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PREFACE

This a custom textbook that covers the entire curriculum (as of September
2017) for the course Math 1560 (Calculus 1) at the University of Lethbridge at
minimal cost to the student. Itis also an Open Education Resource. As a student,
you are free to keep as many copies as you want, for as long as you want. You can
printit, in whole or in part, or share it with a friend. As an instructor, | am free to
modify the content as | see fit, whether this means editing to fit our curriculum,
or simply correcting typos.

Most of this textbook is adapted from the APEX Calculus textbook project,
which originated in the Department of Applied Mathematics at the Virginia Mil-
itary Institute. (See apexcalculus.com.) On the following page you’ll find the
original preface from their text, which explains their project in more detail. They
have produced calculus textbook that is free in two regards: it’s free to download
from their website, and the authors have made all the files needed to produce
the textbook freely available, allowing others (such as myself) to edit the text to
suit the needs of various courses (such as Math 1560).

What’s even better is that the textbook is of remarkably high production
quality: unlike many free texts, it is polished and professionally produced, with
graphics on almost every page, and a large collection of exercises (with selected
answers!).

I hope that you find this textbook useful. If you find any errors, or if you have
any suggestions as to how the material could be better arranged or presented,
please let me know. (The great thing about an open source textbook is that it
can be edited at any time!) In particular, if you find a particular topic that you
think needs further explanation, or more examples, or more exercises, please
let us know. My hope is that this text will be improved every time it is used for
this course.

Sean Fitzpatrick

Department of Mathematics and Computer Science
University of Lethbridge

May, 2018
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PREFACE TO APEX CALCULUS

A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that you may better understand what you will find beyond this
page.

This text is Part | of a three—text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector—valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www . apexcalculus. com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for under
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
a “later section,” though that section does not actually appear in this particular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intentionally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High—level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower—level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and ends with a look ahead
to see how the just—learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “al
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.

IH
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Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 is the addition of interactive, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom infout. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactivate
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, | thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which | am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc 11l while | was still writing the Calc Ill material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what | expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. | am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. | am blessed to
have so many people give of their time to make this book better.



AF,’EX — Affordable Print and Electronic teXts

A%X is a consortium of authors who collaborate to produce high—quality,
low—cost textbooks. The current textbook—writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culus would not exist had not the Virginia Military Institute, through a generous
Jackson—Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github. com/APEXCalculus.

You can learn more at www.vmi . edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

IH

e Numerous typographical and “small” mathematical corrections (again, thanks

to all my close readers!).

e “Large” mathematical corrections and adjustments. There were a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus. com for more information.

¢ More useful numbering of Examples, Theorems, etc. “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

¢ The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

¢ The addition of Chapter 14: Vector Analysis.
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1: LIMITS

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17t century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate x time.” But what if the rate is not constant
— can distance still be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
Isaac Newton and Gottfried Leibniz, are credited with independently formulat-
ing a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundation of “the calculus” is the /imit. It is a tool to describe a par-
ticular behaviour of a function. This chapter begins our study of the limit by
approximating its value graphically and numerically. After a formal definition of
the limit, properties are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An Introduction To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the function y = ? When x is near the value 1, what value (if
any) is y near?

While our question is not precisely formed (what constitutes “near the value
1”7?), the answer does not seem difficult to find. One might think first to look at a
graph of this function to approximate the appropriate y values. Consider Figure
1.1.1, wherey = % is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, theny = % ~ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 1.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

“« ”

sin0 0
R _> —
0 0

The expression “0/0” has no value; it is indeterminate. Such an expression gives

0.8 +

0.6

0.5 1 1.5

Figure 1.1.1: sin(x) /x near x = 1.

0.8 +

t t X
-1 1

Figure 1.1.2: sin(x) /x near x = 0.
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X sin(x)/x

0.9 0.870363

0.99 0.844471
0.999 0.841772

1 0.841471
1.001 0.84117

1.01 0.838447

1.1 0.810189

Figure 1.1.3: Approximate values of

sin(x)/x with x near 1.

X sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001  0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665
Figure 1.1.4: Approximate values of

sin(x)/x with x near 0.

0.34 +

Figure 1.1.5: Graphically approximating a

3

limit in Example 1.1.1.

no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

Finding a limit entails understanding how a function behaves near a particu-
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f. The expression “the
limit of y as x approaches 1” describes a number, often referred to as L, that y
nears as x nears 1. We write all this as

limy = lim f(x) = L.
x—1 x—1
This is not a complete definition; this is a pseudo-definition that will allow us to
explore the idea of a limit. A more detailed, but still informal, definition of the
limit is given in Definition 1.1.1 at the end of this section. The precise definition
is given in the next section.
Above, where f(x) = sin(x)/x, we approximated

. sinx . sinx
lim — ~0.84 and I|lim— 1.
x—1 X x—0 X
(We approximated these limits, hence used the “~” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)

Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can
provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.

Consider again limy_,; sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.1.3.

Notice that for values of x near 1, we have sin(x) /x near 0.841. Thex = 1row
isin bold to highlight the fact that when considering limits, we are not concerned
with the value of the function at that particular x value; we are only concerned
with the values of the function when x is near 1.

Now approximate lim,_,o sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.1.2. The table in Figure 1.1.4
shows the value of sin(x) /x for values of x near 0. Ten places after the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our function at x = 0, only on the behaviour
of the function near 0.

This numerical method gives confidence to say that 1 is a good approxima-
tion of lim,_,q sin(x) /x; that is,

lim sin(x)/x =~ 1.
x—0
Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects
of the limit concept.

Example 1.1.1 Approximating the value of a limit
Use graphical and numerical methods to approximate

] X —x—6
lim ——— .
x—=36x2 —19x +3



SOLUTION To graphically approximate the limit, graph
y=(*—x—6)/(6x* —19x +3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.1.5 and
1.1.6, respectively.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a better approximation.
The graph and the table imply that

) X —x—6
lim ————— ~ 0.294.
x—=36x2 —19x + 3

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be-
haviour of a function. Sometimes a function may act “erratically” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing utilities are very accessible, it makes sense to make proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 1.1.2 Approximating the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

x+1 x<0
o={ 211 55

SOLUTION Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function, so it
behaves differently on either side of 0. Figure 1.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 1.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near O, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that lim,_,o f(x) ~ 1; in fact, we are
probably very sure it equals 1.

1.1 An Introduction To Limits

2

X" —x—6
X 6x2 —19x+3
2.9 0.29878

2.99 0.294569
2.999 0.294163
3 not defined
3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 1.1.6: Numerically approximating
a limit in Example 1.1.1.

f t t > X
-1 —0.5 0.5 1

Figure 1.1.7: Graphically approximating a
limit in Example 1.1.2.

X fx)

0.1 0.9
-0.01 0.99
-0.001  0.999

0.001  0.999999
0.01 0.9999
0.1 0.99

Figure 1.1.8: Numerically approximating
a limit in Example 1.1.2.
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Figure 1.1.9: Observing no limitas x — 1
in Example 1.1.3.

X fix)
0.9 2.01
099  2.0001
0.999  2.000001
1.001  1.001
1.01 1.01
11 1.1

Figure 1.1.10: Values of f(x) nearx = 1in
Example 1.1.3.

100 +

0.5 1 1.5 2

Figure 1.1.11: Observing no limit as x —
1in Example 1.1.4.

X fx)
0.9 100.
099  10000.

0.999 1. x 10°

1.001 1.x 10°
1.01  10000.
1.1 100.

Figure 1.1.12: Values of f(x) nearx = 1in
Example 1.1.4.

Identifying When Limits Do Not Exist

A function may not have a limit for all values of x. That is, we cannot say
limy_cf(x) = L for some numbers L for all values of ¢, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The function f(x) may approach different values on either side of c.
2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches ¢ without approaching a spe-
cific value.

We’'ll explore each of these in turn.

Example 1.1.3 Different Values Approached From Left and Right
Explore why Iimlf(x) does not exist, where
X—

X —2x+3 x<1
f(x):{ X x>1

SOLUTION A graph of f(x) around x = 1 and a table are given in Figures
1.1.9 and 1.1.10, respectively. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the left), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behaviour is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 1.1.4 The Function Grows Without Bound
Explore why lim 1/(x — 1) does not exist.
X—

SOLUTION A graph and table of f(x) = 1/(x — 1)2 are given in Figures
1.1.11 and 1.1.12, respectively. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x — 1)? is very small, and:

1
very small number

= very large number.
Since f(x) is not approaching a single number, we conclude that
lim ———
1 (x — 1)2

does not exist.



Example 1.1.5 The Function Oscillates
Explore why Iirr}) sin(1/x) does not exist.
X—

SOLUTION Two graphs of f(x) = sin(1/x) are given in Figures 1.1.13.
Figure 1.1.13(a) shows f(x) on the interval [—1, 1]; notice how f(x) seems to os-
cillate near x = 0. One might think that despite the oscillation, as x approaches
0, f(x) approaches 0. However, Figure 1.1.13(b) zooms in on sin(1/x), on the
interval [—0.1,0.1]. Here the oscillation is even more pronounced. Finally, in
the table in Figure 1.1.13(c), we see sin(x)/x evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between —1 and 1 infinitely many times! Because of this oscillation,

)!m sin(1/x) does not exist.

1.1 An Introduction To Limits

y
1 1 m
0 [\ /\
1 1 1 > X ; ‘ ‘ > x
—0.5 0.5 1 —0.1 |_ |

=)

=
~
o
.

—0.

(a) (b)

X sin(1/x)
0.1 —0.544021
0.01 —0.506366

0.001 0.82688
0.0001  —0.305614
1. x 10™> 0.0357488
1. x 10~% —0.349994
1. x 107  0.420548

(c)

Figure 1.1.13: Observing that f(x) = sin(1/x) has no limit as x — 0 in Example 1.1.5.

Limits of Difference Quotients

We have approximated limits of functions as x approached a particular num-
ber. We will consider another important kind of limit after explaining a few key
ideas.

Let f(x) represent the position function, in feet, of some particle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that whenx = 1,
the particle is at position 10 ft., and when x = 5, the particle is at 20 ft. Another
way of expressing this is to say

f(1) =10 and f(5) = 20.
Since the particle travelled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:

f6) A1) _ 10 _ ;s
5-1 4

This difference quotient can be thought of as the familiar “rise over run”
used to compute the slopes of lines. In fact, that is essentially what we are
doing: given two points on the graph of f, we are finding the slope of the secant
line through those two points. See Figure 1.1.14.

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,

20 +

10 +

Figure 1.1.14: Interpreting a difference
quotient as the slope of a secant line.
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f
20 |
10 |
t t t X
2 4 6
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Figure 1.1.15: Secant lines of f(x) atx = 1
and x = 1 + h, for shrinking values of h
(i.e., h — 0).

p o fasn s
h
—0.5 9.25
-0.1 8.65
—0.01 8515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 1.1.16: The difference quotient
evaluated at values of h near 0.

consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient is now

fA+h) —f) _fA+h) —f(1)

1+h) -1 h

Let f(x) = —1.5x* + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h # 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x =1

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.15. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

f(i+h) —f1)

im ——"—~- =7
h—0 h

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

Despite the importance of limits to calculus, we often settle for an impre-
cise, intuitive understanding of what the limit of a function means. The precise
definition of the limit omitted from a course like Math 1560, and left for later
courses, such as Math 3500. For this course, we will use the following informal
definition.

Definition 1.1.1 Informal Definition of the Limit

Let / be an open interval containing ¢, and let f be a function defined on
I, except possibly at c. We say that the limit of f(x), as x approaches c, is
L, and write

lim f(x) = L,

X—C

if we can make the value of f(x) arbitrarily close to L by choosing x # ¢
sufficiently close to c.

The formal definition of the limit makes precise the meaning of the phrases
“arbitrarily close” and “sufficiently close”. The problem with the definition we
have given is that, while it gives an intuitive understanding of the meaning of the
limit, it’s of no use for proving theorems about limits. In Section 1.3 we will state
(but not prove) several theorems about limits which will allow use to compute
their values analytically, without recourse to tables of values.



In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. Your instructor may choose to skip Section
1.2, in which case it can be considered optional reading for the interested reader.
In the following exercises, we continue our introduction and approximate the

value of limits.

1.1 An Introduction To Limits



Exercises 1.1
Terms and Concepts 13.

lim f(x), where
X—2
x+2 x<2
1. In your own words, what does it mean to “find the limit of fx) = IX—5 x>2 °
f(x) as x approaches 3”?

14. lim f(x), where

X—3

f(x)z{ X —x+1 x<3

2. An expression of the form % is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5). x+1  x>3

. N . . 15. lim
4. Describe three situations where lim f(x) does not exist. x—0
X—C

f06) = { cosx x<0

f(x), where

2
5. In your own words, what is a difference quotient? X+3x+1 x>0

i 16. lim f(x), where
sin )

6. When xis near 0, Snx is near what value? x—=m/2

X

f(x):{ sinx  x<m/2

cosx x> /2

Problems In Exercises 17 — 24, a function f and a value a are

given. Approximate the limit of the difference quotient,
!n Exercises 7 — :_l6, approximate the given limits both numer- lim fla+h) —f(a) , using h — 40.1, 40.01.
ically and graphically. h—0 h
7. limx’ +3x—5 17. f(x) = -7x+2, a=3

x—1
18. f(x) =9x+0.06, a=—1
8 limx =3¢ +x—5
x—0
19. f(x) =x*+3x—7, a=1

i x+1
9. lim 1
x—0 x2 4+ 3x 20. f(x): , a=2
x+1
10, | ¥ —2x—3 ,
Xmm 21, f(x) = —4x +5x—1, a= -3
X+ 8x+7 22. f(x) =Inx, a=05

11. lim ———
x=—1x2+6x+5
23. f(x) =sinx, a=m

x2+7x+ 10

12. )l{l_rl'\z m 24. f(X) =COosX, a=Tm



1.2 Formal Definition of a Limit

This section introduces the formal definition of a limit. Many refer to this as “the
epsilon, delta,” definition, referring to the letters € and § of the Greek alphabet.

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an x-value, ¢, we say that “the
limit of the function f, as x approaches c, is a value L":

1. if “ytendsto L” as “x tends to ¢.”
2. if “y approaches L” as “x approaches c.”

3. if “yis near L” whenever “x is near c.”

The problem with these definitions (as with Definition 1.1.1 from Section
1.1 is that the words “tends,” “approach,” and especially “near” are not exact.
In what way does the variable x tend to, or approach, c? How near do x and y
have to be to c and L, respectively?

The definition we describe in this section comes from formalizing 3. A quick
restatement gets us closer to what we want:

3'. If xis within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The traditional notation for the x-tolerance is the lower-case Greek letter
delta, or 6, and the y-tolerance is denoted by lower-case epsilon, or £. One
more rephrasing of 3’ nearly gets us to the actual definition:

3”. If x is within § units of ¢, then the corresponding value of y is within € units
of L.

We can write “x is within ¢ units of ¢” mathematically as
|x —c| <4, which is equivalent to c—d<x<c+d.
Letting the symbol “—” represent the word “implies,” we can rewrite 3" as
x—c|<d—|y—Ll<e or C—0<x<c+0—l—-e<y<l+te
The point is that § and ¢, being tolerances, can be any positive (but typically

small) values. Finally, we have the formal definition of the limit with the notation
seen in the previous section.

Definition 1.2.1 The Limit of a Function f

Let / be an open interval containing ¢, and let f be a function defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim f(x) = L,
means that given any ¢ > 0, there exists § > 0 such that for all x # c, if
|x —c| < 9, then |f(x) — L| < e.

1.2 Formal Definition of a Limit
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1
1
1
1
1
~. choose § smaller

1
than each of these:

1
1
1
1
1 width width
h =175 =225
— e ———
!
1

With ¢ = 0.5, we pick any § < 1.75.

Figure 1.2.1: lllustrating the ¢ — § process.
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Note the order in which € and § are given. In the definition, the y-tolerance
€ is given first and then the limit will exist if we can find an x-tolerance § that
works.

An example will help us understand this definition. Note that the explana-
tion is long, but it will take one through all steps necessary to understand the
ideas.

Example 1.2.1 Evaluating a limit using the definition
Show that Iinl VX =2.
X—

SOLUTION Before we use the formal definition, let’s try some numerical
tolerances. What if the y tolerance is 0.5, or ¢ = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

15< y <25
15< /x <25

152 < x <25?
225< x < 6.25.

So, what is the desired x tolerance? Remember, we want to find a symmetric
interval of x values, namely 4 — 6 < x < 4+ §. The lower bound of 2.25is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have § < 1.75. See Figure 1.2.1.

Given the y tolerance ¢ = 0.5, we have found an x tolerance, 6 < 1.75, such
that whenever x is within § units of 4, then y is within ¢ units of 2. That’s what
we were trying to find.

Let’s try another value of €.

What if the y tolerance is 0.01, i.e., ¢ = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have § < 0.0399, which
is the minimum distance from 4 of the two bounds given above.

What we have so far: if e = 0.5, then § < 1.75 and if ¢ = 0.01, then § <
0.0399. A pattern is not easy to see, so we switch to general ¢ try to determine
§ symbolically. We start by assuming y = /x is within & units of 2:

ly—2|<e
—e<y—2<e (Definition of absolute value)
—e<Vx—-2<e¢ (v = vXx)
2—e<Vx<2+e¢ (Add 2)
(2—e)P <x<(2+¢)? (Square all)
4—be4e® <x<b+dbe+¢? (Expand)
4— (4e — %) <x < 4+ (B + £%). (Rewrite in the desired form)



The “desired form” in the last step is “4 — something < x < 4+ something.”
Since we want this last interval to describe an x tolerance around 4, we have that
either § < 4e — 2 or § < 4e + €2, whichever is smaller:

§ < min{de — 2, 4¢ + &°}.

Since ¢ > 0, the minimum is 6 < 4e — £2. That’s the formula: given an ¢, set
d < be — €2

We can check this for our previous values. If ¢ = 0.5, the formula gives
§ < 4(0.5)—(0.5)> = 1.75and when ¢ = 0.01, the formula gives § < 4(0.01)—
(0.01)? = 0.399.

So givenany ¢ > 0, set § < 4c — 2. Thenif [x — 4] < § (and x # 4), then
If(x) — 2] < ¢, satisfying the definition of the limit. We have shown formally
(and finally!) that )!m VX =2.

The previous example was a little long in that we sampled a few specific cases
of € before handling the general case. Normally this is not done. The previous
example is also a bit unsatisfying in that v/4 = 2; why work so hard to prove
something so obvious? Many -9 proofs are long and difficult to do. In this sec-
tion, we will focus on examples where the answer is, frankly, obvious, because
the non—obvious examples are even harder. In the next section we will learn
some theorems that allow us to evaluate limits analytically, that is, without us-
ing the e-6 definition.

Example 1.2.2 Evaluating a limit using the definition
Show that Iirr12x2 =4,
X—

SOLUTION Let’s do this example symbolically from the start. Lete > 0
be given; we want |y — 4| < ¢, i.e., [x* — 4| < . How do we find § such that
when |x — 2| < §, we are guaranteed that |x* — 4| < £?

This is a bit trickier than the previous example, but let’s start by noticing that
|x* — 4] = |x — 2| - |x + 2|. Consider:

€
-4 <e—|x—2| - x+2|<e—|x-2| < ——. (1.2)
|x + 2|
€
Couldwe notsetd = ——?
|x + 2|

We are close to an answer, but the catch is that § must be a constant value (so
it can’t contain x). There is a way to work around this, but we do have to make an
assumption. Remember that ¢ is supposed to be a small number, which implies
that & will also be a small value. In particular, we can (probably) assume that
0 < 1. If this is true, then |x — 2| < § would imply that |x — 2| < 1, giving
1<x<3.

Now, back to the fraction ﬁ Ifl<x<3,then3 <x+2<5(add2
X
to all terms in the inequality). Taking reciprocals, we have

1 1 1
- < <= which implies
5 |x+2] 3 P
1 1
- < which implies
5 |x+2| P
€ €
=< . 1.2
5 |x+2] (2:2)

€
This suggests that we set § < 3 To see why, let consider what follows when

we assume |x — 2| < §:

1.2 Formal Definition of a Limit

One word of caution is needed here. It
may seem a bit annoying/pedantic, but if
we really want to be precise in our argu-
ments, we should point out a flaw in our
“proof”: it won’t work if ¢ > 4. This
shouldn’t really occur since ¢ is supposed
to be small, but it could happen. In the
cases where ¢ > 4, taking 6 = 1 would
do the job. If we want to cover all possi-
bilities, we should define § to be the min-
imum of 1 and 4¢ — &%

Actually, if we’re being really careful, we
should point out that our argument is
flawed as soon as € > 2, since in the
“square all” step, we’d be squaring a neg-
ative number on the left-hand side. (As
we hope the reader is aware, squaring
both sides of an inequality is only a valid
step when both sides are positive.)

11
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length of ¢

: length of
0 =¢/5

Figure 1.2.2: Choosing ¢ = ¢/5 in Exam-
ple 1.2.2.
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x—2| <§

Ix—2| < % (Our choice of 6)
x—2| |x+2| < |x+2\»§ (Multiply by |x + 2)

I — 4] < |x+2|- % (Combine left side)

I — 4| < |x+2|- % <|x+2]- |X<€F72| =¢ (Using(l.2)aslongasd < 1)

We have arrived at |x?> — 4| < ¢ as desired. Note again, in order to make this
happen we needed J to first be less than 1. That is a safe assumption; we want
€ to be arbitrarily small, forcing § to also be small.

We have also picked § to be smaller than “necessary.” We could get by with
a slightly larger 6, as shown in Figure 1.2.2. The dashed outer lines show the
boundaries defined by our choice of €. The dotted inner lines show the bound-
aries defined by setting § = /5. Note how these dotted lines are within the
dashed lines. That is perfectly fine; by choosing x within the dotted lines we are
guaranteed that f(x) will be within ¢ of 4.

In summary, given £ > 0, set 6 = min{1,¢/5}. (We want ¢ < £/5, but
part of our argument relies on the assumption that § < 1, and this fails in the
case that ¢ > 5.) Then |x — 2| < § implies [x* — 4| < e (i.e. [y — 4| < ¢) as

desired. This shows that Iim2 x*> = 4. Figure 1.2.2 gives a visualization of this; by
X—

restricting x to values within § = £/5 of 2, we see that f(x) is within ¢ of 4.
Make note of the general pattern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to
1. start with |[x — ¢| < d and conclude that
2. |f(x) — L <e¢,
we actually start by assuming

1. |[f(x) — L| < ¢, then perform some algebraic manipulations to give an
inequality of the form

2. |x — c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our §. We can refer to this as the “scratch-work” phase
of our proof. Once we have ¢, we can formally start with |[x — ¢| < § and use
algebraic manipulations to conclude that |f(x) — L| < ¢, usually by using the
same steps of our “scratch—work” in reverse order.

We highlight this process in the following example.

Example 1.2.3 Evaluating a limit using the definition
Prove that Iiml(x3 —2x) = —1.
X—

SoLuTION We start our scratch-work by considering |f(x) — (—1)| < e:
f) = (=Dl <e
e —2x+1<e (Now factor)
I(x—1)(*+x—1)|<e¢
€
-1 < 7. 13
Ix — 1] e+ x—1] (13)



We are at the phase of saying that |[x — 1| < something, where something=
e/|¥* + x — 1|. We want to turn that something into 4.

Since x is approaching 1, we are safe to assume that x is between 0 and 2.
So

0<x<?2
0<x* < 4. (squared each term)

Since 0 < x < 2, we can add 0, x and 2, respectively, to each part of the inequal-
ity and maintain the inequality.

0<x*+x<6
—1<x*+x—1<5. (subtracted 1 from each part)

In Equation (1.3), we wanted |x — 1| < £/|x* +x — 1|. The above shows that
given any x in [0, 2], we know that

X +x—1<5 which implies that
1 1
- which implies that
5 X tx—1 P
fo € (1.4)
5 x24x—1 )

So we set 0 < &/5. This ends our scratch-work, and we begin the formal proof
(which also helps us understand why this was a good choice of 4).

Given g, let § < £/5. We want to show that when |x — 1| < 4, then |(x® —
2x) — (—1)| < e. We start with [x — 1] < 4:

x—1] < ¢
€
x—1] < =
5
£ € :

x—1| < < < m (for x near 1, from Equation (1.4))
x—1]- ¥ +x—1] <e
b —2x+1<e¢
0¢ =20 — (-1)| <&,

which is what we wanted to show. Thus lim (x> — 2x) = —1.

x—1

We illustrate evaluating limits once more.

Example 1.2.4 Evaluating a limit using the definition
Prove that lim ¢ = 1.
x—0

SOLUTION Symbolically, we want to take the equation |e¥ — 1| < ¢ and
unravel it to the form |x — 0] < §. Here is our scratch—work:

e =1l <e
—e<ée—-1<e¢ (Definition of absolute value)
l-e<eée<l+e (Add 1)
IN(1—¢)<x<In(l+¢) (Take natural logs)

1.2 Formal Definition of a Limit

13
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Note: RecallIn1 = 0 and Inx < 0 when
0 <x< 1 Soln(l—¢) < 0, hence we
consider its absolute value.

14

Limits

Making the safe assumption that € < 1 ensures the last inequality is valid (i.e.,
sothat In(1—¢) is defined). We can then set § to be the minimum of | In(1 —¢))|
and In(1 + ¢); i.e.,

d=min{|In(1—¢)[,In(1+¢)} =In(1+e¢).

Now, we work through the actual the proof:

[x —0] < 4§
—0<x<d (Definition of absolute value)
—In(l+¢e)<x<In(l+e).
In(1—¢) <x<In(1l+¢). (sinceln(l—¢) < —In(1+¢))

The above line is true by our choice of § and by the fact that since | In(1 — ¢)| >
In(14¢)andIn(l —¢) < 0,weknow In(1—¢) < —In(1+¢).

l-e<eée<l+e (Exponentiate)
—e<e—-1<e (Subtract 1)

In summary, given € > 0, let 6 = In(1 4 ¢). Then |x — 0] < § implies
|e* — 1| < e as desired. We have shown that )!@o e =1

We note that we could actually show that lim,_,. e = e€ for any constant c.
We do this by factoring out e® from both sides, leaving us to show lim,_,. ¥~ ¢ =
linstead. By using the substitution u = x—c, this reduces to showinglim,_,q e =
1 which we just did in the last example. As an added benefit, this shows that in
fact the function f(x) = e* is continuous at all values of x, an important concept
we will define in Section 1.6.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square—
roots and exponentials. It is very difficult to prove, using the techniques given
above, that Xlig})(sin x)/x = 1, as we approximated in the previous section.

There is hope. The next section shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of the following
section are employed.



Exercises 1.2

Terms and Concepts

1. What is wrong with the following “definition” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any § > 0 there exists ¢ > 0
such that whenever |[f(x) — K| < &, we have
|x —al < 6.

2. Which is given first in establishing a limit, the x—tolerance
or the y—tolerance?

3. T/F: € must always be positive.

4. T/F: 6 must always be positive.

Problems
In Exercises 5 — 14, prove the given limit using an ¢ — § proof.

5. lim(2x+5) = 13

lim
x—4

10.

11.

12.

13.

14.

lim(3 —x) = -2

X—5

. lim (* —=3) =6

X—3

. im (¢ +x—5) =15

x—4

- lim (2¢ +3x+1) =6
x—1

lim (x3—1) =7

X—2

lim5=5

X—2

lim (e* —1) =0

x—0

1
lim=-=1
x—1 X

Iin})sinx = 0 (Hint: use the fact that |sinx| < |x|, with
X—>

equality only when x = 0.)

15
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1.3 Finding Limits Analytically

In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi-
mations were correct. Thus far, our method of finding a limit is 1) make a really
good approximation either graphically or numerically, and 2) verify our approx-
imation is correct using a -0 proof.

Recognizing that -6 proofs are cumbersome (and in all likelihood beyond
the scope of your course), this section gives a series of theorems which allow us
to find limits much more quickly and intuitively.

Suppose that limy_,, f(x) = 2 and lim,_,, g(x) = 3. What is lim,_,, (f(x) +
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit Properties

Let b, ¢, L and K be real numbers, let n be a positive integer, and let f and g be
functions with the following limits:

lim f(x) = Land lim g(x) = K.

X—C X—C

The following limits hold.

1. Constants: limb=0>b

X—C

2. ldentity limx=c
X—C

3. Sums/Differences: |i_r>n(f(x) +g(x))=LEK

4. Scalar Multiples: )I(l_rpcb -f(x) = bL

5. Products: lmf(x) -g(x) =LK

6. Quotients: lmf(x)/g(x) =L/K, (K #0)
7. Powers: )I(i_rpcf(x)" ="

8. Roots: Xll_rpc Yfx) = VL

(If n is even then require f(x) > 0on I.)
9. Compositions: Adjust our previously given limit situation to:

limf(x) =L, Im g(x) = Kand g(L) =K.

X—C

Then lim g(f(x)) = K.

X—C

We make a note about Property #8: when n is even, L must be greater than
0. If nis odd, then the statement is true for all L.
We apply the theorem to an example.

Example 1.3.1 Using basic limit properties
Let

limf(x) =2, limg(x)=3 and p(x)=3x*—5x+7.

X—2 x—2

Find the following limits:



1. lim (f(x) + g(x)) 3. lim p(x)

2. le (5f(x) + g(x)?)

SOLUTION

1. Using the Sum/Difference rule, we know that Iir’n2 (fx)+g(x)) =2+3 =
X—>
5.

2. Usingthe Scalar Multiple and Sum/Difference rules, we find that Iim2 (5f(x)+
X—r
g(x)?) =5-2+32=19.

3. Here we combine the Power, Scalar Multiple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-

ted:
li = lim(3x* —5x+7
lim p(x) = lim(3x" — 5x +7)
= lim 3x*> — lim 5x + lim 7
X—2 X—2 X—2
=3.22-5.247

=9

Part 3 of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only
that, recognize that

lim p(x) = 9 = p(2);

xX—2
i.e., the limit at 2 was found just by plugging 2 into the function. This holds
true for all polynomials, and also for rational functions (which are quotients of
polynomials), as stated in the following theorem.

Theorem 1.3.2 Limits of Polynomial and Rational Functions

Let p(x) and g(x) be polynomials and c a real number. Then:
L. lim p(x) = p(c)

2. lim P(x) = @ where g(c) # 0.

x=eq(x)  q(c)

Example 1.3.2 Finding a limit of a rational function
Using Theorem 1.3.2, find

o 3x2 —5x+1
lim ——.
x—>-1 x* —x*+3

SOLUTION Using Theorem 1.3.2, we can quickly state that

o 3x* —5x+1  3(—1)2—5(-1)+1
x=—1 ¥ —x24+3  (=1)4—(-1)2+3

9
=2=3
3

1.3 Finding Limits Analytically
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It was likely frustrating in Section 1.2 to do a lot of work to prove that

limx* =4

X—2
as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function
in Example 1.3.2.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behaviour is particularly “nice” in terms of limits. In the next section, we will
give a formal name to these functions that behave “nicely.”

Theorem 1.3.3 Special Limits

Let ¢ be a real number in the domain of the given function and let n be a positive integer. The
following limits hold:

1. limsinx = sinc 4. limcscx = cscc 7. lima*=a(a > 0)
X—C X—C X—C
2. lim cosx = cosc 5. lim secx = secc 8. limlnx=1Inc
X—C X—C X—C
3. limtanx = tanc 6. lim cotx = cotc im x — 4
X—c x—c¢ S. )|(I_n>’lc\ﬁ( - \ﬁ
Example 1.3.3 Evaluating limits analytically

Evaluate the following limits.

1. lim cosx 4. lim e
X—T x—1

2. lim(sec® x — tan? x) __sinx
x—3 5. lim —

x—0 X

3. lim cosxsinx
x—7/2

SOLUTION

1. Thisisa straightforward application of Theorem 1.3.3. lim cosx = cos 7 =
X—T
—1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 1.3.3, we have:

lim (sec® x — tan? x) = sec? 3 — tan” 3.
X—3

Using the Pythagorean Theorem, this last expression is 1; therefore

lim (sec’ x — tan® x) = 1.
x—3

We can also use the Pythagorean Theorem from the start.

lim (sec® x — tan’x) = lim 1 = 1,
Xx—3 X—3

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 1.3.1 and Theorem 1.3.3 gives

lim cosxsinx = cos(m/2)sin(w/2) =0-1=0.
x—7/2



4. Again, we can approach this in two ways. First, we can use the exponen-

tial/logarithmic identity that e"* = x and evaluate lim e"* = lim x = 1.
x—1 x—1

We can also use the limit Composition Rule of Theorem 1.3.1. Using The-
orem 1.3.3, we have Iim1 Inx = In1 = 0. Applying the Composition rule,
X—

lime™ = lim e = e° = 1.
x—1 x—0

Both approaches are valid, giving the same result.

5. We encountered this limit in Section 1.1. Applying our theorems, we at-
tempt to find the limit as

“ ”

sinx sin0 0

x—=0 X 0 0

This, of course, violates a condition of Theorem 1.3.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are still unable to eval-
uate this limit with tools we currently have at hand.

The section could have been titled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of functions, we can find limits involving sums,
products, powers, etc., of these functions. We further the development of such
comparative tools with the Squeeze Theorem, a clever and intuitive way to find
the value of some limits.

Before stating this theorem formally, suppose we have functions f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

flx) < g(x) < h(x).

If f and h have the same limit at ¢, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 1.3.4 Squeeze Theorem

Let f, g and h be functions on an open interval / containing c such that

forall xin |/,
f(x) < g(x) < h(x).
If
lim £(x) = L = lim h(x),
then
lmg(x) =L

It can take some work to figure out appropriate functions by which to “squeeze”

the given function of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluating
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim X _ 1.
x—0 X

1.3 Finding Limits Analytically
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(1,tan 6)

(cos 8, sin 0)

(170)

Figure 1.3.1: The unit circle and related
triangles.

20

Example 1.3.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

. sinx
lim — = 1.
x—0 X
SOLUTION We begin by considering the unit circle. Each point on the

unit circle has coordinates (cos 8, sin ) for some angle 6 as shown in Figure
1.3.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan €), as shown. (Here we are assuming that0 < 6 < /2.
Later we will show that we can also consider 6 < 0.)

Figure 1.3.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is % tan 6; the area of the sector is §/2; the area of the triangle
contained inside the sector is % sin . It is then clear from the diagram that

tan6 0 sinf
> — > -
2 - 2 -
. 2 ..
Multiply all terms by ——, giving
sin 0
1 0
> — > 1.
cosf — sinf —

Taking reciprocals reverses the inequalities, giving

sinf
cosf < 3 <1.

(These inequalities hold for all values of 8 near 0, even negative values, since
cos(—0) = cos # and sin(—0) = —sin6.)
Now take limits.

. . sind .
limcosf < lim — < lim1
6—0 9—0 6 6—0

. sind
cos0 < lim — <1
0—0 0
. sin@
1<lim——<1
0—0 6
sinf
Clearly this means that lim —— = 1.
6—0 0

Two notes about the previous example are worth mentioning. First, one
might be discouraged by this application, thinking “I would never have come up
with that on my own. This is too hard!” Don’t be discouraged; within this text we
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will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ratio of x and sinx
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functions y = xand y = sinx are
essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.5 Special Limits

Lsinx 3. lim(1+x)r=e 3]
= )ll—% X 1 x—0
_ e -1
2 lim X1 _g 4. lim =1 2 |
" x—0 % x=0 X

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cosx goes to 1. So, in the second limit, both the numerator and

denominator are approaching 0. However, since the limit is 0, we can interpret 1 2 X
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap- Figure 1.3.2: Graphing fin Example 1.3.5
proaching 1 (though never equalling 1), and we know that 1 raised to any power to understand a limit.

is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x — 0, e* approaches 1 “just as fast” as
x — 0, resulting in a limit of 1.

Our final theorem for this section will be motivated by the following exam-
ple.

Example 1.3.5 Using algebra to evaluate a limit

Evaluate the following limit:
2

lim .
x—=1 x—1

SOLUTION We begin by attempting to apply Theorem 1.3.2 and substi-
tuting 1 for x in the quotient. This gives:

) Xzfl 1271 “« »”
lim = =
x—1 x—1 1-1

0
O )
an indeterminate form. We cannot apply the theorem.

By graphing the function, as in Figure 1.3.2, we see that the function seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quotient can be factored:

X*—1  (x—1)(x+1)

x—1 x—1

21
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The function is not defined when x = 1, but for all other x,

X*—1  (x—1)(x+1) {x—h(x+1) 1
x—1 x—1 - *—1 X

Clearly Iim1 x+1 = 2. Recall that when considering limits, we are not concerned
X—r

with the value of the function at 1, only the value the function approaches as x
approaches 1. Since (x> —1)/(x — 1) and x + 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that
X2 -1
lim =
x—1 x—1

2.

The key to the above example is that the functionsy = (x> —1)/(x—1) and
y = x+ 1 are identical except at x = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Theorem 1.3.6 Limits of Functions Equal At All But One Point
Let g(x) = f(x) for all x in an open interval, except possibly at ¢, and let

lim g(x) = L for some real number L. Then
X—C

lim f(x) = L.

X—C

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

X
tional function of the form g(x)/f(x) and directly evaluating the limit lim f‘(())
X—C X
returns “0/0”, then (x — c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 1.3.6. We demon-

strate this once more.

Example 1.3.6 Evaluating a limit using Theorem 1.3.6
) X3 —2x* —5x+6
Evaluate lim .
x—3 2x3 + 3x2 — 32x + 15

SOLUTION We attempt to apply Theorem 1.3.2 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x— 3) is factor of each. Using
whatever method is most comfortable to you, factor out (x—3) from each (using
polynomial division, synthetic division, a computer algebra system, etc.). We
find that

x> —2x* —5x+6 (x=3)(®+x—2)
23 +3x2 —32x+15  (x—3)(2x2+9x—5)°

We can cancel the (x — 3) terms as long as x # 3. Using Theorem 1.3.6 we
conclude:

X =22 —-5x+6 o (x=3)(x*+x-2)
lim = lim
x=3 26 4+ 3x2 —32x+ 15  x=3 (x —3)(2x* + 9x — 5)
(X +x—2)
= lim ——
x=3 (2x2 4+ 9x — 5)
10 1
S 40 4



We end this section by revisiting a limit first seen in Section 1.1, a limit of
a difference quotient. Let f(x) = —1.5x* + 11.5x; we approximated the limit

1+h)—f(1
’I,imow ~ 8.5. We formally evaluate this limit in the following ex-
—>
ample.
Example 1.3.7 Evaluating the limit of a difference quotient

Let f(x) = —1.5x° + 11.5; find Ain’hw.

SOLUTION Since f is a polynomial, our first attempt should be to em-
ploy Theorem 1.3.2 and substitute O for h. However, we see that this gives us
“0/0” Knowing that we have a rational function hints that some algebra will
help. Consider the following steps:

f(l+h) —f(1)

—1.5(14 h)* +11.5(1 + h) — (—1.5(1)? + 11.5(1))

lim = lim

h—0 h h—0 h
—im —1.5(1 +2h + h?) +11.5 + 11.5h — 10
h—0 h
. —1.5h? +8.5h
= lim —
h—0 h
i PCL5h185)
h—0 h
= ’I]iLnO(—l.Sh +8.5) (using Theorem 1.3.6, as h # 0)

= 8.5 (using Theorem 1.3.3)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.3; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 1.6 we give
a name to this nice behaviour; we label such functions as continuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.

1.3 Finding Limits Analytically
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Exercises 1.3

Terms and Concepts In Exercises 15 — 18, use the following information to eval-
uate the given limit, when possible. If it is not possible to
1. Explainin your own words, without using e-6 formality, why determine the limit, state why not.
lim b = b. e limf(x) =2, limf(x)=1, f£f(1)=1/5
x—c x—1 x—10

e limg(x) =0, limgx)=m g¢(10)=m=

2. Explainin your own words, without using -0 formality, why x—=1 x—10

limx =c.

x—e 15. lim f(x)9®

x—1

3. What does the text mean when it says that certain func-

tions’ “behaviour is ‘nice’ in terms of limits”? What, in par- 16. X|Ln’1\0 cos (Q(X))

ticular, is “nice”?

17. lim f(x)g(x)

x—1

4. Sketch a graph that visually demonstrates the Squeeze The-

orem. 18. lim g(5f(x))

x—1

5. You are given the following information:

(@) limf(x)=0
x—1

(b) limg(x)=0
x—1

(c) lim f(x)/g(x) = 2 _3\’
1 20. lim (X 3)

x—»1t\X—F5

What can be said about the relative sizes of f(x) and g(x)
as x approaches 1?

In Exercises 19 — 34, evaluate the given limit.

19. limx* —3x+7
x—3

21. lim cosxsinx

x—7/4
6. T/F: lim Inx = 0. Use a theorem to defend your answer.
x—1
.o 2x—=2
22. lim
x—=1 X+ 4
Problems 23. limInx
x—0
In Exercises 7 — 14, use the following information to evaluate "
. lim

the given limit, when possible. If it is not possible to deter- X33

mine the limit, state why not.
25. lim cscx

e limf(x)=6, Ilimf(x) =9, f(9)=6 x—m/6
Xx—9 X—6
* limg() =3, limg(x)=3, g(6)=9 26. lim In(1 + x)
7. im () + 9(x) L Aenes

x—m 5x2 — 2x — 3

8. lim (3f(x)/g(x))

28. lim 31’( +X1
X—T —_—
- (fx) — 29(x)
9. lim | "2
x—9 g(x) X —4ax—12
29. lm ——
x—6 x2 — 13x + 42
10. lim (&) ,
e \3—g() 30. lim X2
" x=0x2 — 2x
11. Iirr;g(f(x))
x X’ +6x—16
e etz
. X— —
12. lim f(g(x))
. x> —10x+16
. 32. lim ————
13. lim g(f(f(x))) x=2 X —X—2
X—6
2
—5x—14
i —f 2 33, lim >~ X7 %
1. lImf)gb0 = F70) +6°00 X2 1 10x + 16



34, lim X +9x+8 Exercises 39 — 43 challenge your understanding of limits but

x-1x2 —6x—7 can be evaluated using the knowledge gained in this section.
Use the Squeeze Theorem in Exercises 35 — 38, where appro- . sin3x
priate, to evaluate the given limit. 39. XI'_rH) X
1 in5.
35. lim xsin <7> 40. lim 20X
x—0 X x—0 8x
1 . In(1+x)
36. lesinxcos (X—2> 41. Jmf
. 3 . sinx . . .
37. lim f(x), where 3x — 2 < f(x) < x°. 42. Iml) ~ where x is measured in degrees, not radians.
x—1 X—>
38. i here 6x — 9 < < X2 - _X
me(x), where bx < flx) < x 43. Letf(x) = 0and g(x) = <

(a) Show why lim f(x) = 0.
X—2

(b) Show why lim g(x) = 1.
x—0

(c) Show why lim g(f(x)) does not exist.
X—2

(d) Show why the answer to part (c) does not violate the
Composition Rule of Theorem 1.3.1.

25
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The precise versions of these definitions,
in the language of Section 1.2 are as fol-
lows:

For the right-hand limit, lim f(x) = L if

x—ct
and only if for every € > 0, there exists a

6 > Osuchthatifc < x < ¢+ §, then
F0) — 1] <.

The definition of the left-hand limit is sim-
ilar, with the conditionc < x < ¢+ ¢
replacedbyc— 4§ < x < c.

26

1.4 One Sided Limits

We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tedious method for evaluating them. The previous section gave us
tools (which we call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and rational, trigono-
metric, exponential and logarithmic functions (and their sums, products, etc.) all
behave “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we saw three ways in which limits of functions failed to exist:

1. The function approached different values from the left and right,
2. The function grows without bound, and
3. The function oscillates.

In this section we explore in depth the concepts behind #1 by introducing the
one-sided limit. We begin with definitions that are very similar to the definition
of the limit given in Section 1.1, but the notation is slightly different and “x # ¢”
is replaced with either “x < ¢” or “x > ¢.”

Definition 1.4.1 One Sided Limits: Left- and Right-Hand Limits

Left-Hand Limit

Let f be a function defined on (a, ¢) for some a < cand let L be a real
number.

We say that the limit of f(x), as x approaches c from the left, is L, or, the
left—hand limit of f at cis L, and write

lim f(x) =L,

if we can make f(x) arbitrarily close to L by choosing x < c sufficiently
close to c.

Right-Hand Limit

Let f be a function defined on (c, b) for some b > c and let L be a real
number. We say that the limit of f(x), as x approaches ¢ from the right,
is L, or, the right—hand limit of f at cis L, and write

lim f(x) =L,

x—ct

if we can make f(x) arbitrarily close to L by choosing x > c sufficiently
close to c.

Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of x “to the left of ¢,” i.e., where x < c. The admittedly imperfect notation
x — ¢~ is used to imply that we look at values of x to the left of c. The nota-
tion has nothing to do with positive or negative values of either x or c. A similar
statement holds for evaluating right-hand limits; there we consider only values
of x totheright of ¢, i.e., x > ¢. We can use the theorems from previous sections
to help us evaluate these limits; we just restrict our view to one side of c.

We practice evaluating left- and right-hand limits through a series of exam-
ples.



Example 1.4.1 Evaluating one sided limits
<x<
Let f(x) = { 3 ix 2 - i - ; , as shown in Figure 1.4.1. Find each of the
following:
1. lim f(x 5. lim f(x
X*)lff( ) xﬂOJrf( )
2. lim f(x) 6. f(0)
x—1t
: 7. lim f(x
3. )!l_rplf(x) x—>2*f( )
4. f(1) 8. f(2)
SOLUTION For these problems, the visual aid of the graph is likely more

effective in evaluating the limits than using fitself. Therefore we will refer often
to the graph.

1.

As x goes to 1 from the left, we see that f(x) is approaching the value of 1.
Therefore lim f(x) = 1.

x—1-

. Asxgoesto 1 from the right, we see that f(x) is approaching the value of 2.

Recall that it does not matter that there is an “open circle” there; we are
evaluating a limit, not the value of the function. Therefore Iim+ flx) = 2.
x—1

The limit of f as x approaches 1 does not exist, as discussed in the first
section. The function does not approach one particular value, but two
different values from the left and the right.

Using the definition and by looking at the graph we see that f(1) = 1.

As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore Iim+f(x) = 0. Note we cannot consider a left-hand limit at 0 as fis
x—0

not defined for values of x < 0.

. Using the definition and the graph, f(0) = 0.

As x goes to 2 from the left, we see that f(x) is approaching the value of
1. Therefore lim f(x) = 1.

X—2=

The graph and the definition of the function show that f(2) is not defined.

Note how the left and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left and right-hand limits are equal.

Theorem 1.4.1 Limits and One Sided Limits

Let f be a function defined on an open interval / containing c. Then

if, and only if,

limf(x) =L

X—C

lim f(x) =L and lim f(x) =L.

X—c— x—ct

1.4 One Sided Limits

Figure 1.4.1: Agraph of fin Example 1.4.1.
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Figure 1.4.2: A graph of f from Example
1.4.2

0.5 +

Figure 1.4.3: Graphing fin Example 1.4.3

28

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.1 —1.4.4 is that the value of the func-
tion may/may not be equal to the value(s) of its left/right-hand limits, even when
these limits agree.

Example 1.4.2 Evaluating limits of a piecewise—defined function
Let f(x) = (XZ:ZX)Z (1) iiz ; , as shown in Figure 1.4.2. Evaluate the
following.
1. lim f(x) 5. lim f(x)
x—1— x—0t
2. lim f(x) 6. f(0)
x—1t
: 7. lim f(x
3. )Lmlf(x) xaz—f( )
4. (1) 8. f(2)
SOLUTION Again we will evaluate each using both the definition of fand
its graph.

1. As x approaches 1 from the left, we see that f(x) approaches 1. Therefore
lim f(x) = 1.
x—1—

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim f(x) = 1.
x—1+
3. Thelimit of fas x approaches 1 exists and is 1, as fapproaches 1 from both
the right and left. Therefore Iimlf(x) =1
X—r

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim f(x) = 2.

x—0+t

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the left, f(x) approaches 0. So lim f(x) = 0.

X—2~

8. f(2) is not defined as 2 is not in the domain of f.

Example 1.4.3 Evaluating limits of a piecewise—defined function
Let f(x) = { (x _11)2 0= XX§:2,1X 71 , as shown in Figure 1.4.3. Evaluate
the following.

1. Xlln;_ f(x) 3. )I(m f(x)

2. lim f(x) 4. f(1)

x—1+



SOLUTION Itis clear by looking at the graph that both the left and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
ie., Iimlf(x) = 0. It is also clearly stated that f(1) = 1.

X—

Example 1.4.4 Evaluating limits of a piecewise—defined function

2
0<x<1 -
Let f(x) = { 2X—x 1< 1 Z5 0 38 shown in Figure 1.4.4. Evaluate the fol-

lowing.
1. lim f(x 3. lim f(x
X*}l’f( ) X_)]_f( )
2. lim f(x) 4. f(1)
x—1+
SOLUTION It is clear from the definition of the function and its graph

that all of the following are equal:

lim f(x) = xin;+f(x) = lim f(x) = f(1) = 1.

x—1- x—1

In Examples 1.4.1 — 1.4.4 we were asked to find both Iimlf(x) and f(1). Con-
X—
sider the following table:

lim £(x) f(1)
Example 1.4.1 does not exist 1
Example 1.4.2 1 not defined
Example 1.4.3 0 1
Example 1.4.4 1 1

Only in Example 1.4.4 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in the next section, entitled “Continuity.” In short, a continu-
ous function is one in which when a function approaches a value as x — ¢ (i.e.,
when )I(l_rpcf(x) = L), it actually attains that value at c. Such functions behave

nicely as they are very predictable.

1.4 One Sided Limits

Figure 1.4.4: Graphing fin Example 1.4.4
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Exercises 1.4

Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F:If lim f(x) =5, then Iimlf(x) =5
X—

x—1"

3. T/F:If lim f(x) =5,then lim f(x) =5
x—1t

x—1"

4. T/F:If lim f(x) = 5, then lim f(x) =5

x—1—

Problems

In Exercises 5 — 12, evaluate each expression using the given
graph of f(x).

5.
(a) xLiT—f(X) (d) f(1)
LY MY
(©) lim f(x) (f) tim, fx)
6. 1
0.5 |
(@ lim ) (d) £(1)
(5) im0 @ A
(©) lim f(x) (f) fim, f(x)

10.

0.5 | }
+ i + > X
(a) Xlﬁirpf fx) (d) f(1)
(b) XiTJrf(x) (e) xiT*f(X)
(€) lim f(x) (i, )
(a) Xirp_f(x) (c) )!'L“lf(x)
(b) lim f(x) (d) f(1)
x—1+
(a) XET— f(x) (c) Jmf(X)
(b) lim f(x) (d) f(1)
72 S ks e
(a) Xlﬁirgg f(x) (c) Xli_rgf(X)
(b) lim f(x) (d) f(0)
x—0t



(a) lim f(x) (e) lim f(x)
X——2" X—2—
(b) lim  f(x) (f) XL";\J(X)
(c) Xinlzf(x) (8) X“_f;ﬂzf(x)
(d) f(—=2) (h) f(2)
12. ‘ ‘ .
43 2l 12 3 a4

Let —3 < a < 3 be aninteger.

(a) Iimif(x) (c) Ii_r'{lf(x)
(b) lim f(x) (d) f(a)

In Exercises 13 — 21, evaluate the given limits of the piecewise

defined functions f.

x+1 x<1
13-f(X)={X275 x>1
(a) xirln_f(x) (c) X'mf(x)
(b) lim f(x) (d) £(2)
x—1+
2 +5x—1 x<0
14. f(x):{ sin x x>0
(a) Xlﬁirpff(X) (c) Xli_rQ)f(X)
(b) lim f(x) (d) f(0)
x—01
X —1 x< —1
15. fx) =< x¥* 41 —1<x<1
X +1 x>1
(@ lim f(x) (e) lim f(x)
x——1— x—1—
(b) lim _f(x) (f) lim f(x)
@ Jim, S0 &) im0
(d) f(-=1) (h) f(2)

cos x x<m
16. f(x):{ sin x x>
(a) lim f(x) (@) lim £(x)
(b) lim_f(x) (d) f(m)
1 — cos?x x<a
17. f(x):{ sin? x x>a'’
where a is a real number.
(a) lim f(x) (c) Ii_r)rlf(x)
(b) lim_f(x) (d) f(a)
x+1 x <1
18. f(x) = 1 x=1
x—1 x>1
(a) Jim fx) (c) lim f(x)
(b) lim f(x) (d) f(2)
x—11
X x <2
19. f(x) = x+1 x=2
- +2x+4 x>2
(a) XE@[ f(x) (c) Xlij}f(X)
(b) lim f(x) (d) f(2)
x—2+
[ ax=b)"+c x<b
20. fx) = { alx—b)+c  x>b
where g, b and c are real numbers.
(@) lim f(x) (c) lim f(x)
Xx—b— x—b
(b) lim f(x) (d) f(b)
x—bt
. % x#0
21.f(x)_{ 5 DS
(a) Xlﬁirgg fx) (c) lim f(x)
(b) lim f(x) (d) £(0)
x—0t
Review
2
22. Evaluate the limit: lim X2+57X+4
x——1x>—3x—14
2
23. Evaluate the limit: lim 2)(;16
x——4 x> — 4x — 32
24. Evaluate the limit: lim w
x——6 X? — 6x
. L. . o X —4.4x+ 1.6
25. Approximate the limit numerically: X|_I}I’(l’;4 e _oax
2
26. X +58x—1.2

Approximate the limit numerically: lim ————————.
x—0.2 x2 — 4.2x + 0.8

31



Chapter 1 Limits

Figure 1.5.1: Graphing f(x) = 1/x* for
values of x near 0.

32

1.5 Limits Involving Infinity

In Definition 1.1.1 we stated that in the equation lim f(x) = L, both cand L were
X—C

numbers. In this section we relax that definition a bit by considering situations
when it makes sense to let ¢ and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x?, as shown in Figure 1.5.1.
Note how, as x approaches 0, f(x) grows very, very large —in fact, it grows without
bound. It seems appropriate, and descriptive, to state that

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notation such as

We explore both types of use of oo in turn.

Definition 1.5.1 Limit of Infinity, co

Let / be an open interval containing ¢, and let f be a function defined on
1, except possibly at c.

¢ The limit of f(x), as x approaches ¢, is infinity, denoted by

g gn) = oo,
if we can obtain any arbitrarily large value for f(x) by choosing x #
c sufficiently close to c.

¢ The limit of f(x), as x approaches c, is negative infinity, denoted
by
)l(l_l’\;]Cf(X) = —00,
if we can obtain any arbitrarily large negative value for f(x) by
choosing x # c sufficiently close to c.

This is once again an informal definition, like Definition 1.1.1: we say that if
we get close enough to ¢, then we can make f(x) as large as we want, without
giving precise answers to the questions “How close?” or “How large?”

It is important to note that by saying lim f(x) = oo we are implicitly stating

X—C

that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descriptive.

We define one-sided limits that approach infinity in a similar way.
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Definition 1.5.2 One-Sided Limits of Infinity

e Let fbe a function defined on (a, c) for some a < c.

The limit of f(x), as x approaches c from the left, is infinity, or, the
left-hand limit of f at c is infinity, denoted by

lim f(x) = oo,

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to ¢, wherea < x < c.
* Let fbe a function defined on (c, b) for some b > c.

The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

xl—i:?*f(X) %

if we can obtain any arbitrarily large value for f(x) by choosing x
sufficiently close to ¢, where ¢ < x < b.

¢ The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 1.5.1.

Example 1.5.1 Evaluating limits involving infinity y
N 1 -

Find )!l_r;nl m as shown in Figure 1.5.2. 100 1

SOLUTION In Example 1.1.4 of Section 1.1, by inspecting values of x 50 |

close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the func-
tion does appear to be growing larger and larger, as f(.99) = 10%, f(.999) = 108,
£(.9999) = 108. A similar thing happens on the other side of 1. In general, we ; ; X
can see that as the difference |x — 1| gets smaller, the value of f(x) gets larger 0.5 1 15 2

and larger, so we may say Iim1 1/(x — 1)* = co.
X—

Figure 1.5.2: Observing infinite limit as
x — 1in Example 1.5.1.

y

Example 1.5.2 Evaluating limits involving infinity 50 4
1
Find lim —, as shown in Figure 1.5.3.
x—0 X
: f T T X
. . . —1 —0.5 0.5 1
SOLUTION It is easy to see that the function grows without bound near
0, but it does so in different ways on different sides of 0. Since its behaviour is not
1
consistent, we cannot say that Iim0 — = 00. However, we can make a statement %
x—0 X — I
1 1
about one—sided limits. We can state that lim — =ocoand lim — = —cc. 1
x—=0t X x—=0~ X Figure 1.5.3: Evaluating Iir’rz) =,
x—0 X
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10 |

—10

3x
x2—4

Figure 1.5.4: Graphing f(x) =

f t = X
-1 1 2

Figure 1.5.5: Graphically showing that
2 J—

1
flx) = X I does not have an asymp-
X —

toteatx = 1.

34

Vertical asymptotes

The graphs in the two previous examples demonstrate that if a function f has a
limit (or, left- or right-hand limit) of infinity at x = ¢, then the graph of f looks
similar to a vertical line near x = c. This observation leads to a definition.

Definition 1.5.3 Vertical Asymptote

Let / be an interval that either contains c or has c as an endpoint, and let
fbe a function defined on /, except possibly at c.

If the limit of f(x) as x approaches c from either the left or right (or both)
is 0o or —oo, then the line x = c is a vertical asymptote of f.

Example 1.5.3 Finding vertical asymptotes
3x
Find the vertical asymptotes of f(x) = — 2
X p—
SOLUTION Vertical asymptotes occur where the function grows without

bound; this can occur at values of ¢ where the denomina