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PREFACE

This a custom textbook that covers the entire curriculum (as of September
2017) for the course Math 2560 (Calculus Il) at the University of Lethbridge at
minimal cost to the student. Itis also an Open Education Resource. As a student,
you are free to keep as many copies as you want, for as long as you want. You can
printit, in whole or in part, or share it with a friend. As an instructor, | am free to
modify the content as | see fit, whether this means editing to fit our curriculum,
or simply correcting typos.

Most of this textbook is adapted from the APEX Calculus textbook project,
which originated in the Department of Applied Mathematics at the Virginia Mil-
itary Institute. (See apexcalculus.com.) On the following page you’ll find the
original preface from their text, which explains their project in more detail. They
have produced calculus textbook that is free in two regards: it’s free to download
from their website, and the authors have made all the files needed to produce
the textbook freely available, allowing others (such as myself) to edit the text to
suit the needs of various courses (such as Math 2560).

What’s even better is that the textbook is of remarkably high production
quality: unlike many free texts, it is polished and professionally produced, with
graphics on almost every page, and a large collection of exercises (with selected
answers!).

I hope that you find this textbook useful. If you find any errors, or if you have
any suggestions as to how the material could be better arranged or presented,
please let me know. (The great thing about an open source textbook is that it
can be edited at any time!) In particular, if you find a particular topic that you
think needs further explanation, or more examples, or more exercises, please
let us know. My hope is that this text will be improved every time it is used for
this course.

Sean Fitzpatrick

Department of Mathematics and Computer Science
University of Lethbridge

May, 2018


http://www.apexcalculus.com
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PREFACE TO APEX CALCULUS

A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that you may better understand what you will find beyond this
page.

This text is Part | of a three—text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector—valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www . apexcalculus. com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for under
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
a “later section,” though that section does not actually appear in this particular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intentionally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High—level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower—level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and ends with a look ahead
to see how the just—learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “al
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.
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Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 is the addition of interactive, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom infout. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactivate
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, | thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which | am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc 1l while | was still writing the Calc Ill material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what | expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. | am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. | am blessed to
have so many people give of their time to make this book better.



AF,’EX — Affordable Print and Electronic teXts

A%X is a consortium of authors who collaborate to produce high—quality,
low—cost textbooks. The current textbook—writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culus would not exist had not the Virginia Military Institute, through a generous
Jackson—Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github. com/APEXCalculus.

You can learn more at www.vmi . edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

IH

¢ Numerous typographical and “small” mathematical corrections (again, thanks

to all my close readers!).

e “Large” mathematical corrections and adjustments. There were a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus. com for more information.

¢ More useful numbering of Examples, Theorems, etc. “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

¢ The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

¢ The addition of Chapter 14: Vector Analysis.
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6: TECHNIQUES OF
ANTIDIFFERENTIATION

In Calculus | you learned techniques that allow you to compute the derivative
of practically any function you can conceive of creating using the elementary
functions (polynomial, rational, exponential, logarithmic, trigonometric, etc.).
You also learned how to define integration using Riemann sums, and saw how
the Fundamental Theorem of Calculus relates integration to the antiderivative.

Computing antiderivatives is generally more difficult than computing deriva-
tives. As an example, finding the derivative of f(x) = x? sin x is simple but we do
not yet know how to find an antiderivative of f. Worse, we can find the deriva-
tive of y = exz, but its antiderivatives cannot be written in terms of elementary
functions.

Despite this latter difficulty, there are still broad classes of functions for
which we can find antiderivatives. This chapter is dedicated to learning tech-
niques to enable us to compute the antiderivatives of a wide variety of func-
tions.

6.1 Substitution

We motivate this section with an example. Let f(x) = (x* 4+ 3x — 5)%°. We can
compute f’(x) using the Chain Rule. It is:

f/(x) =10(x* +3x — 5)° - (2x + 3) = (20x + 30)(x* + 3x — 5)°.

Now consider this: What is ['(20x -+ 30)(x* + 3x — 5)° dx? We have the answer
in front of us;

/(20x +30)(* +3x—5)%dx = (x* +3x - 5)° - C.

How would we have evaluated this indefinite integral without starting with f(x)
as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form
J f(x) dx as a not—so—complicated integral [ h(u) du. We'll formally establish
later how this is done. First, consider again our introductory indefinite integral,
J(20x + 30)(x* + 3x — 5)° dx. Arguably the most “complicated” part of the
integrand is (x2 + 3x — 5)9. We wish to make this simpler; we do so through a
substitution. Let u = x2 + 3x — 5. Thus

(x* +3x—5)° =u°.
We have established u as a function of x, so now consider the differential of u:
du = (2x + 3)dx.

Keep in mind that (2x+3) and dx are multiplied; the dx is not “just sitting there.”
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Return to the original integral and do some substitutions through algebra:
/(20x +30)()* +3x—5)% dx = / 10(2x + 3)(x* + 3x — 5)° dx

:/10(x2+3x—5)9 (2x+3) dx
N— — —

u du

= / 10u° du

= y'° + C  (replace u with x* + 3x — 5)
=(*+3x-5Y+cC
One might well look at this and think “I (sort of) followed how that worked, but
| could never come up with that on my own,” but the process can be learned.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.
We stated before that integration by substitution “undoes” the Chain Rule.

Specifically, let F(x) and g(x) be differentiable functions and consider the deriva-
tive of their composition:

Thus

/ F(g(x))g’ (x) dx = F(g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x) and
replacing it with a variable. By setting u = g(x), we can rewrite the derivative

as J
= (F(u)) =F'(u)u'.

Since du = g’(x)dx, we can rewrite the above integral as

/F'(g(x))g'(x) dx = /F’(u)du =F(u)+ C=F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 6.1.1 Integration by Substitution

Let Fand g be differentiable functions, where the range of g is an interval
I contained in the domain of F. Then

If u = g(x), then du = g’(x)dx and

/F’(g(x))g’(x) dx = /F’(u) du=F(u)+C=F(g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step [ F'(u) du = F(u)+ Clooks easy, as the antiderivative of the derivative of F
is just F, plus a constant. The “work” involved is making the proper substitution.



There is not a step—by—step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 6.1.1 Integrating by substitution

Evaluate /xsin(x2 +5) dx.

SOLUTION Knowing that substitution is related to the Chain Rule, we
choose to let u be the “inside” function of sin(x* +5). (This is not always a good
choice, but it is often the best place to start.)

let u = x> + 5, hence du = 2xdx. The integrand has an xdx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

1
du =2xdx = Edu = xdx.
We can now substitute.

. 2 _ f 2
/xsm(x +5) dx—/sm(x +5) xdx

u ldu
1
:/fsinudu
2

1

= 75 cosU + C  (now replace u with x* + 5)
1 2

=3 cos(x* +5) +C.

Thus [ xsin(x? +5) dx = —3 cos(x* + 5) + C. We can check our work by eval-
uating the derivative of the right hand side.

Example 6.1.2 Integrating by substitution
Evaluate / cos(5x) dx.

SOLUTION Again let u replace the “inside” function. Letting u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equation by 5 to obtain %du = dx. We can now substitute.

/cos(Sx) dx = /COS(\L)\dL

u tdu
1
/fcosudu
5
= 1sinu—i—C
5

1.
=< sin(5x) + C.
We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the

6.1 Substitution
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inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 6.1.1 Substitution With A Linear Function

Consider [ F’(ax + b) dx, where @ # 0 and b are constants. Letting
u = ax + b gives du = a - dx, leading to the result

1
/F’(ax +b) dx = EF(aX—i— b) +C.

Thus [ sin(7x — 4) dx = —1 cos(7x — 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it after going through all of the steps.

Example 6.1.3 Integrating by substituting a linear function
Evaluate / —— dx.
—-3x+1
SoLuTioN View the integrand as the composition of functions f(g(x)),

where f(x) = 7/x and g(x) = —3x + 1. Employing our understanding of substi-
tution, we let u = —3x+ 1, the inside function. Thus du = —3dx. The integrand
lacks a —3; hence divide the previous equation by —3 to obtain —du/3 = dx.
We can now evaluate the integral through substitution.

/ 7 /7du
——dx= | ——
—3x+1 u-—-3

=7 [du

"3 ) u

:iln|u|+C
3

7
=3[ —3x+1[+C

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = —3. One may
want to continue writing out all the steps until they are comfortable with this
particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.4 Integrating by substitution
Evaluate / sin x cos x dx.

SOLUTION There is not a composition of function here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is often beneficial to think “If | let u be this, then du must be
that ...” and see if this helps simplify the integral at all.

In this example, let’s set u = sinx. Then du = cos x dx, which we have as




part of the integrand! The substitution becomes very straightforward:

/sinxcosxdx:/udu

! 24 cC
= —u
2

= 1sin2x+c
= :

One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral letting u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 6.1.5 Integrating by substitution
Evaluate / XvVX + 3 dx.
SOLUTION Recognizing the composition of functions, set u = x + 3.

Then du = dx, giving what seems initially to be a simple substitution. But at this
stage, we have:

/x\/x+3dx: /xﬁdu.
We cannot evaluate an integral that has both an x and an v in it. We need to
convert the x to an expression involving just u.

Since we set u = x4+ 3, we can also state that u — 3 = x. Thus we can replace
. . . . . 1
x in the integrand with u — 3. It will also be helpful to rewrite v/u as u2.

/X\/mdx:/(u—3)u%du
:/(u%—Su%)du

2 s 3
:§u2—2u2+C

2
g(x+3)? —2(x+3): +C

Checking your work is always a good idea. In this particular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 6.1.6 Integrating by substitution
1
Evaluate / — dx.
xInx
SOLUTION This is another example where there does not seem to be

an obvious composition of functions. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

6.1 Substitution
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Choosing u = 1/x makes du = —1/x* dx; that does not seem helpful. How-
ever, setting u = Inx makes du = 1/x dx, which is part of the integrand. Thus:

—fdx
xlnx Inx x

:/fdu

u
=Inlu|+C
=In|lnx| +C.

The final answer is interesting; the natural log of the natural log. Take the deriva-
tive to confirm this answer is indeed correct.

Integrals Involving Trigonometric Functions

Section 6.3 delves deeper into integrals of a variety of trigonometric func-
tions; here we use substitution to establish a foundation that we will build upon.

The next three examples will help fill in some missing pieces of our antideriva-
tive knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.7 Integration by substitution: antiderivatives of tan x
Evaluate /tanxdx.

SOLUTION The previous paragraph established that we did not know
the antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite integral.

Rewrite tan x as sinx/ cosx. While the presence of a composition of func-
tions may not be immediately obvious, recognize that cos x is “inside” the 1/x
function. Therefore, we see if setting u = cos x returns usable results. We have
that du = — sin x dx, hence —du = sin x dx. We can integrate:

smx
tanx dx =
cosx
sin x dx

_/cosx%/—/
\'\/" —du

:/idu

—Inul+C

= —In|cosx| + C.

Some texts prefer to bring the —1 inside the logarithm as a power of cos x, as in:

—In|cosx| +C=In|(cosx) |+ C

=1In +C

cos x
=In|secx| + C.

Thus the result they give is [tanx dx = In|secx| + C. These two answers are
equivalent.

248



Example 6.1.8 Integrating by substitution: antiderivatives of sec x

Evaluate/secxdx.

SOLUTION This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
Illll as

secx + tanx

secx +tanx’

This may seem like it came out of left field, but it works beautifully. Consider:

" secx + tanx
secxdx = [ secx. ———  dx
secx + tanx

sec? x + secxtanx
= dx
secx + tanx

Now let u = secx + tanx; this means du = (secxtanx + sec? x) dx, which is
our numerator. Thus:

du

u

=Inlul+C

=In|secx +tanx| + C.

We can use similar techniques to those used in Examples 6.1.7 and 6.1.8
to find antiderivatives of cot x and cscx (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.2 Antiderivatives of Trigonometric Functions
1. /sinxdx: —cosx+ C 4, /cscxdx: —In]|cscx + cotx| + C
2. /cosxdx:sinx+C 5. /secxdx:ln|secx+tanx|+C

3. /tanxdx:—ln|cosx|+C 6. /cotxdx:ln|sinx|—|—(.‘

We explore one more common trigonometric integral.

Example 6.1.9 Integration by substitution: powers of cos x and sin x
Evaluate / cos? x dx.

SOLUTION We have a composition of functions as cos? x = (cos x)z.
However, setting u = cos x means du = — sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos? x (per-
haps consult the back of this text for this formula), which states

1 + cos(2x)

cos’x =
2

6.1 Substitution

249



Chapter 6 Techniques of Antidifferentiation

250

The right hand side of this equation is not difficult to integrate. We have:

1 2
/coszxdx:/%s(x)dx
1 1
= P 2 .
/(2 + 2cos( x)) dx

Now use Key Idea 6.1.1:

1 sin(2x)
2 2

L +C
2

1 sin(2x)

2

X+ ——=4+C.
et

We'll make significant use of this power—reducing technique in future sections.
Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integration is tenuous and one may think that working with
the integrand will improperly change the results. Integration by substitution
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integration
easier to perform.

Example 6.1.10 Integration by substitution: simplifying first

31 4x% +8x+5
EvaIuate/X A Xt dx
x24+2x+1

SOLUTION One may try to start by setting u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with rational functions (i.e., quotients made up of polynomial
functions), it is an almost universal rule that everything works better when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x? 4 2x + 1 is divided
into x3 + 4x% 4 8x + 5, it goes in x + 2 times with a remainder of 3x + 3. Thus

X +4x +8x+5 g X+B
R+2x+1 X4 2x+1

Integrating x + 2 is simple. The fraction can be integrated by setting u = x* +
2x+ 1, giving du = (2x + 2) dx. This is very similar to the numerator. Note that



du/2 = (x + 1) dx and then consider the following:
>+ 4x° +8x+5 3x+3
/X+X+X+ dx:/ X+2+L dx
XX+ 2x+1 X2+ 2x+1

:/@+aw+/i&iﬁ—w

X2 +2x+1

—1%+u+c+/3w
T2 ! u2

1, 3
=X +2x+C1+£In\u|+Cz

1, 3 2
=X +2x+5|n|x +2x+ 1|+ C.
In some ways, we “lucked out” in that after dividing, substitution was able to be
done. In later sections we’ll develop techniques for handling rational functions
where substitution is not directly feasible.

Example 6.1.11 Integration by alternate methods
x4+ 2x+3

N
SOLUTION We already know how to integrate this particular example.
. 1 . . .
Rewrite v/x as x2 and simplify the fraction:

Evaluate dx with, and without, substitution.

x> +2x+3 3 1 1
— = x2 +2x2 +3x" 2.
X172

We can now integrate using the Power Rule:

24 2x+3 3 1 .
/ﬂdx—/(xE +2x5+3x_5) dx
x1/2

R A B
—X =X X
5 3
This is a perfectly fine approach. We demonstrate how this can also be solved
using substitution as its implementation is rather clever.
Letu = /x = x7; therefore

1 1 1
du=>x"idx=——dx = 2du= — dx
2 2y/x VX
2+ 2x+3
This gives us % dx = /(x2 + 2x+ 3) - 2 du. What are we to do
X

with the other x terms? Since u = x%, u? = x, etc. We can then replace x? and
x with appropriate powers of u. We thus have

X2+ 2x+3

T X:/(X2+2X+3)'2du

= /2(u4+2u2+3) du

25 43
=-uv+-=-u+6u+C

50 73
2 14 ted 4
= =X —X X
5 3 ’

6.1 Substitution
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which is obviously the same answer we obtained before. In this situation, sub-
stitution is arguably more work than our other method. The fantastic thing is
that it works. It demonstrates how flexible integration is.

Substitution and Inverse Trigonometric Functions

When studying derivatives of inverse functions, we learned that

1

d 1)
—(tan x)fm.

dx
Applying the Chain Rule to this is not difficult; for instance,

5

d 1 _
—(tan"'5x) = Troee

dx
We now explore how Substitution can be used to “undo” certain derivatives that

are the result of the Chain Rule applied to Inverse Trigonometric functions. We
begin with an example.

Example 6.1.12 Integrating by substitution: inverse trigonometric functions
1
Evaluate dx
25 + x2
SOLUTION The integrand looks similar to the derivative of the arctan-

gent function. Note:

11
25+x2  25(1+ %)
B 1
25(1+ (5)°)
B 1
B ()]

Thus
1 1 1
X 1+ (3)

This can be integrated using Substitution. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus

1 1 1
/725+2dx:£ 7X2dx
X 1+ (%)

Example 6.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.
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Theorem 6.1.3 Integrals Involving Inverse Trigonometric Functions

Leta > 0.
1 1 X
1. /7dx: Ztan~! (f) +C
a2 4 x2 a a

1 X
2. | ———dx=sin"? (7)+c
/\/az—x2

1 1
3. | ———=dx==-sec!
/x\/x2 —a? a ( a

Let’s practice using Theorem 6.1.3.

Example 6.1.13 Integrating by substitution: inverse trigonometric functions
Evaluate the given indefinite integrals.
1 1 1
1. | ——dx 2. | ————dx 3. | —— dx.
./9-1-)(2 -/x /x2 _ L /\/S—X2
100

SOLUTION Each can be answered using a straightforward application of
Theorem 6.1.3.

1 1 _1 X
1. ———dx=—tan "= +C asa =3.
9+ x2 3 3

dx =10sec ' 10x+ C,as a = ;5.

/ 1
2. _—
1
X\ /X* — 156
-1 X

1
/ V5—x2 V5
Most applications of Theorem 6.1.3 are not as straightforward. The next

examples show some common integrals that can still be approached with this
theorem.

+C asa=+/b5.

Example 6.1.14 Integrating by substitution: completing the square
1
Evaluate / —  dx
x2 —4x+13

SOLUTION Initially, this integral seems to have nothing in common with
the integrals in Theorem 6.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. Itis, however, related to the arctangent function.

We see this by completing the square in the denominator. We give a brief
reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have the form of
x% 4+ bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
l.e.,

2 bZ
xz—i—bx—i—c:xz—i—bx—kz—z +c

(x+b/2)?

= X—i—é 2+c—b—2
o 2 4

6.1 Substitution
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In our example, we take half of —4 and square it, getting 4. We add/subtract it
into the denominator as follows:

1 1
X2 —4x+13 XX —4x+4—-4+13
N———
(x—2)?
B 1
 (x—2)2+9

We can now integrate this using the arctangent rule. Technically, we need to
substitute first with u = x — 2, but we can employ Key Idea 6.1.1 instead. Thus
we have

1 1 1. x-=2
——dx= | —————dx=—-tan - —— +C.
x> —4x+13 (x—2)2+9 3 3
Example 6.1.15 Integrals requiring multiple methods
/ 4 —x dx
Vie—x2
SOLUTION This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral:

Evaluate

4 —x 4 X
7dx:/7dx—/7dx.
V16 — x? V16 — x? V16 — x?
The first integral is handled using a straightforward application of Theorem 6.1.3;
the second integral is handled by substitution, with u = 16 —x%. We handle each

separately.
/ 4 dx—4sin*1X+C
V16 — x? 4 '
" X
————dx: Setu = 16 — x%, so du = —2xdx and xdx = —du/2. We
/ V16 — x2
have
—du/2
/ X = [
V16 — X2 Vu
1 1
=—— [ —du
2 / Vu
=—Ju+C

=16 —x2 +C.

Combining these together, we have

4 —x X
— = _dx=4sin"'Z 416 —x2+C
V16 — x? 4

Substitution and Definite Integration
This section has focused on evaluating indefinite integrals as we are learning
a new technique for finding antiderivatives. However, much of the time integra-

tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:
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b
1. Start with a definite integral / f(x) dx that requires substitution.
a

2. Ignore the bounds; use substitution to evaluate /f(x) dx and find an an-
tiderivative F(x).
b

= F(b) — F(a).

a

3. Evaluate F(x) at the bounds; that is, evaluate F(x)

This workflow works fine, but substitution offers an alternative that is powerful
and amazing (and a little time saving).

At its heart, (using the notation of Theorem 6.1.1) substitution converts inte-
grals of the form [ F’(g(x))g’(x) dx into an integral of the form [ F'(u) du with
the substitution of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the substitution is performed.

Theorem 6.1.4 Substitution with Definite Integrals

Let Fand g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then

b g(b)
/ F'(g(x))g’(x) dx = / F'(u) du.
a g(a)

In effect, Theorem 6.1.4 states that once you convert to integrating with re-
spect to u, you do not need to switch back to evaluating with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and substitution: changing the bounds
2
Evaluate / cos(3x — 1) dx using Theorem 6.1.4.
0

SOLUTION Observing the composition of functions, let u = 3x — 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x — 1, we are implicitly stating that g(x) = 3x — 1. Theorem
6.1.4 states that the new lower bound is g(0) = —1; the new upper bound is
g(2) = 5. We now evaluate the definite integral:

2 5
d
/ cos(3x — 1) dx = / cosu™
0 —1 3
1 5
= —sin u’
3 -1

= %(sinS —sin(—1)) ~ —0.039.
Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this particular situation, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

6.1 Substitution

1 y =cos(3x — 1)
0.5%
| : ! ; x

(b)

Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example

6.1.16.
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1 i
y = sinx cos x
0.5
f X
1 g\
—0.5 1
(a)
y
1 y=u
0.5
t u
1 3
—0.5 1

(b)
Figure 6.1.2: Graphing the areas de-

fined by the definite integrals of Example
6.1.17.
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Example 6.1.17 Definite integrals and substitution: changing the bounds

/2
Evaluate/ sin x cos x dx using Theorem 6.1.4.
0

SOLUTION We saw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the latter here.

Let u = g(x) = cos x, giving du = — sin x dx and hence sinx dx = —du. The
new upper bound is g(7/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

w/2 0
/ sinxcosx dx = / —u du  (switch bounds & change sign)
0 1

1
/udu
0

1,1
—u-| =1/2.
2 ‘o /

In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundation on which most
other integration techniques are based.



Exercises 6.1

Terms and Concepts
1. Substitution “undoes” what derivative rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems

In Exercises 3 — 14, evaluate the indefinite integral to develop
an understanding of Substitution.

3. /.%x2 (x3—5)7dx

a. /(2x—5)(x2—5x+7)3dx
5. /x(x2+1)8dx

6. /(12x+ 14) (3¢ 4+ 7x — 1) dx
7. /2)(7%0—701)(

' 1
8. ——dx
/VU+3

X dx
vVX+3

X3 — X
10. d
/ Vx X

e X
11. d
Vo
X
12. | ———dx
/\/x5+1

1
=+1
13. /"+ dx
XZ

14. /@dx

In Exercises 15 — 24, use Substitution to evaluate the indefi-
nite integral involving trigonometric functions.

15. /sinz(x) cos(x)dx

16. /coss(x) sin(x)dx

17. [ cos(3 — 6x)dx

18. sec’

19. sec

21. xcos

22. tan

23. cotx dx. Do not just refer to Theorem 6.1.2 for the an-

/
o
/
o /m w0
/
e
/

swer; justify it through Substitution.

24, /cscx dx. Do not just refer to Theorem 6.1.2 for the an-
swer; justify it through Substitution.

In Exercises 25 — 32, use Substitution to evaluate the indefi-
nite integral involving exponential functions.

25. /e3x71dx
26. /exaxzdx

27. /ex T2t (x — 1)dx
28, /ex—&—l
29/

ex
30. /e —e”
31 /3xdx

32. / 4%dx

In Exercises 33 — 36, use Substitution to evaluate the indefi-
nite integral involving logarithmic functions.

33, /Inx

34. /(Inxx)zdx
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35. /@dx
1
36. /mdx

In Exercises 37 — 42, use Substitution to evaluate the indefi-
nite integral involving rational functions.

2
37. / wdx

38.

39.

2
41 /3x 5x—|—7dx
x+1

2
4y [ XE2XFT
x3 4 3x2 4 3x

In Exercises 43 — 52, use Substitution to evaluate the indefi-
nite integral involving inverse trigonometric functions.

43.

! X
x2+7

44.

/;dx

V9 — x2
14

45, ———dx

/ V5 —x?

46.

/#dx
XVx2 —9

47.

5
—dx
/ Vx* — 16x2

48.

/ X

N

29. / Y
X2 —2x+8

50. / R —
V—x*+6x+7

51.

/*w
vV—x2+8x+9

52. [ >
X2 + 6x + 34

In Exercises 53 — 78, evaluate the indefinite integral.
2
J 0 +3)
54. / (3 + 2x) (55 + 5% +2)" dx
X

55. ———dx
/ V1—x2
56. /x2 esc? (x* + 1) dx
57. /sin(x)\/cos(x)dx

58. /sin (5x + 1) dx

59.
60.
3x
/3x 44X +2x— 22
61.
X2 +3x+5

2
62. X7 g
x+7x+3
63. / 92x+3 Px+3) 4
3x2+ 9%+ 7

6 —x +14x* — 46x — 7
x2 —7x+1

dx

X
65. —d.
/x4+81 x
66. /#dx
4x2 +1
67 /¥dx
' xVax2 —1

1
68. ——dx
/ V16 — 9x?2

0. [ - H=2 4
x2 —2x+10

7 — 2x
X
x2—|—12x+61

71 / x> 4+5x—2 X Ax—2
x2 — 10x + 32

70.

X



3 p—
73. /Adx
X2 +4x+9
74, / _sinb) g
cos?(x) +1
75. /,?’Adx
sin®(x) + 1

cos(x)
76. / Tt sin2(x) dx

3x—3

77. ————dx
VX2 —2x—6

78. de
VX2 —6x+8

In Exercises 79 — 86, evaluate the definite integral.

3
1
79./ dx
1 X—5

80

81.

82.

83.

84.

85.

86

6
./X\/X—de
2

T/2
)
/ sin® x cos x dx

—7/2
1
/ 2x(1 — x*) dx
0

-1
/ (x+ l)e)‘ZH’(+1 dx

2

1
1
[ e
1 1+x

4 1
/zidx
, X —6x+10

V3 1
L
1 \/4*X2
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6.2 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:

/xcosxdx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

The Product Rule says that if u and v are functions of x, then (uv)’ = u’v+uv’.
For simplicity, we’ve written u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives

/(uv)’dx = /(u’v+ uv’) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The right
side can be broken up into two integrals, and we have

uv:/u’vdx—i—/uv’dx.

Solving for the second integral we have

/uv’dx:uv—/u’vdx.

Using differential notation, we can write du = u’(x)dx and dv = v’(x)dx and
the expression above can be written as follows:

/udv:uv—/vdu.

This is the Integration by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 6.2.1 Integration by Parts

Let u and v be differentiable functions of x on an interval / containing a

and b. Then
/udv:uv—/vdu7

Xx=b b Xx=b
/ udv=uv| — / vdu.
x=a a x=a

Let’s try an example to understand our new technique.

and

Example 6.2.1 Integrating using Integration by Parts

Evaluate /xcosx dx.

SOLUTION The key to Integration by Parts is to identify part of the in-
tegrand as “u” and part as “dv.” Regular practice will help one make good iden-
tifications, and later we will introduce some principles that help. For now, let
u = xand dv = cos x dx.



6.2 Integration by Parts

It is generally useful to make a small table of these values as done below.
Right now we only know u and dv as shown on the left of Figure 6.2.1; on the
right we fill in the rest of what we need. If u = x, then du = dx. Since
dv = cos x dx, v is an antiderivative of cos x. We choose v = sin x.

u=x v="7" u==x vV =sinx

=
du="7 dv = cos x dx du = dx dv = cosx dx

Figure 6.2.1: Setting up Integration by Parts.

Now substitute all of this into the Integration by Parts formula, giving

/xcosxdx:xsinx—/sinxdx.

We can then integrate sin x to get — cos x + C and overall our answer is
/xcosx dx = xsinx 4+ cosx + C.

Note how the antiderivative contains a product, xsinx. This product is what
makes Integration by Parts necessary.

The example above demonstrates how Integration by Parts works in general.
We try to identify u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the Integration by Parts formula, f vdu will be simpler to integrate
than the original integral f udv.

In the example above, we chose u = xand dv = cos xdx. Then du = dx was
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integrating x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, | = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = Exponential.

If the integrand contains both a logarithmic and an algebraic term, in general
letting u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example 6.2.2 Integrating using Integration by Parts
Evaluate / xe* dx.

SOLUTION The integrand contains an Algebraic term (x) and an Exponential
term (e*). Our mnemonic suggests letting u be the algebraic term, so we choose
u = xand dv = e*dx. Thendu = dxand v = e* as indicated by the tables below.

u=x v="7> u=x v=2¢e
du="7 dv = e* dx du = dx dv = e* dx

Figure 6.2.2: Setting up Integration by Parts.
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We see du is simpler than u, while there is no change in going from dv to v.
This is good. The Integration by Parts formula gives

/xexdx:xex—/e"dx.

The integral on the right is simple; our final answer is
/xexdx:xe"—ex+c.
Note again how the antiderivatives contain a product term.

Example 6.2.3 Integrating using Integration by Parts

Evaluate /x2 cos X dx.

SOLUTION The mnemonic suggests letting u = x? instead of the trigono-
metric function, hence dv = cosxdx. Then du = 2xdx and v = sin x as shown
below.

u=x v="7" u=x? vV =sinx

=
du="7? dv = cos x dx du=2xdx dv=cosxdx

Figure 6.2.3: Setting up Integration by Parts.

The Integration by Parts formula gives
/x2 cosxdx = x*sinx — / 2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do Integration by Parts again. Here we
choose u = 2x and dv = sinx and fill in the rest below.

u=2x v=" N u=2x V= —CoSXx
du="7? dv = sinx dx du = 2dx dv = sinx dx

Figure 6.2.4: Setting up Integration by Parts (again).

/x2 cosxdx = x*sinx — (—Zxcosx— /—2cosxdx>.

The integral all the way on the right is now something we can evaluate. It eval-
uates to —2 sinx. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

/xzcosxdx:xzsinx+2xcosx— 2sinx + C.

Example 6.2.4 Integrating using Integration by Parts

Evaluate / e cos x dx.

SOLUTION This is a classic problem. Our mnemonic suggests letting u
be the trigonometric function instead of the exponential. In this particular ex-
ample, one can let u be either cos x or €*; to demonstrate that we do not have



to follow LIATE, we choose u = e* and hence dv = cosxdx. Then du = e*dx
and v = sin x as shown below.

u=-e v="7 u=-¢e" v =sinx
=

du="7 dv = cos x dx du=¢edx dv=cosxdx

Figure 6.2.5: Setting up Integration by Parts.

Notice that du is no simpler than u, going against our general rule (but bear
with us). The Integration by Parts formula yields

/excosx dx = e*sinx — /exsinxdx.
The integral on the right is not much different than the one we started with, so
it seems like we have gotten nowhere. Let’s keep working and apply Integration
by Parts to the new integral, using u = e* and dv = sin x dx. This leads us to the

following:

u=-e* v="7 u=¢e V= —Cosx

=
du=7? dv = sinx dx du=¢€e"dx dv=sinxdx

Figure 6.2.6: Setting up Integration by Parts (again).
The Integration by Parts formula then gives:
/ e*cosxdx = e*sinx — (e" cosXx — / —e* cosxdx)
= e*sinx + e*cosx — /e"cosxdx.

It seems we are back right where we started, as the right hand side contains
f e* cos x dx. But this is actually a good thing.

Add /e" cos x dx to both sides. This gives

Z/e" cosx dx = e*sinx + X cos x

Now divide both sides by 2:

/e" cosx dx =

Simplifying a little and adding the constant of integration, our answer is thus

(e*sinx + e* cosx).

N =

1
/e*cosxdx = Ee* (sinx + cos x) + C.

Example 6.2.5 Integrating using Integration by Parts: antiderivative of In x
Evaluate / In x dx.

SOLUTION One may have noticed that we have rules for integrating the
familiar trigonometric functions and e*, but we have not yet given a rule for

6.2

Integration by Parts
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integrating Inx. That is because Inx can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its antiderivative by a
clever application of Integration by Parts. Set u = Inx and dv = dx. Thisis a
good, sneaky trick to learn as it can help in other situations. This determines
du = (1/x) dx and v = x as shown below.

u=lInx v="7" N u=lInx V=x
du=7? dv = dx du=1/xdx dv = dx

Figure 6.2.7: Setting up Integration by Parts.

Putting this all together in the Integration by Parts formula, things work out

very nicely:
1
/Inxdx:xlnx—/xfdx.
X

The new integral simplifies to f 1 dx, which is about as simple as things get. Its
integral is x + C and our answer is

/Inxdx:xlnx—x+C.

Example 6.2.6 Integrating using Int. by Parts: antiderivative of arctan x

Evaluate/arctanxdx.

SOLUTION The same sneaky trick we used above works here. Let u =
arctanx and dv = dx. Then du = 1/(1 + x*) dx and v = x. The Integration by
Parts formula gives

X
arctanxdx = xarctanx — | —— dx.
1+ x2

The integral on the right can be solved by substitution. Taking u = 1 + x%, we
get du = 2x dx. The integral then becomes

1 1
/arctanxdx:xarctanx— E/fdu.
u

The integral on the right evaluates to 1 In |u|+C, which becomes % In(1+x?)+C.
Therefore, the answer is

1
/arctanxdx = xarctanx — > In(1+x*) +C.



6.2

Substitution Before Integration

When taking derivatives, it was common to employ multiple rules (such as
using both the Quotient and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integration techniques. In
particular, here we illustrate making an “unusual” substitution first before using
Integration by Parts.

Example 6.2.7 Integration by Parts after substitution
Evaluate / cos(In x) dx.

SOLUTION The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = Inx, we have du =
1/x dx. This seems problematic, as we do not have a 1/x in the integrand. But
consider:

1
du = —dx = x-du=dx.
X

Since u = In x, we can use inverse functions and conclude that x = e“. Therefore
we have that

dx =x-du
=e'du.

We can thus replace In x with u and dx with e¥ du. Thus we rewrite our integral

as
/cos(lnx) dx = /e“ cos u du.

We evaluated this integral in Example 6.2.4. Using the result there, we have:

/cos(lnx) dx = /e” cosu du

1
= Ee"(sinu—i—cosu) +C
1
= Ee'”"(sin(lnx) + cos(Inx)) + C

= %x(sin(ln x) + cos(Inx)) + C.

Definite Integrals and Integration By Parts

So far we have focused only on evaluating indefinite integrals. Of course, we
can use Integration by Parts to evaluate definite integrals as well, as Theorem
6.2.1 states. We do so in the next example.

Example 6.2.8 Definite integration using Integration by Parts

2
Evaluate / X% In x dx.
1

SOLUTION Our mnemonic suggests letting u = Inx, hence dv = x? dx.
We then get du = (1/x) dx and v = x*/3 as shown below.

Integration by Parts
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u=Inx v="7? N u=Inx v=1x/3
du=7? dv = x* dx du=1/xdx dv=x*dx

Figure 6.2.8: Setting up Integration by Parts.

The Integration by Parts formula then gives

2 3 2 2.3
X x 1
XInxdx==—Inx| — Z Zdx
J1 3 1 J1 3 x
2
3 2,0
= —Inx| — — dx
37, Ji 3
2 2
x3 x3
=—Inx| ——
1 9
2
X3 x3
= Inx — —
9 1

3

8 8 1 1
Sih2—=)—(Zm1-2
3 9 3 9

=]
N
\

I
[CoR RN

Il
P Wl —~ — w

o
N

Q

In general, Integration by Parts is useful for integrating certain products of
functions, like [xe*dx or [x*sinxdx. It is also useful for integrals involving
logarithms and inverse trigonometric functions.

As stated before, integration is generally more difficult than derivation. We
are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar—looking integrals

X X2 X3
xe* dx, xe* dx and xe* dx.

While the first is calculated easily with Integration by Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to Substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. The next section focuses on handling integrals containing trigono-
metric functions.
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Exercises 6.2

Terms and Concepts

1.

T/F: Integration by Parts is useful in evaluating integrands
that contain products of functions.

. T/F: Integration by Parts can be thought of as the “opposite

of the Chain Rule.”

. For what is “LIATE” useful?

. T/F:If the integral that results from Integration by Parts ap-

pears to also need Integration by Parts, then a mistake was
made in the orginal choice of “u”

Problems

In Exercises 5 — 34, evaluate the given indefinite integral.

10.

11.

12.

13.

14.

15.

16.

17.

. /xsinxdx

X sinx dx

X sinx dx
xe* dx

x e dx

xe > dx

e sinx dx

e” cos x dx
e” sin(3x) dx
e cos(5x) dx
sin x cos x dx

sin~

e
]
]
e
/¥
/
/
/¢
J
/¢
/
fon

18. /tan_l(ZX) dx
19. /xtan_lxdx
20. /sin_lxdx
21. /xlnxdx

22, /(X—Z)Inxdx
23. /xln(xf 1) dx
24, /xln(xz) dx
25. /x Inx dx

26. /(Inx) dx
27. /(In(x+ 1)) dx
28. /xseczxdx

29. /xcsczxdx
30. /xﬂdx
31. /xmdx
32. /secxtanxdx
33. /xsecxtanxdx

34. /xcscxcotx dx

In Exercises 35 — 40, evaluate the indefinite integral after first
making a substitution.

35. /sin(lnx) dx

36. /ezx cos (€*) dx
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37. /sin(ﬁ) dx

38. /In(ﬁ) dx

39. /eﬁdx
40. /e'"xdx

In Exercises 41 — 49, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 5 — 13.

41. / xsin x dx
0

1
42. / xe ™ dx
-1

43.

44,

45.

46.

47.

48.

49.



6.3 Trigonometric Integrals

Functions involving trigonometric functions are useful as they are good at de-
scribing periodic behaviour. This section describes several techniques for find-
ing antiderivatives of certain combinations of trigonometric functions.

Integrals of the form / sin x cos” x dx

In learning the technique of Substitution, we saw the integral f sin x cos x dx
in Example 6.1.4. The integration was not difficult, and one could easily evaluate
the indefinite integral by letting u = sin x or by letting u = cos x. This integral is
easy since the power of both sine and cosine is 1.

We generalize this integral and consider integrals of the form f sin™ x cos” x dx,
where m, n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the identity cos? x + sin®x = 1 to convert high powers of one
trigonometric function into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Key Idea 6.3.1 Integrals Involving Powers of Sine and Cosine

Consider / sin™ x cos” x dx, where m, n are nonnegative integers.

1. If mis odd, then m = 2k + 1 for some integer k. Rewrite

sin™ x = sin® ™ x = sin® xsinx = (sin® x)* sinx = (1 — cos” x)* sin x.
Then
.m n 2 Nk n 2\k n
/sm X cos xdx:/(l—cos x)“sinxcos” x dx = —/(1—u )u” du,
where u = cosx and du = — sin x dx.

2. If nis odd, then using substitutions similar to that outlined above we have
/sin'"xcos"xdx = /u"’(l —u*) du,
where u = sinx and du = cos x dx.

3. If both m and n are even, use the power—reducing identities

1+ cos(2 1 — cos(2
1+cos(2) 4 gin?x = LT C0s(20)

2
cos” x =
2 2

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.

We practice applying Key Idea 6.3.1 in the next examples.

Example 6.3.1 Integrating powers of sine and cosine

Evaluate / sin® x cos® x dx.

SOLUTION The power of the sine term is odd, so we rewrite sin® x as

sin® x = sin® xsinx = (sin?x)? sinx = (1 — cos” x)’ sin x.

Our integral is now /(1 — cos? x)% cos® xsin x dx. Let u = cos x, hence du =

6.3 Trigonometric Integrals
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— sinx dx. Making the substitution and expanding the integrand gives
/(1 — cos?)? cos® xsinx dx = — /(1 — )2t du = — / (1—2v +u*)u du
=— / (u® = 20" + u™?) du.

This final integral is not difficult to evaluate, giving

1 2 1
8 10 12 9 11 13
— u® —2u u)du=—-u —u — —u C
/( + u*?) 5Y 17 R

1 9 2 11 1 13
= ——C0S"X+ —cos x— —cos x—+ C.
9 * 11 13 +

Example 6.3.2 Integrating powers of sine and cosine

Evaluate / sin® x cos® x dx.

SOLUTION The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 6.3.1 to either power. We choose
to work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos® x as

cos® x = cos® x cos x
= (cos® x)* cos x
= (1 —sin’x)* cosx

= (1 — 4sin®x + 6sin* x — 45sin® x + sin® x) cos x.

We rewrite the integral as
/ sin® x cos® x dx = / sin® x(1 — 4sin*x + 6 sin® x — 4sin® x + sin® x) cos x dx.

Now substitute and integrate, using u = sin x and du = cos x dx.

sin® x(1— 4sin*x+ 6sin*x — 4sin® x + sinsx) cosx dx =

/us(l — 4 +6u' —au® + ¥ du = / (v —au” +60° — 4u™ +u®) du

1e 15 0 15 14

3 1
=—-u u+—u ut+ —u

C
6 2 5 3 14 *

1 1 3 . 10
= =sinx— =sin"x+ —sin" x4+ ...
6 2 +5 +

1 . 12 1 . 14
— —sin"" x4+ —sin" x+ C.
3 * 14 *

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.
Nowadays problems of this sort are often solved using a computer algebra sys-
tem. The powerful program Mathematica® integrates f sin® x cos® x dx as

_ 45cos(2x) 5cos(4x)  19cos(6x)  cos(8x) cos(10x) cos(12x) cos(14x)

foo = 16384 8192 49152 4096 81920 24576 114688 ’

which clearly has a different form than our answer in Example 6.3.2, which is

1.6 1.3 3 10 1.1 1 .14
X) = =sin°x — =sin“x+ —sin™ x — =sin™" x + — sin™" x.
9(x) 6 2 Jr5 3 Jr14
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Figure 6.3.1 shows a graph of f and g; they are clearly not equal, but they differ
only by a constant. That is g(x) = f(x) + C for some constant C. So we have
two different antiderivatives of the same function, meaning both answers are
correct.

Example 6.3.3 Integrating powers of sine and cosine

Evaluate / cos* xsin? x dx.

SOLUTION The powers of sine and cosine are both even, so we employ
the power—-reducing formulas and algebra as follows.

/cos4xsin2xdx: / <1+°‘2’5(2X)>2 (1—c§s(2X)> dx

/ 1+ 2 cos(2x) + cos?(2x) 1 — cos(2x) J
= . X
4 2

— / é(l + cos(2x) — cos?(2x) — cos’(2x)) dx

The cos(2x) term is easy to integrate, especially with Key Idea 6.1.1. The cos?(2x)
term is another trigonometric integral with an even power, requiring the power—
reducing formula again. The cos®(2x) term is a cosine function with an odd
power, requiring a substitution as done before. We integrate each in turn below.

/cos(Zx) dx = %sin(Zx) +C

1 4 1 1
/cosz(Zx) dx = /%S(X) dx = E<X+ 2 sin(4x)) + C.

Finally, we rewrite cos®(2x) as
cos®(2x) = cos?(2x) cos(2x) = (1 — sin®(2x)) cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence
/cos3(2x) dx = / (1 — sin®(2x)) cos(2x) dx
1
= [ Z1-u))d
[0 du

l(u 1u3) +C
2 3

= %(sin(Zx) - %sin3(2x)> +C

Putting all the pieces together, we have

1
/cos4xsin2xdx = / §(1 + cos(2x) — cos?(2x) — cos®(2x)) dx

6.3 Trigonometric Integrals

0.004 | g(x)
0.002 +
— X
1 2 3
—0.002 | F(x)

Figure 6.3.1: A plot of f(x) and g(x) from
Example 6.3.2 and the Technology Note.

_1 [er %sin(Zx) - %(er %sin(4x)) - %(sin(Zx) - %sin3(2x))} +C

8
1r1 1 1
3 [Ex ~3 sin(4x) + A sin3(2x)} +C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.
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Integrals of the form/sin(mx) sin(nx) dx,/cos(mx) cos(nx) dx,

and/sin(mx) cos(nx) dx.

Functions that contain products of sines and cosines of differing periods are
important in many applications including the analysis of sound waves. Integrals
of the form

/sin(mx) sin(nx) dx, /cos(mx) cos(nx) dx and /sin(mx) cos(nx) dx

are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) = {cos ((m — n)x) — cos ((m + n)x)}

cos(mx) cos(nx) = {cos ((m —n)x) + cos ((m + n)x)}

NIRPNIRLRN|RP

sin(mx) cos(nx) = [sin ((m — n)x) +sin ((m + n)x)}

Example 6.3.4 Integrating products of sin(mx) and cos(nx)
Evaluate /sin(Sx) cos(2x) dx.

SOLUTION The application of the formula and subsequent integration
are straightforward:

/sin(Sx) cos(2x) dx = / % [sin(Sx) + sin(7x)} dx

1 1
= cos(3x) — 1 cos(7x) + C

Integrals of the form / tan” x sec” x dx.

When evaluating integrals of the form fsin’"xcos"x dx, the Pythagorean
Theorem allowed us to convert even powers of sine into even powers of cosine,
and vice—versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a function using pow-
ers of cos x, leading to an easy substitution.

The same basic strategy applies to integrals of the form ftan’"xsec”x dx,
albeit a bit more nuanced. The following three facts will prove useful:

e Z(tanx) = sec’x,

d —
* ~(secx) = secxtanx,and

e 1+ tan? x = sec? x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec? x term with the re-
maining secant power even, or if a secxtan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple substitution. This strategy is outlined in the following Key Idea.



6.3 Trigonometric Integrals

Key Idea 6.3.2 Integrals Involving Powers of Tangent and Secant

Consider /tan”’ xsec” x dx, where m, n are nonnegative integers.

1. If nis even, then n = 2k for some integer k. Rewrite sec” x as

k

sec” x = sec® x = sec* 2 xsec? x = (1 + tan® x)* " sec? x.

Then
/tan’"xsec"xdx: /tan"’x(l—ktanzx)k_1 sec’ x dx = /u’"(l—i—uz)"_1 du,

where u = tan x and du = sec? x dx.

2. If mis odd, then m = 2k + 1 for some integer k. Rewrite tan” x sec” x as

2k+1

tan” xsec” x = tan xsec” x = tan* xsec" ! xsec xtan x

= (sec?x — 1)¥sec" ! xsecxtan x.

Then
/tan’"xsec"xdx = /(seczx —1)¥sec" ! xsecxtanx dx = /(u2 — k" du,

where u = secx and du = secxtanx dx.

3. If nis odd and m is even, then m = 2k for some integer k. Convert tan™ x to (sec? x — 1). Expand
the new integrand and use Integration By Parts, with dv = sec? x dx.

4. If mis even and n = 0, rewrite tan” x as

tan™ x = tan™ % xtan® x = tan™ % x(sec* x — 1) = tan™ 2 sec’ x — tan™ 2 x.

/tanmxdx:/tanm_2 secxdx — /tanm_zxdx )

apply rule #1 apply rule #4 again

So

The techniques described in items 1 and 2 of Key Idea 6.3.2 are relatively
straightforward, but the techniques in items 3 and 4 can be rather tedious. A
few examples will help with these methods.

Example 6.3.5 Integrating powers of tangent and secant

Evaluate / tan? x sec® x dx.

SOLUTION Since the power of secant is even, we use rule #1 from Key
Idea 6.3.2 and pull out a sec? x in the integrand. We convert the remaining pow-
ers of secant into powers of tangent.

/tanzxsecsxdx: /tanzxsec4xsec2xdx

= /tanzx(l—l—tanzx)zseczxdx
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Now substitute, with u = tan x, with du = sec? x dx.

= /uz(l—i—uz)2 du

We leave the integration and subsequent substitution to the reader. The final
answer is

= 1tan3x+ 2tan5x+ 1tan7x+C
3 5 7 '

Example 6.3.6 Integrating powers of tangent and secant
Evaluate /sec3x dx.

SOLUTION We apply rule #3 from Key Idea 6.3.2 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use Integra-
tion by Parts; the rule suggests letting dv = sec? x dx, meaning that u = secx.

u = secx v=" u = secx v =tanx
=

du="7? dv = sec? x dx du = secxtanxdx dv = sec®xdx

Figure 6.3.2: Setting up Integration by Parts.

Employing Integration by Parts, we have

sec®xdx = [ secx-sec®xdx
S -
u

dv

= secxtanx — /secxtanzxdx.
This new integral also requires applying rule #3 of Key Idea 6.3.2:
= secxtanx — /secx( sec’ x — 1) dx
:secxtanx—/secaxder/secxdx
= secxtanx — /secsxder In | secx + tan x|

In previous applications of Integration by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding fsec3x dx to
both sides, giving:

2/sec3xdx:secxtanx+|n\secx+tanx\

' 1
/sechdx: E(secxtanerIn|secx+tanx|) +C

We give one more example.

Example 6.3.7 Integrating powers of tangent and secant
Evaluate /tansxdx.
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SOLUTION We employ rule #4 of Key Idea 6.3.2.

/tanexdx: /tan4xtan2xdx

= /tan4x(sec2x— 1) dx

:/tan4xsec2xdx—/tan4xdx

Integrate the first integral with substitution, u = tan x; integrate the second by
employing rule #4 again.

1
= gtansx—/tanzxtanzxdx

1
= gtansx— /tanzx(seczx— 1) dx
1
= gtansx—/tanzxseczxdx—&-/tanzxdx

Again, use substitution for the first integral and rule #4 for the second.

1 1
= gtansx— gtan3x+/(seczx— 1) dx

1 5 1 3
:gtan x—gtan X+ tanx — x+ C.

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

The next section introduces an integration technique known as Trigonomet-
ric Substitution, a clever combination of Substitution and the Pythagorean The-
orem.
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Exercises 6.3

Terms and Concepts

. T/F: / sin® x cos® x dx cannot be evaluated using the tech-

niques described in this section since both powers of sin x
and cos x are even.

. T/F: / sin® x cos® x dx cannot be evaluated using the tech-

niques described in this section since both powers of sin x
and cos x are odd.

. T/F: This section addresses how to evaluate indefinite inte-

.5 3
grals such as/sm xtan” x dx.

. T/F: Sometimes computer programs evaluate integrals in-

volving trigonometric functions differently than one would
using the techniques of this section. When this is the case,
the techniques of this section have failed and one should
only trust the answer given by the computer.

Problems

In Exercises 5 — 28, evaluate the indefinite integral.

5.

10.

11.

12.

13.

14.

15.

16.

/ sinxcos” x dx

/sm X €os x dx
/sm xcos’ x dx
/sm xcos® x dx
/sm xcos® x dx
/sm xcos’ x dx
/sm xcos’ x dx
/smxcosxdx
/sm (5x) cos(3x) dx
/sm cos(2x) dx
/ n(3x) sin(7x) dx
o

(mx) sin(27x) dx

17. [ cos(x) cos(2x) dx

18. [ cos (gx) cos(mx) dx
19. tan” xsec® x dx
20. tan® x sec” x dx
21. tan® xsec” x dx
22. tan® x sec? x dx
23. tan® xsec® x dx
24, tan® xsec’ x dx
25. tan” x dx
sec® x dx

26.

27. tan’ x secx dx

— Y S S S Y Y S S S~

28. / tan’ xsec® x dx

In Exercises 29 — 35, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

T
. 4
29. / sinxcos” x dx
0

30. / sin® x cos x dx
t/2
31. / sin? x cos” x dx
/2
32. / sin(5x) cos(3x) dx
0
/2
33. / cos(x) cos(2x) dx
t/4
34. / tan” xsec® x dx
0

/4
35. / tan® x sec” x dx



6.4 Trigonometric Substitution

In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate

3 97
/ V9 —x2dx=— (6.1)
-3

2

as we recognized that f(x) = v/9 — x? described the upper half of a circle with
radius 3.

We have since learned a number of integration techniques, including Sub-
stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte-
gration skill. This technique works on the same principle as Substitution as found
in Section 6.1, though it can feel “backward.” In Section 6.1, we set u = f(x), for
some function £, and replaced f(x) with u. In this section, we will set x = £(6),
where fis a trigonometric function, then replace x with f(6).

We start by demonstrating this method in evaluating the integral in Equation
(6.1). After the example, we will generalize the method and give more examples.

Example 6.4.1 Using Trigonometric Substitution

3
Evaluate / V9 — x2 dx.
-3

SOLUTION We begin by noting that 9sin? § + 9 cos? § = 9, and hence
9cos2 @ =9—9sin? 0. Ifweletx = 3sind, then9—x2 = 9—9sin § = 9 cos? 6.

Setting x = 3 sin  gives dx = 3 cos 8 dfl. We are almost ready to substitute.
We also wish to change our bounds of integration. The bound x = —3 corre-
sponds to § = —m/2 (for when § = —7/2, x = 3sinf = —3). Likewise, the
bound of x = 3 is replaced by the bound 6§ = /2. Thus

3 /2
/ V9 — x2dx = V9 —9sin?0(3 cos ) df
-3

—7/2

w/2
:/ 3V9cos26cosb db

—7/2

w/2
:/ 3|3 cos 0| cos 6 db.

—/2

On [—m/2,7/2], cos 8 is always positive, so we can drop the absolute value bars,
then employ a power—-reducing formula:

/2
:/ 9 cos? 6 db

g(l + cos(26)) db

I
:|1 i
N N

/2

= .

2(9 + % sin(26))

—7/2

6.4 Trigonometric Substitution
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This matches our answer from before.

We now describe in detail Trigonometric Substitution. This method excels
when dealing with integrands that contain v/a? — x2, v/x2 — a2 and v/x% + a2.
The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-
lationships between x and 6.

Key Idea 6.4.1 Trigonometric Substitution

For the three cases below, we assume that a > 0.

(a) Forintegrands containing v a2 — x%:

Letx = asin6, dx = acosf db

a
Thus @ = sin"*(x/a), for —7/2 < 6 < /2. X
On this interval, cos 8 > 0, so (i

va?2 —x? = acosf a2 — X2

(b) For integrands containing v/x2 + a2:
Letx = atan®, dx = asec? 0 df g
Thus § = tan™*(x/a), for —7/2 < 0 < /2. ¥ X
On this interval, secd > 0, so [
Vx2+a? =asech a
(c) Forintegrands containing v/x2 — a?:

Let x = asecd, dx = asecOtanf df

Thus 6 = sec *(x/a). Note that /x2 — a? is defined X2 —a?
forx > aorx < —a.

If x > a,thenx/a > 1land0 < 0 < 7/2;ifx < —a,
thenx/a < —landm <6 < 3. a

-

>
_|

On these intervals, tan 6 > 0, so

VX2 —a? =atanf

Example 6.4.2 Using Trigonometric Substitution

Evaluate dx
5+ x2

SOLUTION Using Key Idea 6.4.1(b), we recognize a = /5 and set x =
v/5tan 6. This makes dx = v/5sec? 6 df. We will use the fact that v/5 + x? =
V5 + 5tan? 0 = v/5sec? 6 = /5 sec 6. Substituting, we have:

1 1
——  dx= [ ———\/5sec’ 0 db
/\/5+x2 / v/5 + 5tan?d
2
:/ﬁsec 9d9
V/5sect

= /sec0d0

=In|secf + tanf| + C.

While the integration steps are over, we are not yet done. The original problem




was stated in terms of x, whereas our answer is given in terms of . We must
convert back to x.

The reference triangle given in Key Idea 6.4.1(b) helps. With x = v/5tan0,
we have

tanf = and secl =

X VX245
V5 Vs

This gives

/#dx:ln|sec9+tan0|+c

V5 + x?2
VX +5 X
=In|—+ —|+C
V5 V5

We can leave this answer as is, or we can use a logarithmic identity to simplify
it. Note:

VX2 +5 1
n|[ Y X2 X eon — (V¥ +54+x)|[+C
V5 V5 V5

=1In

\% +In|Vx2+5+x +C
=In|V/** +5+x| +C

where the In (1/\@) term is absorbed into the constant C. (In Section 6.6 we
will learn another way of approaching this problem.)

Example 6.4.3 Using Trigonometric Substitution

Evaluate / v 4x% — 1 dx.

SOLUTION We start by rewriting the integrand so that it looks like vx2 — a?

for some value of a:

1
4 — 1= 4(x2—)
4
2
1
=2 x2—<> .
2

So we have a = 1/2, and following Key Idea 6.4.1(c), we set x = %sec 0, and
hence dx = % secftan 6 df. We now rewrite the integral with these substitu-

6.4 Trigonometric Substitution
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tions:

[ 2
/\/4x2—1dx:/2 x2—<;> dx
1 1/1
:/Zy/fsecze—f (sec@tan@) do
4 4 \ 2

1
Z(sec2 60— 1)<sec 6 tan 9) do

1
:/ ftanzé)(secﬁtanﬁ) do
\ 2
1

/Etanzé)secedH

:%/(seCZO—l) secd db
_1 sec® 0 — secd) db.
2

We integrated sec? # in Example 6.3.6, finding its antiderivatives to be

1
/sec36d6: E(sec@tan@—i—In|sec0+tan9\) +C.

Thus

/\/4x2—1dx:1/(sec36‘—sec6) do

2

1/1
=5 (2(sec@tan0+ln|sec9+tan9) - In|sec0+tan9|) +C

1
a (secOtanf — In|secd + tanf|) + C.

We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of §. We need to rewrite our answer in terms
of x. Witha = 1/2,and x = %sec 6, the reference triangle in Key Idea 6.4.1(c)
shows that

tanf = /x* — 1/4/(1/2) =2/x*—1/4 and secf = 2x.
Thus
1 1
Z(sec@tan&— In sec€+tan0|) +C= Z(2x~2 X —1/8—1In|2x+2/x* — 1/4’) +C
- %(%/x2 “1/8—In|2x+ 2% — 1/4|) +c

The final answer is given in the last line above, repeated here:

/\/4x2 “1ldx= %(4x«/x2 Z1/8—In|2x+ 2/ — 1/4|) e

Example 6.4.4 Using Trigonometric Substitution
V4 — x?
T dX.

Evaluate

280 SOLUTION We use Key Idea 6.4.1(a) with a = 2, x = 2sin6, dx =



2 cos 0 and hence v4 — x2 = 2 cos 0. This gives

2
2o 9( cos 0) db

= /cot2 6 do

:/(cchG—l) do
=—cotf —0+C.

Va4 —x? 2cosf
/TdX:/

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 6.4.1(a), we have cot§ = /4 — x2/xand § = sin"*(x/2). Thus

Va4 — x? VA—x2 X
deffffsm (E)+C'

Trigonometric Substitution can be applied in many situations, even those not
of the form v/a? — x2, v/x* — a2 or v'x2 + @2. In the following example, we ap-
ply it to an integral we already know how to handle.

Example 6.4.5 Using Trigonometric Substitution

1
Evaluate | ——— dx.
x2+1

SOLUTION We know the answer already as tan~! x--C. We apply Trigono-
metric Substitution here to show that we get the same answer without inher-
ently relying on knowledge of the derivative of the arctangent function.

Using Key Idea 6.4.1(b), let x = tan 6, dx = sec® § df and note that x> + 1 =
tan? 4+ 1 = sec? 0. Thus

1 B 1 )
/mdx—/seczasec 0 do
:/1(19

=0+C

1
e dx = tan"*x+C.

Since x = tan d, 8 = tan—! x, and we conclude that / o

The next example is similar to the previous one in that it does not involve a
square—root. It shows how several techniques and identities can be combined
to obtain a solution.

Example 6.4.6 Using Trigonometric Substitution

Evaluate | ———— dx
/ (x2 + 6x + 10)2

SOLUTION We start by completing the square, then make the substitu-
tion u = x + 3, followed by the trigonometric substitution of u = tan 6:

1 1 1
/(X2+6X+10)2 dx:/((x+3)2+1)2 dx:/(uz+1)2 .

6.4

Trigonometric Substitution
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Now make the substitution u = tan 0, du = sec? 0 df:

1 2
:/msec 90’9

1
:/mse&@d@

= /coszﬁde.
1 1
/ (2 + 5 cos(20)) do

1 1 .
- 59 + 2 sin(26) + C. (6.2)

Applying a power reducing formula, we have

We need to return to the variable x. As u = tan§, 8 = tan~!u. Using the
identity sin(20) = 2sinfcosd and using the reference triangle found in Key
Idea 6.4.1(b), we have

1 u 1 71 u
2V +1 Vir+1 2uP 41

Finally, we return to x with the substitution u = x + 3. We start with the expres-
sion in Equation (6.2):

%sin(Z@) =

1 1 1 1
§9+Zsin(20)+C: “tan tu+ !

S~ _4cC
2 21

—ltan’l(x+3)+ X+3 +C
2 2(x? + 6x + 10)

Stating our final result in one line,

/ ! dxfltan’l(x+3)+ X+3 +C
(x®+6x+10)2 2 2(x? + 6x + 10)

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of 6, then converting back to x) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.

Example 6.4.7 Definite integration and Trigonometric Substitution
5 2
X
Evaluate / ——— dx.
0o Vx*4+25
SOLUTION Using Key Idea 6.4.1(b), we set x = 5tan 6, dx = 5sec? § dé,

and note that v/x2 + 25 = 5secf. As we substitute, we can also change the
bounds of integration.

The lower bound of the original integral is x = 0. As x = 5tan 6, we solve for
6 and find @ = tan—*(x/5). Thus the new lower bound is = tan~%(0) = 0. The
original upper bound is x = 5, thus the new upper bound is § = tan=*(5/5) =
/4.
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Thus we have
5 2 /4 2
X 25tan* 0
/ 7dx:/ = 5sec’fdd
0o Vx*+ 25 0 S5secf
/4
= 25/ tan? O'sec 6 db.
Jo
We encountered this indefinite integral in Example 6.4.3 where we found

/tan295ec6‘d9 = = (secftand —In|secd + tand|).

N

So
w/4

w/4 25
25/ tanzesecedez7(sec0tan9—In\sec0+tan9|)
JO 0
25
— ?(\f— In(v2+1))
~ 6.661.

The following equalities are very useful when evaluating integrals using Trigono-
metric Substitution.

Key Idea 6.4.2 Useful Equalities with Trigonometric Substitution

1. sin(20) = 2sin f cos

2. cos(26) = cos?§ —sin? = 2cos? — 1 =1 —2sin*@

3. /sec30d0 = %(sec&tan€+ln|sec0+tan9|) +C

4, /c0529d9: /%(1+cos(29)) df = %(9+sin9cos€) +C.

The next section introduces Partial Fraction Decomposition, which is an alge-
braic technique that turns “complicated” fractions into sums of “simpler” frac-
tions, making integration easier.
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Exercises 6.4

Terms and Concepts

1. Trigonometric Substitution works on the same principles as
Integration by Substitution, though it can feel “

2. If one uses Trigonometric Substitution on an integrand con-
taining v/25 — x2, then one should set x =

3. Consider the Pythagorean Identity sin* § + cos® 6 = 1.

(a) What identity is obtained when both sides are di-
vided by cos? 6?

(b) Use the new identity to simplify 9tan? 6 + 9.
4. Why does Key Idea 6.4.1(a) state that v/a2 — x2 = acos ¥,

and not |a cos 0|?

Problems

In Exercises 5 — 16, apply Trigonometric Substitution to eval-
uate the indefinite integrals.

5. /\/x2 + 1dx

6. /\/x2 + 4 dx

~N

./de

o]

./ﬂdx
9. /\/mdx
10. /de
11. /\/de
12. /\/mdx
1. /mdx
14. /\/%?dx
15. /;dx
V7—x2

16

5d

In Exercises 17 — 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric Substitution.

/ Vx2—11 dx
’ X

17

18 / S —
: (X2+1)2
19

/ X
' vVxt—3
20. /xzx/l — x2 dx

X
21. / 7(x2+9)3/2 dx

22

/ 5x*
. — dx
Vvx2 —10
1
23. — d
/ 0 +axt132 ¥
24, /x2(1 —x*) 7 ax

25

/ V5 —x?
. ———dx
7x2

X2
26. / —dx
VX2 +3
In Exercises 27 — 32, evaluate the definite integrals by mak-
ing the proper trigonometric substitution and changing the
bounds of integration. (Note: each of the corresponding

indefinite integrals has appeared previously in this Exercise
set.)

1
27. / V1 —x%dx
-1
8
28. / Vx% — 16 dx
4
2
29. / VX2 4+ 4 dx
0
1
1
30. —d,
/,1 b+ 12 &
1
31. / V9 — x2 dx
—1

1
32. / V1 — x2 dx
-1



6.5 Partial Fraction Decomposition

In this section we investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = %, where p(x) and g(x) are
polynomials and g(x) # 0. Such functions arise in many contexts, one of which

is the solving of certain fundamental differential equations.
We begin with an example that demonstrates the motivation behind this
section. Consider the integral /

1
21 dx. We do not have a simple formula
for this (if the denominator were x? + 1, we would recognize the antiderivative
as being the arctangent function). It can be solved using Trigonometric Substi-

tution, but note how the integral is easy to evaluate once we realize:

112 12
-1 x—1 x+1

Thus

1 " 1/2 1/2
/ 3 dx:/def/de
xt—1 x—1 x+1

= 1In|x 1| 1In|x+1|+C
) 2 '

This section teaches how to decompose

1/2 1/2
into L— / .
x2—1 x—1 x+1

p(x)

We start with a rational function f(x) = m where p and g do not have

any common factors and the degree of p is less than the degree of g. Note that

in the case of a function f(x) = 283 where the degree of p is greater than or

equal to that of g, we can perform polynomial long division to rewrite f(x) in the
form

IURNY.IC))
) = QW + 75,

where Q(x) is the quotient polynomial, and R(x), the remainder, always has de-
gree less than that of g.

It can be shown that any polynomial, and hence g, can be factored into a
product of linear and irreducible quadratic terms. The following Key Idea states
how to decompose a rational function into a sum of rational functions whose
denominators are all of lower degree than g.

6.5 Partial Fraction Decomposition
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Key Idea 6.5.1 Partial Fraction Decomposition

X
Let @ be a rational function, where the degree of p is less than the

q(x)

degree of g.

1. Linear Terms: Let (x — a) divide g(x), where (x —a)" is the highest
power of (x — a) that divides g(x). Then the decomposition of %
will contain the sum

A A, An

6—a) -z T x—ar

2. Quadratic Terms: Let x*> + bx + ¢ divide g(x), where (x> 4 bx +¢)"
is the highest power of x> + bx + c that divides g(x). Then the

decomposition of 58 will contain the sum
le + C1 Bzx + Cz BnX + Cn
x2+bx+c (X2+ bx+c)? (2 +bx+c)"

To find the coefficients A;, B; and C;:

1. Multiply all fractions by g(x), clearing the denominators. Collect
like terms.

2. Equate the resulting coefficients of the powers of x and solve the
resulting system of linear equations.

The following examples will demonstrate how to put this Key Idea into prac-
tice. Example 6.5.1 stresses the decomposition aspect of the Key Idea.

Example 6.5.1 Decomposing into partial fractions
1

Decompose f(x) = without solving

(x+5)(x—2)30 +x+2)(x%+x+7)?
for the resulting coefficients.

SOLUTION The denominator is already factored, as both x?> + x + 2 and
x? + x + 7 cannot be factored further. We need to decompose f(x) properly.
Since (x + 5) is a linear term that divides the denominator, there will be a

A
X+5

term in the decomposition.
As (x — 2)3 divides the denominator, we will have the following terms in the
decomposition:

B Cc and D
x—2" (x—2)2 (x —2)3

. . . Ex +
The x> + x + 2 term in the denominator results in a T term.
X2+ x

Finally, the (x> + x + 7)? term results in the terms

Gx+H an Ix+J
X2+ x+7 2 +x+7)%
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All together, we have

1 A B C D
TS — 2P A X+ )R Fx+72 x5 x—2 =22  x—2p '
Ex+F Gx+H Ix+J

X2 +x+2 +x2—|—x+7 + (X2 +x+7)2

Solving for the coefficients A, B. . .J would be a bit tedious but not “hard.”

Example 6.5.2 Decomposing into partial fractions

Perform the partial fraction decomposition of

x2 -1

SOLUTION The denominator factors into two linear terms: x> — 1 =
(x —1)(x + 1). Thus
1 A B

21 x-1 xil
To solve for A and B, first multiply through by x* — 1 = (x — 1)(x + 1):

Ax—1)(x+1) B(x—1)(x+1)
x—1 x+1

=Ax+1)+B(x—1)

=Ax+A+Bx—B

1=

Now collect like terms.

= (A+B)x+ (A—B).
The next step is key. Note the equality we have:
1=(A+B)x+(A-B).
For clarity’s sake, rewrite the left hand side as
Ox+1=(A+B)x+ (A—B).

On the left, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A + B.

Likewise, on the left, we have a constant term of 1; on the right, the constant
term is (A — B). Therefore we have 1 = A — B.

We have two linear equations with two unknowns. This one is easy to solve
by hand, leading to

A+B=0 A=1/2
= .
A-B=1 B=-1/2
Thus
1 1/2  1)2
X2—1 x—-1 x+1
Example 6.5.3 Integrating using partial fractions

1

Use partial fraction decomposition to integrate | ——— dx
P P 8 x—1)(x 1+ 2)?

SOLUTION We decompose the integrand as follows, as described by Key

Idea 6.5.1:
1 A B C

- Dx+2? x—1 x12 raz

Partial Fraction Decomposition
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Note: Equation 6.3 offers a direct route to
finding the values of A, B and C. Since the
equation holds for all values of x, it holds
in particular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1+ 2)* = 9A. Since the left hand side
isstill 1, we have 1 = 9A. Hence A = 1/9.
Likewise, the equality holds when x =
—2; this leads to the equation 1 = —3C.
Thus C = —1/3.

Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = 0, and solving for B.

Note: The values of A and B can be quickly
found using the technique described in
the margin of Example 6.5.3.

288

To solve for A, B and C, we multiply both sides by (x — 1)(x + 2)? and collect like
terms:

1=A(x+2)>+B(x—1)(x+2) +C(x — 1) (6.3)
= A +4Ax +4A + BX* +Bx— 2B+ Cx—C
=(A+B)x* +(4A+B+C)x + (4A — 2B — ()

We have
0 +0x+1=(A+B)*+ (4A+B+C)x+ (4A —2B— ()
leading to the equations
A+B=0, 4A+B+C=0 and 4A-2B-C=1.
These three equations of three unknowns lead to a unique solution:

A=1/9, B=-1/9 and C=-1/3.

[ o miwrar e [ e [ G e [ oo

Each can be integrated with a simple substitution withu = x—1oru = x+2
(or by directly applying Key Idea 6.1.1 as the denominators are linear functions).
The end result is

Thus

1 1 1
dx:§In|x—1\—§ln|x+2|+7+c

1
/ (x —1)(x+2)? 3(x+2)

Example 6.5.4 Integrating using partial fractions
X3
Use partial fraction decomposition to integrate / — dx.
(x—=5)(x+3)
SOLUTION Key Idea 6.5.1 presumes that the degree of the numerator

is less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3 xt24 19x + 30 .
(x—=5)(x+3) (x—=5)(x+3)

Using Key Idea 6.5.1, we can rewrite the new rational function as:

19x + 30 A B

(x —=5)(x+3) x—5+x—|—3

for appropriate values of A and B. Clearing denominators, we have
19x 4+ 30 = A(x+3) + B(x — 5)
= (A+ B)x+ (3A — 5B).
This implies that:

19=A+8B
30 =3A-5B.



6.5

Solving this system of linear equations gives
125/8 = A
27/8 = B.

We can now integrate.

/de:/<x+2+fsf+jzz) dx

x? 125 27
:?+2x+?ln|x—5\+§In|x+3|+C.

Example 6.5.5 Integrating using partial fractions
7x* + 31x + 54

(x+1)(x* 4+ 6x + 11)

Use partial fraction decomposition to evaluate /

SOLUTION The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.1. We have:
7x* + 31x + 54 A Bx+C

(x+1)(x2 + 6x + 11) :x+1+x2+6x+11'

Now clear the denominators.

7x* +31x + 54 = A(x* + 6x + 11) + (Bx + C)(x + 1)
= (A+B)x* + (6A+ B+ O)x + (11A+ C).

This implies that:

7=A+8B
31=6A+B+C
54 =11A+C.

Solving this system of linear equations gives the nice result of A =5, B = 2 and
C= —1.Thus

7x* 4+ 31x + 54 5 2x—1
dx = + dx.
(x+1)(x* + 6x+11) x+1 x24+6x+11

The first term of this new integrand is easy to evaluate; it leadstoa 5 In |x+1]
term. The second term is not hard, but takes several steps and uses substitution
techniques.

The integrand has a quadratic in the denominator and a linear

2X —
x> +6x+11
term in the numerator. This leads us to try substitution. Let u = x*> +6x+11, so
du = (2x+ 6) dx. The numerator is 2x — 1, not 2x + 6, but we can geta 2x + 6

term in the numerator by adding 0 in the form of “7 — 7.

2x—1 X —=147-7
X +6x+11 x2+6x+11
2x+ 6 7

T+ 6x+11 xR +6x+11

We can now integrate the first term with substitution, leading to a In [x*+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:
7 7 7
X2 +6x+11  (x+3)2+2°

Partial Fraction Decomposition
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An antiderivative of the latter term can be found using Theorem 6.1.3 and sub-

stitution:
7 7 x+3
- dx=—tan [ —= C.
/x2+6x+11 V2 <ﬁ)+

Let’s start at the beginning and put all of the steps together.

7X* + 31x + 54 5 2x—1
dx = + dx
(x+1)( + 6x + 11) x+1 x*+46x+11
S A T N el BV N A
x+1 x2 +6x+11 X2 +6x+11
7 _ 3
=5In|x+ 1+ In|x¥’ + 6x+ 11| — —tan"" <X+ ) +C.
V2 V2
As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately after seeing the problem.
Rather, given the initial problem, we break it down into smaller problems that
are easier to solve. The final answer is a combination of the answers of the
smaller problems.

Partial Fraction Decomposition is an important tool when dealing with ratio-
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

The next section introduces new functions, called the Hyperbolic Functions.
They will allow us to make substitutions similar to those found when studying
Trigonometric Substitution, allowing us to approach even more integration prob-
lems.



Exercises 6.5

Terms and Concepts

1.

. Decompose
7_

. Decompose 3
X2 —
X

. Decompose —
X

2x+5
. Decompose
x3 + 7x

Fill in the blank: Partial Fraction Decomposition is a method
of rewriting functions.

. T/F: It is sometimes necessary to use polynomial division

before using Partial Fraction Decomposition.

without solving for the coefficients, as

done in Example 6.5.1.

X . . . .
5 without solving for the coefficients, as

done in Example 6.5.1.

-3
7 without solving for the coefficients, as

done in Example 6.5.1.

without solving for the coefficients, as

done in Example 6.5.1.

Problems

In Exercises 7 — 26, evaluate the indefinite integral.

5 [ _xX*7T
x2 4+ 3x—10

i

7x —2
/ )2( dx
X2+ x

9. =t dx
3x2 — 12

1

11.

1

N

13.

14.

0. /&dx
3x2+4x+1

/idx
(x+5)2

/ —3x — 20 dx
' (x+8)2

/9x2+11x+7
= T 0 x

x(x+1)?

—12* —x+33 J
/ x—1)x+3)B—20 "

94x* — 10x
15.
/7x+3 )(5x —1)(3x — 1)
16, /x +x+1
x—2
17. / 3 dx
x? —x—20
2_
s [2obrs,
X2 —2x+3
19. dx
x3+2x2+3x
20. / ;(+x+5
x2 +4x + 10
12
1. x> +21x+3 dx
(x+1)(3x2 +5x — 1)
2 —
22./ 6x° +8x — 4 dx
(x —3)(x* + 6x + 10)

23 / w4+ x+1
’ (x+1)(x2+9)

" x> — 20x — 69
' / (x—7)(x + 2x + 17)

9x* — 60x + 33

2 / x—90e —2x 1) &

/ 6x* 4+ 45x + 121
26
(x +2)(x* + 10x + 27)

In Exercises 27 — 30, evaluate the definite integral.

2
27. / &dx
1 (x+2)(x+3)
> 14x+6
28. / ——— dx
o 3x+2)(x+4)

1 2 _
29. / o dx
_; (x—=10)(x* + 4x +5)

1
X
30. /0 PRSI
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y

(cos 6,sin 0)
0
2
X

~<

2+

(co!

[
2

/

sh 6,sinh 6),

IAN

Figure 6.6.2: Using trigonometric func-
tions to define points on a circle and hy-
perbolic functions to define points on a
hyperbola. The area of the shaded re-

gions are included in them.

Pronunciation Note:

“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”
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6.6 Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to
mathematics, physics, and engineering. Among many other applications, they
are used to describe the formation of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many, many connections between them and the stan-
dard trigonometric functions. Figure 6.6.2 demonstrates one such connection.
Just as cosine and sine are used to define points on the circle defined by x> +y? =
1, the functions hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x*> — y? = 1.

Definition 6.6.1 Hyperbolic Functions
e“+e™* 1
1. coshx = ete” 4. sechx =
2 cosh x
X _ =X 1
2. sinhx = e-e 5. cschx = —
2 sinh x
i cosh x
3. tanhx = sinh x 6. cothx = —
cosh x sinh x

These hyperbolic functions are graphed in Figure 6.6.1. In the graphs of
cosh x and sinh x, graphs of €*/2 and e™*/2 are included with dashed lines. As
x gets “large,” coshx and sinh x each act like €*/2; when x is a large negative
number, cosh x acts like e7*/2 whereas sinh x acts like —e~*/2.

y y
\ 10 + i 10 J
\ / /
\ l/ /l
\\5/ |
+ = X + =
-2 2 -2 2
-5 -5
f(x) = coshx f(x) = sinhx
—10 | —10
y y
3 -4
2+ f(x) = cothx 2t f(x) = cschx
f(x) = sechx

~_

‘ A ; x ; —

-2 \ 2 -2 2
—_ _ 1 _ - - - - —1 |

f(x) = tanhx

Figure 6.6.1: Graphs of the hyperbolic functions.



Notice the domains of tanh x and sech x are (—o0, o), whereas both coth x
and csch x have vertical asymptotes at x = 0. Also note the ranges of these
functions, especially tanh x: as x — oo, both sinh x and cosh x approach €*/2,
hence tanh x approaches 1.

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun-
terparts.

Example 6.6.1 Exploring properties of hyperbolic functions
Use Definition 6.6.1 to rewrite the following expressions.
d
1. cosh? x — sinh? x 4. & (coshx)
2. tanh? x 4 sech® x 5. Z(sinhx)
3. 2coshxsinhx 6. Z(tanhx)
SOLUTION
e +e\’ e —e\’
1. cosh? x — sinh?x = + —
2 2
B er + 2eXe X + efzx er — 2eXe™X + efzx
N 4 4
4
=-=1
4

So cosh? x — sinh? x = 1.

sinh? x 1
2. tanh? x + sech?x =

cosh’x  cosh?x

sinh®x + 1 . .

= Now use identity from #1.
cosh” x
cosh? x
=—-5 =1
cosh” x
So tanh? x + sech? x = 1.
e +e* e —e™*
3. 2 coshxsinhx = 2 +
2 2
er _ e—2x
4
2Xx —2x
e*—e
= —— =sinh(2x).
. (20)
Thus 2 cosh x sinh x = sinh(2x).
d d [e¥+e*
4, —(coshx) = — [ ———
dx( ) dx ( 2 >
ef—e™*
2
= sinhx.

So & (coshx) = sinhx.

6.6

Hyperbolic Functions
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d, . _d e —e ¥
5. a(slnhx) = & (2)

e +e*

= coshx.

So 4 (sinhx) = coshx.

6 i(tanhx) = i sinh x
’ dx " dx \ coshx

cosh x cosh x — sinh xsinh x

cosh? x
1

cosh? x
= sech?x.

So £ (tanhx) = sech’x.

The following Key Idea summarizes many of the important identities relat-
ing to hyperbolic functions. Each can be verified by referring back to Definition
6.6.1.

Key Idea 6.6.1 Useful Hyperbolic Function Properties

Basic Identities Derivatives Integrals
1. cosh’x —sinh?x =1 1. 4 (coshx) = sinhx 1. /coshxdx =sinhx+C
2. tanh?x 4+ sech’x = 1 2. Z(sinhx) = coshx
2. inh x dx = cosh C
3. coth?x — csch’x =1 3. Z(tanhx) = sech’x /sm X ox = coshx+
_ 2 B 2 d
4. cosh2x = cosh”x + sinh” x 4. a(sech X) = —sechxtanhx 3. /tanhxdx = In(coshx) + C
5. sinh 2x = 2 sinh x cosh x 5, di(cschx) — — csch x coth x
X
cosh2x + 1 4, /cothxdx: In|sinhx |+ C
6. cosh®x = — 6. 4 (cothx) = —csch’x | |
cosh2x — 1
7. sinh?>x = —

We practice using Key Idea 6.6.1.

Example 6.6.2 Derivatives and integrals of hyperbolic functions
Evaluate the following derivatives and integrals.

d In2
1. a(coshZX) 3./0 cosh x dx

2. /sech2(7t —3)dt

SOLUTION

1. Using the Chain Rule directly, we have - (cosh 2x) = 2sinh 2x.



6.6 Hyperbolic Functions

Just to demonstrate that it works, let’s also use the Basic Identity found in
Key Idea 6.6.1: cosh 2x = cosh? x + sinh? x.

d d
d—(cosh 2X) = d—(coshszr sinh? x) = 2 coshxsinh x -+ 2 sinh x cosh x
X X

= 4 cosh xsinh x.

Using another Basic Identity, we can see that 4 cosh xsinhx = 2 sinh 2x.
We get the same answer either way.

. We employ substitution, with u = 7t — 3 and du = 7dt. Applying Key
Ideas 6.1.1 and 6.6.1 we have:

1
/sech2(7t —3)dt= 7 tanh(7t — 3) + C.

In2

In2
/ coshx dx = sinhx| = sinh(In2) — sinh 0 = sinh(In 2).
0 O

We can simplify this last expression as sinh x is based on exponentials:

ean_e—InZ - 2_1/2 B 3

inh(In2) = .
sinh(In 2) 5 5 2
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Inverse Hyperbolic Functions

Just as the inverse trigonometric functions are useful in certain integration
problems, the inverse hyperbolic functions are useful with others. Figure 6.6.3
shows the restrictions on the domains to make each function one-to-one and
the resulting domains and ranges of their inverse functions. Their graphs are
shown in Figure 6.6.4.

Because the hyperbolic functions are defined in terms of exponential func-
tions, their inverses can be expressed in terms of logarithms as shown in Key Idea
6.6.2. It is often more convenient to refer to sinh ™ x than to In (x + Vx% + 1),
especially when one is working on theory and does not need to compute actual
values. On the other hand, when computations are needed, technology is often
helpful but many hand-held calculators lack a convenient sinh ™! x button. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situation, the logarithmic representation is useful. The reader is not encouraged
to memorize these, but rather know they exist and know how to use them when

needed.

Function Domain Range Function Domain Range
cosh x [0, 00) [1, 00) cosh™!x [1,00) [0, 00)
sinh x (—00,00) (—00,00) sinh~1x (—o00,00) (=00, 00)
tanh x (=00, 00) (-1,1) tanh~!x (-1,1) (—00,00)
sechx [0, 0) (0,1] sech™!x (0,1] [0, 00)
cschx  (—00,0)U(0,00)  (—00,0) U (0, 0) csch™tx  (—o0,0)U(0,00)  (—00,0) U (0, 00)
cothx (—00,0) U (0,00) (—00,—1)U (1,00) coth™x  (—o00,—-1)U(1,00) (—o0,0)U (0, c0)

Figure 6.6.4: Graphs of the hyperbolic functions and their inverses.
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6.6
Key Idea 6.6.2 Logarithmic definitions of Inverse Hyperbolic Functions
1. cosh 'x=In(x+vVx2—1);x>1 4. sinh 'x=In(x+vx2 +1)
1 1+x 1 x+1
2. tanh™'x= Z1n SEx ;x| <1 5. coth™'x=Z1In i ;x| >1
2 1—x 2 x—1
1++4/1—x2 1 V1 2
3. sech 'x=In <+X);O<X§1 6. csch™*x =In <—|—+X>;x;«é0
X X |x|
The following Key Ideas give the derivatives and integrals relating to the in-
verse hyperbolic functions. In Key Idea 6.6.4, both the inverse hyperbolic and
logarithmic function representations of the antiderivative are given, based on
Key Idea 6.6.2. Again, these latter functions are often more useful than the for-
mer. Note how inverse hyperbolic functions can be used to solve integrals we
used Trigonometric Substitution to solve in Section 6.4.
Key Idea 6.6.3 Derivatives Involving Inverse Hyperbolic Functions
d 1 d -1
1. —(cosh™x) = ——; x> 1 4, —(sech™x) = ———;0<x<1
dX( ) 2 — 1 dX( ) xV1—x2
d 1 d -1
2. —(sinh™1x) = —— 5. —(csch™x) = ————; x #0
dX( ) X2+1 dX( ) |X|\/1—|—7X2’ #
d 1 d
3. —(tanh™'x) = dlx| <1 - “1y) = ~
dx( ) - |x| 6. dX(coth X) 1_XZ,|X\>1
Key Idea 6.6.4 Integrals Involving Inverse Hyperbolic Functions
1 /#dx = cosh_1<{)+C'0<a<x :In‘x+ x> —a?|+C
")V —a? a ’
1 X
2. | ————=dx = sinh™* (7)+C; a>0 =In ‘x+ \/x2+02’+C
/ VX2 +a? a
1 -1 (x 2 2
1 ltanh™ (¥)+C x*<a 1 la+x
3. szdx - :%ln a—x +C
J a leoth™ (2)+C  a* <
1 1 X 1 X
4. ——dx = —fsech71(7)+C'O<x<a =-In| ——— ] +C
/x\/az—x2 a a ’ a a+Va* —x?
1 1 X 1 X
5. ——dx = —fcschfl‘f)—i-C'x 0,a>0 =-In|———=|+C
/x\/x2 +a? a a X7 a |a++Va?+ x
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We practice using the derivative and integral formulas in the following ex-
ample.

Example 6.6.3 Derivatives and integrals involving inverse hyperbolic
functions
Evaluate the following.
d 3x—2 1
1. — |cosh™? 3. / —— dx
dx [ ( 5 )} VIx2 410
1
2. dx
/X2 -1
SOLUTION

1. Applying Key Idea 6.6.3 with the Chain Rule gives:
d 3x—2 1 3
™ {cosh_1 ( c )} =7V
3x—2
( Xs ) -1

2. Multiplying the numerator and denominator by (—1) gives: /

dx =

x2 -1

-1
/ - dx. The second integral can be solved with a direct application
of item #3 from Key Idea 6.6.4, with a = 1. Thus

1 1
/xz—ldX:_/l—xde

—tanh ' (x)+C ¥ <1

—coth™*(x)+C 1<x?
x+1
x—1

=—=In
2

‘JrC

x—1
x+1

n
2

’ +C. (6.4)

We should note that this exact problem is solved at the beginning of Sec-
tion 6.5. In that example the answer is given as % Injx — 1] — % In|x +
1| 4 C. Note that this is equivalent to the answer given in Equation 6.4, as
In(a/b) =Ina —Inb.

3. This requires a substitution, then item #2 of Key Idea 6.6.4 can be applied.

Let u = 3x, hence du = 3dx. We have

1 1 1
———dx=- | ——du.
/\/9x2+10 3/\/u2+10

Note a? = 10, hence a = 1/10. Now apply the integral rule.

1
—3h ’3x+ Vox? + 10’ fc



This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be memo-
rized, but rather as a reference for future problem solving. Key Idea 6.6.4 con-
tains perhaps the most useful information. Know the integration forms it helps
evaluate and understand how to use the inverse hyperbolic answer and the log-
arithmic answer.

6.6 Hyperbolic Functions
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Exercises 6.6
Terms and Concepts 20. f(x) = tanh~%(x + 5)

_ -1
1. InKeyldea6.6.1, the equation/tanhxdx = In(coshx)+C 21. fx) = tanh™(cos x)

is given. Why is “In | cosh x|” not used —i.e., why are abso- 22. f(x) = cosh_l(secx)

lute values not necessary?

In Exercises 23 — 28, find the equation of the line tangent to

2. The hyperbolic functions are used to define points on the the function at the given x-value.

right hand portion of the hyperbola x* — y* = 1, as shown

in Figure 6.6.2. How can we use the hyperbolic functions to 23. f(x) = sinhxatx = 0

define points on the left hand portion of the hyperbola?

24. f(x) = coshxatx =1In2

Problems 25. f(x) =tanhxatx = —1In3

In Exercises 3 — 10, verify the given identity using Definition 26

. . f(x) = sech’xatx =In3
6.6.1, as done in Example 6.6.1.

27. f(x) =sinh ™ 'xatx=0
3. coth®’x —csch®’x =1 fx)

28. = cosh™ ' xatx = /2
4. cosh 2x = cosh? x + sinh? x flx) = cosh™ xatx = v2

, cosh 2x + 1 In Exercises 29 — 44, evaluate the given indefinite integral.
5. cosh®x =
2
hox — 1 29. /tanh(Zx) dx
6. sinh*x = coshax ==
2
d 30. /cosh(3x —7)dx
7. — [sechx] = —sechxtanhx
dx
) 31. /sinhxcoshxdx
8. p [cothx] = — csch” x
X

32. /xcoshxdx
9. [ tanhxdx = In(coshx) + C

33. inhx d;
10. /cothxdx:ln|sinhx|+c /Xsm x dx

1
In Exercises 11 — 22, find the derivative of the given function. 34. ———— dx
& / N
11. f(x) = sinh2x
35. /# dx
12. f(x) = cosh?x VxE =9
1
13. f(x) = tanh(x?) 36. /9 5 o
14. f(x) = In(sinh x) - / 2% n
15. f(x) = sinhxcoshx V-4
VX
= xsi — 38. ——dx
16. f(x) = xsinhx — coshx / it
—1
17. f(x) = sech™*(x?) 1
39. 16 dx
18. f(x) = sinh~*(3x)
1
19. f(x) = cosh~(2x?) 0. [ o
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41.

42.

43,

44,

sech x dx

In Exercises 45 — 48, evaluate the given definite integral.

1
45, / sinh x dx
-1

In2
46. / cosh x dx

—In2

1
47. / tanh ™ x dx
0

2
1
48. —— dx
/o Vxt+1

coshx.,

e setu= sinh x.)

(Hint: multiply by
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LU'Hosptial’'s Rule is named after Guil-
laume Frangois Antoine, the Marquis de
I’'Hosptial, a French mathematician in the
late 17th century.

One interesting fact is that L'Hospital’s
Rule was in fact proved by Johann
Bernoulli, whom L'Hospital paid for the
right to claim the result as his own in a
textbook he produced. (It was not un-
common at the time for members of the
nobility to pay to have their name asso-
ciated with the work of others.) The text-
bookin question was, in fact, the very first
Calculus textbook in recorded history.
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6.7 L'Hospital’s Rule

Our treatment of limits exposed us to the notion of “0/0”, an indeterminate
form. If

lim f(x) = 0and lim g(x) =0,

X—C X—C

we do not conclude that lim f(x)/g(x) is 0/0; rather, we use 0/0 as notation to
X—C

describe the fact that both the numerator and denominator approach 0. The
expression 0/0 has no numeric value; other work must be done to evaluate the
limit.

Other indeterminate forms exist; they are: co/o0, 000, 00 — 00, 09, 1% and
oo, Just as “0/0” does not mean “divide 0 by 0,” the expression “co/o0” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 - 0o” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be.

This section introduces I'Hospital’s Rule, a method of resolving limits that
produce the indeterminate forms 0/0 and oo /co. We'll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 6.7.1 L'Hospital’s Rule, Part 1

Let lim f(x) = 0 and lim g(x) = 0, where f and g are differentiable func-
X—C X—C
tions on an open interval | containing ¢, and g’(x) # 0 on I except possi-
bly at c. Then
X "(x
) )

Mgk A g ()

We demonstrate the use of I’'Hospital’s Rule in the following examples; we
will often use “LHR” as an abbreviation of “I’'Hospital’s Rule.”

Example 6.7.1 Using I’'Hospital’s Rule
Evaluate the following limits, using I'Hospital’s Rule as needed.

. sinx x2
1. lim — 3. lim ——
x—0 X x—0 1 — cosx
o Wx+3-2 . X*4+x—6
2. lim —— 4. lim —
x—1 1—x x—=2x2 —3x+2
SOLUTION

1. We proved this limit is 1 in Example 1.3.4 using the Squeeze Theorem.
Here we use I'Hospital’s Rule to show its power.

_sinx bYWHR o5 x
lim — = im—— =1.
x—0 X x—=0 1
_ /X+3—2 byliR %(x+3)_1/2 1
2. lim —m = Iim&~—7=——.
x—1 1—x x—1 —1 4



6.7

XZ by LHR 2x
lim — = |lim —.
x—01 — cosx x—0 Sin X
This latter limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply I'Hospital’s Rule again.
2x by LHR 2
lim — = — =2.
x—0 sin x Cos X

2

. X
Thus lim ——— =2
x—01 — cosx

We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

2
- -2
im XtX=6 o x=2)x+3) ox+3

5. 5 — lim 5.
x=2x2—=3x+2 x=>2(x—=2)(x—1) xo2x-1

We now show how to solve this using I’'Hospital’s Rule.

x4 x—6 YR 9y q
lim —— = lim -
x=2 X2 —3x+2 x=22x—3

Note that at each step where I'Hospital’s Rule was applied, it was needed:
the initial limit returned the indeterminate form of “0/0.” If the initial limit re-
turns, for example, 1/2, then I'Hospital’s Rule does not apply.

The following theorem extends our initial version of I'Hospital’s Rule in two

ways.

It allows the technique to be applied to the indeterminate form oo/oo

and to limits where x approaches +oc.

Theorem 6.7.2 L'Hospital’s Rule, Part 2

1. Let lim f(x) = oo and lim g(x) = £o0, where fand g are differ-
X—a X—a
entiable on an open interval / containing a. Then

1) _ o F'0

o g(x)  wog/(x)’

2. Letfand g be differentiable functions on the open interval (a, co)
for some value a, where g’(x) # 0 on (a,00) and lim f(x)/g(x)
X—00

returns either 0/0 or co/occ. Then

fx)

o fo) (%)
A 900 A7)

A similar statement can be made for limits where x approaches
—0o0.

Example 6.7.2 Using I’Hospital’s Rule with limits involving oo
Evaluate the following limits.

1.

. 3x2—100x + 2 e
lim —mmM8M 2. lim —.
x—oo 4x%2 + 5x — 1000 x—o0 x3

L'Hospital’s Rule
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SOLUTION

1.

We can evaluate this limit already using Theorem 1.5.1; the answer is 3/4.
We apply I'Hospital’s Rule to demonstrate its applicability.

3x2 —100x 42 bylHR gy 100 bYLHR g
m ————— = m ——— = lim = =
x—oo 4x2 4+ 5x — 1000 x—oo 8X+5 x—oo 8
eX by LHR eX by LHR eX by LHR ex
lim — = lim — = lim — = lim — = oo.
x—00 X3 x—00 3x2 x—00 BX x—00 6

Recall that this means that the limit does not exist; as x approaches oo,
the expression € /x3 grows without bound. We can infer from this that
e grows “faster” than x3; as x gets large, e is far larger than x3. (This
has important implications in computing when considering efficiency of
algorithms.)

Indeterminate Forms O - oo and co — oo

L'Hospital’s Rule can only be applied to ratios of functions. When faced with
an indeterminate form such as 0- 0o or co — 0o, we can sometimes apply algebra
to rewrite the limit so that I’'Hospital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.7.3 Applying I'Hospital’s Rule to other indeterminate forms
Evaluate the following limits.

1.

2.

lim x-e'/ 3. lim In(x+1) —Inx
x—0F X—00

H 2 X
. 1/x 4. lim x* —e
lim x-e AN

x—0—

SOLUTION

1.

Asx — 0T, x — 0and el/* — 0. Thus we have the indeterminate form

1/x

e

0 - 0o. We rewrite the expression x - el/* as 1 ; now, as x — 01, we get
X

the indeterminate form oo /oo to which I’'Hospital’s Rule can be applied.

1/x  byLHR 2\ ,1/x

. . e . —1/x%)e .

lim x-e'* = lim = lim % = lim eY* = .
x—0+ x—0t 1/x x—0F —1/x x—0+

Interpretation: e/* grows “faster” than x shrinks to zero, meaning their
product grows without bound.

. Asx — 07, x — 0and e'/* — e~ — 0. The the limit evaluatesto 0 - 0

which is not an indeterminate form. We conclude then that

lim x-e'* =o0.
x—0—

. This limit initially evaluates to the indeterminate form co —oo. By applying

a logarithmic rule, we can rewrite the limit as

1
lim In(x+1) —Inx = lim In (X+ >

X—00 X—00 X

As x — 00, the argument of the In term approaches oo /o0, to which we
can apply I'Hospital’s Rule.

x+1 by LHR 1
lim = —-=1
X—00 X 1




x+1
Since x — oo implies — 1, it follows that

x+1
x — 00 implies In (+> —Inl1=0.
X

Thus

X—00 X—00 X

1
lim In(x+ 1) —Inx = lim In <X+ )_0.

Interpretation: since this limit evaluates to 0, it means that for large x,
there is essentially no difference between In(x 4+ 1) and In x; their differ-
ence is essentially 0.

4. Thelimit lim x> —e* initially returns the indeterminate form co — co. We
X—00

eX
can rewrite the expression by factoring out x; X — e =x <1 — 2> .

X
We need to evaluate how e*/x? behaves as x — co:

e byLHR eX byLHR
lim — = lim — = lim — = oo.
x—00 X2 x—00 2X x—00 2

Thus limy_, o, X2(1 — € /x?) evaluates to oo - (—oc), which is not an inde-
terminate form; rather, co - (—o0) evaluates to —oo. We conclude that
lim x* — " = —cc.

X—»00

Interpretation: as x gets large, the difference between x> and e* grows
very large.

Indeterminate Forms 0°, 1*° and o°

When faced with an indeterminate form that involves a power, it often helps
to employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.7.1 Evaluating Limits Involving Indeterminate Forms
0°, 1> and oc®

If lim In (f(x)) =L, then lim f(x) = lim e"V) = ¢!,
X—C

X—C X—C

Example 6.7.4 Using I’Hospital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.
1 X
1. lim (1+ ) 2. lim x*.
X—00 X x—0t
SOLUTION

1. This equivalent to a special limit given in Theorem 1.3.3; these limits have
important applications within mathematics and finance. Note that the
exponent approaches co while the base approaches 1, leading to the in-
determinate form 1°°. Let f(x) = (141/x)*; the problem asks to evaluate

6.7 L'Hospital’s Rule
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1 2

Figure 6.7.1: A graph of f(x) = x* sup-
porting the fact thatasx — 0%, f(x) — 1.
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lim f(x). Let’s first evaluate lim In (f(x)).

X—00 X—00
1 X
im0 1) = i o (14

. 1
= lim xIn(1+ -
X—00 X

I 1
i M2 t5)
X—3 00 1/x

This produces the indeterminate form 0/0, so we apply I’'Hospital’s Rule.

lim
x—oo 1+ ]_/X

=1

Thus lim In (f(x)) = 1. We return to the original limit and apply Key Idea

X—00

6.7.1.

1 X
lim (l + x> = lim f(x) = lim e"V™) = ¢l —e¢,

X— 00 X— 00 X— 00

2. This limit leads to the indeterminate form 0°. Let f(x) = x* and consider
first lim In (f(x)).
x—07F

lim In (f(x)) = lim In(x")

x—0t x—0t

= lim xlnx
x—0t

. Inx
= lim —.
x—0F 1/X

This produces the indeterminate form —oo/co so we apply I"Hospital’s

Rule.
1/x
— im Y
x—=0t —1/x2
= lim —x
x—0t
=0.

Thus lim In (f(x)) = 0. We return to the original limit and apply Key Idea

x—0t

6.7.1.

lim X = lim f(x) = lim &) = ¢0 — 1
x—0+t x—0+ x—0+

This result is supported by the graph of f(x) = x* given in Figure 6.7.1.

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals

where the bounds are finite numbers, such as / f(x) dx. Improper integration

0
considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applications, in addition to generating ideas that are
enlightening.



Exercises 6.7

Terms and Concepts

List the different indeterminate forms described in this sec-
tion.

T/F: ’Hopital’s Rule provides a faster method of computing
derivatives.

T/F: 'Hépital’s Rule states that % {%] - j;g;

/lloo ”

Explain what the indeterminate form means.

Fill in the blanks:

-

%)

X

The Quotient Rule is applied to

when taking

Q
—~
N3

’

fx)

I’'Ho6pital’s Rule is applied to ——% when taking certain

g(x)
Create (but do not evaluate!) a limit that returns “co®”.

Create a function f(x) such that Iimlf(x) returns “0%”.
X—r

Create a function f(x) such that lim f(x) returns “0 - co”.
X—r 00

Problems

In Exercises 9 — 54, evaluate the given limit.

9.

10.

11.

12.

13.

14.

15.

16. lim

17.

X4+ x=2
lim —————
x=1 x—1

i x2+x—6
lim ———
x—2 x2 — 7x + 10

sinx

lim
x—=m X — T

sinx — cos x
im ——
x—=7/4  €0os(2x)

lim sin(5x)
x—0 X

. sin(2x)
lim ——=
x—=0 X+ 2

. sin(2x)
lim —
x—0 sin(3x)

sin(ax)
x—0 sin(bx)

-1
lim 3
x—0+ X

18.

19.

20.

21.

22.

23.

24.

25.

lim 5
x—0t X

lim ————
x—0t X3 — X2

lim
X—» 00

lim
X—» 00

. 1
lim —e€
Xx—00 X

lim £
im —
X— 00 \/;(
lim —

x—>00 2X

lim —
x—o0 3X

X —5x*+3x+9

26. lim

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

X+ 4x* + 4x

x—3 x3 — 7x2 4+ 15x — 9

lim
x—=—2x3 +7x2 + 16x + 12

lim x-Inx
x—0+

lim +/x-Inx

x—01

) 1
lim xe*/*
x—01

. 3 2
lim x° — x
X— 00

lim v — Inx

X—r 00

lim xe*
X——00

.1
lim —e /x
x—0t X

lim (1 + x)*/~

x—07F
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39.

40.

41.

42.

43,

44,

45.

46.

lim (2x)*

x—0Tt

lim (2/x)

x—0t

lim (sinx)* Hint: use the Squeeze Theorem.

x—0t

lim (1 —x)**
x—>1+( )

lim (x)*/*
X—r 00

lim (1/x)*

X—r 00

lim (Inx)*™
x—>1+( )

lim (1 + x)"*

X— 00

47.

48.

49.

50.

51.

52.

53.

54.

lim (1 + x*)*/*

X—r00

lim tanxcosx
x—m/2

lim tanxsin(2x)
x—m/2

. 1 1
lim — —
x—1+Inx  x—1

. X
=3+t x2—9 x—3

lim xtan(1/x)

X— 00

| 3
lim (Inx)
X—00 X

X x2+x—2
lim ————
x—1 Inx



6.8 Improper Integration

6.8 Improper Integration

We begin this section by considering the following definite integrals:

100
. / dx ~ 1.5608,
o 14x?

05 |
1000
¥ * X
. /0 Y dx ~ 1.5698, 5 10
Figure 6.8.1: Graphing f(x) = !
g .8.1: Graphing = 1w

10000
. / — = dx~ 1.5707.
0 1+x?

Notice how the integrand is 1/(1 + x?) in each integral (which is sketched in
Figure 6.8.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:

b
1 b
/ — dx:tan’lx‘ =tan"'bh—tan"'0=tan"1bh.
o 1+x 0

Asb — oo, tan™1 b — /2. Therefore it seems that as the upper bound b grows,

b
1
the value of the definite integral / T2 dx approaches /2 = 1.5708. This
0

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

b
When we defined the deﬁniteintegral/ f(x) dx, we made two stipulations:
a

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

In this section we consider integrals where one or both of the above condi-
tions do not hold. Such integrals are called improper integrals.
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0.5 +

1 5 10

Figure 6.8.2: A graph of f(x) = % in Ex-
ample 6.8.1.

y

0.5 +

1 5 10

Figure 6.8.3: Agraph of f(x) = % in Exam-
ple 6.8.1.
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Improper Integrals with Infinite Bounds

Improper Integrals with Infinite Bounds; Converge,
Diverge

Definition 6.8.1

1. Let fbe a continuous function on [a, c0). Define

/aoof(x)dx to be I|m /f

2. Let fbe a continuous function on (—oo, b]. Define

/boof(x)dx to be I|m /f

3. Letfbe a continuous function on (—oo, 00). Let ¢ be any real num-
ber; define

&S] c b
/ f(x) dx tobe a_lir_n /f(x) dx + bll)m /f(x) dx

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.8.1 Evaluating improper integrals
Evaluate the following improper integrals.

1. / = dx 3. / e dx
J1 X oo

2 [“La o [
1 oo 1+ X
SOLUTION
00 b
1. / —dxf Ilm/—dx: lim —
1 b—o0 b—oco X 11
= | |
bLngc b +
=1.

A graph of the area defined by this integral is given in Figure 6.8.2.

| b1
2. / —dx = Iim/fdx
1 X b—oo J1 X

b
= lim In \x|’
b—o0 1

= lim In(b)

b—o0

= Q.

o0
1
The limit does not exist, hence the improper integral / — dx diverges.
X

1
Compare the graphs in Figures 6.8.2 and 6.8.3; notice how the graph of
f(x) = 1/xis noticeably larger. This difference is enough to cause the
improper integral to diverge.



A graph of the area defined by this integral is given in Figure 6.8.4.

4. We will need to break this into two improper integrals and choose a value
of casin part 3 of Definition 6.8.1. Any value of cis fine; we choose ¢ = 0.

> 1 ° 1 b
———dx= l|lim dx + lim dx
oo 1+ X2 a—s—oo f, 1+ x? b—oo Jo 14 x2

0 b
= lim tan"'x| + lim tan"'x
a——o0 a b— 00 0
= lim (tan"*0—tan"'a) + lim (tan™'b —tan"'0)
a——o0 b— o0

I
VR
o
|
N‘l

3
N——
+
VS
ST
|
o
N—

Each limit exists, hence the original integral converges and has value:

A graph of the area defined by this integral is given in Figure 6.8.5.

Recall that many limits that result in indeterminate forms can be handled
using I’Hospital’s Rule. We briefly recall the statement of the theorem: suppose
that functions f and g are differentiable on an open interval containing a, and
that either

lim f(x) =0and Xll_rnzg(x) =0

x—a
or

lim f(x) = co and lim g(x) = oc.
X—a X—a

Then

) _ e £10

lim =
x|—>a g(x) x—a g/(x)

?

provided that the latter limit exists. It is not uncommon for the limits resulting
from improper integrals to need this rule as demonstrated next.

6.8 Improper Integration

—10 -5 -1

Figure 6.8.4: A graph of f(x) = €*in Ex-
ample 6.8.1.

—10 -5 5 10

Figure 6.8.5: A graph of f(x) =
Example 6.8.1.

1 .
T2 n

Note that I’'Hosptial’s rule can also be ap-
plied in the case of limits where x —
+o0.
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0.4 +

Inx

fx) = 2

X

10

Inx

2 in Ex-

Figure 6.8.6: A graph of f(x)
ample 6.8.2.

Note: In Definition 6.8.2, ¢ can be one of
the endpoints (a or b). In that case, there
is only one limit to consider as part of the
definition.
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Example 6.8.2 Improper integration and I’Hospital’s Rule

. . *“Inx
Evaluate the improper integral — dx.
1 X

SOLUTION This integral will require the use of Integration by Parts. Let
u=Inxanddv = 1/x*dx. Then

| b
/ k= Iim/n—zxdx
1 X b—oo J; X
Inx|b b1
= lim (-"X /dx)
b—o0 x b J; x?
) ( Inx 1)b
= lim (—— — -
b— oo X X 1
Inb 1
= lim (—— — > —(=Ih1-1) ).
b;“;o( b b U >)

Inb
The 1/b and In 1 terms go to 0, leaving blim 7 + 1. We need to evaluate
— 00

. Inb o
lim —— with I’'Hospital’s Rule. We have:
b—oco b

|bbyLHR 1/b
Iimn— = i L

b—oo b b—oo 1

=0.

Thus the improper integral evaluates as:

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integration
was infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.

Definition 6.8.2 Improper Integration with Infinite Range

Let f(x) be a continuous function on [a, b] except at ¢, a < ¢ < b, where
Xx = cis a vertical asymptote of f. Define
b
/ f(x) dx.
t

/ 9 [ 100

dx + lim

t—ct

dx = lim
t—c—




Example 6.8.3 Improper integration of functions with infinite range
Evaluate the following improper integrals:

19 |
1. —d. 2. — dx.
/oﬁ X /—1)‘2 X

SOLUTION

1. Agraph of f(x) = 1/4/xis given in Figure 6.8.7. Notice that f has a vertical
asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?

1 1
—dx = lim — dx
[ o=t %
1
= lim 2/x
a

a—0t

= (Vi-va)

lim 2
a—0t
=2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathematics when considering
the infinite).

2. The function f(x) = 1/x? has a vertical asymptote at x = 0, as shown
in Figure 6.8.8, so this integral is an improper integral. Let’s eschew using
limits for a moment and proceed without recognizing the improper nature
of the integral. This leads to:

= —1-(1)
——2.(})

Clearly the area in question is above the x-axis, yet the area is supposedly
negative! Why does our answer not match our intuition? To answer this,
evaluate the integral using Definition 6.8.2.

1 t 1
1 1 1
1 X t—=0- J_1 X t—0t+ J; X
1

. 1 . 1
= lim —— + lim ——
t—0— XI-1 t—0t X

t

. 1 . 1
= lim —= —1+4 lim —1+?

t—0— t t—0+

=>(oo—1) + (—1+oo).

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

6.8 Improper Integration

Figure 6.8.7: A graph of f(x) = % in Ex-
ample 6.8.3.

f t t > X
-1 —0.5 0.5 1

Figure 6.8.8: A graph of f(x) = % in Ex-
ample 6.8.3.
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p<1l<g

Figure 6.8.9: Plotting functions of the
form 1/x” in Example 6.8.4.

Understanding Convergence and Divergence

Oftentimes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integrating.

1
Our first tool is to understand the behaviour of functions of the form =
X

Example 6.8.4 Improper integration of 1/x”

o0
1
Determine the values of p for which / = dx converges.
J1 X

SOLUTION We begin by integrating and then evaluating the limit.

< 1 b1
/ — dx = Iim/—dx
1 XxP b—oo [y XP
b

= lim / x~P dx (assume p # 1)
1

b—o0
1
= lim 7X_p+l
b—oco —p + 1 1
1
= lim —— (b — 117),
b—ool—p

When does this limit converge —i.e., when is this limit not co? This limit con-
verges precisely when the power of b is less than 0: when1 —p <0 =1 < p.

oo

1
Our analysis shows that if p > 1, then ) dx converges. Whenp < 1

the improper integral diverges; we showed in Example 6.8.1 that whenp = 1
the integral also diverges.

Figure 6.8.9 graphs y = 1/x with a dashed line, along with graphs of y =
1/x",p < 1,andy = 1/x%, q > 1. Somehow the dashed line forms a dividing
line between convergence and divergence.

The result of Example 6.8.4 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

1
1
improper integrals of the form / = dx. These results are summarized in the
0 X

following Key Idea.

< 1 T
Key Idea 6.8.1 Convergence of Improper Integrals/ o dx and / X—p dx.
0
1
1. The improper integral / v dx converges when p > 1 and diverges whenp < 1.
1 X

1
1
2. The improper integral / v dx converges when p < 1 and diverges whenp > 1.
o X

1

Note: We used the upper and lower
bound of “1” in Key Idea 6.8.1 for conve-
nience. It can be replaced by any a where
a>0.
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A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We often use integrands of the form 1/x” to compare



to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 6.8.1 Direct Comparison Test for Improper Integrals

Let f and g be continuous on [a, co) where 0 < f(x) < g(x) for all x in
[a, 00).

1. If/ g(x) dx converges, then/ f(x) dx converges.
a a

2. If/ f(x) dx diverges, then/ g(x) dx diverges.
a Ja

Example 6.8.5 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

0 ) [e%s} 1
1. e ™ dx 2. —— dx
/1 /3 VX2 —x

SOLUTION

1. The function f(x) = e does not have an antiderivative expressible in
terms of elementary functions, so we cannot integrate directly. It is com-

2
parable to g(x) = 1/x?, and as demonstrated in Figure 6.8.10, e™* <

o0
1
1/x? on [1,0). We know from Key Idea 6.8.1 that / — dx converges,
1 X

oo
2
hence/ e " dxalso converges.
1

1 1
2. Note that for large values of X, —— ~ —. We know from Key

1
VX —x XX

o0
1
Idea 6.8.1 and the subsequent note that / — dx diverges, so we seek
3 X
to compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x = Vx2 > v/x? — x. Taking
reciprocals reverses the inequality, giving

1

1
8
X X2 —x

1

o0 1 o0
Using Theorem 6.8.1, weconcludethatsince/ fdxdiverges,/ e
X 3 X

2
3
diverges as well. Figure 6.8.11 illustrates this.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a little
1
———, but what if the
X2 —x
“—x" were replaced with a “+2x + 5”? That is, what can we say about the con-

. . . . 1
“too nice.” For instance, it was convenient that — <
X

e 1 1 1
vergence of/ —————— dx? We have - > ——, so we cannot
3 VX2 +2x4+5 X  A/x24+2x+5

use Theorem 6.8.1.
In cases like this (and many more) it is useful to employ the following theo-
rem.

0.5

6.8 Improper Integration

._‘
N

w |
ISR

Figure 6.8.10: Graphs of f(x) = e~ and
f(x) = 1/x* in Example 6.8.5.

1
oa | f(X) - m
0.2 fx) = 2
X
I " > X
2 4 6
Figure 6.8.11: Graphs of f(x) =

1/vVx* —x and f(x) = 1/xin Examp;

6.8.5.
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Theorem 6.8.2 Limit Comparison Test for Improper Integrals

Let fand g be continuous functions on [a, c0) where f(x) > O and g(x) >
0 for all x. If
f(x)

lim —= =1L, 0<L<oo,
X—00 g(x)

/aoof(x) dx and /aoog(x) dx

either both converge or both diverge.

then

Example 6.8.6 Determining convergence of improper integrals
o0
1
Determine the convergence of/ — dx.
3 VX2 +2x+5
SOLUTION As x gets large, the denominator of the integrand will begin
1 1
to behave much like y = x. So we compare ———— to -~ with the Limit
y P X2 +2x+5 X
Comparison Test:
. 1/V/x*+2x+5 . X
lim = lim

X—>00 1/x T xmoo X f 215

The immediate evaluation of this limit returns co /oo, an indeterminate form.
Using I'Hospital’s Rule seems appropriate, but in this situation, it does not lead
to useful results. (We encourage the reader to employ I’'Hospital’s Rule at least

y once to verify this.)
) = 1 The trouble is the square root function. To get rid of it, we employ the fol-
Vi 2+ 5 lowing fact: If lim f(x) = L, then lim f(x)? = L. (This is true when either c or L
X—c X—C
02 | is 00.) So we consider now the limit
2
== lim ——.
f(x) " 2 L 2x 15
!—, 1}0 1}5 210 ) This converges to 1, meaninglthe original limit also convgrged to 1. As x gets
very large, the function ————— looks very much like ~. Since we know that
X2 +2x+5 X
Figure 6.8.12: Graphing f(x) = ——— / L dxdiverges, by the Limit Comparison Test we knowthat/ S
\/X2+2x+5 . x X ges, by p \ P T X

— 1
and fx) = ; in Bxample 6.8.6. also diverges. Figure 6.8.12 graphs f(x) = 1/vx?> +2x+ 5 and f(x) = 1/x, il-

lustrating that as x gets large, the functions become indistinguishable.

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
aninfinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

This chapter has explored many integration techniques. We learned Substi-
tution, which “undoes” the Chain Rule of differentiation, as well as Integration
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric functions and introduced the hyperbolic functions,
which are closely related to the trigonometric functions. All techniques effec-
tively have this goal in common: rewrite the integrand in a new way so that the
integration step is easier to see and implement.

316



As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible to write in terms of elementary functions,
and even when a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer
algebra system Mathematica® has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in-
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integration.

The next chapter stresses the uses of integration. We generally do not find
antiderivatives for antiderivative’s sake, but rather because they provide the so-
lution to some type of problem. The following chapterintroduces us to a number
of different problems whose solution is provided by integration.

6.8

Improper Integration
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Exercises 6.8

Terms and Concepts

1. The definite integral was defined with what two stipula-
tions?
b oo
2. If blim / f(x) dx exists, then the integral / f(x) dx is
— 00 0 0
said to
3. If/ f(x) dx =10, and 0 < g(x) < f(x) for all x, then we
! oo
know that/ g(x) dx
1
. > 1
4. For what values of p will / = dx converge?
. X
. <1
5. For what values of p will / — dx converge?
10 X
i
6. For what values of p will / = dx converge?
0 X
Problems

In Exercises 7 — 34, evaluate the given improper integral.

7.

o

©

10.

11.

12.

13.

14.

15.

16.

0o
/ eS—Zx dx
0

oo
/ g o
Cee X219

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

> 1
/ dx
, x—1

2
1
/ dx
, x—1
1
1
/fdx
't
3
1
/ dx
, x—=2
/seczxdx
0

1

/z |x\
/

[eS)
xe~
0

oo

xe

oo

oo

7dx
ex t+ex

o]

xInxdx

/
L
/
|

/xlnxdx
0

|

/ InX
1 X

oo
/ e “sinxdx
0
oo
/ e " cosx dx
0



In Exercises 35 — 44, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what function the integrand is being com-
pared to.

35.

°° 3
/ SN SN
10 \/3X2+2X*5

i 4
36. — dx
/z VI3 —x

e Vx+3
0o VX —x2+x+1

38. / e “Inxdx
1

37. dx

39.

40

41.

42.

43.

44

/Zoo
/ooo
/ooo
. / h

1

X2 +sinx

X

X2 + cos x

1
X+ e~

1
eXx —x

dx

oo ) 1
/ e—x —+3x+ dX

5

oo
X

. / ix dx

Jo €
dx

dx
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/: APPLICATIONS OF
INTEGRATION

We begin this chapter with a reminder of a few key concepts from Chapter 5.
Let f be a continuous function on [a, b] which is partitioned into n equally spaced
subintervals as

a<Xxg<xp<---<Xp <Xn+1:b.

Let Ax = (b — a)/n denote the length of the subintervals, and let ¢; be any
x-value in the i " subinterval. Definition 5.3.2 states that the sum

Zf(c,-)Ax

is @ Riemann Sum. Riemann Sums are often used to approximate some quan-
tity (area, volume, work, pressure, etc.). The approximation becomes exact by
taking the limit

lim Zf(c,—)Ax.
i=1

n—o0 4

Theorem 5.3.2 connects limits of Riemann Sums to definite integrals:

n b
Jim > °f(a)Ax= [ o
i=1 a

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications.
Suppose the value Q of a quantity is to be calculated. We first approximate the
value of Q using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 7.0.1 Application of Definite Integrals Strategy

Let a quantity be given whose value Q is to be computed.
1. Divide the quantity into n smaller “subquantities” of value Q;.

2. Identify a variable x and function f(x) such that each subquantity
can be approximated with the product f(c;) Ax, where Ax repre-
sents a small change in x. Thus Q; =~ f(c;) Ax. A sample approxi-
mation f(c;) Ax of Q; is called a differential element.

n n
3. Recognize that Q = ZQ" ~ Zf(c,-)Ax, which is a Riemann
i=1 i=1
Sum.

b
4. Taking the appropriate limit gives Q = / f(x) dx
a

This Key Idea will make more sense after we have had a chance to use it
several times. We begin with Area Between Curves, which we addressed briefly
in Section 5.5.4.



Chapter 7 Applications of Integration

> /\/j‘(x)
g(x)
t + X
a b
(a)
y
> / f(x)
g(x)
o ,
(b)
y
> / f(x)
g(x)
+ + X
a b

(c)

Figure 7.1.1: Subdividing a region into
vertical slices and approximating the ar-
eas with rectangles.

y

2 fx)

t t t X
5 10 4

\VAVAVAVA

Figure 7.1.2: Graphing an enclosed region
in Example 7.1.1.
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7.1 Area Between Curves

We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.5.4 and approach it instead using
the technique described in Key Idea 7.0.1.

Let Q be the area of a region bounded by continuous functions fand g. If we
break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.

The issue to address next is how to systematically break a region into subre-
gions. A graph will help. Consider Figure 7.1.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
particularly efficient way is to “slice” it vertically, as shown in Figure 7.1.1 (b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value c; in the it™" slice, we set
the height of the rectangle to be f(c;) — g(c;), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with Ax. Figure 7.1.1 (c) shows sample points ¢; chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differential element.) Each slice has an area approximately equal to
(f(c,-) - g(c,-))Ax; hence, the total area is approximately the Riemann Sum

Q= Z (f(ci) — g(ci)) Ax.

Taking the limit as n — oo gives the exact area as fab (f(x) — g(x)) dx.

Theorem7.1.1 Area Between Curves
(restatement of Theorem 5.4.3)

Let f(x) and g(x) be continuous functions defined on [a, b] where f(x) >
g(x) for all x in [a,b]. The area of the region bounded by the curves
y =f(x),y = g(x) and the linesx =aandx = b is

b
/ (F0) — g(x)) dix.

Example 7.1.1 Finding area enclosed by curves
Find the area of the region bounded by f(x) = sinx + 2, g(x) = 1 cos(2x) — 1,
x = 0and x = 4, as shown in Figure 7.1.2.

SOLUTION The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral

/M (f(x) — g(x)) dx = /4ﬂ (sinx—i— 2— (% cos(2x) — 1)) dx

1 4T
= —cosx— sin(2x) + 3x

0
127 = 37.7 units?.
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Example 7.1.2 Finding total area enclosed by curves
Find the total area of the region enclosed by the functions f(x) = —2x + 5 and
g(x) = x> — 7x* + 12x — 3 as shown in Figure 7.1.3.

SOLUTION A quick calculation shows that f = gatx = 1,2 and 4. One y
4
can proceed thoughtlessly by computing / (f(x) — g(x)) dx, but this ignores , |
1
the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integration returns
—9/4, hardly the expected value of an area.) Thus we compute the total area by : : : > x
breaking the interval [1, 4] into two subintervals, [1,2] and [2,4] and using the ! 2\ ¢
proper integrand in each. 2 |
2 4
Total Area = / (g(x) — f(x)) dx+/ (f(x) — g(x)) dx 4/
1 2
2 4
= / (x3 — 7x% +14x — 8) dx + / ( — X3 7x% —14x + 8) dx Figure 7.1.3: Graphing a region enclosed
1 J2 by two functions in Example 7.1.2.
=5/12+8/3

= 37/12 = 3.083 units’.

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 7.1.1. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

Example 7.1.3 Finding area: integrating with respect to y
Find the area of the region enclosed by the functionsy = /x + 2,y = —(x —
1)2 +3and y = 2, as shown in Figure 7.1.4.

SOLUTION We give two approaches to this problem. In the first ap- y
proach, we notice that the region’s “top” is defined by two different curves. s y=vi+2 y=—(x—12+3
On [0, 1], the top function is y = +/x + 2; on [1,2], the top function isy =
—(x —1)? 4+ 3. Thus we compute the area as the sum of two integrals:

TotaIArea:/o1 ((ﬁ+2) —2) dx—l—/l2 ((—(x—1)2+3) —2) dx

=2/3+2/3
—4/3.

The second approach is clever and very useful in certain situations. We are
used to viewing curves as functions of x; we input an x-value and a y-value is re- Figure 7.1.4: Graphing a region for Exam-
turned. Some curves can also be described as functions of y: input a y-value and ple 7.1.3.
an x-value is returned. We can rewrite the equations describing the boundary
by solving for x:

y=vVx+2 = x=(y—2)>
y=—-(x—-1724+3 = x=3-y+1
Figure 7.1.5 shows the region with the boundaries relabelled. A differential

element, a horizontal rectangle, is also pictured. The width of the rectangle is
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3 x=0-2’ x=v3-y+1
/\
2 N\
L
t ; X
1 2

Figure 7.1.5: The region used in Example
7.1.3 with boundaries relabelled as func-
tions of y.

Figure 7.1.6: Graphing a triangular region
in Example 7.1.4.
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a small change in y: Ay. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “bottom” x-value
is the smaller, i.e., the leftmost. Therefore the height of the rectangle is

(V3-y+1) - (y—-27"

The area is found by integrating the above function with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That s, both the “top” and “bottom” functions exist on the y interval [2, 3]. Thus

3
Total Area = / (V3-y+1—(y—2))dy
2

ty-o)]

2
= —Z(3_y)3? _
( 3By —3

=4/3.

This calculus—based technique of finding area can be useful even with shapes
that we normally think of as “easy.” Example 7.1.4 computes the area of a trian-
gle. While the formula “5 x base x height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Example 7.1.4 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y=x4+1,y=—-2x+7andy = —%x + %, as shown in Figure 7.1.6.

SOLUTION Recognize that there are two “top” functions to this region,
causing us to use two definite integrals.

Total Area = /1 (b+12) - (—%X+ g)) dX+/2 ((—2x+7) — (—%x‘f‘ §>) dx

=3/4+3/4
=3/2.

We can also approach this by converting each function into a function of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstration purposes.

The “top” function is always x = % while there are two “bottom” func-
tions. Being mindful of the proper integration bounds, we have

TotaIArea:/l2 (%—(S—Zy)) dy—&—/z3 (%—(y—l)) dy

=3/4+3/4
=3/2.

Of course, the final answer is the same. (It is interesting to note that the area of
all 4 subregions used is 3/4. This is coincidental.)

In the next section we apply our applications—of-integration techniques to
finding the volumes of certain solids.



Exercises 7.1
Terms and Concepts y

2 I y =sinx+1

1. T/F: The area between curves is always positive.

8 1 /
2. T/F:Calculus can be used to find the area of basic geometric
shapes. y = sinx
. . t X
3. In your own words, describe how to find the total area en- /2 ~\

closed by y = f(x) and y = g(x).

4. Describe a situation where it is advantageous to find an
area enclosed by curves through integration with respect
to y instead of x.

Problems

In Exercises 5 — 12, find the area of the shaded region in the
given graph.

y
t X
/8 W’/X
4 i
5. A
2+ y=1cosx+1
/—\/_
y
: > X 14
m 27
y = sinx
0.5
y
10.
3 :
y=—3x+3x+2 /4
2 —05 |
6.
14 /
—1 1
> X
—1 1
~_ =1 y=x+x-1
y
2 y=2
7 1 =1 11.
t t X
/2 B : -
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12. 23.
1
y=1
. . X
1 2
In Exercises 13 — 20, find the total area enclosed by the func-
tions fand g.
13. f(x) =2 +5x —3,9(x) = x* +4x — 1
24,

14.

15.

16.

17.

18.

19.

20.

21.

22.

In Exercises 22 — 27, find the area of the enclosed region in 26.
two ways:
1. by treating the boundaries as functions of x, and
2. by treating the boundaries as functions of y.
y
2 i
ix—32+1
y=x'+1
X 27.
y=1
t t t X
1 2 3
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2| y=Vvx+l_ y=v2-x+1

f(xX) =x* —3x+2,9(x) = —3x+3
f(x) =sinx, g(x) = 2x/x

fX)=x -8 +x—1,9(x) = —x*"+2x—4

fxX) = - +5% +2x+1,9(x) =3 +x+3

The functions f(x) = cos(x) and g(x) = sinx intersect g,

infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

The functions f(x) = cos(2x) and g(x) = sinx intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

The functions f(x) = cos(2x) and g(x) = sinx intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

y
1,,
y =X
0.5 +
y=—2x+3
1 2
—-0.5 |
y=—3x
—1
y
4
y=x+4+2
y=x
2
-1 1 2
y
1,,
_ _1
x=—-3y+1
1 2
—1 |
x =1y
-2+
y

| y=vx+1

y=+v2—-x+1




In Exercises 28 — 31, find the area triangle formed by thegiven ~ 29. (—1,1), (1,3), and (2,-1)
three points.
30. (1,1), (3,3), and (3,3)

28. (1,1), (2,3), and (3,3) 31. (0,0), (2,5), and (5,2)
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basearea= A

Volume=A-h

Figure 7.2.1: The volume of a general

right cylinder

3
A

10

Figure 7.2.2: Orienting a pyramid along

the x-axis in Example 7.2.1.
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7.2 Volume by Cross-Sectional Area; Disk and Washer
Methods

The volume of a general right cylinder, as shown in Figure 7.2.1, is

Area of the base x height.
We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sectional area x thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(x;) represent the cross-
sectional area of the i ™ slice, and let Ax; represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

n
Volume =~ Z {Area X thickness}

i=1
= zn: A(X,’)AX,‘.
i=1

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 7.2.1 Volume By Cross-Sectional Area

The volume V of a solid, oriented along the x-axis with cross-sectional
area A(x) fromx=atox =b,is

V= /gbA(x) dx.

Example 7.2.1 Finding the volume of a solid
Find the volume of a pyramid with a square base of side length 10 in and a height
of 5in.

SOLUTION There are many ways to “orient” the pyramid along the x-
axis; Figure 7.2.2 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross section of the pyramid is a square; this is a sample differential
element. To determine its area A(x), we need to determine the side lengths of
the square.

When x = 5, the square has side length 10; when x = 0, the square has side
length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-sectional square has side length 2x, giving A(x) = (2x)? = 4x°.

If one were to cut a slice out of the pyramid at x = 3, as shown in Figure
7.2.3, one would have a shape with square bottom and top with sloped sides. If
the slice were thin, both the bottom and top squares would have sides lengths
of about 6, and thus the cross—sectional area of the bottom and top would be
about 36in?. Letting Ax; represent the thickness of the slice, the volume of this
slice would then be about 36 Ax;in3.

Cutting the pyramid into n slices divides the total volume into n equally—
spaced smaller pieces, each with volume (Zx,»)ZAx, where x; is the approximate



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





7.2 Volume by Cross-Sectional Area; Disk and Washer Methods

location of the slice along the x-axis and Ax represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

n
Approximate volume = Z(Zx,-)ZAx. Ax- -7
i=1

U ¥

Taking the limit as n — oo gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 7.2.1.
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We can check our work by consulting the general equation for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1 x area of base x height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus—based method can be applied to much more than just cones.

An important special case of Theorem 7.2.1 is when the solid is a solid of
revolution, that is, when the solid is formed by rotating a shape around an axis.

Start with a function y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sections
are disks (thin circles). Let R(x) represent the radius of the cross-sectional disk at
x; the area of this disk is TR(x)2. Applying Theorem 7.2.1 gives the Disk Method.

Key Idea 7.2.1 The Disk Method

Let a solid be formed by revolving the curve y = f(x) fromx = atox = b
around a horizontal axis, and let R(x) be the radius of the cross-sectional
disk at x. The volume of the solid is

b
V= 71'/ R(x)? dx.
a
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Example 7.2.2 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, fromx = 1
to x = 2, around the x-axis.

SOLUTION A sketch can help us understand this problem. In Figure
7.2.4(a) the curve y = 1/x is sketched along with the differential element — a
disk — at x with radius R(x) = 1/x. In Figure 7.2.4 (b) the whole solid is pictured,
along with the differential element.

The volume of the differential element shown in part (a) of the figure is ap-
proximately mR(x;)2Ax, where R(x;) is the radius of the disk shown and Ax is
the thickness of that slice. The radius R(x;) is the distance from the x-axis to the
curve, hence R(x;) = 1/x;.

Slicing the solid into n equally—spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

n 2
1
Approximate volume = E T (x) Ax.
i—1 i

Taking the limit of the above sum as n — oo gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 7.2.1:
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While Key Idea 7.2.1 is given in terms of functions of x, the principle involved
can be applied to functions of y when the axis of rotation is vertical, not hori-
zontal. We demonstrate this in the next example.

Example 7.2.3 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, fromx = 1
to x = 2, about the y-axis.

SOLUTION Since the axis of rotation is vertical, we need to convert the
function into a function of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite itas x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rotating the curve x = 1/y, fromy = 1/2 toy = 1 about the
y-axis to form a solid. The curve and sample differential element are sketched in
Figure 7.2.5 (a), with a full sketch of the solid in Figure 7.2.5 (b). We integrate







7.2 Volume by Cross-Sectional Area; Disk and Washer Methods

to find the volume:

1
1
12 Y

w1

y
= 7 units>.

1/2

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V= w/b R(x)? dx — w/b r(x)? dx = w/b (R(x)* = r(x)?) dx.

One can generate a solid of revolution with a hole in the middle by revolving
aregion about an axis. Consider Figure 7.2.6(a), where a region is sketched along
with a dashed, horizontal axis of rotation. By rotating the region about the axis, a
solid is formed as sketched in Figure 7.2.6(b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross section of this solid will be
a washer (a disk with a hole in the center) as sketched in Figure 7.2.7. This leads
us to the Washer Method.

Key Idea 7.2.2 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross section at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V= / ’ (R(x)z - r(x)z) dx.

(a)

(b)

Figure 7.2.6: Establishing the Washer
Method; see also Figure 7.2.7.
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Figure 7.2.7: Establishing the Washer
Method; see also Figure 7.2.6.

54
T T
1 2 3
— 54
(@)
y
54
- 1 3 .
54
(b)

Figure 7.2.8: Sketching the differential el-
ement and solid in Example 7.2.4.
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Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.4 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the region bounded by y =
x> — 2x+ 2 and y = 2x — 1 about the x-axis.

SOLUTION A sketch of the region will help, as given in Figure 7.2.8(a).
Rotating about the x-axis will produce cross sections in the shape of washers, as
shown in Figure 7.2.8(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x* — 2x+ 2. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute
the volume.

V7r/3 ((Zx—l)z—(x2—2x+2)2) dx

3
:7r/ (—X4—|—4x3—4x2—|—4x—3)dx
1

1 4 3
w{— x4+ x4 — fx3+2x2—3x”
1

5 3
104 .3
= —m & 21.78 units”.

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.

Example 7.2.5 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the triangular region with ver-
ticesat (1,1), (2,1) and (2, 3) about the y-axis.

SOLUTION The triangular region is sketched in Figure 7.2.9(a); the dif-
ferential element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotation is vertical, each
radius is a function of y.

The outside radius R(y) is formed by the line connecting (2,1) and (2, 3); it
is a constant function, as regardless of the y-value the distance from the line to
the axis of rotation is 2. Thus R(y) = 2.

The inside radius is formed by the line connecting (1, 1) and (2, 3). The equa-
tion of this line isy = 2x— 1, but we need to refer to it as a function of y. Solving
forx gives r(y) = 2(y + 1).

We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V= w/la (22 - (%(y—k 1))2) dy

3
1, 1 15
Y A
7r/1( i 2y+4)y
[ 1, 12+15}3
ITY T T,
10

=3 10.47 units®.

This section introduced a new application of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.







7.2 Volume by Cross-Sectional Area; Disk and Washer Methods

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what is more useful is the understanding of this basic principle

. . . . y
of integral calculus, outlined in Key Idea 7.0.1: to find the exact value of some 3
quantity, r(y)
e we start with an approximation (in this section, slice the solid and approx- 5.
imate the volume of each slice),
¢ then make the approximation better by refining our original approxima- 14 Ry
tion (i.e., use more slices),
¢ then use limits to establish a definite integral which gives the exact value. jz\ll\\r\p
1 2
We practice this principle in the next section where we find volumes by slic-
ing solids in a different way. (3)
34
("
14
— |
-2 1 \P\P
1 2
y
34
all
1
14
— |
2 1 \\F
(b) o2

(c)

Figure 7.2.9: Sketching the solid in Exam-
ple 7.2.5.
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Exercises 7.2

Terms and Concepts v
1]
1. T/F: A solid of revolution is formed by revolving a shape y=vx
around an axis.
8 05 y=x
2. Inyour own words, explain how the Disk and Washer Meth-
ods are related.
+ + X
3. Explain the how the units of volume are found in the inte- 0.5 1
gral of Theorem 7.2.1: if A(x) has units of in?, how does
J A(x) dx have units of in®?
4. Afundamental principle of this section is “ can be In Exercises 9 — 12, a region of the Cartesian plane is shaded.
found by integrating an area function.” Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the y-
axis.
Problems
In Exercises 5 — 8, a region of the Cartesian plane is shaded. y
Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the x-
axis.
y 9.
> X
5. 2
y
10 |
y y = 5x
1 10. 1
10 y = 5x 5
6. 5 : : : > x
0.5 1 1.5 2
t - t > X y
0.5 1 1.5 2
y
11.
7.
X
x (Hint: Integration By Parts will be necessary, twice. First let

u = arccos? x, then let u = arccos x.)
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12. 0s | y=x

0.5 1

In Exercises 13 — 18, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revolution formed by rotating the region about
each of the given axes.

13. Region bounded by: y = v/x,y = 0and x = 1.
Rotate about:

(c) the y-axis
(d) x=1

(a) the x-axis
(b) y=1

14. Region bounded by: y =4 — x* andy = 0.
Rotate about:

(a) the x-axis (c) y=-1
b's

(b) y=14 (d)

15. The triangle with vertices (1, 1), (1,2) and (2, 1).
Rotate about:

(c) the y-axis
(d) x=1

(a) the x-axis
(b) y=2

16. Region boundedbyy = x* —2x+2andy = 2x — 1.
Rotate about:

(a) the x-axis (c) y=5

(b) y=1

17. Region bounded by y = 1/v/x*+1,x = —1,x = land
the x-axis.

Rotate about:

(a) the x-axis (c) y=-1

(b) y=1

18. Region bounded byy = 2x,y = xand x = 2.
Rotate about:

(c) the y-axis
(d) x=2

(a) the x-axis
(b) y=4

In Exercises 19-22, a solid is described. Orient the solid along
the x-axis such that a cross-sectional area function A(x) can
be obtained, then apply Theorem 7.2.1 to find the volume of
the solid.

19. Aright circular cone with height of 10 and base radius of 5.

20. Askew right circular cone with height of 10 and base radius
of 5. (Hint: all cross-sections are circles.)

21. Aright triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

22. Asolid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.
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Figure 7.3.1:
Method.
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Introducing the Shell

7.3 The Shell Method

Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolution by integrating the cross—sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of rotation, creating
“shells.”

Consider Figure 7.3.1, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotation. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous section
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 27r. Thus the area is A = 2xrh; see Figure 7.3.2(a).

Do a similar process with a cylindrical shell, with height h, thickness Ax, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid
with length 27r, height h and depth Ax. Thus the volume is V = 2nrh Ax; see
Figure 7.3.2(b). (We say “approximately” since our radius was an approxima-
tion.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

n
V= Z 27TI',‘h,‘AX[,

i=1

where r;, h; and Ax; are the radius, height and thickness of the i shell, respec-
tively.

This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches 0 leads to a definite integral.






7.3 The Shell Method

A = 27rh h

(b)

Figure 7.3.2: Determining the volume of a thin cylindrical shell.

Key Idea 7.3.1 The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a vertical axis. Let r(x) represent the distance from the axis
of rotation to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V=27 /b r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x) — g(x).

2. When the axis of rotation is the y-axis (i.e., x = 0) then r(x) = x.
Let’s practice using the Shell Method.

Example 7.3.1 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region bounded by y = 0,
y =1/(1+ x*), x = 0and x = 1 about the y-axis.

SOLUTION This is the region used to introduce the Shell Method in Fig-
ure 7.3.1, but is sketched again in Figure 7.3.3 for closer reference. A line is
drawn in the region parallel to the axis of rotation representing a shell that will
be carved out as the region is rotated about the y-axis. (This is the differential
element.)

The distance this line is from the axis of rotation determines r(x); as the h(x)
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the lineisaty = 1/(1 + x?), whereas the bottom

of the lineis aty = 0. Thus h(x) = 1/(1+ x*) — 0 = 1/(1 + x). The region is N——
bounded from x = 0 to x = 1, so the volume is "

1

Figure 7.3.3: Graphing a region in Exam-

oy ple 7.3.1.
V= 27r/ —— dx.
o 14+x?
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— T X
1 2 3 4 5 6

Figure 7.3.4: Graphing a region in Exam-
ple 7.3.2.
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This requires substitution. Let u = 1 + x%, so du = 2x dx. We also change the

bounds: u(0) = 1 and u(1) = 2. Thus we have:

2
1

=7 —du
1 u
2

:wlnu‘

= 71ln2 ~ 2.178 units>.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.2 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the triangular region determined
by the points (0, 1), (1,1) and (1, 3) about the line x = 3.

SOLUTION The region is sketched in Figure 7.3.4(a) along with the dif-
ferential element, a line within the region parallel to the axis of rotation. In part
(b) of the figure, we see the shell traced out by the differential element, and in
part (c) the whole solid is shown.

The height of the differential element is the distance fromy = 1toy = 2x+
1, the line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1—1 = 2x.
The radius of the shell formed by the differential element is the distance from
xto x = 3; thatis, itis r(x) = 3 — x. The x-bounds of the region are x = 0 to
x =1, giving

V= 2%/1(3 — x)(2x) dx
= 27r/1 (6x — 2x%) dx

2 1
=27 (3x2 — x3) ‘
3 0

14 3
= ?ﬂ' =~ 14.66 units”.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height functions in terms of y, not x.

Example 7.3.3 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region given in Example 7.3.2
about the x-axis.

SOLUTION The region is sketched in Figure 7.3.5(a) with a sample dif-
ferential element. In part (b) of the figure the shell formed by the differential
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same
region looked “tall and narrow.” This is because the bounds on the graphs are
different.)

The height of the differential element is an x-distance, between x = 2y — 1
andx = 1. Thush(y) = 1— (3y— 1) = —1y+ 2. The radius is the distance from





y to the x-axis, so r(y) = y. The y bounds of the regionarey = 1andy = 3,
leading to the integral

3
=2 _ 22 — d
7T/1 2y+2y:| y
1 3 3
=2 - 72‘
o]
9 7
=27 |- — —
4 12

10 .3
= ?w =~ 10.472 units”.

At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

Example 7.3.4 Finding volume using the Shell Method
Find the volume of the solid formed by revolving the region bounded by y = sin x
and the x-axis from x = 0 to x = 7 about the y-axis.

SOLUTION The region and a differential element, the shell formed by
this differential element, and the resulting solid are given in Figure 7.3.6.

The radius of a sample shell is r(x) = x; the height of a sample shellis h(x) =
sinx, each from x = 0 to x = m. Thus the volume of the solid is

7T
V= 27r/ xsin x dx.
0

This requires Integration By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:
s
/ cosxdx}
0

2T

— XCOSX

|

= 27 ~ 19.74 units®.

|
S -
[

2T ’7T-|—0]

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine function. We leave it to the reader
to verify that the outside radius function is R(y) = m — arcsiny and the inside
radius function is r(y) = arcsiny. Thus the volume can be computed as

1
77/ |:(7T — arcsiny)? — (arcsiny)?| dy.
0

This integral isn’t terrible given that the arcsin? y terms cancel, but it is more
onerous than the integral created by the Shell Method.

7.3 The Shell Method

<N
—
+

(b)

(c)

Figure 7.3.5: Graphing a region in Exam-
ple 7.3.3.
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h(x)
r(x)

(b)

(c)

Figure 7.3.6: Graphing a region in Exam-
ple 7.3.4.
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We end this section with a table summarizing the usage of the Washer and
Shell Methods.

Key Idea 7.3.2 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y=candy=d.

Washer Method Shell Method
Horizontal b d
e . / (RO —r()?) ok 2r / H(y)h(y) dy
Xis a R

Vertical

d b
Axis 7r/c (R(y)* = r(y)*) dy 271'/0 r(x)h(x) dx

As in the previous section, the real goal of this section is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value. We use this same principle again in the next section,
where we find the length of curves in the plane.





Exercises 7.3

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape
around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integrating cross—sectional
areas of a solid.

4. T/F: When finding the volume of a solid of revolution that
was revolved around a vertical axis, the Shell Method inte-
grates with respect to x.

Problems

In Exercises 5 — 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lution formed by revolving the region about the y-axis.

y = 5x

0.5 1

In Exercises 9 — 12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lution formed by revolving the region about the x-axis.

10.
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11.

12. 0.5 | y=x

0.5 1

In Exercises 13 — 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revolution formed by rotating the region about each of the
given axes.

13. Region bounded by: y = v/x, y = 0 and x = 1.
Rotate about:

(a) the y-axis (c) the x-axis
(b) x=1 (d) y=1

14.

15.

16.

17.

18.

Region bounded by: y = 4 — x> and y = 0.
Rotate about:

(a) x=2 (c) the x-axis

(b) x=-2 (d y=4

The triangle with vertices (1, 1), (1,2) and (2, 1).
Rotate about:

(a) the y-axis (c) the x-axis

(b) x=1 (d) y=2

Region bounded by y = x* — 2x+2andy = 2x — 1.
Rotate about:

(a) the y-axis () x=-1

(b) x=1

Region bounded by y = 1/4/x2 + 1, x = 1 and the x and
y-axes.

Rotate about:

(a) the y-axis (b) x=1

Region bounded by y = 2x, y = xand x = 2.

Rotate about:

(a) the y-axis (c) the x-axis
(b) x=2 (d) y=4



7.4 Arc Length and Surface Area

In previous sections we have used integration to answer the following questions:
1. Given a region, what is its area?
2. Given a solid, what is its volume?

In this section, we address a related question: Given a curve, what is its
length? This is often referred to as arc length.

Consider the graph of y = sinx on [0, 7] given in Figure 7.4.1(a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight—line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

In Figure 7.4.1(b), the curve y = sinx has been approximated with 4 line
segments (the interval [0, 7] has been divided into 4 equally—lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sinx on [0, 7] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Leta = x; < x; < ... < X, < Xp41 = b be a partition
of [a, b] into n subintervals. Let Ax; represent the length of the i*" subinterval
[Xi; Xit1]-

Figure 7.4.2 zooms in on the i*" subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line seg-
ment as the hypotenuse of a right triangle whose sides have length Ax; and Ay;.

Using the Pythagorean Theorem, the length of this line segmentis |/ Ax* + Ay?2.
Summing over all subintervals gives an arc length approximation

n
L~ Z\/Ax,z—i—Ay,z.
i=1

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.

In the above expression factor out a Ax? term:

n n 2
;\/Axf+Ayi2:;1/Axf <1+ 2}{%)

Now pull the Ax? term out of the square root:

Ay?
A)};l AX,'.

2
i

=> 1+
i=1

7.4 Arc Length and Surface Area

.
0.5 |
s s 3 s
4 2 4
(a)
y
1 n
v |
2
0.5 1
T s 37 T
4 2 'y

(b)

Figure 7.4.1: Graphing y = sinx on [0, 7]
and approximating the curve with line
segments.

Yit1

Vi

Figure 7.4.2: Zooming in on the i subin-
terval [x;, xi+1] of a partition of [a, b].
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Note: This is our first use of differentia-
bility on a closed interval since Section
2.1.

The theorem also requires that ' be con-
tinuous on [a, b]; while examples are ar-
cane, it is possible for f to be differen-
tiable yet f’ is not continuous.

t t X

2 4

Figure 7.4.3: A graph of f(x) = 3/ from
Example 7.4.1.
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This is nearly a Riemann Sum. Consider the Ay?/Ax? term. The expression
Ay;/ Ax; measures the “change in y/change in x,” that is, the “rise over run” of
fon the i™h subinterval. The Mean Value Theorem of Differentiation (Theorem
3.2.1) states that there is a ; in the i ™" subinterval where f(c;) = Ay;/ Ax;. Thus
we can rewrite our above expression as:

= > VI ax
i=1

This is a Riemann Sum. As long as f’ is continuous, we can invoke Theorem 5.3.2
and conclude

- [ ViR e

Theorem 7.4.1 Arc Length

Letfbe differentiable on [a, b], where f” is also continuous on [a, b]. Then
the arclengthof ffromx =atox=bis

:/ab\/mdx.

As the integrand contains a square root, it is often difficult to use the formula
in Theorem 7.4.1 to find the length exactly. When exact answers are difficult to
come by, we resort to using numerical methods of approximating definite inte-
grals. The following examples will demonstrate this.

Example 7.4.1 Finding arc length
Find the arc length of f(x) = x*/2 from x = O to x = 4.

SOLUTION We find f/(x) = %xl/z; note that on [0, 4], fis differentiable
and f’ is also continuous. Using the formula, we find the arc length L as

4 3 2
L:/ 1+ Exl/z dx
/ 1+ xdx
2
3
8

T

2
1+ x) dx

( 9 )3/2 4
1+ —x
0

103/2 — ) ~ 9.07units.

\h/—\

~—~

N

7

A graph of fis given in Figure 7.4.3.

Example 7.4.2 Finding arc length
1
Find the arc length of f(x) = gxz —Inxfromx=1tox = 2.




SOLUTION This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f'(x) = x/4 — 1/x. The

arc length is
L—/ 1/1—&- - — = dx
/\/ —zdx
/\/)1%+ +—dx

x +Inx
8

3
3 +In2 =~ 1.07 units.

1

A graph of fis given in Figure 7.4.4; the portion of the curve measured in this
problem is in bold.

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.

Example 7.4.3 Approximating arc length numerically
Find the length of the sine curve from x = 0 to x = .

SOLUTION This is somewhat of a mathematical curiosity; in Example
5.4.3 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straightforward: f(x) = sinx and f’(x) = cosx. Thus

L :/ v 14 cos? x dx.
0

This integral cannot be evaluated in terms of elementary functions so we will ap-
proximate it with Simpson’s Method with n = 4. Figure 7.4.5 gives /1 + cos? x
evaluated at 5 evenly spaced points in [0, 7]. Simpson’s Rule then states that

™ -0
/ V/1+ cos? x dx ~ % (\fz+4\/3/2+2(1) +4,/3/2+ \fz)
JO :
— 3.82918.

Using a computer with n = 100 the approximation is L = 3.8202; our approxi-
mation with n = 4 is quite good.

7.4 Arc Length and Surface Area

0.5

Figure 7.4.4: A graph of f(x) = x* — Inx
from Example 7.4.2.

X v1+ cos?x

0 V2
/4 3/2
/2 1
3n/4 3/2

m V2

Figure 7.4.5: A table of values of y =

/1 + cos? x to evaluate a definite inte-
gral in Example 7.4.3.
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Xit1 b

Figure 7.4.6: Establishing the formula for
surface area.

346

Surface Area of Solids of Revolution

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

We begin as we have in the previous sections: we partition the interval [a, b]
with n subintervals, where the i ™ subinterval is [X, Xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(x;)
and f(x;11) as shown in Figure 7.4.6(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustum of a cone) as shown in Figure 7.4.6(b).
The surface area of a frustum of a cone is

27 - length - average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to

state that
L~ /1 +f/(C,‘)AX,‘

for some ¢; in the i subinterval. The radii are just the function evaluated at the
endpoints of the interval. That is,

R =f(xit1) and r=f(x;).
Thus the surface area of this sample frustum of the cone is approximately
Zﬂf(xi) +2f(Xi+1) 1+ 7/(c)2Ax;.

Since fis a continuous function, the Intermediate Value Theorem states there
fi) + f(xix1)
2

27f(di) /14 f'(ci)? Ax;.

Summing over all the subintervals we get the total surface area to be approxi-
mately

is some d; in [x;, x;+1] such that f(d;) = ; we can use this to rewrite

the above equation as

Surface Area ~ Z 2rf(di)\/ 1+ f'(ci)? Ax;,

i=1
which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following Key Idea.

Theorem 7.4.2 Surface Area of a Solid of Revolution

Let f be differentiable on [a, b], where f’ is also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) > 0, about the x-axis is

b
Surface Area = 27r/ F)V1+F(x)? dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a,b > 0, is

b
Surface Area = 27 / xy/1+f'(x)? dx.
Ja





(When revolving y = f(x) about the y-axis, the radii of the resulting frustum
are x; and x;y1; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 7.4.2.)

Example 7.4.4 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving y = sinx on [0, 7| around
the x-axis, as shown in Figure 7.4.7.

SOLUTION The setup s relatively straightforward. Using Theorem 7.4.2,
we have the surface area SA is:

SA = 27r/ sinxy/1 4+ cos? x dx
0
1 ™
= —27r5 (sinhfl(cosx) + cos xy/ 1+ cos? x)
0

27 (ﬁ +sinh™! 1) ~ 14.42 units®.

The integration step above is nontrivial, utilizing an integration method called
Trigonometric Substitution.

Itis interesting to see that the surface area of a solid, whose shape is defined
by a trigonometric function, involves both a square root and an inverse hyper-
bolic trigonometric function.

Example 7.4.5 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving the curve y = x* on [0, 1]
about the x-axis and the y-axis.

SOLUTION About the x-axis: the integral is straightforward to setup:
1
SA = 27r/ X*\/1+ (2x)2 dx.
0

Like the integral in Example 7.4.4, this requires Trigonometric Substitution.

1

0

312 (2(8x3 +x)V1+4x2 — sinh*1(2x))
_ T _ cinh—1
=3 (18\@ sinh 2)

~ 3.81 units?.

The solid formed by revolving y = x? around the x-axis is graphed in Figure 7.4.8
(a).

About the y-axis: since we are revolving around the y-axis, the “radius” of
the solid is not f(x) but rather x. Thus the integral to compute the surface area
is:

1
SA = 27r/ xy/1+ (2x)% dx.
0

7.4 Arc Length and Surface Area

Figure 7.4.7: Revolving y = sinx on [0, 7]
about the x-axis.

Figure 7.4.8: The solids used in Example
7.4.5.
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This integral can be solved using substitution. Set u = 1 + 4x?; the new bounds
are u = 1tou = 5. We then have

5
z/ Vudu
4 )1

) 5
e B
43 1

)

~ 5.33 units?.

The solid formed by revolving y = x? about the y-axis is graphed in Figure 7.4.8
(b).

Our final example is a famous mathematical “paradox.”

Example 7.4.6 The surface area and volume of Gabriel’s Horn

Consider the solid formed by revolving y = 1/x about the x-axis on [1, c0). Find
the volume and surface area of this solid. (This shape, as graphed in Figure 7.4.9,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

SOLUTION To compute the volume it is natural to use the Disk Method.
We have:
o0
1
V= ’/T/ -3 dX
1 X
b
1
= lim 7 — dx
b—oo  J; X2

Il

Bh:
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3

VRS

P

ol —

= 7 units>.

Gabriel’s Horn has a finite volume of 7 cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straightforward to setup:

> q
SA = 27r/ =V/1+1/x dx.
1 X

Integrating this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 < y/1+ 1/x* on [1, o), we can state that

Figure 7.4.9: A graph of Gabriel’s Horn.

001 '001
27r/ fdx<27r/ =/ 1+ 1/x*dx.
1 X 1 X
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By Key Idea 6.8.1, the improper integral on the left diverges. Since the inte-
gral on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn
has infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x? on [1, 00) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

7.4 Arc Length and Surface Area
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Exercises 7.4

Terms and Concepts

1. T/F: The integral formula for computing Arc Length was
found by first approximating arc length with straight line
segments.

2. T/F:Theintegral formula for computing Arc Length includes
a square—root, meaning the integration is probably easy.

Problems

In Exercises 3 — 12, find the arc length of the function on the
given interval.

3. f(x) =xon|0,1].
4. f(x) = V8xon[-1,1].

1
5. f(x) = 5)(3/2 —x"?on [0, 1].

1 1
6. f(x) = Ex3 + Zon [1,4].

7. f(x) = 2x*/% — %ﬁon [0,9].

8. f(x) = coshxon [—In2,In2].

9. flx) = %(ex +e ) on[0,In5].
10. f(x) = 1—12x5 + 5—; on [.1,1].

11. f(x) = In (sinx) on [ /6,7 /2].
12. f(x) =In (cosx) on [0, 7/4].

In Exercises 13 — 20, set up the integral to compute the arc
length of the function on the given interval. Do not evaluate
the integral.

13. f(x) = x* on [0, 1].
14. f(x) =x"°on [0, 1].
15. f(x) = v/xon[0,1].

16. f(x) = Inxon [1,e€].

17. f(x) = V1 —x? on [—1,1]. (Note: this describes the top
half of a circle with radius 1.)

18. f(x) = y/1 —x*/90n [—3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) = %on [1,2].

20. f(x) = secxon [—7/4,7/4].
In Exercises 21 — 28, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the function on the given interval.
Note: these are the same problems as in Exercises 13-20.

21. f(x) = x" on [0, 1].

22. f(x) =x"on [0,1].

23. f(x) = v/xon [0, 1]. (Note: f'(x) is not defined at x = 0.)

24. f(x) =Inxon[1,e€].

25. f(x) = V1 —x2 on [—1,1]. (Note: f'(x) is not defined at
the endpoints.)

26. f(x) = /1 —x2/9 on [-3,3]. (Note: f'(x) is not defined

at the endpoints.)
1
27. f(x) = Zon [1,2].
28. f(x) = secxon [—7/4,7/4].

In Exercises 29 — 33, find the surface area of the described
solid of revolution.

29. The solid formed by revolving y = 2x on [0, 1] about the
X-axis.

30. The solid formed by revolving y = x* on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x* on [0, 1] about the
X-axis.

32. The solid formed by revolving y = /x on [0, 1] about the
X-axis.

33. The sphere formed by revolvingy = /1 — x? on [—1,1]
about the x-axis.



7.5 Work

Work is the scientific term used to describe the action of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performedis W = F - d.

The SI unit of force is the Newton, (kg-m/s?), and the SI unit of distance is
a metre (m). The fundamental unit of work is one Newton—metre, or a joule
(J). That is, applying a force of one Newton for one metre performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (ft), hence work is measured in
ft—Ib.

When force is constant, the measurement of work is straightforward. For
instance, lifting a 200 Ib object 5 ft performs 200 - 5 = 1000 ft—Ib of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 ft rope up a vertical face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force function on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by partitioning [a, b] into subinter-
valsa = x; < x; < -+ < Xp4+1 = b and assuming that F is constant on each
subinterval. Let ¢; be a value in the i ™" subinterval [x;, x;1]. Then the work done
on this interval is approximately W; = F(¢;) - (xit1 — x;) = F(c;) Ax;, a constant
force x the distance over which it is applied. The total work is

n n

W= Z W; = ZF(C,-)AX,-.

i=1 i=1

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work

Let F(x) be a continuous function on [a, b] describing the amount of force
being applied to an object in the direction of travel from distance x = a
to distance x = b. The total work W done on [a, b] is

w= /ab F(x) dx.

7.5 Work

Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quantitative measure
of that object’s resistance to acceleration.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleration of gravity g.

Since the two measurements are pro-
portional, w = m - g, they are often
used interchangeably in everyday conver-
sation. When computing work, one must
be careful to note which is being referred
to. When mass is given, it must be multi-
plied by the acceleration of gravity to ref-
erence the related force.
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Note: In Example 7.5.2, we find that half
of the work performed in pulling up a 60
m rope is done in the last 42.43 m. Why is
it not coincidental that 60/+/2 = 42.43?

352

Example 7.5.1 Computing work performed: applying variable force

A 60m climbing rope is hanging over the side of a tall clifft. How much work
is performed in pulling the rope up to the top, where the rope has a mass of
66g/m?

SOLUTION We need to create a force function F(x) on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
still hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convention that x is the
amount of rope pulled in. This seems to match intuition better; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As xis the amount of rope pulled in, the amount of rope still hanging is 60 —x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The mass of the rope
still hanging is 0.066(60 — x) kg; multiplying this mass by the acceleration of
gravity, 9.8 m/s?, gives our variable force function

F(x) = (9.8)(0.066)(60 — x) = 0.6468(60 — x).

Thus the total work performed in pulling up the rope is
60
W= / 0.6468(60 — x) dx = 1,164.24 J.
0

By comparison, consider the work done in lifting the entire rope 60 meters.
The rope weighs 60 x 0.066 x 9.8 = 38.808 N, so the work applying this force for
60 meters is 60 x 38.808 = 2,328.48 J. This is exactly twice the work calculated
before (and we leave it to the reader to understand why.)

Example 7.5.2 Computing work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SOLUTION From Example 7.5.1 we know the total work performed is
1,164.24 J. We want to find a height h such that the work in pulling the rope

from a height of x = 0 to a height of x = h is 582.12, half the total work. Thus
we want to solve the equation

h
/ 0.6468(60 — x) dx = 582.12
0

for h.

h
/ 0.6468(60 — x) dx = 582.12
0

h
(38.808x — 0.3234x) ’ = 582.12
0

38.808h — 0.3234h* = 582.12
—0.3234h* + 38.808h — 582.12 = 0.

Apply the Quadratic Formula.

h = 17.57 and 102.43

As the rope is only 60 m long, the only sensible answeris h = 17.57. Thus about
half the work is done pulling up the first 17.5 m the other half of the work is
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done pulling up the remaining 42.43 m.

Example 7.5.3 Computing work performed: applying variable force

A box of 100 Ib of sand is being pulled up at a uniform rate a distance of 50 ft
over 1 minute. The sand is leaking from the box at a rate of 1 Ib/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 Ib/ft.

1. How much work is done lifting just the rope?
2. How much work is done lifting just the box and sand?

3. What is the total amount of work performed?

SOLUTION

1. We start by forming the force function F,(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is F.(x) = 0.2(50 — x) = 10 — 0.2x. (Note that we do not
have to include the acceleration of gravity here, for the weight of the rope
per foot is given, not its mass per metre as before.) The work performed
lifting the rope is

50
W, = / (10 — 0.2x) dx = 250 ft—Ib.
0

2. The sand is leaving the box at a rate of 1 Ib/s. As the vertical trip is to take
one minute, we know that 60 |b will have left when the box reaches its final
height of 50 ft. Again letting x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x =0,
the sand weight is 100 Ib, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 Ib, producing the point (50, 40). The slope of
this line is 29220 = —1.2, giving the equation of the weight of the sand
at height x as w(x) = —1.2x + 100. The box itself weighs a constant 5 Ib,
so the total force function is F,(x) = —1.2x+ 105. Integrating fromx = 0
to x = 50 gives the work performed in lifting box and sand:

50
W, = / (—1.2x 4 105) dx = 3750 ft-Ib.
0

3. The total work is the sum of W, and W,: 250 4+ 3750 = 4000 ft—lb. We
can also arrive at this via integration:

50
W= / (Fr(x) + Fp(x)) dx
0
50
= / (10 — 0.2x — 1.2x + 105) dx
0

50
:/ (—1.4x 4+ 115) dx
0

= 4000 ft-1Ib.
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Fluid Ib/ft kg/m?
Concrete 150 2400
Fuel Qil 55.46 890.13
Gasoline 45.93 737.22
lodine 307 4927
Methanol 49.3 791.3
Mercury 844 13546
Milk 63.6-65.4 1020 - 1050
Water 62.4 1000

Figure 7.5.2: Weight and Mass densities
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Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proportional to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. Converting the dis-
tances to meters, we have that stretching this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

Example 7.5.4 Computing work performed: stretching a spring

A force of 20 |b stretches a spring from a natural length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to this
length?

SOLUTION In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care
that 20 |b of force stretches the spring to a length of 12 inches, but rather that
a force of 20 |b stretches the spring by 5 in. This is illustrated in Figure 7.5.1;
we only measure the change in the spring’s length, not the overall length of the

spring.

Figure 7.5.1: lllustrating the important aspects of stretching a spring in computing work
in Example 7.5.4.

Converting the units of length to feet, we have
F(5/12) = 5/12k = 20 Ib.

Thus k = 48 Ib/ft and F(x) = 48x.
We compute the total work performed by integrating F(x) from x = 0 to
X =5/12:

5/12
W= / 48x dx
0

24 2‘5/12
= 24X
0

— 25/6 ~ 4.1667 ft-Ib.

Pumping Fluids

Another useful example of the application of integration to compute work
comes in the pumping of fluids, often illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situation is different than
our previous examples for the forces involved are constant. After all, the force
required to move one cubic foot of water (about 62.4 Ib) is the same regardless
of its location in the tank. What is variable is the distance that cubic foot of



water has to travel; water closer to the top travels less distance than water at
the bottom, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Example 7.5.5 Computing work performed: pumping fluids

A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is filled with
water, which weighs approximately 62.4 Ib/ft>. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SOLUTION We will refer often to Figure 7.5.3 which illustrates the salient
aspects of this problem.

We start as we often do: we partition an interval into subintervals. We orient
our tank vertically since this makes intuitive sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0=y1 <ys <--- <yYnp1 =30

Consider the work W; of pumping only the water residing in the i ™" subinterval,
illustrated in Figure 7.5.3. The force required to move this water is equal to its
weight which we calculate as volume x density. The volume of water in this
subinterval is V; = 1027 Ay;; its density is 62.4 |b/ft3. Thus the required force is
62407 Ay; lb.

We approximate the distance the force is applied by using any y-value con-
tained in the it subinterval; for simplicity, we arbitrarily use y; for now (it will
not matter later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 ft. Thus the distance the water at
height y; travels is 35 — y; ft.

In all, the approximate work W; performed in moving the water in the it
subinterval to a point 5 feet above the tank is

W; ~ 624071 Ay;(35 — y;).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the work W; performed in pumping the water from each of the
n subintervals of [0, 30]:

n n
Wa D) W= 62401 Ay(35 — y).
i=1 i=1

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

30
W= / 62407(35 — y) dy
0

= (62407 (35y — 1/2y?) EO

= 11,762,123 ft-Ib
~ 1.176 x 107 ft—Ib.

7.5 Work

35 +

30 +

Yig1
} Ay;
Vi

—— 35—y ——

Figure 7.5.3: lllustrating a water tank in
order to compute the work required to
empty it in Example 7.5.5.
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y

35 L We can “streamline” the above process a bit as we may now recognize what
PR the important features of the problem are. Figure 7.5.4 shows the tank from
30T N Example 7.5.5 without the it subinterval identified. Instead, we just draw one
T differential element. This helps establish the height a small amount of water
® must travel along with the force required to move it (where the force is volume

V(y) = 1007dy x density).

s L1 -}/ We demonstrate the concepts again in the next examples.

Example 7.5.6 Computing work performed: pumping fluids

A conical water tank has its top at ground level and its base 10 feet below ground.
P ~< The radius of the cone at ground level is 2 ft. It is filled with water weighing 62.4
°T N~ Ib/ft® and is to be emptied by pumping the water to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

Figure 7.5.4: A simplified illustration for

computing work. SOLUTION The conical tank is sketched in Figure 7.5.5. We can orient

the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convention
of the wording given in the problem and let y = 0 represent ground level and
hence y = —10 represents the bottom of the tank. The actual “height” of the
water does not matter; rather, we are concerned with the distance the water

travels.
The figure also sketches a differential element, a cross—sectional circle. The
radius of this circle is variable, depending on y. When y = —10, the circle has

radius 0; when y = 0, the circle has radius 2. These two points, (—10,0) and
(0, 2), allow us to find the equation of the line that gives the radius of the cross—
sectional circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = m(1/5y + 2)2dy, where dy represents a very small height of
3171 the differential element. The force required to move the water at height y is
F(y) = 62.4 x V(y).

The distance the water at height y travels is given by h(y) = 3 — y. Thus the
total work done in pumping the water from the tank is

0
W= / 62.47(1/5y +2)*(3 —y) dy
—10

0
1 17 8
= 62.47r/ (—y3 -y —y+ 12) dy

—10

V(y) = (% +2)dy
—10 4+

22
=62.27- ?o ~ 14,376 ft-Ib.

Figure 7.5.5: A graph of the conical water
tank in Example 7.5.6.
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Example 7.5.7 Computing work performed: pumping fluids

A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end” and a 6 ft
“deep end.” It is to have its water pumped out to a point 2 ft above the current
top of the water. The cross—sectional dimensions of the water in the pool are
given in Figure 7.5.6; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SOLUTION For the purposes of this problem we choose to sety = 0
to represent the bottom of the pool, meaning the top of the water is at y = 6.
Figure 7.5.7 shows the pool oriented with this y-axis, along with 2 differential
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
tial element is 25 ft as shown. As the pool is 20 ft wide, this differential element
represents a thin slice of water with volume V(y) = 20 - 25 - dy. The water is
to be pumped to a height of y = 8, so the height function is h(y) = 8 — y. The
work done in pumping this top region of water is

6
W, = 62.4/ 500(8 — y) dy = 327, 600 ft-Ib.
3

The bottom region lies in the y-interval of [0, 3]; we need to compute the
length of the differential element in this interval.

One end of the differential element is at x = 0 and the other is along the line
segment joining the points (10,0) and (15, 3). The equation of this line is y =
3/5(x —10); as we will be integrating with respect to y, we rewrite this equation
as x = 5/3y + 10. So the length of the differential element is a difference of
x-values: x = 0 and x = 5/3y + 10, giving a length of x = 5/3y + 10.

Again, as the pool is 20 ft wide, this differential element represents a thin
slice of water with volume V(y) = 20 - (5/3y + 10) - dy; the height function is
the same as before at h(y) = 8 — y. The work performed in emptying this part
of the pool is

3
W, = 62.4/ 20(5/3y + 10)(8 — y) dy = 299, 520 ft—Ib.
0

The total work in emptying the pool is
W= W, + W, = 327,600 + 299,520 = 627, 120 ft-lb.

Notice how the emptying of the bottom of the pool performs almost as much
work as emptying the top. The top portion travels a shorter distance but has
more water. In the end, this extra water produces more work.

7.5 Work

3 ft.

6 ft.
10 ft.

10 ft.

Figure 7.5.6: The cross—section of a swim-
ming pool filled with water in Example
7.5.7.

o 0

(15, 3)
(10,0)

} } T X
0 10 15

< w

o

Figure 7.5.7: Orienting the pool and
showing differential elements for Exam-
ple 7.5.7.
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Exercises 7.5

Terms and Concepts
1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 Ib on Earth, will her weight on the
moon be bigger, smaller, or the same?

4. Fill in the blanks:

Some integrals in this section are set up by multiplying a
variable by a constant distance; others are set
up by multiplying a constant force by a variable

Problems

5. A 100 ft rope, weighing 0.1 Ib/ft, hangs over the edge of a
tall building.

(a) How much work is done pulling the entire rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

6. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) How much work is done pulling the entire rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

7. A rope of length £ ft hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d Ib/ft.

(a) How much work is done pulling the entire rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

8. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

9. A crane lifts a 2,000 Ib load vertically 30 ft with a 1” cable
weighing 1.68 Ib/ft.
(a) How much work is done lifting the cable alone?
(b) How much work is done lifting the load alone?

(c) Could one conclude that the work done lifting the ca-
ble is negligible compared to the work done lifting the
load?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A 100 Ib bag of sand is lifted uniformly 120 ft in one minute.
Sand leaks from the bag at a rate of 1/4 Ib/s. What is the
total work done in lifting the bag?

A box weighing 2 Ib lifts 10 Ib of sand vertically 50 ft. A crack
in the box allows the sand to leak out such that 9 Ib of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in lifting
the box and sand?

Aforce of 1000 Ib compresses a spring 3 in. How much work
is performed in compressing the spring?

A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

Aforce of 50 Ib compresses a spring from a natural length of
18into 12 in. How much work is performed in compressing
the spring?

A force of 20 b stretches a spring from a natural length of
6 in to 8 in. How much work is performed in stretching the
spring?

A force of 7 N stretches a spring from a natural length of 11
c¢cm to 21 cm. How much work is performed in stretching
the spring from a length of 16 cm to 21 cm?

A force of f N stretches a spring d m from its natural length.
How much work is performed in stretching the spring?

A 20 Ib weight is attached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1ftto6in.

How much work is done in lifting the box 1.5 ft (i.e, the
spring will be stretched 1 ft beyond its natural length)?

A 20 Ib weight is attached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1ftto6in.

How much work is done in lifting the box 6 in (i.e, bringing
the spring back to its natural length)?

A5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m>. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

A 6 ft cylindrical tank with a radius of 3 ft is filled with wa-
ter, which has a weight density of 62.4 Ib/ft®. The water is
to be pumped to a point 2 ft above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 ft of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?



22.

23.

24,

A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 Ib/ft>. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via
pumping the gas to a point 1 ft above the top of the tank.
Assume the tank is a perfect cylinder, 20 ft long with a di-
ameter of 7.5 ft. How much work is performed in pumping
all the gasoline from the tank?

A fuel oil storage tank is 10 ft deep with trapezoidal sides,
5 ft at the top and 2 ft at the bottom, and is 15 ft wide (see
diagram below). Given that fuel oil weighs 55.46 Ib/ft?, find
the work performed in pumping all the oil from the tank to
a point 3 ft above the top of the tank.

5

A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 7.5.6.) The tank s filled with pure
water, with a mass density of 1000 kg/ma.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

25.

26.

27.

A water tank has the shape of a truncated cone, with di-
mensions given below, and is filled with water with a weight
density of 62.4 Ib/ft>. Find the work performed in pumping
all water to a point 1 ft above the top of the tank.

‘Iﬂ)ﬁ

A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m?. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

2m

T

A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m>. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

5m

T

.

2m
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Figure 7.6.1: The cylindrical and rectan-
gular tank in Example 7.6.1.
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7.6 Fluid Forces

In the unfortunate situation of a car driving into a body of water, the conven-
tional wisdom is that the water pressure on the doors will quickly be so great
that they will be effectively unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiting until
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
options.)

How can this be true? How much force does it take to open the door of
a submerged car? In this section we will find the answer to this question by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equations:

Force
Area

Pressure = < Force = Pressure X Area.

In the context of fluids, we have the following definition.

Definition 7.6.1 Fluid Pressure

Let w be the weight—density of a fluid. The pressure p exerted on an
object at depth d in the fluidisp = w - d.

We use this definition to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 7.6.1 Computing fluid force

1. A cylindrical storage tank has a radius of 2 ft and holds 10 ft of a fluid
with a weight—density of 50 Ib/ft3. (See Figure 7.6.1(a).) What is the force
exerted on the base of the cylinder by the fluid?

2. Arectangular tank whose base is a 5 ft square has a circular hatch at the
bottom with a radius of 2 ft. The tank holds 10 ft of a fluid with a weight—
density of 50 Ib/ft3. (See Figure 7.6.1(b).) What is the force exerted on
the hatch by the fluid?

SOLUTION

1. Using Definition 7.6.1, we calculate that the pressure exerted on the cylin-
der’s base is w - d = 50 Ib/ft> x 10 ft = 500 Ib/ft2. The area of the base is
- 2% = 47 ft?. So the force exerted by the fluid is

F =500 x 47 = 6283 |b.

Note that we effectively just computed the weight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 |b.

A key concept to understand here is that we are effectively measuring the
weight of a 10 ft column of water above the hatch. The size of the tank
holding the fluid does not matter.



The previous example demonstrates that computing the force exerted on a
horizontally oriented plate is relatively easy to compute. What about a vertically
oriented plate? For instance, suppose we have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all directions. Thus the pressure on any portion of a plate that is 1 ft
below the surface of water is the same no matter how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

So consider a vertically oriented plate as shown in Figure 7.6.2 submerged in
a fluid with weight—density w. What is the total fluid force exerted on this plate?
We find this force by first approximating the force on small horizontal strips.

Let the top of the plate be at depth b and let the bottom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the bottom of the
plate is 3 ft under the surface, we have a = —3. We will come back to this later.)
We partition the interval [a, b] into n subintervals

a=y1 <y, <:-<yYnpp1=b,

with the i" subinterval having length Ay;. The force F; exerted on the plate in
the it subinterval is F; = Pressure x Area.

The pressure is depth xw. We approximate the depth of this thin strip by
choosing any value d; in [y;, yi11]; the depth is approximately —d;. (Our conven-
tion has d; being a negative number, so —d; is positive.) For convenience, we let
d; be an endpoint of the subinterval; we let d; = ;.

The area of the thin strip is approximately length x width. The width is Ay;.
The length is a function of some y-value ¢; in the it subinterval. We state the
length is £(c;). Thus

F; = Pressure x Area
= —yi- WX é(C,‘) . Ay,-.

To approximate the total force, we add up the approximate forces on each of
the n thin strips:

n n

F = F,»mZ—wy,-Z(c,-)-Ay,-.

i=1 i=1

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

7.6 Fluid Forces

} Ayi

£(ci)

Figure 7.6.2: A thin, vertically oriented
plate submerged in a fluid with weight—
density w.
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4ft

Figure 7.6.3: A thin plate in the shape of
an isosceles triangle in Example 7.6.2.
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Figure 7.6.4: Sketching the triangular
plate in Example 7.6.2 with the conven-
tion that the water level is aty = 0.
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Figure 7.6.5: Sketching the triangular
plate in Example 7.6.2 with the conven-
tion that the base of the triangle is at
(0,0).
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Key Idea 7.6.1 Fluid Force on a Vertically Oriented Plate

Let a vertically oriented plate be submerged in a fluid with weight—
density w where the top of the plate is at y = b and the bottom is at
y = a. Let £(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

b
F=/ w- (~y) - £(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

b
F:/ w-d(y) - £(y) dy.

Example 7.6.2 Finding fluid force

Consider a thin plate in the shape of an isosceles triangle as shown in Figure
7.6.3 submerged in water with a weight—density of 62.4 Ib/ft3. If the bottom
of the plate is 10 ft below the surface of the water, what is the total fluid force
exerted on this plate?

SOLUTION We approach this problem in two different ways to illustrate
the different ways Key Idea 7.6.1 can be implemented. First we will lety = 0
represent the surface of the water, then we will consider an alternate conven-
tion.

1. We let y = O represent the surface of the water; therefore the bottom of
the plate is at y = —10. We center the triangle on the y-axis as shown
in Figure 7.6.4. The depth of the plate at y is —y as indicated by the Key
Idea. We now consider the length of the plate at y.

We need to find equations of the left and right edges of the plate. The
right hand side is a line that connects the points (0, —10) and (2, —6):
that line has equation x = 1/2(y + 10). (Find the equation in the familiar
y = mx+b format and solve for x.) Likewise, the left hand side is described
by the line x = —1/2(y + 10). The total length is the distance between
these two lines: ¢(y) = 1/2(y + 10) — (—1/2(y + 10)) = y + 10.

The total fluid force is then:

F= /6 62.4(—y)(y + 10) dy

176
=624 ——

~ 3660.8 |b.

2. Sometimes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convention that the bottom of the triangular plate
is at (0, 0), as shown in Figure 7.6.5. The equations of the left and right
hand sides are easy to find. They are y = 2x and y = —2x, respectively,
which we rewrite as x = 1/2y and x = —1/2y. Thus the length function
isl(y) =1/2y — (—=1/2y) = y.

As the surface of the water is 10 ft above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth function is the



distance between y = 10 and y; d(y) = 10 — y. We compute the total
fluid force as:

F:/o 62.4(10 — y)(y) dy

~ 3660.8 Ib.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent.

Example 7.6.3 Finding fluid force

Find the total fluid force on a car door submerged up to the bottom of its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto.)

SOLUTION The car door, as a rectangle, is drawn in Figure 7.6.6. Its
length is 10/3 ft and its height is 2.25 ft. We adopt the convention that the top
of the door is at the surface of the water, both of which are at y = 0. Using the
weight—density of water of 62.4 |b/ft3, we have the total force as

F:/O 62.4(—y)10/3 dy

—2.25
0
:/ —208y dy
—2.25
0
= —104y*
—2.25
= 526.5 |b.

Most adults would find it very difficult to apply over 500 Ib of force to a car
door while seated inside, making the door effectively impossible to open. This is
counter—intuitive as most assume that the door would be relatively easy to open.
The truth is that it is not, hence the survival tips mentioned at the beginning of
this section.

7.6 Fluid Forces

(0,0)

(3.3,0)

(0, —2.25)
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(3.3, —2.25)

Figure 7.6.6: Sketching a submerged car

door in Example 7.6.3.
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Figure 7.6.7: Measuring the fluid force on
an underwater porthole in Example 7.6.4.
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Example 7.6.4 Finding fluid force

An underwater observation tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each vertically oriented porthole is to
have a 3 ft diameter whose center is to be located 50 ft underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 ft of water.

SOLUTION We place the center of the porthole at the origin, meaning
the surface of the wateris aty = 50 and the depth function will be d(y) = 50—y;
see Figure 7.6.7

The equation of a circle with a radius of 1.5 is x> + y> = 2.25; solving for
x we have x = £4/2.25 — y2, where the positive square root corresponds to
the right side of the circle and the negative square root corresponds to the left
side of the circle. Thus the length function at depth y is £(y) = 24/2.25 — y2.
Integrating on [—1.5,1.5] we have:

1.5
F:62.4/ 2(50 — y)/2.25 — y? dy

—-1.5

1.5
= 62.4/ (100y/2.25 — y2 — 2y\/2.25 — y2) dy

—1.5
1.5 1.5
= 6240/ (V2.25 —y?) dy — 62.4/ (2y1/2.25 — y?) dy.
—1.5 —1.5

The second integral above can be evaluated using substitution. Let u = 2.25—y?
with du = —2y dy. The new bounds are: u(—1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 - 7 - 1.52 /2 = 22, 054. Thus the total fluid force
on a vertically oriented porthole is 22, 054 Ib.

Finding the force on a horizontally oriented porthole is more straightforward:

F = Pressure x Area = 62.4 - 50 x 7 - 1.5 = 22,054 Ib.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a vertically oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revolution. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximating the solution, then refining the approximation, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is ben-
eficial as it helps solve problems found in the exercises, and other mathematical
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summation of approximations; each summation was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

The next chapter addresses an entirely different topic: sequences and series.
In short, a sequence is a list of numbers, where a series is the summation of a list
of numbers. These seemingly—simple ideas lead to very powerful mathematics.



Exercises 7.6

Terms and Concepts

1. State in your own words Pascal’s Principle.

2. State in your own words how pressure is different from
force.

Problems

In Exercises 3 — 12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4
Ib/ft>.

11ft

2 ft

2 ft

11t

2 ft

1ft

6 ft

4 ft

6 ft

5 ft
7.
N NN NN NN
5ft
8.
5 ft
9.
2 ft
4 ft
5 ft
10.
4 ft
2ft
N NN NN
I
11t
I
2 ft
11.
2 ft
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11t

12.
21t

2 ft

In Exercises 13 — 18, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

1. water, with a weight density of 62.4 Ib/ft>, and

2. concrete, with a weight density of 150 lb/ft>.

13. Sft

3ft

4 ft

14. 4ft

15.

16.

17.

18.

19.

20.

<
|
IS
|
x

N =

=3 =3
N
=+

i

y=—vV1—x*

i

y=vV1-—x2

(1L

y=—-v9—x?

How deep must the center of a vertically oriented circular
plate with a radius of 1 ft be submerged in water, with a
weight density of 62.4 Ib/ft?, for the fluid force on the plate
to reach 1,000 Ib?

How deep must the center of a vertically oriented square
plate with a side length of 2 ft be submerged in water, with
a weight density of 62.4 Ib/ft, for the fluid force on the
plate to reach 1,000 Ib?



8: DIFFERENTIAL EQUATIONS

8.1 Introduction to differential equations

Differential equations

The laws of physics are generally written down as differential equations. There-
fore, all of science and engineering use differential equations to some degree.
Understanding differential equations is essential to understanding almost any-
thing you will study in your science and engineering classes. You can think of
mathematics as the language of science, and differential equations are one of
the most important parts of this language as far as science and engineering are
concerned. As an analogy, suppose all your classes from now on were given in
Swahili. It would be important to first learn Swabhili, or you would have a very
tough time getting a good grade in your classes.

You have already seen many differential equations without perhaps knowing
about it. And you have even solved simple differential equations when you were
taking calculus. Let us see an example you may not have seen:

o 2 8.1

dt-i—x— cost. (8.1)
Here x is the dependent variable and t is the independent variable. Equation
(8.1) is a basic example of a differential equation. In fact it is an example of a
first order differential equation, since it involves only the first derivative of the
dependent variable. This equation arises from Newton'’s law of cooling where
the ambient temperature oscillates with time.

Solutions of differential equations

Solving the differential equation means finding x in terms of t. That is, we want
to find a function of t, which we will call x, such that when we plug x, t, and %
into (8.1), the equation holds. It is the same idea as it would be for a normal
(algebraic) equation of just x and t. We claim that

x =x(t) =cost+sint

is a solution. How do we check? We simply plug x into equation (8.1)! First we
need to compute %. We find that % = —sint + cost. Now let us compute the

left hand side of (8.1).

dx . .

p +x = (—sint+cost) + (cost +sint) = 2cost.

Hooray! We got precisely the right hand side. But there is more! We claim
x = cost+sint + e~ tis also a solution. Let us try,

dx . _t
— = —sint+4cost—e .
dt

Again plugging into the left hand side of (8.1)

dx . —t . —t
EJFX: (—sint+cost—e ")+ (cost+sint+e ") =2cost.

And it works yet again!

L L L L
o 1 2 3 4 5

Figure 8.1.1: A few solutions of % +x =
2cost.
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Real world problem
abstract interpret
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Mathematical Mathematical

model solution

Figure 8.1.2: Mathematical modelling
process
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So there can be many different solutions. In fact, for this equation all solu-
tions can be written in the form

Xx=cost+sint+ Ce™ "

for some constant C. See 8.1.1 for the graph of a few of these solutions. We will
see how we find these solutions a few lectures from now.

It turns out that solving differential equations can be quite hard. There is no
general method that solves every differential equation. We will generally focus
on how to get exact formulas for solutions of certain differential equations, but
we will also spend a little bit of time on getting approximate solutions.

For most of the course we will look at ordinary differential equation (of-
ten abbreviated ODEs, by which we mean that there is only one independent
variable and derivatives are only with respect to this one variable. If there are
several independent variables, we will get partial differential equations or PDEs.

Even for ODEs, which are very well understood, it is not a simple question
of turning a crank to get answers. It is important to know when it is easy to find
solutions and how to do so. Although in real applications you will leave much
of the actual calculations to computers, you need to understand what they are
doing. It is often necessary to simplify or transform your equations into some-
thing that a computer can understand and solve. You may need to make certain
assumptions and changes in your model to achieve this.

To be a successful engineer or scientist, you will be required to solve prob-
lems in your job that you have never seen before. It is important to learn prob-
lem solving techniques, so that you may apply those techniques to new prob-
lems. A common mistake is to expect to learn some prescription for solving all
the problems you will encounter in your later career. This course is no exception.

Differential equations in practice

So how do we use differential equations in science and engineering? First, we
have some real world problem we wish to understand. We make some simpli-
fying assumptions and create a mathematical model That is, we translate the
real world situation into a set of differential equations. Then we apply mathe-
matics to get some sort of a mathematical solution to the model. There is still
something left to do. We have to interpret the results. We have to figure out
what the mathematical solution says about the real world problem we started
with.

Learning how to formulate the mathematical model and how to interpret
the results is what your physics and engineering classes do. In this course we will
focus mostly on the mathematical analysis. Sometimes we will work with simple
real world examples, so that we have some intuition and motivation about what
we are doing.

Let us look at an example of this process. One of the most basic differential
equations is the standard exponential growth model Let P denote the popu-
lation of some bacteria on a Petri dish. We assume that there is enough food
and enough space. Then the rate of growth of bacteria is proportional to the
population—a large population grows quicker. Let t denote time (say in sec-
onds) and P the population. Our model is

dpP

==k
dt

)

for some positive constant k > 0.



8.1 Introduction to differential equations

Example 8.1.1 Model for bacterial growth
Suppose there are 100 bacteria at time 0 and 200 bacteria 10 seconds later. How
many bacteria will there be 1 minute from time 0 (in 60 seconds)?

SOLUTION First we have to solve the equation. We claim that a solution
is given by
P(t) = Celt,
where Cis a constant. Let us try:
dpP
—— = Ckelt = kP.
dt

And it really is a solution.

OK, so what now? We do not know C and we do not know k. But we know
something. We know P(0) = 100, and we also know P(10) = 200. Let us plug
these conditions in and see what happens.

6000 |- 6000

s000 |- 4 s000
000

4 4000

3000 4 3000

100 = P(0) = Ce'® = c,
200 = P(10) = 100 €*?°.

4 2000

4 1000

Therefore, 2 = e'% or '2—02 = k =~ 0.069. So we know that e T B

P(t) — 100 e(ln 2)t/10 100 &°-069t Figure 8.1.3: Bacteria growth in the first
60 seconds.
At one minute, t = 60, the population is P(60) = 6400. See Figure 8.1.3.
Let us talk about the interpretation of the results. Does our solution mean
that there must be exactly 6400 bacteria on the plate at 60s? No! We made
assumptions that might not be true exactly, just approximately. If our assump-
tions are reasonable, then there will be approximately 6400 bacteria. Also, in
real life P is a discrete quantity, not a real number. However, our model has no
problem saying that for example at 61 seconds, P(61) =~ 6859.35.

Normally, the k in P = kP is known, and we want to solve the equation for
different initial conditions. What does that mean? Take k = 1 for simplicity.
dp

Now suppose we want to solve the equation % = P subject to P(0) = 1000

(the initial condition). Then the solution turns out to be (exercise)
P(t) = 1000¢€".

We call P(t) = Ce' general solution, as every solution of the equation can
be written in this form for some constant C. You will need an initial condition
to find out what C s, in order to find the particular solution we are looking for.
Generally, when we say “particular solution,” we just mean some solution.

Let us get to what we will call the four fundamental equations. These equa-
tions appear very often and it is useful to just memorize what their solutions are.
These solutions are reasonably easy to guess by recalling properties of exponen-
tials, sines, and cosines. They are also simple to check, which is something that
you should always do. There is no need to wonder if you have remembered the
solution correctly.

First such equation is,
dy
o
for some constant k > 0. Here y is the dependent and x the independent vari-
able. The general solution for this equation is

ky,

y(x) = cet.
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We have already seen that this function is a solution above with different vari-
able names.

Next,
dy
dx
for some constant k > 0. The general solution for this equation is

_kya

y(x) = Ce .

Exercise: Check that the y given is really a solution to the equation.
Next, take the second order differential equation
d2
7)2/ = _ka’
dx

for some constant k > 0. The general solution for this equation is
y(x) = Cy cos(kx) + C, sin(kx).

Note that because we have a second order differential equation, we have two
constants in our general solution.
Exercise: Check that the y given is really a solution to the equation.
And finally, take the second order differential equation

d2
7)2/ = k2y7

dx
for some constant k > 0. The general solution for this equation is

y(X) = Clekx —+ Czeikx,
or
y(x) = Dy cosh(kx) 4+ D; sinh(kx).

For those that do not know, cosh and sinh are defined by

ef+e™™
coshx = ———,
2
X e—X
sinhx =
2

These functions are sometimes easier to work with than exponentials. They
have some nice familiar properties such ascosh0 = 1, sinh0 = 0, and % coshx =
sinh x (no that is not a typo) and d% sinh x = cosh x.

Exercise: Check that both forms of the y given are really solutions to the equa-
tion.

An interesting note about cosh: The graph of cosh is the exact shape a hang-
ing chain will make. This shape is called a catenary Contrary to popular belief
this is not a parabola. If you invert the graph of cosh it is also the ideal arch for
supporting its own weight. For example, the gateway arch in Saint Louis is an in-
verted graph of cosh—if it were just a parabola it might fall down. The formula
used in the design is inscribed inside the arch:

y = —127.7 ft - cosh(x/127.7 ft) + 757.7 ft.
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Exercises 8.1

Problems

1. Showthatx = e*isasolutiontox”’ —12x" +48x’ —64x =
0.

2. Show that x = e' is not a solution to x”" — 12x”" + 48x’ —
64x = 0.

d 2
3. Isy = sint a solution to (d—);) =1 — y*? Justify.

4. Lety” + 2y’ — 8y = 0. Now try a solution of the form
y = €™ for some (unknown) constant r. Is this a solution
for some r? If so, find all such r.

5. Verify that x = Ce™% is a solution to x’ = —2x. Find Cto
solve for the initial condition x(0) = 100.

6. Verify thatx = Cie ™'+ Ge* is a solution to x”' —x’ — 2x =
0. Find C; and C; to solve for the initial conditions x(0) = 10
and x’(0) = 0.

7. Find a solution to (x’)2 + x* = 4 using your knowledge of
derivatives of functions that you know from basic calculus.

8.

10.

11.

12.

13.

14.

Solve:

(a) % = —104, A(0) =5

(b) Z—:’ =3H, H(0) =1

© 2 =4y, y(0) =0, y(0) =1

(d) Ziy)z( =-9x x(0) =1, x¥(0)=0
Is there a solution to y’ =y, such that y(0) = y(1)?
Show that x = e~ is a solution to x” + 4x’ + 4x = 0.

Isy = x* a solution to x’y"" — 2y = 0? Justify.

Let xy” — y’ = 0. Try a solution of the form y = x". Is this
a solution for some r? If so, find all such r.

Verify that x = C1e' + C; is a solution to x”/ — x” = 0. Find
C1 and G so that x satisfies x(0) = 10 and x’(0) = 100.

Solve % = 8¢ and p(0) = —9.

371



Chapter 8 Differential Equations

372

8.2 Integrals as solutions

A first order ODE is an equation of the form

dy

a - f(X7 y)a
or just

y' =f(x,y).

In general, there is no simple formula or procedure one can follow to find so-
lutions. In the next few lectures we will look at special cases where solutions
are not difficult to obtain. In this section, let us assume that fis a function of x
alone, that is, the equation is

y' = fx). (8.2)

We could just integrate (antidifferentiate) both sides with respect to x.

/y'(x) dx:/f(x) dx + C,

that is
y(x) = /f(x) dx + C.

This y(x) is actually the general solution. So to solve (8.2), we find some an-
tiderivative of f(x) and then we add an arbitrary constant to get the general
solution.

Now is a good time to discuss a point about calculus notation and terminol-
ogy. Calculus textbooks muddy the waters by talking about the integral as pri-
marily the so-called indefinite integral. The is really the antiderivative (in fact
the whole one-parameter family of antiderivatives). There really exists only one
integral and that is the definite integral. The only reason for the indefinite inte-
gral notation is that we can always write an antiderivative as a (definite) integral.
Thatis, by the fundamental theorem of calculus we can always write ff(x) dx+C
as

/X:f(t) dt+C.

Hence the terminology to integrate when we may really mean to antidifferen-
tiate. Integration is just one way to compute the antiderivative (and it is a way
that always works, see the following examples). Integration is defined as the
area under the graph, it only happens to also compute antiderivatives. For sake
of consistency, we will keep using the indefinite integral notation when we want
an antiderivative, and you should always think of the definite integral.

Example 8.2.1 Finding a general solution
Find the general solution of y’ = 3x2.

SOLUTION Elementary calculus tells us that the general solution must
bey = x3 + C. Let us check by differentiating: y’ = 3x%>. We have gotten pre-
cisely our equation back.

Normally, we also have an initial condition such as y(xp) = yo for some two
numbers xo and yg (xo is usually 0, but not always). We can then write the so-
lution as a definite integral in a nice way. Suppose our problem is y’ = f(x),
y(Xo) = yo. Then the solution is

y(x) :/ f(s) ds + yo. (8.3)



8.2

Let us check! We compute y’ = f(x), via the fundamental theorem of calculus,
and by Jupiter, y is a solution. Is it the one satisfying the initial condition? Well,
y(xo) = [ f(x) dx + yo = yo. It is!

Do note that the definite integral and the indefinite integral (antidifferen-
tiation) are completely different beasts. The definite integral always evaluates
to a number. Therefore, (8.3) is a formula we can plug into the calculator or a
computer, and it will be happy to calculate specific values for us. We will easily
be able to plot the solution and work with it just like with any other function. It
is not so crucial to always find a closed form for the antiderivative.

Example 8.2.2 An ODE with no closed-form solution
Solve ,
y =e ™, y(0) =1
SOLUTION By the preceding discussion, the solution must be

X
y(x) :/ e ds+ 1.
0

Here is a good way to make fun of your friends taking second semester calculus.
Tell them to find the closed form solution. Ha ha ha (bad math joke). It is not
possible (in closed form). There is absolutely nothing wrong with writing the
solution as a definite integral. This particular integral is in fact very important in
statistics.

Using this method, we can also solve equations of the form

Let us write the equationin .
dy
dx = fy)-

Now we use the inverse function theorem from calculus to switch the roles of x

and y to obtain
dx 1

dy  fly)
What we are doing seems like algebra with dx and dy. It is tempting to just do
algebra with dx and dy as if they were numbers. And in this case it does work.
Be careful, however, as this sort of hand-waving calculation can lead to trouble,
especially when more than one independent variable is involved. At this point
we can simply integrate,

1
x(y):/m dy + C.

Finally, we try to solve for y.

Example 8.2.3 Solving the exponential growth equation
Previously, we guessed y’ = ky (for some k > 0) has the solution y = Ce**. We
can now find the solution without guessing.

SOLUTION First we note that y = 0 is a solution. Henceforth, we as-
sume y # 0. We write
dx 1
dy — ky’

Integrals as solutions
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We integrate to obtain

1
X(y)=X=;|n|y|+D,

where D is an arbitrary constant. Now we solve for y (actually for |y|).

|y| — e‘kx—kD — e—kDekx

If we replace e *P with an arbitrary constant C we can get rid of the absolute
value bars (which we can do as D was arbitrary). In this way, we also incorpo-
rate the solution y = 0. We get the same general solution as we guessed before,

y = Cek*.

Example 8.2.4 Solving an ODE by integration
Find the general solution of y’ = 2.

SOLUTION First we note that y = 0 is a solution. We can now assume
that y # 0. Write
dx 1
dy y?
We integrate to get
-1
x=—+C
y
We solve for y = Z-. So the general solution is
_ ! or =0
YT ox y==

Note the singularities of the solution. If for example C = 1, then the solution
“blows up” as we approach x = 1. Generally, it is hard to tell from just looking
at the equation itself how the solution is going to behave. The equation y’ = y?
is very nice and defined everywhere, but the solution is only defined on some
interval (—oo, C) or (C, 00).

Classical problems leading to differential equations solvable by integration
are problems dealing with , and . You have surely seen these problems before
in your calculus class.

Example 8.2.5 Finding the distance travelled

Suppose a car drives at a speed e'/2 metres per second, where t is time in sec-
onds. How far did the car get in 2 seconds (starting at t = 0)? How far in 10
seconds?

SOLUTION Let x denote the distance the car travelled. The equation is
x' = e'/?
We can just integrate this equation to get that
x(t) = 2e"/% + C.

We still need to figure out C. We know that when t = 0, then x = 0. That is,
x(0) =0. So
0=x(0)=2e"2+C=2+C

Thus C = —2 and
x(t) = 2e'/? — 2.
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Now we just plug in to get where the car is at 2 and at 10 seconds. We obtain

x(2) = 2e?/? —2 ~ 3.44 metres,  x(10) = 2%/ — 2 ~ 294 metres.

Example 8.2.6 Another car problem
Suppose that the car accelerates at a rate of t* m/s2. At time t = 0 the car is at
the 1 metre mark and is travelling at 10 ms. Where is the car at time t = 10?

SOLUTION Well this is actually a second order problem. If x is the dis-
tance travelled, then x’ is the velocity, and x”’ is the acceleration. The equation
with initial conditions is

x(0) = 1, x'(0) = 10.
What if we say x’ = v. Then we have the problem
vV =1t v(0) = 10.

Once we solve for v, we can integrate and find x.

Exercise: Solve for v, and then solve for x. Find x(10) to answer the question.

Integrals as solutions
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Exercises 8.2

Problems

dy 2
1. Solve — = f 1) =3.
olve — x* 4 x fory(1)

2. Solve % = sin(5x) for y(0) = 2.

dy 1
3. Solve — = f 0)=0.
olve = = 37— or y(0)

4. Solvey’ = y? fory(0) = 1.
5. (Alittle harder) Solve y’ = (y — 1)(y + 1) for y(0) = 3.

6. Solve ﬂ =
dx y+1

for y(0) = 0.

7. (Harder) Solve y” = sinx for y(0) = 0, y’(0) = 2.

8. A spaceship is travelling at the speed 2t* + 1km/s (t is time
in seconds). It is pointing directly away from Earth and at

10.

11.

12.

13.

14.

time t = 0 it is 1000 kilometres from earth. How far from
earth is it at one minute from time t = 0?

d
Solve d—: = sin(t?) + t, x(0) = 20. It is OK to leave your
answer as a definite integral.

dy

Solve —= = ¢* dy(0) = 10.
olve - e + xand y(0)

1
Solve x" = X—z,x(l) =1

1
Solve x" = ,x(0) = 2.
olve x cos(0) x(0) =3

Sid is in a car travelling at speed 10t + 70 miles per hour
away from Las Vegas, where tisin hours. Att = 0, Sid is 10
miles away from Vegas. How far from Vegas is Sid 2 hours
later?

Solve y’ = y", y(0) = 1, where n is a positive integer. Hint:
You have to consider different cases.



8.3 Slope fields

8.3 Slope fields

Note: you might find the software DFIELD and PPLANE useful. You can down-
load the programs at http://math.rice.edu/~dfield/dfpp.html. These used to be
available as in-browser Java applets, but due to changes in Java security settings,
you need to download the programs and run them locally. Both Java and MAT-
LAB versions are available.

Another option is the IODE software which accompanies the lecture notes :
by Jiti Lebl from which we’ve borrowed the text for this chapter.
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In general, we cannot simply solve these kinds of equations explicitly. It would
be nice if we could at least figure out the shape and behaviour of the solutions, Figure 8.3.1: Slope field for the equation

I

or if we could find approximate solutions. y =Xy

Slope fields

Suppose we are able to solve a first order equation of the form y’ = f(x,y),

obtaining a solution y = g(x). Differential calculus tells us that y’ = g’(x) gives o
us the slope of the tangent line to the curve y = g(x) at the point (x, g(x)). Thus,

the equation y’ = f(x, y) gives you a slope at each point in the (x, y)-plane. We

can plot the slope at lots of points as a short line through the point (x, y) with '
the slope f(x, y). See Figure 8.3.1.

We call this picture the slope field of the equation. If we are given a specific
initial condition y(xo) = yo, we can look at the location (xo, yo) and follow the
slopes. See Figure 8.3.2. 2

By looking at the slope field we can get a lot of information about the be-
haviour of solutions. For example, in Figure 8.3.2 we can see what the solutions
do when the initial conditions are y(0) > 0, y(0) = 0 and y(0) < 0. Note that Figure 8.3.2: Slope field of y’ = xy with a
a small change in the initial condition causes quite different behaviour. On the graph of solutions satisfying y(0) = 0.2,
other hand, plotting a few solutions of the equation y’ = —y, we see that no y(0) = 0,and y(0) = —0.2.
matter what y(0) is, all solutions tend to zero as x tends to infinity. See Figure
8.3.3.
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Existence and uniqueness

We wish to ask two fundamental questions about the problem
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(i) Does asolution exist?> oo

- ] ] o T A
(ii) Is the solution unique (if it exists)? Y YN YYY
2SS A A A A A A A A A A A A A A A A2
N . I
What do you think is the answer? The answer seems to be yes to both does it | LT S (L2,
not? Well, pretty much. But there are cases when the answer to either question
can be no. Figure 8.3.3: Slope field of y’ = —y with
Since generally the equations we encounter in applications come from real a graph of a few solutions.

life situations, it seems logical that a solution always exists. It also has to be
unique if we believe our universe is deterministic. If the solution does not exist,
orif it is not unique, we have probably not devised the correct model. Hence, it
is good to know when things go wrong and why.
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Figure 8.3.5: Slope field of y 2/y|

with two solutions satisfying y(0) = 0.

Picard’s Theorem is named after the
French mathematician Charles Emile Pi-
card (1856 —1941)
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Example 8.3.1 An initial value problem with no solution
Attempt to solve:
1
y'=, yo)=o0
SOLUTION Integrate to find the general solution y = In |x| + C. Note

that the solution does not exist at x = 0. See Figure 8.3.4.

Example 8.3.2 An initial value problem without a unique solution
Solve:
y'=2ylyl,  y(0)=0.
SOLUTION See Figure 8.3.5. Note that y = O is a solution. But another

solution is the function

X2 if x >0,

X) =
yix) —x2 ifx<o.

It is hard to tell by staring at the slope field that the solution is not unique.
Is there any hope? Of course there is. We have the following theorem, known
as Picard’s theorem

Theorem 8.3.1 Picard’s theorem on existence and uniqueness

If f(x, y) is continuous (as a function of two variables) and % exists and
is continuous near some (xo, ¥o), then a solution to

y' = flx,y), y(x0) = o,

exists (at least for some small interval of x’s) and is unique.

1
Note that the problems y’ = ;, y(0) = 0and y’ = 24/|y|, y(0) = 0do

not satisfy the hypothesis of the theorem. Even if we can use the theorem, we
ought to be careful about this existence business. It is quite possible that the
solution only exists for a short while.

Example 8.3.3 An initial value problem with a “finite time” solution
For some constant A, solve:

SOLUTION We know how to solve this equation. First assume that A #

-1
0, so y is not equal to zero at least for some x near 0. So x’ = —,50X = — +C,
y y

1
soyzi.lfy(o):A,thenC:Zso


http://en.wikipedia.org/wiki/Charles_%C3%89mile_Picard
http://en.wikipedia.org/wiki/Charles_%C3%89mile_Picard

8.3 Slope fields

If A= 0, theny = 0is a solution.

For example, when A = 1 the solution “blows up” at x = 1. Hence, the
solution does not exist for all x even if the equation is nice everywhere. The
equation y’ = y? certainly looks nice.

For most of this course we will be interested in equations where existence

and uniqueness holds, and in fact holds “globally” unlike for the equation y’ =

y2.
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Exercises 8.3

Problems

1. Sketch slope field for y’ = €. How do the solutions be-
have as x grows? Can you guess a particular solution by
looking at the slope field?

2. Sketch slope field for y’ = x.

3. Sketch slope field for y’ = y?.

4. Isit possible to solve the equation y’ = X for y(0) =1?
cos X
Justify.

5. Is it possible to solve the equation y’ = y+/|x| for y(0) =
07? Is the solution unique? Justify.

6. Match the following equations to their slope fields.
i)y =1-x

(i)y’ =x—2y

(i) y" = x(1 —y)

Justify.
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10.

11.

12.

(Challenging) Take y’ = f(x, y), y(0) = 0, where f(x,y) > 1
forall xandy. If the solution exists for all x, can you say what
happens to y(x) as x goes to positive infinity? Explain.

(Challenging) Take (y —x)y’ = 0, y(0) = 0. a) Find two dis-
tinct solutions. b) Explain why this does not violate Picard’s
theorem.

Sketch the slope field of y’ = y*. Can you visually find the
solution that satisfies y(0) = 0?

Is it possible to solve y’ = xy for y(0) = 0? Is the solution
unique?

Is it possible to solve y’ = fory(1) = 0?

X
x2—1

Match the following equations to their slope fields:

. / .

(i)y" =sinx

sy )

(ii)y’ = cosy

A

(i) y” = y cos(x)

Justify.
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8.4 Separable equations

When a differential equation is of the form y’ = f(x), we can just integrate:
y = ff(x) dx + C. Unfortunately this method no longer works for the general
form of the equation y’ = f(x, y). Integrating both sides yields

y:/f(x,y) dx+C.

Notice the dependence on y in the integral.

Separable equations

Let us suppose that the equation is separable. That is, let us consider

for some functions f(x) and g(y). Let us write the equation in the Leibniz nota-
tion

dy
&~ f0g(y)-
Then we rewrite the equation as
dy
—— = f(x) dx
o) T

Now both sides look like something we can integrate. We obtain

/% :/f(x) dx + C.

If we can find closed form expressions for these two integrals, we can, perhaps,
solve for y.
Example 8.4.1 A separable ODE

Solve the equation
/

y' = xy.

SOLUTION First note that y = 0 is a solution, so assume y # 0 from
now on. Write the equation as % = xy, then

d
/—y:/xderC.
y

We compute the antiderivatives to get

X2
Inly| = ?—&-C.

Or

P X

2
‘y' = eT+C = eTeC == De?7

)

where D > 0 is some constant. Because y = 0 is a solution and because of the
absolute value we actually can write:

S

y=Dez,

for any number D (including zero or negative).

Separable equations
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We check:

It works!

We should be a little bit more careful with this method. You may be worried
that we were integrating in two different variables. We seemed to be doing a
different operation to each side. Let us work this method out more rigorously.

Take
dy

o = f9(y).
We rewrite the equation as follows. Note that y = y(x) is a function of x and so
is %!
1 dy
— — = f(x).
gly) dx %

We integrate both sides with respect to x.

1 dy
/g<y>dxdx/f(x)dx+c.

We can use the change of variables formula.

/ﬁdy:/f(x)dx—i—c.

And we are done.

Implicit solutions

It is clear that we might sometimes get stuck even if we can do the integration.
For example, take the separable equation

We separate variables,

We integrate to get
2 2

y X
—+Inlyl=—+C
> Thnlyl=3+¢

or perhaps the easier looking expression (where D = 2()

y*+2In|y| =x* +D.

It is not easy to find the solution explicitly as it is hard to solve for y. We, there-
fore, leave the solution in this form and call it an implicit solution. It is still easy
to check that an implicit solution satisfies the differential equation. In this case,
we differentiate with respect to x to get

()
y{2y+—-| =2
y

It is simple to see that the differential equation holds. If you want to compute
values for y, you might have to be tricky. For example, you can graph x as a



function of y, and then flip your paper. Computers are also good at some of
these tricks.

We note that the above equation also has the solution y = 0. The general
solution is y* + 21n |y| = x*> + C together with y = 0. These outlying solutions
such as y = 0 are sometimes called singular solutions.

Example 8.4.2 An example with initial conditions
Solve X2y’ =1 — x* +y* — x%y?, y(1) = 0.

SOLUTION First factor the right hand side to obtain
Xy' = (1-x)(1+y%).

Separate variables, integrate, and solve for y.

y/ _1_X2
1+y2_ x2
!
1
o1
1+y2 X2

-1
arctan(y) = — —x+C,
X

-1
y = tan (—x+C>.
X

Now solve for the initial condition, 0 = tan(—2 4+ C) toget C = 2 (or 2 + m,
etc...). The solution we are seeking is, therefore,

-1
y = tan (—x—|—2>.
X

Example 8.4.3 Cooling a cup of coffee

Bob made a cup of coffee, and Bob likes to drink coffee only once it will not burn
him at 60 degrees. Initially at time t = 0 minutes, Bob measured the tempera-
ture and the coffee was 89 degrees Celsius. One minute later, Bob measured the
coffee again and it had 85 degrees. The temperature of the room (the ambient
temperature) is 22 degrees. When should Bob start drinking?

SOLUTION Let T be the temperature of the coffee, and let A be the
ambient (room) temperature. Newton’s law of cooling states that the rate at
which the temperature of the coffee is changing is proportional to the difference
between the ambient temperature and the temperature of the coffee. That is,

dT

— =k(A-T

kAT,

for some constant k. For our setup A = 22, T(0) = 89, T(1) = 85. We separate
variables and integrate (let C and D denote arbitrary constants)

1 dr_
T—A dt ’
In(T—A) = —kt + C, (note that T— A > 0)
T—A=De X
T=A+De ¥

8.4 Separable equations
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Thatis, T = 22 + De . We plug in the first condition: 89 = T(0) = 22 + D,
and hence D = 67. So T = 22 + 67e~*. The second condition says 85 =
T(1) = 22 + 67 e *. Solving for k we get k = —In £=2 ~ 0.0616. Now we

solve for the time t that gives us a temperature of 60 degrees. That is, we solve
60—22

60 = 22 + 67700616 tg get t = —"&0% ~ 9.21 minutes. So Bob can begin to

drink the coffee at just over 9 minutes from the time Bob made it. That is prob-
ably about the amount of time it took us to calculate how long it would take.

Example 8.4.4 Finding all possible solutions
2
Find the general solution to y’ = % (including singular solutions).
SOLUTION First note that y = 0 is a solution (a singular solution). So

assume that y # 0 and write

-3,
— Y =X,
y
3—X2+C
y 2
3 6
y:



Exercises 8.4

Problems

1. Solvey’ = X
y

2. Solvey’ = x%y.

10.

solve 2 — (x* — 1) t, forx(0) = 0.
dt
Solve % = x sin(t), for x(0) = 1.

d
Solve d—y = xy+x—+y+ 1. Hint: Factor the right hand side.
X

. Solve xy’ =y + 2x%y, where y(1) = 1.

dy v +1
. Solve = = , f 0)=1.
olve — ] or y(0)
Find an implicit solution for@ _ X+l fory(0) =1
' P dx 1 o

. Find an explicit solution for y’ = xe™”, y(0) = 1.

Find an explicit solution for xy’ = e, fory(1) = 1.

11.

12.

13.

14.

15.

16.

17.

18.

2
Find an explicit solution for y’ = ye™, y(0) = 1. ltisall
right to leave a definite integral in your answer.

Suppose a cup of coffee is at 100 degrees Celsius at time
t = 0, itis at 70 degrees at t = 10 minutes, and it is at 50
degrees at t = 20 minutes. Compute the ambient temper-
ature.

Solve y’ = 2xy.
Solve x’ = 3xt* — 3t%, x(0) = 2.
Find an implicit solution for x" = 354+, x(0) = 1.

Find an explicit solution to xy’ = y?, y(1) = 1.

sin(x)

Find an implicit solution to y’ = o5ty

Take Example 8.4.3 with the same numbers: 89 degrees at
t = 0, 85 degrees at t = 1, and ambient temperature of
22 degrees. Suppose these temperatures were measured
with precision of +0.5 degrees. Given this imprecision, the
time it takes the coffee to cool to (exactly) 60 degrees is also
only known in a certain range. Find this range. Hint: Think
about what kind of error makes the cooling time longer and
what shorter.
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8.5 Linear equations and the integrating factor

One of the most important types of equations we will learn how to solve are
the so-called linear equations In this lecture we focus on the first order linear
equation. A first order equation is linear if we can put it into the form:

y' +px)y = f(x). (8.4)

Here the word “linear” means linear in y and y’; no higher powers nor functions
of y or y’ appear. The dependence on x can be more complicated.

Solutions of linear equations have nice properties. For example, the solution
exists wherever p(x) and f(x) are defined, and has the same regularity (read: itis
just as nice). But most importantly for us right now, there is a method for solving
linear first order equations.

The trick is to rewrite the left hand side of (8.4) as a derivative of a product
of y with another function. To this end we find a function r(x) such that

r(x)y" + r(x)p(x)y = Ll {r(x)y} )

dx

This is the left hand side of (8.4) multiplied by r(x). So if we multiply (8.4) by
r(x), we obtain

d

= [roay] = rt0f).
Now we integrate both sides. The right hand side does not depend on y and the
left hand side is written as a derivative of a function. Afterwards, we solve for
y. The function r(x) is called the integrating factor and the method is called the
integrating factor method.

We are looking for a function r(x), such that if we differentiate it, we get the

same function back multiplied by p(x). That seems like a job for the exponential

function! Let
r(x) = el () dx,

We compute:

y'+p(x)y = flx),
efp(x) de/ + efp(x) dxp(x)y = efp(x) de(X),
d

- {ef p(x) dxy} 1O H(x),

efp(x) de — /efp(x) dxf(x) dX + C7
y = e /PO (/ el PO XE(x) dx + C) .

Of course, to get a closed form formula for y, we need to be able to find a
closed form formula for the integrals appearing above.

Example 8.5.1 A linear equation with a closed form solution
Solve

y ray =€, y0)= -1

SOLUTION First note that p(x) = 2x and f(x) = e**". The integrating
factor is r(x) = e/ P — ¢ We multiply both sides of the equation by r(x)
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to get
ey + 22y = e,
d )
— | } =€~
dx { y
We integrate
X2 _ X
ey=e¢e 4+,

y = e 1 ce”.

Next, we solve for the initial condition —1 = y(0) = 1 + C, so C = —2. The

solution is
2 2
y=e"" —2e7".

~ Note that we do not care which antiderivative we take when computing
eJ Pdx Yoy can always add a constant of integration, but those constants will
not matter in the end.

Exercise: Try it! Add a constant of integration to the integral in the integrating
factor and show that the solution you get in the end is the same as what we got
above.

A piece of advice: Do not try to remember the formula itself, that is way too
hard. It is easier to remember the process and repeat it.

Since we cannot always evaluate the integrals in closed form, it is useful to
know how to write the solution in definite integral form. A definite integral is
something that you can plug into a computer or a calculator. Suppose we are
given

y +p(x)y=fx),  y(x) = yo.

Look at the solution and write the integrals as definite integrals.

y(x) =e" Jgp(s)ds (/ el P “H(t) dt + yo) ) (8.5)

Xo

You should be careful to properly use dummy variables here. If you now plug
such a formula into a computer or a calculator, it will be happy to give you nu-
merical answers.

Exercise: Check that y(xp) = y in formula (8.5).

Exercise: Write the solution of the following problem as a definite integral, but
try to simplify as far as you can. You will not be able to find the solution in closed
form.

y' +y=¢e""  y(0)=10.

Let us discuss a common simple application of linear equations. This type
of problem is used often in real life. For example, linear equations are used in
figuring out the concentration of chemicals in bodies of water (rivers and lakes).
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Figure 8.5.1: The tank in Example 8.5.2
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Example 8.5.2 An application of linear ODEs

A 100 litre tank contains 10 kilograms of salt dissolved in 60 litres of water. So-
lution of water and salt (brine) with concentration of 0.1 kilograms per litre is
flowing in at the rate of 5 litres a minute. The solution in the tank is well stirred
and flows out at a rate of 3 litres a minute. How much salt is in the tank when
the tank is full?

SOLUTION Let us come up with the equation. Let x denote the kilo-
grams of salt in the tank, let t denote the time in minutes. For a small change
At in time, the change in x (denoted Ax) is approximately

Ax = (rate in x concentration in) At — (rate out x concentration out) At.

Dividing through by At and taking the limit At — 0 we see that
dx . o .
P (rate in x concentration in) — (rate out X concentration out).

In our example, we have

ratein =5,
concentration in = 0.1,

rate out = 3,
X

X
volume 60+ (5 —3)t’

concentration out =

Our equation is, therefore,

* _(5x01)— (3~
dat ’ 60 +2t)°

dx n 3

— '

dt 60+ 2t
Let us solve. The integrating factor is

r(t) = exp (/ 0 j_ 2tdt> = exp (3 In(60 + Zt)) = (60 + 2t)3/2.

We multiply both sides of the equation to get

Or in the form (8.4)
=0.5.

)3/2%

60 2t3/2 3/2
o (60 +20) :

(60 + 2t X = 0.5(60 + 2t)

60 + 2t
and reversing the product rule gives us

d
= [(60 + 2t)3/2x} — 0.5(60 + 2t)*/?,

SO
(60 + 2t)*/%x = /0.5(60 +2t)*%dt + C.

Thus,
_ 60 + 2t)%/2 _
x = (60 + 2t) 3”/%alwc(soqtzt) 32,

sl
= (60 + 2t) 3/2E(60 + 2% + (60 + 2t)

60 + 2t _
= ;(L) +C(60 4 2t) /2.

—3/2
)




8.5

We need to find C. We know thatatt = 0, x = 10. So

60 _ _
10 = x(0) = 5 + C(60) 32 — 6 + ¢(60) 732,

or
C = 4(60>/?) ~ 1859.03.

We are interested in x when the tank is full. So we note that the tank is full
when 60 + 2t = 100, or when t = 20. So

—3/2

x(20) = + ¢(60 + 40)"*/? ~ 10 + 1859.03(100)

60 + 40
+ ~ 11.86.
10

The concentration at the end is approximately 0.1186 kg/iire and we started

1
with i 0.167 ke/iitre.

Linear equations and the integrating factor
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Exercises 8.5

. Solve

Problems

In the exercises, feel free to leave answer as a definite in-

tegral if a closed form solution cannot be found. If you can find
a closed form solution, you should give that.

1. Solvey’ + xy = x.
. Solvey’ 4+ 6y = ¢€".
. Solve y’ + 3x%y = sin(x) e, with y(0) = 1.

. Solve y’ + cos(x)y = cos(x).

255 ¥+ xy = 3, with y(0) = 0.

. Suppose there are two lakes located on a stream. Clean

water flows into the first lake, then the water from the first
lake flows into the second lake, and then water from the
second lake flows further downstream. The in and out flow
from each lake is 500 litres per hour. The first lake contains
100 thousand litres of water and the second lake contains
200 thousand litres of water. A truck with 500 kg of toxic
substance crashes into the first lake. Assume that the wa-
ter is being continually mixed perfectly by the stream. a)
Find the concentration of toxic substance as a function of
time in both lakes. b) When will the concentration in the
first lake be below 0.001 kg per litre? c¢) When will the con-
centration in the second lake be maximal?

. Newton’s law of cooling states that & = —k(x — A) where

x is the temperature, t is time, A is the ambient tempera-
ture, and k > 0is a constant. Suppose that A = A cos(wt)
for some constants Ap and w. That is, the ambient temper-

10.

11.

12.

13.

ature oscillates (for example night and day temperatures).
a) Find the general solution. b) In the long term, will the
initial conditions make much of a difference? Why or why
not?

Initially 5 grams of salt are dissolved in 20 litres of water.
Brine with concentration of salt 2 grams of salt per litre is
added at a rate of 3 litres a minute. The tank is mixed well
and is drained at 3 litres a minute. How long does the pro-
cess have to continue until there are 20 grams of salt in the
tank?

Initially a tank contains 10 litres of pure water. Brine of un-
known (but constant) concentration of salt is flowing in at
1 litre per minute. The water is mixed well and drained at 1
litre per minute. In 20 minutes there are 15 grams of salt in
the tank. What is the concentration of salt in the incoming
brine?

Solve y’ + 3x%y = x°.
Solve y’ + 2sin(2x)y = 2sin(2x), y(v/2) = 3.

Suppose a water tank is being pumped out at 3 Ymin. The
water tank starts at 10 L of clean water. Water with toxic
substance is flowing into the tank at 2 Ymin, with concen-
tration 20t &L at time t. When the tank is half empty, how
many grams of toxic substance are in the tank (assuming
perfect mixing)?

Suppose we have bacteria on a plate and suppose that
we are slowly adding a toxic substance such that the rate
of growth is slowing down. That is, suppose that % =
(2 — 0.1t)P. If P(0) = 1000, find the population at t = 5.



8.6 Numerical methods: Euler’s method

At this point it may be good to first try the Lab Il and/or Project Il from the IODE
website: http://www.math.uiuc.edu/iode/materials.html. (This is completely
optional, and you’re free to look for your own software solutions online, or try
using Maple or similar software. But it is generally a good idea to have the com-
puter’s help when exploring Euler’s method.)

As we said before, unless f(x, y) is of a special form, it is generally very hard
if not impossible to get a nice formula for the solution of the problem

y' =f(x,y), y(Xo) = Yo.

What if we want to find the value of the solution at some particular x? Or
perhaps we want to produce a graph of the solution to inspect the behaviour.
In this section we will learn about the basics of numerical approximation of so-
lutions.

The simplest method for approximating a solution is Euler’s method

It works as follows: We take xo and compute the slope k = f(xo, o). The
slope is the change in y per unit change in x. We follow the line for an interval
of length h on the x axis. Hence if y = yy at xq, then we will say that y; (the
approximate value of y at x; = xo + h) will be y; = yo + hk. Rinse, repeat! That
is, compute x, and y, using x; and y;. For an example of the first two steps of
the method see Figure 8.6.1.

More abstractly, foranyi=1,2,3, ..., we compute

Xit1 = X; + h, Vir1 =Yi + hf(x,yi).

The line segments we get are an approximate graph of the solution. Generally it
is not exactly the solution. See Figure 8.6.2 for the plot of the real solution and

the approximation.
2

Let us see what happens with the equation y’ = y? y(0) = 1. Letus
try to approximate y(2) using Euler’s method. In Figures 8.6.1 and 8.6.2 we
have graphically approximated y(2) with step size 1. With step size 1 we have
y(2) = 1.926. The real answer is 3. So we are approximately 1.074 off. Let us
halve the step size. Computing y, with h = 0.5, we find that y(2) ~ 2.209,
so an error of about 0.791. Table 8.1 gives the values computed for various
parameters.

Exercise: Solve this equation exactly and show that y(2) = 3.

The difference between the actual solution and the approximate solution we
will call the error. We will usually talk about just the size of the error and we do
not care much about its sign. The main point is, that we usually do not know the
real solution, so we only have a vague understanding of the error. If we knew
the error exactly ...what is the point of doing the approximation?

We notice that except for the first few times, every time we halved the inter-
val the error approximately halved. This halving of the error is a general feature
of Euler’s method as it is a first order method. In the IODE Project Il you are
asked to implement a second order method. A second order method reduces
the error to approximately one quarter every time we halve the interval (second
order as% = 3 X E)'

To get the error to be within 0.1 of the answer we had to already do 64 steps.
To get it to within 0.01 we would have to halve another three or four times,

8.6 Numerical methods: Euler’s method
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Figure 8.6.1: First two steps of Euler’s

method with h = 1 for the equation y’ =
2

% with initial conditions y(0) = 1.
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Figure 8.6.2: Two steps of Euler’s method
(step size 1) and the exact solution for the
equation y’ = é with initial conditions
y(0) =1.

Euler’s Method is named after the Swiss
mathematician Leonhard Paul Euler
(1707 — 1783). Do note the correct
pronunciation of the name sounds more
like “oiler.”
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h  Approximate y(2) Error —"or

1 1.92593 1.07407
0.5 2.20861 0.79139 0.73681
0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599
0.0625 2.82040 0.17960 0.56184
0.03125 2.90412 0.09588 0.53385
0.015625 2.95035 0.04965 0.51779
0.0078125 2.97472 0.02528 0.50913

2
Table 8.1: Euler’s method approximation of y(2) where of y’ = y?, y(0) = 1.

h__Approximate y(3) meaning doing 512 to 1024 steps. That is quite a bit to do by hand. The improved

1 3.16232 Euler method from IODE Project Il should quarter the error every time we halve
0.5 4.54329 . . u A
0.25 6.86079 the interval, so we would have to approximately do half as many “halvings” to
0 1'25 10.80321 get the same error. This reduction can be a big deal. With 10 halvings (starting
0.0625 17.59893 at h = 1) we have 1024 steps, whereas with 5 halvings we only have to do
0.03125 29.46004 32 steps, assuming that the error was comparable to start with. A computer
0.015625 50.40121 may not care about this difference for a problem this simple, but suppose each
0.0078125 87.75769 step would take a second to compute (the function may be substantially more
2
. y . .

Figure 8.6.3: Attempts to use Euler’s to difficult to compute than ?). Then the difference is 32 seconds versus about 17
. , ¥ minutes. Note: We are not being altogether fair, a second order method would

approximate y(3) where of y' = I, . o .
3 probably double the time to do each step. Even so, it is 1 minute versus 17
y(0) =1. minutes. Next, suppose that we have to repeat such a calculation for different

parameters a thousand times. You get the idea.

Note that in practice we do not know how large the error is! How do we
know what is the right step size? Well, essentially we keep halving the interval,
and if we are lucky, we can estimate the error from a few of these calculations
and the assumption that the error goes down by a factor of one half each time
(if we are using standard Euler).

Exercise: In the table above, suppose you do not know the error. Take the ap-
proximate values of the function in the last two lines, assume that the error goes
down by a factor of 2. Can you estimate the error in the last time from this? Does
it (approximately) agree with the table? Now do it for the first two rows. Does
this agree with the table?
2

Let us talk a little bit more about the example y’ = yg y(0) = 1. Suppose
that instead of the value y(2) we wish to find y(3). The results of this effort are
listed in Table 8.6.3 for successive halvings of h. What is going on here? Well,
you should solve the equation exactly and you will notice that the solution does
not exist at x = 3. In fact, the solution goes to infinity when you approach x = 3.

Another case where things go bad is if the solution oscillates wildly near
some point. Such an example is given in IODE Project Il. The solution may exist at
all points, but even a much better numerical method than Euler would need an
insanely small step size to approximate the solution with reasonable precision.
And computers might not be able to easily handle such a small step size.

In real applications we would not use a simple method such as Euler’s. The
simplest method that would probably be used in a real application is the stan-
dard Runge-Kutta method. That is a fourth order method, meaning that if we
halve the interval, the error generally goes down by a factor of 16 (it is fourth
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Choosing the right method to use and the right step size can be very tricky.
There are several competing factors to consider.

e Computational time: Each step takes computer time. Even if the function
fis simple to compute, we do it many times over. Large step size means
faster computation, but perhaps not the right precision.

¢ Roundoff errors: Computers only compute with a certain number of sig-
nificant digits. Errors introduced by rounding numbers off during our com-
putations become noticeable when the step size becomes too small rela-
tive to the quantities we are working with. So reducing step size may in
fact make errors worse. There is a certain optimum step size such that the
precision increases as we approach it, but then starts getting worse as we
make our step size smaller still. Trouble is: this optimum may be hard to
find.

e Stability: Certain equations may be numerically unstable. What may hap-
pen is that the numbers never seem to stabilize no matter how many
times we halve the interval. We may need a ridiculously small interval
size, which may not be practical due to roundoff errors or computational
time considerations. Such problems are sometimes called stiff. In the
worst case, the numerical computations might be giving us bogus num-
bers that look like a correct answer. Just because the numbers seem to
have stabilized after successive halving, does not mean that we must have
the right answer.

We have seen just the beginnings of the challenges that appear in real ap-
plications. Numerical approximation of solutions to differential equations is an
active research area for engineers and mathematicians. For example, the gen-
eral purpose method used for the ODE solver in Matlab and Octave (as of this
writing) is a method that appeared in the literature only in the 1980s.

8.6 Numerical methods: Euler’s method
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Exercises 8.6

Problems

o)
. Consider d—); = (2t —x)?, x(0) = 2. Use Euler’s method

with step size h = 0.5 to approximate x(1).

d.
. Consider d—)t( = t—x,x(0) = 1. a) Use Euler’s method with

1
stepsizesh = 1, 323 to approximate x(1). b) Solve the
equation exactly. c) Describe what happens to the errors
for each h you used. That is, find the factor by which the
error changed each time you halved the interval.

. Approximate the value of e by looking at the initial value

problem y’ = y with y(0) = 1 and approximating y(1) us-
ing Euler’s method with a step size of 0.2.

. Example of numerical instability: Take y’ = —5y, y(0) =

1. We know that the solution should decay to zero as x

grows. Using Euler’s method, start with h = 1 and compute
Y1, Y2, Y3, Ya to try to approximate y(4). What happened?
Now halve the interval. Keep halving the interval and ap-
proximating y(4) until the numbers you are getting start to
stabilize (that is, until they start going towards zero). Note:
You might want to use a calculator.

. Let x’ = sin(xt), and x(0) = 1. Approximate x(1) using

Euler’s method with step sizes 1, 0.5, 0.25. Use a calculator
and compute up to 4 decimal digits.

. Letx’ = 2t, and x(0) = 0. a) Approximate x(4) using Eu-

ler’'s method with step sizes 4, 2, and 1. b) Solve exactly,
and compute the errors. ¢) Compute the factor by which
the errors changed.

. Letx’ = xe"*!, and x(0) = 0. (a) Approximate x(4) us-

ing Euler’s method with step sizes 4, 2, and 1. (b) Guess an
exact solution based on part (a) and compute the errors.



9: CURVES IN THE PLANE

We have explored functions of the form y = f(x) closely throughout this text.
We have explored their limits, their derivatives and their antiderivatives; we
have learned to identify key features of their graphs, such as relative maxima
and minima, inflection points and asymptotes; we have found equations of their
tangent lines, the areas between portions of their graphs and the x-axis, and the
volumes of solids generated by revolving portions of their graphs about a hori-
zontal or vertical axis.

Despite all this, the graphs created by functions of the form y = f(x) are
limited. Since each x-value can correspond to only 1 y-value, common shapes
like circles cannot be fully described by a function in this form. Fittingly, the
“vertical line test” excludes vertical lines from being functions of x, even though
these lines are important in mathematics.

In this chapter we’ll explore new ways of drawing curves in the plane. We'll
still work within the framework of functions, as an input will still only correspond
to one output. However, our new techniques of drawing curves will render the
vertical line test pointless, and allow us to create important — and beautiful —
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, continuing to find equations of tangent lines and the areas of enclosed
regions.

9.1 Conic Sections

The ancient Greeks recognized that interesting shapes can be formed by inter-
secting a plane with a double napped cone (i.e., two identical cones placed tip—
to—tip as shown in the following figures). As these shapes are formed as sections
of conics, they have earned the official name “conic sections.”

The three “most interesting” conic sections are given in the top row of Figure
9.1.1. They are the parabola, the ellipse (which includes circles) and the hyper-
bola. In each of these cases, the plane does not intersect the tips of the cones
(usually taken to be the origin).

-
T £

Parabola Ellipse Circle

S ,

Point Line Crossed Lines

Figure 9.1.1: Conic Sections

Hyperbola
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Figure 9.1.2: lllustrating the definition of
the parabola and establishing an alge-
braic formula.
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When the plane does contain the origin, three degenerate cones can be
formed as shown the bottom row of Figure 9.1.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuitive, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a function. It can be shown that
all conics can be defined by the general second—degree equation

AX* + Bxy + Cy* + Dx + Ey + F= 0.

While this algebraic definition has its uses, most find another geometric per-
spective of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
satisfy a certain distance property. These distance properties can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
function.

Parabolas

Definition 9.1.1 Parabola

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Figure 9.1.2 illustrates this definition. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the portion of the parabola on one side of
this line is the mirror—image of the portion on the opposite side.

The definition leads us to an algebraic formula for the parabola. Let P =
(x,y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
isaty = —p. (We'll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0,0).)

We use the Distance Formula to find the distance d; between F and P:

di =/ (x=02+ (y —p).

The distance d, from P to the directrix is more straightforward:

dy=y—(—p) =y+p.
These two distances are equal. Setting d, = d,, we can solve for y in terms of x:
di=d,

VX +(y—p)?=y+p

Now square both sides.

X+ (y—p)?=y+p)?
2 2 2 .2 2
Xty —2yp+p =y +2yp+p

X =4ayp
1
y = —x2.
4p




The geometric definition of the parabola has led us to the familiar quadratic
function whose graph is a parabola with vertex at the origin. When we allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

Key Idea 9.1.1 General Equation of a Parabola

1. Vertical Axis of Symmetry: The equation of the parabola with ver-
tex at (h, k) and directrix y = k — p in standard form is

1
= —(x—h)* +k
y= X
The focus is at (h, k + p).

2. Horizontal Axis of Symmetry: The equation of the parabola with
vertex at (h, k) and directrix x = h — p in standard form is

1
= —(y—k?*+h.
x 4pw )"+
The focus is at (h + p, k).

Note: p is not necessarily a positive number.

Example 9.1.1 Finding the equation of a parabola
Give the equation of the parabola with focus at (1,2) and directrix at y = 3.

SOLUTION The vertex is located halfway between the focus and direc-
trix, so (h, k) = (1,2.5). This gives p = —0.5. Using Key Idea 9.1.1 we have the
equation of the parabola as

1 1
=—— (x—12425=—-Z(x—1)2+25.
y 4(__0.5)( )+ S =1)7+

The parabola is sketched in Figure 9.1.3.

Example 9.1.2 Finding the focus and directrix of a parabola

Find the focus and directrix of the parabola x = %yz — y+ 1. The point (7,12)
lies on the graph of this parabola; verify that it is equidistant from the focus and
directrix.

SOLUTION We need to put the equation of the parabola in its general
form. This requires us to complete the square:

x= -y —y+1

= o=

=-(y"—8y+8)

= 00

=_(y"—8y+16—16+8)

(y—4)?-38)

|+~ 00|~ 00

—
<
D

> — 1.

Hence the vertex is located at (—1, 4). We have % ﬁ, sop = 2. We conclude

that the focus is located at (1,4) and the directrix is x = —3. The parabola is

9.1 Conic Sections

Figure 9.1.3: The parabola described in
Example 9.1.1.

10 _—
10 | ,/
/
,'10
4
sf4 +
t X
-10 -5 5 10
_5 N

Figure 9.1.4: The parabola described in
Example 9.1.2. The distances from a point
on the parabola to the focus and directrix
is given.
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o
A

Figure 9.1.5: lllustrating the parabola’s re-
flective property.
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graphed in Figure 9.1.4, along with its focus and directrix.

The point (7,12) lies on the graph and is 7 — (—3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:

V(7 =12+ (12— 4)? = v/100 = 10.

Indeed, the point on the parabola is equidistant from the focus and directrix.

Reflective Property

One of the fascinating things about the nondegenerate conic sections is their
reflective properties. Parabolas have the following reflective property:

Any ray emanating from the focus that intersects the parabola
reflects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.1.5. The following theorem states this more
rigorously.

Theorem 9.1.1 Reflective Property of the Parabola

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F, and

2. The line perpendicular to the directrix through P.

Because of this reflective property, paraboloids (the 3D analogue of parabo-
las) make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effectively approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.




Ellipses

Definition 9.1.2 Ellipse

An ellipse is the locus of all points whose sum of distances from two fixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil tight against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 9.1.6.

We can again find an algebraic equation for an ellipse using this geometric
definition. Let the foci be located along the x-axis, ¢ units from the origin. Let
these foci be labelled as F; = (—c,0) and F, = (c,0). Let P = (x,y) be a point
on the ellipse. The sum of distances from F; to P (d;) and from F, to P (d,) is a
constant d. That is, d; 4+ d, = d. Using the Distance Formula, we have

Vix+e2+y2+/(x—c)2+y2=d.

Using a fair amount of algebra can produce the following equation of an ellipse
(note that the equation is an implicitly defined function; it has to be, as an ellipse
fails the Vertical Line Test):

2 2

X y
d\2 + d)2 2
(%) (§)" —c
This is not particularly illuminating, but by making the substitution a = d/2 and
b = v a? — c%, we can rewrite the above equation as

2

x>y

@ ' b?
This choice of a and b is not without reason; as shown in Figure 9.1.7, the values
of a and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on the major axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shifting of the ellipse gives the following standard equations.

=1

Key Idea 9.1.2 Standard Equation of the Ellipse

The equation of an ellipse centered at (h, k) with major axis of length 2a
and minor axis of length 2b in standard form is:

x —h)? — k)?
N
a b?

x — h)? — k)?
(x=h?  (y=k? _
b? a?

1. Horizontal major axis: 1.

2. Vertical major axis: 1.

The foci lie along the major axis, ¢ units from the center, where ¢ =
2 2
a® — b°.

9.1 Conic Sections

Figure 9.1.6: lllustrating the construction
of an ellipse with pins, pencil and string.

Vertices Foci

Major axis Minor axis

Figure 9.1.7: Labelling the significant fea-
tures of an ellipse.
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Figure 9.1.8: The ellipse used in Example
9.1.3.

Figure 9.1.9: Graphing the ellipse in Ex-
ample 9.1.4.
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Example 9.1.3 Finding the equation of an ellipse
Find the general equation of the ellipse graphed in Figure 9.1.8.

SOLUTION The center is located at (—3, 1). The distance from the cen-
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equation of the ellipse is

(x+3?  (y—1)
4 * 25

=1.

Example 9.1.4 Graphing an ellipse
Graph the ellipse defined by 4x? + 9y? — 8x — 36y = —4.

SOLUTION It is simple to graph an ellipse once it is in standard form. In
order to put the given equation in standard form, we must complete the square
with both the x and y terms. We first rewrite the equation by regrouping:

4 +9y° —8—36y=—4 = (4 —8x)+ (9’ —36y) = —4.
Now we complete the squares.

(4x2—8x)+(9y2—36y):—
40 — 2x) + 9(y* — 4y) =
4(x* —2x+1—1) +9(y? —4y+4 4) =
4(x—12—-1)+9((y—2)>—4) =
4(x —1)? —4+9(y—2) —36=—4
4(x—1)+9(y—2)* =36

(x-1? (y—2)°
5 2

We see the center of the ellipse is at (1,2). We have a = 3 and b = 2; the
major axis is horizontal, so the vertices are located at (—2,2) and (4,2). We
findc = vV9—4 = /5 ~ 2.24. The foci are located along the major axis,
approximately 2.24 units from the center, at (1 + 2.24, 2). This is all graphed in
Figure 9.1.9.



Eccentricity

When a = b, we have a circle. The general equation becomes

Ll
a a

1 = Kx-—h>+(y—k?=d,

the familiar equation of the circle centred at (h, k) with radius a. Since a = b,
¢ = va? — b2 = 0. The circle has “two” foci, but they lie on the same point, the
center of the circle.

Consider Figure 9.1.10, where several ellipses are graphed with a = 1. In
(a), we have ¢ = 0 and the ellipse is a circle. As c grows, the resulting ellipses
look less and less circular. A measure of this “noncircularness” is eccentricity.

Definition 9.1.3 Eccentricity of an Ellipse

c
The eccentricity e of an ellipseise = —.
a

The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 9.1.10 (d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are elliptical. Earth has an eccentricity of 0.0167 — it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very cir-
cular.

Reflective Property

The ellipse also possesses an interesting reflective property. Any ray ema-
nating from one focus of an ellipse reflects off the ellipse along a line through
the other focus, as illustrated in Figure 9.1.11. This property is given formally in
the following theorem.

Theorem 9.1.2 Reflective Property of an Ellipse

Let P be a point on a ellipse with foci F; and F,. The tangent line to the
ellipse at P makes equal angles with the following two lines:

1. The line through F; and P, and

2. The line through F, and P.

This reflective property is useful in optics and is the basis of the phenomena
experienced in whispering halls.

9.1 Conic Sections

y

e =0.99

(d)

Figure 9.1.10: Understanding the eccen-
tricity of an ellipse.

Figure 9.1.11: lllustrating the reflective
property of an ellipse.
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Transverse

axis

} ° Conjugate

Foci

Vertices

Figure 9.1.12: Labelling the significant
features of a hyperbola.

Figure 9.1.13: Graphing the hyperbola

2 2 . .
S5 — % = 1along with its asymptotes,
y = +x/3.

Figure 9.1.14: Using the asymptotes of a
hyperbola as a graphing aid.
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Hyperbolas

The definition of a hyperbola is very similar to the definition of an ellipse; we
essentially just change the word “sum” to “difference.”

Definition 9.1.4 Hyperbola

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

We do not have a convenient way of visualizing the construction of a hyper-
bola as we did for the ellipse. The geometric definition does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of the
line segment joining the foci is the center of the hyperbola. The transverse axis
intersects the hyperbola at two points, each a vertex of the hyperbola. The line
through the center and perpendicular to the transverse axis is the conjugate
axis. This is illustrated in Figure 9.1.12. It is easy to show that the constant
difference of distances used in the definition of the hyperbola is the distance
between the vertices, i.e., 2a.

Key Idea 9.1.3 Standard Equation of a Hyperbola

The equation of a hyperbola centered at (h, k) in standard form is:

. . (x=h? (y—k?
1. Horizontal Transverse Axis: i 1.

. . (y—k? (x—h)?
2. Vertical Transverse Axis: > — — =1
a b
The vertices are located a units from the center and the foci are located
¢ units from the center, where ¢ = a? + b?.

Graphing Hyperbolas

Consider the hyperbola % —% = 1. Solving fory, we findy = +./x%/9 — 1.
As x grows large, the “—1” part of the equation for y becomes less significant and
y &~ ++/x*/9 = £x/3. That s, as x gets large, the graph of the hyperbola looks
very much like the lines y = +x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 9.1.13.

This is a valuable tool in sketching. Given the equation of a hyperbola in
general form, draw a rectangle centered at (h, k) with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 9.1.14 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are +b/a; when the transverse axis is vertical, their slopes are +-a/b. This
gives equations:




Horizontal Vertical
Transverse Axis Transverse Axis
b a
y:j:a(x—h)—kk y:j:B(x—h)-i-k.

Example 9.1.5 Graphing a hyperbola
y—-2)?* (x—1)
25 4

Sketch the hyperbola given by =1.

SOLUTION The hyperbola is centred at (1,2); a = Sand b = 2. In
Figure 9.1.15 we draw the prescribed rectangle centred at (1, 2) along with the
asymptotes defined by its diagonals. The hyperbola has a vertical transverse
axis, so the vertices are located at (1,7) and (1, —3). This is enough to make a
good sketch.

We also find the location of the foci: as ¢ = a? + b%, we have ¢ = /29 ~
5.4. Thus the foci are located at (1,2 + 5.4) as shown in the figure.

Example 9.1.6 Graphing a hyperbola
Sketch the hyperbola given by 9x% — y? + 2y = 10.

SOLUTION We must complete the square to put the equation in general
form. (We recognize this as a hyperbola since it is a general quadratic equation
and the x? and y? terms have opposite signs.)

9x* —y? +2y =10

9% — (y* —2y) =10

9 — (P —2y+1-1)=10
w—(y-17%-1)=10
9w —(y—1°=9

—1)?
XZ,(y ) -1
9

We see the hyperbola is centred at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 9.1.16
along with the asymptotes of the hyperbola. The vertices are located at (£1, 1).
We have ¢ = /10 = 3.2, so the foci are located at (£3.2,1) as shown in the
figure.

9.1 Conic Sections

/

1
!
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1
1
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b

Figure 9.1.15: Graphing the hyperbola in
Example 9.1.5.

Figure 9.1.16: Graphing the hyperbola in
Example 9.1.6.
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Figure 9.1.17: Understanding the eccen-
tricity of a hyperbola.

404

Eccentricity

Definition 9.1.5 Eccentricity of a Hyperbola

c
The eccentricity of a hyperbolais e = o

Note that this is the definition of eccentricity as used for the ellipse. When
ciscloseinvaluetoa (i.e., e = 1), the hyperbola is very narrow (looking almost
like crossed lines). Figure 9.1.17 shows hyperbolas centered at the origin with
a = 1. The graph in (a) has ¢ = 1.05, giving an eccentricity of e = 1.05, which
is close to 1. As c grows larger, the hyperbola widens and begins to look like
parallel lines, as shown in part (d) of the figure.

Reflective Property

Hyperbolas share a similar reflective property with ellipses. However, in the
case of a hyperbola, a ray emanating from a focus that intersects the hyperbola
reflects along a line containing the other focus, but moving away from that fo-
cus. This is illustrated in Figure 9.1.19 (on the next page). Hyperbolic mirrors
are commonly used in telescopes because of this reflective property. It is stated
formally in the following theorem.

Theorem 9.1.3 Reflective Property of Hyperbolas

Let P be a point on a hyperbola with foci F; and F,. The tangent line to
the hyperbola at P makes equal angles with the following two lines:

1. The line through F; and P, and

2. The line through F;, and P.

Location Determination

Determining the location of a known event has many practical uses (locating
the epicenter of an earthquake, an airplane crash site, the position of the person
speaking in a large room, etc.).

To determine the location of an earthquake’s epicenter, seismologists use
trilateration (not to be confused with triangulation). A seismograph allows one
to determine how far away the epicenter was; using three separate readings,
the location of the epicenter can be approximated.

A key to this method is knowing distances. What if this information is not
available? Consider three microphones at positions A, B and C which all record
a noise (a person’s voice, an explosion, etc.) created at unknown location D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the location be determined in such a situation?

If each location has a clock set to the same time, hyperbolas can be used
to determine the location. Suppose the microphone at position A records the
sound at exactly 12:00, location B records the time exactly 1 second later, and
location C records the noise exactly 2 seconds after that. We are interested in
the difference of times. Since the speed of sound is approximately 340 m/s, we




9.1 Conic Sections

can conclude quickly that the sound was created 340 meters closer to position A
than position B. If A and B are a known distance apart (as shown in Figure 9.1.18
(a)), then we can determine a hyperbola on which D must lie.

The “difference of distances” is 340; this is also the distance between vertices
of the hyperbola. So we know 2a = 340. Positions A and B lie on the foci, so
2¢ = 1000. From this we can find b ~ 470 and can sketch the hyperbola, given
in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by positions B and C. In this case,
2a = 680 as the sound travelled an extra 2 seconds to get to C. We still have
2¢ = 1000, centring this hyperbola at (—500, 500). We find b ~ 367. This hy-
perbola is sketched in part (c) of the figure. The intersection point of the two
graphs is the location of the sound, at approximately (188, —222.5).

Figure 9.1.19: lIllustrating the reflective
property of a hyperbola.

ce 1,000 4 Ce 11,000 1 S~ ce 1,000°F
X oo
\
500 | %00 | 500 -
\
\
; 4 g e
1 . . 1 —_————
—1,000 —500 500 1,000 —1,000 —500 —1,000 —500
1
—500 | —300 | —500 |
1
1
1
—1,000 | ~1,000 | —1,000 |

(a) (b) (c)

Figure 9.1.18: Using hyperbolas in location detection.

This chapter explores curves in the plane, in particular curves that cannot
be described by functions of the form y = f(x). In this section, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
sections, we will learn completely new ways of describing curves in the plane,
using parametric equations and polar coordinates, then study these curves using
calculus techniques.
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Exercises 9.1

Terms and Concepts

1. Whatis the difference between degenerate and nondegen-
erate conics?

2. Use your own words to explain what the eccentricity of an
ellipse measures.

3. What has the largest eccentricity: an ellipse or a hyper-
bola?

4. Explain why the following s true: “If the coefficient of the x*
termin the equation of an ellipse in standard form is smaller
than the coefficient of the y? term, then the ellipse has a
horizontal major axis.”

5. Explain how one can quickly look at the equation of a hy-
perbola in standard form and determine whether the trans-
verse axis is horizontal or vertical.

6. Fill in the blank: It can be said that ellipses and hyperbolas
share the same reflective property: “A ray emanating from
one focus will reflect off the conic along a that
contains the other focus.”

Problems

In Exercises 7 — 14, find the equation of the parabola defined
by the given information. Sketch the parabola.

7. Focus: (3,2); directrix: y = 1

8. Focus: (—1, —4); directrix: y = 2

9. Focus: (1,5); directrix: x = 3
10. Focus: (1/4,0); directrix: x = —1/4
11. Focus: (1,1); vertex: (1,2)
12. Focus: (—3,0); vertex: (0,0)
13. Vertex: (0, 0); directrix: y = —1/16
14. Vertex: (2, 3); directrix: x =4

In Exercises 15 — 16, the equation of a parabola and a point
on its graph are given. Find the focus and directrix of the
parabola, and verify that the given point is equidistant from
the focus and directrix.

15. y = 12X, P=(2,1)

16. x = 1(y—2)* +3,P = (11,10)

In Exercises 17 — 18, sketch the ellipse defined by the given
equation. Label the center, foci and vertices.

x-1)" (y-2)7
17. =1
3 T

1 2 1 2
18. —xX 4+ =(y+3?%=1
55X +9(y+ )

In Exercises 19 — 20, find the equation of the ellipse shown in
the graph. Give the location of the foci and the eccentricity
of the ellipse.

<

19.

20.

In Exercises 21 - 24, find the equation of the ellipse defined
by the given information. Sketch the elllipse.

21. Foci: (£2,0); vertices: (+3,0)

22. Foci: (—1,3) and (5, 3); vertices: (—3,3) and (7, 3)
23. Foci: (2,42); vertices: (2,£7)

24. Focus: (—1,5); vertex: (—1, —4); center: (—1,1)

In Exercises 25 — 28, write the equation of the given ellipse in
standard form.

25. x> — 2+ 2y2 —8y=-7
26. 5x* +3y* =15
27. 3x* +2y — 12y +6=0

28. X’ +y’ —4x—4y+4=0



In Exercises 29 - 32, find the equation of the hyperbola shown

in the graph.

29.

In Exercises 35 — 38, find the equation of the hyperbola de-
fined by the given information. Sketch the hyperbola.

35.

36.

37.

38.

Foci: (£3,0); vertices: (£2,0)
Foci: (0, £3); vertices: (0, +2)

Foci: (—2,3) and (8, 3); vertices: (—1,3) and (7, 3)

Foci: (3, —2) and (3, 8); vertices: (3,0) and (3, 6)

*
-

In Exercises 39 — 42, write the equation of the hyperbola in
standard form.

39.

30.
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32.

In Exercises 33 — 34, sketch the hyperbola defined by the
given equation. Label the center and foci.

1

45,
OO N )
) 16 9
34. 0,_4)2 _ M -

25

40.
41.

x 42.

. Consider the ellipse given by

44.

32— 4y =12

3 — P +2y=10

2 2 _

x° — 10y® + 40y = 30

(dy —x)(dy+x) =4

1.

x—1)? —3)?
(-1, (=32 _
4 12
(a) Verify that the foci are located at (1,3 + 2/2).
(b) The pointsP1 = (2,6)and P, = (1++v2,3+6) =~
(2.414,5.449) lie on the ellipse. Verify that the sum
of distances from each point to the foci is the same.

Johannes Kepler discovered that the planets of our solar
system have elliptical orbits with the Sun at one focus. The
Earth’s elliptical orbit is used as a standard unit of distance;
the distance from the center of Earth’s elliptical orbit to one
vertex is 1 Astronomical Unit, or A.U.

The following table gives information about the orbits of
three planets.

Distance from
center to vertex
0.387 A.U.
1A.U.
1.524 A.U.

eccentricity

0.2056
0.0167
0.0934

Mercury
Earth
Mars

(a) In an ellipse, knowing ¢ = o> — b*and e = c/a
allows us to find b in terms of a and e. Show b =
av/1— e

(b) Foreach planet, find equations of their elliptical orbit

2 2
of the form % + % = 1. (This places the center at
(0,0), but the Sun is in a different location for each
planet.)

(c) Shift the equations so that the Sun lies at the origin.
Plot the three elliptical orbits.

A loud sound is recorded at three stations that lie on a line
as shown in the figure below. Station A recorded the sound
1 second after Station B, and Station C recorded the sound
3 seconds after B. Using the speed of sound as 340m/s,
determine the location of the sound’s origination.

A 1000m B 2000m c
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t X y
-2 4 -1
-1 1 0

0 0 1

1 1 2

2 4 3

(b)

Figure 9.2.1: Atable of values of the para-
metric equations in Example 9.2.1 along
with a sketch of their graph.
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9.2 Parametric Equations

We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Use a function
Choose | ftofindy —— &

X (v =£x)) (.9)

Plot point

The rectangular equation y = f(x) works well for some shapes like a parabola
with a vertical axis of symmetry, but in the previous section we encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bottom” separately.)

In this section we introduce a new sketching procedure:

Use a function
ftofind x

x = f(t)
Choose / ( ) \ Plot point
! T~ Use a function _— )

gtofindy
(v=g(v)

Here, x and y are found separately but then plotted together. This leads us
to a definition.

Definition 9.2.1 Parametric Equations and Curves

Let f and g be continuous functions on an interval /. The set of all points
(x,y) = (f(t), g(t)) in the Cartesian plane, as t varies over /, is the graph
of the parametric equations x = f(t) and y = g(t), where tis the param-
eter. A curve is a graph along with the parametric equations that define
it.

This is a formal definition of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is often referred to as a plane curve. Examples
will help us understand the concepts introduced in the definition.

Example 9.2.1 Plotting parametric functions
Plot the graph of the parametric equations x = t?,y = t + 1 for tin [-2,2].

SOLUTION We plot the graphs of parametric equations in much the
same manner as we plotted graphs of functions like y = f(x): we make a table of
values, plot points, then connect these points with a “reasonable” looking curve.
Figure 9.2.1(a) shows such a table of values; note how we have 3 columns.

The points (x,y) from the table are plotted in Figure 9.2.1(b). The points
have been connected with a smooth curve. Each point has been labelled with
its corresponding t-value. These values, along with the two arrows along the
curve, are used to indicate the orientation of the graph. This information helps
us determine the direction in which the graph is “moving.”



We often use the letter t as the parameter as we often regard t as represent-
ing time. Certainly there are many contexts in which the parameter is not time,
but it can be helpful to think in terms of time as one makes sense of parametric
plots and their orientation (for instance, “At time t = 0 the position is (1,2) and
at time t = 3 the position is (5,1).").

Example 9.2.2 Plotting parametric functions

Sketch the graph of the parametric equations x = cos’t, y = cost + 1 for t
in [0, ).

SOLUTION We again start by making a table of values in Figure 9.2.2(a),
then plot the points (x, y) on the Cartesian plane in Figure 9.2.2(b).

It is not difficult to show that the curves in Examples 9.2.1 and 9.2.2 are
portions of the same parabola. While the parabola is the same, the curves are
different. In Example 9.2.1, if we let t vary over all real numbers, we’d obtain
the entire parabola. In this example, letting t vary over all real numbers would
still produce the same graph; this portion of the parabola would be traced, and
re—traced, infinitely many times. The orientation shown in Figure 9.2.2 shows
the orientation on [0, 7], but this orientation is reversed on [, 27].

These examples begin to illustrate the powerful nature of parametric equa-
tions. Their graphs are far more diverse than the graphs of functions produced
by “y = f(x)” functions.

Technology Note: Most graphing utilities can graph functions given in paramet-
ric form. Often the word “parametric” is abbreviated as “PAR” or “PARAM” in
the options. The user usually needs to determine the graphing window (i.e, the
minimum and maximum x- and y-values), along with the values of t that are to
be plotted. The user is often prompted to give a t minimum, a t maximum, and
a “t-step” or “At.” Graphing utilities effectively plot parametric functions just as
we’ve shown here: they plots lots of points. A smaller t-step plots more points,
making for a smoother graph (but may take longer). In Figure 9.2.1, the t-step is
1; in Figure 9.2.2, the t-step is /4.

One nice feature of parametric equations is that their graphs are easy to
shift. While this is not too difficult in the “y = f(x)” context, the resulting func-
tion can look rather messy. (Plus, to shift to the right by two, we replace x with
x — 2, which is counter—intuitive.) The following example demonstrates this.

Example 9.2.3 Shifting the graph of parametric functions
Sketch the graph of the parametric equations x = t> + t, y = t> — t. Find new
parametric equations that shift this graph to the right 3 places and down 2.

SOLUTION The graph of the parametric equationsis given in Figure 9.2.3
(a). It is a parabola with a axis of symmetry along the line y = x; the vertex is at
(0,0).

In order to shift the graph to the right 3 units, we need to increase the x-
value by 3 for every point. The straightforward way to accomplish this is simply
to add 3 to the function defining x: x = t2 + t + 3. To shift the graph down by 2
units, we wish to decrease each y-value by 2, so we subtract 2 from the function
defining y: y = t*> — t — 2. Thus our parametric equations for the shifted graph
arex =t +t+3,y = t> —t — 2. This is graphed in Figure 9.2.3 (b). Notice how
the vertex is now at (3, —2).

Because the x- and y-values of a graph are determined independently, the

9.2 Parametric Equations

t X y

0 1 2
/4 1/2 1+2)2
/2 0 1
3r/4  1/2 1—+/2)2

™ 1 0

Figure 9.2.2: A table of values of the para-
metric equations in Example 9.2.2 along
with a sketch of their graph.

x=1t+t

x=t+t+3
y=t!—t—2

Figure 9.2.3: |llustrating how to shift
graphs in Example 9.2.3.
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y
15 + x =1 — 52 +3t+11
y=t"—2t+3

10

Figure 9.2.4: A graph of the parametric
equations from Example 9.2.4.
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graphs of parametric functions often possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 9.2.4 Graphs that cross themselves
Plot the parametric functions x = t3 — 5t> + 3t +11andy = t> — 2t + 3 and
determine the t-values where the graph crosses itself.

SOLUTION Using the methods developed in this section, we again plot
points and graph the parametric equations as shown in Figure 9.2.4. It appears
that the graph crosses itself at the point (2,6), but we’ll need to analytically
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x-values are the same precisely when the y-values are
the same. This gives us a system of 2 equations with 2 unknowns:

3 —5s2 435411 =1t —5t2+3t+11
2 —2s4+3=t>—-2t+3

Solving this system is not trivial but involves only algebra. Using the quadratic
formula, one can solve for t in the second equation and find that t = 1 +
v/ s2 — 2s + 1. This can be substituted into the first equation, revealing that the
graph crosses itself at t = —1 and t = 3. We confirm our result by computing
x(—1) =x(3) =2andy(—1) = y(3) = 6.

Converting between rectangular and parametric equations

It is sometimes useful to rewrite equations in rectangular form (i.e., y = f(x))
into parametric form, and vice—versa. Converting from rectangular to paramet-
ric can be very simple: given y = f(x), the parametric equations x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equations
x = t, y = t? produce the familiar parabola. However, other parametrizations
can be used. The following example demonstrates one possible alternative.
Example 9.2.5 Converting from rectangular to parametric
Consider y = x%. Find parametric equations x = f(t), y = g(t) for the parabola
where t = %. That is, t = a corresponds to the point on the graph whose
tangent line has slope a.

SOLUTION We start by computing %: y' = 2x. Thus we set t = 2x. We
can solve for x and find x = t/2. Knowing that y = x?, we have y = t*>/4. Thus
parametric equations for the parabola y = x* are

x=t/2 y==t/a4.

To find the point where the tangent line has a slope of —2, we sett = —2. This
gives the point (—1, 1). We can verify that the slope of the line tangent to the
curve at this point indeed has a slope of —2.

We sometimes choose the parameter to accurately model physical behaviour.

Example 9.2.6 Converting from rectangular to parametric

An object is fired from a height of 0 feet and lands 6 seconds later, 192 feet
away. Assuming ideal projectile motion, the height, in feet, of the object can be
described by h(x) = —x*/64 + 3x, where x is the distance in feet from the initial
location. (Thus h(0) = h(192) = 0 ft.) Find parametric equations x = f(t),



y = g(t) for the path of the projectile where x is the horizontal distance the
object has travelled at time t (in seconds) and y is the height at time t.

SOLUTION Physics tells us that the horizontal motion of the projectile
is linear; that is, the horizontal speed of the projectile is constant. Since the
object travels 192 ft in 6 s, we deduce that the object is moving horizontally at
a rate of 32 ft/s, giving the equation x = 32t. Asy = —x?/64 + 3x, we find
y = —16t% 4 96t. We can quickly verify that y”’ = —32 ft/s?, the acceleration
due to gravity, and that the projectile reaches its maximum at t = 3, halfway
along its path.

These parametric equations make certain determinations about the object’s
location easy: 2 seconds into the flight the object is at the point (X(Z), y(2)) =
(64,128). That s, it has travelled horizontally 64 ft and is at a height of 128 ft,
as shown in Figure 9.2.5.

It is sometimes necessary to convert given parametric equations into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equations can have very “complicated” rectangular equations. This
conversion is often referred to as “eliminating the parameter,” as we are looking
for a relationship between x and y that does not involve the parameter t.

Example 9.2.7 Eliminating the parameter
Find a rectangular equation for the curve described by

t2
X = and = .
241 YT 8 +1
SOLUTION There is not a set way to eliminate a parameter. One method

is to solve for t in one equation and then substitute that value in the second. We
use that technique here, then show a second, simpler method.

Starting with x = 1/(t* + 1), solve for t: t = +,/1/x — 1. Substitute this
value for tin the equation for y:

12

T4l
1/x—1

1/x—1+1

1/x—1
1/x

2

=1-—x.

Thus y = 1 — x. One may have recognized this earlier by manipulating the
equation for y:
N 1 1
TR24+1 7 241
This is a shortcut that is very specific to this problem; sometimes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the functiony = 1 — x. The
parametric equations limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1 — x to the same.

y

9.2 Parametric Equations

150 +

100 +

x = 32t

50 | ,
y = —168 + 96t

Figure 9.2.5: Graphing projectile motion
in Example 9.2.6.

2,5
y=1-—x 1
X=———
1 2+1
tZ
G
1 1 > X
-2 -1 1 2
—1

Figure 9.2.6: Graphing parametric and
rectangular equations for a graph in Ex-
ample 9.2.7.
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Figure 9.2.7: Graphing the parametric
equationsx =4cost+ 3,y = 2sint+1
in Example 9.2.8.
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The graphs of these functions is given in Figure 9.2.6. The portion of the
graph defined by the parametric equations is given in a thick line; the graph de-
fined by y = 1 — x with unrestricted domain is given in a thin line.

Example 9.2.8 Eliminating the parameter
Eliminate the parameterinx = 4cost+ 3,y = 2sint+ 1

SOLUTION We should not try to solve for t in this situation as the re-
sulting algebra/trig would be messy. Rather, we solve for cost and sin t in each
equation, respectively. This gives

x—3 -1
cost=—— and sint= y—.
4 2

The Pythagorean Theorem gives cos? t + sin’ t = 1, so:

cos’t+sin®t=1

() ) -
(x=37  (y-17°

=1
16 + 4

This final equation should look familiar — it is the equation of an ellipse! Figure
9.2.7 plots the parametric equations, demonstrating that the graph is indeed of
an ellipse with a horizontal major axis and center at (3, 1).

The Pythagorean Theorem can also be used to identify parametric equations
for hyperbolas. We give the parametric equations for ellipses and hyperbolas in
the following Key Idea.

Key Idea 9.2.1 Parametric Equations of Ellipses and Hyperbolas
e The parametric equations
x=agacost+h, y=bsint+k

define an ellipse with horizontal axis of length 2a and vertical axis
of length 2b, centred at (h, k).

¢ The parametric equations
x=atant+h, y=tbsect+k

define a hyperbola with vertical transverse axis centred at (h, k),
and
x=*dasect+h, y=btant+k

defines a hyperbola with horizontal transverse axis. Each has
asymptotes at y = +b/a(x — h) + k.




Special Curves

Figure 9.2.8 gives a small gallery of “interesting” and “famous” curves along
with parametric equations that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
functions are not differentiable at these points. This leads us to a definition.

Definition 9.2.2 Smooth

A curve Cdefined by x = f(t), y = g(t) is smooth on an interval / if f and
g’ are continuous on / and not simultaneously 0 (except possibly at the
endpoints of /). A curve is piecewise smooth on / if / can be partitioned
into subintervals where Cis smooth on each subinterval.

Consider the astroid, given by x = cos? t, y = sin>t. Taking derivatives, we
have:

x' = —3cos’tsint and y’ = 3sin’tcost.

Itis clear that each isOwhen t = 0, m/2, 7,.... Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure.
We demonstrate this once more.

Example 9.2.9 Determine where a curve is not smooth
Let a curve C be defined by the parametric equations x = t3> — 12t 4+ 17 and
y = t> — 4t + 8. Determine the points, if any, where it is not smooth.

SOLUTION We begin by taking derivatives.
x' =3t —12, y' =2t—a4.
We set each equal to 0:

X =0=32-12=0=t=42
y=0=2t—4=0=1t=2

We see att = 2 both x’ and y’ are 0; thus Cis not smooth at t = 2, correspond-
ing to the point (1,4). The curve is graphed in Figure 9.2.9, illustrating the cusp
at (1,4).

If a curve is not smooth at t = to, it means that x’(ty) = y’(to) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equations describe
the path of some object, this means the object is at rest at ty. An object at rest
can make a “sharp” change in direction, whereas moving objects tend to change
direction in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t° pro-
duce the familiar y = x? parabola. However, in this parametrization, the curve
is not smooth. A particle travelling along the parabola according to the given
parametric equations comes to rest at t = 0, though no sharp point is created.

Our previous experience with cusps taught us that a function was not differ-
entiable at a cusp. This can lead us to wonder about derivatives in the context

9.2 Parametric Equations

y

Astroid
X = cos> t
y=sin’t

y

Rose Curve
x = cos(t) sin(4t)
y = sin(t) sin(4t)

-5

N
T

Hypotrochoid
x = 2 cos(t) + 5cos(2t/3)
y = 2sin(t) — 5sin(2t/3)
y

5

DI
Bi

—5

Epicycloid
x = 4 cos(t) — cos(4t)
y = 4sin(t) — sin(4t)

Figure 9.2.8: A gallery of interesting pla-
nar curves.

413



Chapter 9 Curves in the Plane

of parametric equations and the application of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
8 we determine concavity? We explore these concepts and more in the next sec-

tion.
|l /
4 4

t t X
5 10

Figure 9.2.9: Graphing the curve in Exam-
ple 9.2.9; note it is not smooth at (1, 4).
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Exercises 9.2

Terms and Concepts

1. T/F: When sketching the graph of parametric equations, the
x and y values are found separately, then plotted together.

2. The direction in which a graph is “moving” is called the
of the graph.

3. An equation written as y = f(x) is written in form.

4. Create parametric equations x = f(t), y = g(t) and sketch
their graph. Explain any interesting features of your graph
based on the functions fand g.

Problems

In Exercises 5 — 8, sketch the graph of the given parametric
equations by hand, making a table of points to plot. Be sure
to indicate the orientation of the graph.

5. x=t+t y=1—1t}, —3<t<3
6. x=1, y=5sint, —n/2<t<n7/2
7.x=t, y=2 —-2<t<2

8. x=t2—t+3, y=t!41, —2<t<2

In Exercises 9 — 18, sketch the graph of the given paramet-
ric equations; using a graphing utility is advisable. Be sure to
indicate the orientation of the graph.

9. x=1—-2t%, y=t, —-2<t<3

10. x=1/t, y=sint, 0<t<10

11. x=3cost, y=>5sint, 0<t<2mw

12. x=3cost+2, y=5sint+3, 0<t<2rm
13. x =cost, y=cos(2t), 0<t<m

14. x =cost, y=sin(2t), 0<t<2m

15. x =2sect, y=3tant, —7w/2<t<m/2
16. x =cosht, y =sinht, —2<t<2

17. x = cost+ 1 cos(8t), y=sint+1sin(8t), 0<t < 2w

18. x = cost+:sin(8t), y=sint+;cos(8t), 0<t< 2w

In Exercises 19 — 20, four sets of parametric equations are
given. Describe how their graphs are similar and different.
Be sure to discuss orientation and ranges.

19. (@ x=t y=+t, —co<t<oo
(b) x=sint y=sin’t, —oco<t< o0
() x=¢€" y=¢€", —oco<t< oo
(d) x=—t y=t, —oco<t<oo
20. (@) x=cost y=sint, 0<t<2m
(b) x =cos(?) y=sin(t?), 0<t<2n
() x=rcos(1/t) y=sin(1l/t), 0<t<1
(d) x =cos(cost) y=sin(cost), 0<t<2rm

In Exercises 21 — 30, eliminate the parameter in the given
parametric equations.

21. x=2t+5, y=-3t+1

22. x =sect, y=tant

23. x=4sint+1, y=3cost—2
24. x=¢t, y=¢t

2> X:tJ%l' - 3::15
26.x:et, y:e3t—3

27. x=1Int, y=t—1

28. x =cott, y=csct

29. x =cosht, y =sinht

30. x =cos(2t), y=sint

In Exercises 31 — 34, eliminate the parameter in the given
parametric equations. Describe the curve defined by the
parametric equations based on its rectangular form.

31. x=at+x, y=bt+y

32. x=rcost, y=rsint
33. x=acost+h, y=bhbsint+k

34. x=asect+h, y=btant+k
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In Exercises 35 — 38, find parametric equations for the given
d
rectangular equation using the parametert = d—y Verify that
X

at t = 1, the point on the graph has a tangent line with slope
of 1.

35. y=3x" —11x+2
36. y=¢"

37. y=sinxon [0, 7]
38. y = v/xon[0,00)

In Exercises 39 — 42, find the values of t where the graph of
the parametric equations crosses itself.
39. x=t—t+3, y=t—-3
40. x =1 —4t* +t+7, y=t"—t
41. x =cost, y =sin(2t)on [0, 27]
42. x = costcos(3t), y =sintcos(3t)on [0, 7]

In Exercises 43 — 46, find the value(s) of t where the curve
defined by the parametric equations is not smooth.
43, x=t2+t*—t, y=t"+2t+3
44, x =1t> —4t, y=1t>—2t> — 4t

45. x =cost, y = 2cost

46. x = 2cost — cos(2t), y = 2sint — sin(2t)

In Exercises 47 — 55, find parametric equations that describe
the given situation.

47. A projectile is fired from a height of 0ft, landing 16ft away
in 4s.

48. A projectile is fired from a height of 0ft, landing 200ft away
in 4s.

49. A projectile is fired from a height of 0ft, landing 200ft away
in 20s.

50. A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 27].

51. A circle of radius 3, centered at (1, 1), that is traced once
counter—clockwise on [0, 1].

52. An ellipse centered at (1,3) with vertical major axis of
length 6 and minor axis of length 2.

53. An ellipse with foci at (1, 0) and vertices at (5, 0).

54. A hyperbola with foci at (5, —3) and (—1, —3), and with
vertices at (1, —3) and (3, —3).

55. A hyperbola with vertices at (0, +-6) and asymptotes y =
+3x.



9.3 Calculus and Parametric Equations

The previous section defined curves based on parametric equations. In this sec-
tion we’ll employ the techniques of calculus to study these curves.

We are still interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximations, and they indicate instantaneous direction of travel.

The slope of the tangent line is still 2%, and the Chain Rule allows us to cal-
culate this in the context of parametric equations. If x = f(t) and y = g(t), the

Chain Rule states that
dy dy dx

dt  dx dt’

dy

Solving for oo

we get

dy dy [dx _g'(t)

dx dt/ dt  f'(t)’

provided that f/(t) # 0. This is important so we label it a Key Idea.

Key Idea 9.3.1 Finding % with Parametric Equations.

Letx = f(t) and y = g(t), where fand g are differentiable on some open
interval / and f’(t) # O on /. Then

dy _g'(t)
dx ()

We use this to define the tangent line.

Definition 9.3.1 Tangent and Normal Lines

Let a curve C be parametrized by x = f(t) and y = g¢(t), where fand g
are differentiable functions on some interval / containing t = t;. The
tangent line to C at t = ty is the line through (f(to), g(to)) with slope

m = g’(to) /f(to), provided f'(ty) # 0.

The normal line to Cat t = t, is the line through (f(to), g(to)) with slope
m = —f"(ty)/g’ (to), provided g’ (to) # 0.

The definition leaves two special cases to consider. When the tangent line is
horizontal, the normal line is undefined by the above definition as g’(to) = 0.
Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definition.

1. If the tangent line at t = t; has a slope of 0, the normal lineto Cat t = t,
is the line x = f(to).

2. If the normal line at t = ty has a slope of 0, the tangent lineto Cat t = t,
is the line x = f(to).

9.3
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—20

Figure 9.3.1: Graphing tangent and nor-
mal lines in Example 9.3.1.
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Example 9.3.1 Tangent and Normal Lines to Curves
Letx = 5t* —6t+4and y = t> + 6t — 1, and let C be the curve defined by these
equations.

1. Find the equations of the tangent and normal linesto Catt = 3.

2. Find where C has vertical and horizontal tangent lines.

SOLUTION
1. We start by computing f'(t) = 10t — 6 and g’(t) = 2t + 6. Thus

dy  2t+6
dx 10t—6

Make note of something that might seem unusual: % is a function of t,
not x. Just as points on the curve are found in terms of ¢, so are the slopes
of the tangent lines.

The pointon Catt = 3is (31, 26). The slope of the tangent lineism = 1/2
and the slope of the normal line is m = —2. Thus,

1
¢ the equation of the tangent lineisy = E(X —31) 4 26, and
* the equation of the normal line isy = —2(x — 31) + 26.
This is illustrated in Figure 9.3.1.

2. To find where C has a horizontal tangent line, we set % = 0 and solve for
t. In this case, this amounts to setting g’(t) = 0 and solving for t (and
making sure that f'(t) # 0).

g(t)=0 = 2t+6=0 = t=-3.

The point on C corresponding to t = —3 is (67, —10); the tangent line at
that point is horizontal (hence with equation y = —10).

To find where Chas a vertical tangent line, we find where it has a horizontal

normal line, and set _5%?) = 0. This amounts to setting f’(t) = 0 and

solving for t (and making sure that g'(t) # 0).

flt)y=0 = 10t—6=0 = t=0.6.

The point on C correspondingto t = 0.6 is (2.2,2.96). The tangent line at
that pointis x = 2.2.

The points where the tangent lines are vertical and horizontal are indi-
cated on the graph in Figure 9.3.1.

Example 9.3.2 Tangent and Normal Lines to a Circle
1. Find where the unit circle, defined by x = cost and y = sint on [0, 27],

has vertical and horizontal tangent lines.

2. Find the equation of the normal line at t = t,.



SOLUTION
1. We compute the derivative following Key Idea 9.3.1:

dy g'(t) cost

dx ~ f'(t)  sint’

The derivative is 0 when cost = 0; that is, when t = 7/2, 37/2. These
are the points (0, 1) and (0, —1) on the circle.

The normal line is horizontal (and hence, the tangent line is vertical) when
sint = 0; thatis, when t = 0, 7, 27, corresponding to the points (—1,0)
and (0, 1) on the circle. These results should make intuitive sense.

. . sint
2. The slope of the normal lineatt = tgism = 0
cos ty

line goes through the point (cos ty, sin ty), giving the line

= tan ty. This normal

sin ty i
y= (x — costy) + sinty
cos ty

= (tantp)x,

as long as costy # 0. It is an important fact to recognize that the nor-
mal lines to a circle pass through its center, as illustrated in Figure 9.3.2.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles.

Example 9.3.3 Tangent lines when % is not defined
Find the equation of the tangent line to the astroid x = cos®t, y = sin>t at
t = 0, shown in Figure 9.3.3.

SOLUTION We start by finding x’(t) and y’(t):
x'(t) = —3sintcos’ t, y'(t) = 3costsin’t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. Evaluating % at this point returns the indeterminate form
of “0/0".

We can, however, examine the slopes of tangent lines near t = 0, and take
the limitast — 0.

_y'(t) . 3costsin’t
lim = lim - (We can cancel ast # 0.)
t—0 x’(t)  t=0 —3sintcos? t
. sint
= lim ———
t—0 cost
=0.

We have accomplished something significant. When the derivative % returns an

d
indeterminate form at t = ty, we can define its value by setting it to be lim —y,
t—to dx

if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0to be 0; therefore the tangent
line is y = 0, the x-axis.

9.3 Calculus and Parametric Equations

s

Figure 9.3.2: lllustrating how a circle’s
normal lines pass through its center.

Figure 9.3.3: A graph of an astroid.
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t < 3/5; concave up

—20 L
Figure 9.3.4: Graphing the parametric

equations in Example 9.3.4 to demon-
strate concavity.
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Concavity

We continue to analyze curves in the plane by considering their concavity;
2
that is, we are interested in %, “the second derivative of y with respect to x.”
To find this, we need to find the derivative of % with respect to x; that is,
d?y d [dy
dx®  dx |dx|’

but recall that % is a function of t, not x, making this computation not straight-
forward.

To make the upcoming notation a bit simpler, let h(t) = %. We want
d

4 [h(t)]; that is, we want 2. We again appeal to the Chain Rule. Note:

dh dh dx N dh dh /dx
dt  dx dt dx dt/ dt’
In words, to find %, we first take the derivative of % with respect to t, then
divide by x’(t). We restate this as a Key Idea.

Key Idea 9.3.2 Finding % with Parametric Equations

Let x = f(t) and y = g(t) be twice differentiable functions on an open
interval I, where f'(t) # O on /. Then

dy  d[dy dx  d[dy ,
pr dt{dx}/dt = dt[dx}/f(t)'

Examples will help us understand this Key Idea.

Example 9.3.4 Concavity of Plane Curves
letx = 5t> — 6t +4andy = t*> + 6t — 1 as in Example 9.3.1. Determine the
t-intervals on which the graph is concave up/down.

SOLUTION Concavity is determined by the second derivative of y with

2
respect to x, 2y sowe compute that here following Key Idea 9.3.2.

dax2?

d 2t+6
In Example 9.3.1, we found v _ +
dx 10t—6

dy d[2t+6
—2 = 10t — 6
dx2  dt [IOt— 6} /( )

- _(10t7i 6)2/(101*— 6)

72
(10t — 6)3
9
(5t —3)3

and f'(t) = 10t — 6. So:

2
The graph of the parametric functions is concave up when % > 0 and con-
2
cave down when % < 0. We determine the intervals when the second deriva-

tive is greater/less than 0 by first finding when it is 0 or undefined.



2
As the numerator of — 5 isnever 0, % # 0 for all t. It is undefined

9
(5t —3)
when 5t — 3 = 0; that is, when t = 3/5. Following the work established in
Section 3.4, we look at values of t greater/less than 3/5 on a number line:

d*y d’y
>0 — <0
dx? dx?
c. up ‘ c. down
3/5

Reviewing Example 9.3.1, we see that when t = 3/5 = 0.6, the graph of
the parametric equations has a vertical tangent line. This point is also a point of
inflection for the graph, illustrated in Figure 9.3.4.

Example 9.3.5 Concavity of Plane Curves
Find the points of inflection of the graph of the parametric equations x = /t,
y =sint, for0 <t < 16.

SOLUTION We need to compute % and %.
dy y'(t) cost
— = = —— =2tcost.
dx  x'(t)  1/(2V%)
Ry L[ t/\/t — 2\/tsint
Y _ & L — [Vt 2Vtsin = 2cost — 4tsint.
dx? x'(t) 1/(2V/t)

The points of inflection are found by setting % = 0. This is not trivial, as equa-
tions that mix polynomials and trigonometric functions generally do not have
“nice” solutions.

In Figure 9.3.5(a) we see a plot of the second derivative. It shows that it has
zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These approxima-
tions are not very good, made only by looking at the graph. Newton’s Method

provides more accurate approximations. Accurate to 2 decimal places, we have:
t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plotted on the graph of the parametric
equations in Figure 9.3.5(b). Note how most occur near the x-axis, but not ex-
actly on the axis.

Arc Length

We continue our study of the features of the graphs of parametric equations
by computing their arc length.
Recall in Section 7.4 we found the arc length of the graph of a function, from

X=atox =b,tobe
b 2
dy
L= 1 — | dx.
/a\/ +(afx) )

We can use this equation and convert it to the parametric equation context.
Letting x = f(t) and y = g(t), we know that 2 = g'(t)/f'(t). It will also be
useful to calculate the differential of x:

1

dx = f'(t)dt = 70

dt = - dx.

9.3
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50 +

y = 2cost — 4tsint
—50

(a)
y
14
0.5 |
: : ; X
1 2 3
—0.5 |
—1 |
(b)
Figure 9.3.5: In (a), a graph of %, show-

ing where it is approximately 0. In (b),
graph of the parametric equations in Ex-
ample 9.3.5 along with the points of in-
flection.
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Starting with the arc length formula above, consider:
b 2
d
L :/ 1+ (y) dx
a V dx
b (¢ 2
= / 1+ gl( )2 dx.
a f(1)

b
- [ IO o o
a ——

=dt

- / PO+ g0 at

Factor out the f/(t):

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding t; and t; such that @ = f(t;) and b = f(t,). This formula is important,
so we restate it as a theorem.

Theorem 9.3.1 Arc Length of Parametric Curves

Let x = f(t) and y = g(t) be parametric equations with f’ and g’ con-
tinuous on [t;, t;], on which the graph traces itself only once. The arc
length of the graph, fromt=t; tot =t,, is

L= / VIO + g/ (02 dt.

Note: Theorem 9.3.1 makes use of differ- As before, these integrals are often not easy to compute. We start with a
entiability on closed intervals, just as was simple example, then give another where we approximate the solution.
done in Section 7.4.

422

Example 9.3.6 Arc Length of a Circle
Find the arc length of the circle parametrized by x = 3cost, y = 3sint on
[0,37/2].

SOLUTION By direct application of Theorem 9.3.1, we have
37w/2

L= V/(=3sint)? + (3 cost)? dt.
0

Apply the Pythagorean Theorem.

37/2
— [ sa
0

37/2
= 3t
0

=97/2.

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 67; since we are finding the arc length of 3/4 of a circle,
the arc lengthis 3/4 - 6w = 97 /2.
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Example 9.3.7 Arc Length of a Parametric Curve
The graph of the parametric equations x = t(t* — 1), y = t> — 1 crosses itself as
shown in Figure 9.3.6, forming a “teardrop.” Find the arc length of the teardrop.

SOLUTION We can see by the parametrizations of x and y that when
t = +1,x = 0and y = 0. This means we’ll integrate fromt = —1tot = 1.
Applying Theorem 9.3.1, we have

L= /1 V(32 —1)2 + (2t)2 dt

1
:/ 9t* — 2% + 1 dt.
1 Figure 9.3.6: A graph of the parametric

equations in Example 9.3.7, where the arc
length of the teardrop is calculated.

Unfortunately, the integrand does not have an antiderivative expressible by el-
ementary functions. We turn to numerical integration to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approximation of the actual value.

Surface Area of a Solid of Revolution

Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Theorem 7.4.2 from Section 7.4 in a
similar way as done to produce the formula for arc length done before.

Theorem 9.3.2 Surface Area of a Solid of Revolution

Consider the graph of the parametric equations x = f(t) and y = g(t),
where f’ and g’ are continuous on an open interval / containing t; and
t, on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the x-axis is (where g(t) > 0 on [t, t;]):

t
Surface Area = 27r/ a(t)\/f'(t)2 + g'(t)? dt.

t

2. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) > 0 on [t;, t5]):

Surface Area = 27r/2f(t)\/f’(t)2 + g’ (t)? dt.
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Figure 9.3.7: Rotating a teardrop shape
about the x-axis in Example 9.3.8.
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Example 9.3.8 Surface Area of a Solid of Revolution

Consider the teardrop shape formed by the parametric equations x = t(t> — 1),
y = t? — 1 as seen in Example 9.3.7. Find the surface area if this shape is rotated
about the x-axis, as shown in Figure 9.3.7.

SOLUTION The teardrop shape is formed betweent = —1andt = 1.
Using Theorem 9.3.2, we see we need for g(t) > 0 on [—1, 1], and this is not
the case. To fix this, we simplify replace g(t) with —g(t), which flips the whole
graph about the x-axis (and does not change the surface area of the resulting
solid). The surface area is:

Area§ =27 /1 (1—t2)/(3t2 —1)2 + (2t)2 dt

-1

1
:27r/ (1 —t*)\/9t4 — 212 + 1 dt.

-1

Once again we arrive at an integral that we cannot compute in terms of ele-
mentary functions. Using Simpson’s Rule with n = 20, we find the area to be
S = 9.44. Using larger values of n shows this is accurate to 2 places after the
decimal.

After defining a new way of creating curves in the plane, in this section
we have applied calculus techniques to the parametric equation defining these
curves to study their properties. In the next section, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that identifies points in the plane in a manner different than
from measuring distances from the y- and x- axes.




Exercises 9.3

Terms and Concepts

1. T/F: Given parametric equations x = f(t) and y = g(t),
¥ = f'(t)/d'(t), as long as ¢’ (t) # 0.

2. Given parametric equations x = f(t) and y = g(t), the

derivative % as given in Key Idea 9.3.1 is a function of

?

3. T/F: Given parametric equations x = f(t) and y = g(t), to

. dPy - d (dy
find 7.7, one simply computes (E .

4. T/F:If % = 0 att = to, then the normal line to the curve at
t = to is a vertical line.

Problems

In Exercises 5—12, parametric equations for a curve are given.

dy

a) Find —~.

(a) dx

(b) Find the equations of the tangent and normal line(s)
at the point(s) given.

(c) Sketch the graph of the parametric functions along
with the found tangent and normal lines.

5. x=ty=1t5 t=1

6. x=+ty=5t+2 t=4
7.x=t—ty=t'+t; t=1

8. x=t!—1,y=—t t=0andt=1

9. x=sect,y =tanton (—7n/2,7/2); t=n/4
10. x =cost,y =sin(2t)on [0,27]; t=7/4

11. x = costsin(2t), y = sintsin(2t) on [0,27]; t=37/4

t/10

12. x=e""cost,y = e/sint; t=m/2

In Exercises 13 - 20, find t-values where the curve defined by
the given parametric equations has a horizontal tangent line.
Note: these are the same equations as in Exercises 5 — 12.

13. x=ty="=

14. x=+/t,y=5t+2

15. x=t! —t,y=t"+t

16. x=t!—1,y=t—t

17. x =sect,y =tanton (—m/2,7/2)

18. x = cost, y = sin(2t) on [0, 27]

19. x = cos tsin(2t), y = sintsin(2t) on [0, 27]

20. x =€/ cost,y = e/sint
In Exercises 21 — 24, find t = t, where the graph of the given
. A . dy
parametric equations is not smooth, then find lim —.
t—to AX

1
2l x=——, y="¢
g1 )

22. x=— 47" —16t+13, y=t -5 +8t—2

23. x=t -3 4+3t—1, y=£-2t+1

24. x = cos’t, y=1—sin’t

In Exercises 25 — 32, parametric equations for a curve are
2

given. Find %, then determine the intervals on which the

graph of the curve is concave up/down. Note: these are the

same equations as in Exercises 5 — 12.

25. x=t y=*¢t

26. x=+/t, y=5t+2

27. x=P —t, y=t*+t

28. x=t?—1, y=+t—t

29. x =sect, y=tanton (—7/2,7/2)

30. x =cost, y=sin(2t)on [0, 27]

31. x = costsin(2t), y =sintsin(2t)on [—7/2,7/2]

t/10 sin ¢

32. x=¢€"Ycost, y=e
In Exercises 33 — 36, find the arc length of the graph of the
parametric equations on the given interval(s).

33. x = —3sin(2t), y = 3cos(2t)on [0, 7]

34. x=e""cost, y=e"sinton [0,27]and [27, 47]
35. x=5t+2, y=1-—3ton[-1,1]
36. x=2t*%, y=3ton|[0,1]

In Exercises 37 — 40, numerically approximate the given arc
length.

37. Approximate the arc length of one petal of the rose curve
x = costcos(2t), y = sintcos(2t) using Simpson’s Rule
andn = 4.
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38.

39.

40.

Approximate the arc length of the “bow tie curve” x =
cost, y = sin(2t) using Simpson’s Rule and n = 6.

Approximate the arc length of the parabola x = t* —t,
y = t* + ton [—1,1] using Simpson’s Rule and n = 4.

A common approximate of the circumference of an ellipse
a? + b?

y = bsintis C = 27 er .

Use this formula to approximate the circumference of x =

S5cost, y = 3sintand compare this to the approxima-
tion given by Simpson’s Rule and n = 6.

given by x = acost,

In Exercises 41 — 44, a solid of revolution is described. Find or
approximate its surface area as specified.

41.

Find the surface area of the sphere formed by rotating the
circlex = 2cost, y = 2sintabout:

42.

43.

44,

(a) the x-axis and

(b) the y-axis.

Find the surface area of the torus (or “donut”) formed by
rotating the circle x = cost + 2, y = sint about the y-
axis.

Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow tie curve x = cost,
y = sin(2t) on [0, 7/2] about the x-axis, using Simpson’s
Rule and n = 4.

Approximate the surface area of the solid formed by ro-
tating the one petal of the rose curve x = costcos(2t),
y = sintcos(2t) on [0, /4] about the x-axis, using Simp-
son’s Rule and n = 4.



9.4 Introduction to Polar Coordinates

We are generally introduced to the idea of graphing curves by relating x-values
to y-values through a function f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good notion of how the curve looks. This method is useful
but has limitations, not least of which is that curves that “fail the vertical line
test” cannot be graphed without using multiple functions.

The previous two sections introduced and studied a new way of plotting
points in the x, y-plane. Using parametric equations, x and y values are com-
puted independently and then plotted together. This method allows us to graph
an extraordinary range of curves. This section introduces yet another way to plot
points in the plane: using polar coordinates.

Polar Coordinates

Start with a point O in the plane called the pole (we will always identify this
point with the origin). From the pole, draw a ray, called the initial ray (we will
always draw this ray horizontally, identifying it with the positive x-axis). A point
P in the plane is determined by the distance r that P is from O, and the an-
gle 0 formed between the initial ray and the segment OP (measured counter-
clockwise). We record the distance and angle as an ordered pair (r, §). To avoid
confusion with rectangular coordinates, we will denote polar coordinates with
the letter P, as in P(r, #). This is illustrated in Figure 9.4.1

Practice will make this process more clear.

Example 9.4.1 Plotting Polar Coordinates
Plot the following polar coordinates:

A=P(1,7/4) B=P(15 1) C=P(2,—n/3) D=P(—1,1/4)

SOLUTION To aid in the drawing, a polar grid is provided to the right.
To place the point A, go out 1 unit along the initial ray (putting you on the inner
circle shown on the grid), then rotate counter-clockwise 7 /4 radians (or 45°).
Alternately, one can consider the rotation first: think about the ray from O that
forms an angle of 7/4 with the initial ray, then move out 1 unit along this ray
(again placing you on the inner circle of the grid).

To plot B, go out 1.5 units along the initial ray and rotate 7 radians (180°).

To plot C, go out 2 units along the initial ray then rotate clockwise 7 /3 radi-
ans, as the angle given is negative.

To plot D, move along the initial ray “—1” units —in other words, “back up” 1
unit, then rotate counter-clockwise by 7 /4. The results are given in Figure 9.4.3.

Consider the following two points: A = P(1, ) and B = P(—1,0). To locate
A, go out 1 unit on the initial ray then rotate 7 radians; to locate B, go out —1
units on the initial ray and don’t rotate. One should see that A and B are located
at the same point in the plane. We can also consider C = P(1,3w), or D =
P(1, —); all four of these points share the same location.

This ability to identify a point in the plane with multiple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beautiful functions that intersect themselves (much like we saw with parametric
functions). The unfortunate part of this is that it can be difficult to determine
when this happens. We'll explore this more later in this section.

9.4 Introduction to Polar Coordinates

P =P(r,0)

0} initiral ray

Figure 9.4.1: |llustrating polar coordi-
nates.

Figure 9.4.2: A polar grid for Example
9.4.1

Figure 9.4.3: Plotting polar points in Ex-
ample 9.4.1.
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(

Y60

(0] X

Figure 9.4.4: Converting between rectan-
gular and polar coordinates.
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Polar to Rectangular Conversion

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 9.4.4 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P(r, ). Using
trigonometry, we can make the identities given in the following Key Idea.

Key Idea 9.4.1 Converting Between Rectangular and Polar
Coordinates

Given the polar point P(r, #), the rectangular coordinates are determined
by
x =rcosf y =rsinf.

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

rr=x+y tan0:;}:.

Example 9.4.2 Converting Between Polar and Rectangular Coordinates

1. Convert the polar coordinates P(2, 27w /3) and P(—1, 57 /4) to rectangular
coordinates.

2. Convert the rectangular coordinates (1,2) and (—1,1) to polar coordi-
nates.

SOLUTION
1. (a) We start with P(2,27/3). Using Key Idea 9.4.1, we have
x=2cos(2m/3) = —1  y=2sin(27/3) = /3.

So the rectangular coordinates are (—1,v/3) ~ (—1,1.732).
(b) The polar point P(—1,57/4) is converted to rectangular with:

x=—1cos(57/4) =v2/2  y=—1sin(57/4) =/2/2.

So the rectangular coordinates are (v/2/2,v/2/2) ~ (0.707,0.707).

These points are plotted in Figure 9.4.5 (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re-
lationship between the two can be seen.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equations:

2
124+22=0 tanG:I.

The first equation tells us that r = /5. Using the inverse tangent
function, we find

tanf=2 = 6H=tan" 12~ 1.11 ~ 63.43°.

Thus polar coordinates of (1,2) are P(1/5,1.11).



(b) To convert (—1, 1) to polar coordinates, we form the equations

1

(12 +12 =1 tanf = -

Thus r = /2. We need to be careful in computing 6: using the
inverse tangent function, we have

tanf=—-1 = O=tan '(-1) = —7/4=—45°

This is not the angle we desire. The range of tan~ ! xis (—7/2, 7/2);
that is, it returns angles that lie in the 1% and 4" quadrants. To
find locations in the 2" and 3™ quadrants, add = to the result of
tan~lx. So 7 + (—m/4) puts the angle at 37/4. Thus the polar
point is P(v/2,37/4).
An alternate method is to use the angle 6 given by arctangent, but
change the sign of r. Thus we could also refer to (—1,1) as
P(—\/2,—7/4).
These points are plotted in Figure 9.4.5 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used.

Polar Functions and Polar Graphs

Defining a new coordinate system allows us to create a new kind of func-
tion, a polar function. Rectangular coordinates lent themselves well to creating
functions that related x and y, such as y = x?. Polar coordinates allow us to cre-
ate functions that relate r and 6. Normally these functions look like r = f(6),
although we can create functions of the form 8 = f(r). The following examples
introduce us to this concept.

Example 9.4.3 Introduction to Graphing Polar Functions
Describe the graphs of the following polar functions.

1. r=15

2.0=mn/4
SOLUTION

1. The equation r = 1.5 describes all points that are 1.5 units from the pole;
as the angle is not specified, any @ is allowable. All points 1.5 units from
the pole describes a circle of radius 1.5.

We can consider the rectangular equivalent of this equation; using r* =
x% +y?, we see that 1.5%2 = x? + 2, which we recognize as the equation of
a circle centred at (0, 0) with radius 1.5. This is sketched in Figure 9.4.6.

2. The equation # = 7 /4 describes all points such that the line through them
and the pole make an angle of 7w /4 with the initial ray. As the radius ris not
specified, it can be any value (even negative). Thus 6 = 7/4 describes the
line through the pole that makes an angle of /4 = 45° with the initial
ray.

We can again consider the rectangular equivalent of this equation. Com-
binetanf =y/xand § = 7/4:

tanw/4=y/x =xtanm/d=y =y=x

9.4 Introduction to Polar Coordinates

P(z,?
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Figure 9.4.5: Plotting rectangular and po-
mple 9.4.2.

lar points in Exa

Figure 9.4.6:
plots.

Plotting standard polar
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0 r=1+cosf

0 2
/6 1.86603
/2 1
4r/3 0.5

7w /4 1.70711

Figure 9.4.8: Graphing a polar function in Example
9.4.4 by plotting points.

Figure 9.4.9: Using technology to graph a polar
function.
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The basic rectangular equations of the form x = h and y = k create vertical
and horizontal lines, respectively; the basic polar equationsr = hand 0 = «
create circles and lines through the pole, respectively. With this as a foundation,
we can create more complicated polar functions of the form r = f(6). The input
is an angle; the output is a length, how far in the direction of the angle to go out.

We sketch these functions much like we sketch rectangular and parametric
functions: we plot lots of points and “connect the dots” with curves. We demon-
strate this in the following example.

Example 9.4.4 Sketching Polar Functions
Sketch the polar function r = 1 + cos 6 on [0, 27] by plotting points.

SOLUTION A common question when sketching curves by plotting points
is “Which points should | plot?” With rectangular equations, we often choose
“easy” values — integers, then add more if needed. When plotting polar equa-
tions, start with the “common” angles — multiples of 7/6 and 7 /4. Figure 9.4.8
gives a table of just a few values of § in [0, 7].

Consider the point P(0, 2) determined by the first line of the table. The angle
is 0 radians — we do not rotate from the initial ray — then we go out 2 units from
the pole. When 6 = 7/6, r = 1.866 (actually, it is 1 + 1/3/2); so rotate by 7/6
radians and go out 1.866 units.

The graph shown uses more points, connected with straight lines. (The points
on the graph that correspond to points in the table are signified with larger dots.)
Such a sketch is likely good enough to give one an idea of what the graph looks
like.

Technology Note: Plotting functions in this way can be tedious, just as it was
with rectangular functions. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar functions; in the menu, set the
plotting mode to something like polar or POL, depending on one’s calculator. As
with plotting parametric functions, the viewing “window” no longer determines
the x-values that are plotted, so additional information needs to be provided.
Often with the “window” settings are the settings for the beginning and ending
6 values (often called 03, and Onay) as well as the fg¢ep — that is, how far apart
the 6 values are spaced. The smaller the 0., value, the more accurate the
graph (which also increases plotting time). Using technology, we graphed the
polar function r = 1 + cos # from Example 9.4.4 in Figure 9.4.9.

Example 9.4.5 Sketching Polar Functions
Sketch the polar function r = cos(26) on [0, 27] by plotting points.

SOLUTION We start by making a table of cos(26) evaluated at common
angles 0, as shown in Figure 9.4.7. These points are then plotted in Figure 9.4.10
(a). This particular graph “moves” around quite a bit and one can easily forget
which points should be connected to each other. To help us with this, we num-
bered each point in the table and on the graph.



Pt. 6  cos(20) Pt. 0 cos(20)
1 0 1. 10 77/6 0.5

2 w/6 05 11 57/4 0.
3 w/4a 0. 12 47/3 05
4 7/3 —05 13 37/2 -1
5 1/2 -1 14 57/3 —05
6 27/3 —05 15 77/4 0.
7 37/4 0. 16 117/6 05
8 57/6 0.5 17 2w 1.

9 T 1.

Figure 9.4.9: Tables of points for plotting a polar curve.

Using more points (and the aid of technology) a smoother plot can be made as
shown in Figure 9.4.10 (b). This plot is an example of a rose curve.

It is sometimes desirable to refer to a graph via a polar equation, and other
times by a rectangular equation. Therefore it is necessary to be able to convert
between polar and rectangular functions, which we practice in the following ex-
ample. We will make frequent use of the identities found in Key Idea 9.4.1.

Example 9.4.6 Converting between rectangular and polar equations.
Convert from rectangular to polar. Convert from polar to rectangular.
2 2
Ly=x 30.r=—+-—-
sinf — cos @
2. xy=1
4. r=2cosb
SOLUTION

1. Replace y with rsin 8 and replace x with rcos 8, giving:
y=x"

rsin® = r’> cos® §

sin ,

cos2f
We have found that r = sin/ cos? § = tan @ secf. The domain of this
polar function is (—m/2,7/2); plot a few points to see how the familiar
parabola is traced out by the polar equation.

2. We again replace x and y using the standard identities and work to solve

forr:
xy=1
rcosf-rsinf =1
2 _ 1
cosfsind
o 1
v/cos fsinf

This function is valid only when the product of cos # sin 8 is positive. This
occurs in the first and third quadrants, meaning the domain of this polar
function is (0, 7/2) U (,37/2).

9.4 Introduction to Polar Coordinates

Figure 9.4.10: Polar plots from Example
9.4.5.

—5H

Figure 9.4.11: Graphing xy = 1 from Ex-
ample 9.4.6.

431



Chapter 9 Curves in the Plane

432

We can rewrite the original rectangular equation xy = 1 asy = 1/x. This
is graphed in Figure 9.4.11; note how it only exists in the first and third
quadrants.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products rcos # and rsin 8, and then replace these with
x and y, respectively. We start in this problem by multiplying both sides
by sin 8 — cos 6:

;e 2
~ sinf — cosf
r(sinf — cosf) =2

rsinf —rcosf = 2. Now replace with y and x:
y—x=2
y=x+2.

The original polar equation, r = 2/(sin 6 — cos #) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equations of lines
in polar form.

4. By multiplying both sides by r, we obtain both an r? term and an rcos 6
term, which we replace with x? + y? and x, respectively.

r=2cosf
r? = 2rcos 6
X%+ y? = 2x.

We recognize this as a circle; by completing the square we can find its
radius and center.

X —2+y*=0
(x—12+y* =1

The circle is centered at (1,0) and has radius 1. The upcoming gallery
of polar curves gives the equations of some circles in polar form; circles
with arbitrary centers have a complicated polar equation that we do not
consider here.

Some curves have very simple polar equations but rather complicated rect-
angular ones. For instance, the equation r = 1 + cos 6 describes a cardioid (a
shape important to the sensitivity of microphones, among other things; one is
graphed in the gallery in the Limagon section). It’s rectangular form is not nearly
as simple; it is the implicit equation x* + y* + 2x%y? — 2xy?* — 23 — y? = 0. The
conversion is not “hard,” but takes several steps, and is left as a problem in the
Exercise section.



Gallery of Polar Curves

There are a number of basic and “classic” polar curves, famous for their
beauty and/or applicability to the sciences. This section ends with a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to investigate with technology other types of polar func-

tions.

9.4

Introduction to Polar Coordinates

Lines

Through the origin: Horizontal line: Vertical line: Not through origin:
b

0=a r=acsct r=asect =
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r=acost
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r=asinf
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Limagons
Symmetric about x-axis: r = a £ bcosf; Symmetric about y-axis: r=a £ bsinf; a,b>0

With inner loop: Cardioid:

Dimpled: Convex:
71 g1 1<2 <2 752
b b b b

A D N [
_/ _/ _/\

Rose Curves

Symmetric about x-axis: r = acos(nfl); Symmetric about y-axis: r = asin(nf)
Curve contains 2n petals when n is even and n petals when n is odd.

r = acos(26) r=asin(20) r = acos(36) r=asin(360)
Special Curves
Rose curves Lemniscate: Eight Curve:

r=asin(0/5) r=asin(20/5) r? = a? cos(20) r? = a*sec® 0 cos(20)
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Earlier we discussed how each point in the plane does not have a unique
representation in polar form. This can be a “good” thing, as it allows for the
beautiful and interesting curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 9.4.7 Finding points of intersection with polar curves
Determine where the graphs of the polar equationsr = 143 cos f and r = cos 6
intersect.

SOLUTION As technology is generally readily available, it is usually a
good idea to start with a graph. We have graphed the two functions in Figure
9.4.12(a); to better discern the intersection points, part (b) of the figure zooms
in around the origin. We start by setting the two functions equal to each other
and solving for 6:

1+ 3cosf =cosf

2cosf =—1
1
cosf = ——
2

2 4w

0=—,—.

3 3
(There are, of course, infinite solutions to the equation cos§ = —1/2; as the

limagon is traced out once on [0, 27], we restrict our solutions to this interval.)

We need to analyze this solution. When § = 27/3 we obtain the point of
intersection that lies in the 4" quadrant. When 6 = 47 /3, we get the point of
intersection that lies in the 2" quadrant. There is more to say about this second
intersection point, however. The circle defined by r = cos fis traced out once on
[0, 7], meaning that this point of intersection occurs while tracing out the circle
a second time. It seems strange to pass by the point once and then recognize
it as a point of intersection only when arriving there a “second time.” The first
time the circle arrives at this point is when § = 7 /3. It is key to understand that
these two points are the same: (cos 7/3, 7/3) and (cos 47 /3,47 /3).

To summarize what we have done so far, we have found two points of in-
tersection: when @ = 27/3 and when 6 = 47 /3. When referencing the circle
r = cos 6, the latter point is better referenced as when 6 = 7/3.

There is yet another point of intersection: the pole (or, the origin). We did
not recognize this intersection point using our work above as each graph arrives
at the pole at a different 6 value.

A graph intersects the pole when r = 0. Considering the circle r = cos¥f,
r = 0 when # = 7/2 (and odd multiples thereof, as the circle is repeatedly
traced). The limagon intersects the pole when 1 + 3 cos 6§ = 0; this occurs when
cosf) = —1/3, or for § = cos~!(—1/3). This is a nonstandard angle, approxi-
mately = 1.9106 = 109.47°. The limagon intersects the pole twice in [0, 27];
the other angle at which the limagon is at the pole is the reflection of the first
angle across the x-axis. That is, § = 4.3726 = 250.53°.

If all one is concerned with is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what 6 value. Likewise, using § = 27w /3 and 0 = 47/3
can give us the needed rectangular coordinates. However, in the next section
we apply calculus concepts to polar functions. When computing the area of a
region bounded by polar curves, understanding the nuances of the points of
intersection becomes important.

9.4 Introduction to Polar Coordinates

y

s
N

(a)

y

X
X

/
¢

N

(b)
Figure 9.4.12: Graphs to help determine

the points of intersection of the polar
functions given in Example 9.4.7.
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Exercises 9.4

Terms and Concepts

1. In your own words, describe how to plot the polar point
P(r,0).

2. T/F: When plotting a point with polar coordinate P(r, 8), r
must be positive.

3. T/F: Every point in the Cartesian plane can be represented
by a polar coordinate.

4. T/F: Every point in the Cartesian plane can be represented
uniquely by a polar coordinate.
Problems

5. Plot the points with the given polar coordinates.

(a) A=P(2,0)
(b) B=P(1,7)

(c) C=P(=2,7/2)
(d) D=P(1,7/4)
6. Plot the points with the given polar coordinates.
(a) A=P(2,3n) (c) c=P(1,2)
D=

(b) B =P(1,—7) (d) P(1/2,57/6)

7. For each of the given points give two sets of polar coordi-
nates that identify it, where 0 < 6 < 27.

8. For each of the given points give two sets of polar coordi-
nates that identify it, where —7r < 6 < 7.

9. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(@) A=P(2,7/4) (c)
(b) B=P(2,—7/4)

10. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to

polar.
(a) A=P(3,7) (c) €=1(0,4)
(b) B =P(1,27/3) (d) D= (1,-V3)

In Exercises 11 — 30, graph the polar function on the given
interval.

11. r=2, 0<6<7/2
12. 6=m7/6, —1<r<2
13. r=1—cosf, [0,2n]
14. r=2+sin6, [0,27]
15. r=2—sin6, [0,27]
16. r=1—2sin6, [0,2n]
17. r=1+42sin6, [0,2n]
18. r = cos(20), [0, 27|
19. r=sin(36), [0, 7]

20. r =cos(0/3), [0,3m]
21. r=cos(26/3), |[0,6m]
22. r=40/2, [0,4n]

23. r=3sin(6), [0,7]

24. r=2cos(8), [0,7/2]
25. r=cosfsinf, [0,2n]

26. r=0*—(7/2)%, [-m, 7]
3
27. r= — 2
"= Ssinf —cosd’ [0, 27]
-2
8. r=-— 0,2
"= 3cosh — 2sind [0, 27]
29. r=3sech, (—7/2,7/2)
30. r=3csch, (0,m)

In Exercises 31 — 40, convert the polar equation to a rectan-
gular equation.

31. r==6cosf

32. r= —4sinf



33.

34.

35.

36.

37.

38.

39.

40.

r=cosf +sinf
7
f=—
5sinf — 2 cosf
re 3
" cosé
,_ 4
Y
r=tand
r=cotf
r=2
0=m/6

In Exercises 41 — 48, convert the rectangular equation to a
polar equation.

41.

42.

43.

44,

45.

46.

y=x
y=4x+7
x=25
y=5
x=y
xzy—l

47. * +y* =7

48.

x+1)° 4y =1

In Exercises 49 — 56, find the points of intersection of the po-

lar graphs.

49. r =sin(20) and r = cos 6 on [0, 7]

50. r = cos(26) and r = cosf on [0, ]

51. r=2cosfandr = 2sinfon [0, 7]

52. r=sinfandr = +/3 4 3sinf on [0, 27]

53. r =sin(36) and r = cos(36) on [0, 7]

54. r=3cosfandr =1+ cosfon[—7, 7]

55. r=1andr = 2sin(260) on [0, 27]

56. r=1—cosfandr=1+sinfon [0, 2n]

57. Pick a integer value for n, where n # 2, 3, and use technol-
ogy to plot r = sin (%9) for three different integer values
of m. Sketch these and determine a minimal interval on
which the entire graph is shown.

58. Create your own polar function, r = f(6) and sketch it. De-

scribe why the graph looks as it does.
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9.5 Calculus and Polar Functions

The previous section defined polar coordinates, leading to polar functions. We
investigated plotting these functions and solving a fundamental question about
their graphs, namely, where do two polar graphs intersect?

We now turn our attention to answering other questions, whose solutions
require the use of calculus. A basis for much of what is done in this section is
the ability to turn a polar function r = f(0) into a set of parametric equations.
Using the identities x = rcos# and y = rsin#, we can create the parametric
equations x = f(#) cos 0, y = f(0) sin 6 and apply the concepts of Section 9.3.

Polar Functions and ﬂ
dx
We are interested in the lines tangent to a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equations. In each
of these contexts, the slope of the tangent line is %. Given r = f(f), we are
generally not concerned with r’ = f'(0); that describes how fast r changes with
respect to . Instead, we will use x = f(0) cos 8, y = f(6) sin 6 to compute %.
Using Key Idea 9.3.1 we have

dy dy ;dx

dx do/ db’

Each of the two derivatives on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

Key Idea 9.5.1 Finding % with Polar Functions
Let r = f(0) be a polar function. With x = f(#) cos § and y = f(6) sin 6,

dy  f'(6)sin0+f(6)cosd
dx  f'(f)cosO —f(0)sinf

Example 9.5.1 Finding % with polar functions.
Consider the limagon r = 1 + 2sinf on [0, 27].

1. Find the equations of the tangent and normal lines to the graph at 6 =
/4.

2. Find where the graph has vertical and horizontal tangent lines.

SOLUTION

1. We start by computing %. With f/(6) = 2 cos 6, we have

dy 2cosfsinf + cosf(1+ 2sin6)
dx 2cos?f —sinf(1 + 2sin6)
B cosf(4sinf + 1)
2(cos?f —sin* @) —sinf’

When 6 = /4, % = —24/2 — 1 (this requires a bit of simplification).

In rectangular coordinates, the point on the graph at 6 = 7/4is (1 +



v2/2,1 4 /2/2). Thus the rectangular equation of the line tangent to
the limagon at § = 7/4is

y=(-2v2—-1)(x— (1+V2/2)) + 1+ v2/2 ~ —3.83x + 8.24.

The limagon and the tangent line are graphed in Figure 9.5.1.

The normal line has the opposite—reciprocal slope as the tangent line, so
its equation is

1
~ > x+1.26.
Y™ 33t

. To find the horizontal lines of tangency, we find where % = 0; thus we

find where the numerator of our equation for % is 0.
cosf(4sinf+1)=0 = cosf@=0 or 4sinf+1=0.

On [0, 27], cos§ = 0 when 0 = /2, 37/2.

Setting 4sinf + 1 = 0 gives § = sin"!(—1/4) ~ —0.2527 = —14.48°.
We want the results in [0, 27]; we also recognize there are two solutions,
one in the 3" quadrant and one in the 4. Using reference angles, we
have our two solutions as # = 3.39 and 6.03 radians. The four points we
obtained where the limagon has a horizontal tangent line are given in Fig-
ure 9.5.1 with black—filled dots.

To find the vertical lines of tangency, we set the denominator of % =

2(cos? § — sin* @) —sinf = 0.
Convert the cos? 0 term to 1 — sin? 6:

2(1 —sin*f —sin*#) —sinf =0
4sin?f +sinf —2 =0.

Recognize this as a quadratic in the variable sin 6. Using the quadratic
formula, we have

, —1+/33
sin = ———.
8
We solve sin§ = %\/ﬁ and sinf = A—T\/ﬁ:
ng_ —L1TV33 133
sin = —— sinf = ————
8 8
so—1 _1"‘\/% ! _1_\/5
0 = sin _ 0 = sin I St
8 8
0 = 0.6349 6 = —1.0030

In each of the solutions above, we only get one of the possible two so-
lutions as sin~* x only returns solutions in [—7/2,7/2], the 4™ and 1%
guadrants. Again using reference angles, we have:

—1++33
8

sinf = 0 = 0.6349, 2.5067 radians

9.5 Calculus and Polar Functions

/2

Figure 9.5.1: The limagon in Example
9.5.1 with its tangent line at = 7/4 and
points of vertical and horizontal tangency.
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w/2
0.5 |
~ : 1 0
T—ts— | ~—os— 1
—0.5

Figure 9.5.2: Graphing the tangent lines
at the pole in Example 9.5.2.

Note: Recall that the area of a sector of a
circle with radius r subtended by an angle
OisA = 16r.
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and

-1-+/33
8

sinf = 0 = 4.1446, 5.2802 radians.

These points are also shown in Figure 9.5.1 with white—filled dots.

When the graph of the polar function r = f(0) intersects the pole, it means
that f(a) = 0 for some angle «. Thus the formula for % in such instances is very
simple, reducing simply to

dy

— =tana.
dx

This equation makes an interesting point. It tells us the slope of the tangent
line at the pole is tan «;; some of our previous work (see, for instance, Example
9.4.3) shows us that the line through the pole with slope tan « has polar equa-
tion # = «. Thus when a polar graph touches the pole at # = «, the equation
of the tangent line at the pole is 8 = a.

Example 9.5.2 Finding tangent lines at the pole.
Letr = 1 + 2sin#, a limagon. Find the equations of the lines tangent to the
graph at the pole.

SOLUTION We need to know when r = 0.
1+2sin6=0
sinf = —1/2
g 77 1T
6 6

Thus the equations of the tangent lines, in polar, are § = 77 /6 and § = 117/6.
In rectangular form, the tangentlinesarey = tan(77/6)xand y = tan(117/6)x.
The full limagon can be seen in Figure 9.5.1; we zoom in on the tangent lines in
Figure 9.5.2.

Area

When using rectangular coordinates, the equations x = hand y = k defined
vertical and horizontal lines, respectively, and combinations of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equations 8 = « and r = ¢ form lines
through the origin and circles centred at the origin, respectively, and combi-
nations of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar functions by first approximating
with sectors of circles.

Consider Figure 9.5.3 (a) where a region defined by r = f(6) on [, /3] is given.
(Note how the “sides” of the region are the lines § = « and § = 3, whereas in
rectangular coordinates the “sides” of regions were often the vertical linesx = a
andx = b.)

Partition the interval [a, (] into n equally spaced subintervals as o = 6; <
6, < -+ < Op41 = B. The length of each subinterval is A0 = (8 — «)/n,
representing a small change in angle. The area of the region defined by the it"
subinterval [0;, ;1] can be approximated with a sector of a circle with radius



f(ci), for some ¢; in [0}, 0;11]. The area of this sector is %f(c,)zAQ. This is shown
in part (b) of the figure, where [«, /3] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

1
Area ~ Z Ef(c,—)ZAH.
i=1

This is a Riemann sum. By taking the limit of the sum as n — oo, we find the
exact area of the region in the form of a definite integral.

Theorem 9.5.1 Area of a Polar Region

Let f be continuous and non-negative on [, 3], where 0 < 8 — o < 27.
The area A of the region bounded by the curve r = f(6) and the lines
0 =caandf =gjis

A= 1/3f(9)2d9 = 1/3r2d9
72 « 72-&

The theorem states that 0 < § — « < 2. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 9.5.3 Area of a polar region
Find the area of the circle defined by r = cos 6. (Recall this circle has radius 1/2.)

SOLUTION This is a direct application of Theorem 9.5.1. The circle is
traced out on [0, 7], leading to the integral

1 vy
Area = f/ cos? 6 do
2 Jo

1 /™1
:7/ + cos(26) 40
2 J, 2

™

= %(9 + %sin(ZG))

0

[Eny

= —T.

Sy

Of course, we already knew the area of a circle with radius 1/2. We did this ex-
ample to demonstrate that the area formula is correct.
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/2
1 -4
r=f(0)
Q. ’
Il X .
% ’ e
’ ,’
0.5 + 4
& //’ /”’
-
/ ,’/ s
-
,/,/ _- :
o s g =
’,’/’/
t t 0
0.5 1

(b)

Figure 9.5.3: Computing the area of a po-
lar region.

Note: Example 9.5.3 requires the use of
the integral /cos2 0 df. This is handled

well by using the power reducing formula
as found at the end of this text. Due to
the nature of the area formula, integrat-
ing cos*# and sin’ @ is required often.
We offer here these indefinite integrals
as a time—saving measure.

/cos2 0do = %0 + % sin(20) + C

2 1,1
/sm 0do = 20 4sm(20)+C
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/2

Figure 9.5.4: Finding the area of the
shaded region of a cardiod in Example
9.5.4.

/2
rn = fi(0) 2 = fa(6)

0.5 +

ped

Vi

]
N\

0.5 1

Figure 9.5.5: lllustrating area bound be-
tween two polar curves.

Figure 9.5.6: Finding the area between
polar curves in Example 9.5.5.
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Example 9.5.4 Area of a polar region

Find the area of the cardioid r = 14-cos f bound between § = w/6and § = 7/3,

as shown in Figure 9.5.4.

SOLUTION

1 m/3
Area = = / (14 cos 6)* df
/6

2 /6

1 . 1 1
=5 <0+25|n9+20+4sm(29))

%(n +4+/3 — 4) ~ 0.7587.

Area Between Curves

1 /3
= / (1 + 2cos @ + cos® 0) d

This is again a direct application of Theorem 9.5.1.

/3

/6

Our study of area in the context of rectangular functions led naturally to
finding area bounded between curves. We consider the same in the context of

polar functions.

Consider the shaded region shown in Figure 9.5.5. We can find the area of
this region by computing the area bounded by r, = f,(6) and subtracting the

area bounded by r; = f1(6) on [, 8]. Thus

1 B L /B 1 B
Area:f/ rzzdﬁ—f/ rlsz:f/ (
2 Ja 2 Ja 2 Ja

r; —r{) do.

Key Idea 9.5.2 Area Between Polar Curves

and 6 = 3, where f1(0) < f2(6) on [a, 3], is

The area A of the region bounded by r; = fi(f) and r, = £,(0), 0 = «

Example 9.5.5 Area between polar curves

Find the area bounded between the curvesr = 1 + cosf and r = 3cos ¥, as

shown in Figure 9.5.6.
SOLUTION
1+ cosf =3cosf

cosf =1/2
0=+7/3

We need to find the points of intersection between these
two functions. Setting them equal to each other, we find:



Thus we integrate 1 ((3 cos 6)? — (1 + cos #)?) on [—7/3,7/3].

1 m/3
Area = f/ ((3cos6)* — (1 + cos6)®) df
—7/3

1 /3
:f/ (8cos> —2cosf — 1) df
2
—m/3
1 w/3
= 5(2 sin(20) — 2sin 6 + 36)
—7/3

= T.
Amazingly enough, the area between these curves has a “nice” value.

Example 9.5.6 Area defined by polar curves
Find the area bounded between the polar curves r = 1 and r = 2 cos(26), as
shown in Figure 9.5.7 (a).

SOLUTION We need to find the point of intersection between the two
curves. Setting the two functions equal to each other, we have

2cos(20) =1 = cos(20):% = 20=7/3 = 60=mn/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
# = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1,6 = 0 and § = 7/6. (Note:
the dashed line lies on the line = 7/6.) Above the dashed line the region is
bounded by r = 2 cos(26) and § = 7/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A; and the area above the dashed line
A,. They are determined by the following integrals:

1 [7/6 1 [7/4 2
A = ,/ (1)2d9 A, = 7/ (2cos(26))" dé.
0 2 /6

(The upper bound of the integral computing A, is 7/4 as r = 2 cos(26) is at the
pole when 6 = 7/4.)

We omit the integration details and let the reader verify that A; = /12 and
A, = /12 — /3/8; the total areais A = /6 — \/3/8.

Arc Length

As we have already considered the arc length of curves defined by rectangu-
lar and parametric equations, we now consider it in the context of polar equa-
tions. Recall that the arc length L of the graph defined by the parametric equa-
tions x = f(t),y = g(t) on [a, b] is

b b
L= / f(t)? +g’'(t)2 dt = / x'(t)2 + y'(t)2 dt. (9.1)

Now consider the polar function r = f(6). We again use the identities x =
f(0) cos 8 and y = f(0) sin 0 to create parametric equations based on the polar
function. We compute x’(6) and y’ () as done before when computing %, then
apply Equation (9.1).

9.5 Calculus and Polar Functions

w/2

/2

0.5 +

05 1
(b)

Figure 9.5.7:  Graphing the region
bounded by the functions in Example
9.5.6.
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/2

0

-2 -1 1 2

Figure 9.5.8: The limagon in Example
9.5.7 whose arc length is measured.
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The expression x’(0)% + y’(6)? can be simplified a great deal; we leave this
as an exercise and state that

X' (0)* +y'(0)* =£'(0)* +£(0)".

This leads us to the arc length formula.

Theorem 9.5.2 Arc Length of Polar Curves

Let r = f(0) be a polar function with f’ continuous on [«, 3], on which
the graph traces itself only once. The arc length L of the graph on [, ]

is
B B
L= [ FERTRoRds = [ e .
Example 9.5.7 Arc length of a limagon

Find the arc length of the limagon r = 1 + 2sint.

SOLUTION With r = 1 + 2sint, we have r’ = 2cost. The limagon is
traced out once on [0, 27, giving us our bounds of integration. Applying Theo-
rem 9.5.2, we have

27
L= V/(2cos0)2 + (1 + 2sin0)2 do
0

2T
= V4cos2 0+ 4sin20 + 4sinf +1d0
0

2T
= V4sinf + 5 db

0
~ 13.3649.

The final integral cannot be solved in terms of elementary functions, so we re-
sorted to a numerical approximation. (Simpson’s Rule, with n = 4, approximates

the value with 13.0608. Using n = 22 gives the value above, which is accurate
to 4 places after the decimal.)



Surface Area

The formula for arc length leads us to a formula for surface area. The follow-
ing Theorem is based on Theorem 9.3.2.

Theorem 9.5.3 Surface Area of a Solid of Revolution

Consider the graph of the polar equation r = (), where f’ is continuous
on [a, ], on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the initial ray (# = 0) is:

8

Surface Area = 27 [ f(0) sin0+/f'(0)% + f(6)? do.

2. The surface area of the solid formed by revolving the graph about
theline @ = w/2is:

8
Surface Area = 277/ f(0) cos B+/f'(6)? + f(0)? d6.

Example 9.5.8 Surface area determined by a polar curve
Find the surface area formed by revolving one petal of the rose curve r = cos(26)
about its central axis (see Figure 9.5.9).

SOLUTION We choose, as implied by the figure, to revolve the portion
of the curve that lies on [0, 7/4] about the initial ray. Using Theorem 9.5.3 and
the fact that f'(0) = —2sin(26), we have

/4
Surface Area = 27r/ cos(26) sin(9)\/( - 25in(29))2 + (cos(29))2 do
0
~ 1.36707.

The integral is another that cannot be evaluated in terms of elementary func-
tions. Simpson’s Rule, with n = 4, approximates the value at 1.36751.

This chapter has been about curves in the plane. While there is great math-
ematics to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathematics in 3D —
thatis, in space. The next chapter begins our exploration into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathematical
objects.

9.5 Calculus and Polar Functions

/2

(a)

Figure 9.5.9: Finding the surface area of a
rose—curve petal that is revolved around
its central axis.
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Exercises 9.5

Terms and Concepts

1. Given polar equation r = f(6), how can one create para-
metric equations of the same curve?

2. With rectangular coordinates, it is natural to approximate
area with ; with polar coordinates, it is natural to
approximate area with

Problems

In Exercises 3 — 10, find:

@ &

(b) the equation of the tangent and normal lines to the
curve at the indicated /—value.

3.r=1; 0=r/4
4. r=cos; 0=m7/4
5. r=1+sin; 0=mn/6

6. r=1—3cos; 0=37/4

7.r=0, 6=m/2
8. r=cos(30); 0=m7/6
9. r=sin(40); 0=x/3
1
0. r=—"——; 6=
"= Sinf— cos’ i

In Exercises 11 — 14, find the values of 0 in the given inter-
val where the graph of the polar function has horizontal and
vertical tangent lines.

11. r=3; [0,2n]

12. r=2sin6; [0, 7]

13. r = cos(26); [0, 2]
14. r=1+4cos6; [0,27]

In Exercises 15 — 16, find the equation of the lines tangent to
the graph at the pole.

15. r=sin6; [0, 7]

16. r =sin(30); [0, ]

In Exercises 17 — 28, find the area of the described region.

17. Enclosed by the circle: r = 4sin 6
18. Enclosed by the circler =5
19. Enclosed by one petal of r = sin(36)

20. Enclosed by one petal of the rose curve r = cos(n 6), where
nis a positive integer.

21. Enclosed by the cardioid r = 1 — sin 8
22. Enclosed by the inner loop of the limagon r = 1 4 2 cos ¢

23. Enclosed by the outer loop of the limagonr = 1 + 2 cos 6
(including area enclosed by the inner loop)

24. Enclosed between the inner and outer loop of the limagon
r=1+42cosf

25. Enclosed by r = 2 cos 6 and r = 2sin 8, as shown:

<

26. Enclosed by r = cos(36) and r = sin(36), as shown:

y

27. Enclosed by r = cos # and r = sin(26), as shown:

y

14

N




28.

Enclosed by r = cosf# and r = 1 — cos 6, as shown:

In Exercises 29 — 34, answer the questions involving arc
length.

29.

30.

31.

32.

33.

Use the arc length formula to compute the arc length of the
circler = 2.

Use the arc length formula to compute the arc length of the
circler = 4sin 6.

Use the arc length formula to compute the arc length of
r=cosf + sin 6.

Use the arc length formula to compute the arc length of the
cardioid r = 1 + cos 6. (Hint: apply the formula, simplify,
then use a Power—Reducing Formula to convert 1 + cos 6
into a square.)

Approximate the arc length of one petal of the rose curve
r = sin(36) with Simpson’s Rule and n = 4.

34.

Let x(0) = £(0) cos 0 and y(0) = f(6) sin 6. Show, as sug-
gested by the text, that

X/(9)2 +y1(0)2 :f/(e)z +f(9)2

In Exercises 35 — 40, answer the questions involving surface
area.

35.

36.

37.

38.

39.

40.

Find the surface area of the sphere formed by revolving the
circle r = 2 about the initial ray.

Find the surface area of the sphere formed by revolving the
circle r = 2 cos 6 about the initial ray.

Find the surface area of the solid formed by revolving the
cardioid r = 1 + cos # about the initial ray.

Find the surface area of the solid formed by revolving the
circle r = 2 cos § about the line = 7/2.

Find the surface area of the solid formed by revolving the
line r = 3secd, —w/4 < 6 < 7/4, about the line
0=m/2.

Find the surface area of the solid formed by revolving the
liner = 3secf, 0 < 6 < /4, about the initial ray.
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A: SOLUTIONS TO SELECTED PROBLEMS

Chapter 6

Section 6.1

11.
13.

15.

17.

19.

21.
23.
25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49.

51.

. Chain Rule.

10,3 8
s(¢ =52 +cC

L2+’

Linjax+ 7|+ ¢
(x+3)3/2—6(x+3)Y/24Cc=2(x—6)VxF+3+C

2eV¥ 4 C

win N

-1 _1l.c

2x2 X
sin® (x)
——- +C
—Isin(3—6x)+C
1
5 In|sec(2x) 4 tan(2x)| + C

L2
SIH(ZX)+C

The key is to rewrite cot x as cos x/ sinx, and let u = sinx.

lex—1c
%e("_nz +C
In(e¥+1)+C
2o +C

% Inz(x) +C
3(nx)?+¢

2
L 4+3x+In|x|+C

)

p®

2
— % +x—2In|x+1/+C

NIw

x> —8x+15In|x+ 1| +C

V7tan—t (%) +C

14sin—?! (ﬁ)

+C
5 _
2sec™(|x|/4) +C

53. ——F5—

55.
57.
59.

61.

63.

65.

67.

69.

71.

%+In|x2+3x+5|—5x+c

3In |3 + 9%+ 7|+ C

1an—1 (2

55 tan (%)-ﬁ-c

sec”!(|2x]) + C

3in|x® —2x+ 10|+ tant (51) + C

)
41tan’1(E

15 2 V7
Bin|x —10x+32}+x+#7+C

73.

75.
77.
79.
81.
83.
85.

2 430 | 4 4x+ 9| — 4x + % +c
tan~1(sin(x)) + C

3vVXE —2x—6+C

—In2

2/3

(1—e)/2

/2

Section 6.2

1.
3.

11.
13.
15.
17.
19.

21.

23.

25.
27.
29.
31.
33.
35.
37.

39.
41.
43,
45,
47.

49,

. =X

. 1/2¢¢ 4 ¢

T

Determining which functions in the integrand to set equal to “u”

and which to set equal to “dv”.

. sinx —xcosx+ C

2 cosx + 2xsinx + 2 cosx + C

—2x
_1,,—2x _ e
3Xe 7 +C

1/5e¥(sinx + 2 cosx) + C
1/10e>(sin(5x) + cos(5x)) + C
V1—x2+xsin"1(x)+C
Ixtan~1(x) — £+ 2tan~1(x) + C
2x%In |x| f%JrC

2
L+ Inx—1—%—-3mix—1/+C

3 In|x — g +C
(x+1)(n(x+1))2—2(x+1)In(x+1)+2(x+1)+C
In|sin(x)] — xcot(x) + C

1 —2)¥2+¢c

xsecx — In|secx + tanx| + C

1/2x('sin(Inx) — cos(Inx)) + €

2sin (v/x) — 2¢/xcos (vx) + C

2/xeV* —2eV¥ 4 ¢

™

0

1/2

3 _ 5
4e2 4

1/5(e™ +e™")

Section 6.3

11.

13.

uow e

F
F
—Lcos®(x) +C

%cossx— %cos3x+C

[,

1 onlly 209 1.7
71 Sin"x — §sin" x 4 2 sin x+C

- 3% sin(4x) + C

Nl 00X

(—3 cos(8x) — 1 cos(2x)) + €



19. —=

21.

23.

25.

27.

29.
31.
33.
35.

tan® (x) tan* (x)

g Tz TC
sec® (x) sec3 (x)

s — -3 tC
tan3x —tanx +x + C

(secxtanx — In|secx + tanx|) + C

vuiIN Nk Wik

32/315
2/3
16/15

Section 6.4

~

11.

13.

15.

17.
19.
21.

23.

25.

27.
29.
31.

. backwards

(a) tan?6 + 1 = sec? 6
(b) 9sec? .

% ()(\/x2 +1+4In|vx2+ 1+x|) +C
% (sin*1x+xx/1 fx2> +C

. %X\/xz—l—%ln|x+\/x2—l\+c

/X +1/4+ 1Inj2/x +1/4+2x +C=
I8 + 1+ ZIn|Vax +1+4 2 +C

4 (%x\/xz —1/16— L Injax +4y/X — 1/16|) tc=
Ixv/16x2 —1— %in|ax+V16x2 — 1| + C

3sin— ! (\Lﬁ) + C (Trig. Subst. is not needed)

Vx2 — 11 —+/11sec(x/V/11) + C

V/x2 — 3 + C(Trig. Subst. is not needed)

——L _ 4 C (Trig. Subst. is not needed)
X249

1 x2 1 a1 (x2
18 ¥raxtis T 54 tan () +c

i (_ R —sin*l(x/\/g)) +C

/2
2v242In(1 +2)

9sin~1(1/3) + v/8 Note: the new lower bound is

0 = sin—1(—1/3) and the new upper bound is § = sin=1(1/3).

The final answer comes with recognizing that
sin~1(—=1/3) = —sin~1(1/3) and that
cos (sin=1(1/3)) = cos (sin"1(—1/3)) = v/8/3.

Section 6.5

11.

A.2

rational

Ay B
x+x—3

A 8
Py R

3In|x—2|+4In|x+5|+C
Tnlx+2/—Injx=2])+C

Injx+5]— 25 +C

15.

17.

19.

21.

23.

25.

27.
29.

x+1

. 2+ 7In|x] +2In|x+ 1]+ C

—in[sx—1/4+ 2In[3x— 1|+ 2In|7x+ 3| +C

%+x+125 In|x75|+%4ln|x+4|f%+c

9

%(7 In|x2 + 2x+ 3| + 2In|x| — 2 tan"? (%)) e
In|3x +5x — 1| + 2In|x+ 1|+ C
2in|x® 49+ tinlx+1] — s tan~t (%) +C

3(In|x® —2x+ 11| +1
In(2000/243) = 2.108

nix—9[)+3 \/gtan*:l (%

—m/44tan"13 —In(11/9) ~ 0.263

Section 6.6

1. Because cosh x is always positive.

3.

9.

11.
13.
15.
17.

19.

21.
23.
25.

coth? x — csch? x

cosh? x

d
— [sechx]
dx

)+c

(e te\? 2
a (e"—e*") B (e"—e*"
_ (€2X+2+€72X) _(4)
E’ZX—2+€72X
eZX_2+e—2x

ex _ z_;’_efzx
=1

(e +e” 2

_( 2 )
_€2X+2+872X
_f
1(62x+e—2x)+2
2 2
:}(62x+672x+1)
2 2
__cosh2x+1
,72 .

d 2
T dx {e" + e*x}
—2(e¥—e™)
2(e*—e™)
(e +eX)(eX+e)
2 eX —e™*
_ex—o—e*" ' eX 4 e X

= —sechxtanhx

/tanhxdx:/ sinh x dx
cosh x

Let u = cosh x; du = (sinh x)dx

2 cosh 2x
2xsec?(x?)

sinh? x 4 cosh? x
—2x
(x2)\/1—x*
4x

Vaxt—1

— CSCX

y=x
y = %(x+|n3)—%

1
:/7du

u
=Injul+C
= In(cosh x) + C.

)



27. y=x 11. 1/In2
29. 1/2In(cosh(2x)) 4+ C 13. diverges
31. 1/2sinh?x + Cor1/2cosh?x + C 15. 1
33. xcosh(x) — sinh(x) 4 C 17. diverges
35. cosh™x/3+C=In(x+Vx2—9) +C 19. diverges
37. cosh™1(x2/2) + C=In(x® +Vx* —4) +C 21. diverges
_ 23. 1
39. Ztan " (x/2)+ S inlx—2[+ Sin|x+2|+C .
41. tan—1(e") 4 C '
27. —1/4
43. xtanh=x+1/2Inp® — 1|+ C
29. diverges
45. 0
31. 1
47. 2
33. 1/2
Section 6.7 35. diverges; Limit Comparison Test with 1/x.
1. 0/0,00/00,0 - 00,00 — 0O 0°. 1°°. 600 37. diverges; Limit Comparison Test with 1/x.
3. F 39. converges; Direct Comparison Test with e™*.
. Di ; ; 2 _
5. derivatives; limits 41. converges; Direct Comparison Test with 1/(x* — 1).
- Di i i X
7. Answers will vary. 43. converges; Direct Comparison Test with 1/e .
9.3 Chapter 7
11. —1 .
Section 7.1
13. 5
15. 2/3 LT
17. oo 3. Answers will vary.
19. 0 5. 4m + m% ~ 22.436
21. 0 7. m
23. o 9. 1/2
25. 0 11. 1/In4
27. =2 13. 4.5
29. 0 15. 2 —m/2
31. 0 17. 1/6
33. oo 19. All enclosed regions have the same area, with regions being the
reflection of adjacent regions. One region is formed on
35. o0 [7/4, 57 /4], with area 2/2.
37. 0 21. On regions such as [7/6, 57/6], the area is 34/3/2. On regions
39. 1 such as [—7/2, 7/6], the area is 31/3/4.
41. 1 2. 5/3
31 25. 9/4
45. 1 27. 4/3
29. 5
47. 1
31. 133/20
49. 2
Section 7.2
51. —oc0
53. 0 1. T
Section 6.8 3. Recall that “dx” does not just “sit there;” it is multiplied by A(x)
and represents the thickness of a small slice of the solid.
1. The interval of integration is finite, and the integrand is Therefore dx has units of in, giving A(x) dx the units of in®.

© N v ow

continuous on that interval. 5
. converges; could also state < 10. 7.
p>1 9.
e°/2 11.
1/3 13.

. 487/3/5 units?

72 /4 units3
97/2 units®
72 — 27 units®

(a) 7/2

A3



A4

15.

17.

19.

21.

(b) 57/6

(c) 4m/5

(d) 87/15

(a) 4m/3

(b) 27/3

(c) 4n/3

(d) «/3

(a) 7%/2

(b) 72/2 — 4msinh—1(1)
(c) 72/2 + 4msinh—1(1)

Placing the tip of the cone at the origin such that the x-axis runs
through the center of the circular base, we have A(x) = 7x? /4.
Thus the volume is 2507 /3 units3.

Orient the cone such that the tip is at the origin and the x-axis is
perpendicular to the base. The cross—sections of this cone are
right, isosceles triangles with side length 2x/5; thus the
cross—sectional areas are A(x) = 2x% /25, giving a volume of 80/3
units3.

Section 7.3

11.
13.

15.

17.

v N W

T
F
97 /2 units®
72 — 27 units®
487/3/5 units?
72 /4 units?
(a) 4x/5
(b) 87/15
(c) m/2
(d) 57/6
(a) 47/3
(b) 7/3
(c) 4n/3
(d) 27/3
(a) 27(v2—1)
(b) 27(1 — /2 +sinh=1(1))

Section 7.4

11.
13.

15.

17.

19.

21.

L N Lo

T
V2

4/3

109/2

12/5

—In(2 — v/3) =~ 1.31696
S VI + ax? dx

folw/l—s—rlxdx
fil \V 1+ 1i2x2 dx
ff,/l—&—){%dx

1.4790

23.

25.
27.
29.

31.

33.

Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x?; why?

Simpson’s Rule fails.

1.4058

2r [} 2x/5 dx = 21/

2m [ V1 + 9 dx = 7/27(10v/10 — 1)
21 [I VI =X\ /T+x/(1 = x®) dx = 4r

Section 7.5

1.

11.
13.
15.
17.
19.
21.

23.
25.
27.

In Sl units, it is one joule, i.e., one Newton—-metre, or kg-m/sz-m.
In Imperial Units, it is ft—Ib.

Smaller.
(a) 500 ft-Ib
(b) 100 — 504/2 ~ 29.29 ft—Ib
(@ 1-d-Pft-lb
(b) 75%
(c) £(1 —+/2/2) ~ 0.2929¢
(a) 756 ft-Ib
(b) 60,000 ft-Ib

(c) Yes, for the cable accounts for about 1% of the total work.

575 ft-lb
0.05J
5/3 ft-lb

f-d/2)

5 ft-lb
(a) 52,929.6 ft-lb
(b) 18,525.3 ft-Ib

(c) When 3.83 ft of water have been pumped from the tank,
leaving about 2.17 ft in the tank.

212,135 ft-lb
187,214 ft-lb
4,917,150

Section 7.6

1.
3.
5.
7.
9.
11.
13.

15.

17.

19.

Answers will vary.
499.2 b
6739.21b
3920.7 Ib
2496 Ib
602.59 Ib
(a) 23401b
(b) 56251b
(a) 1597.441b
(b) 38401b
(a) 56.421b
(b) 135.621b
5.1ft

Chapter 8

Section 8.1



1. Ifx = e*, then x’ = 4e* = 4x, x"" = 16e* = 16x, and
x""" = 64e* = 64x. Thus
X" — 12x"" + 48x’ — 64x = 64x — 192x + 192x — 64x = 0.

d

3. Yes: If y = sint then Y _ costand 1 — sin?t = cos? t.

5. Since x(0) = Ce® = C, we need C = 100. Verification is left to the
student.

7. One option is x(t) = 2sin(t), since x’(t) = 2 cos(t), and
(2cos(t))? + (2sin(t))? = 4. There are other options.

9. Yes: any constant function will do the job.

11. Yes.
13. ¢1 =100, C; = —90

Section 8.2

1 1 13
1L y==x34=x24+—"
3 2 6

3. Equivalent answers: y = %(In(l —x) —In(1+x)) or
y = —tanh™1(x)

) . dx o

5. Assumingy # +1, we can write — = ———, which gives

dy y2-—1
x = —tanh~1(y) 4+ C, sotanh~1(y) = C — x, and thus
y = tanh(C — x). The condition y(0) = 3 gives tanh(C) = 3, so
C = tanh~1(3).

7. Integrating once gives y’ = — cosx + ¢, and y’(0) = 2 implies
¢ = 3. Integrating again gives y = — sinx 4+ 3x + d, and since
y(0) =0,d = 0.

9. Integrating gives x(t) = [; sin(u?) du + 1t2 + 20.

11. x= (3t—2)¥/3
13. 170

Section 8.3

1.

3.

5. Yes, on both accounts. For f(x, y) = y+/|x|, the function is
continuous everywhere, and the partial derivative
19)

8—f(x, y) = /|| exists and is everywhere continuous.
y
7. We have to have y — oo as x — infty: We begin at (0, 0) and

f(0,0) > 1,s0y’ > 1. If we compare to the function f(x) = x,
we have y(0) = f(0) and y’(x) > f(x) for all x, which implies
that y(x) > f(x) for all x.

9 y = Dis asolution such that y(0) = 0.
11. No, the equation is not defined at (x,y) = (1,0).
Section 8.4
1. y2=x*+C
3. x = —tanh(t?/2)
5. Noticethatxy +x+y+ 1= (x+ 1)(y + 1). This gives
y = ceX/2x 1.
7. y=tan (E + arctanx) = ! +X.
4 1—x
9. y=1In (ﬁJre).
2
11. y = exp (fox et dt).
13. y=ce”
15. X +x=t+2
17. sin(y) = —cos(x) + C
Section 8.5

In the exercises, feel free to leave answer as a definite integral if a
closed form solution cannot be found. If you can find a closed form
solution, you should give that.

1.

9.
11.

13.

The integrating factor is r(x) = /2,
The solutionis y = 1 + Ce~ /2,

. The integrating factor is e,

The solutionisy = e~ (sinx — x cos x).

. After rewriting as y’ + (x> + x)y = 3(x* + 1), we get the

integrating factor r(x) = eX /4+x*/2,
The solution is y = 3e—* /4—*"/2 Lo+ 1)et'/4+E/2 gt (There
is no closed form solution.)

(a) The general solution is

A k
x(t) = %Okz (sin(wt) + ” cos(wt)) + ce k.

w

(We hope you haven’t forgotten how to integrate by parts!)

(b)They won't. Since k > 0, the term that is determined by the
initial conditions decays exponentially, so for t >> 0, there won’t
be much of a contribution from this term.

k = 9/8 grams per litre.
y = 2ec0s(2x)+1 +1

P(5) = 1000e2*5-0-05%5" — 1000875 & 6.31 x 106

Section 8.6

1.
3.
5.

x(1) = 8.5.
We get y(1) = ya = 2.4414.
Approximately: 1.0000, 1.2397, 1.3829

A5



7. (a)0,0,0 43, (@) c=+/12—4=2V2.

(b) x = O'is a solution so errors are: 0, 0, 0.

Chapter 9

(b) The sum of distances for each point is 21/12 ~ 6.9282.

45. The sound originated from a point approximately 31m to the left

A.6

Section 9.1 of B and 1340m above it.
1. When defining the conics as the intersections of a plane and a

double napped cone, degenerate conics are created when the Section 9.2

plane intersects the tips of the cones (usually taken as the origin).

Nondegenerate conics are formed when this plane does not 1T

11.

13.
15.

17.

19.

21.

23.

25.

27.

29.

31.

33.
35.

37. ——

39.

41.

contain the origin.

. Hyperbola

. With a horizontal transverse axis, the x2 term has a positive

coefficient; with a vertical transverse axis, the y? term has a
positive coefficient.

Sy=3(x—32432

x=-1y-52+2
1
4

y=—3(x—1)2%2+2
y = 4x?

focus: (0, 1); directrix: y = —1. The point P is 2 units from each.

-1

O 4 022 gifociat (—14/5,2);e = V/5/3
2 2
T =1

=2 | ¥ _
s ta=1

2
b 4 -2 =1

=32 _ (=12 _
2 s =1

3. rectangular

10




13.

15.

17.

19.

21.

23.
25.
27.
29.
31.

33.

35.

37.

39.
41.
43.
45.

<

0.5 +

—10

<

(a) Traces the parabola y = x2, moves from left to right.

(b) Traces the parabola y = x2, but only from —1 < x < 1;
traces this portion back and forth infinitely.

(c) Traces the parabola y = x2, but only for 0 < x. Moves left
to right.

(d) Traces the parabola y = x?, moves from right to left.

y=—15x+85

=% | (42?2 _

%ot =1

y=2x+3

y = eZX —1

X —y2=1

y= g(x — Xo0) ~+ Yo; line through (xo, yo) with slope b/a.

2 2
@ + (y;izk) = 1; ellipse centered at (h, k) with horizontal

axi% of length 2a and vertical axis of length 2b.
x=(t+11)/6,y = (12 —97)/12. Att = 1,x = 2,y = —8.
y' =6x—11;whenx =2,y' = 1.

x=cos lt,y=+v1—t2. Att=1,x=0,y =0.

y' = cosx;whenx =10,y = 1.

t=41

t=m7/2,31/2

t=-1

t=...7/2,37/2, 57/2, ...

47.
49,

x = 4ty = —16t> + 64t
x = 10t, y = —16t%> 4 320t

51. x = 3cos(2wt) + 1,y = 3sin(2xt) + 1; other answers possible
53. x=5cost, y = /24 sin t; other answers possible
55. x = 2tant, y = +6sect; other answers possible

Section 9.3

1. F

3. F

5. (a) Z=2t

(b) Tangentline: y = 2(x — 1) + 1; normal line:
y=-1/2(x—1)+1
() dy _ 2t41

dx 2t—1
(b) Tangentline: y = 3x + 2; normal line: y = —1/3x + 2
9. (a) % = csct
(b) t = m/4: Tangentline: y = ﬁ(x —+/2) + 1; normal line:
y=—-1/vV2(x —v2) +1
dy ___ costsin(2t)+sin t cos(2t)
11. (@ dx — —sintsin(2t)+2 cos t cos(2t)
(b) Tangentline: y = x — v/2; normal line: y = —x — /2
13. t=0
15. t=—1/2
17. The graph does not have a horizontal tangent line.
19. The solution is non-trivial; use identities sin(2t) = 2sintcos t and
cos(2t) = cos? t — sin? t to rewrite
g’ (t) = 2sint(2cos? t — sin? t). On [0, 2], sin t = O when
t=0,7,2m, and 2 cos? t — sin’ t = 0 when
t =tan"1(v/2), 7 £tan"1(v/2), 27 — tan~1(V/2).
21 to = 0;lime 0 2 = 0.
23. to = L lime1 2 = co.
dzy
25. = 2; always concave up
2
27. % = —ﬁ; concave up on (—oo, 1/2); concave down on
(1/2, 00).
2
29. % = — cot? t; concave up on (—o0, 0); concave down on
(0, 00).
2
31. % = %, obtained with a computer algebra system;
concave up on ( — tan~1(v/2/2),tan~%(/2/2)), concave down
on (—m/2,—tan"1(v/2/2)) U (tan"1(v/2/2),7/2)
33. L=6n
35. L =234
37. L = 2.4416 (actual value: L = 2.42211)
39. L & 4.19216 (actual value: L = 4.18308)
41. The answer is 167 for both (of course), but the integrals are
different.
43, SA =~ 8.50101 (actual value SA = 8.02851)
Section 9.4
1. Answers will vary.
3.7

A7



11.

13.

15.

17.

19.

A.8

@

. A=P(2.5,1/4) and P(—2.5,57/4);

B = P(—1,57/6) and P(1,117/6);
€= P(3,4n/3) and P(—3, w/3);
D = P(1.5,27/3) and P(—1.5,57/3);

. A=(V2,V2)
B=(v2,-v2)
C = P(+/5, —0.46)
D = P(+/5,2.68)

[ ~
/<
x

—2 1

<

21.

23.

25.

27.

29.

31.
33.
35.
37.
39.
41.
43.
45,
47.
49.
51.
53.
55.

J
+ + X
—5 5
y
J
)
4 X
-5 5

(x=372+y" =3

(x—1/2*+ (y—1/2)> =1/2

x=3

xR -2 =0

X +y2=4

0=mn/4

r=>5sect

r=cosf/sin? 0

r=v7

P(v/3/2,7/6), P(0,7/2), P(—\/3/2,57/6)
P(0,0) = P(0,7/2), P(v/2,7/4)
P(V2/2,7/12), P(—/2/2,57/12), P(\/2/2,37/4)

For all points, r = 1; 60 =

7/12, 57/12, 77 /12, 11n/12, 137 /12, 177/12, 197 /12, 237 /12.



57. Answers will vary. If m and n do not have any common factors,

then an interval of 2n7 is needed to sketch the entire graph.

Section 9.5

1. Usingx = rcosf and y = rsin 6, we can write x = f(6) cos 0,
y = f(6) sin6.

3. (a)
(b)

5. (a)
(b)
7. (a)
(b)

9. (a)
(b)

dy _ _
o= cotf

tangent line: y = —(x — v/2/2) + v/2/2; normal line:
y=x

dy _ cos §(1+42sin 6)

dx ~ cos? §—sin 0(1+sin 6)

tangent line: x = 3+/3/4; normal line: y = 3/4

dy __ 0cosf+sinf

dx cos §—6 sin 6

tangent line: y = —2/mx + 7/2; normal line:
y=m/2x+m/2

dy __ 4sin(6) cos(40)+-sin(46) cos(8)

dx ~ 4cos(f) cos(46)—sin(6) sin(46)

tangent line: y = 5v/3(x + v/3/4) — 3/4; normal line:
y=-1/5V3(x+/3/4) - 3/4

11. horizontal: § = 7/2,37/2;
vertical: 6 = 0, w, 27

13.

15.

17.
19.
21.
23.
25.
27.
29.
31.
33.
35.
37.
39.

horizontal: § = tan—*(1//5), /2, 7 —tan"*(1//5), ® +

tan—1(1//5), 37/2, 2 — tan—1(1/+/5);
vertical: # = 0, tan~1(v/5), m — tan~1(\/5), 7, 7 +
tan=1(v/5), 27 — tan—1(/5)

Inpolar: 6 =0 = 0 =m
In rectangular: y = 0

area =4m
area=7/12
area=3m/2

area =21 + 3\/§/2
area=1

area = 3i2(47r —3v3)
Arm

area = /2w

L &~ 2.2592; (actual value L = 2.22748)
SA = 16w

SA =327/5

SA = 361

A9






Index

acceleration, 374
antiderivative, 372
arc length, 344, 422, 443

catenary, 370
concavity, 420
conic sections, 396
degenerate, 396
ellipse, 399
hyperbola, 402
parabola, 396
convergence
Direct Comparison Test
for integration, 315
Limit Comparison Test
for integration, 316
of improper int., 310, 314-316
coordinates
polar, 427
curve
parametrically defined, 408
rectangular equation, 408
smooth, 413
cusp, 413

definite integral
and substitution, 255
dependent variable, 367
derivative
hyperbolic funct., 295
inverse hyper., 297
parametric equations, 417
differential equation, 367
first order, 367
initial condition, 369
linear, 386
ordinary differential equation, 368
partial differential equation, 368
separable, 381
solution, 367
Direct Comparison Test
for integration, 315
directrix, 396
Disk Method, 329
distance, 374
divergence
Direct Comparison Test
for integration, 315
Limit Comparison Test
for integration, 316
of improper int., 310, 314-316

All

eccentricity, 401, 404

ellipse
definition, 399
eccentricity, 401
parametric equations, 412
reflective property, 401
standard equation, 399

Euler’s method, 391

existence and uniqueness, 378

exponential growth model, 368

first order linear differential equation, 386

first order method, 391
fluid pressure/force, 360, 362
focus, 396, 399, 402

Gabriel’s Horn, 348
general solution, 369

Hooke’s Law, 354
hyperbola
definition, 402
eccentricity, 404
parametric equations, 412
reflective property, 404
standard equation, 402
hyperbolic function
definition, 292
derivatives, 295
identities, 295
integrals, 295
inverse, 296
derivative, 297
integration, 297
logarithmic def., 297

implicit solution, 382
improper integration, 310, 312
indefinite integral, 372
independent variable, 367
indeterminate form, 304, 305
initial condition, 369
integrating factor, 386
integration

arc length, 344

area between curves, 322

by parts, 260

by substitution, 244

definite

and substitution, 255
fluid force, 360, 362
general application technique, 321



hyperbolic funct., 295
improper, 310, 312, 315, 316
inverse hyper., 297
of trig. functions, 249
of trig. powers, 269, 273
partial fraction decomp., 286
surface area, 346, 423, 445
trig. subst., 278
volume
cross-sectional area, 328
Disk Method, 329
Shell Method, 337, 340
Washer Method, 331, 340
work, 351
IODE software
Lab 11,391
Project Il, 391

L'Hospital’s Rule, 302, 303
I'Hospital’s Rule, 311
Leibniz notation, 373, 381
limit
indeterminate form, 304, 305
L'Hospital’s Rule, 302, 303
Limit Comparison Test
for integration, 316
linear differential equation, 386
first order, 386

mathematical model, 368

Newton’s law of cooling, 383, 390
normal line, 417

ordinary differential equation, 368

parabola
definition, 396
general equation, 397
reflective property, 398
parametric equations
arc length, 422
concavity, 420
deﬁnitior;, 408
finding 2%, 420
finding %, 417
normal line, 417
surface area, 423
tangent line, 417
partial differential equation, 368
particular solution, 369
Picard’s theorem, 378
polar
coordinates, 427
function
arc length, 443
gallery of graphs, 433
surface area, 445
functions, 429
area, 440
area between curves, 442

. d
finding 3£, 438
graphing, 429

polar coordinates, 427

plotting points, 427

second order differential equation, 370
second order method, 391

separable ODE, 381

Shell Method, 337, 340

singular solution, 383

slope field, 377

smooth

curve, 413

solution, 367

general, 369
implicit, 382

stiff problem, 393
surface area

solid of revolution, 346, 423, 445

tangent line, 417, 438
velocity, 374

Washer Method, 331, 340
work, 351



Differentiation Rules

d d d 1 d
1. —(ex)=c 10. — (@) =Ina-d* 19. — (sin7lx) = —— 28. — (sechx) = —sechxtanhx
dx( ) dx( ) dx( ) V1—x? dx( )
d d 1 d -1 d
2. —(utv)=u £V 11. — (lnx) = = 20. — (cosix) = —— 29. — (cschx) = — csch xcoth x
dx dx X dx V1 —x2 dx
d d 1 1 d -1 d
3. —(w-v)=uw'+duv 12. — (log,x) = -z 21, — (escix) = —— 30. — (cothx) = — csch? x
dx( ) + dx( 8aX) Ina x dx( ) xvVx2 —1 dx( )
;e d d 1 d 1
4, g fuy_w-ow 45 9 (sinx) = cosx 22, — (seclx) = —— 31, — (cosh™lx) = ———
dx \ v v2 dx dx xVx2 —1 dx x2 —1
d o d _ d, 1 d, ., 1
. — = 14. — (cosx) = —sinx 23, — (tan” "x) = —— 32. — (sinh™ " x) = ——
5. W) =u'(vv 2 (€050 ™ ( ) iR ax ( ) o1
d d d, -1 d . -1
. — = 15. — (cscx) = — cscxcotx 24, — (cot” " x) = —— 33. — (sech™ " x) = —
6 dx (©=0 dx ( ) dx ( ) 1+ x2 dx ( ) xV1 — x2
d d d _ d ., —1
e =1 16. — (secx) = secxtanx 25. — (coshx) = sinhx 34, — (csch™ " x) = ———
7 g™ ax e ax (o) ax ¢ )= Vire
d d d 1
8. % (™) =mx""1 17. o (tanx) = sec? x 26. o (sinh x) = coshx 35. o (tanhflx) =12
d . d 5 d 5 d . 1
- = 18. — (cotx) = —csc 27. — (tanhx) = sech 36. — (coth =
9 dx () =e dx (cotx) X dx ( %) x dx ( X) 1—x2
Integration Rules
1 X
1. c-f(x dx:c/ X) dx 11. tanxdx = —In|cosx| + C 22. /7dx:sin’1 (7) Cc
[ e 700 | cosx| — )t
1 1 X
2. /f(x +g(x)dx = 12. secxdx =In|secx 4 tanx| + C 23. /761 —=Zsec (2 c
) ) ‘ XA /X2 — az X a a +
/f(X) dX:l:/g(X) dx 13. CSCXdX=7|n|CSCX+C0tX| +C 24, /coshxdx:sinhx+c

3. /OdX:C
14.

/cotxdlenlsinxl-i-c 25. /sinhxdx:coshx+C
4. /ldx:x—i—C )
15. /sec xdx =tanx + C 26. /tanhxdx:ln(coshx)+C
1
5. /x"dx:—x"+1+c,n;£fl 5
n+1 16. /csc xdx=—cotx+C 27. /cothxdx:|n|sinhx|+c
n# -1
1
6. /e"dx:e"+c 17. /secxtanxdx:secx-ﬁ-c 28. /7dx:|n x4+ —a?|+cC
— e+ v |
1 1
Xdx = — - d* 18. cscx cotx dx = — csc C . _dx= 2 2
7. /a dx —dtC / x cot x dx X+ 29. /mdx Injx+vVx2+a?| +C
1 1 1
3. /7dx:ln|x|+C 19. /COSZXdX:7X+7SIn(2X)+C 30. /;dx:lln atx +C
X 2 4 a? — x? 2 |la—x
1 1
9. /cosxdx:sinx+c 20. /sinzxdx:—x——sin (%) +¢ 31 /édx:lln (;) e
2 4 xvVa? — x2 a a+ Va2 —x?
. 1 1. —1(* 1 1 X
10. sinxdx = —cosx + C 21 - dx=—tan - +C 32. /7dxzfln 2 __l+c
X +a a a V32 + a? a la+Vx¥+ad




The Unit Circle

Common Trigonometric Identities

Pythagorean Identities
sin®x+cos’x =1
tan?x 4+ 1 = sec’x

1+ cot? x = csc? x

Sum to Product Formulas

X
sinx+siny25in< ty

. . . X
sinx —siny = Zsm(

X+
COSX + cosy = 2cos(

Cofunction Identities

LT

sin{ — —x) = cosx
2
™ .

cos | = —x) =sinx
2

T
tan (— —x) = cotx
2

X—Yy
2
X+y
2
)eos (57
cos

2

-y

. X+y\ . X
cosx—cosy:—25|n( 5 )sm( 5

Product to Sum Formulas

1
sinxsiny = 3 ( cos(x — y) — cos(x + y))

COSXCOosy =

NP -

sinxcosy =

(cos(x —y) + cos(x +y))

(sin(x +y) +sin(x — y))

Definitions of the Trigonometric Functions

Unit Circle Definition

Double Angle Formulas

0
csc (5 —x) = secx sin2x = 2sinxcos x
T cos 2x = cos? x — sin® x
sec (— —x) = cscx
2 =2cos’x—1
™
cot(z—x):tanx —=1—2sin%x
2tanx
tan2x = ————
1—tan“x
Power—Reducing Formulas Even/Odd Identities
sin?x — 1 —cos2x sin(—x) = —sinx
2 cos(—x) = cosx
2. 1l4cos2x
cos x = 7 tan(—x) = —tanx
tanx — L €08 2X csc(—x) = —csex
1+ cos2x sec(—x) = secx
cot(—x) = —cotx

Angle Sum/Difference Formulas
sin(x £ y) = sinxcosy & cosxsiny

cos(x +y) = cosxcosy F sinxsiny

tan(x £ y) = tanx £ tany
)= 1T tanxtany

y
A
V2 X, .
TZ) () sinf =y cosf = x
|
2, %) V| 0 1
| \ cscld ==  secl =
< ‘ > X y
X
tand =7  coth=7%
X y
(1,0) — x
Y
Right Triangle Definition
. o H
s sinf = q csch = —
) g ©
©
o A H
%) 2. cosf = — sect = —
5] H A
0} A
Adjacent tand = — cotf = —
A 6}



Areas and Volumes

Triangles
h=asin
Area = %bh

Law of Cosines:

¢ =a*+b?>—2abcosh

Parallelograms
Area = bh

Trapezoids

Area = 2(a + b)h

Circles

Area = 7r?

Circumference = 27r

Sectors of Circles

0 in radians
Area = 161
s=rf

i
>

____

o
o
Q

-
o
(%)

Right Circular Cone
Volume = i7r2h

Surface Area =

V2 + h? + mr?

Right Circular Cylinder

Volume = 7r?h

Surface Area =
2nrh + 27r?

Sphere
Volume = $7r°

Surface Area =47r?

General Cone
Area of Base = A

Volume = 1Ah

General Right Cylinder

Area of Base = A
Volume = Ah

>




Algebra

Factors and Zeros of Polynomials
Let p(x) = apx" + ap_1X""1 + - - - + a1x + ag be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x — a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real

polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax? + bx + ¢, and 0 < b? — 4ac, then the real zeros of p are x = (—b + v/b? — 4ac)/2a

Special Factors

X —a®>=(x—a)(x+a) X —a=(x—a)(®+ax+a*)

X +a® = (x+a)(x* — ax + a?) X —a* = (® —a*) (¥ + a?)

(X+ y)n =x" + nxn—ly+ "("le)Xn—ZyZ N ann—l +y

(X _ y)n —x" — nx”_ly—i— "("le)Xn—ZyZ — et ann—l Fy
Binomial Theorem

(x+y)? =x>+2xy + )2 (x—y)P?=x> =2y +y>?
(x+y)?=x+3C%y+3xy> + )3 (x—y)P =x -3y +3x2 — )3
(x+y)* =x*+ 43y + 6x°y2 + dxy> + y* (x —y)* =x* — 43y + 6x%y? — dxy? + y*

Rational Zero Theorem
If p(x) = apx" + ap—1X""1 4 - -+ + a1x + ag has integer coefficients, then every rational zero of p is of the form x = r/s,
where ris a factor of ap and s is a factor of a,,.

Factoring by Grouping
acx® + adx® + bex + bd = ax?(ex + d) + b(ex + d) = (ax* + b)(cx + d)

Arithmetic Operations
ab+ac=a(b+c) g+£_ad+bc a+b_g+9
B b d  bd c ¢ ¢

a a

(b)_(a) dy _ ad (E)_g a _ac
(£>_ b) \c) bc c  bc b\ b

d c

g b\ _ab a—b b-a ab+ac_b+c
c)] ¢ c—d d-c N

Exponents and Radicals

=1 a#0 (ab)*=cb" =" Ja=a'l? %za"_y Va=a'/"

a\x o 1 a a
— = — /agm = m/n X = V = 4 Y XYW — g¥v N
( ) vam =a a p Vab=/avb  (a*) =a \/; 7



Additional Formulas

Summation Formulas:
n

iz"lz n(n+1)(2n+1) 0 5 [(nn+1)\?

Trapezoidal Rule:

b
/ f(x) dx ~ % [f(x1) + 2f(x2) + 2f(x3) + ... + 2f(xa) + f(Xn11)]

B maxf 00

with Error <

Simpson’s Rule:

b
/ f(x) dx =~ % [f(x1) + 4f(x2) + 2f(x3) + 4f(Xa) + ... + 2f(Xp—1) + 4f(Xn) + f(Xn11)]

(b—a)®

with Error < T80 [ max | (x)]]

Arc Length: Surface of Revolution:
b b
L:/ VI+f/(x)? dx 5:271'/ F)V/1+F/(x)2 dx

(where f(x) > 0)

b
S:27r/ x/ 14 f'(x)? dx

(wherea, b > 0)

Work Done by a Variable Force: Force Exerted by a Fluid:

b b
W:/ F(x) dx F:/ wd(y) ¢(y) dy

Taylor Series Expansion for f(x):

£(c)
2!

(x —¢)? +]¥(x—c)3+... +

pn(x) = flc) +f'(e)(x =€) +

Maclaurin Series Expansion for f(x), where ¢ = 0:

” m (n)
pn(x>=f<0)+f/(0)x+f2<?) , 1O fP0),

] X +TX + ... n!



Summary of Tests for Series:

Test Series Condition(s) of Con'dltlon(s) of Comment
Convergence Divergence
o
. This test cannot be used to
nth-Term Z; Gn n"JQO o 70 show convergence.
n=
> 1
Geometric Series r rl<1 rl>1 Sum = ——
> i > o
oo a
Telescoping Series Z (bp — bnta) lim b, =1L Sum = <Z b,,) —L
n=1 e n=1
= 1
-Series —_— >1 <1
p > @ 1 B p p<
n=1
50 (oo} oo
a(n)dn =
Integral Test Zan /1 a(n) dn /1 (n) a, = a(n) must be
. L continuous
n=0 is convergent is divergent
oo oo
o > b > bn
Direct Comparison Z an n=0 n=0
=0 converges and diverges and
0<a, <bh, 0<b,<a,
oo oo
b b
0 Z " Z " Also diverges if
Limit Comparison Z an n=0 n=0 .
converges and diverges and lim a,/b, = o0
n=0 n—o0
lim a,/b, >0 lim a,/b, >0
n— o0 n—oo
- {an} must be positive
a a . .
Ratio Test Z an lim 2 <1 lim = > 1 Also diverges if
n—oo  dp n—oo  dp, .
n=0 lim apy1/a, = 00
n—o0
{an} must be positive
o
Root Test Zan lim (an)l/n <1 lim (an)l/n >1 Also diverges if
n—00 n— 00 . 1/'7
n=0 lim (a,)”" = o0
n—oo
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