

([
15 10

0 5

])−1

=
1

75

[
5 −10

0 15

]
=

[
1/15 −2/15

0 1/5

]
.

Wenow look for connections betweenA−1,B−1, (AB)−1, (A−1)−1

and (A+B)−1.
Is there some sort of relationship between (AB)−1 and A−1 and

B−1? A first guess that seems plausible is (AB)−1 = A−1B−1. Is this
true? Using our work from above, we have

A−1B−1 =

[
1/3 −2/3

0 1

] [
−1/2 0

1/2 1

]
=

[
−1/2 −2/3

1/2 1

]
.

Obviously, this is not equal to (AB)−1. Beforewedo some further guess-
ing, let’s think about what the inverse of AB is supposed to do. The
inverse — let’s call it C — is supposed to be a matrix such that

(AB)C = C(AB) = I .

In examining the expression (AB)C, we see thatwewantB to some-
how “cancel” with C. What “cancels” B? An obvious answer is B−1.
This gives us a thought: perhapswe got the order ofA−1 andB−1wrong
before. After all, we were hoping to find that

ABA−1B−1 ?
= I,

but algebraically speaking, it is hard to cancel out these terms. (Recall
that matrix multiplication is not commutative: AB ̸= BA in general.)

However, switching the order of A−1 and B−1 gives us some hope.
Is (AB)−1 = B−1A−1? Let’s see.

(AB)(B−1A−1) = A(BB−1)A−1 (regrouping by the associative property)

= AIA−1 (BB−1 = I)

= AA−1 (AI = A)

= I (AA−1 = I).
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Since (AB)(B−1A−1) = In, we know immediately from Theo-
rem 4.5.1 that (AB)−1 = B−1A−1. Note also that our argument above
was completely general, so this result holds true for any pair of n × n
matrices A andB. Let’s confirm this with our example matrices.

B−1A−1 =

[
−1/2 0

1/2 1

] [
1/3 −2/3

0 1

]
=

[
−1/6 1/3

1/6 2/3

]
= (AB)−1.

It worked!
Is there some sort of connection between (A−1)−1 and A? The an-

swer is pretty obvious: they are equal. The “inverse of the inverse” re-
turns one to the original matrix.

Is there some sort of relationship between (A + B)−1, A−1 and
B−1? Certainly, if we were forced to make a guess without working any
examples, we would guess that

(A+B)−1 ?
= A−1 +B−1.

However, we saw that in our example, the matrix (A + B) isn’t even
invertible. This pretty much kills any hope of a connection.

Is there a connection between (5A)−1 and A−1? Consider:

(5A)−1 =

[
1/15 −2/15

0 1/5

]
=

1

5

[
1/3 −2/3

0 1/5

]
=

1

5
A−1.

Yes, there is a connection!

Let’s summarize the results of this example. If A and B are both invertible
matrices, then so is their product,AB. We demonstrated this with our example,
and there is more to be said. Let’s suppose that A and B are n × n matrices,
but we don’t yet know if they are invertible. If AB is invertible, then each of A
andB are; if AB is not invertible, then either A orB is not invertible.

A natural question to ask at this
point is whether or not the prod-
uct of two non-invertible matri-
ces could ever be invertible. The
answer, not surprisingly, is “No.”
To see this, supposeAB is invert-
ible. Thenweknow that theonly
solution to the equation (AB)x⃗ =
0⃗ is x⃗ = 0⃗. But ifB is not invert-
ible, then the equation Bx⃗ = 0⃗
does have a non-trivial solution
x⃗ ̸= 0⃗, and then

(AB)x⃗ = A(Bx⃗) = A0⃗ = 0⃗,

implying that x⃗ is a non-zero so-
lution to (AB)x⃗ = 0⃗, and thus
AB cannot be invertible.

In short, invertibility “works well” with matrix multiplication. However, we
saw that it doesn’t work well with matrix addition. Knowing that A and B are
invertible does not help us find the inverse of (A+B); in fact, the latter matrix
may not even be invertible. The fact that invertibility works

wellwithmatrixmultiplication should
not come as a surprise. After all,
saying thatA is invertiblemakes
a statement about themulitiplica-
tiveproperties ofA. It says that I
canmultiplyAwith a specialma-
trix to get I . Invertibility, in and
of itself, says nothing about ma-
trix addition, thereforewe should
not be too surprised that it doesn’t
work well with it.

Let’s do one more example, then we’ll summarize the results of this section
in a theorem.

Example 4.5.4 Computing the inverse of a diagonal matrix.

Find the inverse of A =

2 0 0

0 3 0

0 0 −7

.
Solution. We’ll find A−1 using Key Idea 4.4.8.2 0 0 1 0 0

0 3 0 0 1 0

0 0 −7 0 0 1

 −→
rref

1 0 0 1/2 0 0

0 1 0 0 1/3 0

0 0 1 0 0 −1/7


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Therefore

A−1 =

1/2 0 0

0 1/3 0

0 0 −1/7

 .
The matrixA in the previous example is a diagonalmatrix: the only nonzero

entries of A lie on the diagonal. The relationship between A and A−1 in the
above example seems pretty strong, and it holds true in general. We’ll state this
and summarize the results of this section with the following theorem.We still haven’t formally defined

diagonal, but the definition is rather
visual so we risk it. See Defini-
tion 6.1.4 for more details.

Theorem 4.5.5 Properties of Invertible Matrices.

Let A andB be n× n invertible matrices. Then:

1. AB is invertible; (AB)−1 = B−1A−1.

2. A−1 is invertible; (A−1)−1 = A.

3. nA is invertible for any nonzero scalar n; (nA)−1 = 1
nA

−1.

4. If A is a diagonal matrix, with diagonal entries d1, d2, · · · , dn,
where none of the diagonal entries are 0, then A−1 exists and is
a diagonal matrix. Furthermore, the diagonal entries of A−1 are
1/d1, 1/d2, · · · , 1/dn.

Furthermore,

1. If a product AB is not invertible, then A orB is not invertible.

2. If A orB are not invertible, then AB is not invertible.

We end this section with a comment about solving systems of equations “in
real life.” Solving a system Ax⃗ = b⃗ by computing A−1⃗b seems pretty slick, so it
would make sense that this is the way it is normally done. However, in practice,
this is rarely done. There are two main reasons why this is the case.

Yes, real people do solve linear
equations in real life. Not just
mathematicians, but economists,
engineers, and scientists of all flavours
regularly need to solve linear equa-
tions, and the matrices they use
are often huge.

Most people see matrices at
work without thinking about it.
Digital pictures are simply “rec-
tangular arrays” of numbers rep-
resenting colours— they arema-
trices of colours. Many of the
standard image processing oper-
ations involvematrix operations.
The author’swife has a “7megapixel”
camerawhich creates pictures that
are 3072 × 2304 in size, giving
over 7million pixels, and that isn’t
even considered a “large” picture
these days.

(Note that the previous sen-
tence was written by Greg Hart-
man circa 2010, when7megapix-
elswas pretty good, and required
a standalone camera.)

First, computing A−1 and A−1⃗b is “expensive” in the sense that it takes up
a lot of computing time. Certainly, our calculators have no trouble dealing with
the 3 × 3 cases we often consider in this textbook, but in real life the matrices
being considered are very large (as in, hundreds of thousand rows and columns).
Computing A−1 alone is rather impractical, and we waste a lot of time if we
come to find out thatA−1 does not exist. Even if we already know whatA−1 is,
computing A−1⃗b is computationally expensive — Gaussian elimination is faster.

Secondly, computingA−1 using themethodwe’ve described often gives rise
to numerical roundoff errors. Even though computers often do computations
with an accuracy to more than 8 decimal places, after thousands of computa-
tions, rounding off can cause big errors. (A “small” 1, 000 × 1, 000 matrix has
1, 000, 000 entries! That’s a lot of places to have roundoff errors accumulate!) It
is not unheard of to have a computer computeA−1 for a large matrix, and then
immediately have it computeAA−1 and not get the identity matrix. (The result
is usually very close, with the numbers on the diagonal close to 1 and the other
entries near 0. But it isn’t exactly the identity matrix.)

Therefore, in real life, solutions toAx⃗ = b⃗ are usually found using the meth-
ods we learned in Section 3.6. It turns out that even with all of our advances in
mathematics, it is hard to beat the basic method that Gauss introduced a long
time ago.
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4.5.1 Exercises

Exercise Group. Matrices A andB are given. Compute (AB)−1 andB−1A−1.

1. A =

[
1 2

1 1

]
,B =

[
3 5

2 5

]
2. A =

[
1 2

3 4

]
,B =

[
7 1

2 1

]
3. A =

[
2 5

3 8

]
,B =

[
1 −1

1 4

]
4. A =

[
2 4

2 5

]
,B =

[
2 2

6 5

]

Exercise Group. A 2× 2matrix A is given. Compute A−1 and (A−1)−1 using Theorem 4.4.10.

5. A =

[
−3 5

1 −2

]
6. A =

[
3 5

2 4

]
7. A =

[
2 7

1 3

]
8. A =

[
9 0

7 9

]
9. Find 2× 2matrices A andB that are each invertible, but A+B is not.

10. Create a random 6 × 6 matrix A, then have a calculator or computer compute AA−1. Was the identity matrix
returned exactly? Comment on your results.

11. Use a calculator or computer to compute AA−1, where A =


1 2 3 4

1 4 9 16

1 8 27 64

1 16 81 256

 . Was the identity matrix

returned exactly? Comment on your results.
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4.6 Elementary Matrices

In this section we introduce the concept of an elementary matrix. Elementary
matrices are relatively simple objects, as their name suggests, but as wewill see,
they give us a simple method for understanding why our algorithm for comput-
ing the inverse of amatrixworks. Whenwe reach the discussion of determinants
and their properties, we’ll also see that elementary matrices provide a simple
proof of an important result: the product rule for determinants.

Definition 4.6.1 Elementary Matrix.

An elementary matrix is an n × n matrix E that can be obtained
from the identity matrix using a single row operation.

Note that by reversing the elementary row operation used to create ann×n
elementary matrix E, we could equally well say that E is a matrix of rank n
that is one row operation away from its reduced row-echelon form (namely, the
identity matrix).

The following are examples of elementary matrices, along with the elemen-
tary row operation used to obtain it from the identity:

E1 =

[
1 2

0 1

]
R1 → R1 + 2R2

E2 =

1 0 0

0 0 1

0 1 0

 R2 ↔ R3

E3 =

[
4 0

0 1

]
4R1 → R1

E4 =

1 0 0

0 1
5 0

0 0 1

 1

5
R2 → R2

E5 =

1 0 0

0 1 −4

0 0 1

 R2 − 4R3 → R2.

The main reason that elementary matrices are useful is that they give us a
way of encoding (or more to the point, keeping track of) the elementary row
operations used to define them. The primary result is the following:

Theorem 4.6.2 Effect of Multiplication by an Elementary Matrix.

LetA be an n× k matrix and suppose that the matrixB is obtained
from A using an elementary row operation. Then B = EA, where E is
the elementary matrix obtained from the identity matrix using the same
row operation used to obtainB from A.

In other words, if use the notationX RO−−→ Y to denote that a particular row
operation is applied to the matrixX to obtain the matrix Y , if

A
RO−−→ B

and
I

RO−−→ E,
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thenB = EA.

Example 4.6.3 Multiplication by an elementary matrix.

Let A =

2 −1 1

0 3 2

4 1 −1

. For each of the following elementary row
operations, construct the corresponding elementary matrix, and verify
that multiplication by this matrix performs the desired row operation.

1. A =

2 −1 1

0 3 2

4 1 −1

 R1↔R3−−−−−→

4 1 −1

0 3 2

2 −1 1

 = B1.

2. A =

2 −1 1

0 3 2

4 1 −1

 2R1→R1−−−−−−→

4 −2 2

0 3 2

4 1 −1

 = B2

3. A =

2 −1 1

0 3 2

4 1 −1

 R3−2R1→R3−−−−−−−−→

2 −1 1

0 3 2

0 3 −3

 = B3

Solution.

1. Applying the same row operation to the 3×3 identitymatrix gives

us the elementary matrix E1 =

0 0 1

0 1 0

1 0 0

, and we can easily
verify that

E1A =

0 0 1

0 1 0

1 0 0

2 −1 1

0 3 2

4 1 −1

 =

4 1 −1

0 3 2

2 −1 1

 = B1.

2. For the row operation 2R1 → R1 the corresponding elementary

matrix is E2 =

2 0 0

0 1 0

0 0 1

, and we have

E2A =

2 0 0

0 1 0

0 0 1

2 −1 1

0 3 2

4 1 −1

 =

4 −2 2

0 3 2

4 1 −1

 .
3. The elementary matrix corresponding to the row operationR3 −

2R1 → R3 is E3 =

 1 0 0

0 1 0

−2 0 1

, and

E3A =

 1 0 0

0 1 0

−2 0 1

2 −1 1

0 3 2

4 1 −1

 =

2 −1 1

0 3 2

0 3 −3

 = B3.



224 CHAPTER 4. MATRIX ALGEBRA

Inverses of ElementaryMatrices. Notice that every elementary row operation
is reversible. If we apply a row operation of the type Ri ↔ Rj to a matrix,
applying it again will return our matrix to its original state. (Swapping two rows
and then swapping them back again results in no net change.) It follows that any
“Type 1” elementary matrix obtained by a row operation of this type is its own
inverse. In terms of row operations,

I
Ri↔Rj−−−−−→ E

Ri↔Rj−−−−−→ I .

But we know that applying the second row operation is the same as multiplying
on the left byE; therefore, we haveE(E)E2 = I . It follows from the definition
of the inverse that E = E−1.

Now let us consider the other two types of row operation. For a “Type 2”
elementary matrix, obtained using a row operation of the type kRi → Ri, we
multiply one of the rows of our matrix by a common constant k ̸= 0. If we then

multiply by
1

k
, we will be back to where we started.

Thus, if E is obtained from the identity using the row operation kRi → Ri,

thenE−1 is obtained from the identity using the row operation
1

k
Ri → Ri. For

any matrix A we have

A
kRi→Ri−−−−−→ EA

1
kRi→Ri−−−−−−→ E−1(EA) = A.

Finally, for a “Type 3” elementary matrix, obtained from the identity using
a row operation of the type Ri + kRj → Ri, we add a multiple of one row
to another. If we want to undo the affect of adding row j to row i, we simply
subtract the same multiple of row j to row i. Thus, E−1 is obtained from the
identity using the row operationRi − kRj → Ri.

Example 4.6.4 Inverses of elementary matrices.

Determine the inverse of each of the elementary matrices below:

1. E1 =

0 1 0

1 0 0

0 0 1

.

2. E2 =

1 0 −3

0 1 0

0 0 1

.

3. E3 =

1 0 0

0 1 0

0 0 3
7

.
Solution.

1. ThematrixE1 is a Type 1 elementarymatrix, obtained by exchang-
ing rows 1 and 2. Thus, we have E−1

1 = E1. This is easily verified
by checking that E2

1 = I .

2. The matrix E2 is a Type 3 elementary matrix, obtained from the
identity using the row operation R1 − 3R3 → R1. The opposite

row operation is R1 + 3R3 → R1; thus, E−1
2 =

1 0 3

0 1 0

0 0 1

.
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Again, we an easily check that E2E
−1
2 = I .

3. The matrix E3 is a Type 2 elementary matrix, obtained from the
identity matrix using the row operation 3

7R3 → R3. The opposite

row operation is 7
3R3 → R3, since

1

3/7
=

7

3
. It follows that

E−1
3 =

1 0 0

0 1 0

0 0 7
3

.

Elementary matrices and inverses. Consider an n× nmatrix A. Suppose we
wish to reduce A to its reduced row-echelon form (to solve a system of equa-
tions, perhaps, or determine the null space off A, etc.) To do so, we carry out a
series of elementary row operations, say

A
RO1−−−→ A1

RO2−−−→ A2
RO3−−−→ · · · ROk−−−→ Ak = R,

where R is the reduced row-echelon form of A. Let E1, E2, . . . , Ek be the ele-
mentarymatrices corresponding to the elementary rowoperationsRO1,RO2, . . . , ROk.
Then we have

A1 = E1A

A2 = E2A1 = (E2E1)A

...
...

R = Ak = EkAk−1 = (EkEk−1 · · ·E2E1)A.

Now, the reduced row-echelon form R might have one or more rows of ze-
ros, depending on the rank of A, but let us focus for now on the case where
rank(A) = n, in which case we know thatR = In, the n× n identity matrix.

In this case, we have (puttingR = I in the last equality above):

(Ek · · ·E2E1)A = In.

Letting B = Ek · · ·E2E1, we haveBA = In, and it follows from the Invertible
Matrix Theorem thatB = A−1. We have the following theorem.

Theorem 4.6.5 The inverse is a product of elementary matrices.

Let A be an invertible n × n matrix, and let E1, E2, . . . , Ek be the
elementary matrices corresponding (in order) to the elementary row op-
erations used to reduce A to the identity matrix. Then

A−1 = Ek · · ·E2E1.

This result makes sense in the context of our algorithm for computing the
inverse. Recall that to computeA−1, we form the augmented matrix [ A I ],
and apply elementary row operations until we reach the reduced row-echelon
form [ I A−1 ].

Notice that at each step, applying an elementary row operation to an aug-
mented matrix [ M N ] is the same as multiplying bothM andN by the cor-
responding elementary matrix. In terms of elementary matrices, our algorithm
looks like the following:

[ E I ]
RO1−−−→ [ E1A E1I ]
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RO2−−−→ [ E2(E1A) E2(E1) ] (Note E1I = E1)

...
ROk−−−→ [ (Ek · · ·E2E1)A Ek · · ·E2E1 ] = [ In A−1 ].

Since we have (Ek · · ·E2E1)A = In on the left, it follows that we must have
Ek · · ·E2E1 = A−1 on the right.

We also have the following consequence of our above theorem (which we
may view as an additional entry in our list of equivalent statements in the Invert-
ible Matrix Theorem):

Theorem 4.6.6 Invertible matrices are products of elementary matri-
ces.

An n×nmatrixA is invertible if and only if it is a product of elemen-
tary matrices.

To see why this result is true, recall from Theorem 4.5.5 that if A and B are
invertiblen×nmatrices, then so isAB, and (AB)−1 = B−1A−1. We can easily
extend this result to products of three or more matrices. If A1, A2, . . . , Ak are
all invertible n× nmatrices, then A1A2 · · ·Ak is invertible, and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A−1
2 A−1

1 .

We know from our discussion above that every invertiblematrix is invertible;
therefore, if A = E1E2 · · ·Ek is a product of elementary matrices, then A is
invertible.

Conversely, suppose that A is invertible. From the previous theorem, we
know that A−1 is a product of elementary matrices; namely,

A−1 = Ek · · ·E2E1,

where E1, E2, . . . , Ek are the elementary matrices corresponding to the ele-
mentary row operations used to carry A to the identity matrix. Thus, we have

A = (A−1)−1

= (Ek · · ·E2E1)
−1

= E−1
1 E−1

2 · · ·E−1
k .

Since the inverse of an elementary matrix is another elementary matrix, our
result follows. Note that when we take the inverse of the product of elementary
matrices, we must reverse the order of multiplication.

Example 4.6.7 Writing an invertible matrix as a product of elementary
matrices.

Write the matrix A =

 2 −1 3

−1 0 4

1 −1 3

 as a product of elementary
matrices, if possible.
Solution. We use Gauss-Jordan elimination to carry the matrix A to
its reduced row-echelon form. For each elementary row operation per-
formed, we keep track of the corresponding elementary matrix and its
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inverse. 2 −1 3

−1 0 4

1 −1 3

 R1↔R3−−−−−→

 1 −1 3

−1 0 4

2 −1 3

 E1 =

0 0 1

0 1 0

1 0 0

 E−1
1 =

0 0 1

0 1 0

1 0 0


R2+R1→R2−−−−−−−−→

1 −1 3

0 −1 7

2 −1 3

 E2 =

1 0 0

1 1 0

0 0 1

 E−1
2 =

 1 0 0

−1 1 0

0 0 1


R3−2R1→R3−−−−−−−−→

1 −1 3

0 −1 7

0 1 −3

 E3 =

 1 0 0

0 1 0

−2 0 1

 E−1
3 =

1 0 0

0 1 0

2 0 1


R2↔R3−−−−−→

1 −1 3

0 1 −3

0 −1 7

 E4 =

1 0 0

0 0 1

0 1 0

 E−1
4 =

1 0 0

0 0 1

0 1 0


R3+R2→R3−−−−−−−−→

1 −1 3

0 1 −3

0 0 4

 E5 =

1 0 0

0 1 0

0 1 1

 E−1
5 =

1 0 0

0 1 0

0 −1 1


1
4R3→R3−−−−−−→

1 −1 3

0 1 −3

0 0 1

 E6 =

1 0 0

0 1 0

0 0 1
4

 E−1
6 =

1 0 0

0 1 0

0 0 4


R2+3R3→R2−−−−−−−−→

1 −1 3

0 1 0

0 0 1

 E7 =

1 0 0

0 1 3

0 0 1

 E−1
7 =

1 0 0

0 1 −3

0 0 1


R1−3R3→R1−−−−−−−−→

1 −1 0

0 1 0

0 0 1

 E8 =

1 0 −3

0 1 0

0 0 1

 E−1
8 =

1 0 3

0 1 0

0 0 1


R1+R2→R1−−−−−−−−→

1 0 0

0 1 0

0 0 1

 E9 =

1 1 0

0 1 0

0 0 1

 E−1
9 =

1 −1 0

0 1 0

0 0 1

 .
We then have

A−1 = E9E8E7E6E5E4E3E2E1

and
A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6 E−1

7 E−1
8 E−1

9 .

(Ideally we’d actually write out thematrices above, but since we needed
nine steps to getA to the identity, limitations on space prevent us from
doing so.)
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4.6.1 Exercises

Exercise Group. Identify the row operation encoded by the given elementary matrix.

1.
[
1 −3

0 1

]
2.

[
2 0

0 1

]

3.

 1 0 0

−4 1 0

0 0 1

 4.

0 0 1

0 1 0

1 0 0


Exercise Group. Write the elementary matrix of the given size that corresponds to the given row operation.

5. R1 − 3R2 → R1 for a 2× 2matrix. 6. R3 + 2R1 → R3 for a 3× 3matrix.
7. 7R2 → R2 for a 2× 2matrix. 8. R1 ↔ R2 for a 3× 5matrix.

Exercise Group. Find the inverse of the given elementary matrix, and state the row operation corresponding to the
inverse. (Note: these are the same matrices as problems Exercises 1–4.)

9.
[
1 −3

0 1

]
10.

[
2 0

0 1

]

11.

 1 0 0

−4 1 0

0 0 1

 12.

0 0 1

0 1 0

1 0 0


Exercise Group. For the given matrix A,

(a) writeA−1 as a product of elementary matrices

(b) writeA as a product of elementary matrices.

13. A =

[
3 1

1 0

]
14. A =

[
2 3

−1 0

]

15. A =

2 0 2

3 1 1

0 0 1





Chapter 5

Matrix Transformations

5.1 Matrix Transformations

We already looked at the basics of graphing vectors, and the arithmetic of mul-
tiplying matrices. In this section and the next, we will return to the geometric
interpretation of vectors given in Chapter 2. Our goal in doing so is to obtain a vi-
sual understanding of the definition of matrix multiplication given in Section 4.2.
Although the algebraic definition ofmatrixmultiplication appears strange at first,
we’ll see that our definition of matrix multiplication allows us to use matrices to
define functions that transform one vector into another, just as the functions
you’re familiar with from high school or Calculus transform one number into an-
other. We can then visualize matrices and matrix multiplication in terms of their
effect on vectors.

Given an m × n matrix A we can define a function T that takes an n × 1
column vector x⃗ ∈ Rn as input, and produces anm× 1 column vector y⃗ ∈ Rm

as output, according to the relationship

y⃗ = T (x⃗) = Ax⃗.

Such a function is known as amatrix transformation; it is an example of a more
general class of functions between vector spaces known as linear transforma-
tions.

The graphical representation of vectors allows us to visualize matrix trans-
formations (at least, in lower dimensions). This visualization plays a key role in
applications such as computer graphics. We’ll also see that the desire to define
functions via matrix multiplication provides some justification for defining ma-
trix multiplication the way we do.

5.1.1 Matrix – Vector Multiplication
To simplify the discussion, and to make it easier for us to picture what’s going
on, we’ll restrict ourselves (for now) to vectors in R2. We want to visualize the
result of multiplying a vector by a matrix. In order to multiply a 2D vector by a
matrix and get a 2D vector back, our matrix must be a square, 2× 2matrix. We can multiply a 3 × 2 matrix

by a 2D vector and get a 3D vec-
tor back, and this gives very in-
teresting results. See Section5.2.

We’ll startwith an example. Given amatrixA and several vectors, we’ll graph
the vectors before and after they’ve beenmultiplied byA and seewhatwe learn.

229
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Example 5.1.1 Multiplying a vector by a matrix.

Let A be a matrix, andx⃗,y⃗, and z⃗ be vectors as given below.

A =

[
1 4

2 3

]
, x⃗ =

[
1

1

]
, y⃗ =

[
−1

1

]
, z⃗ =

[
3

−1

]
.

Graph x⃗, y⃗ and z⃗, as well as Ax⃗, Ay⃗ and Az⃗.
Solution. It is straightforward to compute:

Ax⃗ =

[
5

5

]
, Ay⃗ =

[
3

1

]
, and Az⃗ =

[
−1

3

]
.

The vectors are sketched in Figure 5.1.2.

x

y

x⃗
y⃗

z⃗

Ax⃗

Ay⃗

Az⃗

Figure 5.1.2 Multiplying vectors by a
matrix in Example 5.1.1

There are several things to notice. When each vector is multiplied by A,
the result is a vector with a different length (in this example, always longer),
and in two of the cases (for y⃗ and \vz), the resulting vector points in a different
direction.

This isn’t surprising. In the previous section we learned about matrix multi-
plication, which is a strange and seemingly unpredictable operation. Would you
expect to see some sort of immediately recognizable pattern appear frommulti-
plying a matrix and a vector? (This is a rhetorical question; the expected answer
is “No.”) In fact, the surprising thing from the example is that x⃗ andAx⃗ point in
the same direction! Why does the direction of x⃗ not change after multiplication
by A? (We’ll answer this in Section 7.1 when we learn about something called
“eigenvectors.”)

Different matrices act on vectors in different ways. (That’s one reason we
call them “different.”) Some always increase the length of a vector through
multiplication, others always decrease the length, others increase the length of
some vectors and decrease the length of others, and others still don’t change
the length at all. A similar statement can be made about how matrices affect
the direction of vectors through multiplication: some change every vector’s di-
rection, some change “most” vector’s direction but leave some the same, and
others still don’t change the direction of any vector.

How do we set about studying how matrix multiplication affects vectors?
We could just create lots of different matrices and lots of different vectors, mul-
tiply, then graph, but this would be a lot of work with very little useful result.
It would be too hard to find a pattern of behaviour in this. (Remember, that’s
what mathematicians do. We look for patterns.)

Instead, we’ll begin by using a technique we’ve employed often in the past.
We have a “new” operation; let’s explore how it behaves with “old” operations.
Specifically, we know how to sketch vector addition. What happens when we
throw matrix multiplication into the mix? Let’s try an example.

Example 5.1.3 Combining addition and matrix multiplication.

Let A be a matrix and x⃗ and y⃗ be vectors as given below.

A =

[
1 1

1 2

]
, x⃗ =

[
2

1

]
, y⃗ =

[
−1

1

]
.

Sketch x⃗ + y⃗, Ax⃗, Ay⃗, and A(x⃗ + y⃗).
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Solution. It is pretty straightforward to compute:

x⃗ + y⃗ =

[
1

2

]
; Ax⃗ =

[
3

4

]
; Ay⃗ =

[
0

1

]
, A(x⃗ + y⃗) =

[
3

5

]
.

In Figure 5.1.4, we have graphed the above vectors and have in-
cluded dashed gray vectors to highlight the additive nature of x⃗+ y⃗ and
A(x⃗ + y⃗). Does anything strike you as interesting?

x

y

x⃗y⃗

x⃗ + y⃗

Ax⃗

Ay⃗

A(x⃗ + y⃗)

Figure 5.1.4 Vector addition and ma-
trix multiplication in Example 5.1.3

Let’s not focus on thingswhich don’tmatter right now: let’s not focus
on how long certain vectors became, nor necessarily how their direction
changed. Rather, think about how matrix multiplication interacted with
the vector addition.

In some sense, we started with three vectors,x⃗,y⃗, and x⃗ + y⃗. This
last vector is special; it is the sum of the previous two. Now, multiply
all three by A. What happens? We get three new vectors, but the sig-
nificant thing is this: the last vector is still the sum of the previous two!
(We emphasize this by drawing dotted vectors to represent part of the
Parallelogram Law.)

Of course, we knew this already: we already knew thatAx⃗ +Ay⃗ =
A(x⃗+y⃗), for this is just the Distributive Property ofmatrixmultiplication
given in Theorem 4.2.11. However, now we get to see this graphically.

Let’s do one more example.

Example 5.1.5 Sketching the effect of matrix multiplicaiton.

Let A,x⃗,y⃗, and z⃗ be as given below.

A =

[
1 −1

1 −1

]
, x⃗ =

[
1

1

]
, y⃗ =

[
−1

1

]
, z⃗ =

[
4

1

]
Graphx⃗, y⃗ and z⃗, as well as Ax⃗, Ay⃗ and Az⃗.

Solution. It is straightforward to compute:

Ax⃗ =

[
0

0

]
, Ay⃗ =

[
−2

−2

]
, and Az⃗ =

[
3

3

]
.

The vectors are sketched in Figure 5.1.6.
x

y

x⃗
y⃗ z⃗

Ax⃗

Ay⃗

Az⃗

Figure 5.1.6 Multiplying vectors by a
matrix in Example 5.1.5

These results are interesting. While we won’t explore them in great
detail here, notice how x⃗ got sent to the zero vector. Notice also that
Ax⃗,Ay⃗ andAz⃗ are all in a line (as well as x⃗!). Why is that? Are x⃗, y⃗ and
z⃗ just special vectors, or would any other vector get sent to the same
line when multiplied by A? (Don’t just sit there, try it out!)

5.1.2 Transformations of the Cartesian Plane
We studied in Chapter 2 how to visualize vectors and how the matrix arithmetic
operations of addition and scalar multiplication can be graphically represented
for vectors. In the discussion above, we limited our visual understanding of ma-
trix multiplication to graphing a vector, multiplying it by a matrix, then graphing
the resulting vector. In rest of this section we’ll explore these multiplication
ideas in greater depth. Instead of multiplying individual vectors by a matrix A,
we’ll study what happens when we multiply every vector in the Cartesian plans
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by A. (No, we won’t do them one by one.)
Because of theDistributive Property, as illustrated in Example 5.1.3, we know

that the Cartesian plane will be transformed in a very nice, predictable way.
Straight lines will be transformed into other straight lines (and they won’t be-
come curvy, or jagged, or broken). Curved lines will be transformed into other
curved lines (perhaps the curve will become “straight,” but it won’t become
jagged or broken).

Example 5.1.3 has very significant implications. Weusually think of the Carte-
sian plane as a set of points; we can adjust this thought just slightly and think
of it as a set of vectors that point to each of these points. What happens to the
Cartesian plane if we multiply every vector in the plane by the same matrix A?

Checking every single vector in the plane isn’t practical, sowehave to look for
other ways to visualize the effects of matrix multiplication. One way of studying
how the whole Cartesian plane is affected by multiplication by a matrix A is to
study how the unit square is affected. The unit square is the square with corners
at the points (0, 0), (1, 0), (1, 1), and (0, 1). Each corner can be represented by
the vector that points to it; multiply each of these vectors by A and we can get
an idea of how A affects the whole Cartesian plane.

Let’s try an example.

Example 5.1.7 Visualizing a matrix transformation using vectors.

Plot the vectors of the unit square before and after they have been
multiplied by A, where

A =

[
1 4

2 3

]
.

Solution. The four corners of the unit square can be represented by
the vectors [

0

0

]
,

[
1

0

]
,

[
1

1

]
,

[
0

1

]
.

Multiplying each by A gives the vectors[
0

0

]
,

[
1

2

]
,

[
5

5

]
,

[
4

3

]
,

respectively.
(Hint: one way of using your calculator to do this for you quickly is

to make a 2× 4matrix whose columns are each of these vectors. In this
case, create a matrix

B =

[
0 1 1 0

0 0 1 1

]
.

Then multiply B by A and read off the transformed vectors from the
respective columns:

AB =

[
0 1 5 4

0 2 5 3

]
.

This saves time, especially if you do a similar procedure for multiple
matrices A. Of course, we can save more time by skipping the first col-
umn; since it is the column of zeros, it will stay the column of zeros after
multiplication by A.)
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The unit square and its transformation are graphed in Figure 5.1.8,
where the shaped vertices correspond to each other across the two
graphs. Note how the square got turned into some sort of quadrilateral
(it’s actually a parallelogram). A really interesting thing is how the trian-
gular and square vertices seem to have changed places— it is as though
the square, in addition to being stretched out of shape, was flipped.

x

y

1

1

x

y

1

1

Figure 5.1.8 Transforming the unit square by matrix multiplication in Ex-
ample 5.1.7

To stress how “straight lines get transformed to straight lines,” con-
sider Figure 5.1.9. Here, the unit square has some additional points
drawn on it which correspond to the shaded dots on the transformed
parallelogram. Note how relative distances are also preserved; the dot
halfway between the black and square dots is transformed to a position
along the line, halfway between the black and square dots.

x

y

1

1

x

y

1

1

Figure 5.1.9 Emphasizing straight lines going to straight lines in Exam-
ple 5.1.7

Muchmore canbe said about this example. Beforewedelve into this, though,
let’s try one more example.

Example 5.1.10 Visualizing a matrix transformation using a region.

Plot the transformed unit square after it has been transformed byA,
where

A =

[
0 −1

1 0

]
.
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Solution. We’ll put the vectors that correspond to each corner in ama-
trixB as before and then multiply it on the left by A. Doing so gives:

AB =

[
0 −1

1 0

] [
0 1 1 0

0 0 1 1

]
=

[
0 0 −1 −1

0 1 1 0

]
.

In Figure 5.1.11 the unit square is again drawn along with its trans-
formation by A.

x

y

1

1

x

y

1

Figure 5.1.11 Transforming the unit square by matrix multiplication in
Example 5.1.10

Make note of how the square moved. It did not simply “slide” to the
left; (mathematically, that is called a translation) nor did it “flip” across
the y axis. Rather, it was rotated counterclockwise about the origin 90◦.
In a rotation, the shape of an object does not change; in our example,
the square remained a square of the same size.

We have broached the topic of how the Cartesian plane can be transformed
via multiplication by a 2 × 2 matrix A. We have seen a few examples so far,
and our intuition as to how the plane is changed has been informed only by
seeing how the unit square changes. Let’s explore this further by investigating
two questions:

1. Suppose we want to transform the Cartesian plane in a known way (for
instance, we may want to rotate the plane counterclockwise 180◦). How
do we find the matrix (if one even exists) which performs this transforma-
tion?

2. How does knowing how the unit square is transformed really help in un-
derstanding how the entire plane is transformed?

These questions are closely related, and as we answer one, we will help an-
swer the other.

To get started with the first question, look back at Example 5.1.7 and Exam-
ple 5.1.10 and consider again how the unit square was transformed. In particu-
lar, is there any correlation betweenwhere the vertices ended up and thematrix
A?

If you are just reading on, and haven’t actually gone back and looked at the
examples, go back now and try to make some sort of connection. Otherwise --
you may have noted some of the following things:

1. The zero vector (⃗0, the “black” corner) never moved. That makes sense,
though; A0⃗ = 0⃗.
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2. The “square” corner, i.e., the corner corresponding to the vector
[
1

0

]
, is

always transformed to the vector in the first column of A!

3. Likewise, the “triangular” corner, i.e., the corner corresponding to the vec-

tor
[
0

1

]
, is always transformed to the vector in the second column of A!

(This is less of a surprise, given the result of the previous point.)

4. The “white dot” corner is always transformed to the sum of the two col-
umn vectors of A. (This observation is a bit more obscure than the first
three. It follows from the fact that this corner of the unit square is the
“sum” of the other two nonzero corners.)

Let’s now take the time to understand these four points. The first point
should be clear; 0⃗will always be transformed to 0⃗ viamatrixmultiplication. (Hence
the hint in the middle of Example 5.1.7, where we are told that we can ignore
entering in the column of zeros in the matrix B.)

We can understand the second and third points simultaneously. Let

A =

[
a b

c d

]
, e⃗1 =

[
1

0

]
and e⃗2 =

[
0

1

]
.

What areAe⃗1 and Ae⃗2?

Ae⃗1 =

[
a b

c d

] [
1

0

]
=

[
a

c

]
Ae⃗2 =

[
a b

c d

] [
0

1

]
=

[
b

d

]
.

So by meremechanics of matrix multiplication, the square corner e⃗1 is trans-
formed to the first column of A, and the triangular corner e⃗2 is transformed to
the second column of A. A similar argument demonstrates why the white dot
corner is transformed to the sum of the columns of A. (Another way of looking
at all of this is to consider what A · I is: of course, it is just A. What are the
columns of I? Just e⃗1 and e⃗2.)

Revisit now the question “How do we find the matrix that performs a given
transformation on the Cartesian plane?” The answer follows from what we just
did. Think about the given transformation and how it would transform the cor-
ners of the unit square. Make the first column of A the vector where e⃗1 goes,
and make the second column of A the vector where e⃗2 goes.

Let’s practice this in the context of an example.

Example 5.1.12 Determining a matrix transformation.

Find the matrixA that flips the Cartesian plane about the x axis and
then stretches the plane horizontally by a factor of two.

Solution. We first consider e⃗1 =

[
1

0

]
. Where does this corner go to un-

der the given transformation? Flipping the plane across the x axis does
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not change e⃗1 at all; stretching the plane sends e⃗1 to
[
2

0

]
. Therefore, the

first column of A is
[
2

0

]
.

Now consider e⃗2 =

[
0

1

]
. Flipping the plane about the x axis sends e⃗2

to the vector
[
0

−1

]
; subsequently stretching the plane horizontally does

not affect this vector. Therefore the second column of A is
[
0

−1

]
.

Putting this together gives

A =

[
2 0

0 −1

]
.

To help visualize this, consider Figure 5.1.13 where a shape is trans-
formed under this matrix. Notice how it is turned upside down and is
stretched horizontally by a factor of two. (The gridlines are given as a
visual aid.)

Figure 5.1.13 Transforming the Cartesian plane in Example 5.1.12

A while ago we asked two questions. The first was “How do we find the ma-
trix that performs a given transformation?” We have just answered that ques-
tion (although we will do more to explore it in the future). The second question
was “How does knowing how the unit square is transformed really help us un-
derstand how the entire plane is transformed?”

Consider Figure 5.1.14 where the unit square (with vertices marked with
shapes as before) is shown transformed under an unknown matrix. How does
this help us understand how the whole Cartesian plane is transformed? For in-
stance, how can we use this picture to figure out how the point (2, 3) will be
transformed?

x

y

Figure 5.1.14 The unit square under
an unknown transformation.

There are two ways to consider the solution to this question. First, we know
now how to compute the transformation matrix; the new position of e⃗1 is the
first column of A, and the new position of e⃗2 is the second column of A. There-
fore, by looking at the figure, we can deduce that

A =

[
1 −1

1 2

]
.
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To find where the point (2, 3) is sent, simply multiply[
1 −1

1 2

] [
2

3

]
=

[
−1

8

]
.

There is another way of doing this which isn’t as computational — it doesn’t
involve computing the transformation matrix. Consider the following equalities:[

2

3

]
=

[
2

0

]
+

[
0

3

]
= 2

[
1

0

]
+ 3

[
0

1

]
= 2e⃗1 + 3e⃗2

This last equality states something that is somewhat obvious: to arrive at

the vector
[
2

3

]
, ne needs to go 2 units in the e⃗1 direction and 3 units in the e⃗2

direction. To find where the point (2, 3) is transformed, one needs to go 2 units
in the new e⃗1 direction and 3 units in the new e⃗2 direction. This is demonstrated
in Figure 5.1.15.

x

y

2× “new” e⃗1

3× “new” e⃗2

new location
of (2, 3)

Figure 5.1.15 Finding the new loca-
tion of the point (2, 3)

We are coming to grips with how matrix transformations work. We asked
two basic questions: “How do we find the matrix for a given transformation?”
and “Howdoweunderstand the transformationwithout thematrix?”, andwe’ve
answered each accompanied by one example. Let’s do another example that
demonstrates both techniques at once.

Example 5.1.16 Determining and analyzing a matrix transformation.

First, find the matrix A that transforms the Cartesian plane by
stretching it vertically by a factor of 1.5, then stretches it horizontally by
a factor of 0.5, then rotates it clockwise about the origin 90◦. Secondly,
using the new locations of e⃗1 and e⃗2, find the transformed location of
the point (−1, 2).
Solution. To find A, first consider the new location of e⃗1. Stretching
the plane vertically does not affect e⃗1; stretching the plane horizontally

by a factor of 0.5 changes e⃗1 to
[
1/2

0

]
, and then rotating it 90◦ about

the origin moves it to
[

0

−1/2

]
. This is the first column of A.

Now consider the new location of e⃗2. Stretching the plane vertically

changes it to
[

0

3/2

]
; stretching horizontally does not affect it, and rotat-

ing 90◦ moves it to
[
3/2

0

]
. This is then the second column of A. This

gives

A =

[
0 3/2

−1/2 0

]
.

Where does the point (−1, 2) get sent to? The corresponding vector[
−1

2

]
is found by going −1 units in the e⃗1 direction and 2 units in the

e⃗2 direction. Therefore, the transformation will send the vector to −1
units in the new e⃗1 direction and 2 units in the new e⃗2 direction. This is
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sketched in Figure 5.1.17, along with the transformed unit square. We
can also check this multiplicatively:[

0 3/2

−1/2 0

] [
−1

2

]
=

[
3

1/2

]
.

Figure 5.1.18 shows the effects of the transformation on another
shape.x

y

Figure 5.1.17 Understanding the
transformation in Example 5.1.16

Figure 5.1.18 Transforming the Cartesian plane in Example 5.1.16

Right now we are focusing on transforming the Cartesian plane — we are
making 2D transformations. Knowing how to do this provides a foundation for
transforming 3D space, which, among other things, is very important when pro-
ducing 3D computer graphics. Basic shapes can be drawn and then rotated,
stretched, and/or moved to other regions of space. This also allows for things
like “moving the camera view.” Of course, algebraically, there is nothing stop-
ping us from working with transformations of vectors in Rn for any value of n.
The limitation to two and three dimensions is strictly one of visualization.

What kinds of transformations are possible? We have already seen some of
the things that are possible: rotations, stretches, and flips. We have also men-
tioned some things that are not possible. For instance, we stated that straight
lines always get transformed to straight lines. Therefore, we cannot transform
the unit square into a circle using a matrix.

Let’s look at some common transformations of the Cartesian plane and the
matrices that perform these operations. In the following figures, a transforma-
tionmatrix will be given alongside a picture of the transformed unit square. (The
original unit square is drawn lightly as well to serve as a reference.)
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5.1.3 2D Matrix Transformations
Horizontal stretch by a factor of k.[

k 0

0 1

]

x

y

(k, 1)

Vertical stretch by a factor of k.[
1 0

0 k

]

x

y

(1, k)

Horizontal shear by a factor of k.[
1 k

0 1

]

x

y

(k, 1)
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Vertical shear by a factor of k.[
1 0

k 1

]

x

y

(k, 1)

Horizontal reflection across the y
axis. [

−1 0

0 1

]

x

y

Vertical reflection across the x
axis. [

1 0

0 −1

]

x

y

Diagonal reflection across the
line y = x. [

0 1

1 0

]

x

y
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Rotation around the origin by an
angle of θ.[

cos θ − sin θ
sin θ cos θ

]

x

y

θ

Projection onto the x axis. (Note
how the square is “squashed” down
onto the x-axis.)[

1 0

0 0

]
x

y

Projection onto the y axis. (Note
how the square is “squashed” over
onto the y-axis.)[

0 0

0 1

]
x

y

Now that we have seen a healthy list of transformations that we can per-
form on the Cartesian plane, let’s practice a few more times creating the matrix
that gives the desired transformation. In the following example, we develop our
understanding one more critical step.

Example 5.1.19 Determining the matrix of a transformation.

Find thematrixA that transforms the Cartesian plane by performing
the following operations in order:
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1. Vertical shear by a factor of
0.5

2. Counterclockwise rotation
about the origin by an angle
of θ = 30◦

3. Horizontal stretch by a factor
of 2

4. Diagonal reflection across
the line y = x

Solution. Wow! We already know how to do this — sort of. We know
we can find the columns ofA by tracing where e⃗1 and e⃗2 end up, but this
also seems difficult. There is so much that is going on. Fortunately, we
can accomplish what we need without much difficulty by being system-
atic.

First, let’s perform the vertical shear. The matrix that performs this
is

A1 =

[
1 0

0.5 1

]
.

After that, we want to rotate everything clockwise by 30◦. To do this,
we use

A2 =

[
cos 30◦ − sin 30◦
sin 30◦ cos 30◦

]
=

[√
3/2 −1/2

1/2
√
3/2

]
.

In order to do both of these operations, in order, we multiply A2A1.

Note: recall from Section 4.2
that matrix multiplication is not
commutative. Since A1A2 ̸=
A2A1 in general, we should
expect that the transformation
A2(A1x⃗) = (A2A1)x⃗ is not
the same as the transformation
A1(A2x⃗) = (A1A2)x⃗. Inter-
preted as transformations of the
plane, this makes sense visually:
for example, in most cases, a re-
flection followed by a rotation
will not produce the same result
as performing the rotation first,
followed by the reflection. The
reader is encouraged to experi-
mentwith a fewexamples to see
what happens when the order is
reversed.

To perform the final two op-
erations, we note that

A3 =

[
2 0

0 1

]
and A4 =

[
0 1

1 0

]
perform the horizontal stretch
and diagonal reflection, respec-
tively. Thus to perform all of the
operations “at once,” we need
to multiply by

A = A4A3A2A1

=

[
0 1

1 0

] [
2 0

0 1

] [√
3
2 − 1

2
1
2

√
3
2

] [
1 0

0.5 1

]
=

[
(
√
3 + 2)/4

√
3/2

(2
√
3− 1)/2 −1

]
≈
[
0.933 0.866

1.232 −1

]
.

Let’s consider this closely. Suppose I want to know where a vector x⃗
ends up. We claimwe can find the answer bymultiplyingAx⃗. Why does
this work? Consider:

Ax⃗ = A4A3A2A1x⃗

= A4A3A2(A1x⃗) (performs the vertical shear)
= A4A3(A2x⃗1) (performs the rotation)
= A4(A3x⃗2) (performs the horizontal stretch)
= A4x⃗3 (performs the diagonal reflection)
= x⃗4 (the result of transforming x⃗)

Most readers are not able to visualize exactly what the given list of
operations does to the Cartesian plane. In Figure 5.1.20 we sketch the
transformed unit square; in Figure 5.1.21we sketch a shape and its trans-
formation.

x

y

Figure 5.1.20 The transformed unit
square in Example 5.1.19
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Figure 5.1.21 A transformed shape in Example 5.1.19

Once we know what matrices perform the basic transformations, (or know
where to find them) performing complex transformations on the Cartesian plane
really isn’t that . . . complex. It boils down to multiplying by a series of matrices.

We’ve shown many examples of transformations that we can do, and we’ve
mentioned just a few that we can’t — for instance, we can’t turn a square into
a circle. Why not? Why is it that straight lines get sent to straight lines?

All these questions require us to think like mathematicians — we are being
asked to study the properties of an object we just learned about and their con-
nections to things we’ve already learned. We’ll do all this (and more!) in the
following section.
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5.1.4 Exercises

Exercise Group. A matrix A is given. Sketchx⃗, y⃗, Ax⃗, and Ay⃗ on the same Cartesian axes, where

x⃗ =

[
1

1

]
and y⃗ =

[
−1

2

]
.

1. A =

[
1 −1

2 3

]
2. A =

[
2 0

−1 3

]
3. A =

[
1 1

1 1

]
4. A =

[
1 2

−1 −2

]

Exercise Group. A sketch of transformed unit square is given. Find the matrix A that performs this transformation.
5.

x

y

1

1

6.

x

y

1

1

7.

x

y

1

1

8.

x

y

1

1

Exercise Group. A list of transformations is given. Find the matrix A that performs those transformations, in order,
on the Cartesian plane.

9.

(a) vertical shear by a factor of 2

(b) horizontal shear by a factor of 2

10.

(a) horizontal shear by a factor of 2

(b) vertical shear by a factor of 2
11.

(a) horizontal stretch by a factor of 3

(b) reflection across the line y = x

12.

(a) counterclockwise rotation by an angle of
45◦

(b) vertical stretch by a factor of 1/2
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13.

(a) clockwise rotation by an angle of 90◦

(b) horizontal reflection across the y axis

(c) vertical shear by a factor of 1

14.

(a) vertical reflection across the x axis

(b) horizontal reflection across the y axis

(c) diagonal reflection across the line y = x

Exercise Group. Two sets of transformations are given. Sketch the transformed unit square under each set of trans-
formations. Are the transformations the same? Explain why/why not.

15.

(a) a horizontal reflection across the y axis,
followed by a vertical reflection across
the x axis, compared to

(b) a counterclockise rotation of 180◦

16.

(a) a horizontal stretch by a factor of 2
followed by a reflection across the line
y = x, compared to

(b) a vertical stretch by a factor of 2
17.

(a) a horizontal stretch by a factor of 1/2
followed by a vertical stretch by a factor
of 3, compared to

(b) the same operations but in opposite
order

18.

(a) a reflection across the line y = x
followed by a reflection across the x axis,
compared to

(b) a reflection across the the y axis, followed
by a reflection across the line y = x.
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5.2 Properties of Linear Transformations

In the previous section we discussed standard transformations of the Cartesian
plane — rotations, reflections, etc.. As a motivational example for this section’s
study, let’s consider another transformation. Let’s find thematrix thatmoves the
unit square one unit to the right (see Figure 5.2.1). This is called a translation.

x

y

x

y

Figure 5.2.1 Translating the unit
square one unit to the right

Our work from the previous section allows us to find the matrix quickly. By

looking at the picture, it is easy to see that e⃗1 is moved to
[
2

0

]
and e⃗2 is moved

to
[
1

1

]
. Therefore, the transformation matrix should be

A =

[
2 1

0 1

]
.

However, look at Figure 5.2.2 where the unit square is drawn after being
transformed by A. It is clear that we did not get the desired result; the unit
square was not translated, but rather stretched/sheared in some way.

x

y

x

y

Figure 5.2.2 Actual transformation of
the unit square by matrix A

What did we do wrong? We will answer this question, but first we need to
develop a few thoughts and vocabulary terms.

We’ve been using the term “transformation” to describe howwe’ve changed
vectors. In fact, “transformation” is synonymous to “function.” We are used to
functions like f(x) = x2, where the input is a number and the output is another
number. In the previous section, we learned about transformations (functions)
where the input was a vector and the output was another vector. IfA is a “trans-
formationmatrix,” thenwe could create a functionof the formT (x⃗) = Ax⃗. That
is, a vector x⃗ is the input, and the output is x⃗ multiplied by A.

Whenwe defined f(x) = x2 above, we let the reader assume that the input
was indeed a number. If we wanted to be complete, we should have stated

f : R → R where f(x) = x2.

The first part of that line told us that the input was a real number (that was
the firstR) and the output was also a real number (the secondR).

To define a transformation where a 2D vector is transformed into another
2D vector via multiplication by a 2× 2matrix A, we should write

T : R2 → R2 where T (x⃗) = Ax⃗.

Here, the firstR2 means that we are using 2D vectors as our input, and the
secondR2 means that a 2D vector is the output.

We use T instead of f to define
the function T (x⃗) = Ax⃗ to help
differentiate it from“regular” func-
tions. “Normally” functions are
defined using lower case letters
when the input is a number; when
the input is a vector, we use up-
per case letters. (It also appears
to be tradition to use the letter
T to describe linear transforma-
tions, andmathematicians are suck-
ers for tradition.)

Consider a quick example:

T : R2 → R3 where T

([
x1

x2

])
=

 x2
1

2x1

x1x2

 .
Notice that this takes 2D vectors as input and returns 3D vectors as output.

For instance,

T

([
3

−2

])
=

 9

6

−6

 .
We now define a special type of transformation (function).
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Definition 5.2.3 Linear Transformation.

A transformation T : Rn → Rm is a linear transformation if it satis-
fies the following two properties:

1. T (x⃗ + y⃗) = T (x⃗) + T (y⃗) for all vectors x⃗ and y⃗, and

2. T (kx⃗) = kT (x⃗) for all vectors x⃗ and all scalars k.

If T is a linear transformation, it is often said that “T is linear.”

Note that the two defining properties of a linear transformation, when com-
bined, tell us that linear transformations “map linear combinations to linear com-
binations.” That is, if we know the values of T (v⃗1), T (v⃗2), . . . , T (v⃗k), and we’re
given v⃗ = c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k, then

T (v⃗) = T (c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k)

= T (c1v⃗1) + T (c2v⃗2) + · · ·+ T (ckv⃗k)

= c1T (v⃗1) + c2T (v⃗2) + · · ·+ ckT (v⃗k).

Example 5.2.4 Computing a linear transformation from given values.

Given that T : R3 → R2 is a linear transformation such that

T (u⃗) =

[
−1

2

]
, T (v⃗) =

[
3

0

]
, and T (w⃗) =

[
1

−4

]
,

compute the value of T (2u⃗− 3v⃗ + w⃗).
Solution. As argued above, we have

T (2u⃗− 3v⃗ + w⃗) = 2T (u⃗)− 3T (v⃗) + T (w⃗)

= 2

[
−1

2

]
− 3

[
3

0

]
+

[
1

−4

]
=

[
−10

0

]
.

Example 5.2.5 Computing a linear transformation from given values.

Suppose T : R2 → R3 is a linear transformation such that

T

([
2

1

])
=

 2

−1

3

 and T
([

−1

3

])
=

04
1

 .
Compute the value of T

([
1

11

])
.

Solution. This problem takes some more work, since we first need to

figure out how to write the vector
[
1

11

]
as a linear combination of the
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vectors
[
2

1

]
and

[
−1

3

]
. That is, we need to find scalars a and b such that

a

[
2

1

]
+ b

[
−1

3

]
=

[
1

11

]
.

Writing the left-hand side as the single vector
[
2a− b

a+ 3b

]
, we see that

this amounts to solving the pair of equations

2a − b = 1

a + 3b = 11
.

If wemultiply the first equation by 3 and add it to the second, we get
7a + 0b = 14, so a = 2. Plugging this value back into either equation
gives us b = 3, so we have

T

([
1

11

])
= T

(
2

[
2

1

]
+ 3

[
−1

3

])
= 2T

([
2

1

])
+ 3T

([
−1

3

])

= 2

 2

−1

3

+ 3

04
1

 =

 4

10

9

 .
Notice that in Example 5.2.5, in order to make use of the properties of our

linear transformation, we had to first solve a system of linear equations. With
two equations in two unknowns, it’s not too hard to come up with the answer.
As the size and number of the vectors involved increases, such problems cannot
be tackled without a systematic method for solving systems of linear equations.
Fortunately, we will be introducing just such a method in Chapter 3.

The previous two examples show us what we can do if we know in advance
that our transformation is linear. The next two examples show us how to deter-
mine if a given transformation is indeed a linear transformation.

Example 5.2.6 Identifying linear transformations.

Determine whether or not the transformation T : R2 → R3 is a
linear transformation, where

T

([
x1

x2

])
=

 x2
1

2x1

x1x2

 .
Solution. We’ll arbitrarily pick two vectors x⃗ and y⃗:

x⃗ =

[
3

−2

]
and y⃗ =

[
1

5

]
.

Let’s check to see if T is linear by using the definition.
Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)? First, compute x⃗ + y⃗:

x⃗ + y⃗ =

[
3

−2

]
+

[
1

5

]
=

[
4

3

]
.
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Now compute T (x⃗), T (y⃗), and T (x⃗ + y⃗):

T (x⃗) = T

([
3

−2

])
=

 9

6

−6


T (y⃗) = T

([
1

5

])
=

12
5


T (x⃗ + y⃗) = T

([
4

3

])
=

168
12

 .
Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)? 9

6

−6

+

12
5

 !

̸=

168
12

 .
Therefore, T is not a linear transformation.

So we have an example of something that doesn’twork. Let’s try an example
where things do work.

In Example 5.2.7, it’s important
to remember the following prin-
ciple of logic: to show that some-
thing doesn’twork, we just need
to show one case where it fails,
which we did in Example 5.2.6.
To show that something always
works, we need to show it works
for all cases— simply showing it
works for a few cases isn’t enough.
(An example is not a proof.) How-
ever, doing so can be helpful in
understanding the situation bet-
ter, and can give us clues as to
how to construct a general proof.

Example 5.2.7 Identifying linear transformations.

Determine whether or not the transformation T : R2 → R2 is a
linear transformation, where T (x⃗) = Ax⃗ and

A =

[
1 2

3 4

]
.

Solution. Let’s start by again choosing a couple of vectors and seeing
what happens. Let’s choose the same x⃗ and y⃗ from Example 5.2.6.

x⃗ =

[
3

−2

]
and y⃗ =

[
1

5

]
.

If the linearity properties hold for these vectors, then maybe it is
actually linear (and we’ll do more work).

Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)? Recall:

x⃗ + y⃗ =

[
4

3

]
.

Now compute T (x⃗), T (y⃗), and T (x⃗) + T (y⃗):

T (x⃗) = T

([
3

−2

])
=

[
−1

1

]
T (y⃗) = T

([
1

5

])
=

[
11

23

]
T (x⃗ + y⃗) = T

([
4

3

])
=

[
10

24

]
.
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Is T (x⃗ + y⃗) = T (x⃗) + T (y⃗)?[
−1

1

]
+

[
11

23

]
=

[
10

24

]
!.

So far, so good: T (x⃗ + y⃗) is equal to T (x⃗) + T (y⃗).
Is T (kx⃗) = kT (x⃗)? Let’s pick k = 7 (or whatever value you prefer),

and use x⃗ as before.

T (7x⃗) = T

([
21

−14

])
=

[
−7

7

]
= 7

[
−1

1

]
= 7 · T (x⃗) !

So far it seems that T is indeed linear, for it worked in one example
with arbitrarily chosen vectors and scalar. Now we need to try to show
it is always true.

Consider T (x⃗ + y⃗). By the definition of T , we have

T (x⃗ + y⃗) = A(x⃗ + y⃗).

By Theorem 4.2.11, part Item 2 we state that the Distributive Prop-
erty holds for matrix multiplication. (Recall that a vector is just a special
type of matrix, so this theorem applies to matrix–vector multiplication
as well.) So A(x⃗ + y⃗) = Ax⃗ + Ay⃗. Recognize now that this last part is
just T (x⃗) + T (y⃗)! We repeat the above steps, all together:

T (x⃗ + y⃗) = A(x⃗ + y⃗) (by the definition of T in this example)
= Ax⃗ +Ay⃗ (by the Distributive Property)
= T (x⃗) + T (y⃗) (again, by the definition of T ).

Therefore, no matter what x⃗ and y⃗ are chosen, T (x⃗ + y⃗) = T (x⃗) +
T (y⃗). Thus the first part of the linearity definition is satisfied.

The second part is satisfied in a similar fashion. Let k be a scalar, and
consider:

T (kx⃗) = A(kx⃗) (by the definition of T in this example)
= kAx⃗ (by Theorem 4.2.11 part Item 3)
= kT (x⃗) (again, by the definition of T )

Since T satisfies both parts of the definition, we conclude that T is
a linear transformation.

In the previous two examples of transformations, we saw one transforma-
tion that was not linear and one that was. One might wonder “Why is linearity
important?”, which we’ll address shortly.

First, consider how we proved the transformation in Example 5.2.7 was lin-
ear. We defined T by matrix multiplication, that is, T (x⃗) = Ax⃗. We proved
T was linear using properties of matrix multiplication — we never considered
the specific values of A! That is, we didn’t just choose a good matrix for T ; any
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matrix A would have worked. This leads us to an important theorem. The first
part we have essentially just proved; the second part we won’t prove, although
its truth is very powerful.

Theorem 5.2.8 Matrices and Linear Transformations.

1. Define T : Rn → Rm by T (x⃗) = Ax⃗, whereA is anm×nmatrix.
Then T is a linear transformation.

2. Let T : Rn → Rm be any linear transformation. Then there exists
an uniquem× nmatrix A such that T (x⃗) = Ax⃗.

The second part of the theorem says that all linear transformations can be
described using matrix multiplication. Given any linear transformation, there
is a matrix that completely defines that transformation. This important matrix
gets its own name.

Definition 5.2.9 Standard Matrix of a Linear Transformation.

Let T : Rn → Rm be a linear transformation. By Theorem 5.2.8,
there is a matrix A such that T (x⃗) = Ax⃗. This matrix A is called the
standard matrix of the linear transformation T , and is denoted [T ]. Thematrix–like brackets around

T are intended to suggest that
the standard matrix A is a ma-
trix representative of the given
transformation.

While exploring all of the ramifications of Theorem 5.2.8 is outside the scope
of this text, let it suffice to say that since 1) linear transformations are very, very
important in economics, science, engineering and mathematics, and 2) the the-
ory of matrices is well developed and easy to implement by hand and on com-
puters, then 3) it is great news that these two concepts go hand in hand.

We have already used the second part of this theorem in a small way. In
the previous section we looked at transformations graphically and found the
matrices that produced them. At the time, we didn’t realize that these transfor-
mations were linear, but indeed they were.

This brings us back to themotivating example with which we started this sec-
tion. We tried to find the matrix that translated the unit square one unit to the
right. Our attempt failed, and we have yet to determine why. Given our link be-
tween matrices and linear transformations, the answer is likely “the translation
transformation is not a linear transformation.” While that is a true statement,
it doesn’t really explain things all that well. Is there some way we could have
recognized that this transformation wasn’t linear? (That is, apart from applying
the definition directly?)

Yes, there is. Consider the secondpart of the linear transformationdefinition.
It states that T (kx⃗) = kT (x⃗) for all scalars k. If we let k = 0, we have T (0x⃗) =
0 · T (x⃗), or more simply, T (⃗0) = 0⃗. That is, if T is to be a linear transformation,
it must send the zero vector to the zero vector.

This is a quick way to see that the translation transformation fails to be linear.
By shifting the unit square to the right one unit, the corner at the point (0, 0)was
sent to the point (1, 0), i.e.,

the vector
[
0

0

]
was sent to the vector

[
1

0

]
.

This property relating to 0⃗ is important, so we highlight it here.
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Key Idea 5.2.10 Linear Transformations and 0⃗.

Let T : Rn → Rm be a linear transformation. Then:

T (⃗0n) = 0⃗m.

That is, the zero vector inRn gets sent to the zero vector inRm.The idea that linear transforma-
tions “send zero to zero” has an
interesting relation to terminol-
ogy. The reader is likely familiar
with functions like f(x) = 2x +
3 and would likely refer to this
as a “linear function.” However,
f(0) ̸= 0, so f is not “linear” by
our new definition of linear. We
erroneously call f “linear” since
its graphproduces a line, though
we should be careful to instead
state that “the graphof f is a line.”

In the context of calculus are
only linear transformations if b =
0. In the case ofmapsT : Rn →
Rm, we can similarly consider func-
tions of the formT (x⃗) = Ax⃗+b⃗;
such functions are again useful
in areas such as vector calculus,
but unless b⃗ = 0⃗, they are not
linear transformations, sinceT (⃗0) =
b⃗.

Mathematicians do, of course,
have aword for suchmaps: a func-
tion of the form T (x⃗) = Ax⃗ +

b⃗ is known as an affine transfor-
mation.

The StandardMatrix of a Linear Transformation. It is often the case that while
one can describe a linear transformation, one doesn’t know what matrix per-
forms that transformation (i.e., one doesn’t know the standard matrix of that
linear transformation). How do we systematically find it? We’ll need a new def-
inition.

Definition 5.2.11 Standard Unit Vectors.

InRn, the standard unit vectors e⃗i are the vectors with a 1 in the ith
entry and 0s everywhere else.

Recall that in Example 5.2.5, we
had to solve a system of equa-
tions to determine how to write
our given vector in terms of two
other vectors forwhich the value
of a transformation is known. The
advantageof knowing the values
of a transformation on the stan-
dard unit vectors is thatwe know
immediately how towrite any other
vector in terms of them.

We’ve already seen these vectors in the previous section. InR2, we identified

e⃗1 =

[
1

0

]
and e⃗2 =

[
0

1

]
.

InR4, there are 4 standard unit vectors:

e⃗1 =


1

0

0

0

 , e⃗2 =


0

1

0

0

 , e⃗3 =


0

0

1

0

 , and e⃗4 =


0

0

0

1

 .
How do these vectors help us find the standardmatrix of a linear transforma-

tion? Recall again our work in the previous section. There, we practised looking
at the transformed unit square and deducing the standard transformation ma-
trixA. We did this bymaking the first column ofA the vector where e⃗1 ended up
and making the second column of A the vector where e⃗2 ended up. One could
represent this with:

A =
[
T (e⃗1) T (e⃗2)

]
= [T ].

That is, T (e⃗1) is the vector where e⃗1 ends up, and T (e⃗2) is the vector where
e⃗2 ends up.

The sameholds true in general. Given a linear transformationT : Rn → Rm,
the standard matrix of T is the matrix whose ith column is the vector where e⃗i
ends up. To see that this is the case, note that any vector x⃗ ∈ Rn can be written
as

x⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n,

and by Definition 5.2.3, we have

T (x⃗) = T (x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n)

= x1T (e⃗1) + x2T (e⃗2) + · · ·+ xnT (e⃗n)

=
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]

x1

x2

...
xn


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= Ax⃗,

where A =
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]
is them× nmatrix whose columns

are given by the vectors T (e⃗i), for i = 1, 2, . . . , n. Thus, we have the following
theorem.

Theorem 5.2.12 The Standard Matrix of a Linear Transformation.

Let T : Rn → Rm be a linear transformation. Then [T ] is them×n
matrix:

[T ] =
[
T (e⃗1) T (e⃗2) · · · T (e⃗n)

]
.

Let’s practice this theorem in an example.

Example 5.2.13 Computing the matrix of a linear transformation.

Define T : R3 → R4 to be the linear transformation where

T

x1

x2

x3

 =


x1 + x2

3x1 − x3

2x2 + 5x3

4x1 + 3x2 + 2x3

 .
Find [T ].

Solution. T takes vectors fromR3 intoR4, so [T ] is going to be a 4× 3
matrix. Note that

e⃗1 =

10
0

 , e⃗2 =

01
0

 and e⃗3 =

00
1

 .
We find the columns of [T ] by finding where e⃗1, e⃗2 and e⃗3 are sent,

that is, we find T (e⃗1), T (e⃗2) and T (e⃗3).

T (e⃗1) = T

10
0

 =


1

3

0

4



T (e⃗2) = T

01
0

 =


1

0

2

3



T (e⃗3) = T

00
1

 =


0

−1

5

2


Thus

[T ] = A =


1 1 0

3 0 −1

0 2 5

4 3 2

 .
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Let’s check this. Consider the vector

x⃗ =

12
3

 .
Strictly from the original definition, we can compute that

T (x⃗) = T

12
3

 =


1 + 2

3− 3

4 + 15

4 + 6 + 6

 =


3

0

19

16

 .
Now compute T (x⃗) by computing [T ]x⃗ = Ax⃗.

Ax⃗ =


1 1 0

3 0 −1

0 2 5

4 3 2


12
3

 =


3

0

19

16

 .
They match! (Of course they do. That was the whole point.)

Let’s do another example, one that is more application oriented.

Example 5.2.14 An application to baseball.

A baseball teammanager has collected basic data concerning his hit-
ters. He has the number of singles, doubles, triples, and home runs they
have hit over the past year. For each player, he wants two more pieces
of information: the total number of hits and the total number of bases.

Using the techniques developed in this section, devise a method for
the manager to accomplish his goal.
Solution. If the manager only wants to compute this for a few players,
then he could do it by hand fairly easily. After all:

total # hits = # of singles + # of doubles + # of triples + # of home
runs,

and
total # bases = # of singles + 2×# of doubles + 3×# of triples + 4×#

of home runs.
However, if he has a lot of players to do this for, hewould likelywant a

way to automate the work. One way of approaching the problem starts
with recognizing that he wants to input four numbers into a function
(i.e., the number of singles, doubles, etc.) and he wants two numbers as
output (i.e., number of hits and bases). Thus he wants a transformation
T : R4 → R2 where each vector in R4 can be interpreted as

# of singles
# of doubles
# of triples

# of home runs

 ,
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and each vector in R2 can be interpreted as[
# of hits
# of bases

]
.

To find [T ], he computes T (e⃗1), T (e⃗2), T (e⃗3) and T (e⃗4).

T (e⃗1) = T



1

0

0

0


 =

[
1

1

]

T (e⃗2) = T



0

1

0

0


 =

[
1

2

]

T (e⃗3) = T



0

0

1

0


 =

[
1

3

]

T (e⃗4) = T



0

0

0

1


 =

[
1

4

]
.

(What do these calculations mean? For example, finding T (e⃗3) =

[
1

3

]
means that one triple counts as 1 hit and 3 bases.)

Thus our transformation matrix [T ] is

[T ] = A =

[
1 1 1 1

1 2 3 4

]
.

As an example, consider a player who had 102 singles, 30 doubles, 8
triples and 14 home runs. By using A, we find that

[
1 1 1 1

1 2 3 4

]
102

30

8

14

 =

[
154

242

]
,

meaning the player had 154 hits and 242 total bases.

A question that we should ask concerning the previous example is “How do
we know that the function the manager used was actually a linear transforma-
tion? After all, we were wrong before — the translation example at the begin-
ning of this section had us fooled at first.”

This is a good point; the answer is fairly easy. Recall from Example 5.2.6 the
transformation

T6.2.3

([
x1

x2

])
=

 x2
1

2x1

x1x2


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and from Example 5.2.13

T6.2.5

x1

x2

x3

 =


x1 + x2

3x1 − x3

2x2 + 5x3

4x1 + 3x2 + 2x3

 ,
where we use the subscripts for T to remind us which example they came from.

We found that T6.2.3 was not a linear transformation, but stated that T6.2.5
was (although we didn’t prove this). What made the difference?

Look at the entries of T6.2.3(x⃗) and T6.2.5(x⃗). T6.2.3 contains entries where
a variable is squared, and where 2 variables are multiplied together — these
prevent T6.2.3 from being linear. On the other hand, the entries of T6.2.5 are
all of the form a1x1 + · · · + anxn; that is, they are just sums of the variables
multiplied by coefficients. T is linear if and only if the entries of T (x⃗) are of this
form. (Hence linear transformations are related to linear equations, as defined
in Section 3.1.) This idea is important.

Key Idea 5.2.15 Conditions on Linear Transformations.

Let T : Rn → Rm be a transformation and consider the entries of

T (x⃗) = T



x1

x2

...
xn


 .

T is linear if and only if each entry of T (x⃗) is of the form a1x1 + a2x2 +
· · · anxn.

Going back to our baseball example, the manager could have defined his
transformation as

T



x1

x2

x3

x4


 =

[
x1 + x2 + x3 + x4

x1 + 2x2 + 3x3 + 4x4

]
.

Since that fits the model shown in Key Idea 5.2.15, the transformation T is
indeed linear and hence we can find a matrix [T ] that represents it.

Let’s practice this concept further in an example.

Example 5.2.16 Using Key Idea 5.2.15 to identify linear transforma-
tions.

Using Key Idea 5.2.15, determine whether or not each of the follow-
ing transformations is linear.

T1

([
x1

x2

])
=

[
x1 + 1

x2

]
T2

([
x1

x2

])
=

[
x1/x2√

x2

]
T3

([
x1

x2

])
=

[√
7x1 − x2

πx2

]
.

Solution. T1 is not linear! This may come as a surprise, but we are not
allowed to add constants to the variables. By thinking about this, we can
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see that this transformation is trying to accomplish the translation that
got us started in this section — it adds 1 to all the x values and leaves
the y values alone, shifting everything to the right one unit. However,
this is not linear; again, notice how 0⃗ does not get mapped to 0⃗.

T2 is also not linear. We cannot divide variables, nor can we put vari-
ables inside the square root function (among other other things; again,
see Section 3.1). This means that the baseball manager would not be
able to use matrices to compute a batting average, which is (number of
hits)/(number of at bats).

T3 is linear. Recall that the coefficients
√
7 and π are just numbers.

In the next section we introduce the concept of a subspace. This subject
is closely related to the concepts of span and linear independence covered in
Section 2.7. We introduce it here in preparation for our final section, where we
will define two important subspaces associated to a matrix transformation: the
null space and the column space.
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5.2.1 Exercises

Exercise Group. A transformation T is given. Determine whether or not T is linear; if not, state why not.

1. T

([
x1

x2

])
=

[
x1 + x2

3x1 − x2

]
2. T

([
x1

x2

])
=

[
x1 + x2

2

x1 − x2

]
3. T

([
x1

x2

])
=

[
x1 + 1

x2 + 1

]
4. T

([
x1

x2

])
=

[
1

1

]
5. T

([
x1

x2

])
=

[
0

0

]

Exercise Group. A linear transformation T is given. Find [T ].

6. T

([
x1

x2

])
=

 x1 + 2x2

3x1 − 5x2

2x2



7. T



x1

x2

x3

x4


 =

[
x1 + 2x2 + 3x3 + 4x4

]

8. T

([
x1

x2

])
=

[
0

0

]
9. T

([
x1

x2

])
=

[
x1 + x2

x1 − x2

]

10. T

x1

x2

x3

 =


x1 + 2x2 − 3x3

0

x1 + 4x3

5x2 + x3



11. T

x1

x2

x3

 =

x1 + 3x3

x1 − x3

x1 + x3


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5.3 Subspaces of Rn

One of the things we noted in Example 2.7.7 was that since w⃗ belonged to
span{u⃗, v⃗}, adding w⃗ to any vector in span{u⃗, v⃗} resulted in another vector in
span{u⃗, v⃗}. This leads to the notion of a subspace, another one of the key con-
cepts in linear algebra.

What sets subspaces apart from other subsets ofRn is the requirement that
all of the properties listed in Theorem2.7.2 remain validwhen applied to vectors
from that subspace. We will not prove it here, but it suffices that the subspace
be closed under the operations of addition and scalar multiplication.

Definition 5.3.1 Subspace of Rn.

A non-empty subset V ⊆ Rn is called a subspaceof Rn, provided
that the following conditions hold:

1. For any vectors u⃗, v⃗ ∈ V , u⃗+ v⃗ ∈ V

2. For any vector v⃗ ∈ V and scalar c ∈ R, cv⃗ ∈ V .

Another way of phrasing Defin-
ition 5.3.1 is to say that V is a
subspace if any linear combina-
tion of vectors in V is another
vector in V ; that is, V is closed
under taking linear combinations.

A subspace ofRn is a subset
that looks like a copyofRm, where
m ≤ n. The visual examples you
should keep inmind are lines (which
look like copies ofR) and planes
(which look like copies of R2) in
R3. However, not all lines and
planeswill do: aswewill see, only
those lines and planes that pass
through theorigin form subspaces.

It follows from Definition 5.3.1 that any linear combination of vectors in a
subspace V is again an element of that subspace. One other important conse-
quence of Definition 5.3.1 must be noted here: since any subspace V is closed
under scalar multiplication by any scalar, and since 0 · v⃗ = 0⃗ for any vector v⃗,
every subspace contains the zero vector. This often provides an easy test when
we want to rule out the possibility that a subset is a subspace.

Example 5.3.2 Identifying subspaces.

Determine which of the following subsets of R3 are subspaces:

1. R =


xy
z

 ∣∣∣∣∣∣ 2x− 4y + 3z = 0


2. S =


 x

4x

3

 ∣∣∣∣∣∣ x ∈ R


Solution.

1. From our work in Section 2.6, we notice right away that the set

R describes a plane with normal vector given by n⃗ =

 2

−4

3

.
Moreover, this particular plane passes through the origin, since
2(0)− 4(0) + 3(0) = 0, telling us that 0⃗ ∈ R.

It turns out that any plane through the origin is a subspace, andR
is no exception, but let’s verify this directly using Definition 5.3.1.
Suppose

u⃗ =

u1

u2

u3

 and v⃗ =

v1v2
v3


are vectors inR, so that 2u1−4u2+3u3 = 0 and 2v1−4v2+3v3 =
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0. For the vector

u⃗+ v⃗ =

u1 + v1
u2 + v2
u3 + v3

 ,
we find

2(u1 + v1)− 4(u2 + v2) + 3(u3 + v3) = (2u1 − 4u2 + 3u3) + (2v1 − 4v2 + 3v3)

= 0 + 0 = 0,

which shows that u⃗+ v⃗ ∈ R. Similarly, for any scalar c,

2(cu1)− 4(cu2) + 3(cu3) = c(2u1 − 4u2 + 3u3) = 0,

verifying that cu⃗ ∈ R. Since R is closed under both addition and
scalar multiplication, it is a subspace.

2. For the subsetS, we immediately notice that the third component
must always equal 3; therefore, it is impossible for the zero vector
to belong to S, and thus S is not a subspace.

Tomake sure we’ve got the hang of things, we’ll try a couple more examples.

Example 5.3.3 Identifying subspaces.

Determine which of the following subsets of R3 are subspaces:

1. T =


3a− 2b

a+ b

a− 4b

 ∣∣∣∣∣∣ a, b ∈ R


2. U =


x+ y

3xy

x2

 ∣∣∣∣∣∣ x, y ∈ R


Solution.

1. Suppose we have two vectors v⃗ =

3a− 2b

a+ b

a− 4b

 and w⃗ =

3c− 2d

c+ d

a− 4b

 in the subset T . Then we find

v⃗ + w⃗ =

3a− 2b

a+ b

a− 4b

+

3c− 2d

c+ d

a− 4b

 =

(3a− 2b) + (3c− 2d)

(a+ b) + (c+ d)

(a− 4b) + (c− 4d)


=

3(a+ c)− 2(b+ d)

(a+ c) + (b+ d)

(a+ c)− 4(b+ d)

 .
Since a + c and b + d are again real numbers, we see that v⃗ + w⃗
fits the definition of T , so v⃗ + w⃗ ∈ T .
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Next, if k ∈ R is a scalar, we have

kv⃗ = k

3a− 2b

a+ b

a− 4b

 =

k(3a− 2b)

k(a+ b)

k(a− 4b)

 =

3(ka)− 2(kb)

(ka) + (kb)

(ka)− 4(kb)

 ,

which again fits the patter for vectors in T , so kv⃗ ∈ T . From
Definition 5.3.1, we can conclude that T is a subspace.

2. You probably recall fromyour high schoolmathematics that a func-
tion such as f(x) = ax+b is considered linear, since its graph is a
straight line. Functions like f(x) = x2 are considered non-linear,
since their graphs are curved. One of the morals a student does
well to learn quickly in linear algebra is that any expressions involv-
ing non-linear functions of any variables present are not going to
play well with the rules of linear algebra.

For the subset U , the expressions 3xy and x2 tip us off that we
are probably not dealing with a subspace here. The easiest way
to make sure of this is to check the rules in Definition 5.3.1 using
specific vectors.

Note: When we want to show
that a subset is a subspace,
we have to verify that Defini-
tion 5.3.1 is satisfied for all possi-
ble vectors in that set. Since we
generally have infinitely many
vectors to deal with, our verifi-
cation is going to require us to
give a general argument, using
variables instead of numbers.

On the other hand, if we want
to show that a subset is not a
subspace, we just have to show
that Definition 5.3.1 fails for one
or two specific vectors. A choice
of vector(s) for which the de-
finition fails is called a coun-
terexample. When construct-
ing a counterexample it’s a good
idea to choose small numbers to
keep the arithmetic simple.

If we let x = 1 and y = 2 in the definition of the setU , we get the
vector

v⃗ =

 1 + 2

3(1)(2)

12

 =

36
1

 .
Now consider the vector 4v⃗. We have

4v⃗ = 4

36
1

 =

126
4

 .
Looking at the definition of the set U , we know that if 4v⃗ ∈ U ,
then the third component of v⃗ tells us x2 = 4, so x = ±2. Now,
let’s look at the other two components. If x = 2, we must have

2 + y = 12 and 3(2)(y) = 6.

The first equation tells us that y = 10, while the second requires
y = 1. Since 10 ̸= 1, this is impossible. Similarly, if x = −2, then
we would have to have y = 14 looking at the first component,
and y = −1 from the second. Since this is again impossible, it
must be the case that 4v⃗ /∈ U . Since U is not closed under scalar
multiplication, U is not a subspace.

After seeing a few examples (and a few exercises), the reader can probably
develop some intuition for identifying subspaces. To make sure we don’t be-
come too reliant on intuition, however, we’ll give one more example with two
very similar-looking sets, only one of which is a subspace.
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Example 5.3.4 Identifying subspaces.

Determine which of the following subsets of R3 are subspaces:

1. V =


u+ 2v

v + 4

u− 2

 ∣∣∣∣∣∣ u, v ∈ R


2. W =


2u+ v

v + 4

u− 2

 ∣∣∣∣∣∣ u, v ∈ R


Solution.

1. The expressions v + 4 and u − 3 in the definition of V look like
the sort of linear functions we see in high school, but we need
to keep in mind that in linear algebra the zero vector has an im-
portant role in making sure the algebra works properly. In Linear
Algebra, among all functions of the form f(x) = mx + b, only
those with b = 0 are considered “linear”: these are the functions
whose graphs are lines through the origin.

The first thing wemight check is whether or not 0⃗ ∈ V . If wewantu+ 2v

v + 4

u− 2

 =

00
0

 ,
then clearly we need v = −4 and u = 2 from the second and
third components, but 2 + 2(−4) = −6 ̸= 0, so there is no way
to obtain the zero vector as an element of V , telling us that V is
not a subspace.

2. The subsetW looks a lot like the subset V , so our instinct is prob-
ably telling us thatW is not a subspace, either. To know for sure,
the first thing we might check is whether or not 0⃗ ∈ W . In this
case, we see that 0⃗ is indeed in there. Setting u = 2 and v = −4,
we get the vector 2(2) + (−4)

−4 + 4

2− 2

 =

00
0

 = 0⃗,

so 0⃗ ∈ W . Let’s try the addition test. Setting u = 1 and v = 0
gives us the vector

v⃗ =

2(1) + 0

0 + 4

1− 2

 =

 2

4

−1

 ∈ W .

Setting u = 0 and v = 1 gives us the vector

w⃗ =

2(0) + 1

1 + 4

0− 2

 =

 1

5

−2

 ∈ W .
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We now check to see whether or not v⃗ + w⃗ ∈ W . We have

v⃗ + w⃗ =

 2

4

−1

+

 1

5

−2

 =

 3

9

−3

 .
If this is an element ofW , then we must have v+4 = 9 for some
v ∈ R (looking at the second component) and u − 2 = −3 for
some u ∈ R (looking at the third component), so u = −1 and
v = 5. Putting these values into the first component, we need
to have 2(−1) + 5 = 3, which is true! Does this mean W is a
subspace? Not so fast: we only checked addition for one pair of
vectors, and we haven’t checked scalar multiplication.

If we try a fewmore examples (the reader is encouraged to do so),
we find that things keep working out, so we begin to suspect that
maybeW really is a subspace. The only way to know for sure is to
attempt to verify Definition 5.3.1 with a general proof. Suppose

v⃗ =

2a+ b

b+ 4

a− 2

 and w⃗ =

2c+ d

d+ 4

c− 2


are arbitrary elements ofW . Adding these vectors, we get

v⃗ + w⃗ =

2(a+ c) + (b+ d)

(b+ d) + 8

(a+ c)− 4

 ,
which certainly doesn’t look like an element ofW ; the constants
are all wrong! We have an 8 in the second component instead
of a 4, and a −4 in the third component instead of a −2. (This
is why constant terms in the definition of a subset are generally
problematic.)

However, with a bit of sleight of hand, things are not as bad as they
seem. Let’s write the second component as (b+ d+ 4) + 4, and
the third as (a+c−2)−2, and let v = b+d+4, and u = a+c−2.
If v⃗ + w⃗ is an element ofW , then we’re going to need

2(a+ c) + (b+ d) = 2u+ v,

so that v⃗ + w⃗ =

2u+ v

v + 4

u− 2

 fits the definition ofW . Is this true?

Let’s check:

2u+v = 2(a+c−2)+(b+d+4) = 2(a+c)−4+(b+d)+4 = 2(a+c)+(b+d).

The extra constants cancel, so addition works! Similarly, we find

kv⃗ =

k(2a+ b)

k(b+ 4)

k(c− d)


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=

2(ka) + (kb)

(kb) + 4k

(ka)− 2k


=

 2(ka) + (kb)

(kb+ 4k − 4) + 4

(ka− 2k + 2)− 2


=

2(ka− 2k + 2) + (kb+ 4k − 4)

(kb+ 4k − 4) + 4

(ka− 2k + 2)− 2

 ,
which fits the definition ofW . Note that in the last equality, things
cancel out again:

2(ka−2k+2)+(kb+4k−4) = 2(ka)−4k+4+(kb)+4k−4 = 2(ka)+(kb).

Whew! That wasn’t so straightforward. Could we have made our
lives a little bit easier? (The answer to this rhetorical question is
almost always yes.)

We know that the potential trouble here came from the constant
terms, so one option we have is to try burying them. Given the
element

v⃗ =

2u+ v

v + 4

u− 2

 ∈ W ,

we’re under no obligation to stick with the variables u and v. Let’s
try to simplify a bit: if we letx = u−2 (sou = x+2) and y = v+4
(so v = y − 4), then

2u+ v = 2(x+ 2) + (y − 4) = 2x+ 4 + y − 4 = 2x+ y,

and thus we can write v⃗ =

2x+ y

y

x

, with no more constant
terms. In this form it’s much easier to verify thatW is a subspace.

Let’s take a second look at the subspaces T andW from Example 5.3.3 and

Example 5.3.4. Given an element v⃗ =

3a− 2b

a+ b

a− 4b

 of T , we note that
v⃗ =

3a− 2b

a+ b

a− 4b

 =

3aa
a

+

−2b

b

−4b

 = a

31
1

+ b

−2

1

−4

 ;
in other words, T can be written as the span of the vectors31

1

 and

−2

1

−4

 .
Similarly, if we write w⃗ =

2x+ y

y

x

 ∈ W for an arbitrary element of W
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(using our change of variables), we have

w⃗ =

2x0
x

+

yy
0

 = x

20
1

+ y

11
0

 ,
so the subspaceW again can be rewritten as

W = span


20
1

 ,

11
0

 .

In fact, although we will not prove it in this textbook, every subspace of Rn

can be written as the span of some finite set of vectors. We can, however, prove
that every span is a subspace.

Theorem 5.3.5 Every span is a subspace.

Let v⃗1, v⃗2, . . . , v⃗k be vectors in Rn. Then V = span{v⃗1, v⃗2, . . . , v⃗k}
is a subspace of Rn.

To see that this is true, recall that any element of a span is by definition a
linear combination. Given two arbitrary elements

a⃗ = a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k

b⃗ = b1v⃗1 + b2v⃗2 + · · ·+ bkv⃗k

of V , we note that

a⃗+ b⃗ = (a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k) + (b1v⃗1 + b2v⃗2 + · · ·+ bkv⃗k)

= (a1v⃗1 + b1v⃗1) + (a2v⃗2 + b2v⃗2) + · · ·+ (akv⃗k + bkv⃗k)

= (a1 + b1)v⃗1 + (a2 + b2)v⃗2 + · · ·+ (ak + bk)v⃗k,

so that a⃗+ b⃗ can be written as a linear combination of the vectors v⃗i and there-
fore belongs to V .

Similarly, for any scalar c, we have

ca⃗ = c(a1v⃗1 + a2v⃗2 + · · ·+ akv⃗k)

= (ca1)v⃗1 + (ca2)v⃗2 + · · · (cak)v⃗k,

so that ca⃗ is an element of V as well. Thus, by Definition 5.3.1, we know that V
is a subspace of Rn.

We conclude with a discussion of how Theorem 5.3.5 and the concept of
linear independence allows us to give a complete description of the possible
subspaces of Rn. To begin with, we have the simplest possible subspace, the
trivial subspace

V0 = {⃗0}.

The trivial subspace appears at
first glance to be an exception to
the rule that “every subspace is
a span”, but we can consider it
to be the span of the zero vector.
Inmore advanced textbookswhere
the concept of a basis is discussed,
the trivial subspace is often con-
sidered to be the “span” of the
empty set. Since the empty set
contains zero vectors, the trivial
subspace is said to be zero-dimensional.

If a subspace V has at least one non-zero vector, let’s say v⃗ ∈ V , then by
definition it must contain every scalar multiple of that vector. Thus, the next
simplest type of subspace is given as the span of a single, non-zero vector:

V1 = {tv⃗ | t ∈ R and v⃗ ̸= 0⃗}.
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Of course, there are infinitely many possibilities for v⃗, but each choice of
v⃗ ̸= 0⃗ leads to a subspace that looks and acts “the same”. As discussed earlier,
we can picture a subspace of this type as a line through the origin.

Next, we could consider a subspace V2 = span{v⃗, w⃗}, with v⃗, w⃗ ̸= 0⃗. There
are two possibilities. One is that v⃗ and w⃗ are parallel, so that the set {v⃗, w⃗} is
linearly dependent. In this case we can write w⃗ = kv⃗ for some scalar k, and for
any scalars a and b,

av⃗ + bw⃗ = av⃗ + b(kv⃗) = (a+ bk)v⃗,

so our subspace V2 is really of the same type as V1. If, however, the vectors
v⃗ and w⃗ are linearly independent, then adding the vector w⃗ gives us a second
direction to work with, and V2 becomes an object that is strictly larger than V1.
In this case, the visualization is that of a plane through the origin.

Depending on the size ofn, this argument continues. If we add a third vector
u⃗ that is already in the span of v⃗ and w⃗, then the set {u⃗, v⃗, w⃗} is linearly depen-
dent, and the span of this set is the same as what we already had. If, however,
u⃗ /∈ span{v⃗, w⃗}, then {u⃗, v⃗, w⃗} is linearly independent, and

V3 = span{u⃗, v⃗, w⃗}

is a strictly larger subspace than span{v⃗, w⃗}. We could then look for a fourth
vector, and so on. However, in the familiar case of R3, the process stops at 3.

Key Idea 5.3.6 Subspaces of R3.

There are four different types of subspaces in R3:

• The trivial subspace, V0 = {⃗0}. (Zero dimensional)

• Lines through the origin, of the form

V1 = span{v⃗},

where v⃗ ̸= 0⃗. (One dimensional)

• Planes through the origin, of the form

V2 = span{v⃗, w⃗},

where the vectors v⃗, w⃗ are linearly independent. (Two dimen-
sional)

• The complete space V3 = R3. (Three dimensional)

Notice the reference to dimension in Key Idea 5.3.6. InR3, we can rely on our
intuitive (geometric) understanding of the concept of dimension. A complete un-
derstanding of the concept of dimension will have to wait until a second course
in linear algebra; however, using the concepts in this section, we can make the
following definition.

Definition 5.3.7 Dimension of a subspace.

The dimension of a subspace V ⊆ Rn is the smallest number of
vectors needed to span V .
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One could also define dimension as the largest number of linearly indepen-
dent vectors one can choose from a subspace. If B = {v⃗1, . . . , v⃗k} is a set of
vectors in a subspace V such that

1. V = span(B), and

2. B is linearly independent,

then we say B is a basis for V . For example, the set {⃗i, j⃗, k⃗} is a basis for R3.
There are many possible bases for a subspace, but one can prove that the num-
ber of vectors in any basis is the same. Once this fact is established, we could
alternatively define dimension as the number of vectors in any basis.
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5.3.1 Exercises

Exercise Group. Determine if the given subset of R2 is a subspace. Support your conclusion with a proof or coun-
terexample.

1. S =

{[
x

y

] ∣∣∣∣ 2x− 3y = 4

}
2. T =

{[
x+ y

x− y

] ∣∣∣∣ x, y ∈ R
}

3. U =

{[
x

y

] ∣∣∣∣ y = 2x

}
4. V =

{[
x

x2

] ∣∣∣∣ x ∈ R
}
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5.4 Null Space and Column Space

We close this chapter with some discussion of a theoretical nature. First, we will
attempt to gain some additional insight into the (initially mysterious) definition
of matrix multiplication by revisiting it from the point of view of linear transfor-
mations. We’ll then introduce two fundamental subspaces associated with a
matrix transformation.

5.4.1 Matrix multiplication as function composition
Recall that one of the ways we can obtain new functions from old ones is via
function composition. Given two functions f(x) and g(x) (where x ∈ R), we
can form the compositions

(f ◦ g)(x) = f(g(x)) and
(g ◦ f)(x) = g(f(x)),

as long as we meet certain conditions on the compatibility of the domains and
ranges of the two functions.

If you paid attention in high school, you probably also remember that the
order of composition matters: in general,

(f ◦ g)(x) ̸= (g ◦ f)(x).

For example, if f(x) = 2x+ 1 and g(x) = x2, then

(f ◦ g)(x) = f(g(x)) = 2g(x) + 1 = 2x2 + 1,

while

(g ◦ f)(x) = g(f(x)) = (f(x))2 = (2x+ 1)2 = 4x2 + 4x+ 1.

In this example, both functions are defined from R to R, and neither is a
linear transformation in the sense of this section. In fact, if f : R → R satisfies
Definition 5.2.3, then we must have f(x) = ax for some real number a. If
g(x) = bx is another linear transformation from R to R, notice that we have

(f ◦ g)(x) = f(g(x)) = a(g(x)) = a(bx) = (ab)x.

Thus, to compose two linear transformations from R to R, we simply multiply
the constants used to define the transformations.

Now, what about a general linear transformation S : Rn → Rm? We know
that any such transformation is a matrix transformation: we must have

S(x⃗) = Ax⃗

for any x⃗ ∈ Rn, whereA is anm× nmatrix. Since we’re multiplying anm× n
matrix by an n × 1 matrix, the rules of matrix multiplication ensure that the
output y⃗ = Ax⃗ is an element of Rm.

Suppose now that we want to define the composition (S ◦ T )(x⃗) for some
other linear transformation T . Recall the following rule of function composition:

In order for the composition S ◦ T to be defined, the range of T
must be contained in the domain of S.

That is, since S ◦T is defined by (S ◦T )(x⃗) = S(T (x⃗)), the vector T (x⃗) (which
by definition is in the range of T ) must belong to the domain of S. This means
that we must have T (x⃗) ∈ Rn, so we have

T : Rk → Rn
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for some natural number k. On the other hand, we know that if T is a linear
transformation, thenT is defined bymatrixmultiplication: T (x⃗) = Bx⃗ for some
n× k matrixB.

Let us now recall one of the rules of matrix multiplication:

For the matrix product AB to be defined, the number of columns
of Amust equal the number of rows ofB.

That is, if A is an m × n matrix, then B must be an n × k matrix for some k.
But this is the same conclusion as above! What is the connection? Well, if we
follow the rules for function composition, if T (x⃗) = Bx⃗ and S(y⃗) = Ay⃗, we
must have

(S ◦ T )(x⃗) = S(T (x⃗)) = A(T (x⃗)) = A(Bx⃗) = (AB)x⃗,

where the last equality is due to the associative property ofmatrixmultiplication
from Theorem 4.2.11. Thus, we see that:

Composition of linear transformations is the same as multiplication
of the corresponding matrices!

Looking at things from the point of view of matrix transformations gives us two
insights on the nature of matrix multiplication:

1. WhenA andB are both n× nmatrices, the transformations S(x⃗) = Ax⃗
and T (x⃗) = Bx⃗ are both maps from Rn to Rn, and we can define both

(S ◦ T )(x⃗) = (AB)x⃗

and
(T ◦ S)(x⃗) = (BA)x⃗.

Our experience with functions teaches us that most of the time, S ◦ T ̸=
T ◦ S, so of course it makes sense that AB ̸= BA in general!

2. The fact thatAB is definedonlywhen thenumber of columnsofAmatches
the number of rows ofB is simply a consequence of the fact that S ◦ T is
only defined if the range of T is a subset of the domain of A.

What about the “row times column” rule for determining the entries ofAB?
Let’s look at how things work in 2D. Suppose we’ve defined linear transforma-
tions

S

([
x

y

])
= A

[
x

y

]
=

[
a11 a12
a21 a22

] [
x

y

]
and

T

([
x

y

])
= B

[
x

y

]
=

[
b11 b12
b21 b22

] [
x

y

]
.

If we write T
([

x

y

])
=

[
u

v

]
, where u = b11x+ b12y and v = b21x+ b22y,

then we have

(S ◦ T )
([

x

y

])
= S

(
T

([
x

y

]))
= S

([
u

v

])
=

[
a11 a12
a21 a22

] [
u

v

]
=

[
a11u+ a12v

a21u+ a22v

]
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=

[
a11(b11x+ b12y) + a12(b21x+ b22y)

a21(b11x+ b12y) + a22(b21x+ b22y)

]
=

[
(a11b11 + a12b21)x+ (a11b12 + a12b22)y

(a21b11 + a22b21)x+ (a21b12 + a22b22)y

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

] [
x

y

]
.

But we also argued above that we should have

(S ◦ T )
([

x

y

])
= (AB)

[
x

y

]
,

from which we’re forced to conclude that

AB =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
,

and this is exactly the rule for multiplying two 2 × 2 matrices! Of course, we
can repeat the above argument for the general case whereA ism× n andB is
n× k, but you can probably guess that the algebra gets a bit messy on that one,
so we’ll spare you the details.

5.4.2 Column space
When we discussed the composition of linear transformations above, we briefly
mentioned that this involves the consideration of the range. Recall that the
range of a function is the set of all possible outputs when every input in the
domain is considered. For example, with the function f(x) = x2, where x can
be any real number, the range is the set of all real numbers y ≥ 0. (If y = x2

and x is real, then y can’t be negative.)
If we’re given a linear transformation T : Rn → Rm, we might want to

know what sort of vectors y⃗ ∈ Rm can be obtained from T . Consider Examples
Example 5.1.3 and Example 5.1.5 from way back at the beginning of the section.
In Example 5.1.3, the vectorsAx⃗ andAy⃗ were non-parallel, and therefore inde-
pendent. It follows that for any other vector z⃗ ∈ R2, we can find scalars a and b
such that

z⃗ = a(Ax⃗) + b(Ay⃗) = A(ax⃗) +A(by⃗) = A(ax⃗+ by⃗),

so every vector inR2 can be written as the output of the transformation T (x⃗) =

Ax⃗. On the other hand, using the matrix A =

[
1 −1

1 −1

]
in Example 5.1.5, for

any vector
[
a

b

]
∈ R2, we have

A

[
a

b

]
=

[
1 −1

1 −1

] [
a

b

]
=

[
a− b

a− b

]
= (a− b)

[
1

1

]
,

so the only vectors in the range of T (x⃗) = Ax⃗ are those parallel to the vector[
1

1

]
.

Next, we’re going to consider a generalmatrix transformationT : Rn → Rm

given by T (x⃗) = Ax⃗, but we’ll play around with the multiplication a little bit. By
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definition (and a bit of manipulation), we have

T (x⃗) = Ax⃗ =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1

x2

...
xn



=


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



=


a11x1

a21x1

...
am1x1

+


a12x2

a22x2

...
am2x2

+ · · ·+


a1nxn

a2nxn

...
amnxn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn

 .
Thus, whenever we multiply a vector by a matrix, the result is a linear combina-
tion of the columns of A! If we think of each column of A as a column vector in
Rm, we can make the following definition:

Note: Althoughwe didn’t say so
at the time, we already encoun-
tered this rule for multiplying a
vector by a matrix in the argu-
ment we gave in support of The-
orem5.2.12. Some textbooks ac-
tually use this observation to give
an alternative definition of ma-
trixmultiplication. Onceweknow
how the product Ax⃗ is defined
for anm×nmatrixA and n× 1
vector x⃗, we can define AB for
ann×pmatrixB as follows: first,
we write

B =
[⃗
b1 b⃗2 · · · b⃗p

]
,

where then×1 vectors b⃗1, . . . , b⃗p
are the columns of B. We then
define

AB = A
[⃗
b1 b⃗2 · · · b⃗p

]
=
[
Ab⃗1 Ab⃗2 · · · Ab⃗p

]
.

It’s a goodexercise to verify (with
a few examples) that this defin-
ition of the product AB is the
same as the “row times column”
definition we gave earlier.

Definition 5.4.1 The column space of a matrix.

The column space of an m × n matrix A is the subspace of Rm

spanned by the columns of A:

col(A) = span



a11
a21
...

am1

 ,


a12
a22
...

am2

 , . . . ,


a1n
a2n
...

amn


 .

From the discussion above, we can make two conclusions. First, if T (x⃗) =
Ax⃗ is a linear transformation, we have

range(T ) = col(A).

Second, as mentioned in Definition 5.4.1, since the range of T can be written as
a span, it is automatically a subspace of Rm according to Theorem 5.3.5. The
range of a linear transformation is one of the more important examples of a
subspace.

To give amore useful description of the column space, we rely Theorem5.4.2
below, whose proof is too technical for this text. To help with the statement
of this theorem, we first introduce one more bit of terminology. We will call a
column of amatrixA a pivot column if the corresponding column in the reduced
row echelon form of A contains a leading 1.
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Theorem 5.4.2 Basis for the column space of a matrix.

A basis for the column space of anm×nmatrixA is given by the set
of pivot columns of A.

Wewill illustrate Theorem 5.4.2 with an example. It’s important to note that
while we need to find the reduced row echelon form of A in order to find the
pivot columns, the columns we want are those of the original matrix A, not its
rref.

Example 5.4.3 Finding a basis for the column space.

Determine a basis for the column space of the matrix

A =

 1 0 2 −3

2 −1 0 4

−1 1 3 0

 .
Solution. We begin by computing the reduced row echelon formR of
A. We find

R =

1 0 0 −17

0 1 0 −38

0 0 1 7

 ,
and note thatR has leading 1s in columns 1, 2, and 3. It follows that

B =


 1

2

−1

 ,

 0

−1

1

 ,

20
3


is a basis for col(A).

Let’s make a few observations about the previous example. Notice that we
have three leading 1s, so rank(A) = 3. In particular, there is a leading 1 in each
row, so we’re guaranteed that the systemAx⃗ = b⃗ is consistent, no matter what
the vector b⃗ is. Since the number of pivot columns of A is equal to the number
of leading 1s, we obtain the following result.

Theorem 5.4.4 Dimension of the column space.

The dimension of the column space of amatrixA (or equivalently, the
dimension of range of the matrix transformation defined by A) is equal
to the rank of A.

To see why this result can be useful, notice that in our previous example,
the matrix transformation T (x⃗) = Ax⃗ determines a linear transformation T :
R4 → R3. Notice that there are three vectors in the basis for col(A); this means
that the column space ofA (and thus, the range of T ) is three-dimensional, and
therefore the range of T is all ofR3, and thus, no matter what vector b⃗ ∈ R3 we
choose, we’re guaranteed to be able to find a vector x⃗ ∈ R4 such that Ax⃗ = b⃗.

The key observation here is that the question “Does Ax⃗ = b⃗ have a solu-
tion?” is equivalent to the question “Does the vector b⃗ belong to col(A)?” Un-
fortunately, while we may gain some insight from noticing that these questions
are the same, we are no further ahead when it comes to answering them. What-
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ever version we prefer, the only way to get an answer is to compute the reduced
row echelon form of

[
A b⃗

]
.

Suppose we repeated Example 5.4.3 using the matrixA from Example 3.6.9.
Both cases involved a matrix of size 3 × 4, but the matrix from Example 3.6.9
had rank 2, so the column space of A is only two-dimensional. In this case, the
systemAx⃗ = b⃗will be consistent if b⃗ belongs to the span of the first two columns
of A, and inconsistent otherwise.

Reading off the first two columns of A, we find that

col(A) = span


 1

3

−2

 ,

−2

−1

−6

 .

We know that this is a plane through the origin in R3, but how do we quickly
determine what vectors belong to this plane? There’s an easy way and a hard
way. The easy way is to compute the cross product, as we did in many of the
problems from Section 2.6. We find 1

3

−2

×

−2

−1

−6

 =

−20

10

5

 = 5

−4

2

1

 = 5n⃗,

where we’ve chosen to factor out the scalar multiple of 5 to simplify our normal
vector.

From this we know that a vector

b⃗ =

ab
c


belongs to the column space of A if and only if

−4a+ 2b+ c = 0,

using the scalar form for the equation of a plane in R3. Having done it the easy
way, let us do things once more the hard way. (Why do it the hard way if the
easy way works? Because if we’re in any other case than a two-dimensional
subspace of R3, the hard way is the only option we have!) The hard way is to

solve the equationAx⃗ = b⃗ for an arbitrary vector b⃗ =

ab
c

. Aswith the previous
examples, we set up the augmented matrix and reduce: 1 −2 0 4 a

3 −1 5 2 b

−2 −6 −10 12 c

 −→

 1 −2 0 4 a

0 1 1 −2 (b− 3a)/5

0 0 0 0 (c− 4a+ 2b)/10

 .
We stopped before getting all the way to the reduced row echelon form, but

we’re far enough along to realize that the only way our system can be consistent
is if the last entry in the third row is equal to zero. This gives us the condition

c− 4a+ 2b

10
= 0,

which (after multiplying both sides by 10) is exactly the same as what we found
using the cross product.



5.4. NULL SPACE AND COLUMN SPACE 275

5.4.3 Null space
The other important example is the null space of a matrix. The null space of an
m× nmatrix A is simply the set of all those vectors x⃗ ∈ Rn such that Ax⃗ = 0⃗.

Definition 5.4.5 The null space of a matrix.

The null space of an m × n matrix A is denoted by null(A), and
defined by

null(A) = {x⃗ ∈ Rn |Ax⃗ = 0⃗}.

For example, we saw in Example 5.1.5 that the vector x⃗ =

[
1

1

]
belongs to

the null space of the matrix A =

[
1 −1

1 −1

]
, since

Ax⃗ =

[
1 −1

1 −1

] [
1

1

]
=

[
1− 1

1− 1

]
=

[
0

0

]
.

Given a generalm × n matrix A, we know from Section 3.6 that determin-
ing the null space amounts to simply solving a homogeneous system of linear
equations. Let us see how this works in an example.

Example 5.4.6 Determining the null space of a matrix.

Determine the null space of the matrix

A =

[
2 −3

−2 3

]
.

Solution. Since the null space of A is equal to the set of all solutions
x⃗ to the matrix equation Ax⃗ = 0⃗, we proceed by forming the proper
augmented matrix and putting it into reduced row echelon form, which
we do below.[

2 −3 0

−2 3 0

]
−→
rref

[
1 −3/2 0

0 0 0

]
We interpret the reduced rowechelon formof thismatrix to find that

x1 = 3/2t

x2 = t is free.

We can say that x⃗ ∈ null(A) provided that

x⃗ =

[
x1

x2

]
=

[
3
2 t

t

]
= t

[
3
2

1

]
.

If we set

v⃗ =

[
3/2

1

]
,

then we can write our solution as

null(A) =

{
tv⃗ | t ∈ R and v⃗ =

[
3/2

1

]}
.
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We see that the null space ofA contains infinitely many solutions to
the equation Ax⃗ = 0⃗; any choice of x2 gives us one of these solutions.
For instance, picking x2 = 2 gives the solution

x⃗ =

[
3

2

]
.

This is a particularly nice solution, since there are no fractions! In
fact, since the parameter t can take on any real value, there is nothing
preventing us from defining a new parameter s = t/2, and then

x⃗ = t

[
3/2

1

]
= t

(
1

2

[
3

2

])
=

t

2

[
3

2

]
= s

[
3

2

]
= sw⃗,

where w⃗ = 2v⃗.
Our solutions are multiples of a vector, and hence we can graph this,

as done in Figure 5.4.7.
x

y

v⃗

Figure 5.4.7 The solution, as a line, to
Ax⃗ = 0⃗ in Example 5.4.6

In Example 5.4.6, we saw that the solution is a line through the origin, and
thus, we can conclude that null(A) is a subspace! In fact, this is no coincidence:
it is guaranteed by our next theorem.

Theorem 5.4.8 The null space of a matrix is a subspace.

For anym× nmatrix A, null(A) is a subspace of Rn.

The proof of this theorem is simple. Suppose x⃗, y⃗ ∈ null(A). By definition,
this means Ax⃗ = 0⃗ and Ay⃗ = 0⃗. Using the properties of matrix multiplication,
we have

A(x⃗+ y⃗) = Ax⃗+Ay⃗ = 0⃗ + 0⃗ = 0⃗,

so x⃗+ y⃗ ∈ null(A), and

A(cx⃗) = c(Ax⃗) = c⃗0 = 0⃗,

so cx⃗ ∈ null(A). It follows from the definition of a subspace that null(A) is a
subspace of Rn.

In Section 2.7 we discussed the fact that whenever we have a subspace of
Rn, it can be useful to determine a basis for our subspace. Recall from Defini-
tion 3.6.8 that the general solution to a homogeneous systemof linear equations
can be written in terms of certain basic solutions. In the context of null spaces,
these basic solutions are just such a basis.

Althoughwewill not prove it here, the basic solutions to a homogeneous sys-
tem are always linearly independent. Moreover, it follows from the definition of
null(A) that any x⃗ ∈ null(A) can be written as a linear combination of the basic
solutions. In the language of Section 2.7, the basic solutions to a homogeneous
system Ax⃗ = 0⃗ form a basis for the null space of A. This is an important point
to remember, so we emphasize it in the following Key Idea.

Key Idea 5.4.9 Basis for the null space of a matrix.

The basic solutions to the homogeneous systemAx⃗ = 0⃗ form a basis
for the null space of A. That is, if v⃗1, v⃗2, . . . , v⃗k are the basic solutions
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to Ax⃗ = 0⃗, then

null(A) = span{v⃗1, v⃗2, . . . , v⃗k}.

To illustrate Key Idea 5.4.9, let’s revisit an example from Section 3.6 using
the language of null space and basis.

Example 5.4.10 A two-dimensional null space.

Find a basis for the null space of A, where

A =

 1 −2 0 4

3 −1 5 2

−2 −6 −10 12

 .
Solution. Again, determining null(A) is the same as solving the homo-
geneous system Ax⃗ = 0⃗, and by Key Idea 5.4.9, a basis for null(A) is
given by the basic solutions to this system. As usual, to find the basic
solutions, we set up the augmented matrix of the system and reduce: 1 −2 0 4 0

3 −1 5 2 0

−2 −6 −10 12 0

 −→
rref

 1 0 2 0 0

0 1 1 −2 0

0 0 0 0 0

 .
From the reduced row echelon form of the augmented matrix, we

can read off the following general solution:

x1 = −2s

x2 = −s+ 2t

x3 = s is free
x4 = t is free.

In this case, we have two parameters, so we expect two basic solu-
tions. To find these, we write our solution in vector form:

x⃗ =


x1

x2

x3

x4

 =


−2s

−s+ 2t

s

t

 = s


−2

−1

1

0

+ t


0

2

0

1

 .
From the above, we see that the general solution can be written as x⃗ =
sv⃗ + tw⃗, where

v⃗ =


−2

−1

1

0

 and w⃗ =


0

2

0

1


are the basic solutions to Ax⃗ = 0⃗. Since the null space of A is equal to
the set of solutions to Ax⃗ = 0⃗, and since every solution to Ax⃗ = 0⃗ can
be written in terms of v⃗ and w⃗, it follows that

null(A) = span{v⃗, w⃗},

and that {v⃗, w⃗} is a basis for null(A).
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Another reason thenull space is interesting is that it lets us determinewhether
or not a linear transformation is one-to-one. Suppose T : Rn → Rm is a
linear transformation defined by T (x⃗) = Ax⃗. We know that T (⃗0) = 0⃗, so
0⃗ ∈ null(A) (as it must be, since null(A) is a subspace). If we have any non-zero
vector v⃗ ∈ null(A), then T cannot be one-to-one, since we’d have

T (v⃗) = Av⃗ = 0⃗ = T (⃗0).

Thus, if null(A) ̸= {⃗0}, then T is not one-to-one. On the other hand, suppose
null(A) = {⃗0}, and that T (x⃗) = T (y⃗) for vectors x⃗, y⃗ ∈ Rn. Then we have

0⃗ = T (x⃗)− T (y⃗) = T (x⃗− y⃗) = A(x⃗− y⃗),

so that x⃗ − y⃗ ∈ null(A) = {0}, which means that x⃗ − y⃗ = 0⃗, and thus x⃗ = y⃗.
We have proved the following:

Recall that a function f is one-
to-one if no two inputs give the
same output. In other words, if
f is one-to-one, then whenever
f(a) = f(b), we can conclude
that a = b.

Theorem 5.4.11 Null space and one-to-one transformations.

Let T : Rn → Rm be defined by T (x⃗) = Ax⃗ for somem× nmatrix
A. Then T is one-to-one if and only if null(A) = {⃗0}.

The final resultwe’ll state provides an interesting (and powerful) relationship
between the null and column spaces.

Theorem 5.4.12 The Fundamental Theorem of Linear Transformations.

Let T : Rn → Rm be a linear transformation defined by T (x⃗) = Ax⃗
for somem× nmatrix A. Then

dimnull(A) + dim col(A) = n.

This result is sometimes known as the “rank-nullity theorem”; it gives the
relationship between the rank of a matrixA, which is equal to the dimension of
its column space, and the nullity of A, which is defined to be the dimension of
its null space.

A formal proof of this result is beyond the scope of this course, but the in-
tuition we’ve gained from solving systems should make it plausible. Recall that
Item 3 in Theorem 3.6.15 on the relationship between the rank of a matrix and
types of solutions gives us the equation

k + rank(A) = n,

where k is the number of parameters in the general solution of Ax⃗ = b⃗. Now,
we know from Definition 3.6.8 that the number of parameters in the general
solution to Ax⃗ = b⃗ is equal to the number of basic solutions to the system
Ax⃗ = 0⃗, and that the basic solutions to Ax⃗ = 0⃗ form a basis for null(A). From
this, we can conclude that

k = dimnull(A).

We also claimed in Theorem 5.4.4 above that the rank of A is equal to the di-
mension of its column space. Putting these facts together, we can see why the
rank-nullity theorem must hold. Let’s confirm that the result holds in one more
example.
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Example 5.4.13 Null space and column space.

Let

A =

[
1 −1 1 3

4 2 4 6

]
and b⃗ =

[
1

10

]
.

Determine:

1. The null space of A.

2. Whether or not the vector b⃗ belongs to the column space of A.

Solution. We’ll tackle the null space first. We form the augmentedma-
trix for the system Ax⃗ = 0⃗, put it into reduced row echelon form, and
interpret the result.[

1 −1 1 3 0

4 2 4 6 0

]
−→
rref

[
1 0 1 2 0

0 1 0 −1 0

]

x1 = −x3 − 2x4

x2 = x4

x3 = s is free
x4 = t is free.

We now obtain our vector solution

x⃗ =


x1

x2

x3

x4

 =


−s− 2t

t

s

t

 .
Finally, we “pull apart” this vector into two vectors, one with the “s

stuff” and one with the “t stuff.”

x⃗ =


−x3 − 2x4

x4

x3

x4



=


−x3

0

x3

0

+


−2x4

x4

0

x4



= x3

−10

1

0

+ x4


−2

1

0

1


= x3u⃗+ x4v⃗.

We use u⃗ and v⃗ simply to give these vectors names (and save some
space). In terms of these names, we can write

null(A) = span{u⃗, v⃗}.
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It is easy to confirm that both u⃗ and v⃗ are solutions to the linear system
Ax⃗ = 0⃗. (Just multiply Au⃗ and Av⃗ and see that both are \zero.) Since
both are solutions to a homogeneous system of linear equations, any
linear combination of u⃗ and v⃗ will be a solution, too, so the vectors u⃗
and v⃗ form a basis for the null space of A.

Now let’s tackle the column space. Determining whether or not b⃗
belongs to the column space is the same as solving the system Ax⃗ = b⃗.
Once again we put the associated augmented matrix into reduced row
echelon form and interpret the results.[

1 −1 1 3 1

4 2 4 6 10

]
−→
rref

[
1 0 1 2 2

0 1 0 −1 1

]

x1 = 2− s− 2t

x2 = 1 + t

x3 = s is free
x4 = t is free.

Since our system is consistent, we can conclude that b⃗ ∈ col(A). Let us
expand on this result a bit.

Writing this solution in vector form gives

x⃗ =


x1

x2

x3

x4

 =


2− s− 2t

1 + t

s

t

 .
Again, we pull apart this vector, but this time we break it into three vec-
tors: one with “s” stuff, one with “t” stuff, and one with just constants.

x⃗ =


2− s− 2t

1 + t

s

t



=


2

1

0

0

+


−s

0

s

0

+


−2t

t

0

t



=


2

1

0

0

+ s


−1

0

1

0

+ t


−2

1

0

1


= x⃗p︸︷︷︸

particular solution

+ su⃗+ tv⃗︸ ︷︷ ︸
solution to homogeneous system

.

Note that Ax⃗p = b⃗; by itself, x⃗p is a solution. The fact that we have at
least one vector x⃗p such thatAx⃗p = b⃗ tells us that b⃗ belongs to the range
of the transformation T (x⃗) = Ax⃗. The fact that there is more than one
solution corresponds to the fact that the null space of A is non-trivial.
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Why don’t we graph this solution as we did in the past? Before we
had only two variables, meaning the solution could be graphed in 2D.
Here we have four variables, meaning that our solution “lives” in 4D. You
can draw this on paper, but it is very confusing.

For further verificationof Theorem5.4.12, the reader is encouraged to revisit
the examples of Section 3.6 and re-interpret them in the context of null space
and column space.
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5.4.4 Exercises

Exercise Group. Determine a basis for the null space and column space of the givenmatrix, and verify Theorem5.4.12.

1. A =

 1 2 0 3

2 4 −1 6

−3 −6 2 −4


2. A =

[
3 2 0 −51 6 −4 3

2 8 −4 −2

]
3. A =

[
1 −2 12 −4 6

0 −8 8

]

4. A =

2 −1 4

1 2 5

3 −4 2



5. A =

2 0 3 5

1 −1 4 2

0 3 −6 2


6. A =

[
2 3 −11 5 2

1 8 1

]

7. A =

 1 −2 4 7

2 −4 3 6

−1 2 1 1



8. A =

 1 −3 5

2 −1 2

−3 0 2





Chapter 6

Operations on Matrices

In Chapter 4 we learned about matrix arithmetic: adding, subtracting, and mul-
tiplying matrices, finding inverses, and multiplying by scalars. In this chapter
we learn about some operations that we perform on matrices. We can think
of them as functions: you input a matrix, and you get something back. One of
these operations, the transpose, will return another matrix. With the other op-
erations, the trace and the determinant, we input matrices and get numbers in
return, an idea that is different than what we have seen before.

6.1 The Matrix Transpose

This section introduces the transpose of amatrix: a simple, but useful operation.
We jump right in with a definition.

Definition 6.1.1 Transpose.

Let A be anm × n matrix. The tranpsose of A, denoted AT , is the
n×mmatrix whose columns are the respective rows of A.

If we write A = [aij ] to emphasize the entries of A, then the transpose of
A is the matrixAT = [aTij ]where aTij = aji; that is, the (i, j)-entry ofAT is the
(j, i)-entry of A. Examples will make this definition clear.

Example 6.1.2 Taking the transpose of a matrix.

Find the transpose of A =

[
1 2 3

4 5 6

]
.

Solution. Note that A is a 2 × 3 matrix, so AT will be a 3 × 2 matrix.
By the definition, the first column ofAT is the first row ofA; the second
column of AT is the second row of A. Therefore,

AT =

1 4

2 5

3 6

 .

283
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Example 6.1.3 Computing transposes.

Find the transpose of the following matrices.

A =

 7 2 9 1

2 −1 3 0

−5 3 0 11

 B =

1 10 −2

3 −5 7

4 2 −3

 C =
[
1 −1 7 8 3

]
.

Solution. We find each transpose using the definition without expla-
nation. Make note of the dimensions of the original matrix and the di-
mensions of its transpose.

AT =


7 2 −5

2 −1 3

9 3 0

1 0 11

 BT =

 1 3 4

10 −5 2

−2 7 −3

 CT =


1

−1

7

8

3

 .

Notice that with matrix B, when we took the transpose, the diagonal did
not change. We can see what the diagonal is below where we rewrite B and
BT with the diagonal in bold. We’ll follow this by a definition of what we mean
by “the diagonal of a matrix,” along with a few other related definitions.

B =

1 10 −2

3 −5 7

4 2 −3

 BT =

 1 3 4

10 −5 2

−2 7 −3

 .
It is probably pretty clear why we call those entries “the diagonal.” Here is

the formal definition.

Definition 6.1.4 The Diagonal, a Diagonal Matrix, Triangular Matrices.

LetA be anm× nmatrix. The diagonal ofA consists of the entries
a11, a22, . . . of A.

Adiagonalmatrix is ann×nmatrix inwhich the only nonzero entries
lie on the diagonal.

An upper (lower) triangularmatrix is a matrix in which any nonzero
entries lie on or above (below) the diagonal.

Example 6.1.5 Classifying matrices.

Consider the matrices A, B, C and I4, as well as their transposes,
where

A =

1 2 3

0 4 5

0 0 6

 B =

3 0 0

0 7 0

0 0 −1

 C =


1 2 3

0 4 5

0 0 6

0 0 0

 .
Identify the diagonal of each matrix, and state whether each matrix is
diagonal, upper triangular, lower triangular, or none of the above.
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Solution. We first compute the transpose of each matrix.

AT =

1 0 0

2 4 0

3 5 6

 BT =

3 0 0

0 7 0

0 0 −1

 CT =

1 0 0 0

2 4 0 0

3 5 6 0

 .
Note that IT4 = I4.

The diagonals ofA andAT are the same, consisting of the entries 1,
4 and 6. The diagonals ofB andBT are also the same, consisting of the
entries 3, 7 and −1. Finally, the diagonals of C and CT are the same,
consisting of the entries 1, 4 and 6.

The matrix A is upper triangular; the only nonzero entries lie on or
above the diagonal. Likewise, AT is lower triangular.

The matrix B is diagonal. By their definitions, we can also see that
B is both upper and lower triangular. Likewise, I4 is diagonal, as well as
upper and lower triangular.

Finally, C is upper triangular, with CT being lower triangular.

Make note of the definitions of diagonal and triangular matrices. We specify
that a diagonal matrix must be square, but triangular matrices don’t have to be.
(“Most” of the time, however, the ones we study are.) Also, as we mentioned
before in the example, by definition a diagonal matrix is also both upper and
lower triangular. Finally, notice that by definition, the transpose of an upper
triangular matrix is a lower triangular matrix, and vice-versa.

There are many questions to probe concerning the transpose operations.
Thefirst set of questionswe’ll investigate involve thematrix arithmeticwe learned
from last chapter. We do this investigation by way of examples, and then sum-
marize what we have learned at the end.

Remember, this is what math-
ematicians do. We learn some-
thing new, and then we ask lots
of questions about it. Often the
first questions we ask are along
the lines of “How does this new
thing relate to the old things I al-
ready know about?”

Example 6.1.6 Adding transposed matrices.

Let

A =

[
1 2 3

4 5 6

]
andB =

[
1 2 1

3 −1 0

]
.

Find AT +BT and (A+B)T .
Solution. We note that

AT =

1 4

2 5

3 6

 andBT =

1 3

2 −1

1 0

 .
Therefore

AT +BT =

1 4

2 5

3 6

+

1 3

2 −1

1 0


=

2 7

4 4

4 6

 .
Also,

(A+B)T =

([
1 2 3

4 5 6

]
+

[
1 2 1

3 −1 0

])T
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=

([
2 4 4

7 4 6

])T

=

2 7

4 4

4 6

 .
It looks like “the sum of the transposes is the transpose of the sum.” (This

is kind of fun to say, especially when said fast. Regardless of how fast we say it,
we should think about this statement. The “is” represents “equals.” The stuff
before “is” equals the stuff afterwards.) This should lead us to wonder how the
transpose works with multiplication.

Example 6.1.7 Multiplying transposed matrices.

Let

A =

[
1 2

3 4

]
andB =

[
1 2 −1

1 0 1

]
.

Find (AB)T , ATBT andBTAT .
Solution. We first note that

AT =

[
1 3

2 4

]
andBT =

 1 1

2 0

−1 1

 .
Find (AB)T :

(AB)T =

([
1 2

3 4

] [
1 2 −1

1 0 1

])T

=

([
3 2 1

7 6 1

])T

=

3 7

2 6

1 1

 .
Now find ATBT :

ATBT =

[
1 3

2 4

] 1 1

2 0

−1 1


= Not defined!.

So we can’t compute ATBT . Let’s finish by computing BTAT :

BTAT =

 1 1

2 0

−1 1

[1 3

2 4

]

=

3 7

2 6

1 1

 .
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We may have suspected that (AB)T = ATBT . We saw that
this wasn’t the case, though — and not only was it not equal, the sec-
ond product wasn’t even defined! Oddly enough, though, we saw that
(AB)T = BTAT . (Then again, maybe this isn’t all that “odd.” It is rem-
iniscent of the fact that, when invertible, (AB)−1 = B−1A−1.) To help
understand why this is true, look back at the work above and confirm
the steps of each multiplication.

We have one more arithmetic operation to look at: the inverse.

Example 6.1.8 Inverting a transposed matrix.

Let

A =

[
2 7

1 4

]
.

Find (A−1)T and (AT )−1.
Solution. We first find A−1 and AT :

A−1 =

[
4 −7

−1 2

]
and AT =

[
2 1

7 4

]
.

Finding (A−1)T :

(A−1)T =

[
4 −7

−1 2

]T
=

[
4 −1

−7 2

]
.

Finding (AT )−1:

(AT )−1 =

[
2 1

7 4

]−1

=

[
4 −1

−7 2

]
.

It seems that “the inverse of the transpose is the transpose of the inverse.”
(Again, we should think about this statement. The part before “is” states that we
take the transpose of a matrix, then find the inverse. The part after “is” states
that we find the inverse of the matrix, then take the transpose. Since these two
statements are linked by an “is,” they are equal.)

We have just looked at some examples of how the transpose operation inter-
acts with matrix arithmetic operations. (These examples don’t prove anything,
other than it worked in specific examples.) We now give a theorem that tells us
that what we saw wasn’t a coincidence, but rather is always true.

Theorem 6.1.9 Properties of the Matrix Transpose.

LetA andB be matrices where the following operations are defined.
Then:

1. (A+B)T = AT +BT and (A−B)T = AT −BT
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2. (kA)T = kAT

3. (AB)T = BTAT

4. (A−1)T = (AT )−1

5. (AT )T = A

We included in the theorem two ideas we didn’t discuss already. First, that
(kA)T = kAT . This is probably obvious. It doesn’t matter when you multiply a
matrix by a scalar when dealing with transposes.

The second “new” item is that (AT )T = A. That is, if we take the transpose
of a matrix, then take its transpose again, what do we have? The original matrix.

Now thatwe knowsomeproperties of the transposeoperation,weare tempted
to play around with it and see what happens. For instance, ifA is anm× nma-
trix, we know thatAT is an n×mmatrix. So no matter what matrixA we start
with, we can always perform the multiplication AAT (and also ATA) and the
result is a square matrix!

Another thing to ask ourselves as we “play around” with the transpose: sup-
poseA is a squarematrix. Is there anything special aboutA+AT ? The following
example has us try out these ideas.

Example 6.1.10 The matrices AAT , A+AT , andA−AT .

Let

A =

2 1 3

2 −1 1

1 0 1

 .
Find AAT , A+AT and A−AT .
Solution. Finding AAT :

AAT =

2 1 3

2 −1 1

1 0 1

2 2 1

1 −1 0

3 1 1


=

14 6 5

6 4 3

5 3 2

 .
Finding A+AT :

A+AT =

2 1 3

2 −1 1

1 0 1

+

2 2 1

1 −1 0

3 1 1


=

4 3 4

3 −2 1

4 1 2

 .
Finding A−AT :

A−AT =

2 1 3

2 −1 1

1 0 1

−

2 2 1

1 −1 0

3 1 1


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=

 0 −1 2

1 0 1

−2 −1 0

 .
Let’s look at thematrices we’ve formed in this example. First, considerAAT .

Something seems to be nice about this matrix — look at the location of the 6’s,
the 5’s and the 3’s. More precisely, let’s look at the transpose of AAT . We
should notice that if we take the transpose of this matrix, we have the very same
matrix. That is, 14 6 5

6 4 3

5 3 2

T

=

14 6 5

6 4 3

5 3 2

 !
We’ll formally define this in a moment, but a matrix that is equal to its trans-

pose is called symmetric.
Look at the next part of the example; what do we notice about A + AT ?

We should see that it, too, is symmetric. Finally, consider the last part of the
example: do we notice anything about A−AT ?

We should immediately notice that it is not symmetric, although it does
seem “close.” Instead of it being equal to its transpose, we notice that this ma-
trix is the opposite of its transpose. We call this type of matrix skew symmetric.
(Some mathematicians use the term antisymmetric.) We formally define these
matrices here.

Definition 6.1.11 Symmetric and Skew Symmetric Matrices.

A matrix A is symmetric if AT = A.
A matrix A is skew symmetric if AT = −A.

Note that in order for a matrix to be either symmetric or skew symmetric, it
must be square.

So why wasAAT symmetric in our previous example? Did we just luck out?
(Of course not.) Let’s take the transpose of AAT and see what happens.

(AAT )T = (AT )T (A)T (transpose multiplication rule)

= AAT ((AT )T = A).

We have just proved that no matter what matrixAwe start with, the matrix
AAT will be symmetric. Nothing in our string of equalities even demanded that
A be a square matrix; it is always true.

We can do a similar proof to show that as long as A is square, A + AT is a
symmetric matrix. (Why do we say thatA has to be square?) We’ll instead show
here that if A is a square matrix, then A−AT is skew symmetric.

(A−AT )T = AT − (AT )T (transpose subtraction rule)

= AT −A

= −(A−AT ).

So we took the transpose of A − AT and we got −(A − AT ); this is the
definition of being skew symmetric.

We’ll take what we learned from Example 6.1.10 and put it in a box. (We’ve
already proved most of this is true; the rest we leave to solve in the Exercises.)
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Theorem 6.1.12 Symmetric and Skew Symmetric Matrices.

1. Given any matrix A, the matrices AAT and ATA are symmetric.

2. Let A be a square matrix. The matrix A+AT is symmetric.

3. Let A be a square matrix. The matrix A−AT is skew symmetric.

Why do we care about the transpose of a matrix? Why do we care about
symmetric matrices?

There are two answers that each answer both of these questions. First, we
are interested in the transpose of amatrix and symmetric matrices because they
are interesting. One particularly interesting thing about symmetric and skew
symmetric matrices is this: consider the sum of (A+AT ) and (A−AT ):

(A+AT ) + (A−AT ) = 2A.

This gives us an idea — if we were to multiply both sides of this equation by 1
2 ,

then the right hand side would just be A. This means that

A =
1

2
(A+AT )︸ ︷︷ ︸
symmetric

+
1

2
(A−AT )︸ ︷︷ ︸

skew symmetric

.

That is, any matrix A can be written as the sum of a symmetric and skew sym-
metric matrix. That’s interesting.

The second reason we care about them is that they are very useful and im-
portant in various areas of mathematics. The transpose of a matrix turns out to
be an important operation; symmetric matrices have many nice properties that
make solving certain types of problems possible.

Most of this text focuses on the preliminaries of matrix algebra, and the
actual uses are beyond our current scope. One easy to describe example is
curve fitting. Suppose we are given a large set of data points that, when plot-
ted, look roughly quadratic. How do we find the quadratic that “best fits” this
data? The solution can be found using matrix algebra, and specifically a matrix
called the pseudoinverse. If A is a matrix, the pseudoinverse of A is the matrix
A† = (ATA)−1AT (assuming that the inverse exists). We aren’t going to worry
about what all the above means; just notice that it has a cool sounding name
and the transpose appears twice.

In the next section we’ll learn about the trace, another operation that can
be performed on a matrix that is relatively simple to compute but can lead to
some deep results.
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6.1.1 Exercises

Exercise Group. A matrixA is given. Find AT ; make note if A is upper/lower triangular, diagonal, symmetric and/or
skew symmetric.

1.

 0 −6 1

6 0 4

−1 −4 0

 2.

 0 3 −2

3 −4 1

−2 1 0


3.

−9 4 10

6 −3 −7

−8 1 −1

 4.

−2 10

1 −7

9 −2


5.

1 0 0

0 2 0

0 0 −1

 6.

 4 0 0

−2 −7 0

4 −2 5


7.

 6 −4 −5

−4 0 2

−5 2 −2

 8.

 4 2 −9

5 −4 −10

−6 6 9


9.

[
−7 −8 2 −3

]
10.

[
3 1

−7 8

]
11.

[
13 −3

−3 1

]
12.

0 0 0

0 0 0

0 0 0


13.

[
4 −7 −4 −9

−9 6 3 −9

]
14.

4 −5 2

1 5 9

9 2 3


15.

2 −5 −3

5 5 −6

7 −4 −10

 16.
[
−7 4

4 −6

]

17.

−3 −4 −5

0 −3 5

0 0 −3

 18.
[
−9 8 2 −7

]

19.

 4 0 −2

0 2 3

−2 3 6

 20.
[
1 0

0 9

]

21.

 −5 −9

3 1

−10 −8

 22.

6 −7 2 6

0 −8 −1 0

0 0 1 −7


23.

 0 1 −2

−1 0 4

2 −4 0

 24.
[

3 −10 0 6

−10 −2 −3 1

]
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6.2 The Matrix Trace

In the previous section, we learned about an operation we can peform onmatri-
ces, namely the transpose. Given a matrix A, we can “find the transpose of A,”
which is another matrix. In this section we learn about a new operation called
the trace. It is a different type of operation than the transpose. Given a matrix
A, we can “find the trace of A,” which is not a matrix but rather a number. We
formally define it here.

Definition 6.2.1 The Trace.

LetA be an n× nmatrix. The trace ofA, denoted tr(A), is the sum
of the diagonal elements of A. That is,

tr(A) = a11 + a22 + · · ·+ ann.

This seems like a simple definition, and it really is. Just to make sure it is
clear, let’s practice.

Example 6.2.2 Computing the trace of a matrix.

Find the trace of A,B, C and I4, where

A =

[
1 2

3 4

]
, B =

 1 2 0

3 8 1

−2 7 −5

 and C =

[
1 2 3

4 5 6

]
.

Solution. To find the trace of A, note that the diagonal elements of A
are 1 and 4. Therefore, tr(A) = 1 + 4 = 5.

We see that the diagonal elements of B are 1, 8 and -5, so tr(B) =
1 + 8− 5 = 4.

The matrix C is not a square matrix, and our definition states that
we must start with a square matrix. Therefore tr(C) is not defined.

Finally, the diagonal of I4 consists of four 1s. Therefore tr(I4) = 4.

Now that we have defined the trace of a matrix, we should think like math-
ematicians and ask some questions. The first questions that should pop into
our minds should be along the lines of “How does the trace work with other
matrix operations?” (Recall that we asked a similar question once we learned
about the transpose.) We should think about how the trace works with matrix
addition, scalar multiplication, matrix multiplication, matrix inverses, and the
transpose.

We’ll give a theorem that will formally tell us what is true in a moment, but
first let’s play with two sample matrices and see if we can see what will happen.
Let

A =

2 1 3

2 0 −1

3 −1 3

 andB =

 2 0 1

−1 2 0

0 2 −1

 .
It should be clear that tr(A) = 5 and tr(B) = 3. What is tr(A+B)?

tr(A+B) = tr

2 1 3

2 0 −1

3 −1 3

+

 2 0 1

−1 2 0

0 2 −1


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= tr

4 1 4

1 2 −1

3 1 2


= 8.

So we notice that tr(A+B) = tr(A)+ tr(B). This probably isn’t a coincidence.
How does the trace work with scalar multiplication? If we multiply A by 4,

then the diagonal elements will be 8, 0 and 12, so tr(4A) = 20. Is it a coinci-
dence that this is 4 times the trace of A?

Let’s move on to matrix multiplication. How will the trace of AB relate to
the traces of A andB? Let’s see:

tr(AB) = tr

2 1 3

2 0 −1

3 −1 3

 2 0 1

−1 2 0

0 2 −1


= tr

3 8 −1

4 −2 3

7 4 0


= 1.

It isn’t exactly clear what the relationship is among tr(A), tr(B) and tr(AB).
Before moving on, let’s find tr(BA):

tr(BA) = tr

 2 0 1

−1 2 0

0 2 −1

2 1 3

2 0 −1

3 −1 3


= tr

7 1 9

2 −1 −5

1 1 −5


= 1.

We notice that tr(AB) = tr(BA). Is this coincidental?
How are the traces of A and A−1 related? We compute A−1 and find that

A−1 =

1/17 6/17 1/17

9/17 3/17 −8/17

2/17 −5/17 2/17

 .
Therefore tr(A−1) = 6/17. Again, the relationship isn’t clear.

This example brings to lightmany
interesting ideas that we’ll flesh
out just a little bit here.

1. Notice that the elements
of A are 1, −2, 1 and 1.
Add the squares of these
numbers: 12+(−2)2+12+
12 = 7 = tr(ATA).

Notice that the elements
of B are 6, 7, 11 and −4.
Add the squares of these
numbers: 62+72+112+
(−4)2 = 222 = tr(BTB).

Can you seewhy this is true?
When looking at multiply-
ingATA, focus only onwhere
the elements on the diag-
onal come fromsince they
are the only ones thatmat-
ter when taking the trace.

2. You can confirmonyour own
that regardless of the dimen-
sions ofA, tr(ATA) = tr(AAT ).
To seewhy this is true, con-
sider the previous point. (Re-
call also thatATA andAAT

are always square, regard-
less of the dimensions of
A.)

3. Mathematicians are actu-
allymore interested in

√
tr(ATA)

than just tr(ATA). The rea-
son for this is a bit compli-
cated; the short answer is
that “it works better.” The
reason “it works better” is
related to the Pythagorean
Theorem, all of all things.
If we know that the legs of
a right triangle have length
a and b, we are more in-
terested in

√
a2 + b2 than

justa2+b2. Of course, this
explanation raisesmoreques-
tions than it answers; our
goal here is just to whet
your appetite and get you
to do some more reading.
ANumerical Linear Algebra
bookwould be a goodplace
to start.

Finally, let’s see how the trace is related to the transpose. We actually don’t
have to formally compute anything. Recall from the previous section that the
diagonals ofA andAT are identical; therefore, tr(A) = tr(AT ). That, we know
for sure, isn’t a coincidence.

We now formally state what equalities are true when considering the inter-
action of the trace with other matrix operations.

Theorem 6.2.3 Properties of the Matrix Trace.

Let A andB be n× nmatrices. Then:

1. tr(A+B) = tr(A) + tr(B)

2. tr(A−B) = tr(A)− tr(B)
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3. tr(kA) = k · tr(A)

4. tr(AB) = tr(BA)

5. tr(AT ) = tr(A)

One of the key things to note here is what this theorem does not say. It
says nothing about how the trace relates to matrix multiplication; that is, we
can’t figure out what tr(AB) is just by knowing what tr(A) and tr(B) are. The
theorem also says nothing about how the trace relates to inverses. The reason
for the silence in these areas is that there simply is not a relationship.

We end this section by again wondering why anyone would care about the
trace of matrix. One reasonmathematicians are interested in it is that it can give
a measurement of the “size” of a matrix.

There are many different mea-
surements of a matrix size. In
this text, we just refer to its di-
mensions. Somemeasurements
of size refer themagnitudeof the
elements in thematrix. The next
sectiondescribes yet anothermea-
surement of matrix size.

Consider the following 2× 2matrices:

A =

[
1 −2

1 1

]
andB =

[
6 7

11 −4

]
.

These matrices have the same trace, yet B clearly has bigger elements in it.
So how can we use the trace to determine a “size” of these matrices? We can
consider tr(ATA) and tr(BTB).

tr(ATA) = tr
([

1 1

−2 1

] [
1 −2

1 1

])
= tr

([
2 −1

−1 5

])
= 7

tr(BTB) = tr
([

6 11

7 −4

] [
6 7

11 −4

])
= tr

([
157 −2

−2 65

])
= 222.

Our concern is not how to interpret what this “size” measurement means,
but rather to demonstrate that the trace (along with the transpose) can be used
to give (perhaps useful) information about a matrix.
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6.2.1 Exercises

Exercise Group. Find the trace of the given matrix.

1.

6 5

2 10

3 3

 2.
[
1 −5

9 5

]

3.
[
7 5

−5 −4

]
4.


−10 6 −7 −9

−2 1 6 −9

0 4 −4 0

−3 −9 3 −10


5.

−4 1 1

−2 0 0

−1 −2 −5


6.


5 2 2 2

−7 4 −7 −3

9 −9 −7 2

−4 8 −8 −2


7.

 0 −3 1

5 −5 5

−4 1 0

 8.

−2 −3 5

5 2 0

−1 −3 1


9.

[
−3 −10

−6 4

]
10.

 4 2 −1

−4 1 4

0 −5 5


11.

[
2 6 4

−1 8 −10

]
12.

[
−6 0

−10 9

]
13. A matrix A that is skew symmetric. 14. I4
15. In

Exercise Group. Verify Theorem 6.2.3 by:

(a) Showing that tr(A) + tr(B) = tr(A+B)

(b) Showing that tr(AB) = tr(BA)

16. A =

 −8 −10 10

10 5 −6

−10 1 3

,
B =

−10 −4 −3

−4 −5 4

3 7 3


17. A =

−10 7 5

7 7 −5

8 −9 2

,
B =

−3 −4 9

4 −1 −9

−7 −8 10


18. A =

[
0 −8

1 8

]
,B =

[
−4 5

−4 2

]
19. A =

[
1 −1

9 −6

]
,B =

[
−1 0

−6 3

]
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6.3 The Determinant

In this chapter so far we’ve learned about the transpose (an operation on a ma-
trix that returns another matrix) and the trace (an operation on a square matrix
that returns a number). In this section we’ll learn another operation on square
matrices that returns a number, called the determinant. The determinant of an
n× nmatrix A is a number, denoted det(A), that is determined by A. We had
a brief encounter with determinants in Section 2.4, where we saw that determi-
nants of 2× 2 and 3× 3matrices are related to the cross product of vectors in
R3.

The determinant is kind of a tricky thing to define. Once you know and un-
derstand it, it isn’t that hard, but getting started is a bit complicated. (It’s similar
to learning to ride a bike. The riding itself isn’t hard, it is getting started that’s
difficult.) Unlike many mathematical quantities, we do not give a single formula
to define the determinant of a matrix. Instead, we define the determinant re-
cursively: first, we’ll explain how to compute the determinant of a 2× 2matrix.
Then, we’ll explain how to compute the determinant of a 3× 3matrix in terms
of 2× 2 determinants, and so on. Let’s get started, and define the determinant
for 2× 2matrices.

Note: we should point out that
it’s not that you can’t give a for-
mula for the determinant; you
can, but it’s complicated. Towrite
downa formula, we’d have to use
summationnotation, and talk about
permutationsof the indices of the
entries, and… Let’s just say that
if you reallywant to see a formula,
you can find one with a Google
search.

Definition 6.3.1 Determinant of 2× 2Matrices.

Let

A =

[
a b

c d

]
.

The determinant of A, denoted by

det(A) or
∣∣∣∣a b

c d

∣∣∣∣ ,
is ad− bc.

We’ve seen the expression ad−bc before. In Section 4.4, we saw that a 2×2
matrix A has inverse

1

ad− bc

[
d −b

−c a

]
as long as ad− bc ̸= 0; otherwise, the inverse does not exist. We can rephrase
the above statement now: If det(A) ̸= 0, then

A−1 =
1

det(A)

[
d −b

−c a

]
.

A brief word about the notation: notice that we can refer to the determinant
by using what looks like absolute value bars around the entries of a matrix. We
discussed at the end of the last section the idea of measuring the “size” of a
matrix, and mentioned that there are many different ways to measure size. The
determinant is one such way. Just as the absolute value of a number measures
its size (and ignores its sign), the determinant of a matrix is a measurement of
the size of the matrix. (Be careful, though: det(A) can be negative!)

Note: We saw in Section 5.1 that a matrix transformation T (x⃗) = Ax⃗,
where A is a 2 × 2 matrix, can be used to define a transformation of the Carte-
sian plane. We saw that we can understand the effect of such a transformation
by its effect on the unit square, and for this, it is enough to compute T (e⃗1) and
T (e⃗2). It’s easy to see that these two vectors are the columns of A:[

T (e⃗1) T (e⃗2)
]
=
[
Ae⃗1 Ae⃗2

]
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= A
[
e⃗1 e⃗2

]
= AI2 = A.

Now, it’s possible that one of these vectors is zero, or that the two vectors are
parallel, but if not, the vectors T (e⃗1) and T (e⃗2) determine a parallelogram.
With a bit of work (see Example 2.4.9 in Section 2.4), we can show that the area
of this parallelogram is given precisely by det(A). You may also recall that we
already encountered the 3 × 3 determinant once, in Section 2.4, where it was
used to determine the volume of a parallelepiped: see the discussion following
Example 2.4.14. In general, det(A) computes the effect of the transformation
T (x⃗) = Ax⃗ on area, and volume (in three dimensions or higher).

Example 6.3.2 Computing 2× 2 determinants.

Find the determinant of A,B and C where

A =

[
1 2

3 4

]
, B =

[
3 −1

2 7

]
and C =

[
1 −3

−2 6

]
.

Solution. Finding the determinant of A:

det(A) =

∣∣∣∣1 2

3 4

∣∣∣∣
= 1(4)− 2(3)

= −2.

Similar computations show that det(B) = 3(7)−(−1)(2) = 23 and
det(C) = 1(6)− (−3)(−2) = 0.

Finding the determinant of a 2 × 2 matrix is pretty straightforward. It is
natural to ask next “How do we compute the determinant of matrices that are
not 2× 2?” We first need to define some terms.

Definition 6.3.3 Matrix Minor, Cofactor.

LetA be an n× nmatrix. The (i, j)-minor of A, denotedAij , is the
determinant of the (n− 1)× (n− 1)matrix formed by deleting the ith
row and jth column of A.

The (i, j)-cofactor of A is the number

Cij = (−1)i+jAij .

Note: if it is necessary for clar-
ity, we may write Ai, j and Ci, j

forminors and cofactors; usually
this is necessary in concrete ex-
amples, especially if we’re deal-
ingwithmatriceswith tenormore
rows and columns. For example,
if we wanted discuss the minor
corresponding to the (12, 3)-entry
of amatrix, writingA123will cause
confusion, while A12,3 is easily
understood. Where there is no
risk of confusion, we frequently
omit the comma to reduce clut-
ter.

Notice that this definition makes reference to taking the determinant of a
matrix, while we haven’t yet defined what the determinant is beyond 2× 2ma-
trices. We recognize this problem, and we’ll see how far we can go before it
becomes an issue.
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Example 6.3.4 Computing minors and cofactors.

Let

A =

1 2 3

4 5 6

7 8 9

 andB =


1 2 0 8

−3 5 7 2

−1 9 −4 6

1 1 1 1

 .
Find A1,3, A3,2,B2,1,B4,3 and their respective cofactors.
Solution. To compute the minor A1,3, we remove the first row and
third column of A then take the determinant.

A =

1 2 3

4 5 6

7 8 9

⇒

�1 �2 �3
4 5 �6
7 8 �9

⇒
[
4 5

7 8

]

A1,3 =

∣∣∣∣4 5

7 8

∣∣∣∣ = 32− 35 = −3.

The corresponding cofactor, C1,3, is

C1,3 = (−1)1+3A1,3 = (−1)4(−3) = −3.

The minor A3,2 is found by removing the third row and second col-
umn of A then taking the determinant.

A =

1 2 3

4 5 6

7 8 9

⇒

1 �2 3

4 �5 6

�7 �8 �9

⇒
[
1 3

4 6

]

A3,2 =

∣∣∣∣1 3

4 6

∣∣∣∣ = 6− 12 = −6.

The corresponding cofactor, C3,2, is

C3,2 = (−1)3+2A3,2 = (−1)5(−6) = 6.

The minor A3,2 is found by removing the third row and second col-
umn of A then taking the determinant.

A =

1 2 3

4 5 6

7 8 9

⇒

1 �2 3

4 �5 6

�7 �8 �9

⇒
[
1 3

4 6

]

A3,2 =

∣∣∣∣1 3

4 6

∣∣∣∣ = 6− 12 = −6.

The corresponding cofactor, C3,2, is

C3,2 = (−1)3+2A3,2 = (−1)5(−6) = 6.

TheminorB2,1 is foundby removing the second rowandfirst column
ofB then taking the determinant.

B =


1 2 0 8

−3 5 7 2

−1 9 −4 6

1 1 1 1

⇒


�1 2 0 8

��−3 �5 �7 �2
��−1 9 −4 6

�1 1 1 1

⇒

2 0 8

9 −4 6

1 1 1


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B2,1 =

∣∣∣∣∣∣
2 0 8

9 −4 6

1 1 1

∣∣∣∣∣∣ !
= ?

We’re a bit stuck. We don’t know how to find the determinant of this
3 × 3matrix. We’ll come back to this later. The corresponding cofactor
is

C2,1 = (−1)2+1B2,1 = −B2,1,

whatever this number happens to be. TheminorB4,3 is found by remov-
ing the fourth row and third column of B then taking the determinant.

B =


1 2 0 8

−3 5 7 2

−1 9 −4 6

1 1 1 1

⇒


1 2 �0 8

−3 5 �7 2

−1 9 ��−4 6

�1 �1 �1 �1

⇒

 1 2 8

−3 5 2

−1 9 6



B4,3 =

∣∣∣∣∣∣
1 2 8

−3 5 2

−1 9 6

∣∣∣∣∣∣ !
= ?

Again, we’re stuck. We won’t be able to fully compute C4,3; all we
know so far is that

C4,3 = (−1)4+3B4,3 = (−1)B4,3.

Once we learn how to compute determinants for matrices larger than
2× 2 we can come back and finish this exercise.

In our previous example we ran into a bit of trouble. By our definition, in
order to compute a minor of an n× nmatrix we needed to compute the deter-
minant of a (n−1)× (n−1)matrix. This was fine when we started with a 3×3
matrix, but when we got up to a 4× 4matrix (and larger) we run into trouble.

We are almost ready to define the determinant for any square matrix; we
need one last definition.

Definition 6.3.5 Cofactor Expansion.

LetA = [aij ] be an n×nmatrix. The cofactor expansion ofA along
the ith row is the sum

ai,1Ci,1 + ai,2Ci,2 + · · ·+ ai,nCi,n.

The cofactor expansion of A down the jth column is the sum

a1,jC1,j + a2,jC2,j + · · ·+ an,jCn,j .

The notation of this definition might be a little intimidating, so let’s look at
an example.

The readermay find it helpful to
review the determinant formula
for the cross product in Section2.4.
Our method for computing the
cross product follows exactly the
same pattern as the cofactor ex-
pansion of a 3 × 3 matrix along
the first row.
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Example 6.3.6 Computing cofactor exapansions.

Let

A =

1 2 3

4 5 6

7 8 9

 .
Find the cofactor expansions along the second row and down the first
column.
Solution. By the definition, the cofactor expansion along the second
row is the sum

a2,1C2,1 + a2,2C2,2 + a2,3C2,3.

(Be sure to compare the above line to the definition of cofactor expan-
sion, and see how the “i” in the definition is replaced by “2” here.)

We’ll find each cofactor and then compute the sum.

C2,1 = (−1)2+1

∣∣∣∣2 3

8 9

∣∣∣∣ = (−1)(−6) = 6


we removed the second row

and first column of A
to compute the minor



C2,2 = (−1)2+2

∣∣∣∣1 3

7 9

∣∣∣∣ = (1)(−12) = −12


we removed the second row
and second column of A
to compute the minor



C2,3 = (−1)2+3

∣∣∣∣1 2

7 8

∣∣∣∣ = (−1)(−6) = 6


we removed the second row
and third column of A
to compute the minor

 .

Thus the cofactor expansion along the second row is

a2,1C2,1 + a2,2C2,2 + a2,3C2,3 = 4(6) + 5(−12) + 6(6)

= 24− 60 + 36

= 0.

At the moment, we don’t know what to do with this cofactor expan-
sion; we’ve just successfully found it.

We move on to find the cofactor expansion down the first column.
By the definition, this sum is

a1,1C1,1 + a2,1C2,1 + a3,1C3,1.

(Again, compare this to the above definition and see how we replaced
the “j” with “1.”)

We find each cofactor:

C1,1 = (−1)1+1

∣∣∣∣5 6

8 9

∣∣∣∣ = (1)(−3) = −3


we removed the first row
and first column ofA
to compute the minor


C2,1 = (−1)2+1

∣∣∣∣2 3

8 9

∣∣∣∣ = (−1)(−6) = 6 (we computed this cofactor above)

C3,1 = (−1)3+1

∣∣∣∣2 3

5 6

∣∣∣∣ = (1)(−3) = −3


we removed the third row
and first column of A
to compute the minor


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The cofactor expansion down the first column is

a1,1C1,1 + a2,1C2,1 + a3,1C3,1 = 1(−3) + 4(6) + 7(−3)

= −3 + 24− 21

= 0.

Is it a coincidence that both cofactor expansions were 0? We’ll answer that
in a while. Now that we’ve gotten the hang of minors and cofactors, we’re ready
to finally define the determinant.

Definition 6.3.7 The Determinant.

The determinant of an n × n matrix A, denoted det(A) or |A|, is a
number given by the following:

• if A is a 1× 1matrix A = [a], then det(A) = a.

• if A is a 2× 2matrix

A =

[
a b

c d

]
,

then det(A) = ad− bc.

• if A is an n × nmatrix, where n ≥ 2, then det(A) is the number
found by taking the cofactor expansion along the first row of A.
That is,

det(A) = a1,1C1,1 + a1,2C1,2 + · · ·+ a1,nC1,n.

Notice that in order to compute the determinant of ann×nmatrix, we need
to compute the determinants of n (n− 1)× (n− 1)matrices. This can be a lot
of work. We’ll later learn how to shorten some of this. First, let’s practice.

Example 6.3.8 Computing a 3× 3 determinant.

Find the determinant of

A =

1 2 3

4 5 6

7 8 9

 .
Solution. Notice that this is the matrix from Example 6.3.6. The cofac-
tor expansion along the first row is

det(A) = a1,1C1,1 + a1,2C1,2 + a1,3C1,3.

We’ll compute each cofactor first then take the appropriate sum.

C1,1 = (−1)1+1A1,1 C1,2 = (−1)1+2A1,2 C1,3 = (−1)1+3A1,3

= 1 ·
∣∣∣∣5 6

8 9

∣∣∣∣ = (−1) ·
∣∣∣∣4 6

7 9

∣∣∣∣ = 1 ·
∣∣∣∣4 5

7 8

∣∣∣∣
= 45− 48 = (−1)(36− 42) = 32− 35

= −3 = 6 = −3.
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Therefore the determinant of A is

det(A) = 1(−3) + 2(6) + 3(−3) = 0.

Example 6.3.9 Another 3× 3 determinant.

Find the determinant of

A =

3 6 7

0 2 −1

3 −1 1

 .
Solution. We’ll compute each cofactor first then find the determinant.

C1,1 = (−1)1+1A1,1 C1,2 = (−1)1+2A1,2 C1,3 = (−1)1+3A1,3

= 1 ·
∣∣∣∣ 2 −1

−1 1

∣∣∣∣ = (−1) ·
∣∣∣∣0 −1

3 1

∣∣∣∣ = 1 ·
∣∣∣∣0 2

3 −1

∣∣∣∣
= 2− 1 = (−1)(0 + 3) = 0− 6

= 1 = −3 = −6.

Thus the determinant is

det(A) = 3(1) + 6(−3) + 7(−6) = −57.

Example 6.3.10 Computing a 4× 4 determinant.

Find the determinant of

A =


1 2 1 2

−1 2 3 4

8 5 −3 1

5 9 −6 3

 .
Solution. This, quite frankly, will take quite a bit of work. In order to
compute this determinant, we need to compute 4minors, each of which
requires finding the determinant of a 3 × 3 matrix! Complaining won’t
get us any closer to the solution, (But it might make us feel a little better.
Glance ahead: do you see howmuch work we have to do?!?) so let’s get
started. We first compute the cofactors:

C1,1 = (−1)1+1A1,1

= 1 ·

∣∣∣∣∣∣
2 3 4

5 −3 1

9 −6 3

∣∣∣∣∣∣
we must compute the determinant

of this 3× 3matrix



= 2 · (−1)1+1

∣∣∣∣−3 1

−6 3

∣∣∣∣+ 3 · (−1)1+2

∣∣∣∣5 1

9 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣5 −3

9 −6

∣∣∣∣
= 2(−3) + 3(−6) + 4(−3)

= −36

C1,2 = (−1)1+2A1,2
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= (−1) ·

∣∣∣∣∣∣
−1 3 4

8 −3 1

5 −6 3

∣∣∣∣∣∣
we must compute the determinant

of this 3× 3matrix



= (−1)

[
(−1) · (−1)1+1

∣∣∣∣−3 1

−6 3

∣∣∣∣+ 3 · (−1)1+2

∣∣∣∣8 1

5 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣8 −3

5 −6

∣∣∣∣]︸ ︷︷ ︸
the determinant of the 3×3matrix

= (−1) [(−1)(−3) + 3(−19) + 4(−33)]

= 186

C1,3 = (−1)1+3A1,3

= 1 ·

∣∣∣∣∣∣
−1 2 4

8 5 1

5 9 3

∣∣∣∣∣∣
we must compute the determinant

of this 3× 3matrix



= (−1) · (−1)1+1

∣∣∣∣5 1

9 3

∣∣∣∣+ 2 · (−1)1+2

∣∣∣∣8 1

5 3

∣∣∣∣+ 4 · (−1)1+3

∣∣∣∣8 5

5 9

∣∣∣∣
= (−1)(6) + 2(−19) + 4(47)

= 144

C1,4 = (−1)1+4A1,4

= (−1) ·

∣∣∣∣∣∣
−1 2 3

8 5 −3

5 9 −6

∣∣∣∣∣∣
we must compute the determinant

of this 3× 3matrix



= (−1)

[
(−1) · (−1)1+1

∣∣∣∣5 −3

9 −6

∣∣∣∣+ 2 · (−1)1+2

∣∣∣∣8 −3

5 −6

∣∣∣∣+ 3 · (−1)1+3

∣∣∣∣8 5

5 9

∣∣∣∣]︸ ︷︷ ︸
the determinant of the 3×3matrix

= (−1) [(−1)(−3) + 2(33) + 3(47)]

= −210

We’ve computed our four cofactors. All that is left is to compute the
cofactor expansion.

det(A) = 1(−36) + 2(186) + 1(144) + 2(−210) = 60.

As a way of “visualizing” this, let’s write out the cofactor expansion
again but including the matrices in their place.

det(A) = a1,1C1,1 + a1,2C1,2 + a1,3C1,3 + a1,4C1,4

= 1(−1)2

∣∣∣∣∣∣
2 3 4

5 −3 1

9 −6 3

∣∣∣∣∣∣︸ ︷︷ ︸
=−36

+ 2(−1)3

∣∣∣∣∣∣
−1 3 4

8 −3 1

5 −6 3

∣∣∣∣∣∣︸ ︷︷ ︸
=−186

+

1(−1)4

∣∣∣∣∣∣
−1 2 4

8 5 1

5 9 3

∣∣∣∣∣∣︸ ︷︷ ︸
=144

+ 2(−1)5

∣∣∣∣∣∣
−1 2 3

8 5 −3

5 9 −6

∣∣∣∣∣∣︸ ︷︷ ︸
=210
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= 60.

That certainly took a while; it required more than 50 multiplications (we
didn’t count the additions). To compute the determinant of a 5×5matrix, we’ll
need to compute the determinants of five 4 × 4 matrices, meaning that we’ll
need over 250 multiplications! Not only is this a lot of work, but there are just
too many ways to make silly mistakes. (The author made three when the above
example was originally typed.) There are some tricks to make this job easier,
but regardless we see the need to employ technology. Even then, technology
quickly bogs down. A 25× 25matrix is considered “small” by today’s standards,
but it is essentially impossible for a computer to compute its determinant by
only using cofactor expansion; it too needs to employ “tricks.”It is common formathematicians,

scientists and engineers to con-
sider linear systemswith thousands
of equations and variables.

In the next sectionwewill learn some of these tricks as we learn some of the
properties of the determinant. Right now, let’s review the essentials of what we
have learned.

1. The determinant of a square matrix is a number that is determined by the
matrix.

2. We find the determinant by computing the cofactor expansion along the
first row.

3. To compute the determinant of an n × n matrix, we need to compute n
determinants of (n− 1)× (n− 1)matrices.
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6.3.1 Exercises

Exercise Group. Find the determinant of the 2× 2matrix.

1.
[
10 7

8 9

]
2.

[
6 −1

−7 8

]
3.

[
−1 −7

−5 9

]
4.

[
−10 −1

−4 7

]
5.

[
8 10

2 −3

]
6.

[
10 −10

−10 0

]
7.

[
1 −3

7 7

]
8.

[
−4 −5

−1 −4

]

Exercise Group. A matrix A is given.

(a) Construct the submatrices used to compute the minors A1,1, A1,2 and A1,3.

(b) Find the cofactors C1,1, C1,2, and C1,3.

9.

−7 −3 10

3 7 6

1 6 10

 10.

 −2 −9 6

−10 −6 8

0 −3 −2


11.

−5 −3 3

−3 3 10

−9 3 9

 12.

 −6 −4 6

−8 0 0

−10 8 −1


Exercise Group. Find the determinant of the given matrix using cofactor expansion along the first row.

13.

 3 2 3

−6 1 −10

−8 −9 −9

 14.

 8 −9 −2

−9 9 −7

5 −1 9


15.

−4 3 −4

−4 −5 3

3 −4 5

 16.

1 −2 1

5 5 4

4 0 0


17.

1 −4 1

0 3 0

1 2 2

 18.

 3 −1 0

−3 0 −4

0 −1 −4


19.

−5 0 −4

2 4 −1

−5 0 −4

 20.

 1 0 0

0 1 0

−1 1 1



21.


0 0 −1 −1

1 1 0 1

1 1 −1 0

−1 0 1 0

 22.


−1 0 0 −1

−1 0 0 1

1 1 1 0

1 0 −1 −1



23.


−5 1 0 0

−3 −5 2 5

−2 4 −3 4

5 4 −3 3

 24.


2 −1 4 4

3 −3 3 2

0 4 −5 1

−2 −5 −2 −5


25. Let A be a 2× 2matrix; A =

[
a b

c d

]
. Show why det(A) = ad− bc by computing the cofactor expansion of A
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along the first row.
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6.4 Properties of the Determinant

In the previous section we learned how to compute the determinant. In this
section we learn some of the properties of the determinant, and this will allow
us to compute determinants more easily. In the next section we will see one
application of determinants.

We start with a theorem that gives us more freedomwhen computing deter-
minants.

Theorem 6.4.1 Cofactor Expansion Along Any Row or Column.

Let A be an n × n matrix. The determinant of A can be computed
using cofactor expansion along any row or column of A.

Note: Theorem 6.4.1 is some-
times called the Laplace Expan-
sion Theorem, after Pierre-Simon,
Marquis de Laplace (1749-1827),
a Frenchmathematician andphysi-
cist whose importance and influ-
ence rivals that of Newton. The
readermaybewonderingwhywe
have not included a proof of this
result, which is one of the more
important computational facts about
the determinant. The answer is
that inmost textbookswe checked
that included theproof, the com-
plete details take up some four
pages or so, and don’t really add
all that much to the understand-
ing of what’s going on.

We alluded to this fact way back after Example 6.3.6. We had just learned
what cofactor expansion was and we practised along the second row and down
the third column. Later, we found the determinant of this matrix by computing
the cofactor expansion along the first row. In all three cases, we got the number
0. This wasn’t a coincidence. The above theorem states that all three expansions
were actually computing the determinant.

How does this help us? By giving us freedom to choose any row or column
to use for the expansion, we can choose a row or column that looks “most ap-
pealing.” This usuallymeans “it has lots of zeros.” We demonstrate this principle
below.

Example 6.4.2 Computing a 4× 4 determinant.

Find the determinant of

A =


1 2 0 9

2 −3 0 5

7 2 3 8

−4 1 0 2

 .
Solution. Our first reaction may well be “Oh no! Not another 4 × 4
determinant!” However, we can use cofactor expansion along any row
or column that we choose. The third column looks great; it has lots of
zeros in it. The cofactor expansion along this column is

det(A) = a1,3C1,3 + a2,3C2,3 + a3,3C3,3 + a4,3C4,3

= 0 · C1,3 + 0 · C2,3 + 3 · C3,3 + 0 · C4,3.

Thewonderful thing here is that three of our cofactors aremultiplied
by 0. We won’t bother computing them since they will not contribute to
the determinant. Thus

det(A) = 3 · C3,3

= 3 · (−1)3+3 ·

∣∣∣∣∣∣
1 2 9

2 −3 5

−4 1 2

∣∣∣∣∣∣
= 3 · (−147)


we computed the determinant of the

3× 3matrix without showing our work;
it is − 147


= −447.
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Wow. Thatwas a lot simpler than computing all thatwedid in Example 6.3.10.
Of course, in that example, we didn’t really have any shortcuts that we could
have employed. Our next example involves a 5 × 5 determinant. At first, this
looks like trouble, until we realize that the matrix is triangular. As we’ll see, this
makes our job much easier.

Example 6.4.3 Computing the determinant of a 5 × 5 (triangular) ma-
trix.

Find the determinant of

A =


1 2 3 4 5

0 6 7 8 9

0 0 10 11 12

0 0 0 13 14

0 0 0 0 15

 .

Solution. Since we can expand along any row or column, things are
not as bad as they might at first seem. In fact, this problem is very easy.
What row or column should we choose to find the determinant along?
There are two obvious choices: the first column or the last row. Both
have 4 zeros in them. We choose the first column. We omit most of the
cofactor expansion, since most of it is just 0:

det(A) = 1 · (−1)1+1 ·

∣∣∣∣∣∣∣∣
6 7 8 9

0 10 11 12

0 0 13 14

0 0 0 15

∣∣∣∣∣∣∣∣ .
Similarly, this determinant is not bad to compute; we again choose

to use cofactor expansion along the first column. Note: technically, this
cofactor expansion is 6 ·(−1)1+1A1,1; we are going to drop the (−1)1+1

terms from here on out in this example (it will show up a lot...).

det(A) = 1 · 6 ·

∣∣∣∣∣∣
10 11 12

0 13 14

0 0 15

∣∣∣∣∣∣ .
You can probably can see a trend. We’ll finish out the steps without

explaining each one.

det(A) = 1 · 6 · 10 ·
∣∣∣∣13 14

0 15

∣∣∣∣
= 1 · 6 · 10 · 13 · 15
= 11700.

We see that the final determinant is the product of the diagonal entries. This
works for any triangular matrix (and since diagonal matrices are triangular, it
works for diagonal matrices as well). This is an important enough idea that we’ll
put it into a box.
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Key Idea 6.4.4 The Determinant of Triangular Matrices.

The determinant of a triangular matrix is the product of its diagonal
elements.

It is now again time to start thinking like amathematician. Remember, math-
ematicians see something new and often ask “How does this relate to things I
already know?” So now we ask, “If we change a matrix in some way, how is its
determinant changed?”

The standard way that we change matrices is through elementary row oper-
ations. If we perform an elementary row operation on a matrix, how will the
determinant of the new matrix compare to the determinant of the original ma-
trix?

Let’s experiment first and then we’ll officially state what happens.

Example 6.4.5 Row operations and determinants.

Let

A =

[
1 2

3 4

]
.

Let B be formed from A by doing one of the following elementary row
operations:

1. 2R1 +R2 → R2

2. 5R1 → R1

3. R1 ↔ R2

Find det(A) as well as det(B) for each of the row operations above.
Solution. It is straightforward to compute det(A) = −2.

LetB be formed by performing the first row operation on A; thus

B =

[
1 2

5 8

]
.

It is clear that det(B) = −2, the same as det(A).
Now letB be formed by performing the second elementary row op-

eration on A; that is,

B =

[
5 10

3 4

]
.

We can see that det(B) = −10, which is 5 · det(A).
Finally, let B be formed by the third row operation given; swap the

two rows of A. We see that

B =

[
3 4

1 2

]
and that det(B) = 2, which is (−1) · det(A).

We’ve seen in the above example that there seems to be a relationship be-
tween the determinants of matrices “before and after” being changed by ele-
mentary row operations. Certainly, one example isn’t enough to base a theory
on, and we have not proved anything yet. Regardless, the following theorem is
true.
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Theorem 6.4.6 The Determinant and Elementary Row Operations.

Let A be an n × n matrix and let B be formed by performing one
elementary row operation on A.

1. If B is formed from A by adding a scalar multiple of one row to
another, then det(B) = det(A).

2. If B is formed from A by multiplying one row of A by a scalar k,
then det(B) = k · det(A).

3. If B is formed from A by interchanging two rows of A, then
det(B) = − det(A).

Let’s put this theorem to use in a couple of examples.

Example 6.4.7 Using row operations to compute a determinant.

Let

A =

1 2 1

0 1 1

1 1 1

 .
Compute det(A), then find the determinants of the following matrices
by inspection using Theorem 6.4.6.

B =

1 1 1

1 2 1

0 1 1

 C =

1 2 1

0 1 1

7 7 7

 D =

1 −1 −2

0 1 1

1 1 1

 .
Solution. Computing det(A) by cofactor expansion down the first col-
umn or along the second row seems like the best choice, utilizing the
one zero in the matrix. We can quickly confirm that det(A) = 1.

To compute det(B), notice that the rows of A were rearranged to
form B. There are different ways to describe what happened; saying
R1 ↔ R2 was followed by R1 ↔ R3 produces B from A. Since there
were two row swaps, det(B) = (−1)(−1) det(A) = det(A) = 1.

Notice that C is formed from A by multiplying the third row by 7.
Thus det(C) = 7 · det(A) = 7.

It takes a little thought, but we can formD fromA by the operation
−3R2 + R1 → R1. This type of elementary row operation does not
change determinants, so det(D) = det(A).

Example 6.4.8 Effect of elementary row operations on the determi-
nant.

ThematrixBwas formed fromA using the following elementary row
operations, though not necessarily in this order. Find det(A).
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B =

1 2 3

0 4 5

0 0 6

 2R1 → R1

1

3
R3 → R3

R1 ↔ R2

6R1 +R2 → R2

Solution. It doesn’t take too much work to compute detB = 24. In
looking at our list of elementary row operations, we see that only the
first three have an effect on the determinant. Therefore

24 = det(B) = 2 · 1
3
· (−1) · det(A)

and hence
det(A) = −36.

In the previous example, we may have been tempted to “rebuild” A using
the elementary row operations and then computing the determinant. This can
be done, but in general it is a bad idea; it takes too much work and it is too easy
to make a mistake.

Let’s continue to think like mathematicians; mathematicians tend to remem-
ber “problems” they’ve encountered in the past, andwhen they learn something
new, in the backs of their minds they try to apply their new knowledge to solve
their old problem. (This is why mathematicians rarely smile: they are remem-
bering their problems)

What “problem” did we recently uncover? We stated in the last chapter that
even computers could not compute the determinant of large matrices with co-
factor expansion. How then canwe compute the determinant of largematrices?

We just learned two interesting and useful facts about matrix determinants.
First, the determinant of a triangular matrix is easy to compute: just multiply
the diagonal elements. Secondly, we know that given any square matrix, we can
use elementary rowoperations to put thematrix in triangular form. We can then
find the determinant of the new matrix (which is easy), and adjust that number
by recalling what elementary operations we performed.

Example 6.4.9 Reducing a determinant to triangular form.

Find the determinant of A by first putting A into a triangular form,
where

A =

 2 4 −2

−1 −2 5

3 2 1

 .
Solution. In puttingA into a triangular form, we need not worry about
getting leading 1s, but it does tend tomake our life easier as wework out
a problem by hand. So let’s scale the first row by 1/2:

1

2
R1 → R1

 1 2 −1

−1 −2 5

3 2 1

 .
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Now let’s get 0s below this leading 1:

R1 +R2 → R2

−3R1 +R3 → R3

1 2 −1

0 0 4

0 −4 4

 .
We can finish in one step; by interchanging rows 2 and 3 we’ll have our
matrix in triangular form.

R2 ↔ R3

1 2 −1

0 −4 4

0 0 4

 .
Let’s name this last matrix B. The determinant of B is easy to com-

pute as it is triangular; det(B) = −16. We can use this to find det(A).
Recall the steps we used to transform A intoB. They are:

1
2R1 → R1

R1 +R2 → R2

−3R1 +R3 → R3

R2 ↔ R3

The first operation multiplied a row of A by 1
2 . This means that the

resulting matrix had a determinant that was 1
2 the determinant of A.

The next two operations did not affect the determinant at all. The
last operation, the row swap, changed the sign. Combining these effects,
we know that

−16 = det(B) = (−1)
1

2
det(A).

Solving for det(A) we have that det(A) = 32.

In practice, we don’t need to keep track of operations where we add multi-
ples of one row to another; they simply do not affect the determinant. Also, in
practice, these steps are carried out by a computer, and computers don’t care
about leading 1s. Therefore, row scaling operations are rarely used. The only
things to keep track of are row swaps, and even then all we care about are the
number of row swaps. An odd number of row swaps means that the original de-
terminant has the opposite sign of the triangular form matrix; an even number
of row swaps means they have the same determinant.

If you find yourself needing to compute a determinant by hand (say, on an
exam), it’s a good idea to keep the following principles in mind:

1. Stick to row operations of the type Ri + kRj → Ri as much as possible:
they don’t change the determinant.

2. Getting all the way to triangular form isn’t really necessary. Use row oper-
ations of the above type to create as many zeros as possible in one of the
columns, and then expand along that column.

Note: If you want to get really
fancy, since det(AT ) = det(A),
and since performing row oper-
ations onAT is the same as per-
forming columnoperations onA,
you can also add a multiple of
one column to another without
changing the determinant!

To see how these principles work in practice, let’s repeat Example 6.4.9. This
time we’ll focus on creating zeros, but we won’t worry about getting to triangu-
lar form. Since adding a multiple of one row to another doesn’t change the
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determinant, we can compute det(A) with a string of equalities, as follows:∣∣∣∣∣∣
2 4 −2

−1 2 5

3 2 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 0 8

−1 2 5

3 2 1

∣∣∣∣∣∣ (Add 2R2 toR1)

= 0 + 0 + 8(−1)1+3

∣∣∣∣−1 −2

3 2

∣∣∣∣ (Expand along Row 1)

= 8((−1)(2)− (−2)(3))

= 8(4) = 32.

Of course, in this case we got lucky and ended up with two zeros in the first row
after one row operation. However, had this not been the case, we would have
simply done one more row operation (R3+3R2 → R3) to create a second zero
in the first column, and then done a cofactor expansion along that column.

For larger determinants, we can follow the same routine: create zeros in one
column, expand along that column to get a smaller determinant, and repeat.

Let’s think some more like a mathematician. How does the determinant
work with other matrix operations that we know? Specifically, how does the
determinant interact with matrix addition, scalar multiplication, matrix multipli-
cation, the transpose and the trace? We’ll again do an example to get an idea
of what is going on, then give a theorem to state what is true.

Example 6.4.10 Determinants and matrix operations.

Let

A =

[
1 2

3 4

]
andB =

[
2 1

3 5

]
.

Find the determinants of the matrices A, B, A − B, 3A, AB, AT , and
A−1. Can you find any connections between these values?
Solution. We can quickly compute that det(A) = −2 and det(B) = 7.

det(A−B) = det
([

1 2

3 4

]
−
[
2 1

3 5

])
=

∣∣∣∣−1 1

0 −1

∣∣∣∣
= 1.

It’s tough to find a connection between det(A−B), det(A) and det(B).

det(3A) =

∣∣∣∣3 6

9 12

∣∣∣∣
= −18.

We can figure this one out; multiplying one row of A by 3 increases the
determinant by a factor of 3; doing it again (and hence multiplying both
rows by 3) increases the determinant again by a factor of 3. Therefore
det(3A) = 3 · 3 · det(A), or 32 · det(A).

det(AB) = det
([

1 2

3 4

] [
2 1

3 5

])
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=

∣∣∣∣ 8 11

18 23

∣∣∣∣
= −14.

This one seems clear; det(AB) = det(A) det(B).

det(AT ) =

∣∣∣∣1 3

2 4

∣∣∣∣
= −2.

Obviously det(AT ) = det(A); is this always going to be the case? If we
think about it, we can see that the cofactor expansion along the first row
ofAwill give us the same result as the cofactor expansion along the first
column of AT .

det(A−1) =

∣∣∣∣−2 1

3/2 −1/2

∣∣∣∣
= 1− 3/2

= −1/2.

It seems as though

det(A−1) =
1

det(A)
.

Seeing that expansion along the
first row agrees with expansion
along the first column can be a
bit tricky to think out in your head.
Try it with a 3×3 matrix A and
see how it works. All the 2 × 2
submatrices that are created in
AT are the transpose of those
found in A; this doesn’t matter
since it is easy to see that the de-
terminant isn’t affected by the
transpose in a 2× 2matrix.

We now state a few theorems that confirm our conjectures from the previ-
ous example.

Theorem 6.4.11 The determinant of a non-invertible matrix.

If an n× nmatrix A is not invertible, then det(A) = 0.

To see that Theorem 6.4.11 is true, note that if A is not invertible, then the
reduced row echelon form R of A must have a row of zeros. Performing a co-
factor expansion along this row, we immediately see that det(R) = 0. Since
R is obtained from A by a series of elementary row operations, we know from
Theorem 6.4.6 that det(A) is a multiple of det(R), and thus det(A) = 0.

It follows from Theorem 6.4.11 (using the logical principle known as the con-
trapositive) that if det(A) ̸= 0, we’re guaranteed thatA is invertible.

At this point, we naturally should ask whether or not the converse to The-
orem 6.4.11 is true as well: suppose we know det(A) = 0. Does that imply
that A is not invertible? (Or equivalently, if we know A is invertible, does this
imply that det(A) ̸= 0?) The answer is yes, but to see this, we first need a more
general result.

Theorem 6.4.12 Determinant Properties.

Let A and B be n × n matrices and let k be a scalar. The following
are true:

1. det(kA) = kn · det(A)
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2. det(AT ) = det(A)

3. det(AB) = det(A) det(B)

Proving that det(AB) = det(A) det(B) is most easily done using elemen-
tary matrices. (See Section 4.6.) Recall that multiplying a matrix on the left by
an elementary matrix is the same as doing the corresponding row operation: if
A is any 3 × 3 matrix, then EA can be obtained from A using the same row
operation used to create E.

Theorem 6.4.6 then tells us that

det(EB) = det(E) det(B)

for any matrix B and elementary matrix E. The rest boils down to two cases:
either det(A) = 0, in which case A is not invertible, so neither is AB, and thus
det(AB) = 0 = 0 det(B), or det(A) ̸= 0. In the latter case,A is invertible, and
can be written as a product of elementary matrices. We can then prove that
det(AB) = det(A) det(B) by applying Theorem 6.4.6 repeatedly.

From Theorem 6.4.12, we see that det(AB) = det(A) det(B) for any ma-
tricesA andB. What does this tell us in the case of an invertible matrix? Recall
that if A is invertible, then we can determine the inverse matrixA−1 such that

AA−1 = In.

Now, the identity matrix is triangular, and all of its diagonal entries are equal
to 1, so we immediately see that det(In) = 1. Thus, taking the determinant of
both sides of the above equation, we have

det(AA−1) = det(A) det(A−1) = 1.

We have a product of two numbers equal to one, which tells us that neither of
these numbers can be zero. (Otherwise, the product would be zero as well.)
Thus, if A is invertible, it must be the case that det(A) ̸= 0, so a matrix A is
invertible if and only if det(A) ̸= 0.

As an added bonus, we can rearrange the above equation to give us one
more property of the determinant:

Theorem 6.4.13 The determinant of an inverse.

If A is an invertible matrix, then det(A) ̸= 0, and

det(A−1) =
1

det(A)
.

Combining Theorems Theorem 6.4.11 and Theorem 6.4.13 allows us to add
on to our Invertible Matrix Theorem.

Theorem 6.4.14 Invertible Matrix Theorem.

Let A be an n× nmatrix. The following statements are equivalent.

(a) A is invertible.

(b) The equation Ax⃗ = 0⃗ has exactly one solution (namely, x⃗ = 0⃗).

(c) The reduced row echelon form of A is I .
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(d) The equation Ax⃗ = b⃗ has exactly one solution for every n × 1
vector⃗b.

(e) There exists a matrix C such that AC = I .

(f) There exists a matrixB such thatBA = I .

(g) det(A) ̸= 0.

This new addition to the Invertible Matrix Theorem is very useful; we’ll refer
back to it in Chapter 7 when we discuss eigenvalues.

In the next section we’ll see how the determinant can be used to solve sys-
tems of linear equations.
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6.4.1 Exercises

Exercise Group. Find the determinant of the given matrix using cofactor expansion along any row or column you
choose.

1.

 1 2 3

−5 0 3

4 0 6

 2.

−4 4 −4

0 0 −3

−2 −2 −1


3.

−4 1 1

0 0 0

−1 −2 −5

 4.

 0 −3 1

0 0 5

−4 1 0


5.

−2 −3 5

5 2 0

−1 0 0

 6.

−2 −2 0

2 −5 −3

−5 1 0


7.

−3 0 −5

−2 −3 3

−1 0 1

 8.

 0 4 −4

3 1 −3

−3 −4 0



9.


5 −5 0 1

2 4 −1 −1

5 0 0 4

−1 −2 0 5

 10.


−1 3 3 4

0 0 0 0

4 −5 −2 0

0 0 2 0



11.


−5 −5 0 −2

0 0 5 0

1 3 3 1

−4 −2 −1 −5

 12.


−1 0 −2 5

3 −5 1 −2

−5 −2 −1 −3

−1 0 0 0



13.


4 0 5 1 0

1 0 3 1 5

2 2 0 2 2

1 0 0 0 0

4 4 2 5 3

 14.


2 1 1 1 1

4 1 2 0 2

0 0 1 0 0

1 3 2 0 3

5 0 5 0 4


Exercise Group. A matrixM and det(M) are given. Matrices A, B and C are formed by performing operations on
M . Determine the determinants ofA,B andC using Theorem 6.4.6 and Theorem 6.4.12, and indicate the operations
used to form A,B and C.

15. M =

9 7 8

1 3 7

6 3 3

, det(M) = 45.

(a) A =

18 14 16

1 3 7

6 3 3



(b) B =

 9 7 8

1 3 7

96 73 83



(c) C =

9 1 6

7 3 3

8 7 3



16. M =

 0 3 5

3 1 0

−2 −4 −1

, det(M) = −41.

(a) A =

 0 3 5

−2 −4 −1

3 1 0



(b) B =

0 3 5

3 1 0

8 16 4



(c) C =

 3 4 5

3 1 0

−2 −4 −1


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17. M =

5 1 5

4 0 2

0 0 4

, det(M) = −16.

(a) A =

0 0 4

5 1 5

4 0 2



(b) B =

−5 −1 −5

−4 0 −2

0 0 4



(c) C =

15 3 15

12 0 6

0 0 12



18. M =

5 4 0

7 9 3

1 3 9

, det(M) = 120.

(a) A =

1 3 9

7 9 3

5 4 0



(b) B =

 5 4 0

14 18 6

3 9 27



(c) C =

−5 −4 0

−7 −9 −3

−1 −3 −9


Exercise Group. Matrices A and B are given. Verify part 3 of Theorem 6.4.12 by computing det(A), det(B) and
det(AB).

19. A =
[
2 0 1 2

]
,B =

[
0 −4

1 3

]
. 20. A =

[
3 −1 4 1

]
,B =

[
−4 −1

−5 3

]
.

21. A =
[
−4 4 5 −2

]
,B =

[
−3 −4

5 −3

]
. 22. A =

[
−3 −1 2 −3

]
,B =

[
0 0

4 −4

]
.

Exercise Group. Find the determinant of the given matrix.

23.

 3 2 3

−6 1 −10

−8 −9 −9

 24.

 8 −9 −2

−9 9 −7

5 −1 9


25.

−4 3 −4

−4 −5 3

3 −4 5

 26.

1 −2 1

5 5 4

4 0 0


27.

1 −4 1

0 3 0

1 2 2

 28.

 3 −1 0

−3 0 −4

0 −1 −4


29.

−5 0 −4

2 4 −1

−5 0 −4

 30.

 1 0 0

0 1 0

−1 1 1


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6.5 Applications of the Determinant

In the previous sections we have learned about the determinant, but we haven’t
given a really good reasonwhywewouldwant to compute it. This section shows
two applications of the determinant: solving systems of linear equations and
computing the inverse of a matrix.

6.5.1 Cramer’s Rule

Theorem 6.5.1 Cramer’s Rule.

LetA be an n×nmatrix with det(A) ̸= 0 and let be an n×1 column
vector. Then the linear system

Ax⃗ = b⃗

has solution

xi =
det(Ai(⃗b))

det(A)
,

where Ai(⃗b) is the matrix formed by replacing the ith column of A with
b⃗.

The closest we came tomotivat-
ing the determinant is that if det(A) =
0, then we know thatA is not in-
vertible. But it seems that there
may be easier ways to check.

It is interesting to note that
despite the presentation givenhere,
determinants actually pre-date the
modernusageofmatrices bymore
than a century. Cramer’s rule¹
was publishedbyCramer in 1750,
and the term Matrix² was intro-
ducedby James Joseph Sylvester
in 1850. (Even then, Sylvester’s
descriptionofmatriceswas in terms
of minors — that’s right, deter-
minants.) The interested reader
is encouraged to read up on the
history of the subject. (Wikipedia
is not a bad place to start.)

Example 6.5.2 Using Cramer’s Rule.

Use Cramer’s Rule to solve the linear systemAx⃗ = b⃗ where

A =

1 5 −3

1 4 2

2 −1 0

 and b⃗ =

−36

−11

7

 .
Solution. We first compute the determinant ofA to see if we can apply
Cramer’s Rule.

det(A) =

∣∣∣∣∣∣
1 5 −3

1 4 2

2 −1 0

∣∣∣∣∣∣ = 49.

Since det(A) ̸= 0, we can apply Cramer’s Rule. Following Theo-
rem 6.5.1, we compute det(A1(⃗b)), det(A2(⃗b)) and det(A3(⃗b)).

det(A1(⃗b)) =

∣∣∣∣∣∣
−36 5 −3

−11 4 2

7 −1 0

∣∣∣∣∣∣ = 49.

(We used a bold font to show where replaced the first column of A.)

det(A2(⃗b)) =

∣∣∣∣∣∣
1 −36 −3

1 −11 2

2 7 0

∣∣∣∣∣∣ = −245

det(A3(⃗b)) =

∣∣∣∣∣∣
1 5 −36
1 4 −11
2 −1 7

∣∣∣∣∣∣ = 196.

Therefore we can compute x⃗:

x1 =
det(A1(⃗b))

det(A)
=

49

49
= 1

https://en.wikipedia.org/wiki/Cramer's_rule
https://en.wikipedia.org/wiki/Matrix_(mathematics)
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x2 =
det(A2(⃗b))

det(A)
=

−245

49
= −5

x3 =
det(A3(⃗b))

det(A)
=

196

49
= 4.

Therefore

x⃗ =

x1

x2

x3

 =

 1

−5

4

 .

Example 6.5.3 Using Cramer’s Rule.

Use Cramer’s Rule to solve the linear systemAx⃗ = b⃗ where

A =

[
1 2

3 4

]
and b⃗ =

[
−1

1

]
.

Solution. The determinant of A is−2, so we can apply Cramer’s Rule.

det(A1(⃗b)) =

∣∣∣∣−1 2

1 4

∣∣∣∣ = −6

det(A2(⃗b)) =

∣∣∣∣1 −1
3 1

∣∣∣∣ = 4.

Therefore

x1 =
det(A1(⃗b))

det(A)
=

−6

−2
= 3

x2 =
det(A2(⃗b))

det(A)
=

4

−2
= −2,

and

x⃗ =

[
x1

x2

]
=

[
3

−2

]
.

We learned in Section 6.4 that when considering a linear system Ax⃗ = b⃗
where A is square, if det(A) ̸= 0 then A is invertible and Ax⃗ = b⃗ has exactly
one solution. We also stated in Key Idea 4.5.2 that if det(A) = 0, then A is
not invertible and so therefore eitherAx⃗ = b⃗ has no solution or infinitely many
solutions. Our method of figuring out which of these cases applied was to form
the augmented matrix

[
A b⃗

]
, put it into reduced row echelon form, and then

interpret the results.
Cramer’s Rule specifies that det(A) ̸= 0 (so we are guaranteed a solution).

When det(A) = 0 we are not able to discern whether infinitely many solutions
or no solution exists for a given vector⃗b. Cramer’s Rule is only applicable to the
case when exactly one solution exists.

We end this section with a practical consideration. We have mentioned be-
fore that finding determinants is a computationally intensive operation. To solve
a linear system with 3 equations and 3 unknowns, we need to compute 4 deter-
minants. Just think: with 10 equations and 10 unknowns, we’d need to compute
11 really hard determinants of 10× 10matrices! That is a lot of work!
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The upshot of this is that Cramer’s Rule makes for a poor choice in solving
numerical linear systems. It simply is not done in practice; it is hard to beat
Gaussian elimination.

A version of Cramer’s Rule is of-
ten taught in introductory differ-
ential equations courses, as it can
be used to find solutions to cer-
tain linear differential equations.
In this situation, the entries of
the matrices are functions, not
numbers, and hence computing
determinants is easier than us-
ing Gaussian elimination. Again,
though, as thematrices get large,
other solutionmethods are resorted
to.

So why include it? Because its truth is amazing. The determinant is a very
strange operation; it produces a number in a very odd way. It should seem in-
credible to the reader that bymanipulating determinants in a particular way, we
can solve linear systems.

6.5.2 The Adjugate Formula
Recall that Theorem 4.4.10 in Section 4.4 gave us a “shortcut” for computing the

inverse of a 2× 2matrix A =

[
a b

c d

]
: as long as det(A) ̸= 0, we have

A−1 =
1

det(A)

[
d −b

−c a

]
.

This result can be easily verified by checking that AA−1 = I2 as required. The
readermay havewondered if there is a similar formula forA−1 for a generaln×
nmatrixA, andwhether or not such a formulawould still constitute a “shortcut”.
The results here are mixed. Yes, there’s a formula, and we will present it shortly.
However, as with Cramer’s rule, it is not a shortcut. The reasons are the same
as those we just mentioned for Cramer’s rule: as long as we’re dealing with a
matrix whose entries are numbers, computing the inverse using row operations
is vastly more efficient.

We begin with a definition.

Definition 6.5.4 The adjugate of a matrix.

Let A be an n× nmatrix.

• Thematrix of cofactors of A is the n× nmatrix

cof(A) = [Cij ]

whose (i, j)-entry is given by the (i, j)-cofactor of A.

• The adjugate of A is the n× nmatrix

adj(A) = (cof(A))T = [Cij ]
T .

Thus to obtain the matrix of cofactors for A, we replace each entry of A by
the corresponding cofactor. Taking the transpose of this matrix produces the
adjugate of A.

Why dowe care about the adjugatematrix? Consider the productA ·adj(A):

A · adj(A) =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn

 .
Notice that the indices for adj(A) are reversed, since we took the transpose

of the cofactor matrix. What is the (i, j) entry of this product? Consider first
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the case where i = j. We find that the (i, i)-entry is

ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

But this is just the cofactor expansion of det(A) along the ith row! Thus, the
(i, i) entry of A · adj(A) is simply det(A). This tells us what the diagonal is.
What about the off-diagonal entries?

Herewe see exactlywhywewant
to take the transpose in our def-
inition of adj(A): when we mul-
tiply matrices, we multiply rows
times columns, and taking the trans-
pose ensures that each column
of adj(A) is the corresponding row
of cof(A).

When i ̸= j, we have the (i, j)-entry

ai1Cj1 + ai2Cj2 + · · ·+ ainCjn.

This is no longer a cofactor expansion for the determinant of A, since we’re tak-
ing entries from one row of A, and cofactors from another. This is, however,
a cofactor expansion for the determinant of the matrix B that we obtain if we
replace Row j of A with another copy of Row i. (Take a moment to think about
why this is true.) But this means that the matrix B has two identical rows, and
using Theorem 6.4.6, we can see that we must have det(B) = 0. This means
that all of the off-diagonal entries of our product are zero! We have

A · adj(A) =


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
. . .

...
0 0 · · · det(A)

 = det(A)In.

Now, we know that A is invertible if and only if det(A) ̸= 0, and as long as

det(A) ̸= 0, we can multiply both sides of the above equation by
1

det(A)
. With

a bit of rearranging, we find

A ·
(

1

det(A)
adj(A)

)
= In.

But we know that if we can find any matrix B such that AB = In, then B is
necessarily the inverse of A. We have established the following theorem.

Theorem 6.5.5 The adjugate formula for the inverse.

Let A be an n× nmatrix. If det(A) ̸= 0, then A is invertible, and

A−1 =
1

det(A)
adj(A).Notice that Theorem 4.4.10 is

a special case of Theorem 6.5.5.
The cofactors of a 2 × 2 matrix
are simply numbers, and it’s easy
to check that the adjugate ofA =[
a b

c d

]
is adj(A) =

[
d −b

−c a

]
.

Let us repeat our words of caution from the beginning of this discussion.
Just because we have a formula for the inverse does not mean we need to use
it! Consider the case of a 5 × 5 matrix (remember that this is a relatively small
matrix by practical standards). Would you want to use Theorem 6.5.5 to com-
pute the inverse? Whatwould this require? Well, we’d need to compute det(A),
since that appears in the formula, so there’s already a 5×5 determinant to deal
with. But don’t forget what adj(A) is: a matrix of cofactors. In this case, adj(A)
would consist of twenty-five different 4 × 4 determinants that would all need
to be computed. What do you think would be less work? Computing one 5× 5
determinant and 25 4×4 determinants, or using row operations? Now consider
doing this for 10 × 10, or 100 × 100 matrices. Sometimes the first method is
also the best!

Let’s do one example to see that even for a 3×3matrix, there’s a fair amount
of work involved.
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Example 6.5.6 Using the adjugate formula.

Use Theorem 6.5.5 to compute the inverse of the matrix

A =

2 −1 3

4 0 −2

1 5 −3

 .
Solution. We begin by computing det(A), to make sure that the in-
verse exists. Using the −1 in the first row to create a zero in the (3, 2)
spot below it, we have

det(A) =

∣∣∣∣∣∣
2 −1 3

4 0 −2

1 5 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 −1 3

4 0 −2

11 0 12

∣∣∣∣∣∣
= (−1)(−1)1+2

∣∣∣∣ 4 −2

11 12

∣∣∣∣ = 1(4(12)− 11(−2)) = 70. Caution: The entries of adj(A)
are the cofactors Cij , and not
the products aijCij that appear
in the cofactor expansion theo-
rem.

Next, we set about computing all nine cofactors of A. We have

C11 = (+1)

∣∣∣∣0 −2

5 −3

∣∣∣∣ = 10

C12 = (−1)

∣∣∣∣4 −2

1 −3

∣∣∣∣ = 10

C13 = (+1)

∣∣∣∣4 0

1 5

∣∣∣∣ = 20

C21 = (−1)

∣∣∣∣−1 3

5 −3

∣∣∣∣ = 12

C22 = (+1)

∣∣∣∣2 3

1 −3

∣∣∣∣ = −9

C23 = (−1)

∣∣∣∣2 −1

1 5

∣∣∣∣ = −11

C31 = (+1)

∣∣∣∣−1 3

0 −2

∣∣∣∣ = 2

C32 = (−1)

∣∣∣∣2 3

4 −2

∣∣∣∣ = 16

C33 = (+1)

∣∣∣∣2 −1

4 0

∣∣∣∣ = 4.

Thus, we obtain

adj(A) =

10 10 20

12 −9 −11

2 16 4

T

=

10 12 2

10 −9 16

20 −11 4

 .
If we haven’t made any computational errors (and there’s a good chance
that we have!) then Theorem 6.5.5 tells us that

A−1 =
1

det(A)
adj(A) =

1

70

10 12 2

10 −9 16

20 −11 4

 =

1/7 6/35 1/35

1/7 −9/70 8/35

2/7 −11/70 2/35

 .
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The reader should verify that AA−1 = I to make sure that we haven’t
made any mistakes. (The author made two mistakes that were caught
doing this verification!)

In the next chapter we’ll see another use for the determinant. Meanwhile,
try to develop a deeper appreciationofmath: odd, complicated things that seem
completely unrelated often are intricately tied together. Mathematicians see
these connections and describe them as “beautiful.”
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6.5.3 Exercises

Exercise Group. Matrices A and b⃗ are given.

(a) Give det(A) and det(Ai) for all i.

(b) Use Cramer’s Rule to solveAx⃗ = b⃗. If Cramer’s Rule cannot be used to find the solution, then state whether or
not a solution exists.

1. A =

[
3 0 −3 5 4 4

5 5 −4

]
, b⃗ =

240
31

. 2. A =

[
4 −4 0 5 1 −1

3 −1 2

]
, b⃗ =

1622
8

.
3. A =

[
1 0 −10 4 −3 −10

−9 6 −2

]
,

b⃗ =

−40

−94

132

.
4. A =

[
−6 −7 −7 5 4 1

5 4 8

]
, b⃗ =

 58

−35

−49

.

5. A =
[
9 5 − 4 −7

]
, b⃗ =

[
−45

20

]
. 6. A =

[
0 −6 9 −10

]
, b⃗ =

[
6

−17

]
.

7. A =
[
2 10 − 1 3

]
, b⃗ =

[
42

19

]
. 8. A =

[
7 −7 − 7 9

]
, b⃗ =

[
28

−26

]
.

9. A =
[
−8 16 10 −20

]
, b⃗ =

[
−48

60

]
. 10. A =

[
7 14 − 2 −4

]
, b⃗ =

[
−1

4

]
.

11. A =

[
4 9 3 − 5 −2 −13

−1 10 −13

]
,

b⃗ =

−28

35

7

.
12. A =

[
7 −4 25 − 2 1 −7

9 −7 34

]
, b⃗ =

−1

−3

5

.

Exercise Group. Use Theorem 6.5.5 to compute the inverse of A, if it exists.

13. A =

2 −1 4

3 −5 7

0 3 −2

 14. A =

3 2 −5

1 0 −1

7 4 2


15. A =

[
2 −4 73 1 5

5 −5 2

]
16. A =

5 2 0

0 −2 3

5 −2 6



17. A =


1 −4 3 2

5 0 −3 6

2 −3 1 4

7 2 −5 1

 18. A =


3 1 0 −1

6 4 2 0

−3 −1 −5 2

1 0 −1 4







Chapter 7

Eigenvalues and Eigenvectors

We have often explored new ideas in Linear Algebra by making connections to
our previous algebraic experience. Adding two numbers, x+y, led us to adding
vectors x⃗ + y⃗ and adding matrices A + B. We explored multiplication, which
then led us to solving the matrix equation Ax⃗ = b⃗, which was reminiscent of
solving the algebra equation ax = b.

This chapter is motivated by another analogy. Consider: when we multiply
an unknown number x by another number such as 5, what do we know about
the result? Unless, x = 0, we know that in some sense 5xwill be “5 times bigger
than x.” Applying this to vectors, we would readily agree that 5x⃗ gives a vector
that is “5 times bigger than x⃗”; we know from Part 8 of Theorem 2.2.16 that
∥5x⃗∥ = 5 ∥x⃗∥.

Eigenvalues andeigenvectors are
frequently encountered in the con-
text of “characteristic directions”
for linear transformations. Before
continuing with this section, the
readermight find it useful to take
a look at the list of linear trans-
formations of theCartesian plane
in Subsection 5.1.3. For each of
the transformations listed, see if
you canpredictwhich vectorswill
be transformed into scalar mul-
tiples of themselves: for which
x⃗ ∈ R2 is T (x⃗) = kx⃗? (We’ll
answer this later in the section.)
This question leads to the idea
of invariant subspaces for a lin-
ear transformation T : Rn →
Rn. These are subspaces V ⊆
Rn such that T (x⃗) ∈ V for each
x⃗ ∈ V . Such subspaces are of
great importance in many areas
of Mathematics and Physics.

Within the linear algebra context, though, we have two types of multiplica-
tion: scalar and matrix multiplication. What happens to x⃗ when we multiply it
by amatrixA? Our first response is likely along the lines of “You just get another
vector. There is no definable relationship.” Wemight wonder if there is ever the
case where a matrix–vector multiplication is very similar to a scalar–vector mul-
tiplication. That is, do we ever have the case where Ax⃗ = ax⃗, where a is some
scalar? That is the motivating question of this chapter.

7.1 Eigenvalues and Eigenvectors

We start by considering the matrix A and vector x⃗ as given below.

A =

[
1 4

2 3

]
x⃗ =

[
1

1

]
.

Multiplying Ax⃗ gives:

Ax⃗ =

[
1 4

2 3

] [
1

1

]
=

[
5

5

]
= 5

[
1

1

]
!

Wow! It looks like multiplying Ax⃗ is the same as 5x⃗! This makes us wonder
lots of things: is this the only case in the world where something like this hap-
pens? (Probably not.) Is A somehow a special matrix, and Ax⃗ = 5x⃗ for any

327
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vector x⃗ we pick? (Probably not.) Or maybe x⃗ was a special vector, and no mat-
ter what 2× 2matrix A we picked, we would have Ax⃗ = 5x⃗. (Again, probably
not.)

A more likely explanation is this: given the matrix A, the number 5 and the
vector x⃗ formed a special pair that happened to work together in a nice way. It
is then natural to wonder if other “special” pairs exist. For instance, could we
find a vector x⃗ whereAx⃗ = 3x⃗?

This equation is hard to solve at first; we are not used to matrix equations
where x⃗ appears on both sides of “=.” Therefore we put off solving this for just
a moment to state a definition and make a few comments.

Definition 7.1.1 Eigenvalues and Eigenvectors.

Let A be an n× nmatrix, x⃗ a nonzero n× 1 column vector and λ a
scalar. If

Ax⃗ = λx⃗,

then x⃗ is an eigenvector of A and is an eigenvalue of A.

The word “eigen” is German for “proper” or “characteristic.” Therefore, an
eigenvector ofA is a “characteristic vector ofA.” This vector tells us something
about A.

Why do we use the Greek letter (lambda)? It is pure tradition. Above, we
used a to represent the unknown scalar, since we are used to that notation. We
now switch to because that is how everyone else does it. (An example of math-
ematical peer pressure.) Don’t get hung up on this; it is just a number.

Note that our definition requires thatA be a square matrix. IfA isn’t square
then Ax⃗ and λx⃗ will have different sizes, and so they cannot be equal. Also
note that x⃗ must be nonzero. Why? What if x⃗ = 0⃗? Then no matter what is,
Ax⃗ = λx⃗. This would then imply that every number is an eigenvalue; if every
number is an eigenvalue, then we wouldn’t need a definition for it. Therefore
we specify that x⃗ ̸= 0⃗.

Our last comment before trying to find eigenvalues and eigenvectors for
given matrices deals with “why we care.” Did we stumble upon a mathemati-
cal curiosity, or does this somehow help us build better bridges, heal the sick,
send astronauts into orbit, design optical equipment, and understand quantum
mechanics? The answer, of course, is “Yes.” (Except for the “understand quan-
tum mechanics” part. Nobody truly understands that stuff; they just probably
understand it.) This is a wonderful topic in and of itself: we need no external
application to appreciate its worth. At the same time, it has many, many appli-
cations to “the real world.”

We frequentlymake claims about
topics in this text having “many
applications to the real world.”
You don’t need to take our word
for it on this. The reader is en-
couraged to look up theWikipedia
page¹ on eigenvalues and eigen-
vectors. (This is one of the bet-
terwritten and accessibleWikipedia
pages on amathematics topicwe’ve
encountered, by theway!) Scrolling
down to the section on applica-
tions reveals an extensive list of
applications, from Physics (ana-
lyzing inertial tensors inMechan-
ics, the Schr\”odinger equation
in Quantum Mechanics, ...), En-
gineering, Chemistry andGeology,
to image processing, data analy-
sis, and epidemiology. EvenGoogle’s
famous “PageRank” algorithm in-
volves eigenvalues and eigenvec-
tors. For informationon this, search
(onGoogle?) for the “$25,000,000,000
Eigenvector”.

Back to our math. Given a square matrix A, we want to find a nonzero vec-
tor x⃗ and a scalar such that Ax⃗ = λx⃗. We will solve this using the skills we
developed in Chapter 4.

Ax⃗ = λx⃗ (original equation)

Ax⃗ − λx⃗ = 0⃗ (subtract λx⃗ from both sides)

(A− λI)x⃗ = 0⃗ (factor out x⃗).

Think about this last factorization. We are likely tempted to say

Ax⃗ − λx⃗ = (A− λ)x⃗,

but this really doesn’t make sense. After all, what does “a matrix minus a num-
ber” mean? We need the identity matrix in order for this to be logical.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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Let us now think about the equation (A− λI)x⃗ = 0⃗. While it looks compli-
cated, it really is just matrix equation of the type we solved in Section 3.6. We
are just trying to solveBx⃗ = 0⃗, whereB = (A− λI).

We know from our previous work that this type of equation always has a
solution, namely, x⃗ = 0⃗. (Recall this is a homogeneous system of equations.)
However, we want x⃗ to be an eigenvector and, by the definition, eigenvectors
cannot be 0⃗.

This means that we want solutions to (A − λI)x⃗ = 0⃗ other than x⃗ = 0⃗.
Recall that Theorem 4.4.12 says that if the matrix (A − λI) is invertible, then
the only solution to (A− λI)x⃗ = 0⃗ is x⃗ = 0⃗. Therefore, in order to have other
solutions, we need (A− λI) to not be invertible.

Finally, recall from Theorem 6.4.12 that noninvertible matrices all have a de-
terminant of 0. Therefore, if we want to find eigenvalues and eigenvectorsx⃗, we
need det(A− λI) = 0.

Let’s start our practice of this theory by finding such that det(A− λI) = 0;
that is, let’s find the eigenvalues of a matrix.

Example 7.1.2 Computing the eigenvalues of a matrix.

Find the eigenvalues of A, that is, find such that det(A − λI) = 0,
where

A =

[
1 4

2 3

]
.

Solution. (Note that this is the matrix we used at the beginning of this
section.) First, we write out what A− λI is:

A− λI =

[
1 4

2 3

]
− λ

[
1 0

0 1

]
=

[
1 4

2 3

]
−
[
λ 0

0 λ

]
=

[
1− λ 4

2 3− λ

]
.

Therefore,

det(A− λI) =

∣∣∣∣1− λ 4

2 3− λ

∣∣∣∣
= (1− λ)(3− λ)− 8

= λ2 − 4λ− 5.

Since we want det(A− λI) = 0, we want λ2 − 4λ− 5 = 0. This is
a simple quadratic equation that is easy to factor:

λ2 − 4λ− 5 = 0

(λ− 5)(λ+ 1) = 0

λ = −1, 5.

According to our above work, det(A − λI) = 0 when λ = −1, 5.
Thus, the eigenvalues of A are−1 and 5.

Earlier, when looking at the same matrix as used in our example, we won-
dered if we could find a vector x⃗ such thatAx⃗ = 3x⃗. According to this example,
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the answer is “No.” With this matrix A, the only values of λ that work are −1
and 5.

Let’s restate the above in a different way: It is pointless to try to find x⃗ where
Ax⃗ = 3x⃗, for there is no such x⃗. There are only 2 equations of this form that
have a solution, namely

Ax⃗ = −x⃗ and Ax⃗ = 5x⃗.

As we introduced this section, we gave a vector x⃗ such thatAx⃗ = 5x⃗. Is this
the only one? Let’s find out while calling our work an example; this will amount
to finding the eigenvectors of A that correspond to the eigenvector of 5.

Example 7.1.3 Computing an eigenvector corresponding to a given
eigenvalue.

Find x⃗ such that Ax⃗ = 5x⃗, where

A =

[
1 4

2 3

]
.

Solution. Recall that our algebra from before showed that if

Ax⃗ = λx⃗ then (A− λI)x⃗ = 0⃗.

Therefore, we need to solve the equation (A − λI)x⃗ = 0⃗ for x⃗ when
λ = 5:

A− 5I =

[
1 4

2 3

]
− 5

[
1 0

0 1

]
=

[
−4 4

2 −2

]
.

To solve (A − 5I)x⃗ = 0⃗, we form the augmented matrix and put it
into reduced row echelon form:[

−4 4 0

2 −2 0

]
−→
rref

[
1 −1 0

0 0 0

]
.

Thus

x1 = t

x2 = t is free

and

x⃗ =

[
x1

x2

]
= t

[
1

1

]
.

We have infinitely many solutions to the equation Ax⃗ = 5x⃗; any

nonzero scalar multiple of the vector
[
1

1

]
is a solution. We can do a few

examples to confirm this:[
1 4

2 3

] [
2

2

]
=

[
10

10

]
= 5

[
2

2

]
[
1 4

2 3

] [
7

7

]
=

[
35

35

]
= 5

[
7

7

]
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[
1 4

2 3

] [
−3

−3

]
=

[
−15

−15

]
= 5

[
−3

−3

]
.

Of course, this works in general. For any t, we have[
1 4

2 3

](
t

[
1

1

])
= t

([
1 4

2 3

] [
1

1

])
= t

(
5

[
1

1

])
= 5

(
t

[
1

1

])
.

Our method of finding the eigenvalues of amatrixA boils down to determin-
ing which values of λ give the matrix (A−λI) a determinant of 0. In computing
det(A − λI), we get a polynomial in λ whose roots are the eigenvalues of A.
This polynomial is important and so it gets its own name.

Definition 7.1.4 Characteristic Polynomial.

Let A be an n × n matrix. The characteristic polynomial of A is the
nth degree polynomial p(λ) = det(A− λI).

Our definition just states what the characteristic polynomial is. We know
from our work so far why we care: the roots of the characteristic polynomial of
an n× nmatrix A are the eigenvalues of A.

In Examples 2 and 3, we found eigenvalues and eigenvectors, respectively, of
a given matrix. That is, given a matrix A, we found values λ and vectors x⃗ such
that Ax⃗ = λx⃗. The steps that follow outline the general procedure for finding
eigenvalues and eigenvectors; we’ll follow this up with some examples.

Key Idea 7.1.5 Finding Eigenvalues and Eigenvectors.

Let A be an n× nmatrix.

1. To find the eigenvalues of A, compute p(λ), the characteristic
polynomial of A, set it equal to 0, then solve for λ.

2. To find the eigenvectors ofA, for each eigenvalue solve the homo-
geneous system (A− λI)x⃗ = 0⃗.

Example 7.1.6 Computing eigenvalues and eigenvectors.

Find the eigenvalues ofA, and for each eigenvalue, find an eigenvec-
tor where

A =

[
−3 15

3 9

]
.

Solution. To find the eigenvalues, we must compute det(A− λI) and
set it equal to 0.

det(A− λI) =

∣∣∣∣−3− λ 15

3 9− λ

∣∣∣∣
= (−3− λ)(9− λ)− 45

= λ2 − 6λ− 27− 4

= λ2 − 6λ− 72

= (λ− 12)(λ+ 6).
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Therefore, det(A − λI) = 0 when λ = −6 and 12; these are our
eigenvalues. (We should note that p(λ) = λ2 − 6λ − 72 is our charac-
teristic polynomial.)

It sometimes helps to give them names, so we’ll say λ1 = −6 and
λ2 = 12. Now we find eigenvectors.

For λ1 = −6, we need to solve the equation (A − (−6)I)x⃗ = 0⃗.
To do this, we form the appropriate augmented matrix and put it into
reduced row echelon form.[

3 15 0

3 15 0

]
−→
rref

[
1 5 0

0 0 0

]
.

Our solution is

x1 = −5t

x2 = t is free;

in vector form, we have

x⃗ = t

[
−5

1

]
.

We may pick any nonzero value for t to get an eigenvector; a simple
option is x2 = 1. Thus we have the eigenvector

x⃗1 =

[
−5

1

]
.

(We used the notation x⃗1 to associate this eigenvector with the eigen-
value λ1.)

We now repeat this process to find an eigenvector for λ2 = 12. In
solving (A− 12I)x⃗ = 0⃗, we find[

−15 15 0

3 −3 0

]
−→
rref

[
1 −1 0

0 0 0

]
.

In vector form, we have

x⃗ = t

[
1

1

]
.

Again, we may pick any nonzero value for t, and so we choose t = 1.
Thus an eigenvector for λ2 is

x⃗2 =

[
1

1

]
.

To summarize, we have:

eigenvalue λ1 = −6 with eigenvector x⃗1 =

[
−5

1

]
and

eigenvalue λ2 = 12 with eigenvector x⃗2 =

[
1

1

]
.

We should take a moment and check our work: is it true thatAx⃗1 =
λ1x⃗1?

Ax⃗1 =

[
−3 15

3 9

] [
−5

1

]
=

[
30

−6

]
= (−6)

[
−5

1

]
= λ1x⃗1.

Yes; it appears we have truly found an eigenvalue/eigenvector pair for
the matrix A.
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Example 7.1.7 Computing eigenvalues and eigenvectors.

LetA =

[
−3 0

5 1

]
. Find the eigenvalues ofA and an eigenvector for

each eigenvalue.
Solution. We first compute the characteristic polynomial, set it equal
to 0, then solve for λ.

det(A− λI) =

∣∣∣∣−3− λ 0

5 1− λ

∣∣∣∣
= (−3− λ)(1− λ).

From this, we see that det(A− λI) = 0 when λ = −3, 1. We’ll set
λ1 = −3 and λ2 = 1.

Finding an eigenvector for λ1:
We solve (A− (−3)I)x⃗ = 0⃗ for x⃗ by row reducing the appropriate

matrix: [
0 0 0

5 4 0

]
−→
rref

[
1 4/5 0

0 0 0

]
.

Our solution, in vector form, is

x⃗ = t

[
−4/5

1

]
.

Again, we can pick any nonzero value for t; a nice choice would eliminate
the fraction. Therefore we pick t = 5, and find

x⃗1 =

[
−4

5

]
.

Finding an eigenvector for λ2:
We solve (A − (1)I)x⃗ = 0⃗ for x⃗ by row reducing the appropriate

matrix: [
−4 0 0

5 0 0

]
−→
rref

[
1 0 0

0 0 0

]
.

We’ve seen a matrix like this before, but we may need a bit of a re-
freshing. Our first row tells us that x1 = 0, and we see that no rows/
equations involve x2. We conclude that x2 is free. Therefore, our solu-
tion, in vector form, is

x⃗ = t

[
0

1

]
.

We pick t = 1, and find

x⃗2 =

[
0

1

]
.

To summarize, we have:

eigenvalue λ1 = −3 with eigenvector x⃗1 =

[
−5

4

]
and

eigenvalue λ2 = 1 with eigenvector x⃗2 =

[
0

1

]
.
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Notice that in both of our examples so far, wewere able to completely factor
the characteristic polynomial and obtain two distinct eigenvalues. For 2 × 2
matrices, the characteristic polynomial will always be quadratic, and we know
that finding roots of quadratic polynomials falls into three categories: thosewith
two distinct roots, like in the examples above, those with one repeated root (for
example, x2 − 2x + 1 = (x − 1)2), and those with no real roots (for example,
x2+1). In the case of a repeated root, wewill have only one eigenvalue. Will we
have only one eigenvector, or could there be two? (We’ll havemore to say about
this later.) What if there are no real roots? Then there are no (real) eigenvalues,
so presumably there are no eigenvectors, either. What if we allow for complex
roots? Let’s look at some examples.

Example 7.1.8 A matrix with only one eigenvalue.

Find the eigenvalues and eigenvectors of the matrix

A =

[
1 4

0 1

]
.

Solution. The transformation T (x⃗) = Ax⃗ defined by A is an example
of a horizontal shear. (See Section 5.1.) Such a transformation leaves
horizontal vectors unaffected, but vectors with a nonzero vertical com-
ponent get pulled to the right: see Figure 7.1.9.

x

y

(k, 1)

Figure 7.1.9 A horizontal shear by a
factor of k

From the diagram we can probably guess that the horizontal vector[
1

0

]
will be an eigenvector with eigenvalue 1, since it is left untouched

by the shear transformation. Let’s confirm this analytically.
We begin as usual by finding the characteristic polynomial. We have

det(A− λI) =

∣∣∣∣1− λ 41

0 1− λ

∣∣∣∣ = (1− λ)2.

Here, we see that we have only one eigenvalue; namely, λ = 1. Let’s
look for a corresponding eigenvector. We have

A− λ =

[
0 4

0 0

]
−→
rref

[
0 1

0 0

]
.

The corresponding system (A − 1 · I)x⃗ = 0⃗ has augmented matrix
with reduced row echelon form[

0 1 0

0 0 0

]
,

which tells us that in our solution, x1 = t is free, and x2 = 0. Setting
t = 1, we get the single eigenvector

x⃗1 =

[
1

0

]
,

as expected.

In each of our examples to this point, every eigenvalue corresponded to a
single (independent) eigenvector. Is this always the case? We will not prove it
in this textbook, but it turns out that in general, the power to which the factor
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(λ − x) appears in the characteristic polynomial (called the multiplicity of the
eigenvalue) places an upper limit on the number of independent eigenvectors
that can correspond to that eigenvalue.

In Example 7.1.7, we had det(A − λI) = (−3 − λ)1(1 − λ)1, so the two
eigenvalues λ = −3 and λ = 1 each have multiplicity one, and therefore they
each have one corresponding eigenvector. In Example 7.1.8, the eigenvalue λ =
3 has multiplicity two, but we still had only one corresponding eigenvector. Can
we ever have such an eigenvalue with two corresponding eigenvectors?

Example 7.1.10 An eigenvalue of multiplicity two.

Find the eigenvalues and eigenvectors of the matrix

A =

[
4 0

0 4

]
.

Solution. Here, we notice thatA is a scalar multiple of the identity. As
a transformation of the Cartesian plane, the transformation T (x⃗) = Ax⃗
is a dilation: it expands the size of every vector in the plane by a factor
of 4. Knowing that this is a transformation that stretches, but does not
rotate, we might expect that every nonzero vector is an eigenvector of
A! Indeed, given x⃗ ̸= 0⃗, we have

Ax⃗ = (4I)x⃗ = 4(Ix⃗) = x⃗,

so x⃗ is an eigenvector corresponding to the eigenvalue 4.
Of course, this is pretty much the end of the story here, but let’s get

some practice with our algorithm for finding eigenvalues and eigenvec-
tors and confirm our results. We can immediately see that

det(A− λI) = (4− λ)2,

so that λ = 4 is an eigenvalue of multiplicity 2.
What about the eigenvectors? Well, computingA−4I is somewhat

interesting: we get

A− 4I =

[
4− 4 0

0 4− 4

]
=

[
0 0

0 0

]
,

the zero matrix. Again, we see that literally any nonzero vector x⃗ ∈
R2 qualifies as an eigenvector. We know that we can find at most two
independent vectors in R2, so a simple choice is to take the standard
basis vectors e⃗1 and e⃗2.

Notice that we could have proceeded as usual and attempted to
solve the system (A − 4I)x⃗ = 0⃗. In this case we get a rather strange
augmented matrix:[

A 0⃗
]
=
[
0 0⃗

]
=

[
0 0 0

0 0 0

]
!

It might seem like there’s absolutely nothing to do here, but we can
read off a solution. In this case neither row places any conditions on
the variables x1 and x2, so both are free: x1 = s and x2 = t are both
parameters, and

x⃗ =

[
x1

x2

]
=

[
s

t

]
= s

[
1

0

]
+ t

[
0

1

]
.

Setting s = 1 and t = 0 gives us the eigenvector e⃗1, and setting s = 0,
t = 1 gives us the eigenvector e⃗2.
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We mentioned above that another possibility is that the characteristic poly-
nomial has no real zeros at all, in which case ourmatrix has no (real) eigenvalues.
Let’s see what we can say in such a situation.

Example 7.1.11 A matrix with complex eigenvalues.

Find the eigenvalues and eigenvectors of the matrix

A =

[
0 −1

1 0

]
.

Solution. Before we proceed, let’s pause and think about this in the
context of matrix transformations. If we define the transformation
T (x⃗) = Ax⃗, we have

T

([
x1

x2

])
=

[
0 −1

1 0

] [
x1

x2

]
=

[
−x2

x1

]
.

Notice that T (x⃗) is orthogonal to x⃗:

T (x⃗) · x⃗ =

[
−x2

x1

]
·
[
x1

x2

]
= −x2x1 + x1x2 = 0.

This is because the transformation T represents a rotation through an
angle of π

2 (90 degrees). Indeed, A is a rotation matrix (see Section 5.1)
of the form

A =

[
cos θ − sin θ
sin θ cos θ

]
,

where θ = π
2 .

Now, think about the eigenvalue equationAx⃗ = λx⃗. In this case, an
eigenvector x⃗ would be a vector in the plane such that rotating it by 90
degrees produces a parallel vector! Clearly, this is nonsense, and indeed,
we find that

det(A− λI) =

∣∣∣∣−λ −1

1 −λ

∣∣∣∣ = λ2 + 1,

which has no real roots, so thematrixAhas no eigenvalues, whichmakes
sense from a geometric point of view.

However, this is not the end of the story, provided that we’re willing
to work with complex numbers. Over the complex numbers, we do have
two eigenvalues:

λ2 + 1 = (λ+ i)(λ− i),

so λ = i and λ = −i are eigenvalues. What are the eigenvectors? We
proceed as always, except that the arithmetic in the row operations is
a bit trickier with complex numbers. For λ = i, we have the system
(A− iI)x⃗ = 0⃗. We set up the augmented matrix below, and in this case,
we’ll proceed step-by-step to the reduced row echelon form.

We have

A− iI =

[
0 −1

1 0

]
−
[
i 0

0 i

]
=

[
−i −1

1 −i

]
,

so we get the augmented matrix[
−i −1 0

1 −i 0

]
R1↔R2−−−−−→

[
1 −i 0

−i −1 0

]
R2+iR1→R2−−−−−−−−→

[
1 −i 0

0 0 0

]
.
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Notice in the last step that −i + i(1) = 0 gives the zero in the first
column, and −1 + i(−i) = −1 + 1 = 0 gives the zero in the second
column. This tells us that x2 = t is a free (complex!) parameter while
x1 − ix2 = 0, so x1 = ix2 = it. Our vector solution is thus

x⃗1 =

[
it

t

]
= t

[
i

1

]
,

and we can check that

Ax⃗1 =

[
0 −1

1 0

] [
i

1

]
=

[
−1

i

]
=

[
i(i)

i(1)

]
= i

[
i

1

]
= ix⃗,

as expected.
We can similarly set up and solve

[
(A+ iI) 0⃗

]
=

[
i −1 0

1 i 0

]
−→
rref

[
1 i 0

0 0 0

]
,

giving us x2 = t as a free parameter, and x1 = −ix2 = −it, so

x⃗2 =

[
−it

t

]
= t

[
−i

1

]
.

In this context we’re free to chose any complex value for t. Choosing

t = i gives us the solution x⃗2 =

[
1

i

]
.

Our last few examples provided interesting departures from the earlier ones
where we had two distinct eigenvalues; they also provided examples where we
were able to analyze the situation geometrically, by considering the linear trans-
formations defined by the matrix. The reader is encouraged to consider the
other examples of transformations given in Section 5.1 and attempt a similar
analysis.

So far, our examples have involved 2×2matrices. Let’s do an examplewith a
3×3matrix. The only real additional complication here is that our characteristic
polynomial will now be a cubic polynomial, so factoring it is going to take some
more work.

Example 7.1.12 Eigenvalues and eigenvectors for a 3× 3matrix.

Find the eigenvalues of A, and for each eigenvalue, give one eigen-
vector, where

A =

−7 −2 10

−3 2 3

−6 −2 9

 .
Solution. We first compute the characteristic polynomial, set it equal
to 0, then solve for λ. A warning: this process is rather long. We’ll use
cofactor expansion along the first row; don’t get bogged down with the
arithmetic that comes from each step; just try to get the basic idea of
what was done from step to step.
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det(A− λI) =

∣∣∣∣∣∣
−7− λ −2 10

−3 2− λ 3

−6 −2 9− λ

∣∣∣∣∣∣
= (−7− λ)

∣∣∣∣2− λ 3

−2 9− λ

∣∣∣∣ − (−2)

∣∣∣∣−3 3

−6 9− λ

∣∣∣∣ + 10

∣∣∣∣−3 2− λ

−6 −2

∣∣∣∣
= (−7− λ)(λ2 − 11λ+ 24) + 2(3λ− 9) + 10(−6λ+ 18)

= −λ3 + 4λ2 − λ− 6

= −(λ+ 1)(λ− 2)(λ− 3).

In the last step we factored the characteristic polynomial −λ3 +
4λ2 − λ − 6. Factoring polynomials of degree > 2 is not trivial; we’ll
assume the reader has access to methods for doing this accurately.

You may have learned the ba-
sics of factoring degree three
polynomials in high school. As
a reminder, possible roots can
be found by factoring the con-
stant term (in this case, −6) of
the polynomial. That is, the
roots of this equation could be
±1,±2,±3 and ±6. That’s 12
things to check.

One could also graph this polynomial to find the roots. Graphing will
showus thatλ = 3 looks like a root, and a simple calculationwill confirm
that it is.

Our eigenvalues are λ1 = −1, λ2 = 2 and λ3 = 3. We now find
corresponding eigenvectors.

For λ1 = −1:
We need to solve the equation (A − (−1)I)x⃗ = 0⃗. To do this, we

form the appropriate augmentedmatrix and put it into reduced row ech-
elon form.−6 −2 10 0

−3 3 3 0

−6 −2 10 0

 −→
rref

1 0 −1.5 0

0 1 −.5 0

0 0 0 0


Our solution, in vector form, is

x⃗ = x3

3/21/2

1

 .
We can pick any nonzero value for x3; a nice choice would get rid

of the fractions. So we’ll set x3 = 2 and choose x⃗1 =

31
2

 as our
eigenvector.

For λ2 = 2:
We need to solve the equation (A− 2I)x⃗ = 0⃗. To do this, we form

the appropriate augmented matrix and put it into reduced row echelon
form. −9 −2 10 0

−3 0 3 0

−6 −2 7 0

 −→
rref

1 0 −1 0

0 1 −.5 0

0 0 0 0


Our solution, in vector form, is

x⃗ = x3

 1

1/2

1

 .
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We can pick any nonzero value for x3; again, a nice choice would get

rid of the fractions. So we’ll set x3 = 2 and choose x⃗2 =

21
2

 as our
eigenvector.

For λ3 = 3:
We need to solve the equation (A− 3I)x⃗ = 0⃗. To do this, we form

the appropriate augmented matrix and put it into reduced row echelon
form. −10 −2 10 0

−3 −1 3 0

−6 −2 6 0

 −→
rref

1 0 −1 0

0 1 0 0

0 0 0 0


Our solution, in vector form, is (note that x2 = 0):

x⃗ = x3

10
1

 .
We can pick any nonzero value for x3; an easy choice is x3 = 1, so

x⃗3 =

10
1

 as our eigenvector.
To summarize, we have the following eigenvalue/eigenvector pairs:

eigenvalue λ1 = −1 with eigenvector x⃗1 =

31
2


eigenvalue λ2 = 2 with eigenvector x⃗2 =

21
2


eigenvalue λ3 = 3 with eigenvector x⃗3 =

10
1

 .

Example 7.1.13 Computing eigenvalues and eigenvectors.

Find the eigenvalues of A, and for each eigenvalue, give one eigen-
vector, where

A =

2 −1 1

0 1 6

0 3 4

 .
Solution. We first compute the characteristic polynomial, set it equal
to 0, then solve forλ. We’ll use cofactor expansion down thefirst column
(since it has lots of zeros).

det(A− λI) =

∣∣∣∣∣∣
2− λ −1 1

0 1− λ 6

0 3 4− λ

∣∣∣∣∣∣
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= (2− λ)

∣∣∣∣1− λ 6

3 4− λ

∣∣∣∣
= (2− λ)(λ2 − 5λ− 14)

= (2− λ)(λ− 7)(λ+ 2).

Notice that while the characteristic polynomial is cubic, we never ac-
tually saw a cubic; we never distributed the (2−λ) across the quadratic.
Instead, we realized that this was a factor of the cubic, and just factored
the remaining quadratic. (This makes this example quite a bit simpler
than the previous example.)

Our eigenvalues are λ1 = −2, λ2 = 2 and λ3 = 7. We now find
corresponding eigenvectors.

For λ1 = −2:
We need to solve the equation (A − (−2)I)x⃗ = 0⃗. To do this, we

form the appropriate augmentedmatrix and put it into reduced row ech-
elon form. 4 −1 1 0

0 3 6 0

0 3 6 0

 −→
rref

1 0 3/4 0

0 1 2 0

0 0 0 0


Our solution, in vector form, is

x⃗ = x3

−3/4

−2

1

 .
We can pick any nonzero value for x3; a nice choice would get rid

of the fractions. So we’ll set x3 = 4 and choose x⃗1 =

−3

−8

4

 as our
eigenvector.

For λ2 = 2:
We need to solve the equation (A− 2I)x⃗ = 0⃗. To do this, we form

the appropriate augmented matrix and put it into reduced row echelon
form. 0 −1 1 0

0 −1 6 0

0 3 2 0

 −→
rref

0 1 0 0

0 0 1 0

0 0 0 0


This looks funny, so we’ll look remind ourselves how to solve this.

The first two rows tell us that x2 = 0 and x3 = 0, respectively. Notice
that no row/equation uses x1; we conclude that it is free. Therefore, our
solution in vector form is

x⃗ = x1

10
0

 .
We can pick any nonzero value for x1; an easy choice is x1 = 1,

which gives x⃗2 =

10
0

 as our eigenvector.
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For λ3 = 7:
We need to solve the equation (A− 7I)x⃗ = 0⃗. To do this, we form

the appropriate augmented matrix and put it into reduced row echelon
form. −5 −1 1 0

0 −6 6 0

0 3 −3 0

 −→
rref

1 0 0 0

0 1 −1 0

0 0 0 0


Our solution, in vector form, is (note that x1 = 0):

x⃗ = x3

01
1

 .
We can pick any nonzero value for x3; an easy choice is x3 = 1, so

x⃗3 =

01
1

 is our eigenvector.
To summarize, we have the following eigenvalue/eigenvector pairs:

eigenvalue λ1 = −2 with eigenvector x⃗1 =

−3

−8

4


eigenvalue λ2 = 2 with eigenvector x⃗2 =

10
0


eigenvalue λ3 = 7 with eigenvector x⃗3 =

01
1

 .
In this section we have learned about a new concept: given a matrix A we

can find certain values and vectors x⃗ where Ax⃗ = λx⃗. In the next section we
will continue to the pattern we have established in this text: after learning a new
concept, we see how it interacts with other concepts we know about. That is,
we’ll look for connections between eigenvalues and eigenvectors and things like
the inverse, determinants, the trace, the transpose, etc..
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7.1.1 Exercises

Exercise Group. A matrixA and one of its eigenvectors are given. Find the eigenvalue ofA for the given eigenvector.

1. A =

[
9 8

−6 −5

]
, x⃗ =

[
−4

3

]
2. A =

[
19 −6

48 −15

]
, x⃗ =

[
1

3

]

3. A =

−11 −19 14

−6 −8 6

−12 −22 15

, x⃗ =

32
4

 4. A =

 −7 1 3

10 2 −3

−20 −14 1

, x⃗ =

 1

−2

4


5. A =

−12 −10 0

15 13 0

15 18 −5

, x⃗ =

−1

1

1

 6. A =

[
1 −2

−2 4

]
, x⃗ =

[
2

1

]

Exercise Group. A matrix A and one of its eigenvalues are given. Find an eigenvector of A for the given eigenvalue.

7. A =

−16 −28 −19

42 69 46

−42 −72 −49

, λ = 5 8. A =

7 −5 −10

6 2 −6

2 −5 −5

, λ = −3

9. A =

 4 5 −3

−7 −8 3

1 −5 8

, λ = 2
10. A =

[
16 6

−18 −5

]
, λ = 4

11. A =

[
−2 6

−9 13

]
, λ = 7

Exercise Group. Find the eigenvalues of the given matrix. For each eigenvalue, give an eigenvector.

12.

1 −2 −3

0 3 0

0 −1 −1

 13.

2 −1 1

0 3 6

0 0 7


14.

[
2 −12

2 −8

]
15.

 5 0 0

1 1 0

−1 5 −2


16.

[
−3 1

0 −1

]
17.

−1 18 0

1 2 0

5 −3 −1


18.

1 0 12

2 −5 0

1 0 2

 19.
[
3 12

1 −1

]

20.
[
3 −1

−1 3

]
21.

 1 0 −18

−4 3 −1

1 0 −8


22.

 3 5 −5

−2 3 2

−2 5 0

 23.
[
−1 −4

−3 −2

]

24.

1 2 1

1 2 3

1 1 1

 25.
[
0 1

25 0

]

26.
[
5 9

−1 −5

]
27.

[
−4 72

−1 13

]
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28.

5 −2 3

0 4 0

0 −1 3


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7.2 Properties of Eigenvalues and Eigenvectors

In this section we’ll explore how the eigenvalues and eigenvectors of a matrix
relate to other properties of thatmatrix. This section is essentially a hodgepodge
of interesting facts about eigenvalues; the goal here is not to memorize various
facts about matrix algebra, but to again be amazed at the many connections
between mathematical concepts.

We’ll begin our investigations with an example that will give a foundation for
other discoveries.

Example 7.2.1 Eigenvalues of a triangular matrix.

Let A =

1 2 3

0 4 5

0 0 6

. Find the eigenvalues of A.
Solution. To find the eigenvalues, we compute detA− λI:

detA− λI =

∣∣∣∣∣∣
1− λ 2 3

0 4− λ 5

0 0 6− λ

∣∣∣∣∣∣
= (1− λ)(4− λ)(6− λ).

Since our matrix is triangular, the determinant is easy to compute; it
is just the product of the diagonal elements. Therefore, we found (and
factored) our characteristic polynomial very easily, and we see that we
have eigenvalues of λ = 1, 4, and 6.

This examples demonstrates a wonderful fact for us: the eigenvalues of a tri-
angularmatrix are simply the entries on the diagonal. Finding the corresponding
eigenvectors still takes some work, but finding the eigenvalues is easy.

With that fact in the backs of our minds, let us proceed to the next example
where we will come across some more interesting facts about eigenvalues and
eigenvectors.

Example 7.2.2 Exploring properties of eigenvalues.

Let A =

[
−3 15

3 9

]
and let B =

−7 −2 10

−3 2 3

−6 −2 9

 (as used in Exam-
ples Example 7.1.6 and Example 7.1.12, respectively). Find the follow-
ing:

1. The eigenvalues and eigenvectors of A andB

2. The eigenvalues and eigenvectors of A−1 andB−1

3. eigenvalues and eigenvectors of AT andBT

4. The trace of A andB

5. The determinant of A andB

Solution. We’ll answer each in turn.

1. We already know the answer to these for we did this work in pre-
vious examples. Therefore we just list the answers.
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For A, we have eigenvalues λ = −6 and 12, with eigenvectors

x⃗ = x2

[
−5

1

]
and x2

[
1

1

]
, respectively.

ForB, we have eigenvalues λ = −1, 2, and 3 with eigenvectors

x⃗ = x3

31
2

 , x3

21
2

 and x3

10
1

 , respectively.
2. We first compute the inverses of A andB. They are:

A−1 =

[
−1/8 5/24

1/24 1/24

]
and B−1 =

 −4 1/3 13/3

−3/2 1/2 3/2

−3 1/3 10/3

 .
Finding the eigenvalues and eigenvectors of these matrices is not
terribly hard, but it is not “easy,” either. Therefore, we omit show-
ing the intermediate steps and go right to the conclusions.

For A−1, we have eigenvalues λ = −1/6 and 1/12, with eigen-
vectors

x⃗ = x2

[
−5

1

]
and x2

[
1

1

]
, respectively.

For B−1, we have eigenvalues λ = −1, 1/2 and 1/3 with eigen-
vectors

x⃗ = x3

31
2

 , x3

21
2

 and x3

10
1

 , respectively.
3. Of course, computing the transpose ofA andB is easy; computing
their eigenvalues and eigenvectors takes more work. Again, we
omit the intermediate steps.

For AT , we have eigenvalues λ = −6 and 12 with eigenvectors

x⃗ = x2

[
−1

1

]
and x2

[
5

1

]
, respectively.

ForBT , we have eigenvalues λ = −1, 2 and 3 with eigenvectors

x⃗ = x3

−1

0

1

 , x3

−1

1

1

 and x3

 0

−2

1

 , respectively.
4. The trace of A is 6; the trace ofB is 4.

5. The determinant of A is−72; the determinant ofB is−6.

Now that we have completed the “grunt work,” let’s analyze the results of
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the previous example. We are looking for any patterns or relationships that we
can find.

The eigenvalues and eigenvectors of A and A−1. In our example, we found
that the eigenvalues ofA are−6 and 12; the eigenvalues ofA−1 are−1/6 and
1/12. Also, the eigenvalues of B are −1, 2 and 3, whereas the eigenvalues of
B−1 are −1, 1/2 and 1/3. There is an obvious relationship here; it seems that
if λ is an eigenvalue of A, then 1/λ will be an eigenvalue of A−1. We can also
note that the corresponding eigenvectors matched, too.

Why is this the case? Consider an invertible matrixAwith eigenvalue λ ̸= 0
and eigenvectorx⃗. Then, by definition, we know that Ax⃗ = λx⃗. Now multiply
both sides by A−1:

Ax⃗ = λx⃗

A−1Ax⃗ = A−1λx⃗

x⃗ = λA−1x⃗

1

λ
x⃗ = A−1x⃗.

We have just shown that A−1x⃗ = 1/λx⃗; this, by definition, shows that x⃗
is an eigenvector of A−1 with eigenvalue 1/λ. This explains the result we saw
above. Of course, this all falls apart if λ = 0, but this is impossible for an invert-
ible matrix: see Theorem 7.2.5 below.

The eigenvalues and eigenvectors ofA andAT . Our example showed thatA
and AT had the same eigenvalues but different (but somehow similar) eigen-
vectors; it also showed thatB andBT had the same eigenvalues but unrelated
eigenvectors. Why is this?

We can answer the eigenvalue question relatively easily; it follows from the
properties of the determinant and the transpose. Recall the following two facts:

1. (A+B)T = AT +BT (Theorem 6.1.9)

2. detA = detAT (Theorem 6.4.12)

We find the eigenvalues of a matrix by computing the characteristic polyno-
mial; that is, we find detA− λI . What is the characteristic polynomial of AT ?
Consider:

detAT − λI = detAT − λIT since I = IT

= det (A− λI)T (Theorem 6.1.9)
= detA− λI (Theorem 6.4.12).

So we see that the characteristic polynomial ofAT is the same as that forA.
Therefore they have the same eigenvalues.

What about their respective eigenvectors? Is there any relationship? The
simple answer is “No.”

The eigenvalues and eigenvectors ofA and the trace. Note that the eigenval-
ues of A are −6 and 12, and the trace is 6; the eigenvalues of B are −1, 2 and
3, and the trace ofB is 4. Do we notice any relationship?

It seems that the sum of the eigenvalues is the trace! Why is this the case?
The answer to this is a bit out of the scope of this text; we can justify part of

this fact, and another part we’ll just state as being true without justification.
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SupposeA is an n×nmatrix with no complex eigenvalues (that is, the char-
acteristic polynomial can be completely factored over the real numbers). When
this is the case, it turns out that we can find a squarematrixP such thatP−1AP
is an upper triangular matrix with the eigenvalues ofA on the diagonal. (We un-
fortunately do not have the time to prove this, or to explain how the matrix P
is determined.)

Now, recall from Theorem 6.2.3 that tr(AB) = tr(BA). Since P−1AP is
upper-triangular, we know that tr(P−1AP ) is the sum of the eigenvalues; also,
using our Theorem 6.2.3, we know that tr(P−1AP ) = tr(P−1PA) = tr(A).
Thus the trace of A is the sum of the eigenvalues. It turns out that this result
remains true when A has complex eigenvalues, and the proof is similar, except
that the entries of the matrix P will be complex numbers.

Theeigenvalues andeigenvectors ofA and thedeterminant. Again, the eigen-
values ofA are−6 and 12, and the determinant ofA is−72. The eigenvalues of
B are−1, 2 and 3; the determinant ofB is−6. It seems as though the product
of the eigenvalues is the determinant.

This is indeed true; we defend this with our argument from above. We know
that the determinant of a triangular matrix is the product of the diagonal ele-
ments. Therefore, given a matrix A, we can find P such that P−1AP is upper
triangular with the eigenvalues of A on the diagonal. Thus detP−1AP is the
product of the eigenvalues. Using Theorem 6.4.12, we know that detP−1AP =
detP−1PA = detA. Thus the determinant ofA is the product of the eigenval-
ues.

Note: the reader would be justi-
fied inwondering about the case
whereA is a realmatrixwith com-
plex eigenvalues. Any such eigen-
values will arise from irreducible
quadratic factors of the charac-
teristic polynomial, andweknow
fromTheorem1.4.10 that the com-
plex zeros of a quadraticwith real
coefficients occur in conjugate pairs.
That is, if λ is a complex eigen-
value ofA, so is the complex con-
jugate λ. When we multiply the
eigenvalues of A together, the
product will contain λ ·λ = |λ|2,
which is always a real number. Thus,
it is always true that det(A) is
equal to the product of the eigen-
values ofA, provided that we in-
clude anypossible complex eigen-
values.

We summarize the results of our example with the following theorem.

Theorem 7.2.3 Properties of Eigenvalues and Eigenvectors.

Let A be an n× n invertible matrix. The following are true:

1. If A is triangular, then the diagonal elements of A are the eigen-
values of A.

2. If is an eigenvalue ofAwith eigenvectorx⃗, then 1
λ is an eigenvalue

of A−1 with eigenvector x⃗.

3. If is an eigenvalue of A, then is an eigenvalue of AT .

4. The sum of the eigenvalues of A is equal to tr(A), the trace of A.

5. The product of the eigenvalues of A is the equal to detA, the de-
terminant of A.

There is onemore concept concerning eigenvalues and eigenvectors that we
will explore. We do so in the context of an example.

Example 7.2.4 Eigenvalues of a non-invertible matrix.

Find the eigenvalues and eigenvectors of the matrix A =

[
1 2

1 2

]
.

Solution. To find the eigenvalues, we compute detA− λI:

detA− λI =

∣∣∣∣1− λ 2

1 2− λ

∣∣∣∣
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= (1− λ)(2− λ)− 2

= λ2 − 3λ

= λ(λ− 3)

Our eigenvalues are therefore λ = 0, 3.
For λ = 0, we find the eigenvectors:[

1 2 0

1 2 0

]
−→
rref

[
1 2 0

0 0 0

]
.

This shows that x1 = −2x2, and so our eigenvectors x⃗ are

x⃗ = x2

[
−2

1

]
.

For λ = 3, we find the eigenvectors:[
−2 2 0

1 −1 0

]
−→
rref

[
1 −1 0

0 0 0

]
.

This shows that x1 = x2, and so our eigenvectors x⃗ are

x⃗ = x2

[
1

1

]
.

One interesting thing about the above example is that we see that 0 is an
eigenvalue ofA; we have not officially encountered this before. Does this mean
anything significant?

Think about what an eigenvalue of 0 means: there exists an nonzero vector
x⃗ where Ax⃗ = 0x⃗ = 0⃗. That is, we have a nontrivial solution to Ax⃗ = 0⃗. We
know this only happens when A is not invertible.

So ifA is invertible, there is no nontrivial solution toAx⃗ = 0⃗, and hence 0 is
not an eigenvalue of A. If A is not invertible, then there is a nontrivial solution
toAx⃗ = 0⃗, and hence 0 is an eigenvalue ofA. This leads us to our final addition
to the Invertible Matrix Theorem.

Theorem 7.2.5 Invertible Matrix Theorem.

Let A be an n× nmatrix. The following statements are equivalent.

(a) A is invertible.

(b) The equation Ax⃗ = 0⃗ has exactly one solution (namely, x⃗ = 0⃗).

(c) The reduced row echelon form of A is I .

(d) The equation Ax⃗ = b⃗ has exactly one solution for every n × 1
vector⃗b.

(e) There exists a matrix C such that AC = I .

(f) There exists a matrixB such thatBA = I .

(g) det(A) ̸= 0.

(h) A does not have an eigenvalue of 0.
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This section is about the properties of eigenvalues and eigenvectors. Of
course, we have not investigated all of the numerous properties of eigenvalues
and eigenvectors; we have just surveyed some of the most common (and most
important) concepts. One of the more important topics — which we will de-
scribe briefly in our final section — is the question of diagonalization. For some
n×nmatricesA, it is possible to find an invertiblematrixP such thatP−1AP is
a diagonalmatrix, and the diagonal entries of this matrix are precisely the eigen-
values ofA. When is this possible? When is it not? To a large extent, this comes
down to the question ofmultiplicity: when we have a repeated eigenvalue, how
many independent eigenvectors are associated with it?

Finally, we have found the eigenvalues ofmatrices by finding the roots of the
characteristic polynomial. We have limited our examples to quadratic and cubic
polynomials; one would expect for larger sized matrices that a computer would
be used to factor the characteristic polynomials. However, in general, this is not
how the eigenvalues are found. Factoring high order polynomials is too unreli-
able, even with a computer — round off errors can cause unpredictable results.
Also, to even compute the characteristic polynomial, one needs to compute the
determinant, which is also expensive (as discussed in the previous chapter).

So how are eigenvalues found? There are iterative processes that can pro-
gressively transform amatrixA into anothermatrix that is almost an upper trian-
gular matrix (the entries below the diagonal are almost zero) where the entries
on the diagonal are the eigenvalues. The more iterations one performs, the bet-
ter the approximation is.

These methods are so fast and reliable that some computer programs con-
vert polynomial root finding problems into eigenvalue problems!

Most textbooks on Linear Algebra will provide direction on exploring the
above topics and give further insight to what is going on. We havementioned all
the eigenvalue and eigenvector properties in this section for the same reasons
we gave in the previous section. First, knowing these properties helps us solve
numerous real world problems, and second, it is fascinating to see how rich and
deep the theory of matrices is.
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7.2.1 Exercises

Exercise Group. A matrix A is given.

(a) Find the eigenvalues of A, and for each eigenvalue, find an eigenvector.

(b) Do the same for AT .

(c) Do the same for A−1.

(d) Find tr(A).

(e) Find detA.

Use Theorem 7.2.3 to verify your results.

1.
[
0 4

−1 5

]
2.

[
−2 −14

−1 3

]
3.

[
5 30

−1 −6

]
4.

[
−4 72

−1 13

]

5.

5 −9 0

1 −5 0

2 4 3

 6.

0 25 0

1 0 0

1 1 −3


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7.3 Eigenvalues and Diagonalization

Up to nowwe have concentrated primarily on finding eigenvalues and eigenvec-
tors, and while we may have claimed that this is a particularly useful endeavour,
we haven’t offeredmuch to back up this claim, aside from referring the reader to
aWikipedia page. While a complete treatment of the theory and applications of
eigenvalues and eigenvectors goes well beyond the scope of this book, we can
offer a brief taste of what’s to come (should the reader choose to further their
studies in linear algebra).

Similar matrices. We begin by defining what it means for two matrices to be
similar. Shortly, we will see that similar matrices share a number of properties,
and ultimately we will define diagonalizable matrices as those matrices that are
similar to a diagonal matrix.

Definition 7.3.1 Similar Matrices.

Let A and B be n × n matrices. We say that A is similar to B, and
writeA ∼ B, if there exists an invertible n× nmatrix P such that

A = P−1BP .

Although our definition above is not symmetric (it defines what it means
for A to be similar to B, but not vice-versa), there is in fact no ambiguity in
using a statement such as “A and B are similar matrices,” as the next theorem
demonstrates.

Theorem 7.3.2 Properties of matrix similarity.

Let A,B, and C be n× nmatrices. Then:

1. A ∼ A

2. If A ∼ B, thenB ∼ A

3. If A ∼ B andB ∼ C, then A ∼ C.

Let’s see why these results are true.

1. Setting P = I , the n× n identity matrix, we have A = I−1AI , and thus
A ∼ A.

2. Suppose A ∼ B. Then we know that A = P−1BP for some invertible
matrix P . SettingQ = P−1, (and notingQ−1 = P ) we have

B = (PP−1)B(PP−1) = P (P−1BP )P−1 = Q−1AQ,

soB ∼ A.

3. Suppose thatA ∼ B andB ∼ C. Then there exist n× nmatrices P and
Q such that A = P−1BP andB = Q−1CQ. But then

A = P−1BP = P−1(Q−1CQ)P = (P−1Q−1)C(QP ) = (QP )−1C(QP ),

which shows that A ∼ C.

The fact that the definition of matrix similarity satisfies the three proper-
ties in the theorem above tells us that matrix similarity is an example of what
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is called an equivalence relation. This equivalence relation breaks the set of all
n×nmatrices into sets of “equivalent” matrices. Similar matrices are so-called
because, although they often have very different entries, they share many of
the same properties. (At the end of this section, we’ll discuss the fact that from
the point of view of linear transformations, similar matrices describe the same
linear transformation, if we represent that linear transformation using different
choices of basis.) The following theorem gives some of the properties similar
matrices share.

Theorem 7.3.3 Shared properties of similar matrices.

Let A andB be n× nmatrices. If A ∼ B, then:

1. tr(A) = tr(B)

2. det(A) = det(B)

3. A andB have the same eigenvalues.

Let us again check the details on each of the points in the above theorem to
see why they’re true.

1. Recall that the trace satisfies tr(AB) = tr(BA) for any n× nmatricesA
andB. Thus, if A = P−1BP , we have

tr(A) = tr(P−1BP ) = tr(B(P−1P )) = tr(BI) = tr(B).

2. Recall that the determinant satisfies det(AB) = det(A) det(B) for any

n×nmatricesA andB, and det(A−1) =
1

det(A)
for any invertiblematrix

A. Thus, if A = P−1BP , we have

det(A) = det(P−1BP ) = det(P−1) det(B) det(P )

=
1

det(P )
det(B) det(P ) = det(B).

3. Suppose that λ is an eigenvalue of A, and that A ∼ B. Since λ is an
eigenvalue of A, we have

Av⃗ = λv⃗

for some nonzero vector v⃗. But if A ∼ B, then A = P−1BP for some
invertible matrix P , so

P−1BPv⃗ = λv⃗.

Multiplying both sides on the left by P , we have

B(P v⃗) = P (λv⃗) = λ(P v⃗).

Since P is invertible and v⃗ ̸= 0⃗, we know that w⃗ = P v⃗ is nonzero, and
thus λ is an eigenvalue of B with corresponding eigenvector P v⃗.

Multiplicity of an eigenvalue. To clarify the presentation in this section, wewill
shift our notation somewhat from what we’ve been using so far in the textbook.
Previously, we used the definition

pA(λ) = det(A− λI)
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for the characteristic polynomial of a matrix A. We will adjust this in two ways:
first, we will use x as the variable in our polynomial; second, we will shift the
sign of the characteristic polynomial and make the following definition:

Definition 7.3.4 Characteristic Polynomial (revised definition).

The characteristic polynomial of an n× nmatrix A is the degree-n
polynomial pA(x) defined by

pA(x) = det(xI −A).

Notice that we are using xI−A rather thanA−xI . This guarantees that the
highest-degree term in pA(x) is always xn (with coefficient 1), whereas before
this term was ±xn, depending on whether n is even or odd. We are using x as
our variable to make it easier to talk about factors of the characteristic polyno-
mial: with this change, the statements “λ is an eigenvalue ofA” and “(x− λ) is
a factor of pA(x)” are equivalent.

In the previous sections, we saw examples of matrices whose characteristic
polynomial had a repeated root. In such cases, it is sometimes possible (but not
guaranteed) that there is more than one independent eigenvector associated
with the repeated eigenvalue. Indeed, consider the matrices

A =

2 0 0

0 2 0

0 0 2

 , B =

2 0 0

0 2 1

0 0 2

 , C =

2 1 0

0 2 1

0 0 2

 .
All three matrices are upper-triangular, so they have the same characteristic
polynomial, namely:

p(x) = (x− 2)3.

Notice that the eigenvalue λ = 2 is “repeated”, in the sense that it is a repeated
root of the characteristic polynomial. This leads to the following definition:

Definition 7.3.5 Algebraic Multiplicity of an Eigenvalue.

Wesay thatλ is an eigenvaluewith algebraicmultiplicity k if (x−λ)k

is a factor of pA(x), but (x− λ)k+1 is not.

In other words, the algebraic multiplicity of an eigenvalue λ is the (largest)
power to which the corresponding factor (x − λ) appears in the characteris-
tic polynomial. In our example above, all three of the matrices A, B, and C
have the eigenvalue 2 with algebraic multiplicity 3. However, consider the cor-
responding eigenvectors in each case:

ForA =

2 0 0

0 2 0

0 0 2

, we haveA− 2I = 0, so every non-zero vector x⃗ is an

eigenvector. Indeed, A = 2I , so

Ax⃗ = (2I)x⃗ = I(2x⃗) = 2x⃗

for every vector. In particular, we can choose the standard unit basis vectors

e⃗1 =

10
0

 , e⃗2 =

01
0

 , e⃗3 =

00
1


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as our basic eigenvectors, and we see that there are three independent eigen-
vectors corresponding to the eigenvalue λ = 2.

ForB =

2 0 0

0 2 1

0 0 2

, wehaveB−2I =

0 0 0

0 0 1

0 0 0

, which is row-equivalent
to

0 0 1

0 0 0

0 0 0

. The general solution to the equation (B−2I)x⃗ = 0⃗ is thus given

by

x⃗ =

st
0

 = s

10
0

+ t

01
0

 ,

since the reduced row-echelon form of B − 2I tells us that we must have z =
0, while x and y are free. Thus, in this case we have two independent basic
eigenvectors, given by the standard unit basis vectors e⃗1 and e⃗2.

Finally, for C =

2 1 0

0 2 1

0 0 2

 have have C − 2I =

0 1 0

0 0 1

0 0 0

, which is
already in reduced-row echelon form. From this, we can see that the system
(C − 2I)x⃗ = 0⃗ has general solution

x⃗ =

t0
0

 = te⃗1,

so we have only one independent eigenvector associated to λ = 2; namely, e⃗1.
The above shows us that when the algebraic multiplicity of an eigenvalue is

greater than one, we might have multiple independent eigenvectors associated
to that eigenvalue, but this is not guaranteed. To quantify this situation, we
introduce further terminology. First, we make a definition: the null space of an
n× nmatrix A is the set defined by

null(A) = {x⃗ ∈ Rn |Ax⃗ = 0⃗}.

In this language, we note that every eigenvector associated to an eigenvalue λ
belongs to the null space ofA− λI . Indeed, null(A− λI) is equal to the set of
all eigenvectors associated to the eigenvalue λ, along with the zero vector. This
leads to another definition:

Definition 7.3.6 Eigenspace.

Let A be an n × n matrix, and let λ be any real number. The λ-
eigenspace of A, denoted by E(A, λ), is defined by

E(A, λ) = null(A− λI).

A couple of remarks on this definition are in order. First, notice that λ is
not assumed to be an eigenvalue in the definition above. However, for any real
number λ which is not an eigenvalue, we have

E(A, λ) = {⃗0}.

The eigenvalues of A can thus be described as those real numbers for which
E(A, λ) ̸= {⃗0}. When λ is an eigenvalue, the basic eigenvectors associated
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to λ (that is, the basic solutions to the system (A − λI)x⃗ = 0⃗) form a basis
for E(A, λ). This tells us that the dimension of each eigenspace is given by
the number of independent basic eigenvectors associated to the corresponding
eigenvalue, and gives us one more definition:

Definition 7.3.7 Geometric Multiplicity of an Eigenvalue.

LetA be ann×nmatrix. The geometricmultiplicity of an eigenvalue
λ of A is defined to be the dimension of the eigenspace E(A, λ).

Example 7.3.8 Computing eigenvalues and their multiplicities.

Determine the eigenvalues of the matrix A =

0 1 1

1 0 1

1 1 0

, along
with their algebraic and geometric multiplicities.
Solution. We first compute the eigenvalues of A. The characteristic
polynomial of A is given by

cA(x) =

∣∣∣∣∣∣
x −1 −1

−1 x −1

−1 −1 x

∣∣∣∣∣∣
= x

∣∣∣∣ x −1

−1 x

∣∣∣∣+ ∣∣∣∣−1 −1

−1 x

∣∣∣∣− ∣∣∣∣−1 x

−1 −1

∣∣∣∣
= x(x2 − 1)− (x+ 1)− (x+ 1)

= x(x− 1)(x+ 1)− 2(x+ 1)

= (x2 − x− 2)(x+ 1)

= (x− 2)(x+ 1)2.

We see that the roots of cA(x) are λ1 = 2, which has algebraic multi-
plicity 1, and λ2 = −1, which has algebraic multiplicity 2.

To determine the geometric multiplicities, we compute the corre-
sponding eigenvectors. For λ = 2, we have

A− 2I =

−2 1 1

1 −2 1

1 1 −2

 RREF−−→

1 0 −1

0 1 −1

0 0 0

 .
Thus, (A− 2I)x⃗ = 0⃗ for x⃗ =

tt
t

 = t

11
1

, so x⃗1 =

11
1

 is the (single)
basic eigenvector associated to λ = 2. This gives us

E(A, 2) = span


11
1

 ,

so the geometric multiplicity of λ = 2 is dimE(A, 2) = 1.
For λ = −1, we find

A− (−1)I =

1 1 1

1 1 1

1 1 1

 RREF−−→

1 1 1

0 0 0

0 0 0

 .
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This tells us that the general solution to (A+ I)x⃗ = 0⃗ is

x⃗ =

−s− t

s

t

 = s

−1

1

0

+ t

−1

0

1

 ,

so

E(A,−1) = span


−1

1

0

 ,

−1

0

1

 ,

and the geometric multiplicity of λ = −1 is dimE(A,−1) = 2.

Diagonalization. One common application of matrix algebra is to a class of dy-
namical systems known as linear recurrences. A linear recurrence is a process
that occurs in discrete steps, such that the state of the system at any step k de-
pends linearly on the state of the system after the previous step. An example
might be a population model for an ecosystem involving several species. For a
simple two-species “predator-prey” model, we might have two populations P1

(of rabbits, perhaps?) and P2 (let’s say these are foxes) where the populations
at a time tk satisfy a relationship such as

P1(tk) = aP1(tk−1) + bP2(tk−1)

P2(tk) = cP1(tk−1) + dP2(tk−1).

A reasonable model would probably have positive values for the coefficients
a and d (absent competition, predators, etc. we expect the populations to in-
crease), while bwould be negative (more foxes mean fewer rabbits) and cwould
be positive (more rabbits provide more fox food). If we introduce a “population

vector” P⃗ (t) =

[
P1(t)

P2(t)

]
to describe the situation at a time t, then the above

system can be written in the form P⃗ (tk) = AP⃗ (tk−1), whereA =

[
a b

c d

]
.

Now, given an initial population state P⃗ (t0), we might want to know what
to expect after several generations (or seasons, or some other reasonable unit
of time). Notice that we have

P⃗ (t1) = AP⃗ (t0)

P⃗ (t2) = AP⃗ (t1) = A(AP⃗ (t0)) = A2P⃗ (t0)

P⃗ (t3) = AP⃗ (t2) = A(A2P⃗ (t0)) = A3P⃗ (t0)

...
...

P⃗ (tk) = AkP⃗ (t0).

Thus, to model the time evolution of our system, it suffices to compute powers
of our matrix A. If we want to study a system over long periods of time, we
need to be able to compute large powers of ourmatrix, and for complex systems,
being able to do so efficiently will become increasingly important. (For example,
we may be interested in whether or not the system settles into an equilibrium
state. This would be the case, for example, if we were able to show thatAk was
approximately equal to the identity matrix for large values of k.)

Althoughmost students in a first
course in linear algebrawould pre-
fer to avoid complex eigenvalues
(and trigonometric functions!), it
turns out that these are a key fea-
ture of stable ecosystems for a
model like this! Complex eigen-
values lead to sinusoidal terms,
which correspond to oscillations
in the twopopulations: the preda-
tor and prey populations will go
up and down, in a cyclical fash-
ion.
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One case where this is easily done is when the initial state P⃗0 = P⃗ (t0) is an
eigenvector for our matrix: if AP⃗0 = λP⃗0, then we have

A2P⃗0 = A(AP⃗0) = A(λP⃗0) = λ(AP⃗0) = λ(λP⃗0) = λ2P⃗0

A3P⃗0 = A(A2P⃗0) = A(λ2P⃗0) = λ2(AP⃗0) = λ2(λP⃗0) = λ3P⃗0,

and so on: in general, AkP⃗0 = λkP⃗0. This is useful, since computing powers of
a number is much simpler than computing powers of a matrix.

What if the initial state is not an eigenvector? It turns out that the same
trick works as long as P⃗0 can be written as a linear combination of eigenvectors:
suppose that

P⃗0 = c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k,

where x⃗1, x⃗2, . . . , x⃗k are eigenvectors of A with eigenvalues λ1, λ2, . . . , λk, re-
spectively. (Note that at this point we’ve moved away from the original premise
of a 2 × 2 matrix A to consider a more general situation.) In this case, for any
natural number n, we have

AnP⃗0 = An(c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k)

= c1(A
nx⃗1) + c2(A

nx⃗2) + · · ·+ ck(A
nx⃗k)

= c1(λ
n
1 x⃗1) + c2(λ

n
2 x⃗2) + · · ·+ ck(λ

n
k x⃗k),

using our previous result. Again, we only need to be able to compute powers of
the eigenvalues, and not of the original matrix.

With the above inmind, we will clearly be in an advantageous situation if we
can guarantee that every vector in our space can be written as a linear combina-
tion of eigenvectors. We know from our earlier work that in order to guarantee
this, we would need to be able to construct a basis of eigenvectors. We will see
how such a basis can be used after we make a definition.

Definition 7.3.9 Diagonalizable Matrix.

We say that ann×nmatrixA is diagonalizable (can be diagonalized)
if A ∼ D for some diagonal matrix D. In other words, A is diagonaliz-
able if there exists an invertible matrix P such that D = P−1AP is a
diagonal matrix.

Theorem 7.3.10 Amatrix with a basis of eigenvectors is diagonalizable.

An n× nmatrixA is diagonalizable if and only if there exists a basis
for Rn consisting of eigenvectors of A.

We will now proceed with a proof of this theorem. We will see that in addi-
tion to the theoretical interest in providing a proof, the ideas in this proof will
have practical use as well.

First, suppose that A can be diagonalized. Then there exists an invertible
matrix P such that P−1AP = D, where

D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,
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and λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues of A. Letting
e⃗1, . . . , e⃗n denote the standard basis for Rn we have, for each j = 1, 2, . . . , n:

De⃗j = λj e⃗j

(P−1AP )e⃗j = λj e⃗j

(AP )e⃗j = P (λj e⃗j)

A(P e⃗j)λj(P e⃗j),

so x⃗j = P e⃗j is an eigenvector for A with eigenvalue λj . Moreover, since P is
invertible, we know that the vectors x⃗1, . . . , x⃗n are linearly independent, and
thus form our desired basis of eigenvectors. (See the margin note for a proof of
this fact.)

Suppose that c1x⃗1+c2x⃗2+· · ·+
ckx⃗k = 0⃗ for some scalars c1, c2, . . . , ck.
Then we have

0⃗ = c1P e⃗1 + · · ·+ cnP e⃗n

= P (c1e⃗1 + · · ·+ cne⃗n).

SinceP is invertible, we can con-
clude that c1e⃗1+· · ·+cne⃗n = 0⃗,
and thus c1 = c2 = · · · = cn =
0, which shows that the x⃗i are
independent.

Conversely, suppose that we have a basis x⃗1, x⃗2, . . . , x⃗n of eigenvectors for
A, with corresponding eigenvalues λ1, λ2, . . . , λn. Let P be the matrix whose
columns are given by these vectors. Then P is invertible, since its columns are
linearly independent. LetD be defined as above. Then

PD =
[
x⃗1 x⃗2 · · · x⃗n

]

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =
[
λ1x⃗1 λ2x⃗2 · · · λnx⃗n

]
,

while

AP = A
[
x⃗1 x⃗2 · · · x⃗n

]
=
[
Ax⃗1 Ax⃗2 · · · Ax⃗n

]
=
[
λ1x⃗1 λ2x⃗2 · · · λnx⃗n

]
.

Thus, PD = AP , and since P is invertible, this gives us D = P−1AP , as
required.

As we discussed above, the diagonalizability of Amakes it easy to compute
powers of A. Indeed, suppose P−1AP = D is diagonal, for some invertible
matrix P . Then A = PDP−1, and

An = (PDP−1)n = (PDP−1) · · · (PDP−1)

= PD(P−1P )D · · · (P−1P )DP−1 = PDnP−1.

This makes it easy to compute An, since it’s easy to computeDn:

IfD =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 , thenDn =


λn
1 0 · · · 0

0 λn
2 · · · 0

...
...

. . .
...

0 0 · · · λn
n

 .
The proof Theorem 7.3.10 is quite useful, since it tells us two things: first,

we now know what it takes to diagonalize a matrix: for an n × n matrix, we
need to be able to find n independent eigenvectors. Second, the proof of the
theorem tells us how to diagonalize: once we’ve found our eigenvectors, we
construct the matrix P whose columns are given by the eigenvectors of A; the
matrix P−1AP will then be a diagonal matrix with the eigenvalues of A on the
main diagonal. This leaves us with the question: when can we be sure we have
enough eigenvectors? To answer this, we begin with a theorem:
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Theorem 7.3.11 Linear independence of eigenvectors.

The eigenvectors x⃗1, . . . , x⃗k corresponding to distinct eigenvalues of
A are linearly independent.

The above theorem leads to the following corollary:

Theorem 7.3.12 Distinct eigenvalues and diagonalization.

If an n× nmatrixA has n distinct eigenvalues, thenA is diagonaliz-
able.

Let us first see how the above corollary follows from our theorem. We know
that every eigenvalue has at least one associated eigenvector. If there are n
distinct eigenvalues, then we have n associated eigenvectors which, by the the-
orem above, are linearly independent, and we know that any set of n linearly
independent vectors in Rn forms a basis for Rn.

As for the proof of the theorem, we use an argument by contradiction: sup-
pose, to the contrary, that the eigenvectors x⃗1, . . . , x⃗k are linearly dependent.
Then there is some m, 2 ≤ m ≤ k − 1, such that the vectors x⃗1, . . . , x⃗m are
linearly independent, but x⃗m+1 can be written as a linear combination of the
vectors x⃗1, . . . , x⃗m; that is,

x⃗m+1 = c1x⃗1 + c2x⃗2 + · · ·+ cmx⃗m, (7.3.1)

for some scalars c1, . . . , cm. Then, multiplying both sides of (7.3.1) on the left
by A, we must have

Ax⃗m+1 = A(c1x⃗1+c2x⃗2+· · ·+cmx⃗m) = c1(Ax⃗1)+c2(Ax⃗2)+· · ·+cm(Ax⃗m),

but each vector x⃗i is an eigenvector of A with eigenvalue λi.
Thus,

λm+1x⃗m+1 = c1λ1x⃗1 + c2λ2x⃗2 + · · ·+ cmλmx⃗m.

On the other hand, if we multiply both sides of \eqref{eq-indepeigen} by the
scalar λm+1, we have

λm+1x⃗m+1 = c1λm+1x⃗1 + c2λm+1x⃗2 + · · ·+ cmλm+1x⃗m+1.

Subtracting these last two equations, we find:

0⃗ = c1(λm+1 − λ1)x⃗1 + c2(λm+1 − λ2)x⃗2 + · · ·+ cm(λm+1 − λm)x⃗m.

Now, we are assuming that our eigenvalues are all distinct. Thus, λm+1 −
λi ̸= 0 for all i = 1, 2, . . . ,m. On the other hand, the vectors x⃗1, x⃗2, . . . , x⃗m

are assumed to be linearly independent, so we must have

c1(λm+1 − λ1) = 0, c2(λm+1 − λ2) = 0, . . . , cm(λm+1 − λm) = 0.

Since none of the λm+1 − λi terms vanish, it must be the case that c1 = c2 =
· · · = cm = 0. But if that is true, then

x⃗m+1 = 0x⃗1 + 0x⃗2 + · · ·+ 0x⃗m = 0⃗,

which is impossible, since x⃗m+1 was assumed to be an eigenvector, and eigen-
vectors are nonzero. Thus, it must be the case that all of our eigenvectors are
linearly independent.
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The above tells us that any n × n matrix A with n distinct eigenvalues is
automatically diagonalizable. There are two other possibilities. One is that the
characteristic polynomial ofA cannot be completely factored over the real num-
bers. In this case, diagonalization is impossible, unlesswe are willing to consider
complex eigenvalues. Recall that over the complex numbers, every polynomial
can be completely factored. (This is the Fundamental Theorem of Algebra.) In
this case, we may still be able to diagonalize, but the eigenvectors correspond-
ing to the complex eigenvalues may well be complex themselves, so the matrix
P used to diagonalize A could have complex entries.

The other possibility is that we have repeated eigenvalues. Here, it is pos-
sible that we encounter truly insurmountable obstacles. First, we have the fol-
lowing theorem, which we will state without proof. The interested reader can
easily find the details in other linear algebra textbooks or online.

Theorem 7.3.13 Algebraic versus geometric multiplicity.

Let A be an n × n matrix, and for each real number λ, let mλ(A)
denote the algebraicmultiplicity of λ. (If λ is not an eigenvalue ofA, we
setmλ(A) = 0.) Then for all numbers λ, we have

dimnull(A− λI) ≤ mλ(A).

In otherwords, the geometricmultiplicity of an eigenvalue is always less than
or equal to the algebraic multiplicity. Note that the sum of the algebraic multi-
plicities is always equal to the degree of the characteristic polynomial, which, in
turn, is equal to n, for an n× nmatrix A. On the other hand, the total number
of independent eigenvectors for A is equal to the sum of the geometric multi-
plicities. (We know that eigenvectors for different eigenvalues are independent,
and the geometricmultiplicity tells us howmany independent eigenvectorswe’ll
have for a single eigenvalue.) As a result, we have the following:

Theorem 7.3.14 Diagonalization and multiplicities.

An n × n matrix A is diagonalizable if and only if dimnull(A) =
mλ(A) for each eigenvalue λ of A; that is, if the geometric multiplicity
of each eigenvalue is equal to its algebraic multiplicity.

This also tells us exactly when we can expect a matrix to fail to be diagonaliz-
able: this will be the case ifA has an eigenvalue of algebraic multiplicity greater
than 1 for which the geometric multiplicity is less than the algebraic multiplicity.
(That is, if we don’t get “enough” basic eigenvectors corresponding to a repeated
eigenvalue.)

The reader may wonder if there is anything further that can be said in the
case that a matrix A is not diagonalizable, and indeed, there is. As long as we
are willing to work over the complex numbers (to avoid situations where the
characteristic polynomial cannot be factored), one can prove that in the worst-
case scenario, there exists an invertiblematrixP such that thematrixP−1AP is
triangular. (If we can’t get a diagonalmatrix, upper or lower-triangular is the next
best thing.) The standard form of such a matrix is called the Jordan Canonical
Form; it is obtained using what are called generalized eigenvectors. The Jordan
Canonical Form of amatrix is studied inmore advanced courses in linear algebra.

One last important result that we do not have time to study concerns the
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case of symmetricmatrices. Recall that ann×nmatrixA is symmetric ifAT = A.
An important result called the Spectral Theorem guarantees that every symmet-
ricmatrixA is diagonalizable. In fact, the spectral theorem goes one step further.
Recall that two vectors u⃗ and v⃗ are orthogonal if u⃗⃗⃗ · v⃗ = 0. We say that a set
of vectors {x⃗1, x⃗2, . . . , x⃗k} is orthogonal if x⃗i ̸= 0⃗ for each i, and x⃗i⃗⃗ · x⃗j = 0
for all i ̸= j. Orthogonality is a “stronger” condition than linear independence.
Indeed, if the vectors x⃗1, . . . , x⃗k are orthogonal and

c1x⃗1 + c2x⃗2 + · · ·+ ckx⃗k = 0⃗

for some scalars c1, c2, . . . , ck, taking the dot product of both sides of the above
equation with x⃗1 gives us

c1(x⃗1⃗⃗ · x⃗1) + c2(0) + · · ·+ ck(0) = 0,

and since x⃗1⃗⃗ · x⃗1 = ∥x⃗1∥2 ̸= 0, it must be that c1 = 0, and similarly, all the
other scalars must be zero as well.

For a symmetric matrix, eigenvectors corresponding to distinct eigenvalues
are not just independent, they’re orthogonal. Indeed, since x⃗1⃗⃗ · x⃗2 can be writ-
ten as the matrix product x⃗T

1 x⃗2, we have (using the fact that AT = A):

λ1(x⃗1⃗⃗ · x⃗2) = (λ1x⃗1)
T x⃗2 = (Ax⃗1)

T x⃗2 = (x⃗T
1 A

T )x⃗2 = x⃗T
1 (Ax⃗2) = x⃗T

1 (λ2x⃗2) = λ2(x⃗1⃗⃗ · x⃗2),

Thus, (λ1 − λ2)(x⃗1⃗⃗ · x⃗2) = 0, and since λ1 ̸= λ2, we must have x⃗1⃗⃗ · x⃗2 = 0.
It is possible to prove that for a symmetricmatrix, one can find an orthogonal

basis of eigenvectors. This observation has a number of important applications.
(Try an online search for “orthogonal diagonalization” and you should be able to
find several examples.)

Matrix similarity and change of basis for transformations. We end this sec-
tion with the promised explanation of how similar matrices can be viewed as
different representations of the same linear transformation. If we think of ma-
trices in terms of the matrix transformations they define, then two matrix trans-
formations obtained from similarmatrices should be viewed as two descriptions
of the same linear transformation using different “coordinate systems”. Let us
explain what we mean here. Suppose

T : Rn → Rn

is a matrix transformation defined by T (x⃗) = Ax⃗ for some n× nmatrixA. Let
us consider this to be a transformation defined in terms of the standard basis
vectors e⃗1, e⃗2, . . . , e⃗n for Rn.

We can then write

x⃗ =
[
x1 x2 · · · xn

]T
= x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n

and think of T as a function of the variables x1, x2, . . . , xn. To put this an-
other way, when we speak of a matrix transformation with standard matrix
A, that matrix A is defined with respect to the standard basis. In general, let
A = {e⃗1, . . . , e⃗n} denote our standard basis, and suppose

B = {⃗b1, b⃗2, . . . , b⃗n}

is another basis for Rn. Recall that when we say that the set B is a basis, we
mean that spanB = Rn, so that every vector in Rn can be written as a linear
combination of the vectors in B, and B is linearly independent, which means
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that every vector in Rn can be written uniquely as a linear combination of the
vectors in B.

Let v⃗ = y1⃗b1 + y2⃗b2 + · · · + ynb⃗n any vector in Rn. Using the same linear
transformation T as above, we have

T (v⃗) = T (y1⃗b1 + y2⃗b2 + · · ·+ ynb⃗n) = y1T (⃗b1) + y2T (⃗b2) + · · ·+ ynT (⃗bn).

Now, each of the vectors T (⃗bi) can, in turn, be written in terms of the basis B:
we have

T (⃗b1) = b11⃗b1 + b21⃗b2 + · · ·+ bn1⃗bn

T (⃗b2) = b12⃗b1 + b22⃗b2 + · · ·+ bn2⃗bn

...
...
...

...

T (⃗bn) = b1nb⃗1 + b2nb⃗2 + · · ·+ bnnb⃗n.

The coefficients bij obtained above determine a new matrix B, which we
define to be the \textbf{matrix of T with respect to the basis} B. Notice that if
we write y⃗ =

[
y1 y2 · · · yn

]T
, we have

By⃗ =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · nnn



y1
y2
...
yn

 =


b11y1 + b12y2 + · · · b1nyn

b21y1 + b22y2 + · · ·+ b2nyn
...

bn1y1 + bn2y2 + · · · bnnyn

 .
Let’s introduce some notation: for any vector w⃗ in Rn, we will let [w⃗]B de-

note the n× 1 column vector defined as follows:

If w⃗ = w1⃗b1 + w2⃗b2 + · · ·+ wnb⃗n, then [w⃗]B =


w1

w2

...
wn

 .
In this notation, we have y⃗ = [v⃗]B, and

[T (v⃗)]B =


b11y1 + b12y2 + · · · b1nyn

b21y1 + b22y2 + · · ·+ b2nyn
...

bn1y1 + bn2y2 + · · · bnnyn

 ,
since

(b11y1 + · · · b1nyn)⃗b1 + · · ·+ (bn1y1 + · · ·+ bnnyn)⃗bn

= y1(b11⃗b1 + · · ·+ bn1⃗bn) + · · ·+ yn(b1nb⃗1 + · · ·+ bnnb⃗n)

= y1T (⃗b1) + · · ·+ ynT (⃗bn)

= T (y1⃗b1 + · · ·+ ynb⃗n)

= T (v⃗).

Let’s tie everything together. First, let P be the n×nmatrix whose columns
are the vectors in B. Then we know that

b⃗1 = P e⃗1, b⃗2 = P e⃗2, . . . , b⃗n = P e⃗n,
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and conversely,

e⃗1 = P−1⃗b1, e⃗2 = P−1⃗b2, . . . , e⃗n = P−1⃗bn.

If [v⃗]B =


v1
v2
...
vn

, then we have

v⃗ = v1⃗b1+· · ·+vnb⃗n = v1P e⃗1+· · ·+vnP e⃗n = P (v1e⃗1+· · ·+vne⃗n) = P [v⃗]B.

Note that we can also write v⃗ = [v⃗]A, where A is the standard basis, since
by default, all of our vectors are written in terms of the standard basis. Thus, we
can conclude that

[v⃗]A = P [v⃗]B (7.3.2)

defines the relationship between the column vector representations of our vec-
tor with respect to the two bases. Similarly, we can write

[T (v⃗)]A = P [T (v⃗)]B (7.3.3)

for the column representations of the output of our linear transformation T .
However, we also know that our transformation was originally defined using

the matrix A according to
[T (v⃗)]A = A[v⃗]A (7.3.4)

and that the matrixB above was defined such that

[T (v⃗)]B = B[v⃗]B. (7.3.5)

Equating the two expressions above for [T (v⃗)]A, in Equations (7.3.3) and (7.3.4)
we have

P [T (v⃗)]B = A[v⃗]A.

Plugging in Equations (7.3.5) on the left and (7.3.2) on the right, we have

PB[v⃗]B = AP [v⃗]B.

Since this must be true for any vector, we conclude that PB = AP , and thus

B = P−1AP,

soB is similar to A.
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7.3.1 Exercises

Exercise Group. Compute the characteristic polynomial of the given matrix, and the eigenvalues of the matrix, along
with their algebraic and geometric multiplicities. If possible, construct a matrix P such that P−1AP is diagonal, and
verify your result. If no such matrix P exists, explain why.

1.

 7 0 0

10 −3 0

10 −8 5

 2.

1 1 0

3 0 3

2 −1 3


3.

[
9 −7

−6 20

]
4.

[
2 −1

1 0

]

5.

0 1 1

1 0 1

1 1 0

 6.
[
3 −2

1 0

]

7.

3 2 −2

2 2 −2

2 2 −1

 8.
[
4 −2

1 3

]
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Answers to Selected Exercises

1 · The Real and Complex Numbers
1.2 · Real Number Arithmetic
1.2 · Exercises

1.2.1.
23

9 1.2.3. −3 5
√
3

8
= −36/5

8

1.2.5.
9

22 1.2.7.
−4 +

√
2

7

1.2.9.
√
61

2
1.2.11. −24

7

1.2.13. 6 1.2.15. 18
1.2.17. undefined 1.2.19.

15

16

1.2.21.
3

5

1.2.23. −1

1.2.25. 5 1.2.27.
√
10

1.2.29. −1
1.2.31. −1

3

1.2.33.
25

4

1.3 · The Cartesian Coordinate Plane
1.3 · Exercises
1.3.1. The required points A(−3,−7), B(1.3,−2), C(π,

√
10), D(0, 8), E(−5.5, 0), F (−8, 4), G(9.2,−7.8), and

H(7, 5) are plotted in the Cartesian Coordinate Plane below.

365
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−10 −5 5 10

−10

−5

5

10

A(−3,−7)

B(1.3,−2)

C(π,
√
10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)

x

y

1.3.3. d = 4
√
10,M = (1,−4) 1.3.5. d =

√
37
2 ,M =

(
5
6 ,

7
4

)
1.3.7. d = 3

√
5,M =

(
−

√
2
2 ,−

√
3
2

)
1.3.9. d =

√
x2 + y2,M =

(
x
2 ,

y
2

)
1.3.11. (0, 3)

1.3.13.
(√

2
2 ,−

√
2
2

)
,
(
−

√
2
2 ,

√
2
2

)
1.4 · Complex Numbers
1.4 · Exercises

1.4.1.

• z + w = 2 + 7i

• zw = −12 + 8i

• z2 = −5 + 12i

•
1

z
=

2

13
− 3

13
i

•
z

w
=

3

4
− 1

2
i

•
w

z
=

12

13
+

8

13
i

• z = 2− 3i

• zz = 13

• (z)2 = −5− 12i

1.4.3.

• z + w = −1 + 3i

• zw = −2− i

• z2 = −1

•
1

z
= −i

•
z

w
=

2

5
− 1

5
i

•
w

z
= 2 + i

• z = −i

• zz = 1

• (z)2 = −1
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1.4.5.

• z + w = 5 + 2i

• zw = 41 + 11i

• z2 = −16− 30i

•
1

z
=

3

34
+

5

34
i

•
z

w
= −29

53
− 31

53
i

•
w

z
= −29

34
+

31

34
i

• z = 3 + 5i

• zz = 34

• (z)2 = −16 + 30i

1.4.7.

• z + w = 2
√
2

• zw = 4

• z2 = −4i

•
1

z
=

√
2

4
+

√
2

4
i

•
z

w
= −i

•
w

z
= i

• z =
√
2 + i

√
2

• zz = 4

• (z)2 = 4i

1.4.9.

• z + w = i
√
3

• zw = −1

• z2 = −1

2
+

√
3

2
i

•
1

z
=

1

2
−

√
3

2
i

•
z

w
=

1

2
−

√
3

2
i

•
w

z
=

1

2
+

√
3

2
i

• z =
1

2
−

√
3

2
i

• zz = 1

• (z)2 = −1

2
−

√
3

2
i

1.4.11. 7i 1.4.13. −10
1.4.15. −12 1.4.17. 3

1.4.19. i5 = i4 · i = 1 · i = i 1.4.21. i7 = i4 · i3 = 1 · (−i) = −i

1.4.23. i15 =
(
i4
)3 · i3 = 1 · (−i) = −i 1.4.25. i117 =

(
i4
)29 · i = 1 · i = i

1.4.27. x =
2± i

√
14

3

1.4.29. y = ±2,±i

1.4.31. y = ±3i
√
2

2
1.4.33. x =

√
5± i

√
3

2
1.4.35. z = ±2,±2i

2 · Vectors
2.1 · Introduction to Cartesian Coordinates in Space
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2.1 · Exercises
2.1.1. (a).

√
6

(b).
√
17

(c).
√
11

(d). do

2.2 · An Introduction to Vectors
2.2 · Exercises

2.2.1.

(a) ⟨1, 6⟩

(b) i+ 6j

2.2.3.

(a) ⟨6,−1, 6⟩

(b) 6i− j + 6k

2.2.5.

(a) u⃗+ v⃗ =

[
2

−1

]
; u⃗− v⃗ =

[
0

−3

]
; 2u⃗− 3v⃗ =

[
−1

−7

]
.

(c) x⃗ =

[
1/2

2

]
.

2.2.11. (a).
√
5

(b).
√
13

(c).
√
26

(d).
√
10

2.2.13. (a).
√
5

(b). 3
√
5

(c). 2
√
5

(d). 4
√
5

2.2.17. ⟨0.6, 0.8⟩ 2.2.19.
〈

1√
3
, −1√

3
, 1√

3

〉
2.2.21.

〈
−1
2 ,

√
3
2

〉
2.3 · The Dot Product
2.3 · Exercises

2.3.1. −22 2.3.3. 3
2.3.5. not defined

2.3.7. Answers will vary.

2.3.9. cos−1
(

3√
10

)
2.3.11. π

4

2.3.13. (a). ⟨−7, 4⟩
(b). ⟨4, 7⟩

2.3.15. (a). ⟨1, 0,−1⟩
(b). ⟨1, 1, 1⟩

2.3.17.
〈−5

10 ,
15
10

〉
2.3.19.

〈−1
2 , −1

2

〉
2.3.21.

〈
14
14 ,

28
14 ,

42
14

〉
2.3.23. (a).

〈−5
10 ,

15
10

〉
(b).

〈
15
10 ,

5
10

〉 2.3.25. (a).
〈−1

2 , −1
2

〉
(b).

〈−5
2 , 5

2

〉
2.3.27. (a).

〈
14
14 ,

28
14 ,

42
14

〉
(b).

〈
0
14 ,

42
14 ,

−28
14

〉
2.3.29. 1.96lb
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2.3.31. 141.42ft–lb

2.3.33. 500ft–lb

2.3.35. 500ft–lb

2.4 · The Cross Product
2.4 · Exercises

2.4.1. ⟨12,−15, 3⟩ 2.4.3. ⟨−5,−31, 27⟩
2.4.5. ⟨0,−2, 0⟩

2.4.7. u⃗× v⃗ =

 0

0

ad− bc


2.4.9. −j

2.4.11. Answers will vary.

2.4.13. 5 2.4.15. 0

2.4.17.
√
14 2.4.19. 3

2.4.21. 5
√
2

2
2.4.23. 1

2.4.25. 7

2.4.27. 2

2.4.29.
⟨0.408248, 0.408248,−0.816497⟩ or ⟨−0.408248,−0.408248, 0.816497⟩

2.4.31. ⟨0, 1, 0⟩ or ⟨0,−1, 0⟩

2.4.33. 87.5ft–lb

2.4.35. 200/3 ≈ 66.67ft–lb

2.5 · Lines
2.5 · Exercises

2.5.7. (a). (7, 2,−1) + t⟨1,−1, 2⟩
(b). x = 7 + t, y = 2− t, z = −1 + 2t

(c). x− 7 = 2− y = z+1
2

2.5.11. parallel 2.5.15. skew

2.5.19.
√
41/3 2.5.21. 5

√
2/2

2.5.23. 3/
√
2

2.6 · Planes
2.6 · Exercises

2.6.1. Answers will vary. 2.6.3. Answers will vary.

2.6.15. (a). x− 5 + y − 7 + z − 3 = 0

(b). x+ y + z = 15

2.6.17. (a). 3(x+ 4) + 8(y − 7)− 10(z − 2) = 0

(b). 3x+ 8y − 10z = 24

2.6.25.
√
5/7 2.6.27. 1/

√
3
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2.7 · Span and Linear Independence
2.7 · Exercises

2.7.1.


−9

−8

16

12

 2.7.3.


−22

2

12

39


2.7.5.

√
71 2.7.7. 15

2.7.9. True. Suppose S = {v⃗1, v⃗2, . . . , v⃗n} is linearly independent. Let T ⊆ S be a subset. By re-ordering the
vectors we can assume T = {v⃗1, v⃗2, . . . , v⃗m} for somem ≤ n. It T were linearly dependent, then there would
exist scalars c1, . . . , cm, not all zero, such that c1v⃗1+ · · ·+ cmv⃗m = 0⃗. But if this is the case, then we would have
c1v⃗1 + · · ·+ cmv⃗m + 0v⃗m+1 + · · ·+ 0v⃗n = 0⃗, which is impossible if S is independent.

2.7.11. True, since we can add any scalar multiple of the zero vector to a linear combination without affecting the
value of that linear combination.

2.7.13. False. The set
{[

1

0

]
,

[
0

1

]
,

[
0

0

]}
is linearly dependent, since

[
0

0

]
= 0

[
1

0

]
+ 0

[
0

1

]
, but

[
1

0

]
does not

belong to the span of the set
{[

0

1

]
,

[
0

0

]}
.

3 · Systems of Linear Equations
3.1 · Introduction to Linear Equations
3.1 · Exercises

3.1.1. Yes 3.1.3. Yes
3.1.5. No 3.1.7. Yes
3.1.9. Yes

3.1.11. x = 1, y = −2 3.1.13. x = −1, y = 0, z = 2

3.1.15. 35 blue, 40 green, 20 red, 5 yellow

3.1.17. 12 $0.30 trinkets, 8 $0.65 trinkets

3.2 · Using Matrices To Solve Systems of Linear Equations
3.2 · Exercises

3.2.1.

 3 4 5 7

−1 1 −3 1

2 −2 3 5

 3.2.3.

 1 3 −4 5 17

−1 0 4 8 1

2 3 4 5 6



3.2.5. x1 + 2x2 = 3

−x1 + 3x2 = 9
3.2.7. x1 + x2 − x3 − x4 = 2

2x1 + x2 + 3x3 + 5x4 = 7

3.2.9.

x1 = 2

x2 = −1

x3 = 5

x4 = 3

3.2.11.

−2 1 −7

0 4 −2

5 0 3

 3.2.13.

2 −1 7

2 3 5

5 0 3


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3.2.15.

2 −1 7

0 2 −1

5 0 3


3.2.17. 2R2 → R2 3.2.19. 2R3 +R1 → R1

3.2.21. −R2 +R3 ↔ R3

3.2.23. x = −1, y = 3 3.2.25. x = 1
2 , y = 1

3

3.2.27. x1 = 1, x2 = 5, x3 = 7

3.3 · Elementary Row Operations and Gaussian Elimination
3.3 · Exercises

3.3.1.

(a) yes

(b) no

(c) no

(d) yes

3.3.3.

(a) no

(b) yes

(c) yes

(d) yes

3.3.5.
[
1 0

0 1

]
3.3.7.

[
1 3

0 0

]
3.3.9.

[
1 0 3

0 1 7

]
3.3.11.

[
1 −1 2

0 0 0

]

3.3.13.

1 0 0

0 1 0

0 0 1

 3.3.15.

1 0 0

0 1 0

0 0 1


3.3.17.

1 0 0 1

0 1 1 1

0 0 0 0

 3.3.19.

1 0 1 3

0 1 −2 4

0 0 0 0


3.3.21.

[
1 1 0 0 0 0

0 0 1 3 1 4

]

3.4 · Existence and Uniqueness of Solutions
3.4 · Exercises

3.4.1. x1 = 1− 2x2; x2 is free. Possible solutions:
x1 = 1, x2 = 0 and x1 = −1, x2 = 1. Geometrically,
both equations describe the same line, and every
point on this line is a solution to the system.

3.4.3. No solution; the system is inconsistent.
Geometrically, the system describes three planes, any
two of which intersect along a line. However, there is
no point common to all three.

3.4.5. x1 = 1− x2 − x4; x2 is free; x3 = 1− 2x4; x4

is free. Possible solutions: x1 = 1, x2 = 0, x3 = 1,
x4 = 0 and x1 = −2, x2 = 1, x3 = −3, x4 = 2. Since
there are four variables, a geometric description is
more difficult (but see if you can come up with one!).

3.4.7. x1 = 3− x3 − 2x4; x2 = −3− 5x3 − 7x4; x3

is free; x4 is free. Possible solutions: x1 = 3,
x2 = −3, x3 = 0, x4 = 0 and x1 = 0, x2 = −5,
x3 = −1, x4 = 1. Since there are four variables, a
geometric description is more difficult (but see if you
can come up with one!).

3.4.9. x1 = 1; x2 = 2. Geometrically, the system
represents two lines intersecting in a single point.

3.4.11. x1 = 0; x2 = −1. Geometrically, the system
represents two lines intersecting in a single point.
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3.4.13. x1 = 1
3 − 4

3x3; x2 = 1
3 − 1

3x3; x3 is free.
Possible solutions: x1 = 1

3 , x2 = 1
3 , x3 = 0 and

x1 = −1, x2 = 0, x3 = 1. Geometrically, the system
represents three planes that all intersect along a
common line.

3.4.15. Exactly 1 solution if k ̸= 2; infinitely many
solutions if k = 2; never no solution.

3.4.17. Never exactly 1 solution; infinitely many
solutions if k = 2; no solution if k ̸= 2.

3.5 · Applications of Linear Systems
3.5 · Exercises

3.5.1. f(x) = 6x− 3

3.5.3. f(x) = −x2 + x+ 5

3.5.5. f(x) = −x3 + x2 − x+ 1

3.5.7. f(x) = 3x− 5

3.5.9. f(x) = x2 + 1

3.5.11.

(a) Substitution yields the equations 2 = aeb and 4 = ae2b; these are not linear equations.

(b) y = aebx implies that ln y = ln(aebx) = ln a+ ln ebx = ln a+ bx.

(c) Plugging in the points for x and y in the equation ln y = ln a+ bx, we have equations

ln a + b = ln 2
ln a + 2b = ln 4

.

To solve, [
1 1 ln 2
1 2 ln 4

]
−→
rref

[
1 0 0

0 1 ln 2

]
.

Therefore ln a = 0 and b = ln 2.

(d) Since ln a = 0, we know that a = e0 = 1. Thus our exponential function is f(x) = ex ln 2.

3.5.13. The augmented matrix from this system is

1 1 1 1 8

6 1 2 3 29

0 1 −1 0 2

. From this we find the solution

t = 4− 1

3
f

x = 3− 1

3
f

w = 1− 1

3
f .

The only time each of these variables are nonnegative integers is when f = 0 or f = 3. If f = 0, then we have 4
touchdowns, 3 extra points and 1 two point conversions (no field goals). If f = 3, then we have 3 touchdowns, 2
extra points and no two point conversions (and 3 field goals).

3.5.15. Let x1, x2 and x3 represent the number of free throws, 2 point and 3 point shots taken. The augmented

matrix from this system is
[
1 1 1 70

1 2 3 110

]
. From this we find the solution

x1 = 30 + x3
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x2 = 40− 2x3.

In order for x2 to be nonnegative, we need x3 ≤ 20. Thus there are 21 different scenarios: the “first” is where 0 three
point shots are taken (x3 = 0), 30 free throws and 40 two point shots; the “last” is where 20 three point shots are
taken, 50 free throws, and no two point shots.

3.5.17. Let y = ax + b; all linear functions through (2,5) come in the form y = (2.5 − 1
2b)x + b. Examples: b = 1

yields y = 2x+ 1; b = −1 yields y = 3x− 1.

3.5.19. Let y = ax2+ bx+ c; we find that a = 2− 1
2c and b = −1+ 1

2c. Examples: c = 0 yields y = 2x2−x; c = −2
yields y = 3x2 − 2x− 2.

3.5.21. No. 3.5.23. Yes. x⃗ = −2w⃗1 + 2w⃗2.

3.5.25. Yes. 3.5.27. No.

3.6 · Vector Solutions to Linear Systems
3.6 · Exercises

3.6.1. Multiply Au⃗ and Av⃗ to verify. 3.6.3. Multiply Au⃗ and Av⃗ to verify.
3.6.5. Multiply Au⃗ and Av⃗ to verify.

3.6.7. Multiply Au⃗, Av⃗ and A(u⃗+ v⃗) to verify.

3.6.9. Multiply Au⃗, Av⃗ and A(u⃗+ v⃗) to verify.

3.6.11.

(a) x⃗ =

[
0

0

]

(b) x⃗ =

[
2/5

−13/5

]
3.6.13.

(a) x⃗ =

[
0

0

]

(b) x⃗ =

[
−2

−9/4

]
3.6.15.

(a) x⃗ = x3

5/41
1



(b) x⃗ =

10
0

+ x3

5/41
1



3.6.17.

(a) x⃗ = x3

 6

−4

1



(b) x⃗ =

−12

8

0

+ x3

 6

−4

1


3.6.19.

(a) x⃗ = x3


2

2/5

1

0

+ x4


−1

2/5

0

1



(b) x⃗ =


−2

2/5

0

0

+ x3


2

2/5

1

0

+ x4


−1

2/5

0

1



3.6.21.

(a) x⃗ = x2


−1/2

1

0

0

0

+ x4


1/2

0

−1/2

1

0

+ x5


13/2

0

−2

0

1


(b) x⃗ =

−5

0

3/2

0

0

+x2


−1/2

1

0

0

0

+x4


1/2

0

−1/2

1

0

+x5


13/2

0

−2

0

1


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3.6.23.

(a) x⃗ = x4


1

13/9

−1/3

1

0

+ x5


0

−1

−1

0

1



(b) x⃗ =


1

1/9

5/3

0

0

+ x4


1

13/9

−1/3

1

0

+ x5


0

−1

−1

0

1



3.6.25. x⃗ =

[
0.5

0

]
+ x2

[
2.5

1

]
= x⃗p + x2v⃗

x

y

x⃗p

v⃗

3.6.27. x⃗ = x2

[
2.5

1

]
= x2v⃗

x

y

v⃗

4 · Matrix Algebra
4.1 · Matrix Addition and Scalar Multiplication
4.1 · Exercises

4.1.1.
[
−2 −1

12 13

]
4.1.3.

[
2 −2

14 8

]
4.1.5.

[
9 −7

11 −6

]

4.1.7.
[
−14

6

]
4.1.9.

[
−15

−25

]

4.1.11. X =
[
−5 91 −14

]
4.1.13. X =

[
−5 −29/2 −19/2

]
4.1.15. a = 2, b = 1 4.1.17. a = 5/2 + 3/2b

4.1.19. No solution. 4.1.21. No solution.

4.2 · Matrix Multiplication
4.2 · Exercises

4.2.1. −22 4.2.3. 0
4.2.5. 5 4.2.7. 15
4.2.9. −2 4.2.11. Not possible.
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4.2.13. AB =

[
8 3

10 −9

]
,BA =

[
−3 24

4 2

]
4.2.15. AB =

[
−1 −2 12

10 4 32

]
,BA is not possible.

4.2.17. AB is not possible,

BA =

[
27 −33 39

−27 −3 −15

]
4.2.19. AB =

−32 34 −24

−32 38 −8

−16 21 4

,
BA =

[
22 −14

−4 −12

]

4.2.21. AB =

−56 2 −36

20 19 −30

−50 −13 0

,
BA =

[
−46 40

72 9

]
4.2.23. AB =

[
−15 −22 −21 −1

16 −53 −59 −31

]
,BA is not

possible.

4.2.25. AB =

0 0 4

6 4 −2

2 −4 −6

,
BA =

2 −2 6

2 2 4

4 0 −6


4.2.27. AB =

21 −17 −5

19 5 19

5 9 4

,
BA =

 19 5 23

5 −7 −1

−14 6 18



4.2.29. DA =

 2 2 2

−6 −6 −6

−15 −15 −15

,
AD =

 2 −3 5

4 −6 10

−6 9 −15


4.2.31. DA =

[
4 −6

4 −6

]
, AD =

[
4 8

−3 −6

]

4.2.33. DA =

d1a d1b d1c

d2d d2e d2f

d3g d3h d3i

,
AD =

d1a d2b d3c

d1d d2e d3f

d1g d2h d3i



4.2.35. Ax⃗ =

[
−6

11

]
4.2.37. Ax⃗ =

−5

5

21


4.2.39. Ax⃗ =

[
2x1 − x2

4x1 + 3x2

]

4.2.41. A2 =

[
4 0

0 9

]
; A3 =

[
8 0

0 27

]

4.2.43. A2 =

0 0 1

1 0 0

0 1 0

; A3 =

1 0 0

0 1 0

0 0 1


4.2.45.

(a)
[
0 −2

−5 −1

]
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(b)
[
10 2

5 11

]
(c)
[
−11 −15 37 32

]
(d) No.

(e) (A+B)(A+B) = AA+AB +BA+BB = A2 +AB +BA+B2.

4.3 · Solving Matrix Equations AX = B

4.3 · Exercises
4.3.1. X =

[
0 −2 − 8 6

]
4.3.3. X =

[
−1 2 −4 − 6 −2 3

]
4.3.5. X =

[
−5 2 −3 − 4 −3 −2

]
4.3.7. X =

[
1 −9 − 4 −5

]
4.3.9. X =

[
3 −3 3 2 −2 −3

−3 −1 −2

]
4.3.11. X =

[
−1/2 −1/2 0 − 1/2 −1 1/2

−1/2 −3/4 3/4

]

4.4 · The Matrix Inverse
4.4 · Exercises

4.4.5. A−1 does not exist.

4.4.21. A−1 does not exist.

4.4.33. x⃗ =

[
2

3

]

4.5 · Properties of the Matrix Inverse
4.5 · Exercises

4.5.1. (AB)−1 =

[
−2 3

1 −1.4

]
4.5.3. (AB)−1 =

[
29/5 −18/5

−11/5 7/5

]

4.5.5. A−1 =

[
−2 −5

−1 −3

]
, (A−1)−1 =

[
−3 5

1 −2

]
4.5.7. A−1 =

[
−3 7

1 −2

]
, (A−1)−1 =

[
2 7

1 3

]
4.5.9. Solutions will vary.

4.5.11. Likely some entries that should be 0 will not be exactly 0, but rather very small values.

4.6 · Elementary Matrices
4.6 · Exercises

4.6.1. R1 − 3R2 → R1 4.6.3. R2 − 4R1 → R2

4.6.5.
[
1 −3

0 1

]
4.6.7.

[
1 0

0 7

]

4.6.9.
[
1 3

0 1

]
R1 + 3R2 → R1 4.6.11.

1 0 0

4 1 0

0 0 1

,R2 + 4R1 → R2
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4.6.13. Answers may vary. One possibility:

A−1 =

[
1 0

−3 1

] [
0 1

1 0

]

A =

[
0 1

1 0

] [
1 0

3 1

]
4.6.15. Answers may vary. One possibility:

A−1 =

1 0 0

0 1 2

0 0 1

1 0 −1

0 1 0

0 0 1

 1 0 0

−3 1 0

0 0 1

 1
2 0 0

0 1 0

0 0 1



A =

2 0 0

0 1 0

0 0 1

1 0 0

3 1 0

0 0 1

1 0 1

0 1 0

0 0 1

1 0 0

0 1 −2

0 0 1


5 · Matrix Transformations
5.1 · Matrix Transformations
5.1 · Exercises

5.1.1.

x

y

x⃗

y⃗

Ax⃗
Ay⃗

5.1.3.

x

y

x⃗

y⃗
Ax⃗

Ay⃗

5.1.5. A =

[
1 2

3 4

]
5.1.7. A =

[
1 2

1 2

]

5.1.9. A =

[
5 2

2 1

]
5.1.11. A =

[
0 1

3 0

]
5.1.13. A =

[
0 −1

−1 −1

]

5.1.15. Yes, these are the same; the transformation

matrix in each is
[
−1 0

0 −1

]
.

5.1.17. Yes, these are the same. Each produces the

transformation matrix
[
1/2 0

0 3

]
.

5.2 · Properties of Linear Transformations
5.2 · Exercises

5.2.1. Yes 5.2.3. No; cannot add a constant.
5.2.5. Yes.

5.2.7. [T ] =
[
1 2 3 4

]
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5.2.9. [T ] =

[
1 1

1 −1

]

5.2.11. [T ] =

1 0 3

1 0 −1

1 0 1


5.3 · Subspaces of Rn

5.3 · Exercises
5.3.1. Not a subspace. The vector v⃗ =

[
2

0

]
belongs to

S, but 2v⃗ does not.

5.3.3. Subspace. If y = 2x, we have[
x

y

]
=

[
x

2x

]
= x

[
1

2

]
,

so U is equal to the span of the vector
[
1

2

]
, and

therefore a subspace.

5.4 · Null Space and Column Space
5.4 · Exercises

5.4.1. null(A) = span



−2

1

0

0


 has dimension 1; col(A) = span


 1

2

−3

 ,

 0

−1

2

 ,

 3

6

−4

 has dimension 3;

4 = 1 + 3.

5.4.3. null(A) = span


11
1

 has dimension 1; col(A) = span


 1

−2

0

 ,

−2

−4

−8

 has dimension 2; 3 = 1 + 2.

5.4.5. null(A) = span



−6

−4

−1

3


 has dimension 1; col(A) = span


21
0

 ,

 0

−1

3

 ,

 3

4

−6

 has dimension 3;

4 = 1 + 3.

5.4.7. null(A) = span



2

1

0

0

 ,


−3

0

−8

5


 has dimension 2; col(A) = span


 1

2

−1

 ,

43
1

 has dimension 2;

4 = 2 + 2.

6 · Operations on Matrices
6.1 · The Matrix Transpose
6.1 · Exercises

6.1.1. A is skew symmetric.

 0 −6 1

6 0 4

−1 −4 0

 6.1.3.

−9 6 −8

4 −3 1

10 −7 −1


6.1.5. A is diagonal, as is AT .

1 0 0

0 2 0

0 0 −1

 6.1.7. A is symmetric.

 6 −4 −5

−4 0 2

−5 2 −2


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6.1.9.


−7

−8

2

−3

 6.1.11. A is symmetric.
[
13 −3

−3 1

]

6.1.13.


4 −9

−7 6

−4 3

−9 −9

 6.1.15.

 2 5 7

−5 5 −4

−3 −6 −10


6.1.17. A is upper triangular; AT is lower triangular.−3 0 0

−4 −3 0

−5 5 −3

 6.1.19. A is symmetric.

 4 0 −2

0 2 3

−2 3 6



6.1.21.
[
−5 3 −10

−9 1 −8

]
6.1.23. A is skew symmetric.

 0 −1 2

1 0 −4

−2 4 0


6.2 · The Matrix Trace
6.2 · Exercises

6.2.1. Not defined; the matrix must be square. 6.2.3. 3
6.2.5. −9 6.2.7. −5

6.2.9. 1 6.2.11. Not defined; the matrix must be square.
6.2.13. 0 6.2.15. n

6.2.17.

(a) tr(A) = −1; tr(B) =; tr(A+B) = 5

(b) tr(AB) = 201 = tr(BA)

6.2.19.

(a) tr(A) = −5; tr(B) = −4; tr(A+B) = −9

(b) tr(AB) = 23 = tr(BA)

6.3 · The Determinant
6.3 · Exercises

6.3.1. 34 6.3.3. −44

6.3.5. −44 6.3.7. 28

6.3.9.

(a) The submatrices are
[
7 6 6 10

]
,[

3 6 1 10
]
, and

[
3 7 1 6

]
, respectively.

(b) C1,2 = 34, C1,2 = −24, C1,3 = 11

6.3.11.

(a) The submatrices are
[
3 10

3 9

]
,[

−3 10 − 9 9
]
, and

[
−3 3 − 9 3

]
,

respectively.

(b) C1,2 = −3, C1,2 = −63, C1,3 = 18

6.3.13. −59 6.3.15. 15
6.3.17. 3 6.3.19. 0
6.3.21. 0 6.3.23. −113

6.3.25. Hint: C1,1 = d.

6.4 · Properties of the Determinant
6.4 · Exercises

6.4.1. 84 6.4.3. 0
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6.4.5. 10 6.4.7. 24
6.4.9. 175 6.4.11. −200

6.4.13. 34

6.4.15.

(a) det(A) = 90; 2R1 → R1

(b) det(B) = 45; 10R1 +R3 → R3

(c) det(C) = 45; C = AT

6.4.17.

(a) det(A) = −16;R1 ↔ R2 thenR1 ↔ R3

(b) det(B) = −16;−R1 → R1 and−R2 → R2

(c) det(C) = −432; C = 3 ∗M

6.4.19. det(A) = 4, det(B) = 4, det(AB) = 16 6.4.21. det(A) = −12, det(B) = 29,
det(AB) = −348

6.4.23. −59 6.4.25. 15
6.4.27. 3 6.4.29. 0

6.5 · Applications of the Determinant
6.5 · Exercises

6.5.1.

(a) det(A) = −123, det(A1) = −492,
det(A2) = 123, det(A3) = 492

(b) x⃗ =

 4

−1

−4



6.5.3.

(a) det(A) = 96, det(A1) = −960,
det(A2) = 768, det(A3) = 288

(b) x⃗ =

−10

8

3


6.5.5.

(a) det(A) = −43, det(A1) = 215, det(A2) = 0

(b) x⃗ =

[
−5

0

]
6.5.7.

(a) det(A) = 16, det(A1) = −64, det(A2) = 80

(b) x⃗ =

[
−4

5

]
6.5.9.

(a) det(A) = 0, det(A1) = 0, det(A2) = 0

(b) Infinitely many solutions exist.

6.5.11.

(a) det(A) = 0, det(A1) = 0, det(A2) = 0,
det(A3) = 0

(b) Infinitely many solutions exist.

6.5.13. A−1 = 1
8

−11 10 13

6 −4 −2

9 −6 −7

 6.5.15. A is not invertible.

6.5.17. A−1 = 1
10


9 5 −12 0

15 13 −26 −4

19 13 −28 −4

2 4 −4 −2


7 · Eigenvalues and Eigenvectors
7.1 · Eigenvalues and Eigenvectors
7.1 · Exercises

7.1.1. λ = 3 7.1.3. λ = −5

7.1.5. λ = −2
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7.1.7. x⃗ =

 3

−7

7

 7.1.9. x⃗ =

−1

1

1


7.1.11. x⃗ =

[
2

3

]

7.1.13. λ1 = 2 with x⃗1 =

10
0

; λ2 = 3 with

x⃗2 =

−1

1

0

; λ3 = 7 with x⃗3 =

−1

15

10


7.1.15. λ1 = −2 with x⃗1 =

00
1

; λ2 = 1 with

x⃗2 =

03
5

; λ3 = 5 with x⃗3 =

287
1


7.1.17. λ1 = −4 with x⃗1 =

−6

1

11

; λ2 = −1 with

x⃗2 =

00
1

; λ3 = 5 with x⃗3 =

31
2


7.1.19. λ1 = −3 with x⃗1 =

[
−2

1

]
; λ2 = 5 with

x⃗2 =

[
6

1

]

7.1.21. λ1 = −5 with x⃗1 =

2413
8

; λ2 = −2 with

x⃗2 =

65
1

; λ3 = 3 with x⃗3 =

01
0


7.1.23. λ1 = −5 with x⃗1 =

[
1

1

]
; λ2 = 2 with

x⃗2 =

[
−4

3

]

7.1.25. λ1 = −5 with x⃗1 =

[
−1

5

]
; λ2 = 5 with

x⃗2 =

[
1

5

] 7.1.27. λ1 = 4 with x⃗1 =

[
9

1

]
; λ2 = 5 with x⃗2 =

[
8

1

]

7.2 · Properties of Eigenvalues and Eigenvectors
7.2 · Exercises

7.2.1.

(a) λ1 = 1 with x⃗1 =

[
4

1

]
; λ2 = 4 with x⃗2 =

[
1

1

]

(b) λ1 = 1 with x⃗1 =

[
−1

1

]
; λ2 = 4 with

x⃗2 =

[
−1

4

]

(c) λ1 = 1/4 with x⃗1 =

[
1

1

]
; λ2 = 1 with

x⃗2 =

[
4

1

]
(d) 5

(e) 4

7.2.3.

(a) λ1 = −1 with x⃗1 =

[
−5

1

]
; λ2 = 0 with

x⃗2 =

[
−6

1

]

(b) λ1 = −1 with x⃗1 =

[
1

6

]
; λ2 = 0 with x⃗2 =

[
1

5

]
(c) A is not invertible.

(d) −1

(e) 0
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7.2.5.

(a) λ1 = −4 with x⃗1 =

−7

−7

6

; λ2 = 3 with

x⃗2 =

00
1

; λ3 = 4 with x⃗3 =

 9

1

22



(b) λ1 = −4 with x⃗1 =

−1

9

0

; λ2 = 3 with

x⃗2 =

−20

26

7

; λ3 = 4 with x⃗3 =

−1

1

0



(c) λ1 = −1/4 with x⃗1 =

−7

−7

6

; λ2 = 1/3 with

x⃗2 =

00
1

; λ3 = 1/4 with x⃗3 =

 9

1

22


(d) 3

(e) −48

7.3 · Eigenvalues and Diagonalization
7.3 · Exercises

7.3.1. cA(x) = (x− 7)(x− 5)(x+ 3)
Eigenvalue λ1 = 7 has algebraic and geometric

multiplicity 1.
Eigenvalue λ2 = 5 has algebraic and geometric

multiplicity 1.
Eigenvalue λ3 = −3 has algebraic and geometric

multiplicity 1.

P =

1 0 0

1 0 1

1 1 1

.

7.3.3. cA(x) = (x− 6)(x− 23)
Eigenvalue λ1 = 6 has algebraic and geometric

multiplicity 1.
Eigenvalue λ2 = 23 has algebraic and geometric

multiplicity 1.

P =

[
7 −1

3 2

]
.

7.3.5. cA(x) = (x+ 1)2(x− 2)
Eigenvalue λ1 = −1 has algebraic and geometric

multiplicity 2.
Eigenvalue λ2 = 2 has algebraic and geometric

multiplicity 1.

P =

−1 −1 1

0 1 1

1 0 1

.

7.3.7. cA(x) = (x− 1)2(x− 2)
Eigenvalue λ1 = 1 has algebraic multiplicity 2 and

geometric multiplicity 1.
Eigenvalue λ2 = 2 has algebraic and geometric

multiplicity 1.
Since the geometric multiplicity of λ1 is less than

its algebraic multiplicity, no such P exists; the matrix
cannot be diagonalized.
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Quick Reference

B.1 Trigonometry Reference

The Unit Circle.

x
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−

√
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−

√
3

2
, 1
2

)
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7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.1.1 Definitions of the Trigonometric Functions
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Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y

Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.1.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.1.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.1.2 Double Angle Formulas
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1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.1.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.1.4 Even/Odd Identities

1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.1.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.1.6 Sum to Product Formulas

List B.1.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)

List B.1.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y
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B.2 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r

Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr r

General Cone

Area of Base = A

Volume = 1
3Ah h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A
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B.3 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)

(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)
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Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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∈, 2
/∈, 2
x-axis, 13
x-coordinate, 13
y-axis, 13
y-coordinate, 13

abscissa, 13
absolute value, 14
adjugate, 321
antisymmetric, 289
augmented matrix, 113

basic solution, 164
basic variable, 135
basis, 267

of a null space, 277

Cartesian coordinate plane, 13
Cartesian coordinates, 13
characteristic polynomial, 331, 353
cofactor, 297

expansion, 299, 307
matrix, 321

column
pivot, 272

column space, 272
column vector, 176
complex conjugate

definition of, 21
properties of, 21

Complex Factorization Theorem,
26

complex number
definition of, 19

complex numbers, 19
addition, 20
equality, 19
multiplication, 20

conjugate of a complex number
properties of, 21

consistent, 133, 166, 167
coordinates

Cartesian, 13
Cramer’s Rule, 319
cross product

applications, 64
area of parallelogram, 64
torque, 67
volume of parallelepiped,
66

definition, 59
properties, 62

dependent
linear, 101

determinant
and elementary row

operations, 310
definition, 301
of 2× 2matrices, 296
of triangular matrices, 309
properties, 314

diagonal
definition, 284

diagonalizable matrix, 357
diagonalization, 356

orthogonal, 361
diagram

Venn Diagram, 3
dimension, 266
distance

between point and plane, 89
between points in space, 30
definition, 14
distance formula, 15

dot product
definition, 45
properties, 46, 47

eigenspace, 354
eigenvalue

389
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definition, 328
finding, 331
properties, 347

eigenvector
see: eigenvalue, 328

elementary matrix, 222
elementary operation, 114
elementary row operation, 114
elementary row operations, 120

and determinants, 310
empty set, 3
equivalence relation, 352

factorization
over the complex numbers, 26

first octant, 30
free variable, 133, 135
Fundamental Theorem of Algebra,

25

Gaussian elimination, 122, 125
backward steps, 124
forward steps, 124

Head To Tail Rule, 36
homogeneous, 162, 166, 167

identity matrix, 193
imaginary unit, 19
inconsistent, 133
independent

linear, 101
initial point, 33
intersection of two sets, 2
inverse

computing, 209
definition, 206
Invertible Matrix Theorem,

215
properties, 215, 220
uniqueness, 208

Invertible Matrix Theorem, 215,
315, 348

Jordan Canonical Form, 360

leading one, 121, 135, 137
linear combination, 97, 179
linear equation, 109
linear transformation

and zero, 252
conditions on, 256
definition, 247
standard matrix of, 251, 253

linearly dependent, 101

linearly independent, 101
lines, 71

equations for, 72
intersecting, 73
parallel, 73
skew, 73

magnitude of vector, 33
matrix

addition, 178
adjugate, 321
arithmetic properties, 182
augmented, 113
cofactor, 297, 321
definition, 176
determinant, 296, 301
diagonal, 284
diagonalizable, 357
elementary, 222
equality, 177
identity matrix, 193
inverse, 206, 209
minor, 297
multiplication, 187
properties, 194

of coefficients, 113
scalar multiplication, 179
similar, 351
the zero matrix, 182
transpose, 283
triangular, 284

matrix transformation, 229
midpoint

definition of, 16
midpoint formula, 16

minor, 297
multiplicity

algebraic, 353
and diagonalization, 360
geometric, 355
of an eigenvalue, 352

norm, 33
normal vector, 84
null space, 275
numbers

complex, 19

octant
first, 30

ordered pair, 13
ordinate, 13
origin, 13
orthogonal, 49

decomposition, 52
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orthogonal decomposition of
vectors, 52

orthogonal projection, 50

parallel vectors, 38
Parallelogram Law, 36
parameter, 133, 135
particular solution, 137
perpendicular|see{orthogonal}, 49
pivot column, 272
planes

coordinate plane, 31
distance between point and

plane, 89
equations of, 85
introduction, 31
normal vector, 84

problem solving, 144
pseudoinverse, 290

quadrants, 14

R, 33
range

of a linear transformation,
271

rank
in terms of column space, 278
in terms of leading 1s, 168

reduced echelon form, 121
reduced row echelon form, 121
relatively prime, 8
right hand rule

of Cartesian coordinates, 29
of the cross product, 63

row echelon form, 121
row vector, 176

scalar, 179
set

definition of, 1
empty, 3
exclusion, 2
inclusion, 2
intersection, 2
roster method, 1
set-builder notation, 1
union, 2
verbal description, 1

set-builder notation, 1
similar matrices, 351

properties of, 352
skew symmetric, 289

definition, 289
theorem, 290

solution, 109
basic, 164
general, 134
infinite, 132
infinitely many, 135, 167
none, 132
particular, 134, 137
types, 132
unique, 132, 167, 211

span, 99
standard unit vector, 252
subset

definition of, 2
subspace, 259

span, 265
trivial, 265

symmetric, 289
definition, 289
theorem, 290

system of linear equations
consistent, 133, 135, 166, 167
definition, 109
homogeneous, 162
inconsistent, 133, 137
solution, 109

terminal point, 33
theorem

Fundamental Theorem of
Algebra, 25

torque, 67
trace

definition, 292
properties, 293

transformation
matrix, 229

transpose, 283
definition, 283
properties, 287
skew-symmetric, 289
symmetric, 289

triangular matrix
definition, 284
determinant, 309

union of two sets, 2
unit vector, 38

properties, 40
standard unit vector, 41

variable
basic, 135
dependent, 135
free, 133, 135
independent, 135
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leading, 133
vector

column, 176
row, 176

vector space, 95
vectors, 33

algebra of, 35
algebraic properties, 38
component form, 34
cross product, 59, 62
definition, 33
dot product, 45–47
Head To Tail Rule, 36
magnitude, 33
norm, 33

normal vector, 84
orthogonal, 49
orthogonal decomposition, 52
orthogonal projection, 50
parallel, 38
Parallelogram Law, 36
resultant, 36
standard unit vector, 41
unit vector, 38, 40
zero vector, 36

Venn Diagram, 3

work, 55

zero matrix, 182
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