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PÙ�¥���
This a custom textbook that covers the entire curriculum for the courseMath

2570 (Calculus III) at the University of Lethbridge at minimal cost to the student.
It is also anOpen Education Resource. As a student, you are free to keep asmany
copies as you want, for as long as you want. You can print it, in whole or in part,
or share it with a friend. As an instructor, I am free tomodify the content as I see
fit, whether this means editing to fit our curriculum, or simply correcting typos.

Most of this textbook is adapted from the APEX Calculus textbook project,
which originated in the Department of Applied Mathematics at the Virginia Mil-
itary Institute. (See apexcalculus.com.) On the following page you’ll find the
original preface from their text, which explains their project inmore detail. They
haveproduced calculus textbook that is free in two regards: it’s free to download
from their website, and the authors have made all the files needed to produce
the textbook freely available, allowing others (such as myself) to edit the text to
suit the needs of various courses (such as Math 2570).

What’s even better is that the textbook is of remarkably high production
quality: unlike many free texts, it is polished and professionally produced, with
graphics on almost every page, and a large collection of exercises (with selected
answers!).

I hope that you find this textbook useful. If you find any errors, or if you have
any suggestions as to how the material could be better arranged or presented,
please let me know. (The great thing about an open source textbook is that it
can be edited at any time!) In particular, if you find a particular topic that you
think needs further explanation, or more examples, or more exercises, please
let us know. My hope is that this text will be improved every time it is used for
this course.

Sean Fitzpatrick
Department of Mathematics and Computer Science

University of Lethbridge
May, 2018

http://www.apexcalculus.com
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PÙ�¥��� ãÊ APEX C�½�ç½çÝ
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay better understand what you will find beyond this
page.

This text is Part I of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taught in “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector–valued functions, and functions of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.apexcalculus.com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for under
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
a “later section,” though that section does not actually appear in this particular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intentionally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High–level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower–level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.

vi
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Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 is the addition of interactive, 3D graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactivate
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc III while I was still writing the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. I am blessed to
have so many people give of their time to make this book better.



APEX – Affordable Print and Electronic teXts

APEX is a consortium of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military Institute, through a generous
Jackson–Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com for more information.

• More useful numbering of Examples, Theorems, etc. “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integrationwith Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
http://apexcalculus.com




Notation: WeuseN to describe the set of
natural numbers, that is, the integers 1, 2,
3, …

Factorial: The expression 4! refers to the
number 4 · 3 · 2 · 1 = 24.

In general, n! = n·(n−1)·(n−2) · · · 2·1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathematical formulas work properly.

10: S�Øç�Ä��Ý �Ä� S�Ù®�Ý

This chapter introduces sequences and series, important mathematical con-
structions that are useful when solving a large variety of mathematical prob-
lems. The content of this chapter is considerably different from the content of
the chapters before it. While the material we learn here definitely falls under
the scope of “calculus,” we will make very little use of derivatives or integrals.
Limits are extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
information about a function and its derivatives at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximation of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximations
of functions when limited knowledge of the function is available.

10.1 Sequences

We commonly refer to a set of events that occur one after the other as a se-
quence of events. In mathematics, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one after the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and often this can be done. For instance, the
sequence above could be described by the function a(n) = 2n, for the values of
n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definition of a sequence.

Definition 10.1.1 Sequence

A sequence is a function a(n) whose domain is N. The range of a
sequence is the set of all distinct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is often denoted as {an}.
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Figure 10.1.1: Plotting sequences in Ex-
ample 10.1.1.

Chapter 10 Sequences and Series

Example 10.1.1 Listing terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+(−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
SÊ½çã®ÊÄ

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a scatter plot. The “x”-axis is
used for the values of n, and the values of the terms are plotted on the
y-axis. To visualize this sequence, see Figure 10.1.1(a).

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;
a3 = 4+(−1)3 = 3; a4 = 4+(−1)4 = 5. Note that the range of this
sequence is finite, consisting of only the values 3 and 5. This sequence is
plotted in Figure 10.1.1(b).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pattern of signs is “−,−,+,
+,−,−, . . .” due to the fact that the exponent of−1 is a special quadratic.
This sequence is plotted in Figure 10.1.1(c).

Example 10.1.2 Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a function that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

SÊ½çã®ÊÄ Weshould first note that there is never exactly one function that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3more than the previous one. This implies a linear
function would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First notice how the sign changes from term to term. This is most com-
monly accomplished bymultiplying the terms by either (−1)n or (−1)n+1.
Using (−1)n multiplies the odd terms by (−1); using (−1)n+1 multiplies

450



10.1 Sequences

the even terms by (−1). As this sequence has negative even terms, we
will multiply by (−1)n+1.
After this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a pattern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 12 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial function will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shift by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a little “sleuthing” will help. Notice how the terms in the nu-
merator are always multiples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?
When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence.

A commonmathematical endeavour is to create a newmathematical object
(for instance, a sequence) and then apply previously knownmathematics to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will investigate what it means to find the limit of a sequence.

Definition 10.1.2 Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definition states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjective
terms, but hopefully the intent is clear.

This definition is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definition; we
do so here as well.

Theorem 10.1.1 Limit of a Sequence

Let {an} be a sequence and let f(x) be a functionwhose domain contains
the positive real numbers where f(n) = an for all n in N.

If lim
x→∞

f(x) = L, then lim
n→∞

an = L.
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an =
3n2 − 2n + 1
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Figure 10.1.2: Scatter plots of the se-
quences in Example 10.1.3.

Chapter 10 Sequences and Series

Theorem 10.1.1 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not exist.
It may, or may not, exist. For instance, we can define a sequence {an} =
{cos(2πn)}. Let f(x) = cos(2πx). Since the cosine function oscillates
over the real numbers, the limit lim

x→∞
f(x) does not exist.

However, for every positive integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a function f(x) whose domain contains the positive real
numbers where f(n) = an for all n inN, we cannot conclude lim

n→∞
an does

not exist. It may, or may not, exist.

Example 10.1.3 Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}
SÊ½çã®ÊÄ

1. Using Theorem1.5.1, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could
have also directly applied l’Hospital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A scatter plot of every 5 values of an is given in
Figure 10.1.2 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist, as cos x oscillates (and takes on every
value in [−1, 1] infinitely many times). Thus we cannot apply Theorem
10.1.1.

The fact that the cosine function oscillates strongly hints that cos n, when
n is restricted to N, will also oscillate. Figure 10.1.2 (b), where the se-
quence is plotted, implies that this is true. Because only discrete values
of cosine are plotted, it does not bear strong resemblance to the familiar
cosine wave. The proof of the following statement is beyond the scope
of this text, but it is true: there are infinitely many integers n that are
arbitrarily (i.e., very) close to an even multiple of π, so that cos n ≈ 1.
Similarly, there are infinitely many integers m that are arbitrarily close to
an odd multiple of π, so that cosm ≈ −1. As the sequence takes on val-
ues near 1 and −1 infinitely many times, we conclude that lim

n→∞
an does

not exist.

3. We cannot actually apply Theorem 10.1.1 here, as the function f(x) =

(−1)x/x is not well defined. (What does (−1)
√
2 mean? In actuality, there

is an answer, but it involves complex analysis, beyond the scope of this
text.)

Instead, we invoke the definition of the limit of a sequence. By looking at
the plot in Figure 10.1.2 (c), we would like to conclude that the sequence
converges to L = 0. Let ε > 0 be given. We can find a natural numberm
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Figure 10.1.3: A plot of a sequence in Ex-
ample 10.1.4, part 2.

10.1 Sequences

such that 1/m < ε. Let n > m, and consider |an − L|:

|an − L| =
∣∣∣∣ (−1)n

n
− 0
∣∣∣∣

=
1
n

<
1
m

(since n > m)

< ε.

We have shown that by pickingm large enough, we can ensure that an is
arbitrarily close to our limit, L = 0, hence by the definition of the limit of
a sequence, we can say lim

n→∞
an = 0.

In the previous example we used the definition of the limit of a sequence
to determine the convergence of a sequence as we could not apply Theorem
10.1.1. In general, we like to avoid invoking the definition of a limit, and the
following theorem gives us tool that we could use in that example instead.

Theorem 10.1.2 Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Example 10.1.4 Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
SÊ½çã®ÊÄ

1. This appeared in Example 10.1.3. We want to apply Theorem 10.1.2, so
consider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 10.1.2 and state that lim
n→∞

an =
0.

2. Because of the alternating nature of this sequence (i.e., every other term

ismultiplied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 10.1.2:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

Wehave concluded thatwhenwe ignore the alternating sign, the sequence
approaches 1. This means we cannot apply Theorem 10.1.2; it states the
the limit must be 0 in order to conclude anything.
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Chapter 10 Sequences and Series

Since we know that the signs of the terms alternate and we know that
the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 10.1.3.

We continue our study of the limits of sequences by considering some of the
properties of these limits.

Theorem 10.1.3 Properties of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

Example 10.1.5 Applying properties of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1
n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1+

1
n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

SÊ½çã®ÊÄ We will use Theorem 10.1.3 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
matter that wemultiply each term by 1000; the sequence still approaches
0. (It just takes longer to get close to 0.)

There is more to learn about sequences than just their limits. We will also
study their range and the relationships terms have with the terms that follow.
We start with some definitions describing properties of the range.
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Figure 10.1.4: A plot of {an} = {1/n}
and {an} = {2n} from Example 10.1.6.

Note: Keep in mind what Theorem 10.1.4
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

10.1 Sequences

Definition 10.1.3 Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exist real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definition that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 10.1.6 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

SÊ½çã®ÊÄ

1. The terms of this sequence are always positive but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 10.1.4(a)
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it is
also true that these terms are all positive, meaning 0 < an. Thus we can
say the sequence is unbounded, but also bounded below. Figure 10.1.4(b)
illustrates this.

The previous example produces some interesting concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using Definition 10.1.2, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 10.1.4 Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example 10.1.5 we saw the sequence {bn} =
{
(1+ 1/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply restating part of Theorem
1.3.5.) Even though it may be difficult to intuitively grasp the behaviour of this
sequence, we know immediately that it is bounded.

Another interesting concept to come out of Example 10.1.6 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the 455



Note: It is sometimes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.
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Figure 10.1.5: A plot of {an} = {(n +
1)/n} in Example 10.1.7.

Chapter 10 Sequences and Series

same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Definition 10.1.4 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} is monotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Example 10.1.7 Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}

SÊ½çã®ÊÄ In each of the following, wewill examine an+1−an. If an+1−
an > 0, we conclude that an < an+1 and hence the sequence is increasing. If
an+1 − an < 0, we conclude that an > an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scatter plot of each sequence. These are useful as they sug-
gest a pattern of monotonicity, but analytic work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

2. an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.
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Figure 10.1.6: Plots of sequences in Ex-
ample 10.1.7.

10.1 Sequences

Since an+1− an > 0 for all n, we conclude the sequence is increasing; see
Figure 10.1.6(a).

3. We can clearly see in Figure 10.1.6(b), where the sequence is plotted, that
it is not monotonic. However, it does seem that after the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The denomi-
nator is always positive, therefore we are only concerned with the numer-
ator. For small values of n, the numerator is positive. As n grows large,
the numerator is dominated by −10n2, meaning the entire fraction will
be negative; i.e., for large enough n, an+1 − an < 0. Using the quadratic
formula we can determine that the numerator is negative for n ≥ 5.

In short, the sequence is simply not monotonic, though it is useful to note
that for n ≥ 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 10.1.6(c) shows that the sequence is not mono-
tonic, but it suggests that it is monotonically decreasing after the first
term. We perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!

When n = 1, the above expression is > 0; for n ≥ 2, the above expres-
sion is < 0. Thus this sequence is not monotonic, but it is monotonically
decreasing after the first term.

Knowing that a sequence is monotonic can be useful. Consider, for example,
a sequence that is monotonically decreasing and is bounded below. We know
the sequence is always getting smaller, but that there is a bound to how small it
can become. This is enough to prove that the sequence will converge, as stated
in the following theorem.
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Theorem 10.1.5 Bounded Monotonic Sequences are Convergent

1. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

2. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always positive (i.e., bounded below by
0). Therefore we can conclude by Theorem 10.1.5 that the sequence converges.
We already knew this by other means, but in the following section this theorem
will become very useful.

We can replace Theorem 10.1.5 with the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges; i.e., lim

n→∞
an exists.” We leave it to

the reader in the exercises to show the theorem and the above statement are
equivalent.

Sequences are a great source of mathematical inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this writing, there are 297,573 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

Interesting as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · · . Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many times, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to investigate in the next section.
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Exercises 10.1
Terms and Concepts
1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.

4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5 – 8, give the first five terms of the given se-
quence.

5. {an} =

{
4n

(n+ 1)!

}

6. {bn} =

{(
−3
2

)n}

7. {cn} =

{
− nn+1

n+ 2

}

8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9 – 12, determine the nth term of the given se-
quence.

9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1, 1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13 – 16, use the following information to deter-
mine the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+ 2

n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+ 2

n

)n}

16. {an} =

{(
1+ 2

n

)2n
}

In Exercises 17 – 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n n

n+ 1

}

18. {an} =

{
4n2 − n+ 5
3n2 + 1

}

19. {an} =

{
4n

5n

}

20. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

21. {an} = {ln(n)}

22. {an} =

{
3n√
n2 + 1

}

23. {an} =

{(
1+ 1

n

)n}

24. {an} =

{
5− 1

n

}

25. {an} =

{
(−1)n+1

n

}

26. {an} =

{
1.1n

n

}

27. {an} =

{
2n

n+ 1

}

28. {an} =

{
(−1)n n2

2n − 1

}
In Exercises 29 – 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {an} = {sin n}

30. {an} = {tan n}

31. {an} =

{
(−1)n 3n− 1

n

}

32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos n}
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34. {an} = {2n − n!}

In Exercises 35 – 38, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}

36. {an} =

{
n2 − 6n+ 9

n

}

37. {an} =

{
(−1)n 1

n3

}

38. {an} =

{
n2

2n

}
Exercises 39 – 42 explore further the theory of sequences.

39. Prove Theorem 10.1.2; that is, use the definition of the
limit of a sequence to show that if lim

n→∞
|an| = 0, then

lim
n→∞

an = 0.

40. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.

(b) Give an example where L = K.

41. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

42. Prove the statement “Let {an} be a bounded, monotonic
sequence. Then {an} converges; i.e., lim

n→∞
an exists.” is

equivalent to Theorem 10.1.5. That is,

(a) Show that if Theorem10.1.5 is true, then above state-
ment is true, and

(b) Show that if the above statement is true, then Theo-
rem 10.1.5 is true.
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10.2 Infinite Series

10.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that Sn =
1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interesting concepts that we explore in this
section. We begin this exploration with some definitions.

Definition 10.2.1 Infinite Series, nth Partial Sums, Convergence,
Divergence

Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =

n∑
i=1

ai ; the sequence {Sn} is the sequence of nth partial

sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an con-

verges to L, and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

We will explore a variety of series in this section. We start with two series
that diverge, showing how we might discern divergence.
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Figure 10.2.1: Scatter plots relating to Ex-
ample 10.2.1.

Chapter 10 Sequences and Series

Example 10.2.1 Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

SÊ½çã®ÊÄ

1. Consider Sn, the nth partial sum.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2.

By Theorem 5.3.1, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instructive to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges:

it grows without bound.
A scatter plot of the sequences {an} and {Sn} is given in Figure 10.2.1(a).
The terms of {an} are growing, so the terms of the partial sums {Sn} are
growing even faster, illustrating that the series diverges.

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some of the
partial sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This pattern repeats; we find that Sn =

{
1 n is odd
0 n is even . As {Sn} oscil-

lates, repeating 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑
n=1

(−1)n+1 diverges.

A scatter plot of the sequence {bn} and the partial sums {Sn} is given in
Figure 10.2.1(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this section we will demonstrate
a few general techniques for determining convergence; later sections will delve
deeper into this topic.
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10.2 Infinite Series

Geometric Series

One important type of series is a geometric series.

Definition 10.2.2 Geometric Series

A geometric series is a series of the form

∞∑
n=0

rn = 1+ r+ r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this section with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properties.

Theorem 10.2.1 Geometric Series Test

Consider the geometric series
∞∑
n=0

rn.

1. The nth partial sum is: Sn =
1− r n+1

1− r
.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

According to Theorem 10.2.1, the series

∞∑
n=0

1
2n

=

∞∑
n=0

(
1
2

)2

= 1+
1
2
+

1
4
+ · · ·

converges as r = 1/2, and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our intro-

ductory example; while there we got a sum of 1, we skipped the first term of 1.

Example 10.2.2 Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

SÊ½çã®ÊÄ

1. Since r = 3/4 < 1, this series converges. By Theorem 10.2.1, we have
that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summation in the given series: we are 463
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Note: Theorem 10.2.2 assumes that an+
b ̸= 0 for all n. If an + b = 0 for
somen, then of course the series does not
converge regardless of p as not all of the
terms of the sequence are defined.
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to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 10.2.2.

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 10.2.1,

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The partial sums of this series are plotted in Figure 10.2.3(a). Note how
the partial sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are negative.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·

to diverge.) This is illustrated in Figure 10.2.3(b).

p–Series

Another important type of series is the p-series.

Definition 10.2.3 p–Series, General p–Series

1. A p–series is a series of the form

∞∑
n=1

1
np

, where p > 0.

2. A general p–series is a series of the form

∞∑
n=1

1
(an+ b)p

, where p > 0 and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence properties.

Theorem 10.2.2 p–Series Test

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.
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10.2 Infinite Series

Example 10.2.3 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=11

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

SÊ½çã®ÊÄ

1. This is a p–series with p = 1. By Theorem 10.2.2, this series diverges.
This series is a famous series, called the Harmonic Series, so named be-
cause of its relationship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 10.2.2, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to π2/6.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the definition does not allow for alternating signs.
Thereforewe cannot apply Theorem10.2.2. (Another famous result states
that this series, the Alternating Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 1/2. It converges.

Later sections will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 10.2.4 Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

SÊ½çã®ÊÄ It will help to write down some of the first few partial sums
of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note how most of the terms in each partial sum are cancelled out! In general,
we see that Sn = 1 − 1

n+ 1
. The sequence {Sn} converges, as lim

n→∞
Sn =
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Figure 10.2.5: Scatter plots relating to the
series in Example 10.2.5.
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lim
n→∞

(
1− 1

n+ 1

)
= 1, and so we conclude that

∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. Par-

tial sums of the series are plotted in Figure 10.2.4.

The series in Example 10.2.4 is an example of a telescoping series. Infor-
mally, a telescoping series is one in which most terms cancel with preceding or
following terms, reducing the number of terms in each partial sum. The partial
sum Sn did not contain n terms, but rather just two: 1 and 1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth partial sum
Sn. This makes evaluating the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

Example 10.2.5 Evaluating series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)

SÊ½çã®ÊÄ

1. We can decompose the fraction 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See Section 6.5, Partial FractionDecomposition, to recall how this is done,
if necessary.)

Expressing the terms of {Sn} is now more instructive:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

We again have a telescoping series. In each partial sum, most of the terms
cancel and we obtain the formula Sn = 1 +

1
2
− 1

n+ 1
− 1

n+ 2
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 10.2.5(a).

2. We begin by writing the first few partial sums of the series:
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S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)

At first, this does not seem helpful, but recall the logarithmic identity:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di-

verges. Note in Figure 10.2.5(b) how the sequence of partial sums grows
slowly; after 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not.

We are learning about a new mathematical object, the series. As done be-
fore, we apply “old” mathematics to this new topic.

Theorem 10.2.3 Properties of Infinite Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = K, and let c be a constant.

1. Constant Multiple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we provide a few “famous” series. 467
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Key Idea 10.2.1 Important Series

1.
∞∑
n=0

1
n!

= e. (Note that the index starts with n = 0.)

2.
∞∑
n=1

1
n2

=
π2

6
.

3.
∞∑
n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑
n=1

1
n

diverges. (This is called the Harmonic Series.)

6.
∞∑
n=1

(−1)n+1

n
= ln 2. (This is called the Alternating Harmonic Series.)

Example 10.2.6 Evaluating series
Evaluate the given series.

1.
∞∑
n=1

(−1)n+1(n2 − n
)

n3
2.

∞∑
n=1

1000
n!

3.
1
16

+
1
25

+
1
36

+
1
49

+ · · ·

SÊ½çã®ÊÄ

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1(n2 − n
)

n3
=

∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=

∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 10.2.6(a).

2. This looks very similar to the series that involves e in Key Idea 10.2.1. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

∞∑
n=1

1000
n!

= 1000 ·
∞∑
n=1

1
n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 10.2.6(b). The graph shows how this particular
series converges very rapidly.
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10.2 Infinite Series

3. The denominators in each term are perfect squares; we are adding
∞∑
n=4

1
n2

(note we start with n = 4, not n = 1). This series will converge. Using the
formula from Key Idea 10.2.1, we have the following:

∞∑
n=1

1
n2

=

3∑
n=1

1
n2

+

∞∑
n=4

1
n2

∞∑
n=1

1
n2

−
3∑

n=1

1
n2

=

∞∑
n=4

1
n2

π2

6
−
(
1
1
+

1
4
+

1
9

)
=

∞∑
n=4

1
n2

π2

6
− 49

36
=

∞∑
n=4

1
n2

0.2838 ≈
∞∑
n=4

1
n2

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
section, yet it still may “take some getting used to.”

As one contemplates the behaviour of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will still diverge if the first term is removed.
(b) The series will still diverge if the first 10 terms are removed.
(c) The series will still diverge if the first 1, 000, 000 terms are removed.
(d) The series will still diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Theorem 10.2.4 nth–Term Test for Divergence

Consider the series
∞∑
n=1

an. If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 10.2.1. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Se-

ries,
∞∑
n=1

1
n
, diverges.
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Looking back, we can apply this theorem to the series in Example 10.2.1. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

One can rewrite Theorem 10.2.4 to state “If a series converges, then the
underlying sequence converges to 0.” While it is important to understand the
truth of this statement, in practice it is rarely used. It is generally far easier to
prove the convergence of a sequence than the convergence of a series.

Theorem 10.2.5 Infinite Nature of Series

The convergence or divergence of an infinite series remains unchanged
by the addition or subtraction of any finite number of terms. That is:

1. A divergent series will remain divergent with the addition or sub-
traction of any finite number of terms.

2. A convergent series will remain convergent with the addition or
subtraction of any finite number of terms. (Of course, the sum
will likely change.)

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the

sequence of partial sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nth partial sums, effectively
subtracting 16.7 from the sum. However, a sequence that is growing without
bound will still grow without bound when 16.7 is subtracted from it.

The equations below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equation shows us subtracting these first 10 mil-
lion terms from both sides. The final equation employs a bit of “psuedo–math”:
subtracting 16.7 from “infinity” still leaves one with “infinity.”

∞∑
n=1

1
n =

10,000,000∑
n=1

1
n

+

∞∑
n=10,000,001

1
n

∞∑
n=1

1
n −

10,000,000∑
n=1

1
n

=

∞∑
n=10,000,001

1
n

∞ − 16.7 = ∞.

This section introduced us to series and defined a few special types of series
whose convergence properties are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are still interested in knowing whether or not
they converge. The next three sections introduce tests that help us determine
whether or not a given series converges.
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Exercises 10.2
Terms and Concepts

1. Use your own words to describe how sequences and series
are related.

2. Use your own words to define a partial sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

Problems

In Exercises 7 – 14, a series
∞∑
n=1

an is given.

(a) Give the first 5 partial sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the
same axes.

7.
∞∑
n=1

(−1)n

n

8.
∞∑
n=1

1
n2

9.
∞∑
n=1

cos(πn)

10.
∞∑
n=1

n

11.
∞∑
n=1

1
n!

12.
∞∑
n=1

1
3n

13.
∞∑
n=1

(
− 9
10

)n

14.
∞∑
n=1

(
1
10

)n

In Exercises 15 – 20, use Theorem 10.2.4 to show the given
series diverges.

15.
∞∑
n=1

3n2

n(n+ 2)

16.
∞∑
n=1

2n

n2

17.
∞∑
n=1

n!
10n

18.
∞∑
n=1

5n − n5

5n + n5

19.
∞∑
n=1

2n + 1
2n+1

20.
∞∑
n=1

(
1+ 1

n

)n

In Exercises 21 – 30, state whether the given series converges
or diverges.

21.
∞∑
n=1

1
n5

22.
∞∑
n=0

1
5n

23.
∞∑
n=0

6n

5n

24.
∞∑
n=1

n−4

25.
∞∑
n=1

√
n

26.
∞∑
n=1

10
n!

27. T/F: If {an} converges to 0, then
∞∑
n=0

an converges.

28.
∞∑
n=1

2
(2n+ 8)2

29.
∞∑
n=1

1
2n
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30.
∞∑
n=1

1
2n− 1

In Exercises 31 – 46, a series is given.
(a) Find a formula for Sn, the nth partial sum of the series.
(b) Determine whether the series converges or diverges.

If it converges, state what it converges to.

31.
∞∑
n=0

1
4n

32.
∞∑
n=1

2

33. 13 + 23 + 33 + 43 + · · ·

34.
∞∑
n=1

(−1)nn

35.
∞∑
n=0

5
2n

36.
∞∑
n=1

e−n

37. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

38.
∞∑
n=1

1
n(n+ 1)

39.
∞∑
n=1

3
n(n+ 2)

40.
∞∑
n=1

1
(2n− 1)(2n+ 1)

41.
∞∑
n=1

ln
(

n
n+ 1

)

42.
∞∑
n=1

2n+ 1
n2(n+ 1)2

43. 1
1 · 4 +

1
2 · 5 +

1
3 · 6 +

1
4 · 7 + · · ·

44. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

45.
∞∑
n=2

1
n2 − 1

46.
∞∑
n=0

(
sin 1

)n
47. Break theHarmonic Series into the sumof the odd and even

terms:
∞∑
n=1

1
n
=

∞∑
n=1

1
2n− 1

+

∞∑
n=1

1
2n

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞∑
n=1

1
2n− 1

>

∞∑
n=1

1
2n

.

(Compare each nth partial sum.)

(b) Show why
∞∑
n=1

1
2n− 1

< 1+
∞∑
n=1

1
2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

48. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.
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Note: Theorem 10.3.1 does not state that
the integral and the summation have the
same value.
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Figure 10.3.1: Illustrating the truth of the
Integral Test.

10.3 Integral and Comparison Tests

10.3 Integral and Comparison Tests
Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 10.6. Theorems 10.2.1 and 10.2.2 give crite-
ria for when Geometric and p-series converge, and Theorem 10.2.4 gives a quick
test to determine if a series diverges. There are many important series whose
convergence cannot be determined by these theorems, though, sowe introduce
a set of tests that allow us to handle a broad range of series. We start with the
Integral Test.

Integral Test

We stated in Section 10.1 that a sequence {an} is a function a(n) whose
domain is N, the set of natural numbers. If we can extend a(n) to R, the real
numbers, and it is both positive and decreasing on [1,∞), then the convergence

of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

Theorem 10.3.1 Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is continuous,

positive and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only if,∫ ∞

1
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 10.3.1(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (10.1)

In Figure 10.3.1(b), we draw rectangles under y = a(x) with the Right-Hand
rule, starting with n = 2. This time, the area of the rectangles is less than the

area under y = a(x), so
∞∑
n=2

an <
∫ ∞

1
a(x) dx. Note how this summation starts

with n = 2; adding a1 to both sides lets us rewrite the summation starting with
n = 1:

∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (10.2)

Combining Equations (10.1) and (10.2), we have

∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (10.3)

From Equation (10.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
∫ ∞

1
a(x)dx)
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2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x)dx (because

∫ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theo-
rem 10.2.5 allows us to extend this theorem to series where a(n) is positive and
decreasing on [b,∞) for some b > 1.

Example 10.3.1 Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth partial sums are given in Figure 10.3.2.)

SÊ½çã®ÊÄ Figure 10.3.2 implies that a(n) = (ln n)/n2 is positive and
decreasing on [2,∞). We can determine this analytically, too. We know a(n)
is positive as both ln n and n2 are positive on [2,∞). To determine that a(n) is
decreasing, consider a ′(n) = (1− 2 ln n)/n3, which is negative for n ≥ 2. Since
a ′(n) is negative, a(n) is decreasing.

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln x
x2

dx. Integrat-

ing this improper integral requires the use of Integration by Parts, with u = ln x
and dv = 1/x2 dx.

∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

−1
x
ln x
∣∣∣b
1
+

∫ b

1

1
x2

dx

= lim
b→∞

−1
x
ln x− 1

x

∣∣∣b
1

= lim
b→∞

1− 1
b
− ln b

b
. Apply L’Hospital’s Rule:

= 1.

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

Theorem 10.2.2 was given without justification, stating that the general p-

series
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. In the following example,

we prove this to be true by applying the Integral Test.

Example 10.3.2 Using the Integral Test to establish Theorem 10.2.2.

Use the Integral Test to prove that
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.
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Note: A sequence {an} is a positive
sequence if an > 0 for all n.

Because of Theorem 10.2.5, any theo-
rem that relies on a positive sequence still
holds true when an > 0 for all but a finite
number of values of n.

10.3 Integral and Comparison Tests

SÊ½çã®ÊÄ Consider the integral
∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
c→∞

∫ c

1

1
(ax+ b)p

dx

= lim
c→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣c
1

= lim
c→∞

1
a(1− p)

(
(ac+ b)1−p − (a+ b)1−p).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 6.8.1.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

We consider two more convergence tests in this section, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Direct Comparison Test

Theorem 10.3.2 Direct Comparison Test

Let {an} and {bn} be positive sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

Example 10.3.3 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

SÊ½çã®ÊÄ This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 10.3.2,
∞∑
n=1

1
3n + n2

converges.

Example 10.3.4 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
n− ln n

.
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Chapter 10 Sequences and Series

SÊ½çã®ÊÄ We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

Since n ≥ n− ln n for all n ≥ 1,
1
n
≤ 1

n− ln n
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑
n=1

1
n− ln n

diverges as

well.

The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

1
n+ ln n

. It is very similar to the divergent series given in Ex-

ample 10.3.4. We suspect that it also diverges, as
1
n

≈ 1
n+ ln n

for large n.
However, the inequality that we naturally want to use “goes the wrong way”:
since n ≤ n + ln n for all n ≥ 1,

1
n

≥ 1
n+ ln n

for all n ≥ 1. The given se-
ries has terms less than the terms of a divergent series, and we cannot conclude
anything from this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Theorem 10.3.3 Limit Comparison Test

Let {an} and {bn} be positive sequences.

1. If lim
n→∞

an
bn

= L, where L is a positive real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

Theorem10.3.3 ismost useful when the convergence of the series from {bn}
is known and we are trying to determine the convergence of the series from
{an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

1
n+ ln n

which motivated this new test.
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10.3 Integral and Comparison Tests

Example 10.3.5 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
n+ ln n

using the Limit Comparison Test.

SÊ½çã®ÊÄ We compare the terms of
∞∑
n=1

1
n+ ln n

to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

1/(n+ ln n)
1/n

= lim
n→∞

n
n+ ln n

= 1 (after applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

1
n+ ln n

diverges as

well.

Example 10.3.6 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

SÊ½çã®ÊÄ This series is similar to the one in Example 10.3.3, but now
we are considering “3n−n2” instead of “3n+n2.” This differencemakes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

= 1 (after applying L’Hospital’s Rule twice).

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well.

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponentials, which dominate algebraic func-
tions (e.g., polynomials), which dominate logarithms. In the previous example,

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hospital’s Rule to n!.

Example 10.3.7 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
n+ 3

n2 − n+ 1
.

SÊ½çã®ÊÄ We naïvely attempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2. Knowing
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Chapter 10 Sequences and Series

that
∞∑
n=1

1
n2

converges, we attempt to apply the Limit Comparison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 10.3.3 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it

converges. Ultimately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
functions, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is n1/2 and the dominant term of the
denominator is n2. Thus we should compare the terms of the given series to
n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1
= 1 (Apply L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
n3/2

converges, we conclude that
∞∑
n=1

√
n+ 3

n2 − n+ 1
con-

verges as well.

We mentioned earlier that the Integral Test did not work well with series
containing factorial terms. The next section introduces the Ratio Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.
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Exercises 10.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

function a(n) = an must be , and .

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this section do not work well with factori-
als?

4. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that 0 ≤ bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 5 – 12, use the Integral Test to determine the con-
vergence of the given series.

5.
∞∑
n=1

1
2n

6.
∞∑
n=1

1
n4

7.
∞∑
n=1

n
n2 + 1

8.
∞∑
n=2

1
n ln n

9.
∞∑
n=1

1
n2 + 1

10.
∞∑
n=2

1
n(ln n)2

11.
∞∑
n=1

n
2n

12.
∞∑
n=1

ln n
n3

In Exercises 13 – 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

13.
∞∑
n=1

1
n2 + 3n− 5

14.
∞∑
n=1

1
4n + n2 − n

15.
∞∑
n=1

ln n
n

16.
∞∑
n=1

1
n! + n

17.
∞∑
n=2

1√
n2 − 1

18.
∞∑
n=5

1√
n− 2

19.
∞∑
n=1

n2 + n+ 1
n3 − 5

20.
∞∑
n=1

2n

5n + 10

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=2

1
n2 ln n

In Exercises 23 – 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

23.
∞∑
n=1

1
n2 − 3n+ 5

24.
∞∑
n=1

1
4n − n2

25.
∞∑
n=4

ln n
n− 3

26.
∞∑
n=1

1√
n2 + n

27.
∞∑
n=1

1
n+

√
n

28.
∞∑
n=1

n− 10
n2 + 10n+ 10

29.
∞∑
n=1

sin
(
1/n
)
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30.
∞∑
n=1

n+ 5
n3 − 5

31.
∞∑
n=1

√
n+ 3

n2 + 17

32.
∞∑
n=1

1√
n+ 100

In Exercises 33 – 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

33.
∞∑
n=1

n2

2n

34.
∞∑
n=1

1
(2n+ 5)3

35.
∞∑
n=1

n!
10n

36.
∞∑
n=1

ln n
n!

37.
∞∑
n=1

1
3n + n

38.
∞∑
n=1

n− 2
10n+ 5

39.
∞∑
n=1

3n

n3

40.
∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an
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Note: Theorem 10.2.5 allows us to apply
the Ratio Test to series where {an} is pos-
itive for all but a finite number of terms.

10.4 Ratio and Root Tests

10.4 Ratio and Root Tests

The nth–Term Test of Theorem 10.2.4 states that in order for a series
∞∑
n=1

an to

converge, lim
n→∞

an = 0. That is, the terms of {an} must get very small. Not
only must the terms approach 0, they must approach 0 “fast enough”: while

lim
n→∞

1/n = 0, the Harmonic Series
∞∑
n=1

1
n
diverges as the terms of {1/n} do not

approach 0 “fast enough.”
The comparison tests of the previous section determine convergence by

comparing terms of a series to terms of another series whose convergence is
known. This section introduces the Ratio and Root Tests, which determine con-
vergenceby analyzing the termsof a series to see if they approach 0 “fast enough.”

Ratio Test

Theorem 10.4.1 Ratio Test

Let {an} be a positive sequence where lim
n→∞

an+1

an
= L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Ratio Test is inconclusive.

The principle of the Ratio Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous termwhich is enough
to ensure convergence.

Example 10.4.1 Applying the Ratio Test
Use the Ratio Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

SÊ½çã®ÊÄ

1.
∞∑
n=1

2n

n!
:

lim
n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the Ratio Test
∞∑
n=1

2n

n!
converges.
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2.
∞∑
n=1

3n

n3
:

lim
n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ratio Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

:

lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ratio Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.

The Ratio Test is not effective when the terms of a series only contain al-
gebraic functions (e.g., polynomials). It is most effective when the terms con-
tain some factorials or exponentials. The previous example also reinforces our
developing intuition: factorials dominate exponentials, which dominate alge-
braic functions, which dominate logarithmic functions. In Part 1 of the example,
the factorial in the denominator dominated the exponential in the numerator,
causing the series to converge. In Part 2, the exponential in the numerator dom-
inated the algebraic function in the denominator, causing the series to diverge.

While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 10.4.2 Applying the Ratio Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

SÊ½çã®ÊÄ Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the latter is 2(4 · 3 · 2 · 1) = 48.

Applying the Ratio Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

Noting that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.
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Note: Theorem 10.2.5 allows us to apply
the Root Test to series where {an} is pos-
itive for all but a finite number of terms.

10.4 Ratio and Root Tests

Since the limit is 1/4 < 1, by the Ratio Test we conclude
∞∑
n=1

n!n!
(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Theorem 10.4.2 Root Test

Let {an} be a positive sequence, and let lim
n→∞

(an)1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

Example 10.4.3 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

SÊ½çã®ÊÄ

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the Ratio Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hospital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 1, we conclude the series diverges.

Each of the tests we have encountered so far has required that we analyze
series from positive sequences. The next section relaxes this restriction by con-
sidering alternating series, where the underlying sequence has terms that alter-
nate between being positive and negative.
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Exercises 10.4
Terms and Concepts

1. The Ratio Test is not effectivewhen the terms of a sequence
only contain functions.

2. The Ratio Test is most effective when the terms of a se-
quence contains and/or functions.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works particularly well on series where each
term is to a .

Problems

In Exercises 5 – 14, determine the convergence of the given
series using the Ratio Test. If the Ratio Test is inconclusive,
state so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

In Exercises 15 – 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

15.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

16.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

17.
∞∑
n=1

2nn2

3n

18.
∞∑
n=1

1
nn

19.
∞∑
n=1

3n

n22n+1

20.
∞∑
n=1

4n+7

7n

21.
∞∑
n=1

(
n2 − n
n2 + n

)n

22.
∞∑
n=1

(
1
n
− 1

n2

)n

23.
∞∑
n=1

1(
ln n
)n

24.
∞∑
n=1

n2(
ln n
)n

In Exercises 25 – 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

25.
∞∑
n=1

n2 + 4n− 2
n3 + 4n2 − 3n+ 7

26.
∞∑
n=1

n44n

n!

27.
∞∑
n=1

n2

3n + n

28.
∞∑
n=1

3n

nn

29.
∞∑
n=1

n√
n2 + 4n+ 1
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30.
∞∑
n=1

n!n!n!
(3n)!

31.
∞∑
n=1

1
ln n

32.
∞∑
n=1

(
n+ 2
n+ 1

)n

33.
∞∑
n=1

n3(
ln n
)n

34.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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Figure 10.5.1: Illustrating convergence
with the Alternating Series Test.

Chapter 10 Sequences and Series

10.5 Alternating Series and Absolute Convergence
All of the series convergence tests we have used require that the underlying
sequence {an} be a positive sequence. (We can relax this with Theorem 10.2.5
and state that there must be an N > 0 such that an > 0 for all n > N; that is,
{an} is positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 10.5.1 Alternating Series

Let {an} be a positive sequence. An alternating series is a series of either
the form

∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternating series is the Alternating Harmonic Series:

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alternating series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · ·

Theorem10.2.1 states that geometric series convergewhen |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alternating series thatmeet
a few conditions.

Theorem 10.5.1 Alternating Series Test

Let {an} be a positive, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge.

The basic idea behind Theorem 10.5.1 is illustrated in Figure 10.5.1. A posi-
tive, decreasing sequence {an} is shown along with the partial sums

Sn =
n∑

i=1
(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an.
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10.5 Alternating Series and Absolute Convergence

Because{an} is decreasing, the amount bywhich Sn bounces up/downdecreases.
Moreover, the odd terms of Sn form a decreasing, bounded sequence, while the
even terms of Sn form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem 10.1.5) and the terms of {an} approach
0, one can show the odd and even terms of Sn converge to the same common
limit L, the sum of the series.

Example 10.5.1 Applying the Alternating Series Test
Determine if the Alternating Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=1

(−1)n
ln n
n

3.
∞∑
n=1

(−1)n+1 |sin n|
n2

SÊ½çã®ÊÄ

1. This is the Alternating Harmonic Series as seen previously. The underlying
sequence is {an} = {1/n}, which is positive, decreasing, and approaches
0 as n → ∞. Therefore we can apply the Alternating Series Test and
conclude this series converges.

While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.

2. The underlying sequence is {an} = {ln n/n}. This is positive and ap-
proaches 0 as n → ∞ (use L’Hospital’s Rule). However, the sequence
is not decreasing for all n. It is straightforward to compute a1 = 0, a2 ≈
0.347, a3 ≈ 0.366, and a4 ≈ 0.347: the sequence is increasing for at least
the first 3 terms.

We do not immediately conclude that we cannot apply the Alternating
Series Test. Rather, consider the long–term behaviour of {an}. Treating
an = a(n) as a continuous function of n defined on [1,∞), we can take
its derivative:

a ′(n) =
1− ln n

n2
.

The derivative is negative for all n ≥ 3 (actually, for all n > e), mean-
ing a(n) = an is decreasing on [3,∞). We can apply the Alternating
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n
ln n
n

converges; adding the terms with n = 1 and n = 2 do not

change the convergence (i.e., we apply Theorem 10.2.5).

The important lesson here is that as before, if a series fails to meet the
criteria of the Alternating Series Test on only a finite number of terms, we
can still apply the test.

3. The underlying sequence is {an} = |sin n|/n. This sequence is positive
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of |sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {an} decreasing, therefore we
cannot apply the Alternating Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 10.5.1.
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Key Idea 10.2.1 gives the sum of some important series. Two of these are

∞∑
n=1

1
n2

=
π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places after the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternating structure of an alternating series gives us a powerful tool when
approximating the sum of a convergent series.

Theorem 10.5.2 The Alternating Series Approximation Theorem

Let {an} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let Sn and L be the nth partial sums and sum, respectively,

of either
∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an. Then

1. |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 10.5.2 states that the nth partial sum of a convergent al-
ternating series will be within an+1 of its total sum. Consider the alternating

series we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since

a14 = 1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum.

Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈
0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places after the decimal.

Some alternating series converge slowly. In Example 10.5.1 we determined

the series
∞∑
n=1

(−1)n+1 ln n
n

converged. With n = 1001, we find ln n/n ≈ 0.0069,

meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places after the
decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

Example 10.5.2 Approximating the sum of convergent alternating series
Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.
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SÊ½çã®ÊÄ

1. Using Theorem 10.5.2, we want to find n where 1/n3 < 0.001:

1
n3

≤ 0.001 =
1

1000
n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Let L be the sum of this series. By Part 1 of the theorem, |S9 − L| < a10 =
1/1000. We can compute S9 = 0.902116, which our theorem states is
within 0.001 of the total sum.
We can use Part 2 of the theorem to obtain an even more accurate result.
Aswe know the 10th termof the series is−1/1000, we can easily compute
S10 = 0.901116. Part 2 of the theorem states that L is between S9 and S10,
so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving ln(n)/n =
0.001 for n. This cannot be solved algebraically, so we will use Newton’s
Method to approximate a solution.
Let f(x) = ln(x)/x− 0.001; we want to know where f(x) = 0. We make a
guess that xmust be “large,” so our initial guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate solution xn, our next
approximation xn+1 is given by

xn+1 = xn −
f(xn)
f ′(xn)

.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to converge to a
solution x = 9118.01 after 8 iterations. Taking the next integer higher, we
have n = 9119, where ln(9119)/9119 = 0.000999903 < 0.001.
Again using a computer, we find S9118 = −0.160369. Part 1 of the theo-
rem states that this is within 0.001 of the actual sum L. Already knowing
the 9,119th term,we can compute S9119 = −0.159369,meaning−0.159369 <
L < −0.160369.

Notice how the first series converged quite quickly, where we needed only 10
terms to reach the desired accuracy, whereas the second series took over 9,000
terms.

One of the famous results of mathematics is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the Alternating Harmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The

notion that alternating the signs of the terms in a series can make a series con-
verge leads us to the following definitions.
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Note: In Definition 10.5.2,
∞∑
n=1

an is not

necessarily an alternating series; it just
may have some negative terms.

Chapter 10 Sequences and Series

Definition 10.5.2 Absolute and Conditional Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

2. A series
∞∑
n=1

an converges conditionally if
∞∑
n=1

an converges but

∞∑
n=1

|an| diverges.

Thus we say the Alternating Harmonic Series converges conditionally.

Example 10.5.3 Determining absolute and conditional convergence.
Determine if the following series converge absolutely, conditionally, or diverge.

1.
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
2.

∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
3.

∞∑
n=3

(−1)n
3n− 3
5n− 10

SÊ½çã®ÊÄ

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the Alternating Series

Test; we conclude it converges conditionally.

2. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5
2n

converges using the Ratio Test.

Therefore we conclude
∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

3. The series
∞∑
n=3

∣∣∣∣(−1)n
3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the nth Term Test, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n
3n− 3
5n− 10

fails the conditions of the Alternating Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n → ∞. We can state
further that this series diverges; as n → ∞, the series effectively adds and
subtracts 3/5 over and over. This causes the sequence of partial sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n
3n− 3
5n− 10

diverges.
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10.5 Alternating Series and Absolute Convergence

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an| will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecting
the sum.

Theorem 10.5.3 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

In Example 10.5.3, we determined the series in part 2 converges absolutely.
Theorem 10.5.3 tells us the series converges (which we could also determine
using the Alternating Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the Alternating Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Key Idea 10.2.1 or Example 10.5.1).
Consider the rearrangement where every positive term is followed by two
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negative terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms
and simplify:(

1− 1
2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alternating Harmonic Series does not actually
converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The end of this
text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, which we will consider in the next
section. We will use power series to create functions where the output is the
result of an infinite summation.
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Exercises 10.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alternating series?

2. A series
∞∑
n=1

(−1)nan converges when {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but

∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5 – 20, an alternating series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is

conditional or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=1

(−1)n+1
√
n!

7.
∞∑
n=0

(−1)n n+ 5
3n− 5

8.
∞∑
n=1

(−1)n 2
n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=2

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−e)−n

17.
∞∑
n=0

(−1)nn2

n!

18.
∞∑
n=0

(−1)n2−n2

19.
∞∑
n=1

(−1)n√
n

20.
∞∑
n=1

(−1000)n

n!

Let Sn be the nth partial sum of a series. In Exercises 21 – 24, a
convergent alternating series is given and a value of n. Com-
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

21.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

22.
∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑
n=0

(−1)n

n!
, n = 6

24.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 25 – 28, a convergent alternating series is given
along with its sum and a value of ε. Use Theorem 10.5.2 to
find n such that the nth partial sum of the series is within ε of
the sum of the series.

25.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001
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26.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

27.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

28.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8
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10.6 Power Series

10.6 Power Series
So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

Definition 10.6.1 Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . .

2. The power series in x centred at c is the series

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . .

Example 10.6.1 Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

SÊ½çã®ÊÄ

1. One of the conventions we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + . . .

This is a geometric series in x.

2. This series is centred at c = −1. Note how this series starts with n = 1.
We could rewrite this series starting at n = 0 with the understanding that
a0 = 0, and hence the first term is 0.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
. . .

3. This series is centred at c = π. Recall that 0! = 1.
∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+

(x− π)2

2
− (x− π)4

24
+
(x− π)6

6!
− (x− π)8

8!
. . .

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 10.6.1, we recognized the series
∞∑
n=0

xn as a geo-

metric series in x. Theorem 10.2.1 states that this series converges only when
|x| < 1.
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This raises the question: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definition.

Theorem 10.6.1 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem10.6.1
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Definition 10.6.2 Radius and Interval of Convergence

1. The number R given in Theorem 10.6.1 is the radius of conver-
gence of a given series. When a series converges for only x = c,
we say the radius of convergence is 0, i.e., R = 0. When a se-
ries converges for all x, we say the series has an infinite radius of
convergence, i.e., R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the Ratio Test). However, the
tests all required that the terms of a series be positive. The following theorem
gives us a work–around to this problem.

Theorem10.6.2 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

∣∣an(x − c)n
∣∣ have the same radius of

convergence R.

Theorem 10.6.2 allows us to find the radius of convergence R of a series by
applying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.
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Example 10.6.2 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

SÊ½çã®ÊÄ

1. We apply the Ratio Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣∣∣xn/n!∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The Ratio Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the Ratio Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣∣∣xn/n∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x|.

The Ratio Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1.
To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the Alternating

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].

3. We apply the Ratio Test to the series
∞∑
n=0

∣∣2n(x− 3)n
∣∣:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣∣∣2n(x− 3)n

∣∣ = lim
n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣2(x− 3)
∣∣.
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Chapter 10 Sequences and Series

According to the Ratio Test, the series convergeswhen
∣∣2(x−3)

∣∣ < 1 =⇒∣∣x − 3
∣∣ < 1/2. The series is centred at 3, and x must be within 1/2 of 3

in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the Ratio Test to
∞∑
n=0

∣∣n!xn∣∣:
lim

n→∞

∣∣(n+ 1)!xn+1
∣∣∣∣n!xn∣∣ = lim

n→∞

∣∣(n+ 1)x
∣∣

= ∞ for all x, except x = 0.

The Ratio Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0.

We can use a power series to define a function:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Theorem10.6.3 Derivatives and Indefinite Integrals of Power Series
Functions

Let f(x) =
∞∑
n=0

an(x − c)n be a function defined by a power series, with

radius of convergence R.

1. f(x) is continuous and differentiable on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 10.6.3:
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10.6 Power Series

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. Differentiation and integration are simply calculated term–by–term using
the Power Rules.

Example 10.6.3 Derivatives and indefinite integrals of power series

Let f(x) =
∞∑
n=0

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respective

intervals of convergence.

SÊ½çã®ÊÄ We find the derivative and indefinite integral of f(x), follow-
ing Theorem 10.6.3.

1. f ′(x) =
∞∑
n=1

nxn−1 = 1+ 2x+ 3x2 + 4x3 + · · · .

In Example 10.6.1, we recognized that
∞∑
n=0

xn is a geometric series in x.

We know that such a geometric series converges when |x| < 1; that is,
the interval of convergence is (−1, 1).

To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1):

f ′(−1) = 1− 2+ 3− 4+ · · · , which diverges.

f ′(1) = 1+ 2+ 3+ 4+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F(x) =
∫

f(x) dx = C+
∞∑
n=0

xn+1

n+ 1
= C+ x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1):

F(−1) = C− 1+ 1/2− 1/3+ 1/4+ · · ·

The value of C is irrelevant; notice that the rest of the series is an Alter-
nating Series that whose terms converge to 0. By the Alternating Series
Test, this series converges. (In fact, we can recognize that the terms of the
series after C are the opposite of the Alternating Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+ 1+ 1/2+ 1/3+ 1/4+ · · ·

Notice that this summation is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1).
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The previous example showed how to take the derivative and indefinite in-
tegral of a power series without motivation for why we care about such opera-
tions. Wemay care for the sheer mathematical enjoyment “that we can”, which
is motivation enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivatives and indefinite integrals.

Recall that f(x) =
∞∑
n=0

xn in Example 10.6.3 is a geometric series. According

to Theorem 10.2.1, this series converges to 1/(1 − x) when |x| < 1. Thus we
can say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

Integrating the power series, (as done in Example 10.6.3,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (10.4)

while integrating the function f(x) = 1/(1− x) gives

F(x) = − ln|1− x|+ C2. (10.5)

Equating Equations (10.4) and (10.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln|1− x|+ C2.

Letting x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln|1− x|.

Weestablished in Example 10.6.3 that the series on the left converges at x = −1;
substituting x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the left we have the opposite of the Alternating Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

Important: We stated in Key Idea 10.2.1 (in Section 10.2) that the Alternating
Harmonic Series converges to ln 2, and referred to this fact again in Example
10.5.1 of Section 10.5. However, we never gave an argument for why this was
the case. The work above finally shows how we conclude that the Alternating
Harmonic Series converges to ln 2.

We use this type of analysis in the next example.

Example 10.6.4 Analyzing power series functions

Let f(x) =

∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the be-

haviour of f(x).
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10.6 Power Series

SÊ½çã®ÊÄ We start by making two notes: first, in Example 10.6.2, we
found the interval of convergence of this power series is (−∞,∞). Second, we
will find it useful later to have a few terms of the series written out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (10.6)

We now find the derivative:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series starting with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivative of f(x) is f(x). The only functions for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see Equation (10.6)),
cmust be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicating that
f(x) = ex.

Example 10.6.4 and the work following Example 10.6.3 established relation-
ships between a power series function and “regular” functions that we have
dealt with in the past. In general, given a power series function, it is difficult (if
not impossible) to express the function in terms of elementary functions. We
chose examples where things worked out nicely.

In this section’s last example, we show how to solve a simple differential
equation with a power series.
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Chapter 10 Sequences and Series

Example 10.6.5 Solving a differential equation with a power series.
Give the first 4 terms of the power series solution to y ′ = 2y, where y(0) = 1.

SÊ½çã®ÊÄ The differential equation y ′ = 2y describes a function y =
f(x) where the derivative of y is twice y and y(0) = 1. This is a rather simple
differential equation; with a bit of thought one should realize that if y = Ce2x,
then y ′ = 2Ce2x, and hence y ′ = 2y. By letting C = 1 we satisfy the initial
condition of y(0) = 1.

Let’s ignore the fact that we already know the solution and find a power
series function that satisfies the equation. The solution we seek will have the
form

f(x) =
∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 10.6.3:

f ′(x) =
∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x2 + 4a4x3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x2 + 4a4x3 · · · = 2
(
a0 + a1x+ a2x2 + a3x3 + · · ·

)
= 2a0 + 2a1x+ 2a2x2 + 2a3x3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The initial condition y(0) = f(0) = 1 indicates that a0 = 1; with this, we can
find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;
a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;
a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series solution to the differential equation
y ′ = 2y is

f(x) = 1+ 2x+ 2x2 +
4
3
x3 +

2
3
x4 + · · ·

In Section 10.8, as we study Taylor Series, we will learn how to recognize this
series as describing y = e2x.

Our last example illustrates that it can be difficult to recognize an elementary
function by its power series expansion. It is far easier to start with a known func-
tion, expressed in terms of elementary functions, and represent it as a power
series function. One may wonder why we would bother doing so, as the latter
function probably seems more complicated. In the next two sections, we show
both how to do this and why such a process can be beneficial.
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Exercises 10.6
Terms and Concepts
1. We adopt the convention that x0 = , regardless of the

value of x.

2. What is the difference between the radius of convergence
and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5 – 8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9 – 24, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

In Exercises 25 – 30, a function f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con-

vergence.

25.
∞∑
n=0

nxn

26.
∞∑
n=1

xn

n

27.
∞∑
n=0

( x
2

)n
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28.
∞∑
n=0

(−3x)n

29.
∞∑
n=0

(−1)nx2n

(2n)!

30.
∞∑
n=0

(−1)nxn

n!

In Exercises 31 – 36, give the first 5 terms of the series that is
a solution to the given differential equation.

31. y ′ = 3y, y(0) = 1

32. y ′ = 5y, y(0) = 5

33. y ′ = y2, y(0) = 1

34. y ′ = y+ 1, y(0) = 1

35. y ′′ = −y, y(0) = 0, y ′(0) = 1

36. y ′′ = 2y, y(0) = 1, y ′(0) = 1
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.....

y = f(x)

.

y = p1(x)

.

−4

.

−2

.

2

.

4

. −5.

5

.

x

.

y

f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 10.7.1: Plotting y = f(x) and a ta-
ble of derivatives of f evaluated at 0.

...

..

y = p2(x)

.

y = p4(x)

.

−4

.

−2

.

2

.

4

.

−5

.

5

.

x

.

y

Figure 10.7.2: Plotting f, p2 and p4.

10.7 Taylor Polynomials

10.7 Taylor Polynomials
Consider a function y = f(x) and a point

(
c, f(c)

)
. The derivative, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 10.7.1, we see a function y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at x = 0
is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure. Note
that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f well.

One shortcoming of this approximation is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 10.7.1 gives the following information:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properties. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

Let’s start with a general quadratic function

p(x) = a0 + a1x+ a2x2

We find the following:

p2(x) = a0 + a1x+ a2x2 p2(0) = a0
p2 ′(x) = a1 + 2a2x p2 ′(0) = a1
p2 ′′(x) = 2a2 p2 ′′(0) = 2a2.

To get the desired properties above, we must have

a0 = f(0) = 2, a1 = f ′(0) = 1, 2a2 = f ′′(0) = 2,

so a0 = 2, a1 = 1, and a2 = 2/2 = 1, giving us the polynomial

p2(x) = 2+ x+ x2.

We can repeat this approximation process by creating polynomials of higher de-
gree that match more of the derivatives of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivatives of f. Figure 10.7.2
also shows p4(x) = −x4/2 − x3/6 + x2 + x + 2, whose first four derivatives at
0 match those of f.

How do we ensure that the derivatives of our polynomial match those of f?
We simply begin with a polynomial of the desired degree, compute its deriva-
tives, and compare them to those of f! Recall that each term in a polynomial
consists of a power of x, and a coefficient, like so: anxn. Our goal is to determine
the value for each coefficient an so that the derivatives of our polynomial match
those of our function f. If we take k derivatives of the term anxn, with k ≤ n, we
obtain

dk

dxk
(anxn) = n(n− 1) · · · (n− k+ 1)anxn−k.

For k < n, the expression above vanishes when we set x = 0. However, for
n = k, we obtain the constant value

dk

dxk
(akxk) = k · (k− 1) · · · 2 · 1ak. (10.7)
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The notation k! is read as “k factorial”. By
convention, we also define 0! = 1, mostly
because it makes our formulas look a lot
nicer.

...

..

y = p13(x)

.

−4

.

−2

.

2

.

4

.
−5

.

5

.

x

.

y

Figure 10.7.3: Plotting f and p13.

Historical note: Colin Maclaurin was a
Scottish mathematician, born in 1698.
He lived until 1746, and made a num-
ber of contributions to the development
of mathematics and physics. His elec-
tion as professor of mathematics at the
University of Aberdeen at the age of 19
made him the world’s youngest profes-
sor, a record he held until 2008! He was
also a staunch foe of the Jacobite Rebel-
lion, and was instrumental in the defence
of Edinburgh against the army of Bon-
nie Prince Charlie. (For more details, see
Wikipedia.)

Chapter 10 Sequences and Series

Consider a polynomial

pn(x) = a0 + a1x+ · · ·+ akxk + · · ·+ anxn

of degree n. If we take k derivatives, all of the terms involving powers of x less
than k disappear, and when we set x = 0, all of the terms involving powers of x
larger than k disappear, leaving us with the single constant given in (10.7).

Recalling the notation k! = 1 ·2 ·3 · · · k for the product of the first k integers,
we have shown that

p(k)n (0) = k!ak.

If we want the derivatives of pn to agree with some unknown function f when
x = 0, then we must have

ak =
f(k)(0)
k!

.

As we use more and more derivatives, our polynomial approximation to f
gets better and better. In this example, the interval on which the approximation
is “good” gets bigger and bigger. Figure 10.7.3 shows p13(x); we can visually
affirm that this polynomial approximates f very well on [−2, 3]. (The polynomial
p13(x) is not particularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Thepolynomialswehave created are examples of Taylor polynomials, named
after the British mathematician Brook Taylor who made important discoveries
about such functions. In the discussion above, we concentrated on evaluating
the derivatives of f at 0; however, there is nothing special about this point. Just
as we can consider the linear approximation of a function near any point, so too
can we determine a polynomial approximation about any value c in the domain
of f. The only catch is that our polynomial will then be given in terms of powers
of x− c, rather than powers of x, as we see in the following definition.

Definition 10.7.1 Taylor Polynomial, Maclaurin Polynomial

Let f be a function whose first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will practice creating Taylor and Maclaurin polynomials in the following
examples.
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 10.7.4: The derivatives of f(x) = ex

evaluated at x = 0.

.....y = p5(x).
−2

.
2

.

5

.

10

.

x

.

y

Figure 10.7.5: A plot of f(x) = ex and its
5th degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 10.7.6: Derivatives of ln x evalu-
ated at x = 1.

10.7 Taylor Polynomials

Example 10.7.1 Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SÊ½çã®ÊÄ

1. We start with creating a table of the derivatives of ex evaluated at x = 0.
In this particular case, this is relatively simple, as shown in Figure 10.7.4.
By the definition of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straightforward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 10.7.5.

Example 10.7.2 Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

SÊ½çã®ÊÄ

1. We begin by creating a table of derivatives of ln x evaluated at x = 1.
While this is not as straightforward as it was in the previous example, a
pattern does emerge, as shown in Figure 10.7.6.
Using Definition 10.7.1, we have

pn(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2!

(x− c)2 + f ′′′(c)
3!

(x− c)3 + · · ·+ f (n)(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 + 1

3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”
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Figure 10.7.7: A plot of y = ln x and its 6th
degree Taylor polynomial at x = 1.
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y = ln x
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Figure 10.7.8: A plot of y = ln x and its
20th degree Taylor polynomial at x = 1.

Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric functions, in practice they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.
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2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approximation as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 10.7.7 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximation is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 10.7.7 shows thatp6(x)provides
less accurate approximations of ln x as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 10.7.8. We’ll soon discuss
why this is.

Taylor polynomials are used to approximate functions f(x) in mainly two sit-
uations:

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the ratio of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of computing cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of computing
such values using only operations usually hard–wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but information about its derivatives is known.
This occurs more often than one might think, especially in the study of
differential equations.

508



Note: one way of quantifying the extent
to which one function approximates an-
other is using the order to which they
agree. We say that two functions f and
g agree to order n at c if n is the largest
integer for which

lim
x→c

f(x)− g(x)
(x− c)n

= 0.

Taylor’s Theorem tells us that a function
and its degree n Taylor polynomial agree
to order n. Roughly speaking, this means
that their difference goes to zero faster
than thenth power of x−c as x approaches
c.

10.7 Taylor Polynomials

In both situations, a critical piece of information to have is “How good is my
approximation?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximation is?

Although much of the content presented in Calculus concerns the search for
exact answers to problems such as integration and differentiation, many practi-
cal applications of calculus involve attempts to find approximations; for exam-
ple, using Newton’sMethod to approximate the zeros of a function or numerical
integration to approximate the value of an integral that cannot be solved exactly.
Whenever an approximation is used, one naturallywishes to knowhowgood the
approximation is. In other words, we look for a bound on the error introduced
by working with an approximation. The following theorem gives bounds on the
error introduced in using a Taylor (and hence Maclaurin) polynomial to approx-
imate a function.

Theorem 10.7.1 Taylor’s Theorem

1. Let f be a function whose n+ 1th derivative exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2. |Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximation. The second part gives bounds on how big that error
can be. If the (n + 1)th derivative is large on I, the error may be large; if x is far
from c, the error may also be large. However, the (n+ 1)! term in the denomi-
nator tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of
ln 1.5 and ln 2 made in Example 10.7.2.

Example 10.7.3 Finding error bounds of a Taylor polynomial
Use Theorem 10.7.1 to find error bounds when approximating ln 1.5 and ln 2
withp6(x), the Taylor polynomial of degree 6of f(x) = ln x at x = 1, as calculated
in Example 10.7.2.

SÊ½çã®ÊÄ

1. We start with the approximation of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the better; it will give us a more accurate (and smaller!)
approximation of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.

The theorem references max
∣∣f (n+1)(z)

∣∣. In our situation, this is asking
“How big can the 7th derivative of y = ln x be on the interval (0.9, 1.6)?”
The seventh derivative is y = −6!/x7. The largest value it attains on I is
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 10.7.9: A table of the derivatives of
f(x) = cos x evaluated at x = 0.

Chapter 10 Sequences and Series

about 1506. Thus we can bound the error as:∣∣R6(1.5)
∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approximation would be within about 2 thousandths of the actual
value, whereas the approximation was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh derivative of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)

∣∣ ≤ max
∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error estimate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
particularly useful.
In reality, our approximation was only off by about 0.07. However, we
are approximating ostensibly because we do not know the real answer. In
order to be assured that we have a good approximation, we would have
to resort to using a polynomial of higher degree.

We practice again. This time, we use Taylor’s theorem to find n that guaran-
tees our approximation is within a certain amount.

Example 10.7.4 Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivatives of f(x) = cos x. In the case of this trigonometric function, this is
easy. All derivatives of cosine are± sin x or± cos x. In all cases, these functions
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequalities:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that satisfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <
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Figure 10.7.10: A graph of f(x) = cos x
and its degree 8 Maclaurin polynomial.

f(x) =
√
x ⇒ f(4) = 2

f ′(x) = 1
2
√
x

⇒ f ′(4) = 1
4

f ′′(x) = −1
4x3/2

⇒ f ′′(4) = −1
32

f ′′′(x) = 3
8x5/2

⇒ f ′′′(4) = 3
256

f (4)(x) = −15
16x7/2

⇒ f (4)(4) = −15
2048

Figure 10.7.11: A table of the derivatives
of f(x) =

√
x evaluated at x = 4.

.....

.. y =
√
x.

y = p4(x)

.
5

.
10

.

1

.

2

.

3

. x.

y

Figure 10.7.12: A graph of f(x) =
√
x and

its degree 4 Taylor polynomial at x = 4.

10.7 Taylor Polynomials

0.001. Thus we want to approximate cos 2 with p9(2).

Wenow set out to computep9(x). Weagain need a table of the derivatives of
f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 10.7.9.
Notice how the derivatives, evaluated at x = 0, follow a certain pattern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are creating a Maclaurin
polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)(0)
8!

x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approximation is within 0.001 of the correct
answer. Technology shows us that our approximation is actually within about
0.0003 of the correct answer.

Figure 10.7.10 shows a graph of y = p8(x) and y = cos x. Note how well the
two functions agree on about (−π, π).

Example 10.7.5 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximating
√
3 with p4(3).

SÊ½çã®ÊÄ

1. We begin by evaluating the derivatives of f at x = 4. This is done in Figure
10.7.11. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fifth derivative of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus

∣∣R4(3)
∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approximation is accurate to at least the first 2 places after
the decimal. (It turns out that our approximation is actually accurate to
4 places after the decimal.) A graph of f(x) =

√
x and p4(x) is given in

Figure 10.7.12. Note how the two functions are nearly indistinguishable
on (2, 7). 511
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Figure 10.7.13: A graph of y = −1/(x−1)
and y = p3(x) from Example 10.7.6.

Chapter 10 Sequences and Series

Our final example gives a brief introduction to using Taylor polynomials to
solve differential equations.

Example 10.7.6 Approximating an unknown function
A function y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y ′ = y2

(This second fact says that amazingly, the derivative of the function is actually
the function squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

SÊ½çã®ÊÄ Onemight initially think that not enough information is given
to find p3(x). However, note how the second fact above actually lets us know
what y ′(0) is:

y ′ = y2 ⇒ y ′(0) = y2(0).

Since y(0) = 1, we conclude that y ′(0) = 1.
Nowwe find information about y ′′. Starting with y ′ = y2, take derivatives of

both sides, with respect to x. That means we must use implicit differentiation.

y ′ = y2

d
dx
(
y ′
)
=

d
dx
(
y2
)

y ′′ = 2y · y ′.

Now evaluate both sides at x = 0:

y ′′(0) = 2y(0) · y ′(0)
y ′′(0) = 2

We repeat this once more to find y ′′′(0). We again use implicit differentiation;
this time the Product Rule is also required.

d
dx
(
y ′′
)
=

d
dx
(
2yy ′

)
y ′′′ = 2y ′ · y ′ + 2y · y ′′.

Now evaluate both sides at x = 0:

y ′′′(0) = 2y ′(0)2 + 2y(0)y ′′(0)
y ′′′(0) = 2+ 4 = 6

In summary, we have:

y(0) = 1 y ′(0) = 1 y ′′(0) = 2 y ′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differential equation we started with, y ′ = y2, where
y(0) = 1, can be solved without too much difficulty: y =

1
1− x

. Figure 10.7.13
shows this function plotted with p3(x). Note how similar they are near x = 0.
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10.7 Taylor Polynomials

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solutions to differential equations. This topic is
often broached in introductory Differential Equations courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximation is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
section has taken a step back from this study, focusing instead on finite summa-
tion of terms. In the next section, we explore Taylor Series, where we represent
a function with an infinite series.
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Exercises 10.7
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) better and better
as n gets larger.

3. For some function f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some function f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given function.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) = 1
1− x

, n = 4

11. f(x) = 1
1+ x

, n = 4

12. f(x) = 1
1+ x

, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given function.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) = 1
x
, n = 5, c = 2

18. f(x) = 1
x2
, n = 8, c = 1

19. f(x) = 1
x2 + 1

, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the function value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 34, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = sin x.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1− x
.

33. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = 1

1+ x
.

34. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x centred at x = 1.
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In Exercises 35 – 37, approximate the solution to the given
differential equation with a degree 4 Maclaurin polynomial.

35. y′ = y, y(0) = 1

36. y′ = 5y, y(0) = 3

37. y′ = 2
y
, y(0) = 1
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 10.8.1: A table of the derivatives of
f(x) = cos x evaluated at x = 0.

Chapter 10 Sequences and Series

10.8 Taylor Series
In Section 10.6, we showedhowcertain functions can be represented by a power
series function. In Section 10.7, we showed how we can approximate functions
with polynomials, given that enough derivative information is available. In this
section we combine these concepts: if a function f(x) is infinitely differentiable,
we show how to represent it with a power series function.

Definition 10.8.1 Taylor and Maclaurin Series

Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centred at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Setting c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

If pn(x) is the nth degree Taylor polynomial for f(x) centred at x = c, we saw
how f(x) is approximately equal to pn(x) near x = c. We also saw how increasing
the degree of the polynomial generally reduced the error.

We are now considering series, where we sum an infinite set of terms. Our
ultimate hope is to see the error vanish and claim a function is equal to its Taylor
series.

When creating the Taylor polynomial of degree n for a function f(x) at x = c,
we needed to evaluate f, and the first n derivatives of f, at x = c. When creating
the Taylor series of f, it helps to find a pattern that describes the nth derivative
of f at x = c. We demonstrate this in the next two examples.

Example 10.8.1 The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SÊ½çã®ÊÄ In Example 10.7.4 we found the 8th degree Maclaurin poly-
nomial of cos x. In doing so, we created the table shown in Figure 10.8.1. No-
tice how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible by 4, and
f (n)(0) = −1 when n is even but not divisible by 4. Thus the Maclaurin series
of cos x is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summation. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

Example 10.8.2 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centred at x = 1.
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f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 10.8.2: Derivatives of ln x evalu-
ated at x = 1.

10.8 Taylor Series

SÊ½çã®ÊÄ Figure 10.8.2 shows the nth derivative of ln x evaluated at
x = 1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what distinguishes Taylor series from Taylor polynomials;
we are very interested in finding a pattern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the
first term and start the summation with n = 1, giving the Taylor series for ln x,
centred at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

It is important to note that Definition 10.8.1 defines a Taylor series given a
function f(x); however, we cannot yet state that f(x) is equal to its Taylor series.
We will find that “most of the time” they are equal, but we need to consider the
conditions that allow us to conclude this.

Theorem 10.7.1 states that the error between a function f(x) and its nth–
degree Taylor polynomial pn(x) is Rn(x), where

|Rn(x)| ≤
max| f (n+1)(z)|

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣ .

If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-
clude that the function is equal to its Taylor series expansion.

Theorem 10.8.1 Function and Taylor Series Equality

Let f(x) have derivatives of all orders at x = c, let Rn(x) be as stated in
Theorem 10.7.1, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

Example 10.8.3 Establishing equality of a function and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example
10.8.1, for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣xn+1∣∣ .

Since all derivatives of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state

|Rn(x)| ≤
1

(n+ 1)!
∣∣xn+1∣∣

which implies

− |xn+1|
(n+ 1)!

≤ Rn(x) ≤
|xn+1|
(n+ 1)!

. (10.8)

517



Chapter 10 Sequences and Series

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Applying the Squeeze Theorem to Equation (10.8),

we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x.

It is natural to assume that a function is equal to its Taylor series on the series’
interval of convergence, but this is not always the case. In order to properly
establish equality, one must use Theorem 10.8.1. This is a bit disappointing, as
we developed beautiful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be difficult. For instance, it
is not a simple task to show that ln x equals its Taylor series on (0, 2] as found
in Example 10.8.2; in the Exercises, the reader is only asked to show equality on
(1, 2), which is simpler.

There is good news. A function f(x) that is equal to its Taylor series, centred
at any point the domain of f(x), is said to be an analytic function, and most, if
not all, functions that we encounter within this course are analytic functions.
Generally speaking, any function that one creates with elementary functions
(polynomials, exponentials, trigonometric functions, etc.) that is not piecewise
defined is probably analytic. Formost functions, we assume the function is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
10.8.1 when we suspect something may not work as expected.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 10.8.4 The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SÊ½çã®ÊÄ When k is a positive integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a positive integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representation of

this function would give a useful way of approximating
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivatives of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+kx+
k(k− 1)

2!
x2+

k(k− 1)(k− 2)
3!

x3+. . .+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn+. . .

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,
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we apply the Ratio Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k− 1) · · · (k− n)
(n+ 1)!

xn+1
∣∣∣∣
/∣∣∣∣∣k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn
∣∣∣∣∣

= lim
n→∞

∣∣∣∣k− n
n

x
∣∣∣∣

= |x|.

The series converges absolutely when the limit of the Ratio Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1).

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

Whilewe should not overlook themathematical beauty of Taylor series (which
is reason enough to study them), there are practical uses as well. They provide
a valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 10.8.1 (on the following page) we give a table of the Taylor series
of a number of common functions. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new functions. This allows us to find the Taylor series of functions like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 10.8.1). Knowing that tan−1(1) = π/4, we
can use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this particular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not particularly good.
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Key Idea 10.8.1 Important Taylor Series Expansions

Function and Series First Few Terms Interval of
Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1
1− x

=

∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · · (−1, 1)a

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

aConvergence at x = ±1 depends on the value of k.

Theorem 10.8.2 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R, and let h(x) be continuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0
bnxn

)
=

∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.
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Note: In Example 10.8.6, one could cre-
ate a series for ln(

√
x) by simply recogniz-

ing that ln(
√
x) = ln(x1/2) = 1/2 ln x,

and hence multiplying the Taylor series
for ln x by 1/2. This example was cho-
sen to demonstrate other aspects of se-
ries, such as the fact that the interval of
convergence changes.

10.8 Taylor Series

Example 10.8.5 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cos x using Key Idea
10.8.1 and Theorem 10.8.2.

SÊ½çã®ÊÄ Key Idea 10.8.1 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 10.8.2, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the left:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluating all the nec-
essary derivatives of ex cos x and computing the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x.

Example 10.8.6 Creating new Taylor series
Use Theorem 10.8.2 to create series for y = sin(x2) and y = ln(

√
x).

SÊ½çã®ÊÄ Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply substitute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 10.8.1 is centred at x = 1, so
we will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we substitute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .
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While this is not strictly a power series, it is a series that allows us to study the
function ln(

√
x). Since the interval of convergence of ln x is (0, 2], and the range

of
√
x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

ln(
√
x) is (0, 4].

Example 10.8.7 Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ We learned, when studying Numerical Integration, that e−x2

does not have an antiderivative expressible in terms of elementary functions.
This means any definite integral of this function must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

We use Theorem 10.6.3 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the antiderivative of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary functions. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this antiderivative; substituting 1 and 0 for x and sub-

tracting gives ∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximation of 0.74749. Since
this is an alternating series, we can use the Alternating Series Approximation
Theorem, (Theorem 10.5.2), to determine how accurate this approximation is.
The next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our
approximation is within 0.00075758 of the actual value of the integral. This is
arguably much less work than using Simpson’s Rule to approximate the value of
the integral.

Example 10.8.8 Using Taylor series to solve differential equations
Solve the differential equation y ′ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the solution in terms of an elementary func-
tion.
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SÊ½çã®ÊÄ We found the first 5 terms of the power series solution to
this differential equation in Example 10.6.5 in Section 10.6. These are:

a0 = 1, a1 = 2, a2 =
4
2
= 2, a3 =

8
2 · 3

=
4
3
, a4 =

16
2 · 3 · 4

=
2
3
.

We include the “unsimplified” expressions for the coefficients found in Example
10.6.5 as we are looking for a pattern. It can be shown that an = 2n/n!. Thus
the solution, written as a power series, is

y =
∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 10.8.1 and Theorem 10.8.2, we recognize f(x) = e2x:

ex =
∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 10.8.1, can be difficult. What
if the coefficients in the previous examplewere given in their reduced form; how
could we still recover the function y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

Definition 10.8.1 states that each term of the Taylor expansion of a function
includes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the pattern we had previously
seen, allowing us to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!

xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponential
function.

There are simpler, more direct ways of solving the differential equation y ′ =
2y. We applied power series techniques to this equation to demonstrate its util-
ity, and went on to show how sometimes we are able to recover the solution in
terms of elementary functions using the theory of Taylor series. Most differen-
tial equations faced in real scientific and engineering situations are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximating, the solution.

This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
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functions based on series. Such “series–defined functions” are a valuable tool
in solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using functions of the form y = f(x). Curves created by these new
methods can be beautiful, useful, and important.
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Exercises 10.8
Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Taylor series?

2. What theoremmustwe use to show that a function is equal
to its Taylor series?

Problems
Key Idea 10.8.1 gives the nth term of the Taylor series of com-
mon functions. In Exercises 3 – 6, verify the formula given in
the Key Idea by finding the first few terms of the Taylor series
of the given function and identifying a pattern.

3. f(x) = ex; c = 0

4. f(x) = sin x; c = 0

5. f(x) = 1/(1− x); c = 0

6. f(x) = tan−1 x; c = 0

In Exercises 7 – 12, find a formula for the nth term of the Tay-
lor series of f(x), centered at c, by finding the coefficients of
the first few powers of x and looking for a pattern. (The for-
mulas for several of these are found in Key Idea 10.8.1; show
work verifying these formula.)

7. f(x) = cos x; c = π/2

8. f(x) = 1/x; c = 1

9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0

11. f(x) = x/(x+ 1); c = 1

12. f(x) = sin x; c = π/4

In Exercises 13 – 16, show that the Taylor series for f(x), as
given in Key Idea 10.8.1, is equal to f(x) by applying Theorem
10.8.1; that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln x (show equality only on (1, 2))

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17 – 20, use the Taylor series given in Key Idea
10.8.1 to verify the given identity.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21 – 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25 – 30, use the Taylor series given in Key Idea
10.8.1 to create the Taylor series of the given functions.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first 4 terms)

30. f(x) = (1+ x)1/2 cos x (only find the first 4 terms)

In Exercises 31 – 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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Figure 11.1.1: Plotting the point P =
(2, 1, 3) in space.

11: V��ãÊÙÝ
This chapter introduces a new mathematical object, the vector. Defined in Sec-
tion 11.2, we will see that vectors provide a powerful language for describing
quantities that have magnitude and direction aspects. A simple example of
such a quantity is force: when applying a force, one is generally interested in
howmuch force is applied (i.e., the magnitude of the force) and the direction in
which the force was applied. Vectors will play an important role in many of the
subsequent chapters in this text.

This chapter begins with moving our mathematics out of the plane and into
“space.” That is, we begin to think mathematically not only in two dimensions,
but in three. With this foundation, we can explore vectors both in the plane and
in space.

11.1 Introduction to Cartesian Coordinates in Space
Up to this point in this text we have consideredmathematics in a 2–dimensional
world. We have plotted graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properties of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotating it out of the plane.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relative position of P along the x-, y- and z-axes,
respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three lines representing the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conventions exist for plotting
shapes in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y-axis, then the extended thumb
will point in the direction of the positive z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 11.1.1 we see the point P = (2, 1, 3) plotted on a set of axes. The
basic convention here is that the x-y plane is drawn in its standard way, with
the z-axis down to the left. The perspective is that the paper represents the x-y
plane and the positive z axis is coming up, off the page. This method is preferred
by many engineers. Because it can be hard to tell where a single point lies in
relation to all the axes, dashed lines have been added to let one see how far
along each axis the point lies.


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





Figure 11.1.2: Plotting the point P =
(2, 1, 3) in space with a perspective used
in this text.

Figure 11.1.3: Plotting points P and Q in
Example 11.1.1.
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One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 11.1.2. The same
point P is drawn, again with dashed lines. This point of view is preferred by
most mathematicians, and is the convention adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y, and
z are positive is called the first octant. We do not name the other seven octants
in this text.

Measuring Distances

It is of critical importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 11.1.1 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ∥PQ∥. The above distance formula
allows us to compute the length of this segment.

Example 11.1.1 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

SÊ½çã®ÊÄ The points P and Q are plotted in Figure 11.1.3; no special
consideration need be made to draw the line segment connecting these two
points; simply connect them with a straight line. One cannot actually measure
this line on the page and deduce anything meaningful; its true length must be
measured analytically. Applying Definition 11.1.1, we have

∥PQ∥ =
√

(2− 1)2 + (1− 4)2 + (1− (−1))2 =
√
14 ≈ 3.74.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given
point (its center), a sphere is the set of all points in space that are equidis-
tant from a given point. Definition 11.1.1 allows us to write an equation of the
sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

∥PC∥ =
√

(x− a)2 + (y− b)2 + (z− c)2 = r.

Squaring both sides, we get the standard equation of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.528





Figure 11.1.5: The plane x = 2.

Figure 11.1.6: Sketching the boundaries
of a region in Example 11.1.3.

11.1 Introduction to Cartesian Coordinates in Space

Key Idea 11.1.1 Standard Equation of a Sphere in Space

The standard equation of the sphere with radius r, centred at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.

Example 11.1.2 Equation of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
tion in standard form. This requires us to complete the square (three times).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2
(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centred at (−1, 2, 3) and has a radius of 4.

The equation of a sphere is an example of an implicit function defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situations where surfaces are defined where one or two of these
variables are absent.

Introduction to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 11.1.4),
the coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y
plane is characterized as the set of all points in space where the z-value is 0.
This, in fact, gives us an equation that describes this plane: z = 0. Likewise, the
x-z plane is all points where the y-value is 0, characterized by y = 0.

the x-y plane the y-z plane the x-z plane

Figure 11.1.4: The coordinate planes.

The equation x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 11.1.5.

Example 11.1.3 Regions defined by planes
Sketch the region defined by the inequalities−1 ≤ y ≤ 2.

SÊ½çã®ÊÄ The region is all points between the planes y = −1 and
y = 2. These planes are sketched in Figure 11.1.6, which are parallel to the
x-z plane. Thus the region extends infinitely in the x and z directions, and is
bounded by planes in the y direction.
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(a)

(b)

Figure 11.1.8: Sketching x2 + y2 = 1.
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Cylinders

The equation x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equation x2 + y2 = 1 in space. In the plane, this equation describes a circle of
radius 1, centred at the origin. In space, the z coordinate is not specified, mean-
ing it can take on any value. In Figure 11.1.8 (a), we show part of the graph of
the equation x2 + y2 = 1 by sketching 3 circles: the bottom one has a constant
z-value of −1.5, the middle one has a z-value of 0 and the top circle has a z-
value of 1. By plotting all possible z-values, we get the surface shown in Figure
11.1.8(b). This surface looks like a “tube,” or a “cylinder”; mathematicians call
this surface a cylinder for an entirely different reason.

Definition 11.1.2 Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equations involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the definition, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 11.1.8 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definition.

Example 11.1.4 Graphing cylinders
Graph the following cylinders.

1. z = y2 2. x = sin z

SÊ½çã®ÊÄ

1. We can view the equation z = y2 as a parabola in the y-z plane, as il-
lustrated in Figure 11.1.7(a). As x does not appear in the equation, the
rulings are lines through this parabola parallel to the x-axis, shown in (b).
These rulings give an idea as to what the surface looks like, drawn in (c).

(a) (b) (c)

Figure 11.1.7: Sketching the cylinder defined by z = y2.
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(a)

(b)

Figure 11.1.10: Introducing surfaces of
revolution.

(a)

(b)

Figure 11.1.11: Revolving y = sin z about
the z-axis in Example 11.1.5.

11.1 Introduction to Cartesian Coordinates in Space

2. We can view the equation x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 11.1.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equation x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b) (c)

Figure 11.1.9: Sketching the cylinder defined by x = sin z.

Surfaces of Revolution

One of the applications of integration we learned previously was to find the
volume of solids of revolution – solids formed by revolving a curve about a hori-
zontal or vertical axis. We now consider how to find the equation of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

sections of this surface parallel to the y-z plane are circles, as shown in Figure
11.1.10(a). Each circle has equation of the form y2 + z2 = r2 for some radius r.
The radius is a function of x; in fact, it is r(x) =

√
x. Thus the equation of the

surface shown in Figure 11.1.10b is y2 + z2 = (
√
x)2.

We generalize the above principles to give the equations of surfaces formed
by revolving curves about the coordinate axes.

Key Idea 11.1.2 Surfaces of Revolution, Part 1

Let r be a radius function.

1. The equation of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equation of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equation of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Example 11.1.5 Finding equation of a surface of revolution
Let y = sin z on [0, π]. Find the equation of the surface of revolution formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 11.1.2, we find the surface has equation x2+
y2 = sin2 z. The curve is sketched in Figure 11.1.11(a) and the surface is drawn
in Figure 11.1.11(b).

Note how the surface (and hence the resulting equation) is the same if we
began with the curve x = sin z, which is also drawn in Figure 11.1.11(a).
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(a)

(b)

Figure 11.1.12: Revolving z = sin x about
the z-axis in Example 11.1.6.
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This particular method of creating surfaces of revolution is limited. For in-
stance, in Example 7.3.4 of Section 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
tion of y is not trivial, as simply writing x = sin−1 y only gives part of the region
we desire.

What we desire is a way of writing the surface of revolution formed by ro-
tating y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotating f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points satisfy the equation r2 = x2 + y2; hence r =

√
x2 + y2. Replacing r with√

x2 + y2 in f(r) gives z = f(
√

x2 + y2). This is the equation of the surface.

Key Idea 11.1.3 Surfaces of Revolution, Part 2

Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equation z = f

(√
x2 + y2

)
.

Example 11.1.6 Finding equation of surface of revolution
Find the equation of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 11.1.3, the surface has equation z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 11.1.12.
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Figure 11.1.13: The elliptic paraboloid
z = x2/4+ y2.
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Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definition may
look intimidating, but we will show how to analyze these surfaces in an illumi-
nating way.

Definition 11.1.3 Quadric Surface

A quadric surface is the graph of the general second–degree equation in
three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; wewill not consider rotations. There are six basic quadric sur-
faces: the elliptic paraboloid, elliptic cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersections of each
surface with a plane parallel to a coordinate plane. For instance, consider the
elliptic paraboloid z = x2/4 + y2, shown in Figure 11.1.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equation:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross sections parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross sections parallel to the x-z plane. For instance, letting
y = 0 gives the equation z = x2/4, clearly a parabola. Intersecting with the
plane x = 0 gives a cross section defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the elliptic paraboloid gets its name: some cross sections
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equation of each, provide a sketch with representative traces, and de-
scribe these traces.
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Elliptic Paraboloid, z =
x2

a2
+

y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equation of the elliptic paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direction of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an elliptic paraboloid that opens along the x-axis.

Multiplying the right hand side by (−1) defines an elliptic paraboloid that “opens” in the opposite
direction.

Elliptic Cone, z2 =
x2

a2
+

y2

b2

Plane Trace
x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

One can rewrite the equation as z2 − x2/a2 − y2/b2 = 0. The one variable with a positive
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid, x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 11.1.1.

Hyperboloid of One Sheet, x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negative coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets, z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a positive coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised to the first power.536








(a)

(b)

Figure 11.1.14: Sketching an elliptic
paraboloid.

(a)

(b)

Figure 11.1.15: Sketching an ellipsoid.

11.1 Introduction to Cartesian Coordinates in Space

Example 11.1.7 Sketching quadric surfaces
Sketch the quadric surface defined by the given equation.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1. 3. z = y2 − x2.

SÊ½çã®ÊÄ

1. y =
x2

4
+

z2

16
:

We first identify the quadric by pattern–matchingwith the equations given
previously. Only two surfaces have equations where one variable is raised
to the first power, the elliptic paraboloid and the hyperbolic paraboloid.
In the latter case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.

To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.

x = 0: The trace is the parabola y = z2/16

z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respective plane creates a sketch as shown in
Figure 11.1.14(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.

Graphing each trace in the respective plane creates a sketch as shown in
Figure 11.1.15(a). Filling in the surface gives Figure 11.1.15(b).

3. z = y2 − x2:

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric sections. Consider the traces in the y − z and x − z
planes:

x = 0: The trace is z = y2, a parabola opening up in the y− z plane.

y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.

Sketching these two parabolas gives a sketch like that in Figure 11.1.16(a),
and filling in the surface gives a sketch like (b).
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(a)

(b)

Figure 11.1.16: Sketching a hyperbolic
paraboloid.

Figure 11.1.17: A possible equation of
this quadric surface is found in Example
11.1.8.

Chapter 11 Vectors

Example 11.1.8 Identifying quadric surfaces
Consider the quadric surface shown in Figure 11.1.17. Which of the following
equations best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equation will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate option (a), as the constant in that equation is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a positive coefficient, eliminating (c).

The hyperboloid is wider in the z-direction than in the y-direction, so we
need an equation where c > b. This eliminates (b), leaving us with (d). We
should verify that the equation given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equation describes a hyperboloid of two

sheets that opens in the x-direction and is wider in the z-direction than in the
y. Now note the coefficient of the x-term. Rewriting 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

This section has introduced points in space and shown how equations can
describe surfaces. Thenext sections explore vectors, an importantmathematical
object that we’ll use to explore curves in space.
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Exercises 11.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.

2. In the plane, the equation x = 2 defines a ; in
space, x = 2 defines a .

3. In the plane, the equation y = x2 defines a ; in
space, y = x2 defines a .

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11 – 14, describe the region in space defined by
the inequalities.

11. x2 + y2 + z2 < 1

12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0

14. y ≥ 3

In Exercises 15 – 18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17. x2

4
+

y2

9
= 1

18. y = 1
x

In Exercises 19 – 22, give the equation of the surface of revo-
lution described.

19. Revolve z = 1
1+ y2

about the y-axis.

20. Revolve y = x2 about the x-axis.

21. Revolve z = x2 about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 – 26, a quadric surface is sketched. Determine
which of the given equations best fits the graph.

23.

(a) x = y2 + z2

9
(b) x = y2 + z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 + y2

3
+

z2

2
= 1 (b) x2 + y2

9
+

z2

4
= 1

539






26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

In Exercises 27 – 32, sketch the quadric surface.

27. z− y2 + x2 = 0

28. z2 = x2 + y2

4

29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31. x2

9
− y2 + z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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Figure 11.2.1: Drawing the same vector
with different initial points.
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Figure 11.2.2: Illustrating how equal vec-
tors have the same displacement.

11.2 An Introduction to Vectors

11.2 An Introduction to Vectors

Many quantities we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster often describes wind with its speed and its direction (“. . .
with winds from the southeast gusting up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direction of that force.
In both of these examples, direction is important. Because of this, we study
vectors, mathematical objects that convey both magnitude and direction infor-
mation.

One “bare–bones” definition of a vector is based on what we wrote above:
“a vector is a mathematical object with magnitude and direction parameters.”
This definition leaves much to be desired, as it gives no indication as to how
such an object is to be used. Several other definitions exist; we choose here a
definition rooted in a geometric visualization of vectors. It is very simplistic but
readily permits further investigation.

Definition 11.2.1 Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the initial point of
the vector, and the point Q is the terminal point.

The magnitude, length or norm of #  ‰PQ is the length of the line segment
PQ: ∥ #  ‰PQ ∥ = ∥ PQ ∥.

Two vectors are equal if they have the same magnitude and direction.

Figure 11.2.1 shows multiple instances of the same vector. Each directed
line segment has the same direction and length (magnitude), hence each is the
same vector.

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure 11.2.2. The vectors look to
be equal; that is, they seem to have the same length and direction. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the initial point
to reach the terminal point. One can analyze this movement to measure the
magnitude of the vector, and the movement itself gives direction information
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direction, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z directions the terminal point is from the initial
point. Both the vectors #  ‰PQ and #‰RS in Figure 11.2.2 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the initial point is the origin, (0, 0). This
leads us to a definition of a standard and concise way of referring to vectors.
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Figure 11.2.3: Graphing vectors in Exam-
ple 11.2.1.
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Definition 11.2.2 Component Form of a Vector

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its initial point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its initial point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respectively) are the components of v⃗.

It follows from the definition that the component form of the vector #  ‰PQ,
where P = (x1, y1) and Q = (x2, y2) is

#  ‰PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form of #  ‰PQ
is

#  ‰PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .

We practice using this notation in the following example.

Example 11.2.1 Using component form notation for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ starting at P = (3, 2) and find its magni-
tude.

2. Find the component formof the vector w⃗whose initial point isR = (−3,−2)
and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starting at the point Q = (1, 1, 1) and
find its magnitude.

SÊ½çã®ÊÄ

1. Using P as the initial point, wemove 2 units in the positive x-direction and
−1 units in the positive y-direction to arrive at the terminal point P ′ =
(5, 1), as drawn in Figure 11.2.3(a).
The magnitude of v⃗ is determined directly from the component form:

∥ v⃗ ∥ =
√

22 + (−1)2 =
√
5.

2. Using the note following Definition 11.2.2, we have
#‰RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 11.2.3(a) that the x- and y-displacement
of #‰RS is 2 and 4, respectively, as the component form suggests.

3. Using Q as the initial point, we move 2 units in the positive x-direction,
−1 unit in the positive y-direction, and 3 units in the positive z-direction
to arrive at the terminal pointQ′ = (3, 0, 4), illustrated in Figure 11.2.3(b).
The magnitude of u⃗ is:

∥ u⃗ ∥ =
√

22 + (−1)2 + 32 =
√
14.
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Figure 11.2.4: Graphing the sum of vec-
tors in Example 11.2.2.
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Figure 11.2.5: Illustrating how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.

11.2 An Introduction to Vectors

Now thatwehave defined vectors, and have created a nice notation bywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Definition 11.2.3 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and let c
be a scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addition and scalarmultiplication are computed “component–
wise.”

Example 11.2.2 Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with initial point at the
origin.

SÊ½çã®ÊÄ We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 11.2.4.

As vectors convey magnitude and direction information, the sum of vectors
also convey length and magnitude information. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

“Starting at an initial point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure 11.2.5, where the initial point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addition is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acting on a body, the sum u⃗ + v⃗ gives the resulting force. Because of various
physical applications of vector addition, the sum u⃗+ v⃗ is often referred to as the
resultant vector, or just the “resultant.”

Analytically, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 11.2.5 also gives
a graphical representation of this, using gray vectors. Note that the vectors u⃗
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Figure 11.2.6: Illustrating how to subtract
vectors graphically.
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Figure 11.2.7: Graphing vectors v⃗ and 2⃗v
in Example 11.2.4.
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and v⃗, when arranged as in the figure, form a parallelogram. Because of this,
the Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗+ v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the initial
point of u⃗ + v⃗ is the common initial point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properties of the real numbers and Definition 11.2.3 that

u⃗− v⃗ = u⃗+ (−1)⃗v.

The Parallelogram Law gives us a good way to visualize this subtraction. We
demonstrate this in the following example.

Example 11.2.3 Vector Subtraction
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

SÊ½çã®ÊÄ The computation of u⃗ − v⃗ is straightforward, and we show
all steps below. Usually the formal step of multiplying by (−1) is omitted and
we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)⃗v
= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 11.2.6 illustrates, using the Head to Tail Rule, how the subtraction can
be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how u⃗− v⃗ can be ob-
tained by looking only at the terminal points of u⃗ and v⃗ (when their initial points
are the same).

Example 11.2.4 Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2⃗v with initial point at the origin.

2. Compute the magnitudes of v⃗ and 2⃗v.

SÊ½çã®ÊÄ

1. We compute 2⃗v:

2⃗v = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

Both v⃗ and 2⃗v are sketched in Figure 11.2.7. Make note that 2⃗v does not
start at the terminal point of v⃗; rather, its initial point is also the origin.

2. The figure suggests that 2⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

∥ v⃗ ∥ =
√

22 + 12

=
√
5.

∥ 2⃗v ∥ =
√

42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2⃗v is twice as long as v⃗.
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To prove Property 8, let v⃗ = ⟨a, b⟩ be any
vector in R2 (the proof for R3 is similar),
and let c be any scalar. Then

∥ c⃗v ∥ = ∥ c ⟨a, b⟩ ∥
= ∥ ⟨ca, cb⟩ ∥

=
√

(ca)2 + (cb)2

=
√
c2a2 + c2b2

=
√

c2(a2 + b2)

=
√
c2
√
a2 + b2

= |c|∥ v⃗ ∥,

as required.
(Recall that

√
c2 = |c|, the absolute value

of c, since c might be negative, but the
square root is always positive.)

11.2 An Introduction to Vectors

In Example 11.2.4 above, we saw that ∥ 2⃗v ∥ = 2∥ v⃗ ∥, which makes sense
geometrically: 2⃗v = v⃗+ v⃗, and adding a vector to itself should produce a vector
twice as long with the same direction. The following theorem tells us that this
is true in general.

The zero vector is the vector whose initial point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to multiply vectors by a scalar. The following the-
orem states formally the properties of these operations.

Theorem 11.2.1 Properties of Vector Operations

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗+ u⃗ Commutative Property

2. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) Associative Property

3. v⃗+ 0⃗ = v⃗ Additive Identity

4. (cd)⃗v = c(d⃗v)

5. c(⃗u+ v⃗) = c⃗u+ c⃗v Distributive Property

6. (c+ d)⃗v = c⃗v+ d⃗v Distributive Property

7. 0⃗v = 0⃗

8. ∥ c⃗v ∥ = |c| · ∥ v⃗ ∥

9. ∥ u⃗ ∥ = 0 if, and only if, u⃗ = 0⃗.

As stated before, each nonzero vector v⃗ conveys magnitude and direction
information. We have a method of extracting the magnitude, which we write as
∥ v⃗ ∥. Unit vectors are a way of extracting just the direction information from a
vector.

Definition 11.2.4 Unit Vector

A unit vector is a vector v⃗ with a magnitude of 1; that is,

∥ v⃗ ∥ = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length 10 in the direction of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direction of v⃗, the answer would be easy: 10u⃗. So how do
we find u⃗ ?

Property 8 of Theorem 11.2.1 holds the key. If we divide v⃗ by its magnitude,
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Figure 11.2.8: Graphing vectors in Exam-
ple 11.2.5. All vectors shown have their
initial point at the origin.

Note: 0⃗ is directionless; because ∥ 0⃗ ∥ =
0, there is no unit vector in the “direction”
of 0⃗.
Some texts define two vectors as being
parallel if one is a scalar multiple of the
other. By this definition, 0⃗ is parallel to
all vectors as 0⃗ = 0⃗v for all v⃗.

We define what it means for two vectors
to be perpendicular in Definition 11.3.2,
which is written to exclude 0⃗. It could be
written to include 0⃗; by such a definition,
0⃗ is perpendicular to all vectors. While
counter-intuitive, it is mathematically
sound to allow 0⃗ to be both parallel and
perpendicular to all vectors.

We prefer the given definition of parallel
as it is grounded in the fact that unit vec-
tors provide direction information. One
may adopt the convention that 0⃗ is paral-
lel to all vectors if they desire. (See also
the marginal note on page 567.)
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it becomes a vector of length 1. Consider:∥∥∥∥ 1
∥ v⃗ ∥

v⃗
∥∥∥∥ =

1
∥ v⃗ ∥

∥ v⃗ ∥ (we can pull out 1
∥ v⃗ ∥ as it is a positive scalar)

= 1.

So the vector of length 10 in the direction of v⃗ is 10
(

1
∥ v⃗ ∥

v⃗
)

=
10
∥ v⃗ ∥

v⃗.

An example will make this more clear.

Example 11.2.5 Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direction of v⃗.

2. Find the unit vector in the direction of w⃗.

3. Find the vector in the direction of v⃗ with magnitude 5.

SÊ½çã®ÊÄ

1. We find ∥ v⃗ ∥ =
√
10. So the unit vector u⃗ in the direction of v⃗ is

u⃗ =
1√
10

v⃗ =
⟨

3√
10

,
1√
10

⟩
.

2. We find ∥ w⃗ ∥ = 3, so the unit vector z⃗ in the direction of w⃗ is

u⃗ =
1
3
w⃗ =

⟨
1
3
,
2
3
,
2
3

⟩
.

3. To create a vector with magnitude 5 in the direction of v⃗, we multiply the
unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/

√
10, 5/

√
10
⟩
is the vector we seek.

This is sketched in Figure 11.2.8.

The basic formation of the unit vector u⃗ in the direction of a vector v⃗ leads
to a interesting equation. It is:

v⃗ = ∥ v⃗ ∥ 1
∥ v⃗ ∥

v⃗.

We rewrite the equation with parentheses to make a point:

v⃗ = ∥ v⃗ ∥︸︷︷︸
magnitude

·
(

1
∥ v⃗ ∥

v⃗
)

︸ ︷︷ ︸
direction

.

This equation illustrates the fact that a nonzero vector has both magnitude
and direction, where we view a unit vector as supplying only direction informa-
tion. Identifying unit vectors with direction allows us to define parallel vectors.

Definition 11.2.5 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respective unit vec-
tors are parallel.
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50lb

.

45◦

.

30◦

Figure 11.2.9: A diagram of a weight
hanging from 2 chains in Example 11.2.6.

..

F⃗1

.

F⃗2

.

F⃗

. 120◦.
45◦

Figure 11.2.10: A diagram of the force
vectors from Example 11.2.6.

11.2 An Introduction to Vectors

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = c⃗v2 (see marginal note).

If one graphed all unit vectors in R2 with the initial point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construction inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a particular component form, but its derivation
is not as straightforward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 11.2.1 Unit Vectors

1. The unit vector in the direction of v⃗ is

u⃗ =
1

∥ v⃗ ∥
v⃗.

2. A vector u⃗ in R2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ in R3 is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situations, especially the
formula for unit vectors in the plane.

Example 11.2.6 Finding Component Forces
Consider a weight of 50 lb hanging from two chains, as shown in Figure 11.2.9.
One chain makes an angle of 30◦ with the vertical, and the other an angle of
45◦. Find the force applied to each chain.

SÊ½çã®ÊÄ Knowing that gravity is pulling the 50 lbweight straight down,
we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” theweight up, preventing it from falling.
We can represent the force from each chain with a vector. Let F⃗1 represent the
force from the chain making an angle of 30◦ with the vertical, and let F⃗2 repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 11.2.10), and apply Key Idea 11.2.1. As we do not
yet know themagnitudes of these vectors, (that is the problem at hand), we use
m1 andm2 to represent them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩
F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This gives:

F⃗+ F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩ = 0⃗
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Chapter 11 Vectors

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equations:

m1 cos 120◦ +m2 cos 45◦ = 0
m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equation, 2-unknown system of linear equations. We leave it
to the reader to verify that the solution is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1+
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is more
than 50 lb. We leave it to a physics class to discuss the full details, but offer this
short explanation. Our equations were established so that the vertical compo-
nents of each force sums to 50 lb, thus supporting the weight. Since the chains
are at an angle, they also pull against each other, creating an “additional” hori-
zontal force while holding the weight in place.

Unit vectors were very important in the previous calculation; they allowed
us to define a vector in the proper direction but with an unknown magnitude.
Our computations were then computed component–wise. Because such calcu-
lations are often necessary, the standard unit vectors can be useful.

Definition 11.2.6 Standard Unit Vectors

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example 11.2.7 Using standard unit vectors

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j+ 2⃗k in component form.

SÊ½çã®ÊÄ

1. v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2. w⃗ = 4⃗i− 5⃗j+ 2⃗k
= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩
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2Ō

.

25lb

.
φ

.

θ

.

F⃗w

Figure 11.2.11: A figure of a weight being
pushed by the wind in Example 11.2.8.

11.2 An Introduction to Vectors

These two examples demonstrate that converting between component form
and the standard unit vectors is rather straightforward. Many mathematicians
prefer component form, and it is the preferred notation in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering texts use
that notation.

Example 11.2.8 Finding Component Force
Aweight of 25 lb is suspended froma chain of length 2 ft while awind pushes the
weight to the right with constant force of 5 lb as shown in Figure 11.2.11. What
angle will the chain make with the vertical as a result of the wind’s pushing?
How much higher will the weight be?

SÊ½çã®ÊÄ The force of the wind is represented by the vector F⃗w = 5⃗i.
The force of gravity on the weight is represented by F⃗g = −25⃗j. The direction
and magnitude of the vector representing the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the vertical; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ i⃗+m sinφ j⃗+ 5⃗i− 25⃗j = 0⃗

Thus the sum of the i⃗ and j⃗ components are 0, leading us to the following
system of equations:

5+m cosφ = 0
−25+m sinφ = 0

(11.1)

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√

(−5)2 + 252 = 5
√
26 ≈ 25.5 lb.

We can then use either equality from Equation (11.1) to solve for φ. We choose
the first equality as using arccosine will return an angle in the 2nd quadrant:

5+ 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

Subtracting 90◦ from this angle gives us an angle of 11.31◦ with the vertical.
We can now use trigonometry to find out how high the weight is lifted. The

diagram shows that a right triangle is formed with the 2 ft chain as the hy-
potenuse with an interior angle of 11.31◦. The length of the adjacent side (in
the diagram, the dashed vertical line) is 2 cos 11.31◦ ≈ 1.96 ft. Thus the weight
is lifted by about 0.04 ft, almost 1/2 in.

The algebra we have applied to vectors is already demonstrating itself to be
very useful. There are two more fundamental operations we can perform with
vectors, the dot product and the cross product. The next two sections explore
each in turn.
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Exercises 11.2
Terms and Concepts
1. Name two different things that cannot be described with

just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?

3. What is a unit vector?

4. Unit vectors can be thought of as conveying what type of
information?

5. What does it mean for two vectors to be parallel?

6. What effect does multiplying a vector by−2 have?

Problems
In Exercises 7 – 10, points P and Q are given. Write the vector
# ‰PQ in component form and using the standard unit vectors.

7. P = (2,−1), Q = (3, 5)

8. P = (3, 2), Q = (7,−2)

9. P = (0, 3,−1), Q = (6, 2, 5)

10. P = (2, 1, 2), Q = (4, 3, 2)

11. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, 2⃗u− 3⃗v.
(b) Sketch the above vectors on the same axes, along

with u⃗ and v⃗.
(c) Find x⃗ where u⃗+ x⃗ = 2⃗v− x⃗.

12. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.
(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−

√
2⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ 2⃗x.

In Exercises 13 – 16, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

13.

.....

u⃗

. v⃗.

x

.

y

14.

.....

u⃗

.

v⃗

.

x

.

y

15.

...

..
u⃗

.v⃗ .

x

.

y

.

z

16.

...

..
u⃗

.

v⃗

.

x

.

y

.

z

In Exercises 17 – 20, find ∥ u⃗ ∥, ∥ v⃗ ∥, ∥ u⃗+ v⃗ ∥ and ∥ u⃗− v⃗ ∥.

17. u⃗ = ⟨2, 1⟩, v⃗ = ⟨3,−2⟩

18. u⃗ = ⟨−3, 2, 2⟩, v⃗ = ⟨1,−1, 1⟩

19. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−3,−6⟩

20. u⃗ = ⟨2,−3, 6⟩, v⃗ = ⟨10,−15, 30⟩

21. Under what conditions is ∥ u⃗ ∥+ ∥ v⃗ ∥ = ∥ u⃗+ v⃗ ∥?

In Exercises 22 – 25, find the unit vector u⃗ in the direction of
v⃗.

22. v⃗ = ⟨3, 7⟩

23. v⃗ = ⟨6, 8⟩

24. v⃗ = ⟨1,−2, 2⟩

25. v⃗ = ⟨2,−2, 2⟩
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26. Find the unit vector in the first quadrant of R2 that makes
a 50◦ angle with the x-axis.

27. Find the unit vector in the second quadrant of R2 that
makes a 30◦ angle with the y-axis.

28. Verify, from Key Idea 11.2.1, that

u⃗ = ⟨sin θ cosφ, sin θ sinφ, cos θ⟩

is a unit vector for all angles θ and φ.

A weight of 100lb is suspended from two chains, making an-
gles with the vertical of θ andφ as shown in the figure below.

..

100lb

.

θ

.

φ

In Exercises 29 – 32, angles θ and φ are given. Find the mag-
nitude of the force applied to each chain.

29. θ = 30◦, φ = 30◦

30. θ = 60◦, φ = 60◦

31. θ = 20◦, φ = 15◦

32. θ = 0◦, φ = 0◦

A weight of plb is suspended from a chain of length ℓ while
a constant force of F⃗w pushes the weight to the right, making
an angle of θ with the vertical, as shown in the figure below.

..

ℓ Ō

.

p lb

.

θ

.

F⃗w

In Exercises 33 – 36, a force F⃗w and length ℓ are given. Find
the angle θ and the height the weight is lifted as it moves to
the right.

33. F⃗w = 1lb, ℓ = 1ft, p = 1lb

34. F⃗w = 1lb, ℓ = 1ft, p = 10lb

35. F⃗w = 1lb, ℓ = 10ft, p = 1lb

36. F⃗w = 10lb, ℓ = 10ft, p = 1lb
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Chapter 11 Vectors

11.3 The Dot Product

The previous section introduced vectors and described how to add them to-
gether and how to multiply them by scalars. This section introduces a multi-
plication on vectors called the dot product.

Definition 11.3.1 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
practice evaluating a dot product in the following example, then we will discuss
why this product is useful.

Example 11.3.1 Evaluating dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

SÊ½çã®ÊÄ

1. Using Definition 11.3.1, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definition, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definition gives no hint as to why
we would care about this operation, there is an amazing connection between
the dot product and angles formed by the vectors. Before stating this connec-
tion, we give a theorem stating some of the properties of the dot product.
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Note: proving Theorem 11.3.1 is straight-
forward and left to the reader. The reader
is reminded, however, that proofs must
be general: choosing particular numbers
for the vectors u⃗, v⃗, etc. only shows that
the properties hold for those particular
numbers. Instead, one should write u⃗ =
⟨u1, u2, u3⟩, v⃗ = ⟨v1, v2, v3⟩, etc. and then
proceed using the rules of algebra for real
numbers. For example, u⃗ · v⃗ = v⃗ · u⃗ since

u⃗ · v⃗ = u1v1 + u2v2 + u3v3
= v1u1 + v2u2 + v3u3
= v⃗ · u⃗,

and this argument is valid nomatter what
values are substituted for the compo-
nents of the two vectors.

..

u⃗

.

v⃗

. θ

(a)

(b)

Figure 11.3.1: Illustrating the angle
formed by two vectors with the same
initial point.

Figure 11.3.2: Proving Theorem 11.3.2

11.3 The Dot Product

Theorem 11.3.1 Properties of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ Commutative Property

2. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ Distributive Property

3. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = ∥ v⃗ ∥2

The last statement of the theorem makes a handy connection between the
magnitude of a vector and the dot product with itself. Our definition and theo-
rem give properties of the dot product, but we are still likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecting the dot product
tomagnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is clearly
formedwhen u⃗ and v⃗ are drawnwith the same initial point as illustrated in Figure
11.3.1(a). (We always take θ to be the angle in [0, π] as two angles are actually
created.)

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with the
same initial point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle θ between them (and again, 0 ≤ θ ≤ π). This
is illustrated in Figure 11.3.1(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Theorem 11.3.2 The Dot Product and Angles

Let u⃗ and v⃗ be nonzero vectors in R2 or R3. Then

u⃗ · v⃗ = ∥ u⃗ ∥ ∥ v⃗ ∥ cos θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

The proof of Theorem 11.3.2 is an application of the Law of Cosines, using
the properties in Theorem 11.3.1. Referring to Figure 11.3.2, if we let a = ∥ u⃗ ∥,
b = ∥ v⃗ ∥, and c = ∥ u⃗− v⃗ ∥, then the Law of Cosines tells us that

c2 = a2 + b2 − 2ab cos(θ).

Thus, we have

∥ u⃗− v⃗ ∥2 = ∥ u⃗ ∥2 + ∥ v⃗ ∥2 − 2∥ u⃗ ∥∥ v⃗ ∥ cos θ
(⃗u− v⃗) · (⃗u− v⃗) = u⃗ · u⃗+ v⃗ · v⃗− 2∥ u⃗ ∥∥ v⃗ ∥ cos θ

u⃗ · u⃗− u⃗ · v⃗− v⃗ · u⃗+ v⃗ · v⃗ = u⃗ · u⃗+ v⃗ · v⃗− 2∥ u⃗ ∥∥ v⃗ ∥ cos θ
−2u⃗ · v⃗ = −2∥ u⃗ ∥∥ v⃗ ∥ cos θ

u⃗ · v⃗ = ∥ u⃗ ∥∥ v⃗ ∥ cos θ,

as required.
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y

Figure 11.3.4: Vectors used in Example
11.3.2.

Chapter 11 Vectors

Using Theorem 11.3.1, we can rewrite this theorem as

u⃗
∥ u⃗ ∥

· v⃗
∥ v⃗ ∥

= cos θ.

Note how on the left hand side of the equation, we are computing the dot prod-
uct of two unit vectors. Recalling that unit vectors essentially only provide direc-
tion information, we can informally restate Theorem 11.3.2 as saying “The dot
product of two directions gives the cosine of the angle between them.”

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos θ is positive; when θ =
π/2, cos θ = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos θ is negative.
Thus the sign of the dot product gives a general indication of the angle between
the vectors, illustrated in Figure 11.3.3.

..
u⃗ · v⃗ > 0

. u⃗.

v⃗

. θ.
u⃗ · v⃗ = 0

. u⃗.

v⃗

.
θ = π/2

.
u⃗ · v⃗ < 0

. u⃗.

v⃗

.
θ

Figure 11.3.3: Illustrating the relationship between the angle between vectors and the
sign of their dot product.

We can use Theorem 11.3.2 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equation
as

cos θ =
u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥
⇔ θ = cos−1

(
u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥

)
.

We practice using this theorem in the following example.

Example 11.3.2 Using the dot product to find angles
Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 11.3.4. Find
the angles α, β and θ.

SÊ½çã®ÊÄ We start by computing the magnitude of each vector.

∥ u⃗ ∥ =
√
10; ∥ v⃗ ∥ = 2

√
10; ∥ w⃗ ∥ = 5.

We now apply Theorem 11.3.2 to find the angles.

α = cos−1
(

u⃗ · v⃗
(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.
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Figure 11.3.5: Vectors used in Example
11.3.3.

11.3 The Dot Product

β = cos−1
(

v⃗ · w⃗
(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1
(

u⃗ · w⃗
(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

We see from our computation that α+β = θ, as indicated by Figure 11.3.4.
While we knew this should be the case, it is nice to see that this non-intuitive
formula indeed returns the results we expected. We do a similar example next
in the context of vectors in space.

Example 11.3.3 Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in Figure
11.3.5. Find the angle between each pair of vectors.

SÊ½çã®ÊÄ

1. Between u⃗ and v⃗:

θ = cos−1
(

u⃗ · v⃗
∥ u⃗ ∥∥ v⃗ ∥

)
= cos−1

(
0√

3
√
14

)
=

π

2
.

2. Between u⃗ and w⃗:

θ = cos−1
(

u⃗ · w⃗
∥ u⃗ ∥∥ w⃗ ∥

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1
(

v⃗ · w⃗
∥ v⃗ ∥∥ w⃗ ∥

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 11.3.5. Such is the case when drawing three–
dimensional objects on the page.
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Note: The term perpendicular originally
referred to lines. As mathematics pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common convention gives preference to
the word orthogonal.
Note also that Definition 11.3.2 makes
sense if either u⃗ or v⃗ is the zero vector,
but this is not the case for the conven-
tional understanding of the word perpen-
dicular.
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All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. Notice the common
feature in each calculation (and also the calculation of α in Example 11.3.2): the
dot products of each pair of angles was 0. We use this as a basis for a definition
of the term orthogonal, which is essentially synonymous to perpendicular.

Definition 11.3.2 Orthogonal

Vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

Example 11.3.4 Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.

SÊ½çã®ÊÄ

1. Recall that a line perpendicular to a line with slope m has slope −1/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as 5/3, its
“rise over run.” A vector orthogonal to u⃗ will have slope−3/5. There are
many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinite directions in space orthogonal to any given direction,
so there are an infinite number of non–parallel vectors orthogonal to v⃗.
Since there are so many, we have great leeway in finding some.
One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal
to v⃗, then v⃗1 · v⃗ = 0, so

2+ 14+ 3z = 0 ⇒ z =
−16
3

.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Letting the third component be 0 effectively ignores the
third component of v⃗, and it is easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

An important construction is illustrated in Figure 11.3.6, where vectors u⃗ and
v⃗ are sketched. In part (a), a dotted line is drawn from the tip of u⃗ to the line
containing v⃗, where the dotted line is orthogonal to v⃗. In part (b), the dotted
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construction is this: u⃗ is
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Figure 11.3.6: Developing the construc-
tion of the orthogonal projection.

11.3 The Dot Product

decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construction
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 11.3.6 (b) form a right triangle,
where the angle between v⃗ and u⃗ is labelled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

∥ w⃗ ∥ = ∥ u⃗ ∥ cos θ. (11.2)

We also know that w⃗ is parallel to to v⃗ ; that is, the direction of w⃗ is the
direction of v⃗, described by the unit vector 1

∥ v⃗ ∥ v⃗. The vector w⃗ is the vector in
the direction 1

∥ v⃗ ∥ v⃗ with magnitude ∥ u⃗ ∥ cos θ:

w⃗ =
(
∥ u⃗ ∥ cos θ

) 1
∥ v⃗ ∥

v⃗.

Replace cos θ using Theorem 11.3.2:

=

(
∥ u⃗ ∥ u⃗ · v⃗

∥ u⃗ ∥∥ v⃗ ∥

)
1

∥ v⃗ ∥
v⃗

=
u⃗ · v⃗
∥ v⃗ ∥2

v⃗.

Now apply Theorem 11.3.1.

=
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Since this construction is so important, it is given a special name.

Definition 11.3.3 Orthogonal Projection

Let nonzero vectors u⃗ and v⃗ be given. The orthogonal projection of u⃗
onto v⃗, denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Example 11.3.5 Computing the orthogonal projection

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three vectors
with initial points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with initial points at the origin.
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Figure 11.3.7: Graphing the vectors used
in Example 11.3.5.
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Figure 11.3.8: Illustrating the orthogonal
projection.
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SÊ½çã®ÊÄ

1. Applying Definition 11.3.3, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5
10

⟨3, 1⟩

=

⟨
−3
2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 11.3.7(a). Note how the
projection is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direction. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than 90◦).

2. Apply the definition:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6
3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 11.3.7(b), and again in part (c) from
a different perspective. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
tion has the geometric properties it should. The graph shown in part (c)
illustrates these properties better.

We can use the properties of the dot product found in Theorem 11.3.1 to
rearrange the formula found in Definition 11.3.3:

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
u⃗ · v⃗
∥ v⃗ ∥2

v⃗

=

(
u⃗ · v⃗

∥ v⃗ ∥

)
v⃗

∥ v⃗ ∥
.

The above formula shows that the orthogonal projection of u⃗ onto v⃗ is only
concerned with the direction of v⃗, as both instances of v⃗ in the formula come in
the form v⃗/∥ v⃗ ∥, the unit vector in the direction of v⃗.

A special case of orthogonal projection occurs when v⃗ is a unit vector. In this
situation, the formula for the orthogonal projection of a vector u⃗ onto v⃗ reduces
to just proj v⃗ u⃗ = (⃗u · v⃗)⃗v, as v⃗ · v⃗ = 1.

This gives us a new understanding of the dot product. When v⃗ is a unit vec-
tor, essentially providing only direction information, the dot product of u⃗ and v⃗
gives “howmuch of u⃗ is in the direction of v⃗.” This use of the dot product will be
very useful in future sections.

Now consider Figure 11.3.8 where the concept of the orthogonal projection
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (11.3)

558





Note: The argument leading to Definition
11.3.3 is not quite a proof, since it de-
pended on choices made in forming the
diagram in Figure 11.3.6. However, we
can easily verify that the result in Key Idea
11.3.1 is always valid: since

v⃗ · (⃗u− proj v⃗ u⃗) = v⃗ · u⃗− v⃗ ·
(

u⃗ · v⃗
∥ v⃗ ∥2 v⃗

)
= v⃗ · u⃗− u⃗ · v⃗

v⃗ · v⃗ (⃗v · v⃗)

= v⃗ · u⃗− u⃗ · v⃗ = 0

for any vectors u⃗ and v⃗ ̸= 0⃗, we are guar-
anteed that the vector u− proj v⃗ u⃗ will al-
ways be orthogonal to v⃗.

11.3 The Dot Product

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite Equation (11.3) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (Notation note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this notation to state
“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

Key Idea 11.3.1 Orthogonal Decomposition of Vectors

Let nonzero vectors u⃗ and v⃗ be given. Then u⃗ can bewritten as the sumof
two vectors, one of which is parallel to v⃗, and one of which is orthogonal
to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (⃗u− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 11.3.6 Orthogonal decomposition of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 11.3.5. Decompose u⃗ as the
sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 11.3.5. Decompose w⃗ as
the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

SÊ½çã®ÊÄ

1. In Example 11.3.5, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗ ? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 11.3.5 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the Key
Idea, we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

559



..
5

.
20

.

r⃗

.

g⃗

(a)

..
5

.
20

.

r⃗

.

g⃗

.
z⃗

.

proj r⃗ g⃗

(b)

Figure 11.3.9: Sketching the ramp and
box in Example 11.3.7. Note: The vectors
are not drawn to scale.
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Since the dot product is 0, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposition is useful.

Example 11.3.7 Orthogonally decomposing a force vector
Consider Figure 11.3.9(a), showing a box weighing 50 lb on a ramp that rises 5 ft
over a span of 20 ft. Find the components of force, and their magnitudes, acting
on the box (as sketched in part (b) of the figure):

1. in the direction of the ramp, and

2. orthogonal to the ramp.

SÊ½çã®ÊÄ As the ramp rises 5 ft over a horizontal distance of 20 ft, we can
represent the direction of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity pulls
down with a force of 50 lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direction of the ramp,we computeproj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250
425

⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
≈ ⟨−11.76,−2.94⟩ .

Themagnitude of proj r⃗ g⃗ is ∥ proj r⃗ g⃗ ∥ = 50/
√
17 ≈ 12.13 lb. Though the

box weighs 50 lb, a force of about 12 lb is enough to keep the box from
sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea 11.3.1.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
200
17

,−800
17

⟩
≈ ⟨11.76,−47.06⟩ .

Themagnitude of this force is ∥ z⃗ ∥ ≈ 48.51 lb. In physics and engineering,
knowing this force is importantwhen computing things like static frictional
force. (For instance, we could easily compute if the static frictional force
alone was enough to keep the box from sliding down the ramp.)
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Figure 11.3.11: Computing work when
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11.3 The Dot Product

Application to Work

In physics, the application of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direction of travel). The orthogonal projection allows us to compute work when
the force is not in the direction of travel.

Consider Figure 11.3.10, where a force F⃗ is being applied to an objectmoving
in the direction of d⃗. (The distance the object travels is the magnitude of d⃗.) The
work done is the amount of force in the direction of d⃗, ∥ proj d⃗ F⃗ ∥, times ∥ d⃗ ∥:

∥ proj d⃗ F⃗ ∥ · ∥ d⃗ ∥ =

∥∥∥∥∥ F⃗ · d⃗
d⃗ · d⃗

d⃗

∥∥∥∥∥ · ∥ d⃗ ∥

=

∣∣∣∣∣ F⃗ · d⃗∥ d⃗ ∥2

∣∣∣∣∣ · ∥ d⃗ ∥ · ∥ d⃗ ∥

=

∣∣∣⃗F · d⃗∣∣∣
∥ d⃗ ∥2

∥ d⃗ ∥2

=
∣∣∣⃗F · d⃗∣∣∣ .

The expression F⃗ · d⃗ will be positive if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is negative), the force is causing motion
in the opposite direction of d⃗, resulting in “negative work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

Definition 11.3.4 Work

Let F⃗ be a constant force thatmoves an object in a straight line frompoint
P to point Q. Let d⃗ =

#  ‰PQ. The workW done by F⃗ along d⃗ isW = F⃗ · d⃗.

Example 11.3.8 Computing work
Aman slides a box along a ramp that rises 3 ft over a distance of 15 ft by applying
50 lb of force as shown in Figure 11.3.11. Compute the work done.

SÊ½çã®ÊÄ The figure indicates that the force applied makes a 30◦ an-
gle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩ ≈ ⟨43.3, 25⟩ . The ramp is
represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos 30◦, sin 30◦⟩ · ⟨15, 3⟩ ≈ 724.5 ft–lb.

Note howwe did not actually compute the distance the object travelled, nor
the magnitude of the force in the direction of travel; this is all inherently com-
puted by the dot product!

The dot product is a powerful way of evaluating computations that depend
onangleswithout actually using angles. Thenext section explores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.
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Exercises 11.3
Terms and Concepts

1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

4. Give a synonym for “orthogonal.”

Problems
In Exercises 5 – 10, find the dot product of the given vectors.

5. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩

6. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩

7. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩

8. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩

9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

10. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ inR3 and scalar c and show
that c(⃗u · v⃗) = u⃗ · (c⃗v).

In Exercises 13 – 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩

14. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩

15. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩

16. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises 17 – 20, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

17. v⃗ = ⟨4, 7⟩

18. v⃗ = ⟨−3, 5⟩

19. v⃗ = ⟨1, 1, 1⟩

20. v⃗ = ⟨1,−2, 3⟩

In Exercises 21 – 26, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projection of u⃗ onto v⃗, and sketch all three
vectors with the same initial point.

21. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

22. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

23. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

24. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

25. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

26. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises 27 – 32, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises 21 – 26.

27. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

28. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

29. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

30. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

31. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

32. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

33. A 10lb box sits on a ramp that rises 4ft over a distance of
20ft. Howmuch force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15ft ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10ft with a force of 20lb applied at an angle of 45◦ to the
horizontal?

36. How much work is performed in moving a box horizontally
10ft with a force of 20lb applied at an angle of 10◦ to the
horizontal?

37. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2ft over a distance of 10ft, with a force
of 50lb applied horizontally?

38. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2ft over a distance of 10ft, with a force
of 50lb applied at an angle of 45◦ to the horizontal?

39. Howmuchwork is performed inmoving a box up the length
of a 10ft ramp that makes a 5◦ angle with the horizontal,
with 50lb of force applied in the direction of the ramp?562



The definition of the cross product may
look strange (and complicated) at first,
but it’s more or less forced by the require-
ment that it be orthogonal to both u⃗ and
v⃗. To begin to see why, suppose w⃗ =
⟨a, b, c⟩ is an arbitrary vector such that
w⃗ · u⃗ = 0 and w⃗ · v⃗ = 0. This gives us
the pair of equations

u1a+ u2b+ u3c = 0
v1a+ v2b+ v3c = 0.

This is a system of linear equations in the
variables a, b, and c. Using Gaussian elim-
ination (recalling your linear algebra), it’s
easy to show that (up to a scalar multiple)
the solution is given by Definition 11.4.1.

11.4 The Cross Product

11.4 The Cross Product
“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two non–parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a operation,
called the cross product, that creates such a vector. This section defines the
cross product, then explores its properties and applications.

Definition 11.4.1 Cross Product

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definition can be a bit cumbersome to remember. After an example we
will give a convenient method for computing the cross product. For now, care-
ful examination of the products and differences given in the definition should
reveal a pattern that is not too difficult to remember. (For instance, in the first
component only 2 and 3 appear as subscripts; in the second component, only
1 and 3 appear as subscripts. Further study reveals the order in which they ap-
pear.)

Let’s practice using this definition by computing a cross product.

Example 11.4.1 Computing a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

SÊ½çã®ÊÄ Using Definition 11.4.1, we have

u⃗× v⃗ = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩
= ⟨(−1)5− (4)2, (4)3− (2)5, (2)2− (−1)3⟩ = ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:(⃗
u× v⃗

)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(⃗

u× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗.

We now introduce a method for computing the cross-product that is easier
to remember, which you may recall from your first course in linear algebra.

Consider a matrix
[
a b
c d

]
of four real numbers a, b, c, and d. A 2× 2 deter-

minant takes any suchmatrix and assigns the number ad−bc. This is commonly
denoted as follows: ∣∣∣∣a b

c d

∣∣∣∣ = ad− bc.

Most people find it easiest to remember this in terms of the two diagonals of
the array: we take the product of the two numbers on the main diagonal (top- 563
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left to bottom-right), and subtract the product of the two numbers on the other
diagonal: ∣∣∣∣a b

c d

∣∣∣∣
adbc

For example, we have
∣∣∣∣4 −2
6 3

∣∣∣∣ = 4(3) − (−2)(6) = 24. Once we get

comfortable with 2 × 2 determinants, we can write the cross product in terms
of them, as follows:

u⃗× v⃗ =
∣∣∣∣u2 u3
v2 v3

∣∣∣∣ i⃗− ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ j⃗+ ∣∣∣∣u1 u2
v1 v2

∣∣∣∣ k⃗ (11.4)

= (u2v3 − u3v2)⃗i− (u3v1 − u1v3)⃗j+ (u1v2 − u2v1)⃗k,

as before. Now, this might not seem like much of an improvement over the
previous formula, so we take things one step further. First, we form a 3 × 3
array as shown below. ∣∣∣∣∣∣

i⃗ j⃗ k⃗
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
The first row comprises the standard unit vectors i⃗, j⃗, and k⃗. The second and third
rows are the vectors u⃗ and v⃗, respectively. Next, we expand our 3× 3 array as a
vector, where the coefficient of each standard unit vector is given by the 2 × 2
determinant that’s left over whenwe delete the row and column containing that
unit vector.

For example, if we use u⃗ and v⃗ from Example 11.4.1, we obtain the array∣∣∣∣∣∣
i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣ .
The expansion process used to obtain the coefficients of i⃗, j⃗⃗k looks like the fol-
lowing: ∣∣∣∣∣∣∣

i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣−1 4
2 5

∣∣∣∣ i⃗ = −13⃗i

Now repeat the first two columns after the original three:∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣2 4
3 5

∣∣∣∣ j⃗ = −2⃗j

This gives three full “upper left to lower right” diagonals, and three full “up-
per right to lower left” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
left: ∣∣∣∣∣∣∣

i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣∣ −→
∣∣∣∣2 −1
3 2

∣∣∣∣ k⃗ = 7⃗k
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Note: If the minus sign in front of the j⃗
coefficient seems out of place to you, it
might help to imagine wrapping our 3×3
array around a cylinder (like the label on a
tin can). If we read from left to right, be-
ginning in the j⃗ column, then we should
place the k⃗ column first, followed by the
i⃗ column. For the vectors u⃗ and v⃗ in Ex-
ample 11.4.1, this would result in the co-

efficient
∣∣∣∣4 2
5 2

∣∣∣∣ = 2 for the j⃗ compo-

nent, which has the correct sign. How-
ever, since our habit is to read starting
from the far left, we tend to write the i⃗
column first, and then introduce the mi-
nus sign to compensate.

11.4 The Cross Product

u⃗× v⃗ =
(
− 5⃗i+12⃗j+ 4⃗k

)
−
(
− 3⃗k+ 8⃗i+10⃗j

)
= −13⃗i+ 2⃗j+ 7⃗k = ⟨−13, 2, 7⟩ .

There is one more important detail to note: notice in Equation (11.4) that
there is aminus sign in front of the coefficient of the unit vector j⃗. We need to
make sure that the signs in front of each 2× 2 determinant follow this+, −, +
patternwhenwe expand our array as a vector. For the vectors u⃗ and v⃗ in Example
11.4.1, we end up with the following:

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
2 −1 4
3 2 5

∣∣∣∣∣∣ =
∣∣∣∣−1 4
2 5

∣∣∣∣ i⃗− ∣∣∣∣2 4
3 5

∣∣∣∣ j⃗+ ∣∣∣∣2 −1
3 2

∣∣∣∣ k⃗
= −13⃗i− (−2)⃗j+ 7⃗k = ⟨−13, 2, 7⟩ ,

as before. The method will become more clear with a bit of practice.

Example 11.4.2 Computing a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

SÊ½çã®ÊÄ To compute u⃗ × v⃗, we form our 3 × 3 array as prescribed
above, and expand it into a vector:

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
1 3 6
−1 2 1

∣∣∣∣∣∣ =
∣∣∣∣3 6
2 1

∣∣∣∣ i⃗− ∣∣∣∣ 1 6
−1 1

∣∣∣∣ j⃗+ ∣∣∣∣ 1 3
−1 2

∣∣∣∣ k⃗
= (3(1)− 6(2))⃗i− (1(1)− 6(−1))⃗j+ (1(2)− 3(−1))⃗k

= −9⃗i− 7⃗j+ 5⃗k = ⟨−9,−7, 5⟩ .

To compute v⃗ × u⃗, we switch the second and third rows of the above matrix,
then expand as before:

v⃗× u⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

−1 2 1
1 3 6

∣∣∣∣∣∣ =
∣∣∣∣2 1
3 6

∣∣∣∣ i⃗− ∣∣∣∣−1 1
1 6

∣∣∣∣ j⃗+ ∣∣∣∣−1 2
1 3

∣∣∣∣ k⃗
= (2(6)− 1(3))⃗i− ((−1)(6)− 1(1))⃗j+ ((−1)(3)− 2(1))⃗k

= 9⃗i+ 7⃗j− 5⃗k = ⟨9, 7,−5⟩ = −u⃗× v⃗.

Note how with the rows being switched, the products that once appeared on
the right now appear on the left, and vice–versa, so that the result is the oppo-
site of u⃗ × v⃗. We leave it to the reader to verify that each of these vectors is
orthogonal to u⃗ and v⃗.

Properties of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using Definition 11.4.1 that this will always be the case. The following
theorem states several useful properties of the cross product, each of which can
be verified by referring to the definition.

565



Chapter 11 Vectors

Theorem 11.4.1 Properties of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following identities
hold:

1. u⃗× v⃗ = −(⃗v× u⃗) Anticommutative Property

2. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ Distributive Properties
(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

3. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

4. (a) (⃗u× v⃗) · u⃗ = 0 Orthogonality Properties
(b) (⃗u× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construction given in
Definition 11.4.1 satisfies this property. Theorem 11.4.1 asserts this property
holds; we leave it as a problem in the Exercise section to verify this.

The algebraic properties of the cross product in Theorem 11.4.1 also give
us an additional method for computing the cross product in terms of the unit
vectors i⃗, j⃗, k⃗. We know from Property 5 that

i⃗× i⃗ = 0⃗, j⃗× j⃗ = 0⃗, k⃗× k⃗ = 0⃗,

and it’s easy to check that

i⃗× j⃗ = k⃗, j⃗× k⃗ = i⃗, k⃗× i⃗ = j⃗,

and then Property 1 guarantees that

j⃗× i⃗ = −k⃗, k⃗× j⃗ = −⃗i,⃗ i× k⃗ = −⃗j.

Using Properties 2 and 3, we can then compute, for example,

⟨2, 0, 3⟩ × ⟨−1, 4, 2⟩ = (2⃗i+ 3⃗k)× (−⃗i+ 4⃗j+ 2⃗k)

= −2(⃗i× i⃗) + 8(⃗i× j⃗) + 4(⃗i× k⃗)

− 3(⃗k× i⃗) + 12(⃗k× j⃗) + 6(⃗k× k⃗)

= 0⃗+ 8⃗k− 4⃗j− 3⃗j− 12⃗i+ 0⃗ = ⟨−12,−7, 8⟩ .

Property 5 from the theorem is also left to the reader to prove in the Exercise
section, but it reveals something more interesting than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property 3 of Theorem 11.4.1)
= 0⃗. (by Property 5 of Theorem 11.4.1)
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Note: We could rewrite Definition 11.3.2
and Theorem11.4.2 to include 0⃗, then de-
fine that u⃗ and v⃗ are parallel if u⃗× v⃗ = 0⃗.
Since 0⃗ · v⃗ = 0 and 0⃗× v⃗ = 0⃗, this would
mean that 0⃗ is both parallel and orthog-
onal to all vectors. Apparent paradoxes
such as this are not uncommon in math-
ematics and can be very useful. (See also
the marginal note on page 546.)

11.4 The Cross Product

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 11.3.2 related the angle between two vectors
and their dot product; there is a similar relationship relating the cross product
of two vectors and the angle between them, given by the following theorem.

Theorem 11.4.2 The Cross Product and Angles

Let u⃗ and v⃗ be vectors in R3. Then

∥ u⃗× v⃗ ∥ = ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of
0 is 0⃗ (see Property 9 of Theorem 11.2.1), hence the cross product of parallel
vectors is 0⃗.

We provide some anecdotal evidence of the truth of this theorem in the fol-
lowing example.

Example 11.4.3 The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 11.4.2. Verify Theorem 11.4.2
by finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

SÊ½çã®ÊÄ We use Theorem 11.3.2 to find the angle between u⃗ and v⃗.

θ = cos−1
(

u⃗ · v⃗
∥ u⃗ ∥ ∥ v⃗ ∥

)
= cos−1

(
11√
46

√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 11.4.2 showed that u⃗× v⃗ = ⟨−9,−7, 5⟩, hence ∥ u⃗×
v⃗ ∥ =

√
155. Is ∥ u⃗ × v⃗ ∥ = ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ? Using numerical approximations,

we find:

∥ u⃗× v⃗ ∥ =
√
155 ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ =

√
46

√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46

√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly.

To see that Theorem 11.4.2 holds in general, let u⃗ = ⟨u1, u2, u3⟩ and v⃗ =
⟨v1, v2, v3⟩ be two arbitrary three-dimensional vectors. Since the angle between
u⃗ and v⃗ is defined to lie between 0 and π, we know that sin θ ≥ 0, so that both
sides of the equation ∥ u⃗× v⃗ ∥ = ∥ u⃗ ∥∥ v⃗ ∥ sin θ are positive. Thus, we can show
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Figure 11.4.1: Illustrating the Right Hand
Rule of the cross product.
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Figure 11.4.2: Using the cross product to
find the area of a parallelogram.
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that both sides are equal if we can show that their squares are equal. We have

(∥ u⃗ ∥∥ v⃗ ∥ sin θ)2 = ∥ u⃗ ∥2∥ v⃗ ∥2 sin2 θ
= ∥ u⃗ ∥2∥ v⃗ ∥2(1− cos2 θ) since sin2 θ + cos2 θ = 1
= ∥ u⃗ ∥2∥ v⃗ ∥2 − (∥ u⃗ ∥∥ v⃗ ∥ cos θ)2

= ∥ u⃗ ∥2∥ v⃗ ∥2 − (⃗u · v⃗)2 by Theorem 11.3.2
= (u21 + u22 + u23)(v

2
1 + v22 + v23)− (u1v1 + u2v2 + u3v3)2

= u22v
2
3 − 2u2u3v2v3 + u23v

2
2 + u1v23 − 2u1u3v1v3

+u23v21 + u21v22 − 2u1u2v1v2 + u22v21
= (u2v3 − u3v2)2 + (u3v1 − u1v3)2 + (u1v2 − u2v2)2

= ∥ u⃗× v⃗ ∥2,

as required.

Right Hand Rule

The anticommutative property of the cross product demonstrates that u⃗× v⃗
and v⃗×u⃗ differ only by a sign – these vectors have the samemagnitude but point
in the opposite direction. When seeking a vector perpendicular to u⃗ and v⃗, we
essentially have two directions to choose from, one in the direction of u⃗× v⃗ and
one in the direction of v⃗× u⃗. Does it matter which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same initial point, point
the index finger of your right hand in the direction of u⃗ and let yourmiddle finger
point in the direction of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direction of u⃗× v⃗. One can “practice” this using Figure 11.4.1. If you switch,
and point the index finder in the direction of v⃗ and the middle finger in the di-
rection of u⃗, your thumb will now point in the opposite direction, allowing you
to “visualize” the anticommutative property of the cross product.

Applications of the Cross Product

There are a number of ways in which the cross product is useful in mathe-
matics, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 11.4.2(a). As shownwhen defining the Parallelogram Law of
vector addition, two vectors u⃗ and v⃗ define a parallelogram when drawn from
the same initial point, as illustrated in Figure 11.4.2(b). Trigonometry tells us
that h = ∥ u⃗ ∥ sin θ, hence the area of the parallelogram is

A = ∥ u⃗ ∥ ∥ v⃗ ∥ sin θ = ∥ u⃗× v⃗ ∥, (11.5)

where the second equality comes from Theorem 11.4.2. We illustrate using
Equation (11.5) in the following example.
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Figure 11.4.3: Sketching the parallelo-
grams in Example 11.4.4.
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Figure 11.4.4: Finding the area of a trian-
gle in Example 11.4.5.

11.4 The Cross Product

Example 11.4.4 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩ and
v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the vertices of a parallelogram. Find the area of the
parallelogram.

SÊ½çã®ÊÄ

1. Figure 11.4.3(a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in R2, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofR3, and rewrite themas u⃗ =
⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallelogram
is A = ∥ u⃗× v⃗ ∥ = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
11.4.3(b)), we need to show that the opposite sides are parallel. We can
quickly show that # ‰AB =

# ‰DC = ⟨1, 2, 1⟩ and # ‰BC =
#  ‰AD = ⟨2, 2, 1⟩. We find

the area by computing the magnitude of the cross product of # ‰AB and # ‰BC:
# ‰AB× # ‰BC = ⟨0, 1,−2⟩ ⇒ ∥ # ‰AB× # ‰BC ∥ =

√
5 ≈ 2.236.

This application is perhaps more useful in finding the area of a triangle (in
short, triangles are used more often than parallelograms). We illustrate this in
the following example.

Example 11.4.5 Area of a triangle
Find the area of the triangle with vertices A = (1, 2), B = (2, 3) and C = (3, 1),
as pictured in Figure 11.4.4.

SÊ½çã®ÊÄ We found the area of this triangle in Example 7.1.4 to be 1.5
using integration. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ 1

2bh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨1, 1⟩ and # ‰AC = ⟨2,−1⟩. As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1
2
∥ # ‰AB× # ‰AC ∥ =

1
2
∥ ⟨1, 1, 0⟩ × ⟨2,−1, 0⟩ ∥ =

1
2
∥ ⟨0, 0,−3⟩ ∥ =

3
2
.

We arrive at the same answer as before with less work.

Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the parallelepiped.

Each face is parallel to the face opposite face, as illustrated in Figure 11.4.5. The
volume of any three-dimensional solid whose cross-sectional area is a constant
is given by V = B·h, where B is the area of the base (the constant cross-sectional
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Note: The word “parallelepiped” is pro-
nounced “parallel–uh–pipe–ed.”

Figure 11.4.5: A parallelepiped is the
three dimensional analogue to the paral-
lelogram.

Figure 11.4.6: Determining the volume of
a parallelepiped

Figure 11.4.7: A parallelepiped in Exam-
ple 11.4.6.
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area), and h is the height. To determine a formula for the volume, we refer to Fig-
ure 11.4.6. By crossing v⃗ and w⃗, one gets a vector whose magnitude is the area
of the base, and whose direction is perpendicular to the parallelogram forming
the base of the solid. We can then see that the height of the parallelepiped is
equal to the length of the projection of the vector u⃗ onto v⃗× w⃗. Our volume is
therefore:

V = B · h
= ∥ v⃗× w⃗ ∥ · ∥ proj⃗v×w⃗ u⃗ ∥

= ∥ v⃗× w⃗ ∥ · ∥
(
u⃗ · (⃗v× w⃗)
∥ v⃗× w⃗ ∥2

)
(⃗v× w⃗) ∥

= ∥ v⃗× w⃗ ∥ |⃗u · (⃗v× w⃗)|
∥ v⃗× w⃗ ∥2

∥ v⃗× w⃗ ∥

= |⃗u · (⃗v× w⃗)|.

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)|. (11.6)

Note how this is the Scalar Triple Product, first seen in Theorem 11.4.1. Applying
the identities given in the theorem shows that we can apply the Scalar Triple
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗|, etc.

Example 11.4.6 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩, v⃗ =
⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

SÊ½çã®ÊÄ We apply Equation (11.6). We first find v⃗× w⃗ = ⟨1, 1,−1⟩.
Then

|⃗u · (⃗v× w⃗)| = |⟨1, 1, 0⟩ · ⟨1, 1,−1⟩| = 2.
So the volume of the parallelepiped is 2 cubic units.

Let’s take another look at how Equation (11.6) is computed in terms of our
formulas for the dot and cross products. With u⃗ = ⟨u1, u2, u3⟩ , v⃗ = ⟨v1, v2, v3⟩,
and w⃗ = ⟨w1,w2,w3⟩, we have

u⃗ · (⃗v× w⃗) = ⟨u1, u2, u3⟩ ·
⟨∣∣∣∣ v2 v3

w2 w3

∣∣∣∣ ,− ∣∣∣∣ v1 v3
w1 w3

∣∣∣∣ , ∣∣∣∣ v1 v2
w1 w2

∣∣∣∣⟩
= u1

∣∣∣∣ v2 v3
w2 w3

∣∣∣∣− u2
∣∣∣∣ v1 v3
w1 w3

∣∣∣∣+ u3
∣∣∣∣ v1 v2
w1 w2

∣∣∣∣ .
Compare this with our determinant formula for computing the cross product,

v⃗× w⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ =
∣∣∣∣ v2 v3
w2 w3

∣∣∣∣ i⃗− ∣∣∣∣ v1 v3
w1 w3

∣∣∣∣ j⃗+ ∣∣∣∣ v1 v2
w1 w2

∣∣∣∣ k⃗.
If we replace the unit vectors i⃗, j⃗, veck in the above equation with the compo-
nents of u⃗, we arrive at our first instance of a 3 × 3 determinant, along with a
method for computing such an object:∣∣∣∣∣∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ = u1
∣∣∣∣ v2 v3
w2 w3

∣∣∣∣− u2
∣∣∣∣ v1 v3
w1 w3

∣∣∣∣+ u3
∣∣∣∣ v1 v2
w1 w2

∣∣∣∣ = u⃗ · (⃗v× w⃗).
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11.4 The Cross Product

While this application of the Scalar Triple Product is interesting, it is not used
all that often: parallelepipeds are not a common shape in physics and engineer-
ing. (It is, however, essential to understanding the change of variables formula
for multiple integrals in Calculus.) The last application of the cross product is
very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the application of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in a di-
rection orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek letter
τ, or tau, and has units of N·m, a Newton–metre, or ft·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulting torque is

τ⃗ = ℓ⃗× F⃗. (11.7)

Example 11.4.7 Computing torque
A lever of length 2 ftmakes an anglewith the horizontal of 45◦. Find the resulting
torque when a force of 10 lb is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure 11.4.8.

SÊ½çã®ÊÄ

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45◦ angle with the horizontal and is 2 ft long, we can
state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
left hand side of Figure 11.4.8), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10 lb, we can state
F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using Equation (11.7) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩

This clearly has a magnitude of 20 ft-lb.
We can view the force and lever arm vectors as lying “on the page”; our
computation of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

2. Our lever arm can still be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right hand
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ℓ⃗

.90◦ .

F⃗

.

ℓ⃗

.
60◦

.

F⃗

Figure 11.4.8: Showing a force being ap-
plied to a lever in Example 11.4.7.

Chapter 11 Vectors

side of the figure) that F⃗makes a−15◦ angle with the horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =
⟨
5(1+

√
3)√

2
,−5(1+

√
3)√

2

⟩
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5(1+

√
3)√

2
,−5(1+

√
3)√

2
, 0
⟩

=
⟨
0, 0,−10

√
3
⟩

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

While the cross product has a variety of applications (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equations of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
matics. We study lines and planes in the next two sections.
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Exercises 11.4
Terms and Concepts
1. The cross product of two vectors is a , not a

scalar.

2. One can visualize the direction of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”

4. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

5. is a measure of the turning force applied to an
object.

6. T/F: If u⃗ and v⃗ are parallel, then u⃗× v⃗ = 0⃗.

Problems
In Exercises 7 – 16, vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

7. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩

8. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩

9. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

10. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩

11. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩

12. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩

13. u⃗ = ⟨a, b, 0⟩, v⃗ = ⟨c, d, 0⟩

14. u⃗ = i⃗, v⃗ = j⃗

15. u⃗ = i⃗, v⃗ = k⃗

16. u⃗ = j⃗, v⃗ = k⃗

17. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗×(⃗v+w⃗) =
u⃗× v⃗+ u⃗× w⃗.

18. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗· (⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises 19 – 22, the magnitudes of vectors u⃗ and v⃗ in R3

are given, along with the angle θ between them. Use this in-
formation to find the magnitude of u⃗× v⃗.

19. ∥ u⃗ ∥ = 2, ∥ v⃗ ∥ = 5, θ = 30◦

20. ∥ u⃗ ∥ = 3, ∥ v⃗ ∥ = 7, θ = π/2

21. ∥ u⃗ ∥ = 3, ∥ v⃗ ∥ = 4, θ = π

22. ∥ u⃗ ∥ = 2, ∥ v⃗ ∥ = 5, θ = 5π/6

In Exercises 23 – 26, find the area of the parallelogram de-
fined by the given vectors.

23. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩

24. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩

25. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩

26. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises 27 – 30, find the area of the triangle with the
given vertices.

27. Vertices: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

28. Vertices: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

29. Vertices: (1, 1), (1, 3) and (2, 2).

30. Vertices: (3, 1), (1, 2) and (4, 3).

In Exercises 31 – 32, find the area of the quadrilateral with
the given vertices. (Hint: break the quadrilateral into 2 trian-
gles.)

31. Vertices: (0, 0), (1, 2), (3, 0) and (4, 3).

32. Vertices: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises 33 – 34, find the volume of the parallelepiped
defined by the given vectors.

33. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩

34. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises 35 – 38, find a unit vector orthogonal to both u⃗
and v⃗.

35. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩

36. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩

37. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩

38. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩

39. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
crankshaft. Find the magnitude of the torque applied to
the crankshaft.
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40. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaft, making a 30◦
anglewith the horizontal. Find themagnitude of the torque
applied to the crankshaft.

41. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

42. To turn a stubborn bolt, 80lb of force is applied to a 10in

wrench in a confined space, where the direction of ap-
plied force makes a 10◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

43. Show, using the definition of the Cross Product, that u⃗ · (⃗u×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

44. Show, using the definition of the Cross Product, that u⃗×u⃗ =
0⃗.
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Figure 11.5.2: Defining a line in space.

11.5 Lines

11.5 Lines
To find the equation of a line in the x-y plane, we need two pieces of information:
a point and the slope. The slope conveys direction information. As vertical lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direction of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with initial point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direction of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direction parallel to d⃗. For instance, starting at p⃗ and travelling one length of
d⃗ places one at another point on the line. Consider Figure 11.5.2 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starting
with p⃗ andmoving a certain distance in the direction of d⃗. That is, we can define
the line as a function of t:

ℓ⃗(t) = p⃗+ t d⃗. (11.8)

In many ways, this is not a new concept. Compare Equation (11.8) to the
familiar “y = mx+ b” equation of a line:

y = b + mx ℓ⃗(t) = p⃗ + t d⃗

Starting
Point Direction

How Far To
Go In That
Direction

Figure 11.5.1: Understanding the vector equation of a line.

The equations exhibit the same structure: they give a starting point, define
a direction, and state how far in that direction to travel.

Equation (11.8) is an example of a vector–valued function; the input of the
function is a real number and the output is a vector. Wewill cover vector–valued
functions extensively in the next chapter.

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let d⃗ =

⟨a, b, c⟩. Then the equation of the line through p⃗ in the direction of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states that the x values of the line are given by x = x0 + at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equations, taken together, are the parametric equations of the line
through p⃗ in the direction of d⃗.
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Figure 11.5.3: Graphing a line in Example
11.5.1.

Chapter 11 Vectors

Finally, each of the equations for x, y and z above contain the variable t. We
can solve for t in each equation:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y− y0

b
,

z = z0 + ct ⇒ t =
z− z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equations of the line through
p⃗ in the direction of d⃗:

x− x0
a

=
y− y0

b
=

z− z0
c

.

Each representation has its own advantages, depending on the context. We
summarize these three forms in the following definition, then give examples of
their use.

Definition 11.5.1 Equations of Lines in Space

Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in the
direction of d⃗ = ⟨a, b, c⟩ .

1. The vector equation of the line is

ℓ⃗(t) = p⃗+ t⃗d.

2. The parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equations of the line are

x− x0
a

=
y− y0

b
=

z− z0
c

.

Example 11.5.1 Finding the equation of a line
Give all three equations, as given in Definition 11.5.1, of the line through P =
(2, 3, 1) in the direction of d⃗ = ⟨−1, 1, 2⟩. Does the point Q = (−1, 6, 6) lie on
this line?

SÊ½çã®ÊÄ We identify the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definition, we have

• the vector equation of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equations of the line are

x = 2− t, y = 3+ t, z = 1+ 2t; and

• the symmetric equations of the line are

x− 2
−1

=
y− 3
1

=
z− 1
2

.
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Figure 11.5.4: A graph of the line in Exam-
ple 11.5.2.

11.5 Lines

The first two equations of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculating with a computer; most software programs easily handle equa-
tions in these formats. (For instance, the graphics program that made Figure
11.5.3 can be given the input “(2-t,3+t,1+2*t)” for−1 ≤ t ≤ 3.).

Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 11.5.3
makes it clear that it does not. We can answer this question without the graph
using any of the three equation forms. Of the three, the symmetric equations
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−1− 2
−1

?
=

6− 3
1

?
=

6− 1
2

⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not satisfy the symmetric equa-
tions.

Example 11.5.2 Finding the equation of a line through two points
Find the parametric equations of the line through the points P = (2,−1, 2) and
Q = (1, 3,−1).

SÊ½çã®ÊÄ Recall the statement made at the beginning of this section:
to find the equation of a line, we need a point and a direction. We have two
points; either one will suffice. The direction of the line can be found by the
vector with initial point P and terminal point Q: #  ‰PQ = ⟨−1, 4,−3⟩.

The parametric equations of the line ℓ through P in the direction of #  ‰PQ are:

ℓ : x = 2− t y = −1+ 4t z = 2− 3t.

A graph of the points and line are given in Figure 11.5.4. Note how in the
given parametrization of the line, t = 0 corresponds to the point P, and t = 1
corresponds to the pointQ. This relates to the understanding of the vector equa-
tion of a line described in Figure 11.5.1. The parametric equations “start” at the
point P, and t determines how far in the direction of #  ‰PQ to travel. When t = 0,
we travel 0 lengths of #  ‰PQ; when t = 1, we travel one length of #  ‰PQ, resulting in
the point Q.

Parallel, Intersecting and Skew Lines

In the plane, two distinct lines can either be parallel or they will intersect
at exactly one point. In space, given equations of two lines, it can sometimes
be difficult to tell whether the lines are distinct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗1(t) = p⃗1+ t⃗d1 and ℓ⃗2(t) = p⃗2+ t⃗d2,
we have four possibilities: ℓ⃗1 and ℓ⃗2 are

the same line they share all points;
intersecting lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.

The next two examples investigate these possibilities.
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Figure 11.5.5: Sketching the lines fromEx-
ample 11.5.3.

Recall from linear algebra that a system
of equations with no solution, such as the
one in Example 11.5.3, is inconsistent. Al-
though it is possible to find values that
work for any two of the three equations,
there is no set of values for s and t that
work for all three equations simultane-
ously.

Chapter 11 Vectors

Example 11.5.3 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ We start by looking at the directions of each line. Line ℓ1
has the direction given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direction given
by d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1
and ℓ2 are not the same line, nor are they parallel. Figure 11.5.5 verifies this
fact (where the points and directions indicated by the equations of each line are
identified).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respective x, y
and z values are the same. That is, we want s and t such that:

1+ 3t = x = −2+ 4s
2− t = y = 3+ s
t = z = 5+ 2s.

This is a relatively simple system of linear equations. Since the last equation is
already solved for t, substitute that value of t into the equation above it:

2− (5+ 2s) = 3+ s ⇒ s = −2, t = 1.

A key to remember is that we have three equations; we need to check if s =
−2, t = 1 satisfies the first equation as well:

1+ 3(1) ̸= −2+ 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Example 11.5.4 Comparing lines
Consider the lines ℓ1 and ℓ2 given by the vector equations

ℓ⃗1(s) = ⟨2,−1, 4⟩+ s⟨0, 4,−8⟩

ℓ⃗2(t) = ⟨−3, 4,−6⟩+ t⟨2,−1, 2⟩.

Determine if the lines are parallel, skew, or intersecting.

SÊ½çã®ÊÄ We can immediately see that the lines cannot be parallel,
since the x-component of the direction vector for ℓ1 is zero, but this is not the
case for the direction vector of ℓ2. (There is no scalar c such that 0 · c = 2.)
To determine if the lines intersect, we proceed as in the previous example. We
must have

2 = x = −3+ 2t
−1+ 4s = y = 4− t
4− 8s = z = −6+ 2t.

The first equation immediately gives us 2t = 5, so t = 5
2 . Plugging this into the

second equation gives us

4s = 4− 5
2
+ 1 =

5
2

⇒ s =
5
8
.
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11.5 Lines

We now need to check to see if these values satisfy the third equation as well:
we have

4− 8s = 4− 5 = −1,

and
−6+ 2t = −6+ 5 = −1,

so the values s = 5
8 , t =

5
2 work for all three equations, and since

ℓ⃗1

(
5
8

)
= ⟨2,−1, 4⟩+ 5

8
⟨0, 4,−8⟩ = ⟨2, 3

2
,−1⟩ and

ℓ⃗2

(
5
2

)
= ⟨−3, 4,−6⟩+ 5

2
⟨2,−1, 2⟩ = ⟨2, 3

2
,−1⟩,

our point of intersection is (2, 3
2 ,−1).

Example 11.5.5 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :
x = −0.7+ 1.6t
y = 4.2+ 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05+ 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ It is obviously very difficult to simply look at these equations
and discern anything. This is done intentionally. In the “real world,” most equa-
tions that are used do not have nice, integer coefficients. Rather, there are lots
of digits after the decimal and the equations can look “messy.”

We again start by deciding whether or not each line has the same direction.
The direction of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the direction of ℓ2
is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear through observation
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respective unit vectors. Using a calculator, we find:

u⃗1 =
d⃗1

∥ d⃗1 ∥
= ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2

∥ d⃗2 ∥
= ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situations, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗1 and d⃗2
in terms of fractions, not decimals. We have

d⃗1 =
⟨
16
10

,
272
100

,−336
100

⟩
d⃗2 =

⟨
−29
10

,−493
100

,
609
100

⟩
.

One can then find the magnitudes of each vector in terms of fractions, then
compute the unit vectors likewise. After a lot of manual arithmetic (or after
briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10
83

,
17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10
83

,− 17√
830

,
21√
830

⟩
.

We can now say without equivocation that these lines are parallel.
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Figure 11.5.6: Graphing the lines in Exam-
ple 11.5.5.
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Figure 11.5.7: Establishing the distance
from a point to a line.

Chapter 11 Vectors

Are they the same line? The parametric equations for a line describe one
point that lies on the line, so we know that the point P1 = (−0.7, 4.2, 2.3) lies
on ℓ1. To determine if this point also lies on ℓ2, plug in the x, y and z values of P1
into the symmetric equations for ℓ2:

(−0.7)− 2.8
−2.9

?
=

(4.2)− 10.15
−4.93

?
=

(2.3)− (−5.05)
6.09

⇒ 1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 11.5.6 graphs this line along with the points
and vectors described by the parametric equations. Note how d⃗1 and d⃗2 are
parallel, though point in opposite directions (as indicated by their unit vectors
above).

Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is often useful to know
the distance from the point to the line. (Here we use the standard definition
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Identifying p⃗ with the point P, Figure 11.5.7 will help establish a general
method of computing this distance h.

From trigonometry, we know h = ∥ #  ‰PQ ∥ sin θ. We have a similar identity
involving the cross product: ∥ #  ‰PQ × d⃗ ∥ = ∥ #  ‰PQ ∥ ∥ d⃗ ∥ sin θ. Divide both sides
of this latter equation by ∥ d⃗ ∥ to obtain h:

h =
∥ #  ‰PQ× d⃗ ∥

∥ d⃗ ∥
. (11.9)

We put Equation (11.9) to use in the following example.

Example 11.5.6 Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩ +
t ⟨2, 3, 1⟩ .

SÊ½çã®ÊÄ Theequationof the line line gives us the point P = (1,−1, 1)
that lies on the line, hence−→PQ = ⟨0, 2, 2⟩. The equation also gives d⃗ = ⟨2, 3, 1⟩.
Using Equation (11.9), we have the distance as

h =
∥ −→PQ× d⃗ ∥

∥ d⃗ ∥

=
∥ ⟨−4, 4,−4⟩ ∥√

14

=
4
√
3√

14
.

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1 + t⃗d1 and ℓ⃗2(t) = p⃗2 + t⃗d2 be given, as shown in Figure 11.5.8.
To find the direction orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projection of #      ‰P1P2 onto c⃗ is the
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Figure 11.5.8: Establishing the distance
between lines.

11.5 Lines

distance h we seek:

h =
∥∥ proj c⃗ #      ‰P1P2

∥∥
=

∥∥∥∥ #      ‰P1P2 · c⃗
c⃗ · c⃗

c⃗
∥∥∥∥

=
| #      ‰P1P2 · c⃗|
∥ c⃗ ∥2

∥ c⃗ ∥

=
| #      ‰P1P2 · c⃗|
∥ c⃗ ∥

.

A problem in the Exercise section is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: #      ‰P1P2 · c =

#      ‰P1P2 · (⃗d1 × d⃗2).
The following Key Idea restates these two distance formulas.

Key Idea 11.5.1 Distances to Lines

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h from
a point Q to the line ℓ is:

h =
∥ #  ‰PQ× d⃗ ∥

∥ d⃗ ∥
.

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =
| #      ‰P1P2 · c⃗|
∥ c⃗ ∥

.

Example 11.5.7 Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

SÊ½çã®ÊÄ These are the sames lines as given in Example 11.5.3, where
we showed them to be skew. The equations allow us to identify the following
points and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒ #      ‰P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

Using Key Idea 11.5.1 we have that the distance h between the two lines is

h =
|−−→P1P2 · c⃗|
∥ c⃗ ∥

=
42√
62

≈ 5.334.

While Key Idea 11.5.1 gives us a convenient formula for computing the dis-
tance, you are probably better off making sure you understand the argument
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Note: We can’t overemphasize the fact
that the diagram referred to in Key Idea
11.5.2 does not have to be accuratewith
respect to the coordinates and directions
involved. It simply has to be capable of
representing the information in the prob-
lem. Note that in Figure 11.5.9 in Ex-
ample 11.5.8 we’ve drawn a line, some
points, and some vectors that represent
the problem, without reference to a co-
ordinate system. The goal is to provide
enough detail to allow us to set up the
problem.

Figure 11.5.9: Setting up the solution in
Example 11.5.8

Chapter 11 Vectors

used to obtain the formula, even though the formula is more efficient. For one
thing, a formula is easily forgotten. For another, understanding the method will
allow you to adapt it to similar situations still to come, such as computing the
distance between skew lines, or from a point to a plane. The general method
for these types of problems can be outlined as follows.

Key Idea 11.5.2 Steps for solving shortest distance problems

Suppose you are asked to find the distance between two objects, or to
determine an object (such as a point) that is closest to a given object (a
line or plane). Your solution to the problem should always include the
following steps:

1. Make a list of all the information provided in the problem.

2. Make a note of what quantities you’re asked to determine.

3. Draw a diagram. Label all relevant points and vectors, including
those you know, and those you want to find.

4. Using your diagram as a reference, compute any unknown points
or vectors.

We put the method in Key Idea 11.5.2 to use in the following example. Note
that in this example we’re asked not just for the distance from a point to a line,
but also for the point on the line that is closest to the given point, so simply using
Equation (11.9) is not enough.

Example 11.5.8 Finding the closest point on a line
Find the distance from the pointQ = (1, 3,−2) to the line ℓ⃗ that passes through
the point P = (2, 0,−1) in the direction of d⃗ = ⟨1,−1, 0⟩, and find the point R
on ℓ⃗ that is closest to Q.

SÊ½çã®ÊÄ We’re given a point P on the line, along with a direction vec-
tor d⃗, and a point Q not on the line. We seek the point R on the line that is
closest to Q, as well as the distance from Q to R. We begin by diagramming the
information in Figure 11.5.9. From the given points P andQwe can immediately
construct the vector

−→PQ = ⟨1− 2, 3− 0,−2− (−1)⟩ = ⟨−1, 3,−1⟩ .

Rather than use Formula (11.9) to find the distance, we begin instead by finding
the point R on the line that is closest toQ. Fromour diagram, we can see that the
vector −→PR from P to R is equal to the projection of −→PQ onto the distance vector
d⃗:

−→PR = proj⃗d
−→PQ =

(
⟨−1, 3,−1⟩ · ⟨1,−1, 0⟩
⟨1,−1, 0⟩ · ⟨1,−1, 0⟩

)
⟨1,−1, 0⟩ = ⟨−2, 2, 0⟩ .

Now, we need to pause and take care that we don’t make a very common mis-
take: the vector −→PR does not give the coordinates of the point R. Instead, −→PR
tells us how to get from the point P to the point R. Letting O denote the origin,
we can write −→OP and −→OR for the position vectors of P and R, respectively. Since−→PR =

−→OR−−→OP using the “tip minus tail” rule for computing the vector between
two points, we have

−→OR =
−→OP+−→PR = ⟨2, 0,−1⟩+ ⟨−2, 2, 0⟩ = ⟨0, 2,−1⟩ .
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Thus, we have R = (0, 2,−1) as the point on the line closest to the point Q. We
can now find the distance from Q to the line using the distance formula:

D =
√
(1− 0)2 + (3− 2)2 + (−2− (−1))2 =

√
3.

(You should verify that this agrees with the distance given by Formula (11.9).)
An alternative way of computing the distance is to make use of the orthogonal
decomposition in Key Idea 11.3.1. By definition of the distance from a point to
a line, we know that the vector −→RQ must be orthogonal to the line, and thus to
the direction vector d⃗. Using Key Idea 11.3.1, we have that

−→RQ =
−→PQ−−→PR = ⟨−1, 3,−1⟩ − ⟨−2, 2, 0⟩ = ⟨−1, 1, 1⟩ ,

and the shortest distance is given by ∥ −→RQ ∥ =
√
3, as before.

In the case of skew lines, the key observation is that if we take the vector
between any pair of points, one on each line, and project it onto the vector
c⃗ = d⃗1 × d⃗2, the length of the resulting vector is the distance we seek.

Somewhatmore challenging is the problemof finding the points on each line
that actually realize this shortest distance.

Example 11.5.9 Finding the closest points on skew lines
Find the points R1 on ℓ⃗1 and R2 on ℓ⃗2, where ℓ⃗1 and ℓ⃗2 are the lines from Example
11.5.7, such that the distance from R1 to R2 is a minimum.

SÊ½çã®ÊÄ Since R1 is a point on ℓ⃗1, we know that

R1 = (1+ 3t, 2− t, t), for some real number t, (11.10)

and similarly,

R2 = (−2+ 4s, 3+ s, 5+ 2s), for some real number s. (11.11)

The vector−−→R1R2 is therefore given by
−−→R1R2 = ⟨−3+ 4s− 3t, 1+ s+ t, 5+ 2s− t⟩ ,

for some pair of real numbers s and t. We know that the line segment R1R2
must be perpendicular to both ℓ⃗1 and ℓ⃗2 in order to minimize the distance, so
the vector−−→R1R2 must be orthogonal to both d⃗1 and d⃗2. Thus,

0 = d⃗1 ·
−−→R1R2 = 3(−3+ 4s− 3t)− 1(1+ s+ t) + 1(5+ 2s− t)

= 13s− 11t− 5, and

0 = d⃗2 ·
−−→R1R2 = 4(−3+ 4s− 3t) + 1(1+ s+ t) + 2(5+ 2s− t)

= 21s− 13t− 1.

We end up having to solve a system of two linear equations in the two variables,
s and t, given by

13s − 11t = 5,
21s − 13t = 1.

You probably had to solve such systems in high school. One option is to solve
graphically, by plotting the lines given by each equation, and seeing where they
intersect. However, this method has little hope of providing an accurate answer.
Instead, we try a little algebra. Multiplying the first equation by 21 and the sec-
ond by 13 gives us the equations 273s− 231t = 105 and 273s− 169t = 13, re-
spectively. Subtracting the second equation from the first, we have−62t = 92,
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Youmight be thinking, “Are those two val-
ues really the same?” A calculator can
verify this of course, by computing the
decimal approximations for the results
in Examples 11.5.7 and 11.5.9. Alterna-
tively, you can verify that

632+422+1472 = 27, 342 = 2(21)2(31),

so
√
632 + 422 + 1472

31
=
√

2(212)(31)31

=
21

√
2
√
31

31

=
21

√
2√

31

=
21(2)√
31

√
2

=
42√
62

.

Chapter 11 Vectors

so t = − 92
62 = − 46

31 . Plugging this value back into any of the previous equations
gives us s = − 351

403 = − 27
31 . (We didn’t promise that the numbers would work

out nicely!) Plugging these values back into equations (11.10) and (11.11), we
find

R1 =

(
−107

31
,
108
31

,−46
31

)
and R2 =

(
−170

31
,
66
31

,
101
31

)
.

Our vector−−→R1R2 is then given by

−−→R1R2 =

⟨
−63
31

,−42
31

,
147
31

⟩
=

1
31

⟨−63,−42, 147⟩ ,

and the distance between the two lines is given by

∥ −−→R1R2 ∥ =
1
31
√

632 + 422 + 1472 =
42√
62

,

as before.

Example 11.5.9 required us to solve a system of two linear equations in two
unknowns s and t. Although this involved some messy fractions, the algebra
involved was fairly straightforward. In many real life problems it is necessary to
be able to solve systems involving hundreds or even thousands of equations and
variables. We will begin our study of how to systematically solve such systems
in the next chapter.

One of the key points to understand from this section is this: to describe a
line, we need a point and a direction. Whenever a problem is posed concern-
ing a line, one needs to take whatever information is offered and glean point
and direction information. Many questions can be asked (and are asked in the
Exercise section) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next section. Many
complex three dimensional objects are studied by approximating their surfaces
with lines and planes.
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Exercises 11.5
Terms and Concepts

1. To find an equation of a line, what two pieces of informa-
tion are needed?

2. Two distinct lines in the plane can intersect or be
.

3. Two distinct lines in space can intersect, be or be
.

4. Use your ownwords to describewhat it means for two lines
in space to be skew.

Problems
In Exercises 5 – 14, write the vector, parametric and symmet-
ric equations of the lines described.

5. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.

6. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.

7. Passes through P = (2, 1, 5) and Q = (7,−2, 4).

8. Passes through P = (1,−2, 3) and Q = (5, 5, 5).

9. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

11. Passes through the point of intersection of ℓ⃗1(t) and ℓ⃗2(t)
and orthogonal to both lines, where
ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

12. Passes through the point of intersection of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t
y = −2+ 2t
z = 1+ t

and ℓ2 =


x = 2+ t
y = 2− t
z = 3+ 2t

.

13. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.

14. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises 15 – 22, determine if the described lines are the
same line, parallel lines, intersecting or skew lines. If inter-
secting, give the point of intersection.

15. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

16. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

17. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

19. ℓ1 =


x = 1+ 2t
y = 3− 2t
z = t

and ℓ2 =


x = 3− t
y = 3+ 5t
z = 2+ 7t

20. ℓ1 =


x = 1.1+ 0.6t
y = 3.77+ 0.9t
z = −2.3+ 1.5t

and ℓ2 =


x = 3.11+ 3.4t
y = 2+ 5.1t
z = 2.5+ 8.5t

21. ℓ1 =


x = 0.2+ 0.6t
y = 1.33− 0.45t
z = −4.2+ 1.05t

and ℓ2 =


x = 0.86+ 9.2t
y = 0.835− 6.9t
z = −3.045+ 16.1t

22. ℓ1 =


x = 0.1+ 1.1t
y = 2.9− 1.5t
z = 3.2+ 1.6t

and ℓ2 =


x = 4− 2.1t
y = 1.8+ 7.2t
z = 3.1+ 1.1t

In Exercises 23 – 26, find the distance from the point to the
line.

23. Q = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

24. Q = (2, 5, 6), ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

25. Q = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

26. Q = (1, 1), ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises 27 – 28, find the distance between the two lines.

27. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises 29 – 31 explore special cases of the distance formu-
las found in Key Idea 11.5.1.

29. Let Q be a point on the line ℓ⃗(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines ℓ⃗1(t) and ℓ⃗2(t) be intersecting lines. Show why
the distance formula correctly gives the distance between
these lines as 0.

585



31. Let lines ℓ⃗1(t) and ℓ⃗2(t) be parallel.

(a) Showwhy the distance formula for distance between
lines cannot be used as stated to find the distance be-
tween the lines.

(b) Show why letting c⃗ = (
#     ‰P1P2 × d⃗2)× d⃗2 allows one to

use the formula.
(c) Show how one can use the formula for the distance

between a point and a line to find the distance be-
tween parallel lines.
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Figure 11.6.1: Illustrating defining a plane
with a sheet of cardboard and a nail.

11.6 Planes

11.6 Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and stick it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 11.6.1.

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locations in space. Tilting the nail (but keeping P fixed) tilts
the cardboard. Both moving and tilting the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the location of P in space, and 2)
the direction of the nail.

The previous section showed that one can define a line given a point on the
line and the direction of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direction the plane “faces” (using the description above, the
direction of the nail). Once again, the direction information will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = 0 for all P and Q.

This gives us way of writing an equation describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− x0, y− y0, z− z0⟩, consider:

#  ‰PQ · n⃗ = 0
⟨x− x0, y− y0, z− z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y− y0) + c(z− z0) = 0 (11.12)

Equation (11.12) defines an implicit function describing the plane. More algebra
produces:

ax+ by+ cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (11.13)

As long as c ̸= 0, we can solve for z:

z =
1
c
(d− ax− by). (11.14)

Equation (11.14) is especially useful asmany computer programs can graph func-
tions in this form. Equations (11.12) and (11.13) have specific names, given next.
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Figure 11.6.2: Sketching the plane in Ex-
ample 11.6.1.

Chapter 11 Vectors

Definition 11.6.1 Equations of a Plane in Standard and General
Forms

The plane passing through the point P = (x0, y0, z0) with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equation with standard form

a(x− x0) + b(y− y0) + c(z− z0) = 0;

the equation’s general form is

ax+ by+ cz = d.

A key to remember throughout this section is this: to find the equation of a
plane, we need a point and a normal vector. We will give several examples of
finding the equation of a plane, and in each one different types of information
are given. In each case, we need to use the given information to find a point on
the plane and a normal vector.

Example 11.6.1 Finding the equation of a plane.
Write the equation of the plane that passes through the points P = (1, 1, 0),
Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

SÊ½çã®ÊÄ We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straightforward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨2, 1, 1⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following Definition 11.6.1, the equation of the plane in standard form is

2(x− 1) + (y− 1) + z = 0.

The plane is sketched in Figure 11.6.2.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 11.6.2 Finding the equation of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equations are given below, inter-
sect, then give the equation of the plane that contains these two lines in general
form.

ℓ1 :
x = −5+ 2s
y = 1+ s
z = −4+ 2s

ℓ2 :
x = 2+ 3t
y = 1− 2t
z = 1+ t

SÊ½çã®ÊÄ The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersection, we set the x, y and z equations equal to
each other and solve for s and t:

−5+ 2s = 2+ 3t
1+ s = 1− 2t

−4+ 2s = 1+ t
⇒ s = 2, t = −1.
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Figure 11.6.3: Sketching the plane in Ex-
ample 11.6.2.

Figure 11.6.4: The line and plane in Exam-
ple 11.6.3.

11.6 Planes

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the directions of lines ℓ1 and ℓ2,

respectively. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by computing
n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equation; each
line gives us infinite choices of points. We choose P, the point of intersection.
We follow Definition 11.6.1 to write the plane’s equation in general form:

5(x+ 1) + 4(y− 3)− 7z = 0
5x+ 5+ 4y− 12− 7z = 0

5x+ 4y− 7z = 7.

The plane’s equation in general form is 5x+ 4y− 7z = 7; it is sketched in Figure
11.6.3.

Example 11.6.3 Finding the equation of a plane
Give the equation, in standard form, of the plane that passes through the point
P = (−1, 0, 1) and is orthogonal to the linewith vector equation ℓ⃗(t) = ⟨−1, 0, 1⟩+
t ⟨1, 2, 2⟩.

SÊ½çã®ÊÄ As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direction of the line given by d⃗ = ⟨1, 2, 2⟩. We use this as
our normal vector. Thus the plane’s equation, in standard form, is

(x+ 1) + 2y+ 2(z− 1) = 0.

The line and plane are sketched in Figure 11.6.4.

Example 11.6.4 Finding the intersection of two planes
Give the parametric equations of the line that is the intersection of the planes
p1 and p2, where:

p1 : x− (y− 2) + (z− 1) = 0
p2 : −2(x− 2) + (y+ 1) + (z− 3) = 0

SÊ½çã®ÊÄ To find an equation of a line, we need a point on the line and
the direction of the line.

We can find a point on the line by solving each equation of the planes for z:

p1 : z = −x+ y− 1
p2 : z = 2x− y− 2

We can now set these two equations equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

−x+ y− 1 = 2x− y− 2
2y = 3x− 1

y =
1
2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equations of either plane to find z: when x = 1 and y = 1,
z = −1 on both planes. We have found a point P on the line: P = (1, 1,−1).

We now need the direction of the line. Since the line lies in each plane,
its direction is orthogonal to a normal vector for each plane. Considering the 589





Figure 11.6.5: Graphing the planes and
their line of intersection in Example
11.6.4.

Figure 11.6.6: Illustrating the intersection
of a line and a plane in Example 11.6.5.

Figure 11.6.7: Illustrating finding the dis-
tance from a point to a plane.

Chapter 11 Vectors

equations for p1 and p2, we can quickly determine their normal vectors. For p1,
n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A direction orthogonal to both of
these directions is their cross product: d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equations of the line through P = (1, 1,−1) in the direction
of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 11.6.5.

Example 11.6.5 Finding the intersection of a plane and a line
Find the point of intersection, if any, of the line ℓ(t) = ⟨3,−3,−1⟩+ t ⟨−1, 2, 1⟩
and the plane with equation in general form 2x+ y+ z = 4.

SÊ½çã®ÊÄ Theequationof the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equation of the line shows that the line
moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal, we know
there is a point of intersection. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecting or the
line was in the plane itself.)

To find the point of intersection, we need to find a t value such that ℓ(t)
satisfies the equation of the plane. Rewriting the equation of the line with para-
metric equations will help:

ℓ(t) =


x = 3− t
y = −3+ 2t
z = −1+ t

.

Replacing x, y and z in the equation of the plane with the expressions containing
t found in the equation of the line allows us to determine a t value that indicates
the point of intersection:

2x+ y+ z = 4
2(3− t) + (−3+ 2t) + (−1+ t) = 4

t = 2.

When t = 2, the point on the line satisfies the equation of the plane; that point
is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersection between
the plane and the line, illustrated in Figure 11.6.6.

Distances

Just as itwas useful to find distances betweenpoints and lines in the previous
section, it is also often necessary to find the distance from a point to a plane.

Consider Figure 11.6.7, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projection of #  ‰PQ
onto n⃗. That is, we want:

∥∥ proj n⃗ #  ‰PQ
∥∥ =

∥∥∥∥∥ n⃗ · #  ‰PQ
∥ n⃗ ∥2

n⃗

∥∥∥∥∥ =
|⃗n · #  ‰PQ|
∥ n⃗ ∥

(11.15)

Equation (11.15) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
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as well: the distance between parallel planes and the distance from a line and a
plane. Because Equation (11.15) is important, we restate it as a Key Idea.

Key Idea 11.6.1 Distance from a Point to a Plane

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =
|⃗n · #  ‰PQ|
∥ n⃗ ∥

,

where P is any point in the plane.

Example 11.6.6 Distance between a point and a plane
Find the distance between the point Q = (2, 1, 4) and the plane with equation
2x− 5y+ 6z = 9.

SÊ½çã®ÊÄ Using the equation of the plane, we find the normal vector
n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever satisfies the equation. Letting x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = ⟨0, 0, 1.5⟩, and #  ‰PQ = ⟨2, 1, 2.5⟩ .

The distance h from Q to the plane is given by Key Idea 11.6.1:

h =
|⃗n · #  ‰PQ|
∥ n⃗ ∥

=
|⟨2,−5,−6⟩ · ⟨2, 1, 2.5⟩|

∥ ⟨2,−5,−6⟩ ∥

=
|−16|√

65
≈ 1.98.

As wementioned in 11.5, it is usually better to understand a method for cal-
culating distances like that in 11.6.6, rather than memorizing a formula. Let us
repeat the example using a more systematic approach.

Example 11.6.7 Distance between a point and a plane
Find the distance bewteen the point Q = (2, 1, 4) and the plane with equation
2x− 5y+ 6z = 9.

SÊ½çã®ÊÄ Referring to Figure 11.6.7, we need to determine the normal
vector n⃗ and a point P on the plane. Using the equation of the plane, we find
the normal vector n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and
y be anything we choose, then let z be whatever satisfies the equation. Letting
x and y be 0 seems simple; this makes z = 3

2 . Thus we let P =
⟨
0, 0, 3

2
⟩
, and

−→PQ =
⟨
2, 1, 5

2
⟩
.
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We can now compute the projection of−→PQ onto n⃗. We have:

proj⃗n
−→PQ =

(−→PQ · n⃗
∥ n⃗ ∥2

)
n⃗

=

(⟨
2, 1, 5

2
⟩
· ⟨2,−5, 6⟩

(22 + 52 + 62)

)
⟨2,−5, 6⟩

=
14
65

⟨2,−5, 6⟩ .

The desired distance is then given by

∥ proj⃗n
−→PQ ∥ =

14
65

∥ ⟨2,−5, 6⟩ ∥ =
14√
65

.

Although it was not requested in Example 11.6.6, note that we can also find
the point R on the plane that is closest toQ. The desired point must be such that−→RQ = proj⃗n

−→PQ. Since we know the point Q and the vector −→RQ, we can find the
point R: since−→RQ =

−→OQ−−→OR, we find that
−→OR =

−→OQ−−→RQ

= ⟨2, 1, 4⟩ − 14
65

⟨2,−5, 6⟩

=
1
65

⟨102, 135, 176⟩ .

The desired point R thus has coordinates
(
102
65

,
135
65

,
176
65

)
. To make sure that

we haven’t made any mistakes, let’s make sure that this point is indeed on the
plane. We have

2
(
102
65

)
− 5

(
135
65

)
+ 6

(
176
65

)
=

1
65

(204− 675+ 1056) =
585
65

= 9,

as expected.

We canuse Key Idea 11.6.1 to find other distances. Given twoparallel planes,
we can find the distance between these planes by letting P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use the
Key Idea to find the distance between them as well: again, let P be a point in the
plane and letQ be any point on the line. (One can also use Key Idea 11.5.1.) The
Exercise section contains problems of these types.

These past two sections have not explored lines and planes in space as an ex-
ercise of mathematical curiosity. However, there are many, many applications
of these fundamental concepts. Complex shapes can be modelled (or, approx-
imated) using planes. For instance, part of the exterior of an aircraft may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air friction. Many
equations that help determine air flow and heat dissipation are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximating a surface
with millions of small planes one canmore readily model the needed behaviour.

592



Exercises 11.6
Terms and Concepts

1. In order to find the equation of a plane, what two pieces of
information must one have?

2. What is the relationship between a plane and one of its nor-
mal vectors?

Problems
In Exercises 3 – 6, give any two points in the given plane.

3. 2x− 4y+ 7z = 2

4. 3(x+ 2) + 5(y− 9)− 4z = 0

5. x = 2

6. 4(y+ 2)− (z− 6) = 0

In Exercises 7 – 20, give the equation of the described plane
in standard and general forms.

7. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

8. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

9. Passes through the points (1, 2, 3), (3,−1, 4) and (1, 0, 1).

10. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

11. Contains the intersecting lines
ℓ⃗1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. Contains the intersecting lines
ℓ⃗1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ⃗2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

13. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ⃗2(t) = ⟨4, 4, 4⟩+ t ⟨4, 1, 3⟩.

15. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2+ 5t
y = 2+ 2t
z = −1+ 2t

16. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t
y = t
z = t

17. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ⃗(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

18. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4+ 4t
y = 1+ 1t
z = 1+ 1t

19. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y+ 1)− 10z = 0.

20. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises 21 – 22, give the equation of the line that is the
intersection of the given planes.

21. p1 : 3(x− 2) + (y− 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y+ 3) + 6(z− 1) = 0.

22. p1 : 5(x− 5) + 2(y+ 2) + 4(z− 1) = 0, and
p2 : 3x− 4(y− 1) + 2(z− 1) = 0.

In Exercises 23 – 26, find the point of intersection between
the line and the plane.

23. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y− z = −3

24. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y− 2z = 8

25. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = 4

26. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = −4

In Exercises 27 – 30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y− 2) + 5(z− 2) = 0.

28. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y+ 4(z+ 1) = 0.

29. The distance between the parallel planes
x+ y+ z = 0 and
(x− 2) + (y− 3) + (z+ 4) = 0
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30. The distance between the parallel planes
2(x− 1) + 2(y+ 1) + (z− 2) = 0 and
2(x− 3) + 2(y− 1) + (z− 3) = 0

31. Show why if the point Q lies in a plane, then the distance

formula correctly gives the distance from the point to the
plane as 0.

32. How is Exercise 30 in Section 11.5 easier to answer once we
have an understanding of planes?
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Figure 12.1.1: Sketching the graph of a
vector–valued function.

12: V��ãÊÙ V�½ç�� FçÄ�ã®ÊÄÝ
In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathematics. In this chapter, we’ll build on this foun-
dation to define functions whose input is a real number and whose output is a
vector. We’ll see how to graph these functions and apply calculus techniques to
analyze their behaviour. Most importantly, we’ll see why we are interested in
doing this: we’ll see beautiful applications to the study of moving objects.

12.1 Vector–Valued Functions

We are very familiar with real valued functions, that is, functions whose output
is a real number. This section introduces vector–valued functions – functions
whose output is a vector.

Definition 12.1.1 Vector–Valued Functions

A vector–valued function is a function of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued functions.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

Evaluating and Graphing Vector–Valued Functions

Evaluating a vector–valued function at a specific value of t is straightforward;
simply evaluate each component function at that value of t. For instance, if
r⃗(t) =

⟨
t2, t2 + t− 1

⟩
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 12.1.1(a). Plotting lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued function is the set of all terminal points of r⃗(t), where the
initial point of each vector is always the origin. In Figure 12.1.1(b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respective
vector, as shown.

Vector–valued functions are closely related to parametric equations of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce

a graph, in the context of vector–valued functions each such point represents a
vector. The implications of this will be more fully realized in the next section as
we apply calculus ideas to these functions.
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Figure 12.1.2: Sketching the vector–
valued function of Example 12.1.1.

Figure 12.1.3: The graph of r⃗(t) in Exam-
ple 12.1.2.

Chapter 12 Vector Valued Functions

Example 12.1.1 Graphing vector–valued functions
Graph r⃗(t) =

⟨
t3 − t,

1
t2 + 1

⟩
, for−2 ≤ t ≤ 2. Sketch r⃗(−1) and r⃗(2).

SÊ½çã®ÊÄ We start by making a table of t, x and y values as shown
in Figure 12.1.2(a). Plotting these points gives an indication of what the graph
looks like. In Figure 12.1.2(b), we indicate these points and sketch the full graph.
We also highlight r⃗(−1) and r⃗(2) on the graph.

Example 12.1.2 Graphing vector–valued functions.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π.

SÊ½çã®ÊÄ We can again plot points, but careful consideration of this
function is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centred at the origin. Notic-
ing that the z component is t, we see that as the graph winds around the z-axis,
it is also increasing at a constant rate in the positive z direction, forming a spiral.
This is graphed in Figure 12.1.3. In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498)
is highlighted to help us understand the graph.

Algebra of Vector–Valued Functions

Definition 12.1.2 Operations on Vector–Valued Functions

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector–valued
functions in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. c⃗r1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definition holds for vector–valued functions in R3.

This definition states that we add, subtract and scale vector-valued functions
component–wise. Combining vector–valued functions in this way can be very
useful (as well as create interesting graphs).

Example 12.1.3 Adding and scaling vector–valued functions.
Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗1(t) + r⃗2(t). Graph
r⃗1(t), r⃗2(t), r⃗(t) and 5⃗r(t) on−10 ≤ t ≤ 10.

SÊ½çã®ÊÄ We can graph r⃗1 and r⃗2 easily by plotting points (or just using
technology). Let’s think about each for a moment to better understand how
vector–valued functions work.

We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is, the
function r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector produces a
line in the direction of ⟨0.2, 0.3⟩.

We are familiar with r⃗2(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centred at
the origin, of radius 1. Figure 12.1.5(a) graphs r⃗1(t) and r⃗2(t).

Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos t+ 0.2t, sin t+ 0.3t ⟩, graphed in
Figure 12.1.5(b). The linear movement of the line combines with the circle to
create loops that move in the direction of ⟨0.2, 0.3⟩. (We encourage the reader
to experiment by changing r⃗1(t) to ⟨2t, 3t⟩, etc., and observe the effects on the

596




.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)

−4 −2 2 4

−4

−2

2

4

x

y

(b)

.....

−20

.

−10

.

10

.

20

. −20.

−10

.

10

.

20

.

x

.

y

(c)

Figure 12.1.5: Graphing the functions in
Example 12.1.3.
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Figure 12.1.6: The cycloid in Example
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loops.)
Multiplying r⃗(t) by 5 scales the function by 5, producing 5⃗r(t) = ⟨5 cos t +

1, 5 sin t + 1.5⟩, which is graphed in Figure 12.1.5(c) along with r⃗(t). The new
function is “5 times bigger” than r⃗(t). Note how the graph of 5⃗r(t) in (c) looks
identical to the graph of r⃗(t) in (b). This is due to the fact that the x and y bounds
of the plot in (c) are exactly 5 times larger than the bounds in (b).

Example 12.1.4 Adding and scaling vector–valued functions.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
12.1.4. Find an equation describing the cycloid, where the circle has radius 1.

..
p

Figure 12.1.4: Tracing a cycloid.

SÊ½çã®ÊÄ This problem is not very difficult if we approach it in a clever
way. We start by letting p⃗(t) describe the position of the point p on the circle,
where the circle is centred at the origin and only rotates clockwise (i.e., it does
not roll). This is relatively simple given our previous experienceswith parametric
equations; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by letting c⃗(t) represent
the location of the center of the circle. It should be clear that the y component
of c⃗(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear function of t: f(t) = mt for some scalar
m. When t = 0, f(t) = 0 (the circle starts centred on the y-axis). When t = 2π,
the circle has made one complete revolution, travelling a distance equal to its
circumference, which is also 2π. This gives us a point on our line f(t) = mt, the
point (2π, 2π). It should be clear thatm = 1 and f(t) = t. So c⃗(t) = ⟨t, 1⟩.

Wenow combine p⃗ and c⃗ together to form the equation of the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ 1⟩, which is graphed in Figure 12.1.6.

Displacement

A vector–valued function r⃗(t) is often used to describe the position of amov-
ing object at time t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locations r⃗(t0) and r⃗(t1) give no indication of the path taken
between them, but often we only care about the difference of the locations,
r⃗(t1)− r⃗(t0), the displacement.

Definition 12.1.3 Displacement

Let r⃗(t) be a vector–valued function and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

When the displacement vector is drawnwith initial point at r⃗(t0), its terminal
point is r⃗(t1). We think of it as the vector which points from a starting position
to an ending position.
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Example 12.1.5 Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
. Graph r⃗(t) on−1 ≤ t ≤ 1, and find the displace-

ment of r⃗(t) on this interval.

SÊ½çã®ÊÄ The function r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametrization. At t0 = −1, we have
r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The displacement of r⃗(t) on
[−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩ .

A graph of r⃗(t) on [−1, 1] is given in Figure 12.1.7, along with the displace-
ment vector d⃗ on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example 12.1.5 took,
we can quickly verify that the object ended up a distance of 2 units from its initial
location. That is, we can compute ∥ d⃗ ∥ = 2. However, measuring distance from
the starting point is different from measuring distance travelled. Being a semi–
circle, we can measure the distance travelled by this object as π ≈ 3.14 units.
Knowing distance from the starting point allows us to compute average rate of
change.

Definition 12.1.4 Average Rate of Change

Let r⃗(t) be a vector–valued function, where each of its component func-
tions is continuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

Example 12.1.6 Average rate of change
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
as in Example 12.1.5. Find the average rate of

change of r⃗(t) on [−1, 1] and on [−1, 5].

SÊ½çã®ÊÄ We computed in Example 12.1.5 that the displacement of
r⃗(t) on [−1, 1]was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t) on [−1, 1]
is:

r⃗(1)− r⃗(−1)
1− (−1)

=
⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the left, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨0, 1⟩ per unit of time.

We canquickly see that the displacement on [−1, 5] is the sameas on [−1, 1],
so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)
5− (−1)

=
⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 times as long” to arrive at the same place, this average rate of
change on [−1, 5] is 1/3 the average rate of change on [−1, 1].

We considered average rates of change in Sections 1.1 and 2.1 as we studied
limits and derivatives. The same is true here; in the following section we apply
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12.1 Vector–Valued Functions

calculus concepts to vector–valued functions as we find limits, derivatives, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivative; displacement gives us one application of integration.
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Exercises 12.1
Terms and Concepts

1. Vector–valued functions are closely related to
of graphs.

2. When sketching vector–valued functions, technically one
isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points
from a starting position to an ending position.

4. In the context of vector–valued functions, average rate of
change is divided by time.

Problems

In Exercises 5 – 12, sketch the vector–valued function on the
given interval.

5. r⃗(t) =
⟨
t2, t2 − 1

⟩
, for−2 ≤ t ≤ 2.

6. r⃗(t) =
⟨
t2, t3

⟩
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
⟨
1/t, 1/t2

⟩
, for−2 ≤ t ≤ 2.

8. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

9. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

10. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

11. r⃗(t) = ⟨3 cos t, 2 sin(2t)⟩, on [0, 2π].

12. r⃗(t) = ⟨2 sec t, tan t⟩, on [−π, π].

In Exercises 13 – 16, sketch the vector–valued function on the
given interval inR3. Technologymay be useful in creating the
sketch.

13. r⃗(t) = ⟨2 cos t, t, 2 sin t⟩, on [0, 2π].

14. r⃗(t) = ⟨3 cos t, sin t, t/π⟩ on [0, 2π].

15. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [0, 2π].

16. r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on [0, 2π].

In Exercises 17 – 20, find ∥ r⃗(t) ∥.

17. r⃗(t) =
⟨
t, t2
⟩
.

18. r⃗(t) = ⟨5 cos t, 3 sin t⟩.

19. r⃗(t) = ⟨2 cos t, 2 sin t, t⟩.

20. r⃗(t) =
⟨
cos t, t, t2

⟩
.

In Exercises 21 – 30, create a vector–valued function whose
graph matches the given description.

21. A circle of radius 2, centered at (1, 2), traced counter–
clockwise once on [0, 2π].

22. A circle of radius 3, centered at (5, 5), traced clockwise
once on [0, 2π].

23. An ellipse, centered at (0, 0) with vertical major axis of
length 10 and minor axis of length 3, traced once counter–
clockwise on [0, 2π].

24. An ellipse, centered at (3,−2)with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2π].

25. A line through (2, 3) with a slope of 5.

26. A line through (1, 5) with a slope of−1/2.

27. The line through points (1, 2, 3) and (4, 5, 6), where
r⃗(0) = ⟨1, 2, 3⟩ and r⃗(1) = ⟨4, 5, 6⟩.

28. The line through points (1, 2) and (4, 4), where
r⃗(0) = ⟨1, 2⟩ and r⃗(1) = ⟨4, 4⟩.

29. A vertically oriented helix with radius of 2 that starts at
(2, 0, 0) and ends at (2, 0, 4π) after 1 revolution on [0, 2π].

30. A vertically oriented helix with radius of 3 that starts at
(3, 0, 0) and ends at (3, 0, 3) after 2 revolutions on [0, 1].

In Exercises 31 – 34, find the average rate of change of r⃗(t) on
the given interval.

31. r⃗(t) =
⟨
t, t2
⟩
on [−2, 2].

32. r⃗(t) = ⟨t, t+ sin t⟩ on [0, 2π].

33. r⃗(t) = ⟨3 cos t, 2 sin t, t⟩ on [0, 2π].

34. r⃗(t) =
⟨
t, t2, t3

⟩
on [−1, 3].

600



Note: we can define one-sided limits in a
manner very similar to Definition 12.2.1.

12.2 Calculus and Vector–Valued Functions

12.2 Calculus and Vector–Valued Functions
The previous section introduced us to a new mathematical object, the vector–
valued function. We now apply calculus concepts to these functions. We start
with the limit, then work our way through derivatives to integrals.

Limits of Vector–Valued Functions

The initial definition of the limit of a vector–valued function is a bit intimidat-
ing, as was the definition of the limit in Definition 1.2.1. The theorem following
the definition shows that in practice, taking limits of vector–valued functions is
no more difficult than taking limits of real–valued functions.

Definition 12.2.1 Limits of Vector–Valued Functions

Let I be an open interval containing c, and let r⃗(t) be a vector–valued
function defined on I, except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that for all t ̸= c,
if |t− c| < δ, we have ∥ r⃗(t)− L⃗ ∥ < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem 12.2.1 states that we can compute limits of vector–valued func-
tions component–wise.

Theorem 12.2.1 Limits of Vector–Valued Functions

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued function in R2 defined
on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t)
⟩
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued function in R3 de-
fined on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Example 12.2.1 Finding limits of vector–valued functions
Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Find lim

t→0
r⃗(t).

SÊ½çã®ÊÄ Weapply the theoremand compute limits component–wise.

lim
t→0

r⃗(t) =
⟨
lim
t→0

sin t
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos t
⟩

= ⟨1, 3, 1⟩ .
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Note: Using one-sided limits, we can also
define continuity on closed intervals as
done before.

Chapter 12 Vector Valued Functions

Continuity

Definition 12.2.2 Continuity of Vector–Valued Functions

Let r⃗(t) be a vector–valued function defined on an open interval I con-
taining c.

1. r⃗(t) is continuous at c if lim
t→c

r⃗(t) = r⃗(c).

2. If r⃗(t) is continuous at all c in I, then r⃗(t) is continuous on I.

We again have a theorem that lets us evaluate continuity component–wise.

Theorem 12.2.2 Continuity of Vector–Valued Functions

Let r⃗(t) be a vector–valued function defined on an open interval I con-
taining c. Then r⃗(t) is continuous at c if, and only if, each of its component
functions is continuous at c.

Example 12.2.2 Evaluating continuity of vector–valued functions
Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Determine whether r⃗ is continuous at

t = 0 and t = 1.

SÊ½çã®ÊÄ While the second and third components of r⃗(t) are defined
at t = 0, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is not continuous
at t = 0.

At t = 1 each of the component functions is continuous. Therefore r⃗(t) is
continuous at t = 1.

Derivatives

Consider a vector–valued function r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Figure
12.2.1(a). Recall that dividing the displacement vector by t1 − t0 gives the aver-
age rate of change on [t0, t1], as shown in (b).

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

t1 − t0

.

r⃗ ′(t0)

(a) (b)

Figure 12.2.1: Illustrating displacement, leading to an understanding of the derivative of vector–valued functions.602



Alternate notations for the derivative of r⃗
include:

r⃗ ′(t) = d
dt
(
r⃗(t)

)
=

d⃗r
dt
.

Note: again, using one-sided limits, we
can define differentiability on closed in-
tervals. We’ll make use of this a few times
in this chapter.

12.2 Calculus and Vector–Valued Functions

The derivative of a vector–valued function is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= 0. We take the limit as h → 0 tomeasure the instantaneous
rate of change; this is the derivative of r⃗.

Definition 12.2.3 Derivative of a Vector–Valued Function

Let r⃗(t) be continuous on an open interval I containing c.

1. The derivative of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)
h

.

2. The derivative of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)
h

.

If a vector–valued function has a derivative for all c in an open interval I, we
say that r⃗(t) is differentiable on I.

Once again we might view this definition as intimidating, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute derivatives component–wise as well, making the task
not too difficult.

Theorem 12.2.3 Derivatives of Vector–Valued Functions

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t), h ′(t) ⟩ .

Example 12.2.3 Derivatives of vector–valued functions
Let r⃗(t) =

⟨
t2, t
⟩
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its initial point at the origin and
at r⃗(1).

SÊ½çã®ÊÄ

1. Theorem 12.2.3 allows us to compute derivatives component–wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 12.2.2(a). Note how plot-
ting the two of these together, in this way, is not very illuminating. When 603
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Figure 12.2.2: Graphing the derivative
of a vector–valued function in Example
12.2.3.

Figure 12.2.3: Viewing a vector–valued
function and its derivative at one point.

Figure 12.2.4: Graphing a curve in space
with its tangent line.

Chapter 12 Vector Valued Functions

dealing with real–valued functions, plotting f(x) with f ′(x) gave us useful
information as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued functions, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Figure 12.2.2 with its
initial point at the origin, as well as at r⃗(1) = ⟨1, 1⟩ . These are sketched
in Figure 12.2.2(b).

Example 12.2.4 Derivatives of vector–valued functions
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch r⃗ ′(π/2) with its
initial point at the origin and at r⃗(π/2).

SÊ½çã®ÊÄ We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, 1⟩. At t = π/2, we
have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 12.2.3 shows a graph of r⃗(t), with r⃗ ′(π/2)
plotted with its initial point at the origin and at r⃗(π/2).

In Examples 12.2.3 and 12.2.4, sketching a particular derivativewith its initial
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its initial point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivative to define this term.

Definition 12.2.4 Tangent Vector, Tangent Line

Let r⃗(t) be a differentiable vector–valued function on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direction parallel to r⃗ ′(c). An equation of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

Example 12.2.5 Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, t2, t3

⟩
on [−1.5, 1.5]. Find the vector equation of the line tangent

to the graph of r⃗ at t = −1.

SÊ½çã®ÊÄ To find the equation of a line, we need a point on the line
and the line’s direction. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be clear,
⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direction comes from r⃗ ′(−1). We compute, component–wise, r⃗ ′(t) =⟨
1, 2t, 3t2

⟩
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

The vector equation of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This line
and r⃗(t) are sketched in Figure 12.2.4.

Example 12.2.6 Finding tangent lines to curves
Find the equations of the lines tangent to r⃗(t) =

⟨
t3, t2

⟩
at t = −1 and t = 0.
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Figure 12.2.5: Graphing r⃗(t) and its tan-
gent line in Example 12.2.6.

12.2 Calculus and Vector–Valued Functions

SÊ½çã®ÊÄ We find that r⃗ ′(t) =
⟨
3t2, 2t

⟩
. At t = −1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(−1) = ⟨3,−2⟩ ,

so the equation of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 12.2.5.
At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line

“has no direction.” We cannot apply Definition 12.2.4, hence cannot find the
equation of the tangent line.

We were unable to compute the equation of the tangent line to r⃗(t) =⟨
t3, t2

⟩
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 12.2.5 shows that there

is a cusp at this point. This leads us to another definition of smooth, previously
defined by Definition 9.2.2 in Section 9.2.

Definition 12.2.5 Smooth Vector–Valued Functions

Let r⃗(t) be a differentiable vector–valued function on an open interval I
where r⃗ ′(t) is continuous on I. r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I.

Having established derivatives of vector–valued functions, we now explore
the relationships between the derivative and other vector operations. The fol-
lowing theorem states how the derivative interacts with vector addition and the
various vector products.

Theorem 12.2.4 Properties of Derivatives of Vector–Valued
Functions

Let r⃗ and s⃗ be differentiable vector–valued functions, let f be a differen-
tiable real–valued function, and let c be a real number.

1.
d
dt

(⃗
r(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d
dt

(
c⃗r(t)

)
= c⃗r ′(t)

3. d
dt

(
f(t)⃗r(t)

)
= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

4. d
dt

(⃗
r(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

5. d
dt

(⃗
r(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6. d
dt

(⃗
r
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule
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Figure 12.2.7: Graphing some of the
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Chapter 12 Vector Valued Functions

Example 12.2.7 Using derivative properties of vector–valued functions
Let r⃗(t) =

⟨
t, t2 − 1

⟩
and let u⃗(t) be the unit vector that points in the direction

of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each with initial
point the corresponding point on the graph of u⃗.

SÊ½çã®ÊÄ

1. To form the unit vector that points in the direction of r⃗, we need to divide
r⃗(t) by its magnitude.

∥ r⃗(t) ∥ =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2
⟨
t, t2 − 1

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure 12.2.6. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is 1 for
all t.

2. To compute u⃗ ′(t), we use Theorem 12.2.4, writing

u⃗(t) = f(t)⃗r(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2
.

(We could write

u⃗(t) =

⟨
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

⟩
and then take the derivative. It is amatter of preference; this lattermethod
requires two applications of theQuotient Rulewhere ourmethod uses the
Product and Chain Rules.)
We find f ′(t) using the Chain Rule:

f ′(t) = −1
2
(
t2 + (t2 − 1)2

)−3/2(2t+ 2(t2 − 1)(2t)
)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 12.2.4:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − 2t(2t2 − 1)
2
(√

t2 + (t2 − 1)2
)3 ⟨t, t2 − 1

⟩
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

This is admittedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ ′(−2), u⃗ ′(−1)
and u⃗ ′(0):

u⃗ ′(−2) =
⟨
− 15
13

√
13

,− 10
13

√
13

⟩
≈ ⟨−0.320,−0.213⟩

u⃗ ′(−1) = ⟨0,−2⟩
u⃗ ′(0) = ⟨1, 0⟩
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12.2 Calculus and Vector–Valued Functions

Each of these is sketched in Figure 12.2.7. Note how the length of the
vector gives an indication of how quickly the circle is being traced at that
point. When t = −2, the circle is being drawn relatively slow; when t =
−1, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is
illustrated in Figure 12.2.7; each tangent vector is perpendicular to the line that
passes through its initial point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector–valued function that has a constant length, that is,
that traces out part of a circle. It has important implications later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem 12.2.5 Vector–Valued Functions of Constant Length

Let r⃗(t) be a vector–valued function of constant length that is differen-
tiable on an open interval I. That is, ∥ r⃗(t) ∥ = c for all t in I (equivalently,
r⃗(t) · r⃗(t) = c2 for all t in I). Then r⃗(t) · r⃗ ′(t) = 0 for all t in I.

Integration

Before formally defining integrals of vector–valued functions, consider the
following equation that our calculus experience tells us should be true:∫ b

a
r⃗ ′(t) dt = r⃗(b)− r⃗(a).

That is, the integral of a rate of change function should give total change. In
the context of vector–valued functions, this total change is displacement. The
above equation is true; we now develop the theory to show why.

We can define antiderivatives and the indefinite integral of vector–valued
functions in the samemanner we defined indefinite integrals in Definition 5.1.1.
However, we cannot define the definite integral of a vector–valued function as
we did in Definition 5.2.1. That definitionwas based on the signed area between
a function y = f(x) and the x-axis. An area–based definition will not be useful
in the context of vector–valued functions. Instead, we define the definite inte-
gral of a vector–valued function in a manner similar to that of Theorem 5.3.2,
utilizing Riemann sums.
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Definition 12.2.6 Antiderivatives, Indefinite and Definite Integrals
of Vector–Valued Functions

Let r⃗(t) be a continuous vector–valued function on [a, b]. An antideriva-
tive of r⃗(t) is a function R⃗(t) such that R⃗′(t) = r⃗(t).

The set of all antiderivatives of r⃗(t) is the indefinite integral of r⃗(t), de-
noted by ∫

r⃗(t) dt.

The definite integral of r⃗(t) on [a, b] is∫ b

a
r⃗(t) dt = lim

||∆t||→0

n∑
i=1

r⃗(ci)∆ti,

where∆ti is the length of the i th subinterval of a partition of [a, b], ||∆t||
is the length of the largest subinterval in the partition, and ci is any value
in the i th subinterval of the partition.

It is probably difficult to infer meaning from the definition of the definite
integral. The important thing to realize from the definition is that it is built upon
limits, which we can evaluate component–wise.

The following theorem simplifies the computation of definite integrals; the
rest of this section and the following section will give meaning and application
to these integrals.

Theorem 12.2.6 Indefinite and Definite Integrals of Vector–Valued
Functions

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued function in R2 that are contin-
uous on [a, b].

1.
∫

r⃗(t) dt =
⟨∫

f(t) dt,
∫

g(t) dt
⟩

2.
∫ b

a
r⃗(t) dt =

⟨∫ b

a
f(t) dt,

∫ b

a
g(t) dt

⟩

A similar statement holds for vector–valued functions in R3.

Example 12.2.8 Evaluating a definite integral of a vector–valued function

Let r⃗(t) =
⟨
e2t, sin t

⟩
. Evaluate

∫ 1

0
r⃗(t) dt.
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SÊ½çã®ÊÄ We follow Theorem 12.2.6.∫ 1

0
r⃗(t) dt =

∫ 1

0

⟨
e2t, sin t

⟩
dt

=

⟨∫ 1

0
e2t dt ,

∫ 1

0
sin t dt

⟩
=

⟨
1
2
e2t
∣∣∣1
0
,− cos t

∣∣∣1
0

⟩
=

⟨
1
2
(e2 − 1) ,− cos(1) + 1

⟩
≈ ⟨3.19, 0.460⟩ .

Example 12.2.9 Solving an initial value problem
Let r⃗ ′′(t) = ⟨2, cos t, 12t⟩. Find r⃗(t), where r⃗(0) = ⟨−7,−1, 2⟩ and
r⃗ ′(0) = ⟨5, 3, 0⟩ .

SÊ½çã®ÊÄ Knowing r⃗ ′′(t) = ⟨2, cos t, 12t⟩, we find r⃗ ′(t) by evaluating
the indefinite integral.∫

r⃗ ′′(t) dt =
⟨∫

2 dt ,
∫

cos t dt ,
∫

12t dt
⟩

=
⟨
2t+ C1, sin t+ C2, 6t2 + C3

⟩
=
⟨
2t, sin t, 6t2

⟩
+ ⟨C1, C2, C3⟩

=
⟨
2t, sin t, 6t2

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗.

So r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ ⟨5, 3, 0⟩ =

⟨
2t+ 5, sin t+ 3, 6t2

⟩
. To find r⃗(t),

we integrate once more.

∫
r⃗ ′(t) dt =

⟨∫
2t+ 5 dt,

∫
sin t+ 3 dt,

∫
6t2 dt

⟩
=
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗.

With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+⟨−7, 0, 2⟩ =

⟨
t2 + 5t− 7,− cos t+ 3t, 2t3 + 2

⟩
.

What does the integration of a vector–valued function mean? There are
many applications, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued function. 609



Chapter 12 Vector Valued Functions

A key understanding for us comes from considering the integral of a deriva-
tive: ∫ b

a
r⃗ ′(t) dt = r⃗(t)

∣∣∣b
a
= r⃗(b)− r⃗(a).

Integrating a rate of change function gives displacement.
Noting that vector–valued functions are closely related to parametric equa-

tions, we can describe the arc length of the graph of a vector–valued function
as an integral. Given parametric equations x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g ′(t)2 dt,

as stated in Theorem9.3.1 in Section 9.3. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)2 + g ′(t)2 =
∥ r⃗ ′(t) ∥. Thereforewe can express the arc length of the graphof a vector–valued
function as an integral of the magnitude of its derivative.

Theorem 12.2.7 Arc Length of a Vector–Valued Function

Let r⃗(t) be a vector–valued function where r⃗ ′(t) is continuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
∫ b

a
∥ r⃗ ′(t) ∥ dt.

Note that we are actually integrating a scalar–function here, not a vector–
valued function.

The next section takes what we have established thus far and applies it to
objects in motion. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the information provided by r⃗ ′(t) and r⃗ ′′(t).
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Exercises 12.2
Terms and Concepts
1. Limits, derivatives and integrals of vector–valued functions

are all evaluated –wise.

2. The definite integral of a rate of change function gives
.

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)
on the same axes?

4. Theorem 12.2.4 contains three product rules. What are the
three different types of products used in these rules?

Problems
In Exercises 5 – 8, evaluate the given limit.

5. lim
t→5

⟨
2t+ 1, 3t2 − 1, sin t

⟩
6. lim

t→3

⟨
et, t

2 − 9
t+ 3

⟩

7. lim
t→0

⟨ t
sin t

, (1+ t)
1
t

⟩

8. lim
h→0

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨
t2, t, 1

⟩
.

In Exercises 9 – 10, identify the interval(s) on which r⃗(t) is
continuous.

9. r⃗(t) =
⟨
t2, 1/t

⟩
10. r⃗(t) =

⟨
cos t, et, ln t

⟩
In Exercises 11 – 16, find the derivative of the given function.

11. r⃗(t) =
⟨
cos t, et, ln t

⟩
12. r⃗(t) =

⟨
1
t
,
2t− 1
3t+ 1

, tan t
⟩

13. r⃗(t) = (t2) ⟨sin t, 2t+ 5⟩

14. r(t) =
⟨
t2 + 1, t− 1

⟩
· ⟨sin t, 2t+ 5⟩

15. r⃗(t) =
⟨
t2 + 1, t− 1, 1

⟩
× ⟨sin t, 2t+ 5, 1⟩

16. r⃗(t) = ⟨cosh t, sinh t⟩

In Exercises 17 – 20, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(1), with the
initial point of r⃗ ′(1) at r⃗(1).

17. r⃗(t) =
⟨
t2 + t, t2 − t

⟩

18. r⃗(t) =
⟨
t2 − 2t+ 2, t3 − 3t2 + 2t

⟩
19. r⃗(t) =

⟨
t2 + 1, t3 − t

⟩
20. r⃗(t) =

⟨
t2 − 4t+ 5, t3 − 6t2 + 11t− 6

⟩
In Exercises 21 – 24, give the equation of the line tangent to
the graph of r⃗(t) at the given t value.

21. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
at t = 1.

22. r⃗(t) = ⟨3 cos t, sin t⟩ at t = π/4.

23. r⃗(t) = ⟨3 cos t, 3 sin t, t⟩ at t = π.

24. r⃗(t) =
⟨
et, tan t, t

⟩
at t = 0.

In Exercises 25 – 28, find the value(s) of t for which r⃗(t) is not
smooth.

25. r⃗(t) = ⟨cos t, sin t− t⟩

26. r⃗(t) =
⟨
t2 − 2t+ 1, t3 + t2 − 5t+ 3

⟩
27. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(4t)⟩

28. r⃗(t) =
⟨
t3 − 3t+ 2,− cos(πt), sin2(πt)

⟩
Exercises 29 – 32 ask you to verify parts of Theorem 12.2.4.
In each let f(t) = t3, r⃗(t) =

⟨
t2, t− 1, 1

⟩
and s⃗(t) =⟨

sin t, et, t
⟩
. Compute the various derivatives as indicated.

29. Simplify f(t)⃗r(t), then find its derivative; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

30. Simplify r⃗(t) · s⃗(t), then find its derivative; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

31. Simplify r⃗(t)× s⃗(t), then find its derivative; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

32. Simplify r⃗
(
f(t)
)
, then find its derivative; show this is the

same as r⃗ ′
(
f(t)
)
f ′(t).

In Exercises 33 – 36, evaluate the given definite or indefinite
integral.

33.
∫ ⟨

t3, cos t, tet
⟩
dt

34.
∫ ⟨

1
1+ t2

, sec2 t
⟩

dt

35.
∫ π

0
⟨− sin t, cos t⟩ dt

36.
∫ 2

−2
⟨2t+ 1, 2t− 1⟩ dt
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In Exercises 37 – 40, solve the given initial value problems.

37. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(0) = ⟨2, 2⟩.

38. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan t⟩ and
r⃗(0) = ⟨1, 2⟩.

39. Find r⃗(t), given that r⃗ ′′(t) =
⟨
t2, t, 1

⟩
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩.

40. Find r⃗(t), given that r⃗ ′′(t) =
⟨
cos t, sin t, et

⟩
,

r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

In Exercises 41 – 44 , find the arc length of r⃗(t) on the indi-

cated interval.

41. r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩ on [0, 2π].

42. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩ on [0, 2π].

43. r⃗(t) =
⟨
t3, t2, t3

⟩
on [0, 1].

44. r⃗(t) =
⟨
e−t cos t, e−t sin t

⟩
on [0, 1].

45. Prove Theorem 12.2.5; that is, show if r⃗(t) has constant
length and is differentiable, then r⃗(t) · r⃗ ′(t) = 0. (Hint:
use the Product Rule to compute d

dt

(⃗
r(t) · r⃗(t)

)
.)
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Figure 12.3.1: Graphing the position, ve-
locity and acceleration of an object in Ex-
ample 12.3.1.

12.3 The Calculus of Motion

12.3 The Calculus of Motion
A common use of vector–valued functions is to describe themotion of an object
in the plane or in space. A position function r⃗(t) gives the position of an object
at time t. This section explores how derivatives and integrals are used to study
the motion described by such a function.

Definition 12.3.1 Velocity, Speed and Acceleration

Let r⃗(t) be a position function in R2 or R3.

1. Velocity, denoted v⃗(t), is the instantaneous rate of position
change; that is, v⃗(t) = r⃗ ′(t).

2. Speed is the magnitude of velocity, ∥ v⃗(t) ∥.

3. Acceleration, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Example 12.3.1 Finding velocity and acceleration
An object is moving with position function r⃗(t) =

⟨
t2 − t, t2 + t

⟩
, −3 ≤ t ≤ 3,

where distances are measured in feet and time is measured in seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their initial point
at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

SÊ½çã®ÊÄ

1. Taking derivatives, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleration is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are plotted with r⃗(t) in Figure 12.3.1(a).
We can think of acceleration as “pulling” the velocity vector in a certain
direction. At t = −1, the velocity vector points down and to the left; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direction and is
now pointing up and to the right. In Figure 12.3.1(b) we plot more veloc-
ity/acceleration vectors, making more clear the effect acceleration has on
velocity.
Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = 10, v⃗(10) = ⟨19, 21⟩, which is
nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

∥ v⃗(t) ∥ =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivative equal to 0 and solve for t, etc.) but we can find it by
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Figure 12.3.3: Comparing the positions of
Objects 1 and 2 in Example 12.3.2.

Chapter 12 Vector Valued Functions

inspection. Inside the square root we have a quadratic which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of

√
2

ft/s.

The graph in Figure 12.3.1(b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −3
and 3. Dots that are far apart imply the object travelled a far distance in
1 second, indicating high speed; dots that are close together imply the
object did not travel far in 1 second, indicating a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value.

Example 12.3.2 Analyzing Motion
Two objects follow an identical path at different rates on [−1, 1]. The position
function for Object 1 is r⃗1(t) =

⟨
t, t2
⟩
; the position function for Object 2 is

r⃗2(t) =
⟨
t3, t6

⟩
, where distances are measured in feet and time is measured

in seconds. Compare the velocity, speed and acceleration of the two objects on
the path.

SÊ½çã®ÊÄ We begin by computing the velocity and acceleration func-
tion for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
⟨
3t2, 6t5

⟩
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

⟨
6t, 30t4

⟩
We immediately see that Object 1 has constant acceleration, whereas Object 2
does not.

At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the velocity
of Object 2 is three times that of Object 1 and so it follows that the speed of
Object 2 is three times that of Object 1 (3

√
5 ft/s compared to

√
5 ft/s.)

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of Object
2 is 0⃗! This tells us that Object 2 comes to a complete stop at t = 0.

In Figure 12.3.2, we see the velocity and acceleration vectors for Object 1
plotted for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the constant accel-
eration vector seems to “pull” the velocity vector from pointing down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleration vectors are rather large (⃗a2(−1) = ⟨−6, 30⟩!)

Instead, we simply plot the locations of Object 1 and 2 on intervals of 1/5th
of a second, shown in Figure 12.3.3(a) and (b). Note how the x-values of Object
1 increase at a steady rate. This is because the x-component of a⃗(t) is 0; there is
no acceleration in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −1 and t = 1 than near t = 0.

In part (b) of the Figure, we see the points plotted for Object 2. Note the
large change in position from t = −1 to t = −0.8; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same location, they have the same
displacement. Since they begin and end at the same time, with the same dis-
placement, they have the same average rate of change (i.e, they have the same
average velocity). Since they follow the same path, they have the same distance
travelled. Even though these threemeasurements are the same, the objects ob-
viously travel the path in very different ways.
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Figure 12.3.4: Modelling the flight of a
ball in Example 12.3.3.

12.3 The Calculus of Motion

Example 12.3.3 Analyzing the motion of a whirling ball on a string
A young boy whirls a ball, attached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revolutions per
second. The string has length 2 ft.

1. Find the position function r⃗(t) that describes this situation.

2. Find the acceleration of the ball and give a physical interpretation of it.

3. A tree stands 10 ft in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SÊ½çã®ÊÄ

1. The ball whirls in a circle. Since the string is 2 ft long, the radius of the
circle is 2. The position function r⃗(t) = ⟨2 cos t, 2 sin t⟩ describes a circle
with radius 2, centred at the origin, but makes a full revolution every 2π
seconds, not two revolutions per second. We modify the period of the
trigonometric functions to be 1/2 bymultiplying t by 4π. The final position
function is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revolution is made in 1/2 a
second.)

2. To find a⃗(t), we take the derivative of r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−32π2 cos(4πt),−32π2 sin(4πt)

⟩
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direction. Why is this?
Recall the classic physics equation, “Force=mass× acceleration.” A force
acting on a mass induces acceleration (i.e., the mass moves); acceleration
acting on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleration are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
attached to the boy’s handby a string. The string applies a force to the ball,
affecting it’s motion: the string accelerates the ball. This is not accelera-
tion in the sense of “it travels faster;” rather, this acceleration is changing
the velocity of the ball. In what direction is this force/acceleration being
applied? In the direction of the string, towards the boy’s hand.
Themagnitude of the acceleration is related to the speed at which the ball
is travelling. A ball whirling quickly is rapidly changing direction/velocity.
When velocity is changing rapidly, the acceleration must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleration is 0⃗ and the ball can nowmove in a straight
line in the direction of v⃗(t).
Let t = t0 be the time when the boy lets go of the string. The ball will be
at r⃗(t0), travelling in the direction of v⃗(t0). We want to find t0 so that this
line contains the point (0, 10) (since the tree is 10 ft directly in front of
the boy).
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There are many ways to find this time value. We choose one that is rela-
tively simple computationally. As shown in Figure 12.3.4, the vector from
the release point to the tree is ⟨0, 10⟩− r⃗(t0). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(t0) itself, so their
dot product is 0.

r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0
−4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0

20 sin(4πt0)− 4 = 0
sin(4πt0) = 1/5

4πt0 = sin−1(1/5)
4πt0 ≈ 0.2+ 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016+ n/2

This is a wonderful formula. Every 1/2 second after t = 0.016s the boy
can release the string (since the ball makes 2 revolutions per second, he
has two chances each second to release the ball).

Example 12.3.4 Analyzing motion in space
An object moves in a spiral with position function r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in metres and time is in minutes. Describe the object’s
speed and acceleration at time t.

SÊ½çã®ÊÄ With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, 1⟩ and
a⃗(t) = ⟨− cos t,− sin t, 0⟩ .

The speed of the object is ∥ v⃗(t) ∥ =
√
(− sin t)2 + cos2 t+ 1 =

√
2m/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direction, but rather moves up at a constant rate of 1 m/min.

The objects in Examples 12.3.3 and 12.3.4 travelled at a constant speed. That
is, ∥ v⃗(t) ∥ = c for some constant c. Recall Theorem 12.2.5, which states that
if a vector–valued function r⃗(t) has constant length, then r⃗(t) is perpendicular
to its derivative: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity function has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleration: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuitive understanding of this. If acceleration is parallel to veloc-
ity, then it is only affecting the object’s speed; it does not change the direction
of travel. (For example, consider a dropped stone. Acceleration and velocity are
parallel – straight down – and the direction of velocity never changes, though
speed does increase.) If acceleration is not perpendicular to velocity, then there
is some acceleration in the direction of travel, influencing the speed. If speed
is constant, then acceleration must be orthogonal to velocity, as it then only
affects direction, and not speed.
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Note: This text uses g = 32 ft/s2 when
using Imperial units, and g = 9.8 m/s2
when using SI units.

12.3 The Calculus of Motion

Key Idea 12.3.1 Objects With Constant Speed

If an objectmoveswith constant speed, then its velocity and acceleration
vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

Projectile Motion

An important application of vector–valued position functions is projectile
motion: the motion of objects under only the influence of gravity. We will mea-
sure time in seconds, and distanceswill either be inmetres or feet. Wewill show
that we can completely describe the path of such an object knowing its initial
position and initial velocity (i.e., where it is and where it is going.)

Suppose an object has initial position r⃗(0) = ⟨x0, y0⟩ and initial velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direction u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be written
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of elevation.) Thus v⃗(0) = v0 ⟨cos θ, sin θ⟩ .

Since the acceleration of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitational constant, we can find r⃗(t) knowing our two initial condi-
tions. We first find v⃗(t):

v⃗(t) =
∫

a⃗(t) dt

v⃗(t) =
∫

⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos θ, sin θ⟩, we have C⃗ = v0 ⟨cos θ, sin θ⟩ and so

v⃗(t) =
⟨
v0 cos θ,−gt+ v0 sin θ

⟩
.

We integrate once more to find r⃗(t):

r⃗(t) =
∫

v⃗(t) dt

r⃗(t) =
∫ ⟨

v0 cos θ,−gt+ v0 sin θ
⟩
dt

r⃗(t) =
⟨(

v0 cos θ
)
t,−1

2
gt2 +

(
v0 sin θ

)
t
⟩
+ C⃗.

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.
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Key Idea 12.3.2 Projectile Motion

The position function of a projectile propelled from an initial position of
r⃗0 = ⟨x0, y0⟩, with initial speed v0, with angle of elevation θ and neglect-
ing all accelerations but gravity is

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Letting v⃗0 = v0 ⟨cos θ, sin θ⟩, r⃗(t) can be written as

r⃗(t) =
⟨
0,−1

2
gt2
⟩
+ v⃗0t+ r⃗0.

We demonstrate how to use this position function in the next two examples.

Example 12.3.5 Projectile Motion
Sydney shoots her Red Ryder® bb gun across level ground from an elevation of
4 ft, where the barrel of the gun makes a 5◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the advertised rate
of 350 ft/s and ignoring air resistance.

SÊ½çã®ÊÄ A direct application of Key Idea 12.3.2 gives

r⃗(t) =
⟨
(350 cos 5◦)t,−16t2 + (350 sin 5◦)t+ 4

⟩
≈
⟨
346.67t,−16t2 + 30.50t+ 4

⟩
,

wherewe set her initial position to be ⟨0, 4⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by setting the y-component equal
to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)
−32

t ≈ 2.03 s.

(We discarded a negative solution that resulted from our quadratic equation.)
We have found that the bb lands 2.03 s after firing; with t = 2.03, we find

the x-component of our position function is 346.67(2.03) = 703.74 ft. The bb
lands about 704 feet away.

Example 12.3.6 Projectile Motion
Alex holds his sister’s bb gun at a height of 3 ft and wants to shoot a target that
is 6 ft above the ground, 25 ft away. At what angle should he hold the gun to hit
his target? (We still assume the muzzle velocity is 350 ft/s.)

SÊ½çã®ÊÄ The position function for the path of Alex’s bb is

r⃗(t) =
⟨
(350 cos θ)t,−16t2 + (350 sin θ)t+ 3

⟩
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we want to
find θ and t such that

(350 cos θ)t = 25 and − 16t2 + (350 sin θ)t+ 3 = 6.
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12.3 The Calculus of Motion

This is not trivial (though not “hard”). We start by solving each equation for cos θ
and sin θ, respectively.

cos θ =
25
350t

and sin θ =
3+ 16t2

350t
.

Using the Pythagorean Identity cos2 θ + sin2 θ = 1, we have(
25
350t

)2

+

(
3+ 16t2

350t

)2

= 1

Multiply both sides by (350t)2:

252 + (3+ 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0.

This is a quadratic in t2. That is, we can apply the quadratic formula to find t2,
then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512
t2 = 0.0052, 478.135
t = ±0.072, ±21.866

Clearly the negative t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos θ = 25/(350t), we can solve for θ:

θ = cos−1
(

25
350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about 7◦ with
the horizontal and hit his target 0.07 s after firing, or he can hold his rifle almost
straight up, with an angle of 89.8◦, where he’ll hit his target about 22 s later.
The first option is clearly the option he should choose.

Distance Travelled

Consider a driver who sets her cruise–control to 60 mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starting position is the driver?
The first is easy to answer: she travelled 60 miles. The second is impossible to
answer with the given information. We do not know if she travelled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance travelled, we need
only to know the speed, given by ∥ v⃗(t) ∥.

Theorem 12.3.1 Distance Travelled

Let v⃗(t) be a velocity function for amoving object. The distance travelled
by the object on [a, b] is:

distance travelled =

∫ b

a
∥ v⃗(t) ∥ dt.
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Figure 12.3.5: The path of the particle in
Example 12.3.7.

Chapter 12 Vector Valued Functions

Note that this is just a restatement of Theorem 12.2.7: arc length is the same as
distance travelled, just viewed in a different context.

Example 12.3.7 Distance Travelled, Displacement, and Average Speed
Aparticlemoves in spacewith position function r⃗(t) =

⟨
t, t2, sin(πt)

⟩
on [−2, 2],

where t is measured in seconds and distances are in metres. Find:

1. The distance travelled by the particle on [−2, 2].

2. The displacement of the particle on [−2, 2].

3. The particle’s average speed.

SÊ½çã®ÊÄ

1. We use Theorem 12.3.1 to establish the integral:

distance travelled =

∫ 2

−2
∥ v⃗(t) ∥ dt

=

∫ 2

−2

√
1+ (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary functions so we turn to nu-
merical integration, finding the distance to be 12.88 m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the particle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 12.3.5).

3. We found above that the particle travelled 12.88 m over 4 seconds. We
can compute average speed by dividing: 12.88/4 = 3.22 m/s.
We should also consider Definition 5.4.1 of Section 5.4, which says that
the average value of a function f on [a, b] is 1

b−a

∫ b
a f(x) dx. In our context,

the average value of the speed is

average speed =
1

2− (−2)

∫ 2

−2
∥ v⃗(t) ∥ dt ≈ 1

4
12.88 = 3.22 m/s.

Note how the physical context of a particle travelling gives meaning to a
more abstract concept learned earlier.

In Definition 5.4.1 of Chapter 5 we defined the average value of a function
f(x) on [a, b] to be

1
b− a

∫ b

a
f(x) dx.

Note how in Example 12.3.7 we computed the average speed as

distance travelled
travel time

=
1

2− (−2)

∫ 2

−2
∥ v⃗(t) ∥ dt;

that is, we just found the average value of ∥ v⃗(t) ∥ on [−2, 2].
Likewise, given position function r⃗(t), the average velocity on [a, b] is

displacement
travel time

=
1

b− a

∫ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;
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that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

Key Idea 12.3.3 Average Speed, Average Velocity

Let r⃗(t) be a differentiable position function on [a, b].

The average speed is:

distance travelled
travel time

=

∫ b
a ∥ v⃗(t) ∥ dt

b− a
=

1
b− a

∫ b

a
∥ v⃗(t) ∥ dt.

The average velocity is:

displacement
travel time

=

∫ b
a r⃗ ′(t) dt
b− a

=
1

b− a

∫ b

a
r⃗ ′(t) dt.

The next two sections investigate more properties of the graphs of vector–
valued functions and we’ll apply these new ideas to what we just learned about
motion.
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Exercises 12.3
Terms and Concepts

1. How is velocity different from speed?

2. What is the difference between displacement and distance
travelled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance travelled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems
In Exercises 7 – 10 , a position function r⃗(t) is given. Find v⃗(t)
and a⃗(t).

7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩

8. r⃗(t) =
⟨
3t2 − 2t+ 1,−t2 + t+ 14

⟩
9. r⃗(t) = ⟨cos t, sin t⟩

10. r⃗(t) = ⟨t/10,− cos t, sin t⟩

In Exercises 11 – 14 , a position function r⃗(t) is given. Sketch
r⃗(t) on the indicated interval. Find v⃗(t) and a⃗(t), then add
v⃗(t0) and a⃗(t0) to your sketch, with their initial points at r⃗(t0),
for the given value of t0.

11. r⃗(t) = ⟨t, sin t⟩ on [0, π/2]; t0 = π/4

12. r⃗(t) =
⟨
t2, sin t2

⟩
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
⟨
t2 + t,−t2 + 2t

⟩
on [−2, 2]; t0 = 1

14. r⃗(t) =
⟨
2t+ 3
t2 + 1

, t2
⟩

on [−1, 1]; t0 = 0

In Exercises 15 – 24 , a position function r⃗(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

15. r⃗(t) =
⟨
t2, t
⟩
on [−1, 1]

16. r⃗(t) =
⟨
t2, t2 − t3

⟩
on [−1, 1]

17. r⃗(t) = ⟨5 cos t, 5 sin t⟩ on [0, 2π]

18. r⃗(t) = ⟨2 cos t, 5 sin t⟩ on [0, 2π]

19. r⃗(t) = ⟨sec t, tan t⟩ on [0, π/4]

20. r⃗(t) = ⟨t+ cos t, 1− sin t⟩ on [0, 2π]

21. r⃗(t) = ⟨12t, 5 cos t, 5 sin t⟩ on [0, 4π]

22. r⃗(t) =
⟨
t2 − t, t2 + t, t

⟩
on [0, 1]

23. r⃗(t) =
⟨
t, t2,

√
1− t2

⟩
on [−1, 1]

24. ProjectileMotion: r⃗(t) =
⟨
(v0 cos θ)t,−

1
2
gt2 + (v0 sin θ)t

⟩
on
[
0, 2v0 sin θ

g

]
In Exercises 25 – 28 , position functions r⃗1(t) and r⃗2(s) for two
objects are given that follow the same path on the respective
intervals.

(a) Show that the positions are the same at the indicated
t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleration of the two
objects at t0 and s0, respectively.

25. r⃗1(t) =
⟨
t, t2
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
s2, s4

⟩
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos t, 3 sin t⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2]; s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6s− 6, 4s− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
⟨
t,
√
t
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
sin t,

√
sin t

⟩
on [0, π/2]; s0 = π/2

In Exercises 29 – 32 , find the position function of an object
given its acceleration and initial velocity and position.

29. a⃗(t) = ⟨2, 3⟩; v⃗(0) = ⟨1, 2⟩, r⃗(0) = ⟨5,−2⟩

30. a⃗(t) = ⟨2, 3⟩; v⃗(1) = ⟨1, 2⟩, r⃗(1) = ⟨5,−2⟩

31. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(0) = ⟨0, 1⟩, r⃗(0) = ⟨0, 0⟩

32. a⃗(t) = ⟨0,−32⟩; v⃗(0) = ⟨10, 50⟩, r⃗(0) = ⟨0, 0⟩

In Exercises 33 – 36 , find the displacement, distance trav-
elled, average velocity and average speed of the described
object on the given interval.

33. An object with position function r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩,
where distances are measured in feet and time is in sec-
onds, on [0, 2π].
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34. An object with position function r⃗(t) = ⟨5 cos t,−5 sin t⟩,
where distances are measured in feet and time is in sec-
onds, on [0, π].

35. An object with velocity function v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and time is in seconds, on
[0, 2π].

36. An object with velocity function v⃗(t) = ⟨1, 2,−1⟩, where
distances are measured in feet and time is in seconds, on
[0, 10].

Exercises 37 – 42 ask you to solve a variety of problems based
on the principles of projectile motion.

37. A boy whirls a ball, attached to a 3ft string, above his head
in a counter–clockwise circle. The ball makes 2 revolutions
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10ft in front of
him?

38. David faces Goliath with only a stone in a 3ft sling, which
he whirls above his head at 4 revolutions per second. They
stand 20ft apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is travelling
when released?

(c) Assume David releases the stone from a height of 6ft
and Goliath’s forehead is 9ft above the ground. What
angle of elevation must David apply to the stone to
hit Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5ft, and she aims for a spot on the
deer 4ft above the ground. The crossbow fires her arrows
at 300ft/s.

(a) At what angle of elevation should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately howmuch
should she lead the deer in order to hit it in the de-
sired location?

40. A baseball player hits a ball at 100mph, with an initial height
of 3ft and an angle of elevation of 20◦, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37ft high located 310ft from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevation is 21◦, the ball
clears the Green Monster.

41. A Cessna flies at 1000ft at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

42. A football quarterback throws a pass from a height of 6ft,
intending to hit his receiver 20yds away at a height of 5ft.

(a) If the ball is thrown at a rate of 50mph, what angle of
elevation is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevation of
8◦, what initial ball speed is needed to hit his target?
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Figure 12.4.1: Plotting unit tangent vec-
tors in Example 12.4.1.

Chapter 12 Vector Valued Functions

12.4 Unit Tangent and Normal Vectors

Unit Tangent Vector

Given a smooth vector–valued function r⃗(t), we defined in Definition 12.2.4
that any vector parallel to r⃗ ′(t0) is tangent to the graph of r⃗(t) at t = t0. It is
often useful to consider just the direction of r⃗ ′(t) and not its magnitude. There-
fore we are interested in the unit vector in the direction of r⃗ ′(t). This leads to a
definition.

Definition 12.4.1 Unit Tangent Vector

Let r⃗(t) be a smooth function on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
1

∥ r⃗ ′(t) ∥
r⃗ ′(t).

Example 12.4.1 Computing the unit tangent vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We apply Definition 12.4.1 to find T⃗(t).

T⃗(t) =
1

∥ r⃗ ′(t) ∥
r⃗ ′(t)

=
1√(

− 3 sin t
)2

+
(
3 cos t

)2
+ 42

⟨−3 sin t, 3 cos t, 4⟩

=

⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
.

We can now easily compute T⃗(0) and T⃗(1):

T⃗(0) =
⟨
0,

3
5
,
4
5

⟩
; T⃗(1) =

⟨
−3
5
sin 1,

3
5
cos 1,

4
5

⟩
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are plotted in Figure 12.4.1 with their initial points at r⃗(0) and r⃗(1), re-
spectively. (They look rather “short” since they are only length 1.)

The unit tangent vector T⃗(t) always has a magnitude of 1, though it is some-
times easy to doubt that is true. We can help solidify this thought in our minds
by computing ∥ T⃗(1) ∥:

∥ T⃗(1) ∥ ≈
√
(−0.505)2 + 0.3242 + 0.82 = 1.000001.

We have rounded in our computation of T⃗(1), so we don’t get 1 exactly. We
leave it to the reader to use the exact representation of T⃗(1) to verify it has
length 1.

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leaving
us with a formula that is not as clean.
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Figure 12.4.2: Plotting unit tangent vec-
tors in Example 12.4.2.
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y

Figure 12.4.3: Given a direction in the
plane, there are always two directions or-
thogonal to it.

Note: T⃗(t) is a unit vector, by definition.
This does not imply that T⃗ ′(t) is also a unit
vector.

12.4 Unit Tangent and Normal Vectors

Example 12.4.2 Computing the unit tangent vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

∥ r⃗ ′(t) ∥ =
√

(2t− 1)2 + (2t+ 1)2 =
√

8t2 + 2.

Therefore

T⃗(t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

⟨
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

When t = 0, we have T⃗(0) =
⟨
−1/

√
2, 1/

√
2
⟩
; when t = 1, we have T⃗(1) =⟨

1/
√
10, 3/

√
10
⟩
.We leave it to the reader to verify each of these is a unit vec-

tor. They are plotted in Figure 12.4.2

Unit Normal Vector

Just as knowing the direction tangent to a path is important, knowing a direc-
tion orthogonal to a path is important. When dealingwith real-valued functions,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector–valued functions. Given r⃗(t) inR2, we have 2 directions perpendic-
ular to the tangent vector, as shown in Figure 12.4.3. It is good to wonder “Is
one of these two directions preferable over the other?”

Given r⃗(t) inR3, there are infinitely many vectors orthogonal to the tangent
vector at a given point. Again, wemight wonder “Is one of these infinite choices
preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 12.2.5, which states
that if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗(t), the unit tangent vector, has constant length. Therefore T⃗(t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direction, we define this newly found vector to be a unit vector.

Definition 12.4.2 Unit Normal Vector

Let r⃗(t) be a vector–valued function where the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
1

∥ T⃗ ′(t) ∥
T⃗ ′(t).
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Figure 12.4.4: Plotting unit tangent and
normal vectors in Example 12.4.3.

Chapter 12 Vector Valued Functions

Example 12.4.3 Computing the unit normal vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Example 12.4.1. Sketch both T⃗(π/2) and
N⃗(π/2) with initial points at r⃗(π/2).

SÊ½çã®ÊÄ In Example 12.4.1, we found T⃗(t) =
⟨
(−3/5) sin t, (3/5) cos t, 4/5

⟩
.

Therefore

T⃗ ′(t) =
⟨
−3
5
cos t,−3

5
sin t, 0

⟩
and ∥ T⃗ ′(t) ∥ =

3
5
.

Thus

N⃗(t) =
T⃗ ′(t)
3/5

= ⟨− cos t,− sin t, 0⟩ .

We compute T⃗(π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩. These are
sketched in Figure 12.4.4.

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains fractions of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example 12.4.4 Computing the unit normal vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Example 12.4.2. Find N⃗(t) and sketch r⃗(t) with

the unit tangent and normal vectors at t = −1, 0 and 1.

SÊ½çã®ÊÄ In Example 12.4.2, we found

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

Finding T⃗ ′(t) requires two applications of the Quotient Rule:

T ′(t) =

⟨√
8t2 + 2(2)− (2t− 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

⟩

=

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

∥ T⃗ ′(t) ∥ =

√
16(2t+ 1)2
(8t2 + 2)3

+
16(1− 2t)2
(8t2 + 2)3

=

√
16(8t2 + 2)
(8t2 + 2)3

=
4

8t2 + 2
.
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Figure 12.4.5: Plotting unit tangent and
normal vectors in Example 12.4.4.

Note: Keep in mind that both aT and
aN are functions of t; that is, the scalar
changes depending on t. It is convention
to drop the “(t)” notation from aT(t) and
simply write aT.

12.4 Unit Tangent and Normal Vectors

Finally,

N⃗(t) =
1

4/(8t2 + 2)

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

=

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −1, 0 and 1 and sketch them in Figure 12.4.5.

The final result for N⃗(t) in Example 12.4.4 is suspiciously similar to T⃗(t).
There is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the
only unit vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗(t), we
can quickly determine N⃗(t) if we know which term to multiply by (−1).

Consider again Figure 12.4.5, where we have plotted some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direction that r⃗(t) “turns” allows us to quickly find N⃗(t).

Theorem 12.4.1 Unit Normal Vectors in R2

Let r⃗(t) be a vector–valued function in R2 where T⃗ ′(t) is smooth on an
open interval I. Let t0 be in I and T⃗(t0) = ⟨t1, t2⟩ Then N⃗(t0) is either

N⃗(t0) = ⟨−t2, t1⟩ or N⃗(t0) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

Application to Acceleration

Let r⃗(t) be a position function. It is a fact (stated later in Theorem 12.4.2)
that acceleration, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are
scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

The scalar aT measures “how much” acceleration is in the direction of travel,
that is, it measures the component of acceleration that affects the speed. The
scalar aN measures “how much” acceleration is perpendicular to the direction
of travel, that is, it measures the component of acceleration that affects the
direction of travel.

We can find aT using the orthogonal projection of a⃗(t) onto T⃗(t) (review Def-
inition 11.3.3 in Section 11.3 if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = 1, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(⃗
a(t) · T⃗(t)

)︸ ︷︷ ︸
aT

T⃗(t).

Thus the amount of a⃗(t) in the direction of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of computing aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.
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Figure 12.4.6: Graphing r⃗(t) in Example
12.4.6.

Chapter 12 Vector Valued Functions

Theorem 12.4.2 Acceleration in the Plane Defined by T⃗ and N⃗

Let r⃗(t) be a position function with acceleration a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(
∥ v⃗(t) ∥

)
aN = a⃗(t) · N⃗(t) =

√
∥ a⃗(t) ∥2 − a2T =

∥ a⃗(t)× v⃗(t) ∥
∥ v⃗(t) ∥

= ∥ v⃗(t) ∥ ∥ T⃗ ′(t) ∥

Note the second formula for aT:
d
dt

(
∥ v⃗(t) ∥

)
. This measures the rate of

change of speed, which again is the amount of acceleration in the direction of
travel.

Example 12.4.5 Computing aT and aN
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Examples 12.4.1 and 12.4.3. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨−3 cos t,−3 sin t, 0⟩
and

T⃗(t) =
⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
and N⃗(t) = ⟨− cos t,− sin t, 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = 9
5
cos t sin t− 9

5
cos t sin t+ 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2 t+ 3 sin2 t+ 0 = 3.

Thus a⃗(t) = 0⃗T(t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the practical interpretation of these numbers? aT = 0 means the

object is moving at a constant speed, and hence all acceleration comes in the
form of direction change.

Example 12.4.6 Computing aT and aN
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Examples 12.4.2 and 12.4.4. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
and N⃗(t) =

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem 12.4.2.

aT = a⃗(t) · T⃗(t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

aN =
√
∥ a⃗(t) ∥2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.
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Figure 12.4.7: Plotting the position of a
thrown ball, with 1s increments shown.

t aT aN
0 −16 27.7
1 0 32
2 16 27.7
3 24.2 20.9
4 27.7 16
5 29.4 12.7

Figure 12.4.8: A table of values of aT and
aN in Example 12.4.7.

12.4 Unit Tangent and Normal Vectors

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret this to

mean that at t = 2, the particle is accelerating mostly by increasing speed, not
by changing direction. As the path near t = 2 is relatively straight, this should
make intuitive sense. Figure 12.4.6 gives a graph of the path for reference.

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here the

particle’s speed is not changing and all acceleration is in the form of direction
change.

Example 12.4.7 Analyzing projectile motion
A ball is thrown from a height of 240 ft with an initial speed of 64 ft/s and an
angle of elevation of 30◦. Find the position function r⃗(t) of the ball and analyze
aT and aN.

SÊ½çã®ÊÄ Using Key Idea 12.3.2 of Section 12.3 we form the position
function of the ball:

r⃗(t) =
⟨(
64 cos 30◦

)
t,−16t2 +

(
64 sin 30◦

)
t+ 240

⟩
,

which we plot in Figure 12.4.7.
From thiswe find v⃗(t) = ⟨64 cos 30◦,−32t+ 64 sin 30◦⟩ and a⃗(t) = ⟨0,−32⟩.

Computing T⃗(t) is not difficult, and with some simplification we find

T⃗(t) =
⟨ √

3√
t2 − 2t+ 4

,
1− t√

t2 − 2t+ 4

⟩
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = 32t− 32√
t2 − 2t+ 4

.

Wechoose to not find N⃗(t) and findaN through the formulaaN =
√

∥ a⃗(t) ∥2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32

√
3√

t2 − 2t+ 4
.

Figure 12.4.8 gives a table of values of aT and aN. When t = 0, we see the
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
corresponds to the fact that at t = 1 the ball reaches its highest point.

After t = 1 we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleration is in the form of
speeding up the ball, and not in changing its direction.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of motion. The work in Example 12.4.7 gave quantitative analysis
of what we intuitively knew.

The next section provides two more important steps towards this analysis.
We currently describe position only in terms of time. In everyday life, though,
we often describe position in terms of distance (“The gas station is about 2miles
ahead, on the left.”). The arc length parameter allows us to reference position
in terms of distance travelled.

We also intuitively know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quantitative
measurement of how curvy a curve is.
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Exercises 12.4
Terms and Concepts
1. If T⃗(t) is a unit tangent vector, what is ∥ T⃗(t) ∥?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

3. The acceleration vector a⃗(t) lies in the plane defined by
what two vectors?

4. aT measures how much the acceleration is affecting the
of an object.

Problems
In Exercises 5 – 8 , given r⃗(t), find T⃗(t) and evaluate it at the
indicated value of t.

5. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

6. r⃗(t) = ⟨t, cos t⟩, t = π/4

7. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

8. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 9 – 12 , find the equation of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 –
8.

9. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

10. r⃗(t) = ⟨t, cos t⟩, t = π/4

11. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

12. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 13 – 16 , find N⃗(t) using Definition 12.4.2. Con-
firm the result using Theorem 12.4.1.

13. r⃗(t) = ⟨3 cos t, 3 sin t⟩

14. r⃗(t) =
⟨
t, t2
⟩

15. r⃗(t) = ⟨cos t, 2 sin t⟩

16. r⃗(t) =
⟨
et, e−t⟩

In Exercises 17 – 20 , a position function r⃗(t) is given along
with its unit tangent vector T⃗(t) evaluated at t = a, for some
value of a.

(a) Confirm that T⃗(a) is as stated.
(b) Using a graph of r⃗(t) and Theorem 12.4.1, find N⃗(a).

17. r⃗(t) = ⟨3 cos t, 5 sin t⟩; T⃗(π/4) =
⟨
− 3√

34
,

5√
34

⟩
.

18. r⃗(t) =
⟨
t, 1
t2 + 1

⟩
; T⃗(1) =

⟨
2√
5
,− 1√

5

⟩
.

19. r⃗(t) = (1+ 2 sin t) ⟨cos t, sin t⟩; T⃗(0) =
⟨

2√
5
,

1√
5

⟩
.

20. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
; T⃗(π/4) =

⟨
− 1√

2
,

1√
2

⟩
.

In Exercises 21 – 24 , find N⃗(t).

21. r⃗(t) = ⟨4t, 2 sin t, 2 cos t⟩

22. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩

23. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > 0

24. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises 25 – 30 , find aT and aN given r⃗(t). Sketch r⃗(t) on
the indicated interval, and comment on the relative sizes of
aT and aN at the indicated t values.

25. r⃗(t) =
⟨
t, t2
⟩
on [−1, 1]; consider t = 0 and t = 1.

26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and t = 2.

27. r⃗(t) = ⟨2 cos t, 2 sin t⟩ on [0, 2π]; consider t = 0 and
t = π/2.

28. r⃗(t) =
⟨
cos(t2), sin(t2)

⟩
on (0, 2π]; consider t =

√
π/2

and t =
√
π.

29. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [0, 2π], where a, b > 0; con-
sider t = 0 and t = π/2.

30. r⃗(t) = ⟨5 cos t, 4 sin t, 3 sin t⟩ on [0, 2π]; consider t = 0
and t = π/2.
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Figure 12.5.1: Introducing the arc length
parameter.
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12.5 The Arc Length Parameter and Curvature

12.5 The Arc Length Parameter and Curvature
In normal conversation we describe position in terms of both time and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued functions have defined points with a parame-
ter t, which we often take to represent time. Consider Figure 12.5.1(a), where
r⃗(t) =

⟨
t2 − t, t2 + t

⟩
is graphed and the points corresponding to t = 0, 1 and 2

are shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is time and r⃗ is position,
we can say that the particle travelled faster on [1, 2] than on [0, 1].

Now consider Figure 12.5.1(b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are plotted.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an initial location (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrization of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0
∥ r⃗ ′(u) ∥ du.

We can turn this into a function: as t varies, we find the arc length s from 0 to t.
This function is

s(t) =
∫ t

0
∥ r⃗ ′(u) ∥ du. (12.1)

This establishes a relationship between s and t. Knowing this relationship
explicitly, we can rewrite r⃗(t) as a function of s: r⃗(s). We demonstrate this in an
example.

Example 12.5.1 Finding the arc length parameter
Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗ with the arc length parameter s.

SÊ½çã®ÊÄ Using Equation (12.1), we write

s(t) =
∫ t

0
∥ r⃗ ′(u) ∥ du.

We can integrate this, explicitly finding a relationship between s and t:

s(t) =
∫ t

0
∥ r⃗ ′(u) ∥ du

=

∫ t

0

√
32 + 42 du

=

∫ t

0
5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
⟨
3
5
s− 1,

4
5
s+ 2

⟩
.
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Figure 12.5.3: Establishing the concept of
curvature.

Chapter 12 Vector Valued Functions

Clearly, as shown in Figure 12.5.2, the graph of r⃗ is a line, where t = 0 corre-
sponds to the point (−1, 2). What point on the line is 2 units away from this
initial point? We find it with r⃗(2) = ⟨1/5, 18/5⟩.

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the Dis-
tance Formula to check:

d =

√(
1
5
− (−1)

)2

+

(
18
5

− 2
)2

=

√
36
25

+
64
25

=
√
4 = 2.

Yes, r⃗(2) is indeed 2 units away, in the direction of travel, from the initial point.

Things worked out very nicely in Example 12.5.1; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integrating a square–root. There are a number
of things that we can learn about the arc length parameter from Equation (12.1),
though, that are incredibly useful.

First, take the derivative of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 5.4.1) states that

ds
dt

= s ′(t) = ∥ r⃗ ′(t) ∥. (12.2)

Letting t represent time and r⃗(t) represent position, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
travelled” is speed, which should match our intuition.

The Chain Rule states that

d⃗r
dt

=
d⃗r
ds

· ds
dt

r⃗ ′(t) = r⃗ ′(s) · ∥ r⃗ ′(t) ∥.

Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

∥ r⃗ ′(t) ∥
= T⃗(t), (12.3)

where T⃗(t) is the unit tangent vector. Equation 12.3 is often misinterpreted, as
one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 12.5.1 Arc Length Parameter

Let r⃗(s) be a vector–valued function. The parameter s is the arc length
parameter if, and only if, ∥ r⃗ ′(s) ∥ = 1.

Curvature

Consider points A and B on the curve graphed in Figure 12.5.3(a). One can
readily argue that the curve curvesmore sharply at A than at B. It is useful to use
a number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure 12.5.3(b), where
unit tangent vectors are graphed around points A and B. Notice how the direc-
tion of the unit tangent vector changes quite a bit near A, whereas it does not
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12.5 The Arc Length Parameter and Curvature

change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Definition 12.5.1 Curvature

Let r⃗(s) be a vector–valued function where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∥∥∥∥∥ d⃗T
ds

∥∥∥∥∥ =
∥∥ T⃗ ′(s)

∥∥ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)

∥ r⃗ ′(s) ∥
and N⃗(s) =

T⃗ ′(s)
∥ T⃗ ′(s) ∥

.

Having defined ∥ T⃗ ′(s) ∥ = κ, we can rewrite the second equation as

T⃗ ′(s) = κN⃗(s). (12.4)

We already knew that T⃗ ′(s) is in the same direction as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direction of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direction of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direction is not changing rapidly.

We use Definition 12.5.1 to find the curvature of the line in Example 12.5.1.

Example 12.5.2 Finding the curvature of a line
Use Definition 12.5.1 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.

SÊ½çã®ÊÄ In Example 12.5.1, we found that the arc length parameter
was defined by s = 5t, so r⃗(s) = ⟨3s/5− 1, 4s/5+ 2⟩ parametrized r⃗ with the
arc length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∥∥ T⃗ ′(s)

∥∥ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.)

While the definition of curvature is a beautiful mathematical concept, it is
nearly impossible to use most of the time; writing r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culating this value that are much easier. There is a tradeoff: the definition is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though it may be hard to understand why they work.
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Chapter 12 Vector Valued Functions

Theorem 12.5.2 Formulas for Curvature

Let C be a smooth curve in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1+
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector–valued function in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x ′y ′′ − x ′′y ′|(
(x ′)2 + (y ′)2

)3/2 .
3. If C is defined in space by a vector–valued function r⃗(t), then

κ =
∥ T⃗ ′(t) ∥
∥ r⃗ ′(t) ∥

=
∥ r⃗ ′(t)× r⃗ ′′(t) ∥

∥ r⃗ ′(t) ∥3
=

a⃗(t) · N⃗(t)
∥ v⃗(t) ∥2

.

We practice using these formulas.

Example 12.5.3 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by c⃗(t) = ⟨r cos t, r sin t⟩.

SÊ½çã®ÊÄ Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem 12.5.2.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|(

(−r sin t)2 + (r cos t)2
)3/2

=
r2(sin2 t+ cos2 t)(

r2(sin2 t+ cos2 t)
)3/2

=
r2

r3
=

1
r
.

We have found that a circle with radius r has curvature κ = 1/r.

Example 12.5.3 gives a great result. Before this example, if we were told
“The curve has a curvature of 5 at point A,” we would have no idea what this
really meant. Is 5 “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,
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12.5 The Arc Length Parameter and Curvature

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the osculating circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure 12.5.4 shows the graph of the curve seen earlier in Figure 12.5.3
and its osculating circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculating” comes from a Latin word related to kissing; an osculating cir-
cle “kisses” the graph at a particular point. Many beautiful ideas inmathematics
have come from studying the osculating circles to a curve.)

Example 12.5.4 Finding curvature
Find the curvature of the parabola defined by y = x2 at the vertex and at x = 1.

SÊ½çã®ÊÄ We use the first formula found in Theorem 12.5.2.

κ(x) =
|2|(

1+ (2x)2
)3/2

=
2(

1+ 4x2
)3/2 .

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature
is κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 12.5.5. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0.

Example 12.5.5 Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, t2, 2t3

⟩
is maximized.

SÊ½çã®ÊÄ Weuse the third formula in Theorem12.5.2 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
1, 2t, 6t2

⟩
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
12t2,−12t, 2

⟩
.

Thus

κ(t) =
∥ r⃗ ′(t)× r⃗ ′′(t) ∥

∥ r⃗ ′(t) ∥3

=
∥
⟨
12t2,−12t, 2

⟩
∥

∥ ⟨1, 2t, 6t2⟩ ∥3

=

√
144t4 + 144t2 + 4(√
1+ 4t2 + 36t4

)3
While this is not a particularly “nice” formula, it does explicitly tell us what the
curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = 0 for
t. This is doable, but very time consuming. Instead, consider the graph of κ(t)
as given in Figure 12.5.6(a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±0.189. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized.
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Operating
Speed (mph)

Minimum
Radius (ft)

35 310
40 430
45 540

Figure 12.5.7: Operating speed and mini-
mum radius in highway cloverleaf design.

Chapter 12 Vector Valued Functions

Curvature and Motion

Let r⃗(t) be a position function of an object, with velocity v⃗(t) = r⃗ ′(t) and
acceleration a⃗(t) = r⃗ ′′(t). In Section 12.4 we established that acceleration is in
the plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem 12.4.2 gives formulas for aT and aN:

aT =
d
dt

(
∥ v⃗(t) ∥

)
and aN =

∥ v⃗(t)× a⃗(t) ∥
∥ v⃗(t) ∥

.

We understood that the amount of acceleration in the direction of T⃗ relates only
to how the speed of the object is changing, and that the amount of acceleration
in the direction of N⃗ relates to how the direction of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = 0; if the object travels
in a constant direction, aN = 0.)

In Equation (12.2) at the beginning of this section, we found s ′(t) = ∥ v⃗(t) ∥.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(
∥ v⃗(t) ∥

)
=

d
dt
(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
time. We see once more that the component of acceleration in the direction of
travel relates only to speed, not to a change in direction.

Now compare the formula for aN above to the formula for curvature in The-
orem 12.5.2:

aN =
∥ v⃗(t)× a⃗(t) ∥

∥ v⃗(t) ∥
and κ =

∥ r⃗ ′(t)× r⃗ ′′(t) ∥
∥ r⃗ ′(t) ∥3

=
∥ v⃗(t)× a⃗(t) ∥

∥ v⃗(t) ∥3
.

Thus

aN = κ∥ v⃗(t) ∥2 (12.5)

= κ
(
s ′(t)

)2
This last equation shows that the component of acceleration that changes

the object’s direction is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but tighten the
turn (i.e., increase κ), once again the door will push harder against you.

Putting our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ∥ v⃗(t) ∥2N⃗(t).

This is not a particularly practical way of finding aT and aN, but it reveals some
great concepts about how acceleration interacts with speed and the shape of a
curve.

Example 12.5.6 Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
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12.5 The Arc Length Parameter and Curvature

operating speed, as given in the table in Figure 12.5.7. For each curve and speed,
compute aN.

SÊ½çã®ÊÄ Using Equation (12.5), we can compute the acceleration
normal to the curve in each case. We start by converting each speed from “miles
per hour” to “feet per second” by multiplying by 5280/3600.

35mph, 310ft ⇒ 51.33ft/s, κ = 1/310
aN = κ ∥ v⃗(t) ∥2

=
1

310
(
51.33

)2
= 8.50ft/s2.

40mph, 430ft ⇒ 58.67ft/s, κ = 1/430

aN =
1

430
(
58.67

)2
= 8.00ft/s2.

45mph,540ft ⇒ 66ft/s, κ = 1/540

aN =
1

540
(
66
)2

= 8.07ft/s2.

Note that each acceleration is similar; this is by design. Considering the classic
“Force=mass× acceleration” formula, this acceleration must be kept small in
order for the tires of a vehicle to keep a “grip” on the road. If one travels on
a turn of radius 310 ft at a rate of 50 mph, the acceleration is double, at 17.35
ft/s2. If the acceleration is too high, the frictional force created by the tires may
not be enough to keep the car from sliding. Civil engineers routinely compute
a “safe” design speed, then subtract 5-10 mph to create the posted speed limit
for additional safety.

We end this chapter with a reflection on what we’ve covered. We started
with vector–valued functions, which may have seemed at the time to be just
another way of writing parametric equations. However, we have seen that the
vector perspective has given us great insight into the behaviour of functions and
the study of motion. Vector–valued position functions convey displacement,
distance travelled, speed, velocity, acceleration and curvature information, each
of which has great importance in science and engineering.
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Exercises 12.5
Terms and Concepts
1. It is common to describe position in terms of both

and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.

4. Describe in your own words what an “osculating circle” is.

5. Complete the identity: T⃗ ′(s) = N⃗(s).

6. Given a position function r⃗(t), how are aT and aN affected
by the curvature?

Problems
In Exercises 7 – 10 , a position function r⃗(t) is given, where
t = 0 corresponds to the initial position. Find the arc length
parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩

8. r⃗(t) = ⟨7 cos t, 7 sin t⟩

9. r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩

10. r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩

In Exercises 11 – 22 , a curve C is described alongwith 2 points
on C.

(a) Using a sketch, determine at which of these points the
curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the
2 given points.

11. C is defined by y = x3 − x; points given at x = 0 and
x = 1/2.

12. C is defined by y =
1

x2 + 1
; points given at x = 0 and

x = 2.

13. C is defined by y = cos x; points given at x = 0 and
x = π/2.

14. C is defined by y =
√
1− x2 on (−1, 1); points given at

x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos t, sin(2t)⟩; points given at t = 0
and t = π/4.

16. C is defined by r⃗(t) =
⟨
cos2 t, sin t cos t

⟩
; points given at

t = 0 and t = π/3.

17. C is defined by r⃗(t) =
⟨
t2 − 1, t3 − t

⟩
; points given at t = 0

and t = 5.

18. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = 0
and t = π/6.

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩; points given
at t = 0 and t = 1.

20. C is defined by r⃗(t) =
⟨
t3 − t, t3 − 4, t2 − 1

⟩
; points given

at t = 0 and t = 1.

21. C is defined by r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩; points given at
t = 0 and t = π/2.

22. C is defined by r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩; points
given at t = 0 and t = π/2.

In Exercises 23 – 26 , find the value of x or t where curvature
is maximized.

23. y = 1
6
x3

24. y = sin x

25. r⃗(t) =
⟨
t2 + 2t, 3t− t2

⟩
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

In Exercises 27 – 30 , find the radius of curvature at the indi-
cated value.

27. y = tan x, at x = π/4

28. y = x2 + x− 3, at x = π/4

29. r⃗(t) = ⟨cos t, sin(3t)⟩, at t = 0

30. r⃗(t) = ⟨5 cos(3t), t⟩, at t = 0

In Exercises 31 – 34 , find the equation of the osculating circle
to the curve at the indicated t-value.

31. r⃗(t) =
⟨
t, t2
⟩
, at t = 0

32. r⃗(t) = ⟨3 cos t, sin t⟩, at t = 0

33. r⃗(t) = ⟨3 cos t, sin t⟩, at t = π/2

34. r⃗(t) =
⟨
t2 − t, t2 + t

⟩
, at t = 0
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Figure 13.1.1: Illustrating the domain of
f(x, y) in Example 13.1.2.
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13.1 Introduction to Multivariable Functions

Definition 13.1.1 Function of Two Variables

LetD be a subset ofR2. A function f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

Example 13.1.1 Understanding a function of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

SÊ½çã®ÊÄ Using the definition f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1
f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R.

Example 13.1.2 Understanding a function of two variables

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 − y2
4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equation describes an ellipse and its interior as shown in Figure 13.1.1.
We can represent the domain D graphically with the figure; in set notation, we
can write D = {(x, y)| x2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is ≥ 0. Since the x and y terms are squared, then subtracted,
inside the square–root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1].



(a)

(b)

Figure 13.1.2: Graphing a function of two
variables.

Figure 13.1.3: A topographical map dis-
plays elevation by drawing contour lines,
along with the elevation is constant.
Sample taken from the public do-
main USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

Chapter 13 Functions of Several Variables

Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by plotting points, but this has limitations.
Consider Figure 13.1.2(a) where 25 points have been plotted of

f(x, y) =
1

x2 + y2 + 1
.

More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 13.1.2b which does a far better job of illustrating
the behaviour of f.

While technology is readily available to help us graph functions of two vari-
ables, there is still a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behaviour of a function. This technique is known as sketching level curves.

Level Curves

It may be surprising to find that the problem of representing a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 13.1.3, represent the surface
of Earth by indicating points with the same elevation with contour lines. The
elevations marked are equally spaced; in this example, each thin line indicates
an elevation change in 50 ft increments and each thick line indicates a change
of 200 ft. When lines are drawn close together, elevation changes rapidly (as
one does not have to travel far to rise 50 ft). When lines are far apart, such as
near “Aspen Campground,” elevation changesmore gradually as one has to walk
farther to rise 50 ft.

Given a function z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing.
Examples will help one understand this concept.

Example 13.1.3 Drawing Level Curves

Let f(x, y) =
√

1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

SÊ½çã®ÊÄ Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 − y2
4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centred at (0, 0) with horizontal major axis of length 6 and minor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.
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Figure 13.1.5: Graphing the level curves
in Example 13.1.4.

13.1 Introduction to Multivariable Functions

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =
√

1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 13.1.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 13.1.4(b), the curves are drawn on a graph of f in space. Note how
the elevations are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly.

Example 13.1.4 Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by setting f(x, y) = c for an arbitrary c and seeing
if algebraic manipulation of the equation reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet clear. By
completing the square, we can obtain:(

x− 1
2c

)2

+

(
y− 1

2c

)2

=
1
2c2

− 1,

a circle centred at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, ±0.4 and ±0.6 are sketched in Figure

13.1.5(a). To help illustrate “elevation,” we use thicker lines for c values near 0,
and dashed lines indicate where c < 0.

There is one special level curve, when c = 0. The level curve in this situation
is x+ y = 0, the line y = −x.

641





Chapter 13 Functions of Several Variables

In Figure 13.1.5(b) we see a graph of the surface. Note how the y-axis is
pointing away from the viewer to more closely resemble the orientation of the
level curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevation change, though the level curve does.

Functions of Three Variables

We extend our study of multivariable functions to functions of three vari-
ables. (One can make a function of as many variables as one likes; we limit our
study to three variables.)

Definition 13.1.2 Function of Three Variables

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this definition closely resembles that of Definition 13.1.1.

Example 13.1.5 Understanding a function of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the
domain and range of f.

SÊ½çã®ÊÄ f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ 2y.

Level Surfaces

It is very difficult to produce a meaningful graph of a function of three vari-
ables. A function of one variable is a curve drawn in 2 dimensions; a function of
two variables is a surface drawn in 3 dimensions; a function of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 13.1.6 Finding level surfaces
If a point source S is radiating energy, the intensity I at a given point P in space
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c r
16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 13.1.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 13.1.6.

13.1 Introduction to Multivariable Functions

is inversely proportional to the square of the distance between S and P. That is,
when S = (0, 0, 0), I(x, y, z) =

k
x2 + y2 + z2

for some constant k.
Let k = 1; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centred at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathematically. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

A small amount of algebra reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centred

at the origin.
Figure 13.1.6 gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a little more than before.

Note how each time the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next section we apply the concepts of limits to functions of two or
more variables.
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Exercises 13.1
Terms and Concepts
1. Give two examples (other than those given in the text) of

“real world” functions that require more than one input.

2. The graph of a function of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a function does not
change.

5. The analogue of a level curve for functions of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems
In Exercises 7 – 14, give the domain and range of the multi-
variable function.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) = 1
x+ 2y

11. f(x, y) = 1
x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) = 1√
x2 + y2 − 9

In Exercises 15 – 22, describe in words and sketch the level
curves for the function and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) = 1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) = 2x− 2y
x2 + y2 + 1

; c = −1, 0, 1

20. f(x, y) = y− x3 − 1
x

; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

In Exercises 23 – 26, give the domain and range of the func-
tions of three variables.

23. f(x, y, z) = x
x+ 2y− 4z

24. f(x, y, z) = 1
1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

In Exercises 27 – 30, describe the level surfaces of the given
functions of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) = x2 + y2

z

30. f(x, y, z) = z
x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 13.2.1: Illustrating open and
closed sets in the x-y plane.

13.2 Limits and Continuity of Multivariable Functions

13.2 Limits andContinuity ofMultivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definitions for open and closed sets in the x-y plane.

Definition 13.2.1 Open Disk, Boundary and Interior Points,
Open and Closed Sets, Bounded Sets

An open disk B in R2 centred at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of
S if all open disks centred at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centred at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > 0 such that the open disk, cen-
tred at the origin with radiusM, contains S. A set that is not bounded is
unbounded.

Figure 13.2.1 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centred there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centred there that lies entirely within the set.

The set depicted in Figure 13.2.1(a) is a closed set as it contains all of its
boundary points. The set in (b) is open, for all of its points are interior points
(or, equivalently, it does not contain any of its boundary points). The set in (c)
is neither open nor closed as it contains some of its boundary points.

Example 13.2.1 Determining open/closed, bounded/unbounded
Determine if the domain of the function f(x, y) =

√
1− x2/9− y2/4 is open,

closed, or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this function was found in Example 13.1.2 to
be D = {(x, y) | x2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1.

Since the region includes the boundary (indicated by the use of “≤”), the set
contains all of its boundary points and hence is closed. The region is bounded
as a disk of radius 4, centred at the origin, contains D.
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Figure 13.2.2: Sketching the domain of
the function in Example 13.2.2.

Note: While our first limit definition was
defined over an open interval, we now
define limits over a set S in the plane
(where S does not have to be open). As
planar sets can be far more complicated
than intervals, our definition adds the re-
striction “. . . where every open disk cen-
tred at P contains points in S other than
P.” In this text, all sets we’ll consider will
satisfy this condition andwewon’t bother
to check; it is included in the definition for
completeness.

Figure 13.2.3: Illustrating the definition
of a limit. The open disk in the x-y plane
has radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.

Chapter 13 Functions of Several Variables

Example 13.2.2 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure 13.2.2. Note how we can draw an open
disk around any point in the domain that lies entirely inside the domain, and
also note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo–definition of the limit of a function of one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definition holds for functions of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal definition is given below.

Definition 13.2.2 Limit of a Function of Two Variables

Let S be a set containing P = (x0, y0) where every open disk centred at
P contains points in S other than P, let f be a function of two variables
defined on S, except possibly at P, and let L be a real number. The limit
of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y) in
S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centred at (x0, y0)
with radius δ, then |f(x, y)− L| < ε.

The concept behind Definition 13.2.2 is sketched in Figure 13.2.3. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centred at (x0, y0) in
the x-y plane with radius δ, then f(x, y) should be within ε of L.
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13.2 Limits and Continuity of Multivariable Functions

Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem 13.2.1 Basic Limit Properties of Functions of Two
Variables

Let b, x0, y0, L and K be real numbers, let n be a positive integer, and let
f and g be functions with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. Identity lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar Multiples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. Quotients: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combined with Theorems 1.3.2 and 1.3.3 of Section 1.3, al-
lows us to evaluate many limits.

Example 13.2.3 Evaluating a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy
x2 + y2

SÊ½çã®ÊÄ

1. The aforementioned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
=

π

1
+ cos π

= π − 1.

2. We attempt to evaluate the limit by substituting 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.
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When dealing with functions of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direction, the left or the right.

In the plane, there are infinitely many directions from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a particular direction, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiting val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the left and right hand limits

of single variable functions not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 13.2.4 Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

SÊ½çã®ÊÄ

1. Evaluating lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evaluating the resulting limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiting values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.
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13.2 Limits and Continuity of Multivariable Functions

By applying L’Hospital’s Rule, we can show this limit is 0 exceptwhenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0.

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
− x sin x

)
x− sin x

= lim
x→0

sin
(
− x sin x

)
x− sin x

Now apply L’Hospital’s Rule twice:

= lim
x→0

cos
(
− x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
− x sin x

)
(− sin x− x cos x)2 + cos

(
− x sin x

)
(−2 cos x+ x sin x)

sin x
= “−2/0” ⇒ the limit does not exist.

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path
y = − sin x, which lies in the domain of f(x, y) for all x ̸= 0, the limit does
not exist. Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.

Example 13.2.5 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

SÊ½çã®ÊÄ It is relatively easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply Definition 13.2.2. Let ε > 0 be given. We
want to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)−0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.
Let
√
(x− 0)2 + (y− 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2

x2 + y2
− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y) − 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0.
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Figure 13.2.4: A graph of f(x, y) in Exam-
ple 13.2.6.

Chapter 13 Functions of Several Variables

Continuity

Definition 1.6.1 defines what it means for a function of one variable to be
continuous. In brief, it meant that the graph of the function did not have breaks,
holes, jumps, etc. We define continuity for functions of two variables in a similar
way as we did for functions of one variable.

Definition 13.2.3 Continuous

Let a function f(x, y) be defined on a set S containing the point (x0, y0).

1. f is continuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is continuous on S if f is continuous at all points in S. If f is contin-
uous at all points in R2, we say that f is continuous everywhere.

Example 13.2.6 Continuity of a function of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f continuous at (0, 0)? Is f continuous

everywhere?

SÊ½çã®ÊÄ To determine if f is continuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the definition of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). Substituting 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is continuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 1.3.5 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Finally, Theorem 13.2.1 of this section states that we can combine these two
limits as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is continuous at

(0, 0).

650




13.2 Limits and Continuity of Multivariable Functions

A similar analysis shows that f is continuous at all points in R2. As long as
x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is continuous everywhere. A graph
of f is given in Figure 13.2.4. Notice how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem 1.6.1, giving us ways to
combine continuous functions to create other continuous functions.

Theorem 13.2.2 Properties of Continuous Functions

Let f and g be continuous on a set S, let c be a real number, and let n be
a positive integer. The following functions are continuous on S.

1. Sums/Differences: f± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g (as longs as g ̸= 0 on S)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd,

then true for all values of f on S.)

7. Compositions: Adjust the definitions of f and g to: Let f be
continuous on S, where the range of f on S is
J, and let g be a single variable function that is
continuous on J. Then g ◦ f, i.e., g(f(x, y)), is
continuous on S.

Example 13.2.7 Establishing continuity of a function
Let f(x, y) = sin(x2 cos y). Show f is continuous everywhere.

SÊ½çã®ÊÄ Wewill apply both Theorems 1.6.1 and 13.2.2. Let f1(x, y) =
x2. Since y is not actually used in the function, and polynomials are continuous
(by Theorem 1.6.1), we conclude f1 is continuous everywhere. A similar state-
ment can be made about f2(x, y) = cos y. Part 3 of Theorem 13.2.2 states that
f3 = f1 · f2 is continuous everywhere, and Part 7 of the theorem states the
composition of sine with f3 is continuous: that is, sin(f3) = sin(x2 cos y) is con-
tinuous everywhere.
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Chapter 13 Functions of Several Variables

Functions of Three Variables

The definitions and theorems given in this section can be extended in a natu-
ral way to definitions and theorems about functions of three (ormore) variables.
We cover the key concepts here; some terms from Definitions 13.2.1 and 13.2.3
are not redefined but their analogous meanings should be clear to the reader.

Definition 13.2.4 Open Balls, Limit, Continuous

1. An open ball in R3 centred at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let D be an open set inR3 containing (x0, y0, z0)where every open ball
centred at (x0, y0, z0) contains points ofD other than (x0, y0, z0), and let
f(x, y, z) be a function of three variables defined on D, except possibly
at (x0, y0, z0). The limit of f(x, y, z) as (x, y, z) approaches (x0, y0, z0) is
L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all (x, y, z)
in D, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball centred at
(x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). f is continuous
at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0); if f is continuous

at all points in D, we say f is continuous on D.

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 13.2.2 also applies to function of three or more
variables, allowing us to say that the function

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is continuous everywhere.
When considering single variable functions, we studied limits, then continu-

ity, then the derivative. In our current study of multivariable functions, we have
studied limits and continuity. In the next section we study derivation, which
takes on a slight twist as we are in a multivarible context.
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Exercises 13.2
Terms and Concepts
1. Describe in your ownwords the difference between bound-

ary and interior points of a set.

2. Use your own words to describe (informally) what
lim

(x,y)→(1,2)
f(x, y) = 17 means.

3. Give an example of a closed, bounded set.

4. Give an example of a closed, unbounded set.

5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems
In Exercises 7 – 10, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.
(c) State whether S is bounded or unbounded.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}

8. S =
{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

In Exercises 11 – 14:
(a) Find the domain D of the given function.
(b) State whether D is an open or closed set.
(c) State whether D is bounded or unbounded.

11. f(x, y) =
√

9− x2 − y2

12. f(x, y) =
√

y− x2

13. f(x, y) = 1√
y− x2

14. f(x, y) = x2 − y2

x2 + y2

In Exercises 15 – 20, a limit is given. Evaluate the limit along
the paths given, then state why these results show the given
limit does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.
(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x

(a) Along the path y = mx.
(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.
(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.
(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.
(b) Along the path y = x− π/2.
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(a)

(b)

Figure 13.3.1: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Alternate notations for fx(x, y) include:

∂

∂x
f(x, y), ∂f

∂x
,

∂z
∂x

, and zx,

with similar notations for fy(x, y). For
ease of notation, fx(x, y) is often abbre-
viated fx.

Chapter 13 Functions of Several Variables

13.3 Partial Derivatives
Let y be a function of x. We have studied in great detail the derivative of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This section begins our investigation into these rates
of change.

Consider the function z = f(x, y) = x2 + 2y2, as graphed in Figure 13.3.1(a).
By fixing y = 2, we focus our attention to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a function of just one variable. We
can take the derivative of zwith respect to x along this curve and find equations
of tangent lines, etc.

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit–based definition first, then show how to compute these partial derivatives
without directly taking limits.

Definition 13.3.1 Partial Derivative

Let z = f(x, y) be a continuous function on an open set S in R2.

1. The partial derivative of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The partial derivative of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

Example 13.3.1 Computing partial derivatives with the limit definition
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit definition.

SÊ½çã®ÊÄ Using Definition 13.3.1, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2.
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13.3 Partial Derivatives

Example 13.3.1 found a partial derivative using the formal, limit–based def-
inition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treating y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treating y as a

constant. More examples will help make this clear.

Example 13.3.2 Finding partial derivatives
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

SÊ½çã®ÊÄ

1. We have f(x, y) = x3y2 + 5y2 − x+ 7.
Begin with fx(x, y). Keep y fixed, treating it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero.
To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine function.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√

x2 + 1+
xex

2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex
2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.
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(a)

(b)

Figure 13.3.2: Illustrating the meaning of
partial derivatives.

Chapter 13 Functions of Several Variables

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivative means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar to measuring zx: you are moving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

The following example helps us visualize this more.

Example 13.3.3 Evaluating partial derivatives
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by computing fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

Consider fx(2, 1) = −3, along with Figure 13.3.2(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 13.3.2(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direction than in the y-direction.
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Note: The terms in Definition 13.3.2
all depend on limits, so each definition
comes with the caveat “where the limit
exists.”

13.3 Partial Derivatives

Second Partial Derivatives

Let z = f(x, y). We have learned to find the partial derivatives fx(x, y) and
fy(x, y), which are each functions of x and y. Thereforewe can take partial deriva-
tives of them, each with respect to x and y. We define these “second partials”
along with the notation, give examples, then discuss their meaning.

Definition 13.3.2 Second Partial Derivative, Mixed Partial
Derivative

Let z = f(x, y) be continuous on an open set S.

1. The second partial derivative of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second partial derivative of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar definitions hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second partial derivatives fxy and fyx aremixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-
tion of the second derivative of a function of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” portion means “take the derivative of y twice,” while
“dx2” means “with respect to x both times.” When we only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to.

Example 13.3.4 Second partial derivatives
For each of the following, find all six first and second partial derivatives. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend time de-
riving the second partial derivatives.

1. f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
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fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2. f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fy
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3

3. f(x, y) = ex sin(x2y)
Because the following partial derivatives get rather long, weomit the extra
notation and just give the results. In several cases, multiple applications
of the Product and Chain Rules will be necessary, followed by some basic
combination of like terms.
fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)
fy(x, y) = x2ex cos(x2y)
fxx(x, y) = ex sin(x2y)+ 4xyex cos(x2y)+ 2yex cos(x2y)− 4x2y2ex sin(x2y)
fyy(x, y) = −x4ex sin(x2y)
fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
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(a)

(b)

Figure 13.3.3: Understanding the second
partial derivatives in Example 13.3.5.

13.3 Partial Derivatives

Notice how in each of the three functions in Example 13.3.4, fxy = fyx. Due
to the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem 13.3.1 Clairaut’s Theorem

Let f be defined such that fxy and fyx are continuous on an open set S.
Then for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second Partial Derivatives

Now that we know how to find second partials, we investigatewhat they tell
us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of f is “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f ′′(x) < 0, then the derivative is getting smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the derivative is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivatives with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direction. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direction. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed partials fxy and fyx. The mixed partial fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east getting steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and
graphs.

Example 13.3.5 Understanding second partial derivatives
Let z = x2 − y2 + xy. Evaluate the 6 first and second partial derivatives at
(−1/2, 1/2) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.
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The slope of the tangent line at (−1/2, 1/2,−1/4) in the direction of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direction
of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of changewill be−3/2. These tangents lines are graphed in Figure 13.3.3(a)
and (b), respectively, where the tangent lines are drawn in a solid line.

Now consider only Figure 13.3.3(a). Three directed tangent lines are drawn
(two are dashed), each in the direction of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negative, getting closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be positive.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
13.3.3(b) where again three directed tangent lines are drawn, this time each
in the direction of y with slopes determined by fy. As x increases, the slopes
become less steep (closer to 0). Since these are negative slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now
interpret fxx and fyy. In Figure 13.3.3(a), we see a curve drawn where x is held
constant at x = −1/2: only y varies. This curve is clearly concave down, corre-
sponding to the fact that fyy < 0. In part (b) of the figure, we see a similar curve
where y is constant and only x varies. This curve is concave up, corresponding
to the fact that fxx > 0.

Partial Derivatives and Functions of Three Variables

The concepts underlying partial derivatives can be easily extend to more
than two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables if
needed.

Definition 13.3.3 Partial Derivatives with Three Variables

Let w = f(x, y, z) be a continuous function on an open set S in R3.
The partial derivative of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definitions hold for fy(x, y, z) and fz(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial
derivatives of f with respect to z then y, for instance, just as before.

Example 13.3.6 Partial derivatives of functions of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

1. fx = 2xy3z4 + 2xy2 + 3x2z3; fy = 3x2y2z4 + 2x2y+ 4y3z4;
fz = 4x2y3z3 + 3x3z2 + 4y4z3; fxz = 8xy3z3 + 9x2z2;
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fyz = 12x2y2z3 + 16y3z3; fzz = 12x2y3z2 + 6x3z+ 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xy2 sin(xy)

Higher Order Partial Derivatives

We can continue taking partial derivatives of partial derivatives of partial
derivatives of …; we do not have to stop with second partial derivatives. These
higher order partial derivatives do not have a tidy graphical interpretation; nev-
ertheless they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.

Example 13.3.7 Higher order partial derivatives

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

SÊ½çã®ÊÄ

1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)
fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)
fyxx = 4y− y sin(xy)−

(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fxxy = fxyx = fyxx.
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This can be useful at times. Had we known this, the second part of Example
13.3.7 would have been much simpler to compute. Instead of computing fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz
does not contain an x or y.

A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x, y), the partial derivatives fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respectively. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if wemove in the direction given by the vector ⟨2, 1⟩? Can we
measure that rate of change? The answer is, of course, yes, we can. This is
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Exercises 13.3
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?

2. Given a function z = f(x, y), explain in your ownwords how
to compute fx.

3. In the mixed partial fraction fxy, which is computed first, fx
or fy?

4. In themixed partial fraction ∂2f
∂x∂y

, which is computed first,
fx or fy?

Problems
In Exercises 5 – 8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)

6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)

7. f(x, y) = sin y cos x at (π/3, π/3)

8. f(x, y) = ln(xy) at (−2,−3)

In Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5

10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) = x
y

12. f(x, y) = 4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y

16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) = 1
x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) = ln x
4y

26. f(x, y) = 5ex sin y+ 9

In Exercises 27 – 30, form a function z = f(x, y) such that fx
and fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

In Exercises 31 – 34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) = 3x
7y2z

34. f(x, y, z) = ln(xyz)
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Figure 13.4.1: Showing various lines tan-
gent to a surface.

Chapter 13 Functions of Several Variables

13.4 Tangent Lines, Normal Lines, and Tangent Planes

Derivatives and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with functions of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuition of being “tangent” to the surface.

In Figure 13.4.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definition formally defines what it means to be “tangent
to a surface.”

Definition 13.4.1 Directional Tangent Line

Let z = f(x, y) be differentiable on an open set S containing (x0, y0) and let
u⃗ = ⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is the

tangent line to f in the direction of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is the

tangent line to f in the direction of y at (x0, y0).

3. The line ℓ⃗u through
(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩

is the tangent line to f in the direction of u⃗ at (x0, y0).

It is instructive to consider each of three directions given in the definition in
terms of “slope.” The direction of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direction and the “rise” is fx(x0, y0) units in the z-direction. Note
how the slope is just the partial derivative with respect to x. A similar statement
can be made for ℓy. The direction of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direction (where u⃗ is a unit vector) and the “rise” is the directional
derivative of z in that direction.

Definition 13.4.1 leads to the following parametric equations of directional
tangent lines:

ℓx(t) =

 x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =

 x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =

 x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

.

Example 13.4.1 Finding directional tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
directions and also in the direction of v⃗ = ⟨−1, 1⟩ .

SÊ½çã®ÊÄ The partial derivatives with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equations of the line tangent to f at (π/2, π/2) in the

664




(a)

(b)

Figure 13.4.2: A surface and directional
tangent lines in Example 13.4.1.

Figure 13.4.3: Graphing f in Example
13.4.2.

13.4 Tangent Lines, Normal Lines, and Tangent Planes

directions of x and y are:

ℓx(t) =

 x = π/2+ t
y = π/2
z = 0

and ℓy(t) =

 x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 13.4.2(a). To find the equa-
tion of the tangent line in the direction of v⃗, we first find the unit vector in the
direction of v⃗: u⃗ =

⟨
−1/

√
2, 1/

√
2
⟩
. The directional derivative at (π/2, π, 2) in

the direction of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/

√
2, 1/

√
2
⟩
= −1/

√
2.

Thus the directional tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direction of v⃗ is shown in Figure 13.4.2(b)
along with ℓ⃗u(t).

Example 13.4.2 Finding directional tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equations of all directional tangent lines to
f at (1, 1).

SÊ½çã®ÊÄ First note that f(1, 1) = 2. We need to compute directional
derivatives, so we need∇f. We begin by computing partial derivatives.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The directional
derivative of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notmatter
what direction we choose; the directional derivative is always 0. Therefore

ℓ⃗u(t) =

 x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 13.4.3 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relative maximum at this point, hence its tangent line will have
a slope of 0. The following section investigates the points on surfaces where all
tangent lines have a slope of 0.
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Figure 13.4.4: Graphing a surface with a
normal line from Example 13.4.3.

Chapter 13 Functions of Several Variables

Normal Lines

When dealing with a function y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to functions of two variables.

Let z = f(x, y) be a differentiable function of two variables. By Definition
13.4.1, at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and
ℓy(t) is a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these directions
through

(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point

and orthogonal to these directions would be orthogonal, or normal, to the sur-
face. We can use this direction to create a normal line.

The direction of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
tion is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .
It is often more convenient to refer to the opposite of this direction, namely
⟨fx, fy,−1⟩. This leads to a definition.

Definition 13.4.2 Normal Line

Let z = f(x, y) be differentiable on an open set S containing (x0, y0)
where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through Pwith direction parallel to n⃗ is the normal line
to f at P.

Thus the parametric equations of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =

 x = x0 + at
y = y0 + bt
z = f(x0, y0)− t

.

Example 13.4.3 Finding a normal line
Find the equation of the normal line to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direction of the normal line, follow-
ing Definition 13.4.2, to be n⃗ = ⟨0,−2,−1⟩. The line with this direction going
through the point (0, 1, 1) is

ℓn(t) =

 x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 − y2 + 2, along with the found normal line, is graphed
in Figure 13.4.4.
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The direction of the normal line has many uses, one of which is the defini-
tion of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can
measure the distance from Q to the surface f by finding a point P on the surface
such that #  ‰PQ is parallel to the normal line to f at P.

Example 13.4.4 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

SÊ½çã®ÊÄ This surface is used in Example 13.4.2, so we know that at
(x, y), the direction of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on
the surfacewill have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c #  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equation, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two fractions imply x = y, and so the last fraction can be rewritten as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)
4x3 = 2− x

4x3 + x− 2 = 0.

This last equation is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is

∥ #  ‰PQ ∥ =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a particular distance from a surface at a given point P on the
surface.
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Figure 13.4.5: Graphing the surface in Ex-
ample 13.4.5 along with points 4 units
from the surface.

Chapter 13 Functions of Several Variables

Example 13.4.5 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that are 4 units from the surface of f at P. That is, find Q such that ∥ #  ‰PQ ∥ = 4
and #  ‰PQ is orthogonal to f at P.

SÊ½çã®ÊÄ We begin by finding partial derivatives:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direction of n⃗:

u⃗ =
n⃗

∥ n⃗ ∥
=
⟨
1/

√
6,−2/

√
6,−1/

√
6
⟩
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be written as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrization of the line is that letting t = t0 gives a
point on the line that is |t0| units from P. (This is because the direction of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q1 = ℓn(4) Q2 = ℓn(−4)
≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

The surface is graphed along with points P, Q1, Q2 and a portion of the normal
line to f at P.

Tangent Planes

We can use the direction of the normal line to define a plane. With a =
fx(x0, y0), b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩

is orthogonal to f at P. The plane through P with normal vector n⃗ is therefore
tangent to f at P.

Definition 13.4.3 Tangent Plane

Let z = f(x, y) be differentiable on an open set S containing
(x0, y0), where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and
P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.
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Figure 13.4.6: Graphing a surface with
tangent plane from Example 13.4.6.

13.4 Tangent Lines, Normal Lines, and Tangent Planes

Example 13.4.6 Finding tangent planes
Find the equation of the tangent plane to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Exam-
ple 13.4.3. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the
equation of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2−y2+2 and tangent plane are graphed in Figure 13.4.6.

Example 13.4.7 Using the tangent plane to approximate function values
The point (3,−1, 4) lies on the surface of an unknown differentiable function f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equation of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

SÊ½çã®ÊÄ Knowing the partial derivatives at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equation
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (13.1)

Just as tangent lines provide excellent approximations of curves near their point
of intersection, tangent planes provide excellent approximations of surfaces near
their point of intersection. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approximation. Compare the right hand expres-
sion for z in Equation (13.1) to the total differential:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). Asmentionedwhen studying the total differential, it is not uncommon
to know partial derivative information about a unknown function, and tangent
planes are used to give accurate approximations of the function.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximations. Normal lines also
have many uses. In this section we focused on using them to measure distances
from a surface. Another interesting application is in computer graphics, where
the effects of light on a surface are determined using normal vectors.
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Exercises 13.4
Terms and Concepts

1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as
having a “slope” of 3.

2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought
of as having a “slope” of−2.

3. T/F: Let z = f(x, y) be differentiable at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to ℓx and ℓy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to directional
tangent lines to a surface at a point.

Problems
In Exercises 5 – 8, a function z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equations of the following
directional tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direction of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

In Exercises 9 – 12, a function z = f(x, y) and a point P are
given. Find the equation of the normal line to f at P. Note:
these are the same functions as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, P = (2, 3).

10. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 13 – 16, a function z = f(x, y) and a point P are
given. Find the two points that are 2 units from the surface
f at P. Note: these are the same functions as in Exercises 5 –
8.

13. f(x, y) = 2x2y− 4xy2, P = (2, 3).

14. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

In Exercises 17 – 20, a function z = f(x, y) and a point P are
given. Find the equation of the tangent plane to f at P. Note:
these are the same functions as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, P = (2, 3).

18. f(x, y) = 3 cos x sin y, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 10
Section 10.1

1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. − 1
3 ,−2,− 81

5 ,− 512
3 ,− 15625

7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. diverges

23. converges to e

25. converges to 0

27. converges to 2

29. bounded

31. bounded

33. neither bounded above or below

35. monotonically increasing

37. never monotonic

39. Let {an} be given such that lim
n→∞

|an| = 0. By the definition of
the limit of a sequence, given any ε > 0, there is am such that for
all n > m,

∣∣ |an| − 0
∣∣ < ε. Since

∣∣ |an| − 0
∣∣ = |an − 0|, this

directly implies that for all n > m, |an − 0| < ε, meaning that
lim

n→∞
an = 0.

41. A sketch of one proof method:
Let any ε > 0 be given. Since {an} and {bn} converge, there
exists an N > 0 such that for all n ≥ N, both an and bn are within
ε/2 of L; we can conclude that they are at most ε apart from each
other. Since an ≤ cn ≤ bn, one can show that cn is within ε of L,
showing that {cn} also converges to L.

Section 10.2

1. Answers will vary.

3. One sequence is the sequence of terms {an}. The other is the
sequence of nth partial sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) −1,− 1
2 ,−

5
6 ,−

7
12 ,−

47
60

(b) Plot omitted

9. (a) −1, 0,−1, 0,−1
(b) Plot omitted

11. (a) 1, 3
2 ,

5
3 ,

41
24 ,

103
60

(b) Plot omitted

13. (a) −0.9,−0.09,−0.819,−0.1629,−0.75339
(b) Plot omitted

15. lim
n→∞

an = 3; by Theorem 10.2.4 the series diverges.

17. lim
n→∞

an = ∞; by Theorem 10.2.4 the series diverges.

19. lim
n→∞

an = 1/2; by Theorem 10.2.4 the series diverges.

21. Converges; p-series with p = 5.

23. Diverges; geometric series with r = 6/5.

25. Diverges; fails nth term test

27. F

29. Diverges; by Theorem 10.2.3 this is half the Harmonic Series,
which diverges by growing without bound. “Half of growing
without bound” is still growing without bound.

31. (a) Sn =
1−(1/4)n

3/4

(b) Converges to 4/3.

33. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

35. (a) Sn = 5 1−1/2n
1/2

(b) Converges to 10.

37. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

39. (a) With partial fractions, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

41. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

43. (a) an = 1
n(n+3) ; using partial fractions, the resulting

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

45. (a) With partial fractions, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

47. (a) The nth partial sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The nth partial sum of the even
series is 1

2 + 1
4 + 1

6 + · · ·+ 1
2n . Each term of the even

series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth partial sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The nth partial sum of 1 plus the
even series is 1+ 1

2 + 1
4 + · · ·+ 1

2(n−1) . Each term of the
even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
partial sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.



(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Section 10.3

1. continuous, positive and decreasing

3. The Integral Test (we do not have a continuous definition of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivative).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 3.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.

29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test

35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.
(d) May converge; certainly nan > an but that does not mean

it does not converge.
(e) Does not converge, using logic from (b) and nth Term Test.

Section 10.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The Ratio Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summation can be rewritten as
∞∑
n=1

2nn!
3nn!

, to

which the Ratio Test or Geometric Series Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test with 1/n.

27. Converges; Ratio Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

Section 10.5

1. The signs of the terms do not alternate; in the given series, some
terms are negative and the others positive, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges
(b) converges (p-Series)
(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges

9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional

11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)
(b) diverges
(c) n/a; diverges

15. (a) converges

A.2



(b) converges (Geometric Series with r = 2/3)

(c) absolute

17. (a) converges

(b) converges (Ratio Test)

(c) absolute

19. (a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) conditional

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

Section 10.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞

(b) (−∞,∞)

11. (a) R = 1

(b) (2, 4]

13. (a) R = 2

(b) (−2, 2)

15. (a) R = 1/5

(b) (4/5, 6/5)

17. (a) R = 1

(b) (−1, 1)

19. (a) R = ∞

(b) (−∞,∞)

21. (a) R = 1

(b) [−1, 1]

23. (a) R = 0

(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+

∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+
∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

Section 10.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

2 − 1
6 x

3

7. p5(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third derivative of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivative of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth derivative of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is: when n even, 0; when n is odd, (−1)(n−1)/2

n! xn.

33. The nth term is (−1)nxn.

35. 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4

37. 1+ 2x− 2x2 + 4x3 − 10x4

Section 10.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summation of an infinite
number of terms.

3. All derivatives of ex are ex which evaluate to 1 at x = 0.
The Taylor series starts 1+ x+ 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

A.3



5. The nth derivative of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.
The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣x(n+1)∣∣,

where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

15. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− 1)(n+1)∣∣,

where z is between 1 and x.
Note that

∣∣f (n+1)(x)
∣∣ = n!

xn+1 .
Per the statement of the problem, we only consider the case
1 < x < 2.
If 1 < x < 2, then 1 < z < x and f (n+1)(z) = n!

zn+1 < n!. Thus∣∣Rn(x)∣∣ ≤ n!
(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = (x− 1)n+1

n+ 1
<

1
n+ 1

.

Thus
lim

n→∞

∣∣Rn(x)∣∣ < lim
n→∞

1
n+ 1

= 0,

hence

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
on (1, 2).

17. Given cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n
(−x)2n

(2n)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x, as all

powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x. (The

summation still starts at n = 0 as there was no constant term in
the expansion of sin x).

21. 1+
x
2
−

x2

8
+

x3

16
−

5x4

128

23. 1+
x
3
−

x2

9
+

5x3

81
−

10x4

243

25.
∞∑
n=0

(−1)n
(x2)2n

(2n)!
=

∞∑
n=0

(−1)n
x4n

(2n)!
.

27.
∞∑
n=0

(−1)n
(2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 +
x3

3
−

x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈

∫ √
π

0

(
x2 −

x6

6
+

x10

120
−

x14

5040

)
dx =

0.8877

Chapter 11
Section 11.1

1. right hand
3. curve (a parabola); surface (a cylinder)
5. a hyperboloid of two sheets
7. ∥ AB ∥ =

√
6; ∥ BC ∥ =

√
17; ∥ AC ∥ =

√
11. Yes, it is a right

triangle as ∥ AB ∥2 + ∥ AC ∥2 = ∥ BC ∥2.
9. Center at (4,−1, 0); radius = 3

11. Interior of a sphere with radius 1 centered at the origin.
13. The first octant of space; all points (x, y, z) where each of x, y and

z are non-negative. (Analogous to the first quadrant in the plane.)

15.

17.
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19. x2 + z2 = 1
(1+y2)2

21. z = (
√

x2 + y2)2 = x2 + y2

23. (a) x = y2 +
z2

9

25. (b) x2 +
y2

9
+

z2

4
= 1

27.

29.

31.

Section 11.2

1. Answers will vary.

3. A vector with magnitude 1.

5. Their respective unit vectors are parallel; unit vectors u⃗1 and u⃗2
are parallel if u⃗1 = ±u⃗2.

7. # ‰PQ = ⟨1, 6⟩ = 1⃗i+ 6⃗j

9. # ‰PQ = ⟨6,−1, 6⟩ = 6⃗i− j⃗+ 6⃗k

11. (a) u⃗+ v⃗ = ⟨2,−1⟩; u⃗− v⃗ = ⟨0,−3⟩; 2⃗u− 3⃗v = ⟨−1,−7⟩.

(c) x⃗ = ⟨1/2, 2⟩.

13.

.....

u⃗

. v⃗.
u⃗ + v⃗

.

u⃗−
v⃗

.

x

.

y

15.

...

..
u⃗

.v⃗ .
u⃗ + v⃗

.
u⃗ − v⃗

.

x

.

y

.

z

17. ∥ u⃗ ∥ =
√
5, ∥ v⃗ ∥ =

√
13, ∥ u⃗+ v⃗ ∥ =

√
26, ∥ u⃗− v⃗ ∥ =

√
10

19. ∥ u⃗ ∥ =
√
5, ∥ v⃗ ∥ = 3

√
5, ∥ u⃗+ v⃗ ∥ = 2

√
5, ∥ u⃗− v⃗ ∥ = 4

√
5

21. When u⃗ and v⃗ have the same direction. (Note: parallel is not
enough.)

23. u⃗ = ⟨0.6, 0.8⟩

25. u⃗ =
⟨
1/

√
3,−1/

√
3, 1/

√
3
⟩

27. u⃗ = ⟨cos 120◦, sin 120◦⟩ =
⟨
−1/2,

√
3/2
⟩
.

29. The force on each chain is 100/
√
3 ≈ 57.735lb.

31. The force on the chain with angle θ is approx. 45.124lb; the force
on the chain with angle φ is approx. 59.629lb.

33. θ = 45◦; the weight is lifted 0.29 ft (about 3.5in).

35. θ = 45◦; the weight is lifted 2.93 ft.

Section 11.3

1. Scalar

3. By considering the sign of the dot product of the two vectors. If
the dot product is positive, the angle is acute; if the dot product is
negative, the angle is obtuse.

5. −22

7. 3

9. not defined

11. Answers will vary.

13. θ = 0.3218 ≈ 18.43◦

15. θ = π/4 = 45◦

17. Answers will vary; two possible answers are ⟨−7, 4⟩ and ⟨14,−8⟩.

19. Answers will vary; two possible answers are ⟨1, 0,−1⟩ and
⟨4, 5,−9⟩.

21. proj v⃗ u⃗ = ⟨−1/2, 3/2⟩.

23. proj v⃗ u⃗ = ⟨−1/2,−1/2⟩.

25. proj v⃗ u⃗ = ⟨1, 2, 3⟩.

27. u⃗ = ⟨−1/2, 3/2⟩+ ⟨3/2, 1/2⟩.

29. u⃗ = ⟨−1/2,−1/2⟩+ ⟨−5/2, 5/2⟩.

31. u⃗ = ⟨1, 2, 3⟩+ ⟨0, 3,−2⟩.

33. 1.96lb A.5






35. 141.42ft–lb

37. 500ft–lb

39. 500ft–lb

Section 11.4

1. vector

3. “Perpendicular” is one answer.

5. Torque

7. u⃗× v⃗ = ⟨12,−15, 3⟩

9. u⃗× v⃗ = ⟨−5,−31, 27⟩

11. u⃗× v⃗ = ⟨0,−2, 0⟩

13. u⃗× v⃗ = ⟨0, 0, ad− bc⟩

15. i⃗× k⃗ = −⃗j

17. Answers will vary.

19. 5

21. 0

23.
√
14

25. 3

27. 5
√
2/2

29. 1

31. 7

33. 2

35. ± 1√
6
⟨1, 1,−2⟩

37. ⟨0,±1, 0⟩

39. 87.5ft–lb

41. 200/3 ≈ 66.67ft–lb

43. With u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, we have

u⃗ · (⃗u× v⃗) = ⟨u1, u2, u3⟩ · (⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩)
= u1(u2v3 − u3v2)− u2(u1v3 − u3v1) + u3(u1v2 − u2v1)
= 0.

Section 11.5

1. A point on the line and the direction of the line.

3. parallel, skew

5. vector: ℓ(t) = ⟨2,−4, 1⟩+ t ⟨9, 2, 5⟩
parametric: x = 2+ 9t, y = −4+ 2t, z = 1+ 5t
symmetric: (x− 2)/9 = (y+ 4)/2 = (z− 1)/5

7. Answers can vary: vector: ℓ(t) = ⟨2, 1, 5⟩+ t ⟨5,−3,−1⟩
parametric: x = 2+ 5t, y = 1− 3t, z = 5− t
symmetric: (x− 2)/5 = −(y− 1)/3 = −(z− 5)

9. Answers can vary; here the direction is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨0, 1, 2⟩+ t ⟨−10, 43, 9⟩
parametric: x = −10t, y = 1+ 43t, z = 2+ 9t
symmetric: −x/10 = (y− 1)/43 = (z− 2)/9

11. Answers can vary; here the direction is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨7, 2,−1⟩+ t ⟨1,−1, 2⟩
parametric: x = 7+ t, y = 2− t, z = −1+ 2t
symmetric: x− 7 = 2− y = (z+ 1)/2

13. vector: ℓ(t) = ⟨1, 1⟩+ t ⟨2, 3⟩
parametric: x = 1+ 2t, y = 1+ 3t
symmetric: (x− 1)/2 = (y− 1)/3

15. parallel

17. intersecting; ℓ⃗1(3) = ℓ⃗2(4) = ⟨9,−5, 13⟩

19. skew

21. same

23.
√
41/3

25. 5
√
2/2

27. 3/
√
2

29. Since both P and Q are on the line, # ‰PQ is parallel to d⃗. Thus
# ‰PQ× d⃗ = 0⃗, giving a distance of 0.

31. (a) The distance formula cannot be used because since d⃗1 and
d⃗2 are parallel, c⃗ is 0⃗ and we cannot divide by ∥ 0⃗ ∥.

(b) Since d⃗1 and d⃗2 are parallel, #     ‰P1P2 lies in the plane formed
by the two lines. Thus #     ‰P1P2 × d⃗2 is orthogonal to this
plane, and c⃗ = (

#     ‰P1P2 × d⃗2)× d⃗2 is parallel to the plane,
but still orthogonal to both d⃗1 and d⃗2. We desire the length
of the projection of #     ‰P1P2 onto c⃗, which is what the formula
provides.

(c) Since the lines are parallel, one can measure the distance
between the lines at any location on either line (just as to
find the distance between straight railroad tracks, one can
use a measuring tape anywhere along the track, not just at
one specific place.) Let P = P1 and Q = P2 as given by the
equations of the lines, and apply the formula for distance
between a point and a line.

Section 11.6

1. A point in the plane and a normal vector (i.e., a direction
orthogonal to the plane).

3. Answers will vary.

5. Answers will vary.

7. Standard form: 3(x− 2)− (y− 3) + 7(z− 4) = 0
general form: 3x− y+ 7z = 31

9. Answers may vary;
Standard form: 8(x− 1) + 4(y− 2)− 4(z− 3) = 0
general form: 8x+ 4y− 4z = 4

11. Answers may vary;
Standard form: −7(x− 2) + 2(y− 1) + (z− 2) = 0
general form: −7x+ 2y+ z = −10

13. Answers may vary;
Standard form: 2(x− 1)− (y− 1) = 0
general form: 2x− y = 1

15. Answers may vary;
Standard form: 2(x− 2)− (y+ 6)− 4(z− 1) = 0
general form: 2x− y− 4z = 6

17. Answers may vary;
Standard form: (x− 5) + (y− 7) + (z− 3) = 0
general form: x+ y+ z = 15

19. Answers may vary;
Standard form: 3(x+ 4) + 8(y− 7)− 10(z− 2) = 0
general form: 3x+ 8y− 10z = 24

21. Answers may vary:

ℓ =


x = 14t
y = −1− 10t
z = 2− 8t

23. (−3,−7,−5)

25. No point of intersection; the plane and line are parallel.

27.
√

5/7

29. 1/
√
3
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31. If P is any point in the plane, and Q is also in the plane, then # ‰PQ
lies parallel to the plane and is orthogonal to n⃗, the normal vector.
Thus n⃗ · # ‰PQ = 0, giving the distance as 0.

Chapter 12

Section 12.1

1. parametric equations

3. displacement

5.

.....

1

.

2

.

3

.

4

.
−1
.

1

.

2

.

3

.

4

.

x

.

y

7.

.....
−5

.
5

.

5

.

10

. x.

y

9.

.....

−3

.

−2

.

−1

.

1

.

2

.

3

.

−1

.
−2

.

1

.

2

.

x

.

y

11.

.....

−3

.

−2

.

−1

.

1

.

2

.

3

.

−1

.
−2

.

1

.

2

.

x

.

y

13.

...

..
1

.
2

.4 .
6

.
−2

.

2

.
x

. y.

z

15.

...

..
−1

.1 .
−1

.
1

.

−1

.

1

.x . y.

z

17. ∥ r⃗(t) ∥ =
√
t2 + t4 = |t|

√
t2 + 1.

19. ∥ r⃗(t) ∥ =
√

4 cos2 t+ 4 sin2 t+ t2 =
√
t2 + 4.

21. Answers may vary, though most direct solution is
r⃗(t) = ⟨2 cos t+ 1, 2 sin t+ 2⟩.

23. Answers may vary, though most direct solution is
r⃗(t) = ⟨1.5 cos t, 5 sin t⟩.

25. Answers may vary, though most direct solutions are
r⃗(t) = ⟨t, 5(t− 2) + 3⟩ and
r⃗(t) = ⟨t+ 2, 5t+ 3⟩.

27. Specific forms may vary, though most direct solutions are
r⃗(t) = ⟨1, 2, 3⟩+ t ⟨3, 3, 3⟩ and
r⃗(t) = ⟨3t+ 1, 3t+ 2, 3t+ 3⟩.

29. Answers may vary, though most direct solution is
r⃗(t) = ⟨2 cos t, 2 sin t, 2t⟩.

31. ⟨1, 0⟩

33. ⟨0, 0, 1⟩

Section 12.2

1. component

3. It is difficult to identify the points on the graphs of r⃗(t) and r⃗ ′(t)
that correspond to each other.

5. ⟨11, 74, sin 5⟩

7. ⟨1, e⟩

9. (−∞, 0)
∪
(0,∞)

11. r⃗ ′(t) = ⟨− sin t, et, 1/t⟩

13. r⃗ ′(t) = (2t) ⟨sin t, 2t+ 5⟩+ (t2) ⟨cos t, 2⟩ =⟨
2t sin t+ t2 cos t, 6t2 + 10t

⟩
15. r⃗ ′(t) =

⟨2t, 1, 0⟩ × ⟨sin t, 2t+ 5, 1⟩+
⟨
t2 + 1, t− 1, 1

⟩
× ⟨cos t, 2, 0⟩ =⟨

−1, cos t− 2t, 6t2 + 10t+ 2+ cos t− sin t− t cos t
⟩
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17.

.....
2

.
4

.
6

.

2

.

4

.

6

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) = ⟨2t+ 1, 2t− 1⟩

19.

.....

2

.

4

.
−2
.

2

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) =
⟨
2t, 3t2 − 1

⟩
21. ℓ(t) = ⟨2, 0⟩+ t ⟨3, 1⟩
23. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩
25. t = 2nπ, where n is an integer; so

t = . . .− 4π,−2π, 0, 2π, 4π, . . .

27. r⃗(t) is not smooth at t = 3π/4+ nπ, where n is an integer

29. Both derivatives return
⟨
5t4, 4t3 − 3t2, 3t2

⟩
.

31. Both derivatives return⟨
2t− et − 1, cos t− 3t2, (t2 + 2t)et − (t− 1) cos t− sin t

⟩
.

33.
⟨ 1
4 t

4, sin t, tet − et
⟩
+ C⃗

35. ⟨−2, 0⟩
37. r⃗(t) =

⟨ 1
2 t

2 + 2,− cos t+ 3
⟩

39. r⃗(t) =
⟨
t4/12+ t+ 4, t3/6+ 2t+ 5, t2/2+ 3t+ 6

⟩
41. 2

√
13π

43. 1
54
(
(22)3/2 − 8

)
45. As r⃗(t) has constant length, r⃗(t) · r⃗(t) = c2 for some constant c.

Thus

r⃗(t) · r⃗(t) = c2

d
dt
(⃗
r(t) · r⃗(t)

)
=

d
dt
(
c2
)

r⃗ ′(t) · r⃗(t) + r⃗(t) · r⃗ ′(t) = 0

2⃗r(t) · r⃗ ′(t) = 0

r⃗(t) · r⃗ ′(t) = 0.

Section 12.3

1. Velocity is a vector, indicating an objects direction of travel and its
rate of distance change (i.e., its speed). Speed is a scalar.

3. The average velocity is found by dividing the displacement by the
time travelled – it is a vector. The average speed is found by
dividing the distance travelled by the time travelled – it is a scalar.

5. One example is travelling at a constant speed s in a circle, ending
at the starting position. Since the displacement is 0⃗, the average
velocity is 0⃗, hence ∥ 0⃗ ∥ = 0. But travelling at constant speed s
means the average speed is also s > 0.

7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩

9. v⃗(t) = ⟨− sin t, cos t⟩, a⃗(t) = ⟨− cos t,− sin t⟩

11. v⃗(t) = ⟨1, cos t⟩, a⃗(t) = ⟨0,− sin t⟩

.....
0.5

.
1

.
1.5

.

0.5

.

1

.

1.5

.

v⃗(π/4)

.
a⃗(π/4)

. x.

y

13. v⃗(t) = ⟨2t+ 1,−2t+ 2⟩, a⃗(t) = ⟨2,−2⟩

.....

2

.

4

.

6

.

2

.

−2

.

−4

.

−6

.−8.

v⃗(π/4)

.

a⃗(π/4)

.

x

.

y

15. ∥ v⃗(t) ∥ =
√
4t2 + 1.

Min at t = 0; Max at t = ±1.

17. ∥ v⃗(t) ∥ = 5.
Speed is constant, so there is no difference between min/max

19. ∥ v⃗(t) ∥ = | sec t|
√
tan2 t+ sec2 t.

min: t = 0; max: t = π/4

21. ∥ v⃗(t) ∥ = 13.
speed is constant, so there is no difference between min/max

23. ∥ v⃗(t) ∥ =
√

4t2 + 1+ t2/(1− t2).
min: t = 0; max: there is no max; speed approaches∞ as
t → ±1

25. (a) r⃗1(1) = ⟨1, 1⟩; r⃗2(1) = ⟨1, 1⟩

(b) v⃗1(1) = ⟨1, 2⟩; ∥ v⃗1(1) ∥ =
√
5; a⃗1(1) = ⟨0, 2⟩

v⃗2(1) = ⟨2, 4⟩; ∥ v⃗2(1) ∥ = 2
√
5; a⃗2(1) = ⟨2, 12⟩

27. (a) r⃗1(2) = ⟨6, 4⟩; r⃗2(2) = ⟨6, 4⟩

(b) v⃗1(2) = ⟨3, 2⟩; ∥ v⃗1(2) ∥ =
√
13; a⃗1(2) = ⟨0, 0⟩

v⃗2(2) = ⟨6, 4⟩; ∥ v⃗2(2) ∥ = 2
√
13; a⃗2(2) = ⟨0, 0⟩

29. v⃗(t) = ⟨2t+ 1, 3t+ 2⟩, r⃗(t) =
⟨
t2 + t+ 5, 3t2/2+ 2t− 2

⟩
31. v⃗(t) = ⟨sin t, cos t⟩, r⃗(t) = ⟨1− cos t, sin t⟩

33. Displacement: ⟨0, 0, 6π⟩; distance travelled: 2
√
13π ≈ 22.65ft;

average velocity: ⟨0, 0, 3⟩; average speed:
√
13 ≈ 3.61ft/s

35. Displacement: ⟨0, 0⟩; distance travelled: 2π ≈ 6.28ft; average
velocity: ⟨0, 0⟩; average speed: 1ft/s

37. At t-values of sin−1(9/30)/(4π) + n/2 ≈ 0.024+ n/2 seconds,
where n is an integer.

39. (a) Holding the crossbow at an angle of 0.013 radians,
≈ 0.745◦ will hit the target 0.4s later. (Another solution
exists, with an angle of 89◦, landing 18.75s later, but this is
impractical.)
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(b) In the .4 seconds the arrow travels, a deer, travelling at
20mph or 29.33ft/s, can travel 11.7ft. So she needs to lead
the deer by 11.7ft.

41. The position function is r⃗(t) =
⟨
220t,−16t2 + 1000

⟩
. The

y-component is 0 when t = 7.9; r⃗(7.9) = ⟨1739.25, 0⟩, meaning
the box will travel about 1740ft horizontally before it lands.

Section 12.4

1. 1

3. T⃗(t) and N⃗(t).

5. T⃗(t) =
⟨

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

⟩
; T⃗(1) =

⟨
4/

√
17, 1/

√
17
⟩

7. T⃗(t) = cos t sin t√
cos2 t sin2 t

⟨− cos t, sin t⟩. (Be careful; this cannot be

simplified as just ⟨− cos t, sin t⟩ as
√
cos2 t sin2 t ≠ cos t sin t, but

rather | cos t sin t|.) T⃗(π/4) =
⟨
−
√
2/2,

√
2/2
⟩

9. ℓ(t) = ⟨2, 0⟩+ t
⟨
4/

√
17, 1/

√
17
⟩
; in parametric form,

ℓ(t) =
{

x = 2+ 4t/
√
17

y = t/
√
17

11. ℓ(t) =
⟨√

2/4,
√
2/4
⟩
+ t
⟨
−
√
2/2,

√
2/2
⟩
; in parametric form,

ℓ(t) =
{

x =
√
2/4−

√
2t/2

y =
√
2/4+

√
2t/2

13. T⃗(t) = ⟨− sin t, cos t⟩; N⃗(t) = ⟨− cos t,− sin t⟩

15. T⃗(t) =
⟨
− sin t√

4 cos2 t+sin2 t
, 2 cos t√

4 cos2 t+sin2 t

⟩
;

N⃗(t) =
⟨
− 2 cos t√

4 cos2 t+sin2 t
,− sin t√

4 cos2 t+sin2 t

⟩
17. (a) Be sure to show work

(b) N⃗(π/4) =
⟨
−5/

√
34,−3/

√
34
⟩

19. (a) Be sure to show work

(b) N⃗(0) =
⟨
− 1√

5
, 2√

5

⟩
21. T⃗(t) = 1√

5
⟨2, cos t,− sin t⟩; N⃗(t) = ⟨0,− sin t,− cos t⟩

23. T⃗(t) = 1√
a2+b2

⟨−a sin t, a cos t, b⟩; N⃗(t) = ⟨− cos t,− sin t, 0⟩

25. aT = 4t√
1+4t2

and aN =
√

4− 16t2
1+4t2

At t = 0, aT = 0 and aN = 2;
At t = 1, aT = 4/

√
5 and aN = 2/

√
5.

At t = 0, all acceleration comes in the form of changing the
direction of velocity and not the speed; at t = 1, more
acceleration comes in changing the speed than in changing
direction.

27. aT = 0 and aN = 2
At t = 0, aT = 0 and aN = 2;
At t = π/2, aT = 0 and aN = 2.
The object moves at constant speed, so all acceleration comes
from changing direction, hence aT = 0. a⃗(t) is always parallel to
N⃗(t), but twice as long, hence aN = 2.

29. aT = 0 and aN = a
At t = 0, aT = 0 and aN = a;
At t = π/2, aT = 0 and aN = a.
The object moves at constant speed, meaning that aT is always 0.
The object “rises” along the z-axis at a constant rate, so all
acceleration comes in the form of changing direction circling the
z-axis. The greater the radius of this circle the greater the
acceleration, hence aN = a.

Section 12.5

1. time and/or distance

3. Answers may include lines, circles, helixes

5. κ

7. s = 3t, so r⃗(s) = ⟨2s/3, s/3,−2s/3⟩

9. s =
√
13t, so r⃗(s) =

⟨
3 cos(s/

√
13), 3 sin(s/

√
13), 2s/

√
13
⟩

11. κ =
|6x|

(1+(3x2−1)2)3/2 ;

κ(0) = 0, κ(1/2) = 192
17

√
17

≈ 2.74.

13. κ =
| cos x|

(1+sin2 x)3/2 ;

κ(0) = 1, κ(π/2) = 0

15. κ =
|2 cos t cos(2t)+4 sin t sin(2t)|

(4 cos2(2t)+sin2 t)3/2 ;

κ(0) = 1/4, κ(π/4) = 8

17. κ =
|6t2+2|

(4t2+(3t2−1)2)3/2 ;

κ(0) = 2, κ(5) = 19
1394

√
1394

≈ 0.0004

19. κ = 0;
κ(0) = 0, κ(1) = 0

21. κ = 3
13 ;

κ(0) = 3/13, κ(π/2) = 3/13

23. maximized at x = ±
√

2
4√5

25. maximized at t = 1/4

27. radius of curvature is 5
√
5/4.

29. radius of curvature is 9.

31. x2 + (y− 1/2)2 = 1/4, or c⃗(t) = ⟨1/2 cos t, 1/2 sin t+ 1/2⟩

33. x2 + (y+ 8)2 = 81, or c⃗(t) = ⟨9 cos t, 9 sin t− 8⟩

Chapter 13
Section 13.1

1. Answers will vary.

3. topographical

5. surface

7. domain: R2

range: z ≥ 2

9. domain: R2

range: R

11. domain: R2

range: 0 < z ≤ 1

13. domain: {(x, y) | x2 + y2 ≤ 9}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius 3.
range: 0 ≤ z ≤ 3

15. Level curves are lines y = (3/2)x− c/2.

...

..

−2

.

−1

.

1

.

2

.

−2

.

2

.

x

.

y
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17. Level curves are parabolas x = y2 + c.

...

..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 2

.

c = 0

.

c = −2

.

x

.

y

19. When c ̸= 0, the level curves are circles, centered at (1/c,−1/c)
with radius

√
2/c2 − 1. When c = 0, the level curve is the line

y = x.

...
..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 1

.

c = −1

.

c = 0

.

x

.

y

21. Level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2.

.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

23. domain: x+ 2y− 4z ̸= 0; the set of points in R3 NOT in the
domain form a plane through the origin.
range: R

25. domain: z ≥ x2 − y2; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 − y2.
range: [0,∞)

27. The level surfaces are spheres, centered at the origin, with radius√
c.

29. The level surfaces are paraboloids of the form z = x2
c + y2

c ; the
larger c, the “wider” the paraboloid.

31. The level curves for each surface are similar; for z =
√

x2 + 4y2

the level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2; whereas for z = x2 + 4y2 the level curves are
ellipses of the form x2

c + y2
c/4 = 1, i.e., a =

√
c and b =

√
c/2.

The first set of ellipses are spaced evenly apart, meaning the
function grows at a constant rate; the second set of ellipses are
more closely spaced together as c grows, meaning the function
grows faster and faster as c increases.

The function z =
√

x2 + 4y2 can be rewritten as z2 = x2 + 4y2,
an elliptic cone; the function z = x2 + 4y2 is a paraboloid, each
matching the description above.

Section 13.2

1. Answers will vary.

3. Answers will vary.
One possible answer: {(x, y)|x2 + y2 ≤ 1}

5. Answers will vary.
One possible answer: {(x, y)|x2 + y2 < 1}

7. (a) Answers will vary.
interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set
(c) S is bounded

9. (a) Answers will vary.
interior point: none
boundary point: (0,−1)

(b) S is a closed set, consisting only of boundary points
(c) S is bounded

11. (a) D =
{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.
(c) D is bounded.

13. (a) D =
{
(x, y) | y > x2

}
.

(b) D is an open set.
(c) D is unbounded.

15. (a) Along y = 0, the limit is 1.
(b) Along x = 0, the limit is−1.

Since the above limits are not equal, the limit does not exist.

17. (a) Along y = mx, the limit is
mx(1−m)

m2x+ 1
= 0 for allm.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

19. (a) Along y = 2, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

x− 1
x2 − 1

= lim
x→1

1
x+ 1

= 1/2.

(b) Along y = x+ 1, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

2(x− 1)
x2 − 1

= lim
x→1

2
x+ 1

= 1.

Since the limits along the lines y = 2 and y = x+ 1 differ, the
overall limit does not exist.

Section 13.3

1. A constant is a number that is added or subtracted in an
expression; a coefficient is a number that is being multiplied by a
nonconstant function.

3. fx
5. fx = 2xy− 1, fy = x2 + 2

fx(1, 2) = 3, fy(1, 2) = 3

7. fx = − sin x sin y, fy = cos x cos y
fx(π/3, π/3) = −3/4, fy(π/3, π/3) = 1/4
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9. fx = 2xy+ 6x, fy = x2 + 4
fxx = 2y+ 6, fyy = 0
fxy = 2x, fyx = 2x

11. fx = 1/y, fy = −x/y2
fxx = 0, fyy = 2x/y3
fxy = −1/y2, fyx = −1/y2

13. fx = 2xex2+y2 , fy = 2yex2+y2

fxx = 2ex2+y2 + 4x2ex2+y2 , fyy = 2ex2+y2 + 4y2ex2+y2

fxy = 4xyex2+y2 , fyx = 4xyex2+y2

15. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

17. fx = −5y3 sin(5xy3), fy = −15xy2 sin(5xy3)
fxx = −25y6 cos(5xy3),
fyy = −225x2y4 cos(5xy3)− 30xy sin(5xy3)
fxy = −75xy5 cos(5xy3)− 15y2 sin(5xy3),
fyx = −75xy5 cos(5xy3)− 15y2 sin(5xy3)

19. fx = 2y2√
4xy2+1

, fy = 4xy√
4xy2+1

fxx = − 4y4√
4xy2+1

3 , fyy = − 16x2y2√
4xy2+1

3 + 4x√
4xy2+1

fxy = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

, fyx = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

21. fx = − 2x
(x2+y2+1)2 , fy = − 2y

(x2+y2+1)2

fxx = 8x2
(x2+y2+1)3 − 2

(x2+y2+1)2 , fyy =
8y2

(x2+y2+1)3 − 2
(x2+y2+1)2

fxy = 8xy
(x2+y2+1)3 , fyx =

8xy
(x2+y2+1)3

23. fx = 6x, fy = 0
fxx = 6, fyy = 0
fxy = 0, fyx = 0

25. fx = 1
4xy , fy = − ln x

4y2

fxx = − 1
4x2y , fyy =

ln x
2y3

fxy = − 1
4xy2 , fyx = − 1

4xy2

27. f(x, y) = x sin y+ x+ C, where C is any constant.

29. f(x, y) = 3x2y− 4xy2 + 2y+ C, where C is any constant.

31. fx = 2xe2y−3z, fy = 2x2e2y−3z, fz = −3x2e2y−3z

fyz = −6x2e2y−3z, fzy = −6x2e2y−3z

33. fx = 3
7y2z , fy = − 6x

7y3z , fz = − 3x
7y2z2

fyz = 6x
7y3z2 , fzy =

6x
7y3z2

Section 13.4

1. Answers will vary. The displacement of the vector is one unit in
the x-direction and 3 units in the z-direction, with no change in y.
Thus along a line parallel to v⃗, the change in z is 3 times the
change in x – i.e., a “slope” of 3. Specifically, the line in the x-z
plane parallel to z has a slope of 3.

3. T

5. (a) ℓx(t) =

 x = 2+ t
y = 3
z = −48− 12t

(b) ℓy(t) =

 x = 2
y = 3+ t
z = −48− 40t

(c) ℓ⃗u (t) =


x = 2+ t/

√
10

y = 3+ 3t/
√
10

z = −48− 66
√

2/5t

7. (a) ℓx(t) =

 x = 4+ t
y = 2
z = 2+ 3t

(b) ℓy(t) =

 x = 4
y = 2+ t
z = 2− 5t

(c) ℓ⃗u (t) =


x = 4+ t/

√
2

y = 2+ t/
√
2

z = 2−
√
2t

9. ℓ⃗n(t) =

 x = 2− 12t
y = 3− 40t
z = −48− t

11. ℓ⃗n(t) =

 x = 4+ 3t
y = 2− 5t
z = 2− t

13. (1.425, 1.085,−48.078), (2.575, 4.915,−47.952)

15. (5.014, 0.31, 1.662) and (2.986, 3.690, 2.338)

17. −12(x− 2)− 40(y− 3)− (z+ 48) = 0

19. 3(x− 4)− 5(y− 2)− (z− 2) = 0 (Note that this tangent plane
is the same as the original function, a plane.)
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Index

!, 449
Absolute Convergence Theorem, 491
Absolute Value Theorem, 453
acceleration, 613
Alternating Harmonic Series, 468, 489, 500
Alternating Series Test, 486
aN, 628, 636
analytic function, 518
angle of elevation, 617
antiderivative

of vector–valued function, 608
arc length, 610, 631
arc length parameter, 631, 632
aT, 628, 636
average rate of change, 598

Binomial Series, 518
boundary point, 645
bounded sequence, 455

convergence, 455
bounded set, 645

circle of curvature, 635
closed, 645
closed disk, 645
Constant Multiple Rule

of series, 467
continuous function, 650

properties, 651
vector–valued, 602

contour lines, 640
convergence

absolute, 490, 491
Alternating Series Test, 486
conditional, 490
Direct Comparison Test, 475
Integral Test, 473
interval of, 496
Limit Comparison Test, 476
nth–term test, 469
of geometric series, 463
of monotonic sequences, 458
of p-series, 464
of power series, 496
of sequence, 451, 455
of series, 461
radius of, 496
Ratio Comparison Test, 481
Root Comparison Test, 483

cross product
and derivatives, 605

applications, 568
area of parallelogram, 568
torque, 571
volume of parallelepiped, 570

definition, 563
properties, 566, 567

curvature, 633
and motion, 636
equations for, 634
of circle, 634, 635
radius of, 635

cycloid, 597
cylinder, 530

definite integral
of vector–valued function, 608

derivative
mixed partial, 657
partial, 654, 660
power series, 498
vector–valued functions, 603, 605

Direct Comparison Test
for series, 475

directrix, 530
displacement, 597, 610
distance

between lines, 581
between point and line, 581
between point and plane, 591
between points in space, 528
travelled, 619

divergence
Alternating Series Test, 486
Direct Comparison Test, 475
Integral Test, 473
Limit Comparison Test, 476
nth–term test, 469
of geometric series, 463
of p-series, 464
of sequence, 451
of series, 461
Ratio Comparison Test, 481
Root Comparison Test, 483

dot product
and derivatives, 605
definition, 552
properties, 553

factorial, 449
first octant, 528
function
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of three variables, 642
of two variables, 639
vector–valued, 595

geometric series, 463

Harmonic Series, 468
Head To Tail Rule, 543

indefinite integral
of vector–valued function, 608

initial point, 541
Integral Test, 473
integration

distance travelled, 619
of power series, 498
of vector–valued function, 608
of vector–valued functions, 608

interior point, 645
interval of convergence, 496

level curves, 640
level surface, 642
limit

Absolute Value Theorem, 453
of multivariable function, 646, 647, 652
of sequence, 451
of vector–valued functions, 601
properties, 647

Limit Comparison Test
for series, 476

lines, 575
distances between, 581
equations for, 576
intersecting, 577
parallel, 577
skew, 577

Maclaurin Polynomial, see Taylor Polynomial
definition, 506

Maclaurin Series, see Taylor Series
definition, 516

magnitude of vector, 541
monotonic sequence, 456
multivariable function, 639, 642

continuity, 650–652
domain, 639, 642
level curves, 640
level surface, 642
limit, 646, 647, 652
range, 639, 642

norm, 541
normal line, 666
normal vector, 587
nth–term test, 469

octant
first, 528

open, 645
open ball, 652

open disk, 645
orthogonal, 556, 666

decomposition, 559
orthogonal decomposition of vectors, 559
orthogonal projection, 557
osculating circle, 635

p-series, 464
parallel vectors, 546
Parallelogram Law, 543
partial derivative, 654, 660

high order, 661
meaning, 656
mixed, 657
second derivative, 657

perpendicular, see orthogonal
planes

coordinate plane, 529
distance between point and plane, 591
equations of, 588
introduction, 529
normal vector, 587
tangent, 668

power series, 495
algebra of, 520
convergence, 496
derivatives and integrals, 498

projectile motion, 617, 618, 629

quadric surface
definition, 533
ellipsoid, 535
elliptic cone, 534
elliptic paraboloid, 534
gallery, 534–536
hyperbolic paraboloid, 536
hyperboloid of one sheet, 535
hyperboloid of two sheets, 536
sphere, 535
trace, 533

R, 541
radius of convergence, 496
radius of curvature, 635
Ratio Comparison Test

for series, 481
rearrangements of series, 491
right hand rule

of Cartesian coordinates, 527
of the cross product, 568

Root Comparison Test
for series, 483

sequence
Absolute Value Theorem, 453
positive, 475

sequences
boundedness, 455
convergent, 451, 455, 458
definition, 449
divergent, 451



limit, 451
limit properties, 454
monotonic, 456

series
absolute convergence, 490
Absolute Convergence Theorem, 491
alternating, 486

Approximation Theorem, 488
Alternating Series Test, 486
Binomial, 518
conditional convergence, 490
convergent, 461
definition, 461
Direct Comparison Test, 475
divergent, 461
geometric, 463
Integral Test, 473
interval of convergence, 496
Limit Comparison Test, 476
Maclaurin, 516
nth–term test, 469
p-series, 464
partial sums, 461
power, 495, 496

derivatives and integrals, 498
properties, 467
radius of convergence, 496
Ratio Comparison Test, 481
rearrangements, 491
Root Comparison Test, 483
Taylor, 516
telescoping, 465, 466

smooth, 605
speed, 613
sphere, 528
Sum/Difference Rule

of series, 467
surface of revolution, 531, 532

tangent line, 604
directional, 664

tangent plane, 668
Taylor Polynomial

definition, 506
Taylor’s Theorem, 509

Taylor Series
common series, 520
definition, 516
equality with generating function, 517

Taylor’s Theorem, 509
telescoping series, 465, 466
terminal point, 541
trace, 533

unbounded sequence, 455
unbounded set, 645
unit normal vector

aN, 628
and acceleration, 627, 628
and curvature, 636

definition, 625
in R2, 627

unit tangent vector
and acceleration, 627, 628
and curvature, 633, 636
aT, 628
definition, 624
in R2, 627

unit vector, 545
properties, 547
standard unit vector, 548
unit normal vector, 625
unit tangent vector, 624

vector–valued function
algebra of, 596
arc length, 610
average rate of change, 598
continuity, 602
definition, 595
derivatives, 603, 605
describing motion, 613
displacement, 597
distance travelled, 619
graphing, 595
integration, 608
limits, 601
of constant length, 607, 616, 617, 625
projectile motion, 617, 618
smooth, 605
tangent line, 604

vectors, 541
algebra of, 543
algebraic properties, 545
component form, 542
cross product, 563, 566, 567
definition, 541
dot product, 552, 553
Head To Tail Rule, 543
magnitude, 541
norm, 541
normal vector, 587
orthogonal, 556
orthogonal decomposition, 559
orthogonal projection, 557
parallel, 546
Parallelogram Law, 543
resultant, 543
standard unit vector, 548
unit vector, 545, 547
zero vector, 543

velocity, 613

work, 561



Differentiation Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
x
√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
x
√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

Integration Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫ 1

x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

22.
∫ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

23.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
x
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫ 1

a2 − x2
dx =

1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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Definitions of the Trigonometric Functions

Unit Circle Definition

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle Definition

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Identities

Pythagorean Identities
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

Cofunction Identities
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd Identities
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

Rational Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Additional Formulas

Summation Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of Revolution:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
continuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

Ratio Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be positive
Also diverges if

lim
n→∞

an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be positive
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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