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Trigonometric Identities

Euclidean Plane Geometry
for any triangle with sides a, b, c,  angles  A, B, C.   

sin 2ø   +  cos 2 ø   =  1    for any value of  ø

c 2  =   a 2  +  b 2 –  2ab cos C    Cosine rule    
c 2  =   a 2  +  b 2        If angle  C = 90°  (Famous Pythagoras’  Theorem)

sinA
a

= sinB
b

= sinC
c

Sine rule

sin (a ± b) =  sin a cos b  ±  sin b  cos a 

cos (a ± b) =  cos a  cos b ∓   sin a  sin b           Note change  ±  to  ∓ .

tan (a ± b) =  tan a ± tan b
1 ∓ tan a tan b

Area of triangle with sides  a, b, c  and angles  A, B. C

=  12  ab sin C    =   12  bc sin A    =   12  ac sin B 

=   s(s−a)(s−b)(s− c)         where    s  =  12 (a + b + c) 

Spherical Geometry.
 for triangle with sides a, b, c, angles A, B, C.

cos a  =  cos b cos c + sin b sin c cos A               Cosine rule 

sinA
sin a

= sinB
sinb

= sinC
sin c

Sine rule

cos A  =   – cos B cos C  +  sin B sin C cos a  

sin a cos B =  cos b sin c –  sin b cos c cos A  

sin a cos C =  cos c sin b – sin c cos b cos A

cot a sin b  =   cos b cos C + cot A sin C

            sin
A
2

⎛

⎝
⎜

⎞

⎠
⎟= sin(s−b) sin(s− c)

sin(b) sin(c)
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⎠
⎟
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                       where   s  = 12 (a + b + c) 
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Chapter 1. Introduction to Geometry & Applications 

Chanter 1 

Introduction to Geometry. 

Applications & Problems 
From Brannan's "Geometry" 
Geometry? For over two thousand years it was one of the criteria for recognition as an 

educated person to be acquainted with the subject of geometry. Euclidean geometry, of 

course. In the golden age of Greek civilisation around 400 BC, geometry was studied 

rigorously and put on a firm theoretical basis - for intellectual satisfaction, the intrinsic 

beauty of many geometrical results and the utility of the subject. It was written above the 

door of Plato's Academy "Let no-one ignorant of Geometry enter here!". As late as the 

1950s translations of Euclid's Elements were being used as standard school geometry 

textbooks in many countries. 

Geometry is the study of shape. It takes its name from the Greek for 'Earth measurement'. It 

is believed that geometry began with Egyptian surveyors of two or three millennia ago 

measuring the Earth, or at least the fertile expanse of it that was annually flooded by the Nile. 

It rapidly became more ambitious. Classical Greek geometry, called Euclidean geometry 

after Euclid, who organized an extensive collection of theorems into a definitive text, was 

regarded by all in the early modem world as the true geometry of space. Isaac Newton used 

it to formulate his Principia, the book that first set out the theory of gravity. Until the mid-19th 

Century, Euclidean geometry was regarded as one of the highest points of rational thought, 

as a foundation for practical mathematics as well as advanced science, and as a logical 

system splendidly adapted for the training of the mind. 

Euclid's Elements. 
From Dan Pedoe's "Geometry and Visual Arts" (Dover 1983) 

"Euclid's Elements is, without any doubt, the most influential mathematics book [13 books 

in fact] ever written. This was the first printed mathematical book of any importance. It had a 

margin of two and a half inches, and the figures relating to the Propositions were placed in 

the margin. This method has recently been revived with certain lush calculus books. The 

first, and most important, English translation, by Sir Henry Billingsley, appeared in London 

in 1570." 

Euclid's Elements set the standard for axiomatic methods of 'theorem and proof'. Euclid's 

tools comprise a straightedge and a compass which collapses as soon as it is lifted from the 

page. Geometrical constructions using only these tools are referred to as Euclidean 

constructions. For over 2000 years geometers tried to trisect angles, square the circle 

(construct a square with the same area as a given circle) and to double a cube (construct a 

cube with volume double that of a given cube). Only in the 19th century was it shown that 

these constructions were impossible using only Euclid's tools. 

Regular Pentagon. 
It is alleged that to enter Pythagoras' school (- 600 BC) would-be scholars had to know how 

to construct a regular pentagon using only a straightedge and compass. Could you enter this 

school? Gauss could have. In 1796 at age 19, Gauss looked at this problem further and 

produced a remarkable theorem related to the construction of regular polygons. Gauss was 

so pleased with this theorem he requested that a regular 17-sided polygon be chiseled on his 

gravestone. His request was not honoured. Perhaps there was no mason that could chisel a 

17-sided regular polygon?
1 



Chapter 1. Introduction to Geometry & Applications 

Right angles. 
Every house builder uses the converse of Pythagoras' theorem, sometimes several times 

daily. Builders of the pyramids 5,000 years ago and builders of today still use 

32 + 42 = 52 or 52 + 122 = 132 or other so called Pythagorean triples. Can you come up

with another integer triple (not a multiple of the above)? Pythagoras' theorem, Proposition 

#47 in Euclid's Book I, is often referred to as the fundamental theorem of geometry. 

Euclid's Proposition #48 is the converse of Pythagoras' theorem. 

Distance to the horizon. 
Anyone who has ever sat in a window seat of an aeroplane, scaled a mountain or looked out 

from a high-rise building must have wondered how far is it to the horizon? There is a simple 

formula that is a direct consequence of Pythagoras' theorem to calculate that distance. What 

is this simple formula? It becomes a little more complicated if we take into account the 

refraction of the atmosphere. 

Radius of the earth. 
The Greek philosophers knew that Earth had to be round. Remarkably, Eratosthanes gave a 

very good estimate of Earth's radius around 230 BC. How did he do it? Strangely enough 

there were still many 'Flat-Earth' proponents in the 19th and 20th century. 

In 1870, a Flat-Earth proponent Johnathon Hampden offered £500 (10 times an average 

worker's annual salary) to anyone who could prove that a body of water (river, lake, canal) 

could be curved. Russell Wallace gave a brilliant proof using Euclid's proposition III 36 (i.e. 

proposition #36 from book III). Alas Hampden would not pay up, even though the courts 

accepted Wallace's proof and ordered Hampden to pay up. Wallace was also famous at the 

time for presenting with Charles Darwin their theory of evolution. Alas, Wallace seems to 

have been forgotten in recent years. 

Builder's roofing_groblem. 
When a builder needs to put a circular pipe ( chimney?) through a sloping roof, he needs to 

cut an ellipse for the pipe to fit snugly. What is the relation between the ellipse, roof slope 

and pipe diameter? What simple instructions would we give to the builder to draw and cut 

the required ellipse? 

Sundial construction. 
Until 1900, sundials (heliochronometers) were used to regulate the time of some railroad 

stations of the French network. Readings were accurate to the nearest minute. Sundials are 

amazingly accurate if constructed for the latitude and set up correctly. How can we construct 

a sundial that works in Lethbridge? Will the same sundial work in Vancouver? Edmonton? 

New York? Sundial readings depend on latitude and longitude. Further the readings must be 

adjusted according to the value of the 'Equation of Time' for that day of reading. 

There is a large sundial at Sangudo, Alberta (117 km west of Edmonton, on hwy 43), the 

largest in Canada. The Sangudo sundial, large as it is, is dwarfed by a huge sundial in Jaipur 

India built in 1734 which is almost 30 metres high and still accurate to within seconds. 

There is a relatively new type of sundial at CCHS, West Lethbridge. This is an analemmatic 

dial first designed in the 16th century, quite recent as sundials go. 

2 



Chapter 1. Introduction to Geometry & Applications 

Shortest distance between cities. 
To find the shortest distance between any two places on the globe we need Spherical 
Geometry. Simple Euclidean Geometry is okay only for calculating short distances. 
Euclidean Geometry is not accurate for ocean and airline navigators. 
In 1569 Mercator used simple geometry to make the biggest advance in map making history. 
The Mercator Map is still used today by long distance navigators. How was the map made? 
What makes the Mercator map, loved by mariners, so special? 

Sunrise times and nositions. 
Everyone has noticed that the Sun rises south east in winter and north east in summer. Only 
on two days a year does it rise from the east (and set in the west). Using Spherical Geometry 
we can calculate a simple formula to determine how far south and how far north of east the 
Sun will rise, for a given latitude on a given day. We can also get a simple formula for 
sunrise and sunset times. 

Twilight. 
Civil ( evening) twilight is defined as that time from sunset to when the sun is 6° below the 
horizon. Generally, anything that can be seen and done between sunrise and sunset can be 
seen and done during civil twilight. 
Nautical ( evening) twilight is defined as that time from sunset to when the sun is 12° below 
the horizon. Generally, when the sun is 12° below the horizon the horizon can no longer be 
seen, hence a (nautical) sextant can no longer be used. 
Astronomical ( evening) twilight is defined as that time from sunset to when the sun is 18° 

below the horizon. Generally when the sun is 18° below the horizon, the Sun's light no 
longer interferes with astronomical observations. 

Projectiles. 
Simple geometry gives the maximum range of artillery shells when they are fired at 45° from 
the horizontal (assuming no air resistance). However, during WWI, it was found that 10° 

from the vertical gave maximum range. Also WWI pilots describe that they aimed slightly 
higher when firing their machine guns to their right and aimed slightly lower when firing at 
planes to their left? Why should this be? What is the envelope of safety pilots associated 
with artillery projectiles? 

Kenler's Laws. 
In 1609 Johannes Kepler postulated two fabulous empirical laws of astronomy, and a further 
law in 1619. Fifty years later Isaac Newton proved these laws followed from his theory of 
gravitational attraction. Most people believe that a stone when thrown follows a parabolic 
path, but according to Kepler's first law it would be an elliptical path. The following is 
Howard Eves talking about his Harvard geometry Professor: J. L. Coolidge: 

"Coolidge engaged in all sorts of antics. I remember, he had a watch on a chain hanging from 
his vest. He would twirl the chain around and around his index finger, and then unwind it. 
One day the chain broke and the watch looped across the room and smashed on a 
windowsill. Without any hesitation he said, 'Gentlemen*, you have just witnessed a perfect 
parabola'. 
Which wasn't really true. A lot of people think that projectiles travel on parabolic paths. It 
really is a little nose of an ellipse of which the centre of the earth is one focus, but so closely 
resembles a parabola that no one can tell the difference. I did not want to correct him, 
though." Coolidge was a top rate geometer; he of course would have known Kepler's law 
and the correct path. Coolidge possibly would have felt it a bit over the top to mention that 
the pathwas really an ellipse. 

*This was university in the 1930s, there would have been no women in a math class.
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Inversive GeometrY.. 
A geometric inversion is a transformation of the plane which maps points inside a given 
circle to points outside the circle and conversely. Why would we map points in this way? It 
turns out that some difficult problems of geometry have simpler solutions when mapped 
inversely. The inverse problem is solved and the solution is then mapped back for the 
solution to the original problem. Two examples are: Steiner's Porism mentioned above and 
the famously difficult to prove Butterfly Theorem (worth a Google). 

It is not unlike being given the problem of multiplying two Roman numerals: XIII and VI 
together, with the result to be in Roman numerals. Almost certainly, most people would map 
the numerals to their Arabic equivalents 13 and 6, multiply to get 78, then map back to 
Roman numerals to give the answer: XIII x VI = LXXVIII. 

The Butterfly Theorem. 

Projective GeometrY.. 

For any given circle and any given chord AB, take 
the centre point C. 
Through C draw any two other (distinct) chords 
DCE and FCG say. Let the two chords DG and FE 
cut original chord AB at points X and Y. 
Then XC=CY. 

If the original chord AB is diameter, then the 
E theorem is obvious. 

An early discovery (early 17th century) of projective geometry was the famous theorem of 
Desargues (1593-1662). 

C 

0 

Q R p 

If in a plane two triangles ABC and A1B1C1 are such that the straight line joining 
corresponding vertices are concurrent at some point O say, then the corresponding extended 
sides will intersect in three collinear points (Q, R, P in the above diagram). 
The converse of this theorem is also true. Further, if the two triangles ABC and A1B1C1 are 
in any two non-parallel planes, the theorem still holds. 
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Conics & Dandelin's Sgheres 
In 1830 Germinal Dandelin gave three magnificent proofs regarding conics (parabolas, 

ellipses, hyperbolas). The Greeks with rather difficult proofs knew these results. Dandelin's

proofs are so elegant, perhaps my favourite proofs in all geometry. Using these results we are 

able to deduce the path of the shadow of a gnomon tip for various locations on earth. We are 

able to solve the 'Builders' Roofing Problem' above. 

Steiner's Porism. 
I cannot see any applications of this remarkable result, but remarkable it is. I once described 

Steiner's porism to a language student, she was not impressed. I can only think that I must 

have failed to explain the porism properly? There is a wonderful proof for Steiner's porism 

in Inversive Geometry. 

Euclidean Constructions. 
A great game of the ancient Greeks was to construct various geometric figures and 

procedures using only a collapsible compass and straightedge, 'Greek constructions'. 

Three famous problems of the age were constructions to: 

1. Double a cube. That is given a cube of side 1, construct a cube of side � . 

2. Trisect any given angle.
3. Construct a square with area the same as that of a given circle.

Constructions were never found. After 2000 years of trying, in 1837, is was finally shown 

that the first two constructions were indeed impossible. Nearly fifty years later, 1882, it was 

shown that the third construction too was impossible. 

All Greek constructions used a collapsible compass, that collapsed immediately it was 

removed from the page (sand?). The Greek compass would not transfer distances as we can 

with the modem compass. It is easily shown that the 'modem compass and straightedge' is 

equivalent to the 'Greek collapsible compass and straightedge'. This result is Proposition 2 

of Euclid's Elements, Book I. Further, it can be shown, with a little difficulty, that the two 

compasses are equivalent with or without the straightedge. That is: a circle of fixed radius 

and centre can be drawn with the same radius centred on any other given point, using just the 

collapsible compass; no straightedge needed. However, what is remarkable is the so-called 

Mohr-Mascheroni theorem which says any Greek construction can be made using a compass 

alone. For example, try finding the mid point of the line segment AB using just a compass. It 

can be shown that this is impossible using just a straightedge. Further, it was shown that any 

Greek construction can be made using a so-called 'rusty compass' and straightedge. 

Klein's Erlangen Programme. 
In 1870 Felix Klein presented (at the University of Erlangen) a remarkable thesis connecting 

geometry with groups. Klein's great idea was to regard a geometry as a mace with a grouQ of 

transformations of that space. The properties of figures that are not altered by any 

transformation in the group are the geometrical properties of that geometry. 

In the two-dimensional Euclidean geometry the space is the plane, and the group is the group 

of all length-preserving transformations of the plane. Klein showed that most geometries 

(affine, inversive, spherical and non-Euclidean) are all examples of projective geometry with 

extra conditions. 

5 
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Non-Euclidean Geometry. 

For over 2000 years geometers tried in vain to prove Euclid's fifth postulate. It was not until 
early in the 19th century that Gauss, Lobachevskii and Bolyai independently proved that the 
fifth postulate was indeed an axiom independent of the first four postulates of Euclid (Book 
I). This was a huge step for mathematics, because now we could define different 5th (parallel) 
postulates and get different geometries. These geometries were called non-Euclidean. 

Farkas Bolyai to his son Janos, around 1820: 

" 'You must not attempt tliis approacli to para/le{,. I /{now tliis way to its very end. I liave traversed tliis 
6ottomless niglit, wliicli t!.Kfi11f!uislietf a!Uiglit and/oy ef my life. I entreat you, leave tlie science ef 
parallels alone ... I tfiougfit I wou!a sacr!fice myseff far tlie salfff ef tfie trutli. I was ready to 6ecome a 
martyrwlio wou!a remove tfie fow _from geometry and retum it purified to manlfjnJ. I accompfislietf 
monstrous, enormous h6ours,· my creations are far netter tlian tliose ef otliers antfyet I liave not acliievetf 
complete satefaction ... I tumetf 6aclf, wlien I saw tliat no man can reacli tlie 6ottom ef tlie niglit. I tumed 
6aclf, unconsoled; pityi11f! myseff and a!T manlfjm£ 

I admit tfiat I e,Kpect little _from tfie deviation ef your lines. It seems to me tfiat I liave 6een in tliese 
regions tfiat I liave trave!letf past a!l reefs ef tliis iefema[ (})eat! Sea and liave always come 6aclf, rvitli 
6roliffn mast and tom sai[ 'Ilie ruin ef my disposition and my fa!T date 6aclf, to tliis time. I tliouglitless!j 
tislfffa my life and liappiness.. 

Quoted from M. J. Greenberg's "Euclidean and Non-Euclidean Geometries". 

Spherical Geometry is an excellent, very practical example of a non-Euclidean Geometry. 
Axiom 5 of Euclid's geometry does not hold for Spherical Geometry. Given a line l, and a 
point P not on l, there is no line through P that does not meet the given line l. 

Spherical Geometry is essential for navigation on the planet (all GPS systems) and for 
mathematical astronomy determining sunrise/set times, twilight times, solar and lunar 
eclipses and much more. 

Hyperbolic Geometry is another example of non-Euclidian Geometry. Euclid's Axiom 5 
does not hold. Given a line l, and a point P not on l, there is an infinity of lines through P that 
do not meet the given line l. While this geometry is not so easy to imagine as Spherical 
Geometry, Poincare gave a rather nice example, defined at the end of Chapter 6. It is just 
possible that the geometry of our universe is Hyperbolic. 

The Shadow Curve. 
As the sun moves across the sky, the tip of a stake will cast a moving shadow. The path of 
this shadow, known as the shadow curve, varies due to the time of year and the location of 
the stake. Most texts suggest that the path is a hyperbola. This is because most people live 
between the arctic and antarctic circles latitudes 66. 5° N and 66. 5° S. It can be shown, 
using Spherical Geometry, that the path is one of the following: a straight line, a hyperbola, a 
parabola, or an ellipse. One sees that if a vertical stake were planted at the North or South 
Pole then the shadow path would be a circle (a special ellipse). Above the arctic circle in 
summer, when the sun does not set, the shadow curve will be an ellipse. 
Dorrie, in his great book "100 Great Problems of Elementary Mathematics" gives a single, 
adorable equation that covers the the conic sections: hyperbola, parabola & ellipse. 

y 
2

= 2 x tan p - 1- x
2( cos2 cpl 

COS
2 
p 

where </J is the latitude of the stake and p = 90° - o

where o is the sun's declination for that particular day 

p'¢90
° 

The straight line shadow curve occurs at equinox (when o = 0, i.e. p = 90°). 
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Chapter2 Euclidean Geometry 

Chanter 2 

Euclidean Geometry_ 
Euclid's Elements Euclid, fl c 300 BC, lived in Egypt in the time of Ptolemy I. He is said 

to have been younger than Plato and older than Archimedes. 

From Dan Pedoe's "Geometry and Visual Arts" (Dover 1983) 

"Euclid's Elements is, without any doubt, the most influential mathematics book [13 books 
in fact] ever written. This was the first printed mathematical book of any importance. It had a 

margin of two and a half inches, and the figures relating to the Propositions were placed in 

the margin. This method has recently been revived with certain lush calculus books. The 
first, and most important, English translation, by Sir Henry Billingsley, appeared in London 

in 1570. It consists of 928 folio pages, not counting a long preface, and the figures for the 

Propositions in three-dimensional geometry are given twice, once in Euclid's version, and 
again with pieces of paper pasted at the edges so that the pieces can be turned up and made 
to show the real forms of the solid figures represented." 

From T. L. Heath's "Euclid's Elements" (1933). 

"Euclid's Elements: what book in the world could be more suitable for inclusion in the 
Library than this, the greatest textbook of elementary mathematics that there has ever been or 

is likely to be, a book which, ever since it was written twenty-two centuries ago , has been 
read and appealed to as authoritative by mathematicians great and small, from Archimedes 
and Apollonius of Perga onwards? No textbook, presumably, can ever be without flaw 

(especially in a subject like geometry, where some first principles, postulates or axioms, have 
to be assumed without proof, and any number of alternative systems are possible), and flaws 
there are in Euclid; but it is safe to say that no alternative to the Elements has yet been 

produced which is open to fewer or less serious objections. The only general criticism of it 
which is deserving of consideration is that it is unsuitable as a textbook for very young boys 

and girls who are just beginning to learn the first things about geometry. This can be admitted 

without detracting in the least from the greatness of the permanent value of the book. The 
simple truth is that it was not written for schoolboys or schoolgirls, but for the grown man 
who would have the necessary knowledge and judgement to appreciate the highly 

contentious matters which have to be grappled with in any attempt to set out the essentials of 
Euclidean geometry as a strictly logical system, and, in particular the difficulty of making the 
best selection of unproved postulates or axioms to form the foundation of the subject. My 

advice would, therefore, be: if you must spoon-feed the very young, do so; but when they 
have shown a taste for the subject and attained the standard necessary for passing honours 

examinations, let them then be introduced to Euclid in his original form as an antidote to the 

more or less feeble echoes of him that are to be found in the ordinary school textbooks of 

'geometry'. I should be surprised if such qualified readers, making the acquaintance of 

Euclid for the first time, did not find it fascinating, a book to be read in bed or on a holiday, a 
book as difficult as any detective story to put down when once begun. 

I know of one actual case, that of an undergraduate at Cambridge suddenly presented with a 
copy of Euclid, where this happened. This is a true test of such a book. Nor does the reading 

of it require the "higher mathematics'. Any intelligent person with a fair recollection of 

school work in elementary geometry would find it (progressing as it does by gradual and 
nicely contrived steps) easy reading, and should feel a real thrill in following its 

development, always assuming that enjoyment of the book is not marred by any prospect of 
having to pass an examination in it! 
This is why I applaud the addition of this great classic to Everyman's Library; for everybody 

ought to read it who can, that is all educated persons except the very few who are 
constitutionally incapable of mathematics." 7 



Chapter2 Euclidean Geometry 

From Philosopher Bertrand Russell 1883: 

(See Fauvel & Gray's 'The History of Mathematics' Page 140): 

"At the age of eleven, I began Euclid, with my brother as my tutor. This was one of the great 
events of my life, as dazzling as first love. I had not imagined that there was anything so 
delicious in the world. After I had learned the fifth proposition, my brother told me that it 
was generally considered difficult, but I had found no difficulty whatever. This was the first it 
had dawned upon me that I might have some intelligence. From that moment until 
Whitehead and I finished Principia Mathematica, when I was thirty-eight, mathematics was 
my chief interest, and my chief source of happiness. Like all happiness, however, it was not 
unalloyed. I had been told that Euclid proved things, and was much disappointed that he 
started with axioms. At first I refused to accept them unless my brother could offer me some 
reason for doing so, but he said: 'If you don't accept them we cannot go on', and as I wished 
to go on, I reluctantly admitted them pro tern. The doubt as to the premisses of mathematics 
which I felt at that moment remained with me, and determined the course of my subsequent 
work. 
The beginnings of Algebra I found far more difficult, perhaps as a result of bad teaching. I 
was made to learn by heart: 'The square of the sum of two numbers is equal to the sum of 
their squares increased by twice their product'. I had not the vaguest idea what this meant, 
and when I could not remember the words, my tutor threw the book at my head, which did 
not stimulate my intellect in any way." 

On-line: 

Try http://alephO.clarku.edu/-djoyce/java/elements/bookl/proplS.html 
for a wonderful on-line introduction to Euclid's Elements, all thirteen books. 

Euclid begins in Book I with 23 definitions. 
1. A point is that which has no part.
2. A line is breadthless length. [Euclid's 'line' can be any shape; it is only straight if

he says it is straight as in the next definition# 3.]
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
5. A surface is that which has length and breadth only.
6. The extremities of a surface are lines.
7. A plane surface is a surface which lies evenly with the straight lines of itself.
8. A plane angle is the inclination of one another of two lines in a plane which meet

one another and do not lie in a straight line.
9. And when the lines containing the angle are straight, the angle is called rectilineal.

10. When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right, and the straight line standing on the other
is called a perpendicular to that on which it stands ..

11. An obtuse angle is an angle greater than a right angle.
12. An acute angle is an angle less than a right angle.
13. A term or boundary is the extremity of any thing.
14. A.figure is that which is enclosed by one or more boundaries.
15. A circle is a plane figure contained by one line such that all the straight lines falling

upon it from one point lying within the figure are equal to one another.
16. And the point is called the centre of the circle.
17. The diameter of the circle is any straight line drawn through the centre and

terminated in both directions by the circumference of the circle, and such a
straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the part of the circumference
cut off by the diameter.

8 



Chapter2 Euclidean Geometry 

19. Rectilinear figures are those which are contained by straight lines, trilateral figures
(triangles) being those contained by three, quadrilateral those contained by four,
and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an
isosceles triangle that which has two of its sides equal and scalene triangle that
which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an
obtuse-angled triangle that which has an obtuse angle, and an acute-angled

triangle that which has its three angles acute.
22. Of quadrilateral figures, a square is that which is both equilateral and right-angled.
23. Parallel straight lines are straight lines which, being in the same plane and being

produced indefinitely in both directions, do not meet one another in either
directions. [Euclid's straight lines were.finite segments and not infinite, as we think
of lines today.]

Euclid's S Common Notions (obvious axioms) from Book I. 

Common Notion 1 

Common Notion 2 

Common Notion 3 

Common Notion 4 

Common Notion 5 

Things which equal the same thing also equal one another. 

[If a = b & c = b, then a = c] 

If equals are added to equals, then the wholes are equals. 

[If a = b & c = d, then a + c = b + d] 

If equals are subtracted from equals, then the remainders are equal. 

[If a = b & c = d then a - c = b - d] 

Things which coincide with one another equal one another. 

The whole is greater than the part. [ a + b > a] 

Euclid's S Axioms or postulates from Book I. 

Axiom 1: To draw a straight line from any point to any point. 
Axiom 2: To produce a finite straight line continuously in a straight line. 
Axiom 3: To describe a circle with any centre and any radius. 
Axiom 4: That all right angles are equal to one another. 

Axiom S: That, if a straight line falling on two straight lines makes the 

interior angles on the same side less than two right angles, the two straight lines, if produced 

indefinitely, meet on that side on which are the angles less than the two right angles. 

Axiom 5 was the cause of much interest for over 2000 years. Geometers tried to prove that 
Axiom 5 was a natural consequence of the first four axioms. It seems obvious enough, but it 
turned out that Axiom 5 was indeed independent from the first four axioms. This led to non­
Euclidean geometries, geometries with an axiom different to Axiom 5. 

Geometry using only the first four axioms is referred to as Neutral Geometry. 
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Chapter2 Euclidean Geometry 

Propositions: 1 - 48 (Euclid's Elements Book I ). 

I.1 To construct an equilateral triangle on a given finite straight line. 

I.2. To place a straight line [segment] equal to a given straight line [segment] with 
one end at a given point. 

I.3. To cut off from the greater of two given unequal straight lines, a straight line 
equal to the lesser. 

I.4. If two triangles have two sides equal to two sides respectively, and have the 
angles contained by the equal straight lines equal, then they also have the base 
equal to the base, the triangle equals the triangle, and the remaining angles equal 
the remaining angles respectively, namely those opposite the equal sides. 
[We say the two triangles with these respective properties (corresponding sides, 
included angle and corresponding side or SAS for short, are congruent.] 

I.5. In isosceles triangles the angles at the base are equal to one another, and if the 
equal sides are produced further, the angles under the base will be equal to one 
another. [This proposition is known as: The Pons Asinorum, or Asses' Bridge.] 

I.6. If in a triangle two angles equal one another, then the sides which subtend the 
equal angles also equal one another. 
[This is the converse of the previous proposition.] 

I.7. Given two straight lines constructed from the ends of a straight line and meeting 
in a point, there cannot be constructed from the ends of the same straight line, 
and on the same side of it, two other straight lines meeting in another point and 
equal to the former two respectively, namely each equal to that from the same 
end. 

I.8. If two triangles have the two sides equal to two sides respectively, and also have 
the base equal to the base, then they also have the angles equal which are 
constrained by the equal straight lines. 
[We say the two triangles with these respective properties (three sides equal or 
SSS for short, are congruent. ] 

I.9. To bisect a given rectilinear angle. 

I.10. To bisect a given finite straight line. 

I.11. To draw a straight line at right angles to a given straight line from a given point 
on it. 

I.12. To draw a straight line perpendicular to a given infinite straight line from a given 
point not on it. 

I.13. If a straight line stands on a straight line, then it makes either two right angles or 
angles whose sum equals two right angles. 

I.14. If with any straight line [ AB say] and at a point [B say] on it, two straight lines 
[through point B] not lying on the same side [of the straight line AB] make the 
sum of the adjacent angles equal to two right angles, then the two straight lines 
are in a straight line with one another. 

I.15. If two straight lines cut one another, then they make the vertical angles equal to 
one another. 
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Chapter2 Euclidean Geometry 

1.16. In any triangle, if one of the sides is produced, then the exterior angle is greater 

than either of the interior and opposite angles. 

1.17. In any triangle the sum of any two angles is less than two right angles. 

1.18. In any triangle the angle opposite the greater side is greater. 

1.19. In any triangle the side opposite the greater angle is greater. 

1.20. In any triangle the sum of any two sides is greater than the remaining one. 

1.21. If from the ends of one of the sides of a triangle two straight lines are constructed 

meeting within the triangle, then the sum of the straight lines so constructed is 

less than the sum of the remaining two sides of the triangle, but the constructed 

straight lines contain a greater angle than the angle contained by the remaining 

two sides. 

1.22. To construct a triangle out of three straight lines which equal three given straight 

lines: thus it is necessary that the sum of any two of the straight lines should be 

greater than the remaining one. 

1.23. To construct a rectilinear angle equal to a given rectilinear angle on a given 

straight line and at a point on it. 

1.24. If two triangles have two sides equal to two sides respectively, but have one of 

the angles contained by the equal straight lines greater than the other, then they 

also have the base greater than the base. 

1.25. If two triangles have two sides equal to two sides respectively, but have the base 

greater than the base, then they also have one of the angles contained by the 

equal straight lines greater than the other. 

1.26. If two triangles have two angles equal to two angles respectively, and one side 

equal to one side, namely, either the side adjoining the equal angles, or that 

opposite one of the equal angles, then the remaining sides equal the remaining 

sides and the remaining angle equals the remaining angle. 

[ We say the two triangles with these respective properties (two angles equal and 

one side equal or AAS for short, are congruent. ] 

1.27. If a straight line falling on two straight lines makes the alternate angles equal to 

one another, then the straight lines are parallel to one another. 

1.28. If a straight line falling on two straight lines makes the exterior angle equal to 

the interior and opposite angle on the same side, or the sum of the interior angles 

on the same side equal to two right angles, then the straight lines are parallel to 

one another. 

I.29. A straight line falling on parallel straight lines makes the alternate angles equal 

to one another, the exterior angle equal to the interior and opposite angle, and the 

interior angles on the same side equal to two right angles. 

1.30. Straight lines parallel to the same straight line are also parallel to one another. 

1.31. Through a given point to draw a straight line parallel to a given straight line. 
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     Coordinates

Adelaide    34° 56/ S    138° 56/ E Alexandria   31° 13/ N    29° 55/ E 
Alice Springs 23.698° S,  133.88° E Aswan  24° 05/ N    32° 56/ E                                      
Austin, Texas   30° 20/ N    47° 46/ E Athens 37° 59/ N    23° 42/ E
Auckland NZ  35° 45/ S    174° 45/ E Bagdad 33° 20/ N    44° 26/ E 
Battle (U.K.) 50° 55/ N    03° 30/ W Beijing             39° 55/ N    116° 25/ E
Berlin              52° 32’ N    13° 25/ E Bern 46.948° N      7.447° E
Boston 42.360° N   71.059° W Brisbane 27.470° S,  153.025° E
Brooks (Alta):    50° 35’ N    111° 54/ W Burnley (U.K.)   53° 47/ N        2° 15/ W

Calgary  51° 05/ N    114° 05/ W Canberra  ACT  35° 18/ S     149° 08/ E
Calcutta 22.573°N     88.3639°E                    Cardston AB 49.195°N  113.302° W
Darwin 12.463° S   130.846° E Dunedin 45° 52/ S     170° 30/ E
Delhi:    28° 40/  N       77° 14/ E Edmonton   53° 34/ N    113° 25/ W
Empress (AB) 50.953°N,   110.009° W Fernie (B.C.) 49.504°N    115.063° W

Glasgow    55° 52/ N      4° 15/ W Greenwich 51° 28/ 36.7// N  0° 0/ 1.8// W
Halifax:   44° 38/ N     63° 35/ W Hobart  42.8821° S       147.3272° E
Hong Kong       22° 30/ N    114° 10/ E Juneau 58.3019° N      134.4197° W
Kabol: 34° 30/ N      69° 10/ E Kingaroy (Qld) 26.5309° S      151.8400° E 

Lethbridge      49° 43/ N    112° 48/ W Lands End: 50° 03/ N    5° 45/ W
Lisbon         38° 44/ N        9° 08/ W London     51° 32/ N    0° 06/ W
Los Angeles 34.052° N   118.244° W

Mecca: 21° 26/ N       39° 49/ E Mexico City      19° 25/ N        99° 10/ W
Medicine Hat  50° 03/ N    110° 47/ W Moose Jaw 50.3916° N   105.5349° W
Moscow 55.756° N     37.617° E

Mt Everest 27.988° N    86.925° E Mt Rushmore 43.879°N    103.459° W
Nairobi      1° 17/ S      36° 50/ E Moscow 55° 45/ N       37° 42/ E
New York 40° 40/ N     73° 50/ W North Pole 90° 00/ 00//  N     
Paris  48° 52/ N       2° 20/  E Perth  WA 31.9505° S     115.8605°  E
Reykjavik  64° 09/ N    21° 58/ W Rimbey  AB 52°38/27// N    114°14/ 8.7//W
Rio de Janeiro 22° 53/ S    43° 17/ W Rome  41° 54/ N          12° 29/ E  

Saint Johns 47° 34/ N       52° 41/  W San Francisco 37° 48/ N    122° 24/  W
Salem Oregon 44°56'34"N    123°2' 6"W Salzberg 47° 54/ N      13° 03/  W
Shanghai     34° 27/ N     121° 22/ E            Shiraz Iran 29° 36/ N       52° 33/  E
Singapore   1° 22/ N      103° 55/  E Skagway US  59° 23/ N     135° 20/  W
South Pole        90° 00/ 00// S   Stewart B.C 55° 56/ N     130° 01/  W
Sydney (Aust.) 33° 55/ S    151° 10/ E Sundre  AB 51°47′50″ N  114°38′26″ W

N. Magnetic pole  86.39° N    169.80°W S. Magnetic pole    64.11°S         135.76° E

Tallai (Qld) 28.0678° S, 153.3300° E Tehran  35° 40/ N        51° 26/  E
Tokyo  35° 27/ N    139° 22/  E Tuktoyaktuk  68° 24/ N      133° 01/  W
Vancouver    49° 13/ N    123° 06/  W

Wagga Wagga   35° 07/ S     147° 24/ E
Walla Walla    46°3'52.5''N  18°20' 35' W Whitehorse 60° 41/ N    135° 08/ W
  


