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Trigonometric Identities

Euclidean Plane Geometry
for any triangle with sides a, b, ¢, angles 4, B, C.

sin’g + cos’o = 1 for any value of @
c?= a’+ b?- 2abcosC Cosine rule
c2=a’+b? If angle C=90° (Famous Pythagoras’ Theorem)

sinA sinB sinC )
= = Sine rule

a b c

sin(axb)= sinacosb * sinb cosa

cos(axb)= cosa cosb + sina sinb Note change = to F.

tana=xtanb

tan (axb) =
l1Ftana tanb

Area of triangle with sides a, b, ¢ and angles A, B. C

= %absinC = %bcsinA = %acsinB
= \/s(s—a)(s—b)(s—c) where s = %(a+b+c)

Spherical Geometry.
for triangle with sides a, b, ¢, angles 4, B, C.

cos a = cos b cos ¢+ sin b sin ¢ cos A

sinA _sinB _ sinC

sina sinb sinc

cosA = —cosBcosC + sinBsinCcosa

sinacos B= cosbsinc— sinbcosccosA

sinacos C= coscsinb—sinccosbcosA

cotasinb = cosbcosC+cotAsinC

Sin(é ) _ (sin(s _b) sin(s- c))1/2
2 sin(b) sin(c)

Cosine rule

Sine rule

where s = %(a+b+c)
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Chapter 1. Introduction to Geometry & Applications

Chapter 1

Introduction to Geometry.
Applications & Problems

From Brannan’s “Geometry”

Geometry? For over two thousand years it was one of the criteria for recognition as an
educated person to be acquainted with the subject of geometry. Euclidean geometry, of
course. In the golden age of Greek civilisation around 400 BC, geometry was studied
rigorously and put on a firm theoretical basis — for intellectual satisfaction, the intrinsic
beauty of many geometrical results and the utility of the subject. It was written above the
door of Plato’s Academy “Let no-one ignorant of Geometry enter here!”. As late as the
1950s translations of Euclid’s Elements were being used as standard school geometry
textbooks in many countries.

Geometry is the study of shape. It takes its name from the Greek for ‘Earth measurement’. It
is believed that geometry began with Egyptian surveyors of two or three millennia ago
measuring the Earth, or at least the fertile expanse of it that was annually flooded by the Nile.
It rapidly became more ambitious. Classical Greek geometry, called Euclidean geometry
after Euclid, who organized an extensive collection of theorems into a definitive text, was
regarded by all in the early modern world as the true geometry of space. Isaac Newton used
it to formulate his Principia, the book that first set out the theory of gravity. Until the mid-19*
Century, Euclidean geometry was regarded as one of the highest points of rational thought,
as a foundation for practical mathematics as well as advanced science, and as a logical
system splendidly adapted for the training of the mind.

Euclid’s Elements.

From Dan Pedoe’s “Geometry and Visual Arts” (Dover 1983)

“Euclid’s Elements is, without any doubt, the most influential mathematics book [13 books
in fact] ever written. This was the first printed mathematical book of any importance. It had a
margin of two and a half inches, and the figures relating to the Propositions were placed in
the margin. This method has recently been revived with certain lush calculus books. The
first, and most important, English translation, by Sir Henry Billingsley, appeared in London
in 1570.”

Euclid’s Elements set the standard for axiomatic methods of ‘theorem and proof’. Euclid’s
tools comprise a straightedge and a compass which collapses as soon as it is lifted from the
page. Geometrical constructions using only these tools are referred to as Euclidean
constructions. For over 2000 years geometers tried to trisect angles, square the circle
(construct a square with the same area as a given circle) and to double a cube (construct a
cube with volume double that of a given cube). Only in the 19" century was it shown that
these constructions were impossible using only Euclid’s tools.

Regular Pentagon.

It is alleged that to enter Pythagoras’ school (~ 600 BC) would-be scholars had to know how
to construct a regular pentagon using only a straightedge and compass. Could you enter this
school? Gauss could have. In 1796 at age 19, Gauss looked at this problem further and
produced a remarkable theorem related to the construction of regular polygons. Gauss was
so pleased with this theorem he requested that a regular 17-sided polygon be chiseled on his
gravestone. His request was not honoured. Perhaps there was no mason that could chisel a
17-sided regular polygon?
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Chapter 1. Introduction to Geometry & Applications

Right angles.

Every house builder uses the converse of Pythagoras’ theorem, sometimes several times
daily. Builders of the pyramids 5,000 years ago and builders of today still use

32+42= 5% or 5% +12%2=13% or other so called Pythagorean triples. Can you come up
with another integer triple (not a multiple of the above)? Pythagoras’ theorem, Proposition
#47 in Euclid’s Book I, is often referred to as the fundamental theorem of geometry.
Euclid’s Proposition #48 is the converse of Pythagoras’ theorem.

Distance to the horizon.

Anyone who has ever sat in a window seat of an aeroplane, scaled a mountain or looked out
from a high-rise building must have wondered how far is it to the horizon? There is a simple
formula that is a direct consequence of Pythagoras’ theorem to calculate that distance. What
is this simple formula? It becomes a little more complicated if we take into account the
refraction of the atmosphere.

Radius of the earth.

The Greek philosophers knew that Earth had to be round. Remarkably, Eratosthanes gave a
very good estimate of Earth’s radius around 230 BC. How did he do it? Strangely enough
there were still many ‘Flat-Earth’ proponents in the 19" and 20" century.

In 1870, a Flat-Earth proponent Johnathon Hampden offered £500 (10 times an average
worker’s annual salary) to anyone who could prove that a body of water (river, lake, canal)
could be curved. Russell Wallace gave a brilliant proof using Euclid’s proposition III 36 (i.e.
proposition #36 from book III). Alas Hampden would not pay up, even though the courts
accepted Wallace’s proof and ordered Hampden to pay up. Wallace was also famous at the
time for presenting with Charles Darwin their theory of evolution. Alas, Wallace seems to
have been forgotten in recent years.

Builder’s roofing problem.

When a builder needs to put a circular pipe (chimney?) through a sloping roof, he needs to
cut an ellipse for the pipe to fit snugly. What is the relation between the ellipse, roof slope
and pipe diameter? What simple instructions would we give to the builder to draw and cut
the required ellipse?

Sundial construction.

Until 1900, sundials (heliochronometers) were used to regulate the time of some railroad
stations of the French network. Readings were accurate to the nearest minute. Sundials are
amazingly accurate if constructed for the latitude and set up correctly. How can we construct
a sundial that works in Lethbridge? Will the same sundial work in Vancouver? Edmonton?
New York? Sundial readings depend on latitude and longitude. Further the readings must be
adjusted according to the value of the ‘Equation of Time’ for that day of reading.

There is a large sundial at Sangudo, Alberta (117 km west of Edmonton, on hwy 43), the
largest in Canada. The Sangudo sundial, large as it is, is dwarfed by a huge sundial in Jaipur
India built in 1734 which is almost 30 metres high and still accurate to within seconds.

There is a relatively new type of sundial at CCHS, West Lethbridge. This is an analemmatic
dial first designed in the 16" century, quite recent as sundials go.
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Shortest distance between cities.

To find the shortest distance between any two places on the globe we need Spherical
Geometry. Simple Euclidean Geometry is okay only for calculating short distances.
Euclidean Geometry is not accurate for ocean and airline navigators.

In 1569 Mercator used simple geometry to make the biggest advance in map making history.
The Mercator Map is still used today by long distance navigators. How was the map made?
What makes the Mercator map, loved by mariners, so special?

Sunrise times and positions.

Everyone has noticed that the Sun rises south east in winter and north east in summer. Only
on two days a year does it rise from the east (and set in the west). Using Spherical Geometry
we can calculate a simple formula to determine how far south and how far north of east the
Sun will rise, for a given latitude on a given day. We can also get a simple formula for
sunrise and sunset times.

Twilight. .

Civil (evening) twilight is defined as that time from sunset to when the sun is 6° below the
horizon. Generally, anything that can be seen and done between sunrise and sunset can be
seen and done during civil twilight.

Nautical (evening) twilight is defined as that time from sunset to when the sun is 12° below
the horizon. Generally, when the sun is 12° below the horizon the horizon can no longer be
seen, hence a (nautical) sextant can no longer be used.

Astronomical (evening) twilight is defined as that time from sunset to when the sun is 18°
below the horizon. Generally when the sun is 18° below the horizon, the Sun’s light no
longer interferes with astronomical observations.

Projectiles.

Simple geometry gives the maximum range of artillery shells when they are fired at 45° from
the horizontal (assuming no air resistance). However, during WWI, it was found that 10°
from the vertical gave maximum range. Also WWI pilots describe that they aimed slightly
higher when firing their machine guns to their right and aimed slightly lower when firing at
planes to their left? Why should this be? What is the envelope of safety pilots associated
with artillery projectiles?

Kepler’s Laws.

In 1609 Johannes Kepler postulated two fabulous empirical laws of astronomy, and a further
law in 1619. Fifty years later Isaac Newton proved these laws followed from his theory of
gravitational attraction. Most people believe that a stone when thrown follows a parabolic
path, but according to Kepler’s first law it would be an elliptical path. The following is
Howard Eves talking about his Harvard geometry Professor: J. L. Coolidge:

“Coolidge engaged in all sorts of antics. I remember, he had a watch on a chain hanging from
his vest. He would twirl the chain around and around his index finger, and then unwind it.
One day the chain broke and the watch looped across the room and smashed on a
windowsill. Without any hesitation he said, ‘Gentlemen*, you have just witnessed a perfect
parabola’.

Which wasn’t really true. A lot of people think that projectiles travel on parabolic paths. It
really is a little nose of an ellipse of which the centre of the earth is one focus, but so closely
resembles a parabola that no one can tell the difference. I did not want to correct him,
though.” Coolidge was a top rate geometer; he of course would have known Kepler’s law
and the correct path. Coolidge possibly would have felt it a bit over the top to mention that
the pathwas really an ellipse.

*This was university in the 1930s, there would have been no women in a math class.
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Inversive Geometry.

A geometric inversion is a transformation of the plane which maps points inside a given
circle to points outside the circle and conversely. Why would we map points in this way? It
turns out that some difficult problems of geometry have simpler solutions when mapped
inversely. The inverse problem is solved and the solution is then mapped back for the
solution to the original problem. Two examples are: Steiner’s Porism mentioned above and
the famously difficult to prove Butterfly Theorem (worth a Google).

It is not unlike being given the problem of multiplying two Roman numerals: XIII and VI
together, with the result to be in Roman numerals. Almost certainly, most people would map
the numerals to their Arabic equivalents 13 and 6, multiply to get 78, then map back to
Roman numerals to give the answer: XIIIx VI = LXXVIIL

The Butterfly Theorem.

For any given circle and any given chord AB, take
the centre point C.

Through C draw any two other (distinct) chords
DCE and FCG say. Let the two chords DG and FE
cut original chord AB at points X and Y.

Then XC = CY.

\ If the original chord AB is diameter, then the
Butterfly Theorem ¢ £ theorem is obvious.

If  AC =CB

then XC = CY

Projective Geometry.
An early discovery (early 17" century) of projective geometry was the famous theorem of
Desargues (1593-1662).

If in a plane two triangles ABC and A'B'C’ are such that the straight line joining
corresponding vertices are concurrent at some point O say, then the corresponding extended
sides will intersect in three collinear points (Q, R, P in the above diagram).

The converse of this theorem is also true. Further, if the two triangles ABC and A’B'C’ are
in any two non-parallel planes, the theorem still holds.

4
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Conics & Dandelin’s Spheres

In 1830 Germinal Dandelin gave three magnificent proofs regarding conics (parabolas,
ellipses, hyperbolas). The Greeks with rather difficult proofs knew these results. Dandelin’s
proofs are so elegant, perhaps my favourite proofs in all geometry. Using these results we are
able to deduce the path of the shadow of a gnomon tip for various locations on earth. We are
able to solve the ‘Builders’ Roofing Problem’ above.

Steiner’s Porism.

I cannot see any applications of this remarkable result, but remarkable it is. I once described
Steiner’s porism to a language student, she was not impressed. I can only think that I must
have failed to explain the porism properly? There is a wonderful proof for Steiner’s porism
in Inversive Geometry.

Euclidean Constructions.

A great game of the ancient Greeks was to construct various geometric figures and
procedures using only a collapsible compass and straightedge, ‘Greek constructions’.
Three famous problems of the age were constructions to:

1. Double a cube. That is given a cube of side 1, construct a cube of side 32 .
2. Trisect any given angle.
3. Construct a square with area the same as that of a given circle.

Constructions were never found. After 2000 years of trying, in 1837, is was finally shown
that the first two constructions were indeed impossible. Nearly fifty years later, 1882, it was
shown that the third construction too was impossible.

All Greek constructions used a collapsible compass, that collapsed immediately it was
removed from the page (sand?). The Greek compass would not transfer distances as we can
with the modern compass. It is easily shown that the ‘modern compass and straightedge’ is
equivalent to the ‘Greek collapsible compass and straightedge’. This result is Proposition 2
of Euclid’s Elements, Book I. Further, it can be shown, with a little difficulty, that the two
compasses are equivalent with or without the straightedge. That is: a circle of fixed radius
and centre can be drawn with the same radius centred on any other given point, using just the
collapsible compass; no straightedge needed. However, what is remarkable is the so-called
Mohr—Mascheroni theorem which says any Greek construction can be made using a compass
alone. For example, try finding the mid point of the line segment AB using just a compass. It
can be shown that this is impossible using just a straightedge. Further, it was shown that any
Greek construction can be made using a so-called ‘rusty compass’ and straightedge.

Klein’s Erlangen Programme.

In 1870 Felix Klein presented (at the University of Erlangen) a remarkable thesis connecting
geometry with groups. Klein’s great idea was to regard a geometry as a space with a group of
transformations of that space. The properties of figures that are not altered by any
transformation in the group are the geometrical properties of that geometry.

In the two-dimensional Euclidean geometry the space is the plane, and the group is the group
of all length-preserving transformations of the plane. Klein showed that most geometries
(affine, inversive, spherical and non-Euclidean) are all examples of projective geometry with
extra conditions.
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Non-Euclidean Geometry.

For over 2000 years geometers tried in vain to prove Euclid’s fifth postulate. It was not until
early in the 19" century that Gauss, Lobachevskii and Bolyai independently proved that the
fifth postulate was indeed an axiom independent of the first four postulates of Euclid (Book
I). This was a huge step for mathematics, because now we could define different 5* (parallel)
postulates and get different geometries. These geometries were called non-Euclidean.

Farkas Bolyai to his son Janos, around 1820:

“You must not attempt this approach to parallels. I know this way to tts very end. I have traversed this
bottomless night, which extinguished all light and joy of my life. I entreat you, leave the science of
parallels alone ... I thought I would sacrifice myself jfor the sake of the truth. I was ready to become a
martyr who would remove the flaw from geometry and return it purified to mankind. I accomplished
monstrous, enormous labours; my creations are far better than those of others and yet I have not achieved
complete satisfaction ... I turned back when I saw that no man can reacht the bottom of the night. I turned
back unconsoled, pitying myself and all mankind.

7 admit that 1 expect little from the deviation of your lines. It seems to me that I have been in these
regions that 1 have travelled past all reefs of this infernal Dead Sea and have always come back with
broken mast and torn sail. The ruin of my disposition and my fall date back to this time. I thoughtlessly
risked my life and happiness..

Quoted from M. J. Greenberg’s “Euclidean and Non-Euclidean Geometries”.

Spherical Geometry is an excellent, very practical example of a non-Euclidean Geometry.
Axiom 5 of Euclid’s geometry does not hold for Spherical Geometry. Given a line /, and a
point P not on /, there is no line through P that does not meet the given line /.

Spherical Geometry is essential for navigation on the planet (all GPS systems) and for
mathematical astronomy determining sunrise/set times, twilight times, solar and lunar
eclipses and much more.

Hyperbolic Geometry is another example of non-Euclidian Geometry. Euclid’s Axiom 5
does not hold. Given a line /, and a point P not on /, there is an infinity of lines through P that
do not meet the given line /. While this geometry is not so easy to imagine as Spherical
Geometry, Poincare gave a rather nice example, defined at the end of Chapter 6. It is just
possible that the geometry of our universe is Hyperbolic.

The Shadow Curve.

As the sun moves across the sky, the tip of a stake will cast a moving shadow. The path of
this shadow, known as the shadow curve, varies due to the time of year and the location of
the stake. Most texts suggest that the path is a hyperbola. This is because most people live
between the arctic and antarctic circles latitudes 66.5° N and 66.5° S. It can be shown,
using Spherical Geometry, that the path is one of the following: a straight line, a hyperbola, a
parabola, or an ellipse. One sees that if a vertical stake were planted at the North or South
Pole then the shadow path would be a circle (a special ellipse). Above the arctic circle in
summer, when the sun does not set, the shadow curve will be an ellipse.

Dorrie, in his great book “100 Great Problems of Elementary Mathematics” gives a single,
adorable equation that covers the the conic sections: hyperbola, parabola & ellipse.

2
COS
@ X2

y? =2Xxtanp — |1- p #90°

cos® p

where ¢ is the latitude of the stake and p = 90°— J
where O is the sun’s declination for that particular day

The straight line shadow curve occurs at equinox (when & =0, i.e. p=90°).
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Chapter 2

Euclidean Geometry

Euclid’s Elements Euclid, fl ¢ 300 BC, lived in Egypt in the time of Ptolemy I. He is said
to have been younger than Plato and older than Archimedes.

From Dan Pedoe’s “Geometry and Visual Arts” (Dover 1983)

“Euclid’s Elements is, without any doubt, the most influential mathematics book [13 books
in fact] ever written. This was the first printed mathematical book of any importance. It had a
margin of two and a half inches, and the figures relating to the Propositions were placed in
the margin. This method has recently been revived with certain lush calculus books. The
first, and most important, English translation, by Sir Henry Billingsley, appeared in London
in 1570. It consists of 928 folio pages, not counting a long preface, and the figures for the
Propositions in three-dimensional geometry are given twice, once in Euclid’s version, and
again with pieces of paper pasted at the edges so that the pieces can be turned up and made
to show the real forms of the solid figures represented.”

From T. L. Heath’s “Euclid’s Elements” (1933).

“Euclid’s Elements: what book in the world could be more suitable for inclusion in the
Library than this, the greatest textbook of elementary mathematics that there has ever been or
is likely to be, a book which, ever since it was written twenty-two centuries ago , has been
read and appealed to as authoritative by mathematicians great and small, from Archimedes
and Apollonius of Perga onwards? No textbook, presumably, can ever be without flaw
(especially in a subject like geometry, where some first principles, postulates or axioms, have
to be assumed without proof, and any number of alternative systems are possible), and flaws
there are in Euclid; but it is safe to say that no alternative to the Elements has yet been
produced which is open to fewer or less serious objections. The only general criticism of it
which is deserving of consideration is that it is unsuitable as a textbook for very young boys
and girls who are just beginning to learn the first things about geometry. This can be admitted
without detracting in the least from the greatness of the permanent value of the book. The
simple truth is that it was not written for schoolboys or schoolgirls, but for the grown man
who would have the necessary knowledge and judgement to appreciate the highly
contentious matters which have to be grappled with in any attempt to set out the essentials of
Euclidean geometry as a strictly logical system, and, in particular the difficulty of making the
best selection of unproved postulates or axioms to form the foundation of the subject. My
advice would, therefore, be: if you must spoon-feed the very young, do so; but when they
have shown a taste for the subject and attained the standard necessary for passing honours
examinations, let them then be introduced to Euclid in his original form as an antidote to the
more or less feeble echoes of him that are to be found in the ordinary school textbooks of
‘geometry’. I should be surprised if such qualified readers, making the acquaintance of
Euclid for the first time, did not find it fascinating, a book to be read in bed or on a holiday, a
book as difficult as any detective story to put down when once begun.

I know of one actual case, that of an undergraduate at Cambridge suddenly presented with a
copy of Euclid, where this happened. This is a true test of such a book. Nor does the reading
of it require the “higher mathematics’. Any intelligent person with a fair recollection of
school work in elementary geometry would find it (progressing as it does by gradual and
nicely contrived steps) easy reading, and should feel a real thrill in following its
development, always assuming that enjoyment of the book is not marred by any prospect of
having to pass an examination in it!

This is why I applaud the addition of this great classic to Everyman’s Library; for everybody
ought to read it who can, that is all educated persons except the very few who are
constitutionally incapable of mathematics.” 7
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From Philosopher Bertrand Russell 1883:
(See Fauvel & Gray’s ‘The History of Mathematics® Page 140):

“At the age of eleven, I began Euclid, with my brother as my tutor. This was one of the great
events of my life, as dazzling as first love. I had not imagined that there was anything so
delicious in the world. After I had learned the fifth proposition, my brother told me that it
was generally considered difficult, but I had found no difficulty whatever. This was the first it
had dawned upon me that I might have some intelligence. From that moment until
Whitehead and I finished Principia Mathematica, when I was thirty-eight, mathematics was
my chief interest, and my chief source of happiness. Like all happiness, however, it was not
unalloyed. I had been told that Euclid proved things, and was much disappointed that he
started with axioms. At first I refused to accept them unless my brother could offer me some
reason for doing so, but he said: ‘If you don’t accept them we cannot go on’, and as I wished
to go on, I reluctantly admitted them pro tem. The doubt as to the premisses of mathematics
which I felt at that moment remained with me, and determined the course of my subsequent
work.

The beginnings of Algebra I found far more difficult, perhaps as a result of bad teaching. I
was made to learn by heart: “The square of the sum of two numbers is equal to the sum of
their squares increased by twice their product’. I had not the vaguest idea what this meant,
and when I could not remember the words, my tutor threw the book at my head, which did
not stimulate my intellect in any way.”

On-line:
Try http://aleph(.clarku.edu/~djoyce/java/elements/bookl/propl5.html
for a wonderful on-line introduction to Euclid’s Elements, all thirteen books.

Euclid begins in Book I with 23 definitions.

1. A point is that which has no part.

2. A line is breadthless length. [Euclid’s ‘/ine’ can be any shape; it is only straight if

he says it is straight as in the next definition # 3.]

The extremities of a line are points.

A straight line is a line which lies evenly with the points on itself.

A surface is that which has length and breadth only.

The extremities of a surface are lines.

A plane surface is a surface which lies evenly with the straight lines of itself.

A plane angle is the inclination of one another of two lines in a plane which meet

one another and do not lie in a straight line.

And when the lines containing the angle are straight, the angle is called rectilineal.

10. When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right, and the straight line standing on the other
is called a perpendicular to that on which it stands..

PN R W

©

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A term or boundary is the extremity of any thing.

14. A figure is that which is enclosed by one or more boundaries.

15. A circle is a plane figure contained by one line such that all the straight lines falling

upon it from one point lying within the figure are equal to one another.
16. And the point is called the centre of the circle.
17. The diameter of the circle is any straight line drawn through the centre and
terminated in both directions by the circumference of the circle, and such a
straight line also bisects the circle.
18. A semicircle is the figure contained by the diameter and the part of the circumference
cut off by the diameter.
8



Chapter 2 Euclidean Geometry

19. Rectilinear figures are those which are contained by straight lines, rilateral figures
(triangles) being those contained by three, quadrilateral those contained by four,
and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an
isosceles triangle that which has two of its sides equal and scalene triangle that
which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a right angle, an
obtuse-angled triangle that which has an obtuse angle, and an acute-angled
triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and right-angled.

23. Parallel straight lines are straight lines which, being in the same plane and being
produced indefinitely in both directions, do not meet one another in either
directions. [Euclid’s straight lines were finite segments and not infinite, as we think
of lines today.]

Euclid’s 5 Common Notions (obvious axioms) from Book I.

Common Notion 1 Things which equal the same thing also equal one another.
[If a=b&c=b,thena=c]

Common Notion 2 If equals are added to equals, then the wholes are equals.
[Ifa=b&c=d,thena+c=b+d]

Common Notion 3 If equals are subtracted from equals, then the remainders are equal.
[Ifa=b&c=dthen a—c= b-d]

Common Notion 4 Things which coincide with one another equal one another.

Common Notion 5 The whole is greater than the part. [a + b > a]

Euclid’s 5 Axioms or postulates from Book I.

Axiom 1: To draw a straight line from any point to any point.

Axiom 2: To produce a finite straight line continuously in a straight line.
Axiom 3: To describe a circle with any centre and any radius.

Axiom 4: That all right angles are equal to one another.

Axiom 5: That, if a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right angles.

Axiom 5 was the cause of much interest for over 2000 years. Geometers tried to prove that
Axiom 5 was a natural consequence of the first four axioms. It seems obvious enough, but it
turned out that Axiom 5 was indeed independent from the first four axioms. This led to non-
Euclidean geometries, geometries with an axiom different to Axiom 5.

Geometry using only the first four axioms is referred to as Neutral Geometry.
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Propositions: 1 -48 (Euclid’s Elements Book I).

I.1
I.2.

I.3.

14.

LS.

I.6.

I.7.

I.8.

1.9.

1.10.
I.11.

I.12.

I.13.

I.14.

I.15.

To construct an equilateral triangle on a given finite straight line.

To place a straight line [segment] equal to a given straight line [segment] with
one end at a given point.

To cut off from the greater of two given unequal straight lines, a straight line
equal to the lesser.

If two triangles have two sides equal to two sides respectively, and have the
angles contained by the equal straight lines equal, then they also have the base
equal to the base, the triangle equals the triangle, and the remaining angles equal
the remaining angles respectively, namely those opposite the equal sides.

[We say the two triangles with these respective properties (corresponding sides,
included angle and corresponding side or SAS for short, are congruent.]

In isosceles triangles the angles at the base are equal to one another, and if the
equal sides are produced further, the angles under the base will be equal to one
another. [This proposition is known as: The Pons Asinorum, or Asses' Bridge.]

If in a triangle two angles equal one another, then the sides which subtend the
equal angles also equal one another.
[This is the converse of the previous proposition.]

Given two straight lines constructed from the ends of a straight line and meeting
in a point, there cannot be constructed from the ends of the same straight line,
and on the same side of it, two other straight lines meeting in another point and
equal to the former two respectively, namely each equal to that from the same
end.

If two triangles have the two sides equal to two sides respectively, and also have
the base equal to the base, then they also have the angles equal which are
constrained by the equal straight lines.

[We say the two triangles with these respective properties (three sides equal or
SSS for short, are congruent. ]

To bisect a given rectilinear angle.
To bisect a given finite straight line.

To draw a straight line at right angles to a given straight line from a given point
on it.

To draw a straight line perpendicular to a given infinite straight line from a given
point not on it.

If a straight line stands on a straight line, then it makes either two right angles or
angles whose sum equals two right angles.

If with any straight line [AB say] and at a point [B say] on it, two straight lines
[through point B] not lying on the same side [of the straight line AB] make the
sum of the adjacent angles equal to two right angles, then the two straight lines
are in a straight line with one another.

If two straight lines cutone another, then they make the vertical angles equal to
one another.

10
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I.16.

I.17.

I.18.

I.19.

1.20.

I1.21.

1.22.

1.23.

1.24.

1.25.

1.26.

1.27.

1.28.

1.29.

1.30.
I.31.

In any triangle, if one of the sides is produced, then the exterior angle is greater
than either of the interior and opposite angles.

In any triangle the sum of any two angles is less than two right angles.

In any triangle the angle opposite the greater side is greater.

In any triangle the side opposite the greater angle is greater.

In any triangle the sum of any two sides is greater than the remaining one.

If from the ends of one of the sides of a triangle two straight lines are constructed
meeting within the triangle, then the sum of the straight lines so constructed is
less than the sum of the remaining two sides of the triangle, but the constructed
straight lines contain a greater angle than the angle contained by the remaining
two sides.

To construct a triangle out of three straight lines which equal three given straight
lines: thus it is necessary that the sum of any two of the straight lines should be
greater than the remaining one.

To construct a rectilinear angle equal to a given rectilinear angle on a given
straight line and at a point on it.

If two triangles have two sides equal to two sides respectively, but have one of
the angles contained by the equal straight lines greater than the other, then they
also have the base greater than the base.

If two triangles have two sides equal to two sides respectively, but have the base
greater than the base, then they also have one of the angles contained by the
equal straight lines greater than the other.

If two triangles have two angles equal to two angles respectively, and one side
equal to one side, namely, either the side adjoining the equal angles, or that
opposite one of the equal angles, then the remaining sides equal the remaining
sides and the remaining angle equals the remaining angle.

[ We say the two triangles with these respective properties (two angles equal and
one side equal or AAS for short, are congruent. ]

If a straight line falling on two straight lines makes the alternate angles equal to
one another, then the straight lines are parallel to one another.

If a straight line falling on two straight lines makes the exterior angle equal to
the interior and opposite angle on the same side, or the sum of the interior angles
on the same side equal to two right angles, then the straight lines are parallel to
one another.

A straight line falling on parallel straight lines makes the alternate angles equal
to one another, the exterior angle equal to the interior and opposite angle, and the
interior angles on the same side equal to two right angles.

Straight lines parallel to the same straight line are also parallel to one another.

Through a given point to draw a straight line parallel to a given straight line.
11
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1.32.

1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

I.41.

[.42.

1.43.

1.44.

1.45.

1.46
1.47

1.48.

In any triangle, if one of the sides be produced, the exterior angle is equal to the
two interior and opposite angles, and the three interior angles of the triangle are
equal to two right angles.

The straight lines joining equal and parallel straight lines (at the extremities
which are) in the same direction (respectively) are themselves also equal and
parallel.

In parallelogrammic areas the opposite sides and angles are equal to one another,
and the diameter bisects the areas.

Parallelograms which are on the same base and in the same parallels are equal to
one another. [i.e. equal in area.]

Parallelograms which are on equal bases and in the same parallels are equal to
one another.

Triangles which are on the same base and in the same parallels are equal to one
another. [i.e.equal in area.]

Triangles which are on equal bases and in the same parallels are equal to one
another.

“Equal triangles which are on the same base and on the same side are also in the
same parallels.

Equal triangles which are on equal bases and on the same side are also in the
same parallels.

If a parallelogram has the same base with a triangle and be in the same parallels,
the parallelogram is double the triangle.

To construct, in a given rectilineal angle, a parallelogram equal to a given
triangle.

In any parallelogram the complements of the parallelograms about the diameter
are equal to one another.

To a given straight line to apply, in a given rectilineal angle, a parallelogram
equal to a given triangle.

To construct, in a given rectilineal angle, a parallelogram equal to a given
rectilineal figure.

On a given straight line to describe a square.

In right angled triangles the square on the side subtending the right angle is equal
to the squares on the sides containing the right angle. [Pythagoras’ theorem.]

If in a triangle the square of one of the sides be equal to the square on the
remaining two sides of the triangle, the angle contained by the remaining two
sides of the triangle is right. [Converse of Pythagoras theorem, loved by all
carpenters.]

Perhaps note that Axiom 5 (Parallel postulate) is not required for the first 28 propositions.

We will look at some simple constructions, the construction of the regular pentagon and
Gauss’ theorem on the construction of regular polygons. We will end with some compass
only constructions.

12
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Similar Triangles.

Triangles ABC and DEF are said to be similar if they have the same angles, or,
equivalently, if the ratios of the 3 corresponding sides are equal. (Book VI #4)
We write A ABC ~ A DEF.

C
F
AB/AC = DE/DF
y AB/BC = DE/EF
AC/CB = DF/FE
\ a B
A B D E

Of course, if two angles of two triangles are equal, then the third angle must also be
equal. This follows from Proposition I. 32 above, which says that all triangles have
their three angles adding to two right angles (or 180°).

Two triangles are similar if two sides of one triangle are proportional, respectively, to
two sides of another triangle and the angles included between the sides are equal.

(Book VI #6)

C

F If AC/AB =DF/DE
with angle CAB = angle FDE

then A CAB ~ AFDE

Proposition VI.2. A line through the mid points of any two sides of a triangle
will be parallel to the third side of the triangle. (Book VI #2)
C

Proposition V1.3 A line through the mid point of any triangle and parallel to
another side bisects the third side of the triangle. (Book VI #2)

13
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Congruent Triangles.

Two triangles are congruent (identical) in the following four cases:

SSS When the three corresponding sides of the triangles are equal.
Proposition 1.8 above (#8 of Euclid’s Elements Book 1).

AAS  When two corresponding angles and a corresponding side are equal.
Proposition 1.26 above.
If two corresponding angles are equal then all three corresponding angles are
equal, since by 1.32 the sum of the three angles of any triangle is fixed, to that of
two right-angles..

SAS When two corresponding sides and the included angle are equal.
Proposition 1.4 above.

Note this does NOT include ASS, which is when two corresponding sides are equal,
but an angle other than the included angle is equal, unless this common equal angle
is aright angle.

As my high school teacher used to say, ‘don’t make an ASS of yourself with this
mistake’. See diagram below:

A B D

We see A ABC and A ACD have corresponding
equal sides: AC (common to both) and CB =CD
and there is a common angle CAB. We have ASS.
We do not have SAS. Clearly A ABC= A ADC.

SS90°  The right angle need not be the included angle, it can be anywhere.
This is equivalent to SSS, since if one angle is a right angle and two
sides are equal, then all three sides must be equal. Propositions 1.8 & 1.47.

Euclidean Constructions.

Euclidean constructions are those figures that can be constructed using only a straightedge
and a compass. Note the straightedge is not a ruler, it has no markings. Euclid’s compass
needs two given points to use. The compass requires a centre point and another point to
establish the radius. The compass collapses once it is withdrawn from the page.

However, Euclid’s Proposition #2 (Book 1) assures us that the modern compass which can be
used to transfer fixed distances is equivalent to his collapsing compass when used with a
straightedge. For all ‘Euclidean constructions’ we shall assume the use of a straightedge and
a modern compass, since Euclid’s collapsing compass and the modern compass are
equivalent for Euclidean constructions. Of interest, it can be shown that a fixed (rusty)
compass and a straightedge is all that is needed for all Euclidean constructions.

14
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Try the following constructions:

1. To construct an equilateral triangle with one side a given finite (straight) line. 1.1.
In Euclid’s text a ‘line’ was not necessarily straight, any curve ‘without breadth’ was a
line. We shall use the current understanding of a ‘line’ as being always straight.
2. To bisect a given angle. (Proposition 1.9)
. To bisect a given line segment. (Proposition 1.10)
4. To construct a line through a given point P, which is perpendicular to a given line.
Case a. When P is on the given line. (Proposition 1.11)
Case b. When P is not on the given line. (Proposition 1.12)
. To construct a line parallel to a given line through a point P not on the given line. 131.
6. To construct an angle at a given point P on a given line, the angle the same as a given
angle. (Proposition I. 22)
7. To construct a square with one side a given line segment. (Proposition 1.46)
. To construct the tangent from a given point P to a given circle, P outside the circle.
9. To construct two pairs of tangents common to two given non-intersecting circles.

w

9}

e

10. To construct a square with area twice that of a given square.

11. To trisect a right angle.

12. To trisect a given line segment.

13. To construct a regular hexagon.

14. To construct an equilateral triangle inscribed within a given circle.
15. To construct a regular pentagon. See also Gauss’ theorem below.

Constructions using the compass alone, no straightedge:

16. To construct (find) the midpoint between two points A and B.

17. To find the centre of a given circle.

18. To inscribe a square inside a given circle. (Napoleon’s problem.)
19. To construct the corners of a square given two adjacent corners.
20. To construct the corners of a square given two diagonal corners.

In fact, all points of any Euclidean constructions can be found with the compass alone.
This is the Mohr—Mascheroni theorem mentioned in the Introduction.

15
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Regular Polygons.

Euclid listed constructions for the regular polygons with 3 sides (triangle), 4 sides (square), 5
sides (pentagon), 6 sides (hexagon). Euclid showed that if you could construct a regular
polygon of r sides and one of s sides, then you could construct one of rs sides, provided r
and s were relatively prime (that is integers r and s having 1 as the largest common factor).
The construction of a regular 15-sided polygon is listed in The Elements, Book IV,
Proposition #15. You might wonder if it is possible to construct regular polygons of any
number of sides? It is clear that having done 3 sides, 4 sides, 5 sides and 15 sides, it is a easy

matter to construct regular polygons of sides 3x2", 4x2" , 5x2" and 15x2" for any positive
integer n by bisecting (repeatedly) the sides.

What about 7,9,11,13,17,19, .... sides?
Gauss as a teenager proved the remarkable result that an m sided regular polygon can be
constructed with Euclidean tools when m is prime and m is of the form:

m=2%+1 any integer n = 0.
Numbers of this form, denoted F(n), are known as Fermat numbers.

20

FO)= 27 +1 =3 prime
21

F()= 27 +1 =5 prime
22

FQ)= 27 +1 =17 prime
23

F3)= 27 +1 = 257 prime
4

F(4) = 22 +1 = 65,537 prime

25
FG)= 27 +1 = 4294967297  notprime (641 is a factor)

Of interest, Fermat conjectured that all such numbers would be prime. It was Euler who
noticed that F(5) was not prime. To date, no Fermat numbers, other than the first five are
known to be prime. It is now thought that only the first five Fermat numbers are prime.

The constructions for the 17, 257 & 65,537-sided regular polygons are possible. They are
not easy. Recall that Gauss requested a 17-sided regular polygon inscribed on his tombstone.

A mathematician (Professor Hermes) has described the construction of a regular 65,537-
sided polygon; apparently no one has checked his thousands of pages of instructions. In 1837
Pierre Wantzel proved the converse of Gauss’ remarkable result. Wantzel showed, using
methods from Abstract Algebra, that regular polynomials could be constructed only if the
number of sides was some multiple of 2" with distinct Fermat primes.

Hence no need to waste time seeking the construction (using only Euclid’s straightedge and
compass) of a7,9, 11, and 13-sided regular polygon, as we now know it is not possible.

Theorem. (Gauss-Wantzel)
An m-sided regular polygon (m = 3) can be constructed with Euclidean tools if and only if

m= 2"p;p2ps... pi wherethe p; are distinct Fermat primes and n is any integer, n > 0.

16
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Regular Pentagon construction.

1. Construct radius OC perpendicular to a diameter AB of any circle.
2. Bisect radius OC at P.

3. Bisect angle BPO, bisector meeting OB at point Q.
4. Construct QR perpendicular to OB, meeting the circle at R.

BR is a side of a regular pentagon (with vertices on the circle of construction).

Proof (that the construction in the diagram above does indeed yield a regular pentagon)
We show that angle ORQ = 18°,  hence angle ROQ = 72°
as required for a regular pentagon.
Let the circle have radius one unit, and let angle BPO = 2f

tan 20 = OB/OP=1/(1/2) = 2 from right triangle A POB

also tan 23 = M well known trigonometric identity.
1—-tan”p
_2tanf =2 or tan’p —tanf— 1= 0
1—tan®p
- . . V51
solving this quadratic in ‘tan 3° gives tanff = 2
. J5-1
tan p = 20Q (fromright triangle APOQ) .. O0OQ = 1
. J5-1 o
sin ORQ = . (from right triangle A ORQ.)
sin 18° = @ (lemma below)
ie. sin ORQ = sin 18°
Angle ORQ =18° => ROQ=72°. QED

The lemma used above comes from elementary trigonometry.
We prove this lemma on the next page.

17
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J5-1

Lemma. Sin 18° = ——

4
Proof. Letoa =18° and note that Sa = 20 + 30 = 90°.
sin 200 = cos 3a (consider any right triangle with angles 2a, 3o & 90°)

sin 200 = cos 20 cos o - sin 20 sin o

write cos 3o = cos(2o.+ ) & expand

sin 2a (1 + sin o ) = cos 2. cos o

recall: cos(a + ) = cos a cos f - sin o sin

2sinocos o (1 +sina)=(1-— 25in2a) COos oL since cos 2a = 1- 2sin’a.

4sina+2sina—-1=0 then solving this quadratic in ‘sin o’

J5-1
4

sino = = sin 18° since o was 18°. Q.ED.

Four basic, most often used triconometric identities:

* sina+cos’a=1 for any angle o.

* sin(o * ) = sin o cos = sin § cos o for any angles o & f.

* cos(ax ) =cosacosf Fsinasinf for any angles o & f.
tano + tanf3

o tan(axf)= m for any angles o & P.

Note the inversion of the plus-minus signs in the last two identities.

18
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Impossible constructions,_three famous problems.

1. To construct a cube with volume double that of a given cube.

2. To trisect any given angle.

3. To construct a square with the same area as that of a given circle.
This problem was referred to as ‘squaring the circle’.

The first problem: also referred to as ‘duplicating the cube’ or the ‘Delian Problem’. A
reference to this problem occurs in a document from the famous Greek geometer
Eratosthenes to King Ptolemy III around 240 BC: “To King Ptolemy, Eratosthanes sends
greetings. It is said that one of the ancient tragic poets represented Minos as preparing a
tomb for Glaucus and as declaring, when he learnt it was a 100 feet each way: “Small indeed
is the tomb thou hast chosen for a royal burial. Let it be double [in volume]. And thou shalt
not miss that fair form if thou quickly doublest each side of the tomb.” But he was wrong.
For when the sides are doubled, the surface area becomes four times as great and the volume
eight times as great. It became a subject of inquiry among geometers in what manner one
might double the given volume without changing the shape. And this problem was called the
duplication of the cube, for a given cube they sought to double it.” (You might note that it is
a relatively easy problem to double a (two dimensional) square.)

It was finally shown by Pierre Wantzel in 1837 that this first problem is indeed impossible.
Interestingly enough, Wantzel did not used methods of geometry, but techniques from the
new subject of Abstract Algebra. See A. Jones, S.A. Morris and K.R. Pearson’s “Abstract
Algebra and Famous Impossibilities” (Springer-Verlag 1991).

The second problem: Jones, Morris and Pearson (above) suggest that this problem
possibly arose from attempts to construct a 9-sided regular polygon which can be constructed
if, and only if, the angle 60° can be trisected.

Angle 90° and various other angles can easily be trisected, but the general angle resisted
trisection. Again, it was Wantzel in 1837 who showed that it is not possible to trisect an
arbitrary angle, hence a regular 9-sided polygon is not possible to construct.

On trisecting an angle.

1. Archimedes’ construction: To trisect given angle ABC

A 1. Draw any semi-circle centred on
point B as shown.
E 2. Construct AD, D on BC
extended, as shown, so that

o 3a DE has the same length as the
D B C radius of the semi-circle.

Angle ADB is one third of the given angle ABC.

Proof.

Join EB.

Angle EBD = angle EDB = a

Angle AEB = 2a proposition # 32 & isosceles A DEB
Angle AEB = Angle EAB isosceles A EBA

Angle ABC = Angle D + Angle A = 3a. proposition # 32 Q.E.D.

Why is this construction not classified as Euclidean?
2. Hippocrates’ construction: To trisect given angle ABC.
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1. Construct any line [ parallel to BC, through A say.

2. Drop AE perpendicular to BC as shown.

3. Construct BD, point D on line /, so that DF is twice the length of AB.
Angle DBC is one-third the given angle ABC.

Proof.

Let angle ADB = o = angle DBC

Let angle ABD =3

Apply sine rule to triangle ABD

sin 3/ (2cos o) = sin o /1 (since AD =2 cos @)

sin 3 = sin 2 a, therefore p = 2. Q.E.D.

An alternative proof.

]2/

C

B E

In triangle AFD drop the median from A to side FD at G say. This creates two isosceles
triangles AGD and AGB (since AADF is right).

It will be shown that the diameter of a circle subtends a right angle at the circumference and

conversely. The angles are then as marked. Q.ED.

Why is this construction not classified as Euclidean?
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The third problem: also referred to as the ‘guadrate of the circle. This problem is linked
to that of finding the area of a circle. A manuscript from 1650 BC proposes that the area of a
circle is that of a square whose side is the diameter diminished by one ninth. That is, the area

of a circle of radius r is given as [(8/9)(2r)]2. This corresponds to a value of
= (256)/(81) = 3.1604.... . Archimedes (287-212 BC) improved on this approximate
value of w and showed that:

3;—‘1) <m <31 or equivalently: 3.14084 ... < m < 3.14285...

we now know 5t to thousands (trillions) of decimal places:  7T= 3.14159 26535 89793
23846 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280
34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593
34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482
13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715
36436 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036
57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857
52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737
19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056
81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301
46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813
62977 47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859
50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387
52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 62863
88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642
0199...

The great 20th century mathematician Alex Craig Aitken could easily recite the
above 1000 decimal places. Once he was asked to begin at the 501st decimal,
Aitken instantly began: “7336244065664308....

F. P. Lindemann, using modern abstract algebra, showed in 1882 that it is impossible to
construct (with Euclidean tools) a line of length /7 , which in effect showed that the
quadrature of a circle is impossible.

Pythagoras’ Theorem. Proposition I. 47

If ABC is any right triangle with sides q, b, c, and side c is the hypotenuse, the side opposite
the right angle at vertex C, then: a’ + b% = ¢?.

Proof.

There are hundreds of different proofs for this great theorem. See E.S.Loomis
“Pythagorean Proposition” for a list of over 350 proofs of this fundamental theorem.
We give one of the simplest proofs. Later, we give Euclid’s proof.

Take arbltrary right triangle ABC and arrange three more copies as shown in the diagram.
C  Areaof large square = Area of small square + 4 (Area of AABC)

by . @ (@+b)? = c? + 4(ab/2)

a’+b? =¢? Q.ED.

Historical note: 21
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When I was at school, all geometry proofs ended with Q.E.D. for the Latin ‘Quod erat
demonstrandum’ for ‘Which was to be proved’. Many math books, Calculus texts especially, still mark
the end of a proof, no longer with Q.E.D., but with some mark such as 1.

Many Geometry texts still use Q.E.D.

At times, the reader is unfamiliar with a complicated proof and it is helpful to be told that the proof
has indeed ended. Sometimes the proof is so simple (like the very next proof) that it can be helpful to
be told, especially at first reading, that this is all there is to the proof.

Converse of Pythagoras’ Theorem Proposition #48 Euclid’s Elements Book I
If a? +b% = c¢? for any triangle with sides a, b, c, then the angle between the two

sides a and b is a right angle.

Proof:

Given A ABC with sides a, b,¢ and a’ +b? = ¢?

construct a right triangle A'B’C’” with two sides
of length a and b, perpendicular to each other.

By Pythagoras’ theorem the third side of A A’B'C’

Is ¢ = /g2 +p> sothat AABC= AA'B'C’ (SSS).
Sothat C= C’= 90°. Q.E.D.

Builders, to frame structures at right angles to each other, use Pythagoras’ converse theorem
constantly. The most common triangle used is one having sides of 3K, 4K & 5K units of
length, where K can be any non-negative number, almost always an integer for convenience.

Another example often used by builders is the 5, 12, 13 triangle.

2 2 2
Since 5 + 12 = 13 there will be a right angle between the two shorter sides of any
triangle with sides 5, 12, 13 metres (cms, feet or any unit of distance measurement).
Definition.

Integer triples, {a,b,c} with a? +b? = c?, suchas {3,4,5} and {5, 12, 13} are called
Pythagorean triples.

It can be shown that there is an infinity of distinct Pythagorean triples, other than the obvious
integer multiples of the above such as {6, 8, 10}, {30, 40, 50}, {50, 120, 130}.

{7,24,25}, {8,15,17}, {9,40,41}, {12,35,37}, {20, 21,29}

are further examples of Pythagorean triples.

Definition.
A median of a triangle is the line segment from a vertex to the mid-point of the opposite side.
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Theorem. The medians of any triangle are concurrent.

A

Proof:

Take arbitrary triangle ABC. Let BF & CE be any two medians meeting at G say.
We show that the third median passes through G, by extending AG meeting BC at H
and then showing BH = HC. i.e. we show GH is the 3" median.

Extend AG further to point D such that AG = GD.
We see EG//BD since EG goes through the mid points of sides AB & AD of A BAD
FG //CD since FG goes through the mid points of sides AD & AC of A DAC.

Therefore BGCD is a parallelogram. The diagonals of any parallelogram bisect,
so that BH = HC. The third median does indeed go through G. Q.ED.

Corollary.
The point of concurrency of the medians of any triangle trisects each median.

Proof HG = HD since the diagonals of parallelogram BGCD bisect each other.
GA = GD by construction
HG = AG/2 = AH/3 so that G is the trisection of median AH.

Since there was nothing special about median AH, the proof would apply equally
well to any median, so that G trisects each of the three medians. Q.E.D.

Of interest. It can be shown that the point of concurrency of medians is the centre
of gravity for a triangle lamina (of uniform density).

Theorem. The angle bisectors of any triangle are concurrent.
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Proof. Take an arbitrary triangle AB C.
Bisect any two angles A & B say, with the bisectors meeting at O.
We show that O C bisects angle .

Drop perpendiculars from O to the three sides at points E, F, G as shown.

we see AOBE= AOBG (SAA) OE = 0G
AOAE = AOFF (SAA) OE = OF

therefore AOCF= AOCG (SS90°) since OF=0G

therefore OF = 0G Q.ED.

Corollary. The point of concurrency of the angle bisectors of any triangle is the
centre of a circle (the incircle), which touches the three sides of the triangle.

Proof From the above proof, we see that segments OE = OF = OG and that each is
perpendicular to the sides AB, BC, CA respectively. The radius of the incircle is OE and the
three triangle sides are tangents to this circle. Q.E.D.

Theorem. The perpendicular side bisectors of any triangle are concurrent.
A
"
B C
F

Proof. Take arbitrary triangle ABC.

Take the perpendicular bisectors of any two sides, AB and AC say.

Let them be OE and OG as shown.

Drop a perpendicular from O to side BC at F. We show that OF bisects BC.

OA=0B since A OEA= A OEB (SS90°)
OA=0C since A OGA = A OGC (SS90°)
therefore A OFB = A OFC (SS90°)
and so FB = FC Q.E.D.

Corollary:

The point of concurrency of the perpendicular bisectors of any triangle ABC is the centre the
unique circle (circumcircle) through the three vertices A, B, C.

Proof:
From the above proof we see that OA = OB = OC. Therefore the circumcircle
with centre O and radius OA goes through the points A, B, C. Q.E.D.
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An altitude of a triangle is a line segment from a vertex perpendicular to the opposite side.
An opposite triangle side may have to be extended outside of the triangle for perpendicular
intersection.

B
Altitude from B
-
___________ [ -
A C
Theorem. The altitudes of any triangle are concurrent.
C’ ) A ‘ B/
U ' B A '
VAl N
B C

Proof.

Take arbitrary triangle ABC.

Construct triangle A'B'C' as shown with B'C' //CB, A'C'//CA and B'A'// AB.
If a, B,y are the angles in A ABC we see angle ACB' =« since A'B' // BA.
Similarly, all the other angles follow as marked in the diagram.

AABC= AABC'=ACB'A therefore AC' = AB'

Since C'B' // BC (by construction) we see that the perpendicular bisector of side C'B'
is an altitude of triangle ABC. Similarly, we see that the three perpendicular bisectors
of the sides of triangle A'B'C' are the three altitudes of triangle ABC. The
perpendicular bisectors of any triangle are concurrent, so it follows that the altitudes
of ABC are concurrent. Q.E.D.
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Theorem. The diagonal of a circle subtends a right angle at the circumference.

Proof. Take any point C on an arbitrary circle with diameter AB and centre O.
We show angle ACB= a+ = 90°.

Since OA=0C angle OAC = angle OCA = a
and OC=0B angle OCB = angle OBC = f

Summing the angles of AABC: a+a+p+p = 180°
sothat a+p = 90° Q.E.D.

Corollary.

For any right triangle, the median to the hypotenuse is half the length of the hypotenuse.

The converse of this theorem is true and is often used by builders to check for right angles.

This check requires no calculations, no square roots.

This result came in handy when we considered Hippocrates’ trisection of an angle.

Theorem. Any chord of a circle subtends an angle at the centre twice that subtended at

any point P on the circumference, P on the same side as the centre.

P

A B

Proof.
Take arbitrary chord AB and arbitrary point P on the circumference,
the same side as the circle centre O. We show $ = 2 (o, + a.,).

Note the two base angles of A OAB are (180-) /2
Summing the angles of AAPB: 180°= a, + a,+ a,+a, +2(180-8)/2

B = 2(a, + ). Q.E.D.
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If AP (or BP) is below AO the diagram (& proof) need to be modified slightly.

180 - B
2

Again, we show 20. = f3.
Mark in all equal angles of the two isosceles triangles.
Sum the 3 angles of A APB

180° = [FLoy]+ o+ [(r+0)+ 180 5]
2
ie. 200 = f. Q.E.D.

Corollary.
Any chord of a circle subtends at the circumference P, on the same side as the centre a fixed

angle. [On the other side of the chord: It will be shown as a corollary to the next theorem,
that a different constant angle is subtended by the chord at any point on the circumference,
unless the chord is a diameter, in which case the angles subtended at the circumference on
both sides of the chord are equal to 90°.]

Proof. The angle subtended at any point P on the circumference, on the same side as the

centre, is always half the fixed angle subtended by the chord at the centre of the circle.
This follows immediately from the above theorem. Q.E.D.
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Theorem.

The opposite angles of a quadrilateral sum to 180° if and only if the vertices
A,B,C,D lie on acircle. [We say ABCD is a cyclic quadrilateral.]

B
A
C
D
Proof. (=)

Suppose points A, B, C, D lie on a circle. We show

angle A+ angleC = (o, + o)+ (y, +v,) = 180°

Mark in all equal angles of the four isosceles triangles and sum the interior
angles of the given quadrilateral ABCD (which sum to 360°).

360°
180°

20,+2y, +20,+2y,
(o, +0,) + (v, +7,)

Conversely (<)
Let ABCD be an arbitrary quadrilateral such that the opposite angles sum to 180°.

We show that the vertices A, B, C, D must lie on some circle.

A

Construct the unique circle through any three vertices, A, B, C say.
Let E be the point of intersection of this circle with CD (or CD extended).
Since A, B, C, E are on the circle, by the above result we must have:

B +0 =180
We are given: B +d =180° 5. 86=08" henceD=E
so that D lies on the circle through the three points A, B, C. Q.ED.
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Of interest:
1. We can construct a circle through any three non-collinear points.
This is the circumcircle of the triangle formed by these three points.

2. We can construct a circle through the vertices of any rectangle since all angles are
90° (hence the opposite angles sum to 180°).

3. We can never construct a circle containing the vertices of a parallelogram
unless it is a rectangle.

4, Given four random points A, B, C, and D on a plane, it is most unlikely that a circle
can be constructed to contain each point. We need that extra condition of having the opposite
angles of the quadrilateral ABCD sum to 180°. Perhaps note that if two opposite vertex

angles of a quadrilateral sum to 180°, then the remaining two vertex angles also sum to180°.

Euclid's Proof of Pythagoras’ Theorem.
Proposition #47 of Euclid’s Elements Book I:

If ABC is any right triangle with sides a, b, ¢ then a2+ b2 = 2.
Where side c is the side opposite the right angle at vertex C.

Proof.

5 Take any right triangle ABC with sides a, b, ¢ in the
G b M usual notation.

Construct squares adjoining the sides as shown

Let CHE be perpendicular to DF (and perp. to AB).

a N| We show that the area of rectangle ADEH is b .
Similarly we could show area of rectangle HEFB is a.

AAGB =AACD (SAS) [AB=AC=c,
angle DAC = angle GAB,AG =AC = b]

Area A GAB = Area A GAC = b?/2 (both triangles have same base b & same height b)
Area A ADC = Area A ADH (both triangles have same base ¢ and same height)

Therefore: 1/2 area of square AGKC = 1/2 area of rectangle ADEH = 57/ 2
Similarly 1/2 area of square BCMN = 1/2 area of rectangle FEHB = a°/2

Finally we see the area of square ABFD = ¢’ =a’ + b . Q.E.D.
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Heron’s Formula.

For any triangle ABC with sides a, b, c where semi-perimeter s = (a+b+c)/2

Proof.

Area of triangle ABC = bh/2 = g ct—m’

To find m, note h> = c?—-m’ = a*~(b-m)’.

2 2 2
cc+b"—a
In terms of a,b,c m = T

b

24 p? 242
Area of triangle ABC = — \/ % _ (c+b"—a”)

2 (2b)*

This can be factored using (several times): a’— b’ = (a + b)(a—b)

Area of triangle ABC i\/ 4b*c* — (c* +b* —a?)?

= i\/2bc+cg+b2—a2)(2bc—c2—b2+a2)

= erbr-atiat—e-b)

= i\/(c+b+a)(c+b—a)(a+b—c)(a+c—b)

_ \/(C+b+a)(c+b—a)(a+b—c)(a+c_b)
2 2 2 9

= \/s(s —a)(s=-b)(s-c) Q.E.D.
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Perpendicular Circles construction.

We are given a circle C; and two arbitrary points A & B inside this circle, not on a
diameter. Our aim is to construct a circle C, through points A & B such that C;L C,
(at the two points of intersection). We begin with a warm-up theorem. This theorem
is not needed, however it gives a guide to the proof of the main theorem.

Theorem 1. (Warm up)
Given a circle C with radius R, centre O and a point A inside. Extend OA to any
point A” outside C, let D be the mid point of AA’. The circle centre D and radius DA

cuts the given circle at right angles iff OA.OA’ =R2.

[A & A are called inverse points with respect to C. We will come back to this in Inverse Geometry.]

Proof
= Suppose that the circles are perpendicular and meet at points
E & F. OED is aright triangle, so that by Pythagoras’ theorem:

R? = OD?-ED? = OD?-AD? = (OD — AD)(OD +AD) = OA.OA’

= Suppose that OA.OA’ = R2. Tt follows that R?> = OD? — ED? then using the
converse of Pythagoras’ theorem it follows that triangle OED is a right triangle, so
that the two circles are indeed perpendicular.

QED.
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Theorem 2. (The main event)
Given a circle C with radius R, centre O and a point A inside. Extend OA to any

point A" outside C. Let / be the line through D the mid point of AA”, with / L AA’.
Then any circle with a centre G on /, and with radius GA is perpendicular to the

given circle C iff OA.OA” =R?

Proof
= Suppose that the circles are perpendicular and meet at E and F as shown.

We apply Pythagoras’ theorem in succession to the
right triangles OEG, ODG and ADG.

R? = OG? - GE? Right triangle OEG
= OD? + GD2 - GE? Right triangle ODG
= OD? + GA>- AD? - GE? Right triangle ADG

= OD?-AD? = (OD-AD)(OD +AD) = OA.OA’ Since GA=GE
The converse follows immediately using the converse of Pythagoras’ theorem.

<= If R%2=0A.0A’, then working backwards it follows that R? = OG>~ GE? so
that angle OED is a right angle, and so the circles are perpendicular. Angle OFD is
also a right angle by symmetry about OG. Q.E.D.

The Construction.
We are given an arbitrary circle C radius R and centre O say, with two interior points
A & B not on any diameter. We construct the unique circle through points A and B
and perpendicular to the given circle C.
1. Extend either OA or OB, OA say, to point A” such that OA.OA” = R?

(See the construction for inverse points below).

2. Construct line / the perpendicular bisector of segment AA’.
3. Construct line m the perpendicular bisector of segment AB.

4. The required circle is centred on the intersection of / & m
point G say, having radius GA = GB = GA’.
Stated more simply:

1. Extend either OA or OB, OA say, to point A’ such that OA.OA’ = R?.
2. The required circle is the unique circle through the points A, B, A’.

It is clear that the required circle is unique since there is only one circle possible
through any given three (non collinear) points.

This construction will be used to construct the “P-lines” of Poincare’s model of
hyperbolic geometry in the circle, end of Chapter 6.
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Construction of Inverse Points:

B

BC is tangent to circle @

It can be shown for the above diagram with the tangent from B to point C, that

OA.OB =R2. i.e. Aand B are inverse points.

Hint: Use Pythagoras’ theorem on the three right triangles to get an expression in R, OA and OB (= OA + AB).

Constructions with compass alone.

In the introduction we mentioned the Mohr—Mascheroni theorem which states that
any Euclidean construction can be done with compass alone. We give four such
constructions of interest.

Theorem.

The modern compass is equivalent to the Greek collapsible compass.

That is, any construction with the modern compass can be achieved with the
Euclidean collapsing compass.

Proof. Essentially we prove Proposition 2 of Euclid’s Elements Book I, but without
the use of a straightedge. We show that for any given point O say, and any given
circle of radius AB through the points A and B can be moved to have centre O, using
only Euclid’s collapsible compass.

We shall use Howard Eves’ convenient notation: A(B) shall represent the circle
centred on point A and passing through point B, any points AB. A(BC) shall
represent the circle centred on point A with radius the length of BC, for any points A,
B,C. [It follows A(B)=A(AB)]

Let O be any point. Let A, B be any
other two points.

We show that the circle A(AB) can be
transferred from centre A to centre O.

Construct circles O(A) and A(O),
meeting at F and G.

Construct circles F (B) and G (B),
meeting at B,

From symmetry we see OB” = AB.
Q.ED.
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We give the construction, using only a compass to find the mid point between two
given points A and B. Perhaps note, having proved the above theorem, we can use
the modern compass free of any guilt. Euclid will not be looking down from above,
glowering and shaking his head.

G
o /- \\ e Let A and B be two arbitrary points.
// ;" // \ N\ Construct circles B(A) and A(B) meeting at D.
£ is
/ :{: 74 A
/ ' \\ \ Construct circle D(A) meeting B(A) at E.
P S P . .
§\ ;j Construct circle E(D) meeting B(A) at F.
A
\ N\ / /| A, B, Fwill be coli ith AB = BF
Y 4 , B, F will be collinear wit = BF.
\ \\ \\\ / f/
AN . ~
— 3
........... )

Construct circle F(A) meeting A(B) at G and H.
Construct circles G(A) and H(A) meeting at C.

We show AC = CB.

Isosceles A FAG ~ isosceles A CAG

AG/AF = AC/AG =AC/AB ie.

AG/AF = % =AC/AB Q.E.D.

Three cheers for Mascheroni.
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We next find the centre of a given circle. No straightedge!

Let @ be any given circle.
We find the centre, point O.

Choose any point A on the given circle.
Construct any circle centred on A such that it
cuts the given circle ‘@ in two points B and C,
circle A(B) say.

Construct circles B(A) and C(A) meeting at D
say.

(It is possible that point D is outside circle @)

Construct circle D(A) meeting A(B) at points E and F.
Construct circles E(A) and F(A) meeting at point O.
It can be shown that O is the centre of given circle .

Proof.

Note that the two (isosceles) triangles: A DEA~ A OEA hence have proportional sides.
DA=DE & EO =EA by construction, and angle EAO = angle EAD;

AE/AD = AO/AE hence AB/AD = AO/AB (since AE = AB by construction).

Next,note AABO & A ABD are similar triangles, having one angle BAO in common and
proportional sides. Hence A ABO is isosceles since A ABD was isosceles.

A

That is: AB/AD = AO/AB  since ADEA~ A OEA
Isosceles ADBA ~ AOBA since AB/AD = AO/AB
and angle BAO is the included (common) angle between the proportional sides.

So that A OBA must be isosceles too, i.e. OB = OA.

Finally, using symmetry it follows that OC = OA.

Point O is equidistant from 3 points on the circle, it follows that O must be the circle’s
centre. 35 Q.E.D.
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Napoleon’s Problem.

Napoleon Bonaparte (1769-1821) was a respected geometer. He was good friends
with many of the great French mathematicians of the time (Gaspard Monge, Pierre
Laplace, Pierre Mascheroni, Louis Lagrange, Victor Poncelet, ....).

Napoleon is considered to be one of the greatest military commanders of all time
(along with my military hero Alexander the Great (356-323 BC) from Macedonia).
The Duke of Wellington, of Waterloo fame, is quoted as saying: “I would rather see
50,000 [French] troops arrive on the battlefield than Napoleon himself.” Such was
Napoleon’s electrifying influence on his men.

‘Napoleon’s Problem’ was to divide a circle into four equal parts using only the
compass.

Equivalently, to inscribe a square in the
circle.

Let us assume that the centre point O is
given. If not, we could easily find it,
using only a compass, by the above
construction.

Choose any point A on the given circle
[ | with centre O.

F

Construct circles A(AO), B(AO) and C(AO) meeting the given circle at points B, C, and D
respectively.

Construct circles A(C) and D(B) meeting at point E as shown.

Construct circle A(EO) meeting given circle at points F & G.

It can be shown that points A, G, D, F are the points of a square inscribed in the given circle.
Hint: Let the circle diameter AD be 2R. Show that AC = V3R, then show
AD=GD=+2R.

Napoleon’s Theorem.
Take any triangle, construct equilateral triangles on each of the three sides. The

centroids of these three triangles are the three vertices of an equilateral triangle.
(The proof is not that easy.)
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Appollonius’ Problem .

Appollonius of Perga: (240 — 190 BC) Known as “The Great Geometer” whose treatise on
Conics is one of the greatest scientific works from the ancient world.

Appollonius’ circle problem was to construct (straightedge and compass only) a circle
touching (tangent to) three given circles. No easy task, though there is an easy proof that it is
possible (in most cases), using Inverse Geometry.

Circles @1, @, and @3 are given
(i.e. they are fixed on the page).

The problem is to construct (using Euclid’s tools only)
i a circle (dotted) that just touches each of the given
,| three circles @1, > and €3 .

There are usually many possible cases for three given circles:

The following eight diagrams are the curtesy of Wolfram.

°. 0. 0,
o « ® Vo

.

L

9

One tangent circle with the three given three circles inside.
One tangent circle with the three given three circles outside.
Three tangent circles with one of the given three circles inside.
Three tangent circles with two of the given three circles inside.
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Steiner’s Porism.

Take any two circles, one inside the other, either touching or not touching and not necessarily
concentric. We can draw a circle touching both circles, circle # 1 below say. Then, using
Appollonius’ result we can draw a second circle touching the two given circles and circle #1,
to get circle # 2, and so on. Will the last circle (#12 in the diagram below) just touch the first
circle? Not always, but if it does, then we can begin with any circle, any size, for circle #1,
so that there is either no way to make all circles mutually touching or there is an infinity of
ways of making all circles mutually touching. I just love this result.

In the case of two given touching circles, we can begin anywhere with circle number one,
then using Appollonius’ result construct as many touching circles as we please heading
towards the kissing point. There is no last circle of course, the touching circles just get
smaller and smaller, an infinity of them on either side of the first circle constructed, circle #1
in the diagram (of any size, so long as it fits between the two given touching circles (one
inside the other).

Given outer gjy.. e

Outer given circle

Inner given circle
touching the given

outer circle.
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Finally, we give Wallace’s 1870 answer to Hampton’s £500 challenge to prove that water
does in fact lie in a curved surface, using Euclid’s II1.36, #36 from book III. This example
also shows how educated people were almost always familiar with Euclid’s work. Even in
the 20t century, ‘Geometry’ was usually simply referred to as ‘Euclid’.

Euclid’s Proposition I11.36.

If a point is taken outside a circle and two straight lines fall from it on the circle, and
if one of them cuts the circle and the other touches it, then the rectangle contained by
the whole of the straight line which cuts the circle and the straight line intercepted on
it outside between the point and the convex circumference equals the square on the
tangent.

Let AD = x

Ch =2b
AB = ¢
radius r= OB = OC

0

A tangent B

Euclid Book 11l Postulate # 36
AC.AD = AB? ie. 177 (x-2b)x

Note:  (x—b)PF —b% = (x-2b) x

Wallace placed three poles of equal height along a canal. The section of canal was
approximately 6 miles (10 km) long. The poles were placed so that the tops were all
exactly the same height above the adjacent water level of the canal.

When one looked from the first pole to the final pole, it was fairly clear that the tops
of the poles were not all in a straight line. The top of the furthest pole appeared to be
slightly down from the line joining the tops of the first two poles.

The experiment was not as conclusive as one might expect. The refraction of light,
especially when looking horizontally, complicates the experiment somewhat by
bending the light rays to some extent.
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Chapter 3
Conic Sections

Definition.
A circle is a set of points which are equidistant from a fixed point O.
Points in this set are said to lie on the circle centre O, with radius R.

Definition.
An ellipse is the set of points P such that the distance PF; + PF, is a constant, 2a say,
for any two points F; and F.. F; and F; are called focus points for the ellipse.

When F; = F; this special case is of course the circle defined above.

P
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Reflection property of the ellipse.

Theorem.
Take any point P on the ellipse with foci F; and F,.
Let APB be the tangent at point P, to the ellipse,

then angle APF, equals angle BPF,.

Proof.
Let F’ be the reflection of F» in ‘mirror’ APB, so that PF, = PF’.
It will suffice to show that F,PF’ is a straight line.

Suppose that F/PF’ is not a straight line. Suppose that the straight line joining F, to F’
meets the ellipse at P,, P, # P and meets the tangent line AB at P..

We get a contradiction by showing that the length F|F is greater than F/P + PF " which is
impossible since the third side of any triangle (AF,PF " in this case) cannot exceed the sum
of the other two sides.

Using the property of the ellipse we have:

F1P1 + P1F2 = 261 = F1P + PF2 (Some constant a)
F]F, = F]P] + (P]P2 + P2F’) > F]P] + P]Fz = 2a
note (P1P2 + PZF,) = P1P2 + Pze > Ple

F,F > 2a = FiP+PF
This is impossible, hence F,PF" must be a straight line, we must have P, = P.
Q.ED.

That is, any ray of light from F, reflects from the mirrored ellipse to F, and
conversely.
There is an elliptical church in Sicily, with a confessional box placed at one focus!
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Definition.

A parabola is the set of points P such that the distance PF from P to a fixed point F equals
the distance PD the distance from P to a fixed line /. The fixed point F is called the focus of
the parabola and the fixed line / the directrix of the parabola.

Fixed point F is called the focus.

For any point P on the parabola
always PF = PD

Point V is called the vertex of
the parabola.

XPAIC]

The reflection property of the parabola is that any ray of light (say) parallel to the axis
reflects from a parabolic mirror to its focus F.

This property is used in all satellite dishes where the satellite signal is concentrated by the
parabolic dish to a focus point then transmitted to the television receiver.

This property is also used in parabolic mirror telescopes with the same effect of gathering
light from a distant object and concentrating it to a focal point for better vision.

The reverse is used in all auto headlights; when the bulb is placed at the focus of the
parabolic headlight mirror, a fairly parallel beam emerges to light up the road ahead.
Military searchlights have the same parabolic shape to focus intense carbon arc light
sources high into the sky.
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Proof of the reflection property of the Parabola.

Theorem.
Any ray of light from the focus F of a parabola reflects parallel to the axis of the parabola.

04+ U I > X
F
For any point P on the parabola always PF = PD

XM

Proof.

Consider a ray of light from focus F reflecting from any point P on the parabola.
In the diagram above, with PD perpendicular to the directrix, we show o = f3,
i.e. we show that DPA is a straight line.

Construct the perpendicular bisector of DF, TM say, M the mid-point of DF.

TM contains all points equidistant from points D and F and so contains point P.

It is readily seen that TPM is the tangent to the parabola at point P.

[Assume that MP cuts the parabola at P’ as well as P, then we would quickly arrive at a
contradiction.]

angle TPA = angle MPF = a (say) (mirror reflection property)
angle DPM = angle FPM (since ADPM = A FPM (SSS)).
angle DPM = angle TPA DPA is a straight line // OFX.
Q.E.D.
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Definition.

A hyperbola is the set of points P such that the positive difference
I[PF, — PF.| between the distances PF, and PF. is a constant.

F, and F, are called focus points for the hyperbola.

For any point P on either
arm of the hyperbola, always

lPFl : PFZ' =2a constant Fixed points F1 & F2 are foci

The reflection property of the hyperbola: Any ray of light, coming towards a focal
point F; say, is reflected from that arm of the hyperbola (with that focal point F,)
towards the other focus. Similarly, any ray of light coming from a focus would be
reflected from the hyperbola mirror as though it came from the other focus. See
diagram below. This property is used along with the parabolic reflection property in
some telescopes.
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Proof of the reflection property for the hyperbola.

Let P be any point on the right branch of the hyperbola with foci F; and F, as shown above.
Let SP be a ray of light with S, P and F; collinear. We show that SP is reflected from the
tangent to the hyperbola at P to F,.

Let PA = PF, on the line PF, and let M be the mid-point of AF..

If TM is the perpendicular bisector of AF. then P is on TM, since TM contains all points
equidistant from A and from F,. We show that TM is indeed the tangent at P, which will
complete the proof.

Suppose that TM is not a tangent at P, then TM meets the hyperbola at P and at P’ say.
LetPF,=P'A= b say. P'Fi=2a+ b (property of hyperbola) which contradicts
P'A+AF,=b + 2a, unless P=P’.
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The conic sections.

The ellipse, parabola and hyperbola are called conic sections because they can be formed
by the intersection of a plane with the surface of a right cylindrical cone.

See diagram below.

The circle.
The circle is a special ellipse (with zero eccentricity) and is obtained when a horizontal
plane cuts the cone.

The Ellipse
Think of a horizontal plane going through point P. This plane could be rotated about an axis

coming directly out of the page from point P. When the rotated plane is between PV and PD,
the curve of intersection of the plane and cone is an ellipse. The horizontal plane through
point A gives the special ellipse, the circle with diameter PA.

The Parabola
When, and only when, the rotated plane is parallel to VC is a parabola formed.

The Hyperbola.

When the plane through P is rotated further, anywhere between points D and F, one arm of a
hyperbola is formed. Most texts show the line PE perpendicular to the horizontal, but any
angle obtained between points D and F will yield a hyperbola. If we consider a double cone,
vertex to vertex (both with the same vertex angle) then the plane cuts out the other side of the
hyperbola on the upper cone.

We now give Dandelin’s elegant proofs of the above results (known to the Greeks
but with much more difficult proofs).

We begin with a warm-up theorem.
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Theorem.
If a plane cuts a (hollow) circular cylinder the points of intersection form an ellipse.
If the plane is perpendicular to the axis of the cylinder then the ellipse is special, a circle.

Let m be any plane cutting the given circular cylinder above.
Consider two Dandelin spheres with the same radius as the cylinder, inserted into the
cylinder so that the plane 7t is tangent to each sphere as shown.

Let P be any point on the intersection of the plane and the cylinder.
We see PF, =PA (since both are tangents to the upper sphere from point P)
We see PF, =PB (since both are tangents to the lower sphere from point P)

So that PF, + PF,= PA+PB = AB constant.
That is, the locus of points P must be an ellipse with focal points F, and F.. Q.ED.
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The Plumber’s Problem.

The plumber wants to put a vertical pipe of radius R into a sloping roof, sloping at 6° to the
horizontal. How would he draw the appropriate elliptical shape to cut from the roof so that
the pipe will fit snugly through?

Let the plane m of the roof be sloping 6 ° to the
horizontal. We see that the ellipse going
through points QPK is the required shape to
| cut. The ellipse will be centred at O’ on the

i| axis of the pipe. We need to find the distance
'| O’F, (which equals O'F,) and we need to find
the distance KQ.

We see:
/ OF,=Rtan 6  right triangle OO'F,
A KQ =2RsecO right triangle KQD

.............

We instruct the plumber to put nails into points F; and F, a distance R tan(6) from the centre
of where the pipe is to be. F, and F; are on the line of steepest descent through O’ . Then tie
the ends of a piece of string to each nail so that the length of string between the nails is
2Rsec(9). Hold a pencil or chalk taut to the string and run the chalk on the roof around the
nails. The resulting chalk curve will be the required ellipse, though which the vertical pipe of
radius R should fit snugly.

Cut along dotted line!

PF: AN

I' O/ \
\ Fi N 2
¢ R tan 6 ]
\\ <—> ,
\ ,’
PFi + PF2 = 2R sec 0

~ =

Yy

- —- -

_-_—-—

2R secO
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Chapter 3 Conic Sections

Theorem.
If a plane cuts a circular cone as shown in the diagram below, the resulting points of
intersection are the points of an ellipse.

Proof:

i - || Let w be the plane cutting the given cone as
shown. Insert two Dandelin spheres: the upper
sphere touching the plane m at F; and touching the
cone in an upper circle Cy say. The lower sphere
touching the plane 7 at F, and the cone in a lower
circle C, say.

Let P be any point of intersection of the plane and
cone.

Draw line PV which cuts the lower circle C. at N
and the upper circle Cy at M.

PF, = PM since both are tangents to the upper sphere from point P.
PF, = PN since both are tangents to the lower sphere from point P.
PF, + PF, =PM + PN = MN a constant. Q.ED.
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Theorem.
If a plane cuts a circular cone as shown in the diagram below, with the plane parallel
to a cone generator, the resulting points of intersection are the points of a parabola.

Proof:

Let 7 be the plane cutting the given cone
with vertex V as shown, so that FG is
parallel to VA (i.e. the distance from any
point on the line VA to the plane mis
always the same). Inflate a Dandelin
sphere in the lower part of the cone until it
just touches the given plane m at the point
F say, and the cone in a horizontal circle
Cy. Let Cy; have centre O and diagonal
points A and B as shown.

We show that the line of intersection of
plane st and the horizontal plane
(containing the circle Cy) is the directrix of
the parabola of intersection of the cone
and plane .

Let P be any point on the intersection in question.

We show that PF equals PD the distance from P to the ‘directrix’. Let PV intersect Cy, at
point M (M on the Dandelin sphere and on the cone and M in the horizontal plane). The line
joining D to A must contain point M, since it meets PV at the point where PV goes through
the horizontal plane 7.

We see angle DPM = angle MVA (since AV // PD)
angle AMV = angle PMD (vertical angles)
so that triangles AMV and DMP are similar, isosceles triangles (since VA = VM).
Therefore PM = PD .
PM =PF (tangents from the same point P) so that PF =PD. Q.ED.

Perhaps note:

The four points P, D, V, A lie on the one plane. That lines PD and AV are parallel (essential
for this theorem) and that two lines PV and AM will intersect at a point M and that M is
indeed on the Dandelin sphere where it touches the cone.
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Theorem.
The intersection of a plane and a double cone, as shown in the diagram, is a hyperbola.

Proof:

Conic Sections

Inflate two Dandelin spheres inside the cones
from the vertex V until they just touch the plane 7
in question, at points F, and F, say. The upper
sphere touches the upper cone in a horizontal
circle Cy, the lower sphere touches the lower cone
in a horizontal circle C,.

Let P be any point on intersection of plane 7 and
the cones.

We show, for the diagram above:

PF, — PF, = MN a constant.

Let PV running on the surface of the two cones (a
so called generator) intersect the upper circle Cy
at point M say, and the lower circle Cy at point N
say.

PF, = PM (two tangents to same (upper)
sphere from point P)

PF, = PN (two tangents to same (lower) sphere
from point P)

PF, =PN =PM + MN = PF, + MN

PFZ - PF1 = MN

Perhaps note:
1. That the two Dandelin spheres will only be the same diameter if the plane st is parallel to the axis
of the cones.

Q.E.D.

2. We could equally well choose arbitrary point P on the lower points of intersection with plane 7t and
the (lower) cone, which would give: PF, — PF, = MN, so that always | PF, — PF,| = MN = constant.

The study of conic sections suddenly gained major attention following Kepler’s laws and
Newton’s Principia. Newton proved that all planets did indeed move according to Kepler’s
empirical laws, consequently planet positions could be computed years in advance. Newton
showed not only planets but comets and asteroids follow conic paths with the Sun at one
focus. If the asteroid is in the solar system permanently, it follows an elliptical path. If the
asteroid is just visiting the solar system for a fly past the Sun, then the path is hyperbolic or

possibly (though most unlikely) parabolic.
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Chapter 4 Vector Geometry

Chapter 4

Vector Geometry in three dimensions

We shall call the ordered triple v = < x, y, z > with x, y, z real numbers, a 3 dimensional
vector. ‘Ordered triple’ just means that order is important, so that < 7, 2, 3>#<3, 2, 1>
for example.

Vectors will be always be denoted by a bold letter: a, b, v, etc. Physicists often use a v with
an arrow on top. We shall let 'V denote the set of all three dimensional vectors:

V={<x,y,z>:x,y,z anyreal numbers ie.x, ¥, z € R}

® denotes the set of real numbersie. R={x:—0<x<o}

The three vectors: i=<1,0,0>, j= <0,1,0>, k=<0,0,1> are said to form a basis
for V, since every vector <x,y, z> of V can be written as a linear combination of these
three vectors, simply: <x,y,z> = xi+yj+ zk.

There is an infinity of other sets of three vectors that will form a basis for V.

Vectors i, j & k have some obvious benefits and later we see when we associate a direction
with a vector that these three vectors are mutually perpendicular.

We can picture a vector <x,y, z> as an arrow from point (0, 0, 0) to point (x, y, z).

This vector (arrow) has length and direction. This arrow or vector can be moved to any
convenient position in the plane so long as its length is unchanged and it remains parallel to
the line from (0, 0, 0) to (x, y, 2).

Definitions.

Addition of two vectors: <X, V1,22 + < X,y > = < X+X2, Vit Y2, 222>

P

Sometimes called ‘triangle addition’.

Multiplication by a scalar : A<x,y,2>= <M, N,hz> forany he ®

/ -
Aa A <0
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Definition —
Length of vector a = <x,y,z> is defined: V¥ +Y +2Z° denotedby lal

which is the distance between points (0,0,0) and (x, y, z), the length of the arrow.

Multiplication of two vectors. There are two useful products of vectors:

Definition 1. The ‘Dot Product’ or so called ‘Scalar Product’.

For two vectors a=<aj,ap,a3> and b= <b, b, b;>

(a) define: a.b= ab, + a:b. + asb; or

(b) define: a.b= lallblcos(8) where 0 isthe angle between a and b.

a

) b

Sy

Recall that we can slide vectors a and b around to begin at a common point.
It can be shown that these two definitions (a) and (b) are equivalent.
We see immediately that this product is commutative i.e. a.b=b.a

The Dot Product is particularly useful when we need to find the angle 0 between the two
vectors a and b. The following theorem is especially useful.

Theorem. alb ifandonlyif the scalar product a.b=0.

The proof follows immediately from the definition.

We give vector proofs for four theorems proved earlier. These proofs are not improvements,
and not necessarily easier, but they help get us acquainted with vectors and vector methods.

Theorem. The altitudes of any triangle are concurrent.

Proof: Take any triangle ABC as shown.

Let AE and BF be altitudes from vertices A and
B, meeting at point O say.

Let OA=a, OB=b, OC=c,
then AB= b-a,

BC= c¢-b,

AC= c-a.

Since al(c-b) a.(c-b)=0
ie.a.c=a.b
and bl(c-a) b.(c-a)=0 ie.b.c=a.b
sothat a.c =b.c (=a.b)
hence c¢.(b—a)=0, sothat OC (=c) is perpendicular to AB (=b —a).
COG is indeed the third altitude of triangle ABC. QED
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Theorem. The perpendicular bisectors of the sides of any triangle are concurrent.

Proof.

Take any triangle ABC, let OD & OE be the perpendicular bisectors of sides AB & CB.
Let OA=a, OB =b, oC =c,
sothat AB=b-a, BC=c-b and CA=a-c.
Let F be the mid-point of CA, we show that OF is perpendicular to CA.

OD=(a+b)/2 OF = (a+¢) /2 OE= (c+b) /2.

OD.AB=0 ie. (a+b)/2.(b—a) = (b>—2a2)/2=0

. lal=a=b=1bl

OE.BC=0 ie. (c+b)/2.(c=b) = (=b)/2=0
lcl=c = b =1Ibl

Sothatlal=1Ibl =lcl=a=b=c.
OF .CA =(a+¢)/2. (a-¢c)=(@*-c?) /2= (@>~c?)/2=0
hence OF is perpendicular to CA . Q.E.D.

Corollary. There exists a circle centre O through points A, B, C. (Since lal = |bl = Icl.)

Note: If c¢ is a vector that bisects the angle between two vectors a and b, then
c¢= k(a+b) for any non-zero constant (scalar) k.

a

We use this result to prove the next
k(a+b) tbeorem, that the Yertex angle
bisectors for any triangle are
concurrent.

Q
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Theorem.
The vertex angle bisectors of any triangle are concurrent.

Let ABC be any triangle. Let OA bisect vertex A, let OB bisect vertex B.
LetBC=a, CA=b, AB-=c sothat a+b+c=0.

OB =k (c —a) some constant & since OB bisects angle ABC

OA =h (b-c) some constant A since OA bisects angle CAB

we show that OC = l(a —b) for some constant [.
OC=0A+AC=h(b-c)-b=h(b+a+b)-b=ha+ (2h-)b (using a+b+c=0)
also
OC=0B+BC=k(c—a)+a=k(-a-b-a)+a=(I-2k)a—-kb (using atb+c=0)

We must have: h = (I-2k) and (2h—-1)=—-k sothat k=h=1/3
OC = (1/3)(@a=b) so that OC bisects angle BCA. Q.E.D.

Theorem.
The medians of any triangle are concurrent.

Proof.

Take any triangle, ABC, let F, D, E be the midpoints of the sides, as shown.
LetCA=a, CB=Db, then BA=Db -a. Let median BE meet median AE at G.
We show CG = CD some constant /. Note CD=a+%((b-a)=(a+b)/2.

CG =CE + kEB =b/2 + k(a-b/2)=ka + 4(I-k)b  some constant k.
also
CG=CF + hFA =a/2 + h(b-a/2) = %2(I-h)a + hb some constant /.

Since the coefficients of a and b must be identical, we have

WB(l-h) =k & %((1-k)=h ie. h=k=1/3,s0that CG = (I/3)(a+b) =(2/3)CD Q.E.D.

Corollary. Centroid G trisects each median.

We see ICGl = (2/3) ICDI, so that G trisects median CD.

Similarly we could show that G trisects medians AF and BE.
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Definition 2. ‘Vector Product’ or ‘Cross Product’ for two3 D vectorsa& b

axb= lallblsin(d)c where 0is the angle between a and b
and c is the unit vector which is perpendicular to botha & b
and in a direction that a screw would progress if turned through
an angle 6 < 180° from a fo b into the plane containing vectors a and b.

To get the direction of axb physicists often use the Right-Hand-Rule:
Point the index finger (of the right hand) along vector a, the middle finger along vector b,
then the thumb, at right angles to both fingers points in the direction of a x b.

We see immediately that this product is not commutative i.e. axb # bxa

An alternative (equivalent) definition of the vector product of a and b is:

i j k
ax b = al a2 a3 = i(azb}—bzdj)—j(a] b;,»—b]ag)+k(a] bz—b]dz)
bl b2 b3

The vector product is particularly useful for finding a vector that is perpendicular to two
given vectors a and b. The vector product can also be used to find the angle 0 between two
vectors. However, it is usually easier to find angle 6 between two vectors using the dot
product.

Perhaps note that there are two unit vectors perpendicular to both a & b:

cand —c¢ Note laxbl=Ilallbllsin6)] since ¢ has length ¢l =1
Examples:
1. ixj=k ixk=-j jxk=1i all easily seen using the definition.

2. Using the definition find the vector product of a =<I1,2,3>and b=<2,0, 1>
axb = lal |bl sin(6) ¢ where Icl=1 and ¢ La and ¢ L b.

laland |b | are easy to find, we need to find unit vector ¢ and the angle 6.
The dot product will give the angle 0 :
a.b= lallblcos(0) cos (6) = 5W70

therefore sin () = (V45)/(V70) = (45)/ (1a 1Bl )

So that: axb = V(45) ¢

To find vector ¢: let ¢ =<cj, ¢z, 3>

cla gives ci+ 2¢; +3c; =0
cl b gives 2¢;+0c¢ +1c; =0
(2 equations 3 unknowns, we expect (and get) an infinity of solutions)

solving: c = t<1/2,514, —1> Jfor any constant t = 0.

Since 1cl=1 wesee t =+4/(V45) ie. ¢= +I/V45 <2,5,—4>
Finally, using the right hand (screw) rule we see that the direction of ¢ is such that

c = +1/V45 <2,5, —4> sothat axb= <2,5 — 4>,
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Alternatively, using the theorem above to find the vector product we have (much easier):

i j k
axb = |1 2 3 = (2xI-3x0)i —(IxI1 -3x2)j + (Ix0-2x2)k
2 0 1
= 2i+5j -4k =<2,5—-4>
3. <1,2,3>x <1,1,0> =<-3,3,-1> =-<3,-3,1>

This can be shown using the definition as in the above example # 2, or much easier
(and more reliable) is to use the theorem above and expand the 3x3 determinant.

Maybe note: <1,2,3> 1 <-3,3,-1> as it must, since <1,2,3> .,<-3,3,-1> =0
and <1,1,0> 1 <-3,3,-1> as it must, since <1,1,0> ,<-3,3,-1> =0

4. axa =0 jforanyvector a since the sin(0) =0.
axb =0 forany parallel vectors a and b since the sin(0°) = 5in(180°) =0

6. axb.c is called a triple scalar product.

Brackets are not needed here as the vector product must be done before the dot product.
The final result is always a scalar.

It is not difficult to follow the proof that the absolute value of the triple scalar product is
the volume of a parallelepiped with sides (edges) a, b and c.
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Equation of any plane with anormal n = <n;, n;, n;> is: mx+my+nz=d
where d is some real number. If the plane contains the origin then, d =0.

Let 7 be the plane containing point (a, b, ¢) and with normal n. Then for any point (x, y, z) in
T, the vector <x—a, y— b, z—c> is always perpendicular to n.

n
|'T v Thatis n.<x-a,y-b,z-¢c >=0 or
(xy,2) nx +my+nz=d
b 7 :
(@b.c) where d = n,a + mb + n;c is some constant.
No matter where point (x,y,z) is on the plane
always R.V =0.

Example 1.
Find the equation of the plane through (1, 2, 3) with normal n=<2,1,4>.

The equation of the plane mustbe: 2x+ Iy +4z=d for some constant d.
Since the point (1, 2, 3) satisfies this equation we have d = 16, so that the required
equation of the plane is: 2x+ Iy + 4z = 16.

More formally we might write: {(X,y,z):2x+y+4z=16}

the set of all points ( x, y, z ) that satisfy that equation.

Example 2.

3x + 4y—z =2 is the equation of a plane with anormal n=<3,4,-2>.

We say “a normal” rather than “the normal” since < -3,—4,2 > is also a normal to this
plane, in fact A <3,4,-2> is a normal to the plane for any A # 0. Every plane has an

infinity of normals, though only two unit normals exist for any given plane.

3x + 4y —z = 6 is the equation of a plane parallel to 3x + 4y —z = 2. Since both planes
have a parallel normal. —-3x—4y + z =7 is another parallel plane since the equation could
equally well be written: 3x +4y—-z= -7 etc.

Examples 3.

x =35 1isthe equation of the plane with a normal <1,0,0 >
x =z 1is the equation of the plane with a normal <1,0,-1>
y =2z is the equation of the plane with a normal <0,1,-2> etc.

y=0 or Ox+ 1y +0z=0 is the equation of the x-z plane containing the x-axis & z-axis.
y=1 or Ox+ 1ly+0z=1 is the equation of the plane parallel to plane = 0, one unit above.
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Example 4
Find the equation of the plane containing points: (1,5,1), (0,0,0)and (2,1,-1).

L1351
b _.2L-D

a=<1-0,5-0,1-0 >

(0.0,0)
b -<2-01-0,-1-0>

From the diagram, we see that <1,5,1> and <2,1,-1> are vectors in the plane
sothat <1,5,1> x <2,1,-1> = <-6, 3,-9> is a normal to the required plane.

We see that <2,-1,3 > is also a normal, hence the required plane is 2x—y + 3z = d.

To find d, we substitute any of the three points given in the plane. Since we can substitute
any point, the obvious choice is (0,0, 0) which gives d=0.

Example S.
Show that the following 4 points are coplanar: (2,0,0), (1,1,0), (2,-1, 1) & (35,-35,2).

We take any three points and show (as in example 4 above) that the equation of the plane
containing these three points is x + y + z =2. We then substitute the coordinates of the
fourth point into this equation, to see that this point is also in the plane. Hence all four points
are indeed coplanar.

To make life easier, we would normally choose the three points (above) to find the plane,
those points having the smallest coordinate values. We especially love points with zero
coordinates.

Example 6.
Write down 3 points (any three) lying in the plane: x + y -2z = 3.
We see (3,0,0), (0,3,0) and (3, 2, 1) are three easy points.

Example 7.
Write down 2 points (any two) lying in the two planes: x + y-2z=3 & x+y=1.

We must solve the two simultaneous equations: x +y-2z =3 &x+y =1
in three variables (so we expect a possible infinity of solutions)

Solving, we easily see (1,0,-1) and (0, 1,—1) are indeed two of an infinity of
possible solutions.

Example 8.
Find a point lying in the three planes:
xX+y+z=3, xX+y=2 and 2x +y +2z=135.

We solve the three simultaneous equations in three variables.
We expect at most one solution. Solvingwe getx=1, y=1, z=1,
hence the only point lying on the three planes is the point (1, 1, 1).
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Equation(s) of a line parallel to a vector a =<a,,a,, a> and containing the point

P =(x,y,z) 18 x-x, _ Y=Y _2-% this is the 'standard' form.

q a, as

No matter where we choose a
To see this consider the following diagram: ~ (*:2) on the line, always /ﬁ/
Vis parallelto Q i.e.

QA = AV some A = 0.

\ 4

We see that if (x, y, z) is any point on the line, then the vector <x —x,,y-y,,z—z, >
is always parallel to vector a. That is < x- Xo» Y=Yy, 229 > = Aa some constant A.

X=X, =Aa;

Y=Y =ha X=X _ Y=Y _2-%

z-zy, = Aas eliminating A gives: a, a, a,

Note that the literature refers to the ‘equation of a line’, but always two equations (of a
plane) are necessary to define a line. The standard form given above is really the intersection
of two planes:

X=Xy Y=Y,

Plane: je. @x—ay=d. With d = ax,—ay
a a
1 2
and
Y=y, 2-%
a a ; — ; -
Plane: 2 3 ie. wy—-a;z= d; With d,= asy,—a:z

Another form of the ‘equation of a line’ could be the two equations of a plane.
Any point (x, y, z) satisfying these two equations would lie on the line of intersection of these

two planes. However, the standard form is usually preferred since we can immediately read
off the direction of the line and one point on the line.
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Example.

x—0 y—-0 =z-0
1 2

These represent planes 2x =y & x=z orplanes 2x=y &« y=2z or .....

x=y/2=z or is the standard ‘equation’ of a line.

We see that the line is parallel to the vector < 1,2, 1 > and contains point (0, 0, 0).
We easily see that the following points for example, lie on this line:
2,4,2), (20,40,20), (e, 2e,¢), (04,08,04) etc.

x-1 y-0 z-(=3)
1 1/2 1

is the standard equation of a line parallel to <1, 1/2,1>,

or parallel to <2,1,2 > a vector without fractions.

We immediately see this line contains the point (1,0,-3).

Example x-1=2y =z+3 or

Perhaps note if the line is parallel to @ =< a,a,a > and one or two of the components are

zero, then the equation of the line cannot be put into the standard form.
We use an alternative form (the intersection of two planes).

Example
Suppose a; = 0, the equation of the line parallel to @ =< a;, a;, a; >
through Py = (xo, yo, 20)

X=X, Y=Y,

o a,

is and z=12, the intersection of two planes.

Example

Suppose a.= 0 « a; = 0, the ‘equation’ of the line // to a = <a,, a;, a;> and
through Py = (X0, Y0,20) IS y=Yo and z =2

again, the intersection of planes y=y, & 7=12.

Example
“y=2 and z=7" isthe ‘equation’ of the line parallel to vector <a,0,0 >

any a # 0, and contains points (x, 2, 7) for any x in ®,
This is the line of intersection of the two planes y=2 & z=7.

Example

The equation of the y—axisis: z =0 andx =0

since these two planes intersect along the y—axis. <0,+1,0>= +j are the two unit
vectors parallel to this line. The line, the y-axis contains only points of the form (0,
y, 0) for values of y in ®,

Example

The equation of the z—axisis: x =0and y = 0.

since these two planes intersect along the z-axis. <0, 0, £1 > =+ k are the two
unit vectors // to this line. This line, the z-axis, contains only points of the form
(0,0, z) for values of z in ®R..
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Distances: points to lines and points to planes.

1. Distance from point P, = (x,, ys, 20) to plane ax + by + cz =d.

Take any point P, in the plane, P\ = (x;, y;, z;) say.

B ax+by+cz =0

From the diagram, we see the required distance D is

D = distance from P, to point A. (Of course if we knew A it would be very easy.)
= [P,PlcosHO (Using right triangle P,AP;)
_ | PP, . <a,b,c> |
| <a,b,c> |
where  <ab,c> is a unit vector normal to the plane.
| <a,b,c> |
Example.

Find the distance from point P = (1,1,1) to the plane x +y + 2z=3.

# (LD =P | 1 ot A be the closest point in the given plane to the
N/ :
;\‘\\/y point P = (1,1,1).
v
// / Choose any point B on the plane, B =(3,0,0) say.
/ / r"j <L12> /| Then the vector BP=<-2,1,1>
/ // ,,,,, e A /
//' B yf/ """""""" /'/ . _
YAy / | Distance PA=1<-2,1,1>.<1,1,2> 6 |
/i xX+y+2z=3
/// ,/'/ =1/ '\/6.
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Example.
Find the distance from point P = (1,0, -2) to the plane z = 0.
We see immediately that the distance is 1 -2 1= 2.

Example.
Find the distance from point P=(1,0,-2) to the plane y = 0.
We see immediately that point P is on the plane y =0. The distance is zero.

Example.
Find the point on the plane 2x + y — 2z =4 closest to the point P=(2,1,1).

Solution:
Let point A, as shown in the diagram, be the closest
y (2L1)=P 1 boint in the given plane, to point P=(2,1,1).
Q/’/ Choose any point B on the plane, B=(2,0,0)
D4 say, so that vector BP=<0,1,1>
/ / 212> ]
/ S /| Distance PA= | <0,1,1>. <2,1,-2>/v9 |
/S / =1/3
B o // <2,1,-2>/3 is the unit vector in the direction PA
/(200 / or AP; we have drawn it as PA, though it could be
/ 2x+y-2z=4 /
!;' / AP.
/ /

So that vector PA is either is one of two points:

<2,1,1>+ 1/3 of unit vector <2, 1,-2>/3

or <2,1,1> —1/3 of unit vector<2,1,-2>/3

hence point A is either:  (2+2/9, 1+1/9,1-2/9) or (2-2/9,1-1/9, 1+2/9)

We see that the first point lies on the given plane, so that this point (20/9, 10/9, 7/9) is the
required point.

Notes on the above two diagrams.

When drawing just the plane 2x + y— 2z =4 (immediately above), it is customary to draw
anormal <2,1,-2> going upwards from the plane. However, once another point is drawn,
such as (2,1,1) it is possible to see whether the normal <2,1,-2> is directed ‘up’ or
directed ‘down’.

In the course of finding point A above, we saw that if we drew the point (2, 1, 1) above the
plane, then the vector <2, 1,-2 > 1is properly directed downwards. So, I went back and
changed the direction of <2, 1,—2 > in the diagram, with the arrowhead pointing down.

When we drew just the plane x + y + 2z =3 (previous page), we drew the

normal <1,1,2> going upwards from the plane, as is customary. However, once another
point is drawn, such as (1, 1, 1), it is possible to see whether the normal <1,1,2> is
directed ‘up’ or directed ‘down’. Since it does not matter for the solution to this example, we
usually do not bother, and leave the normal <1, 1,2 > pointing up. Strictly speaking, if we
do not bother to check the correct direction, we should write in the diagram that the normal
vector shown is either <1,1,2> or <-1,-1,-2>. If we were to check it out, it turns
out (by luck) that the diagram is correct in this case.

2 Distance between two (parallel) planes T :oax+by+cz =d
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& m: o ax+by+cz=d

ax+by+cz = di

b1

ax+by+cz = d;

Take any point in 7, Py = (xi, y1,z21) say,
and any point in 7, Py = (X2, y, 22) say.

From the diagram, we see the required distance

D= IPPcosO= | PP,

Example.

<a,b,c>|

< a, b, ¢ >l

Find the distance between the x—y plane and the plane: z=-5.

We see immediately that the distance is 5.

Example.

Find the distance between planes:

T0;.

el
x+y+z=4
A=(4,00)

HEN

g 1,1,1>

B=(100)
x+y+z =1

Example:

x+y+z=1 and T x+y+z=4.

Take any point A = (4,0, 0) say, in .
Take any point B = (1, 0, 0) say, in m,

We see the required distance AC (C as in
diagram)
Distance AC

=1<3,0,0>.<1,1,1>13 |
= 3.

The distance between planes m;: x+y + 2z=2& m: x+y+z=1 is zero.
The two planes are not parallel, they have different normals and so meet (in a line).
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Example.

Find the point on the plane m: x + y—z =2 which is closest to point P=(5, 5, 0).

Solution. First we find the distance from point P to the given plane .

We see the distance = | <3,5,0>.<1,1,-1>/v3 | = 8/+3.
So that the nearest point in the plane = to point (5, 5, 0) is either:
(5+8/3,5+8/3,0-8/3) or (5-8/3,5-8/3,0+8/3) since
<1A3,1V3,-1//3> and <-1~3,-13,+13 >

are the two unit normals for 7.

We easily see, by substitution, that the second point: (7/3,7/3, 8/3) is the
required point on 7, which is closest to the point (5,5, 0).

3. Distance from a point P, = (xo, Yo, 20) toaline/:

P

b
X=X Y= _27%

a b c

Take any pointon/, P, =(x,y,z,) say.
Po

From the diagram, we see the required distance

D= IP,PJsin0 = | PP, x <a&b.c> |

| <a,b,c> |

Example:
Find the distance from point P= (1,2,3) totheline/: x=y=2z.

Solution:

P (1,23

\
/% ol Choose any point, (0, 0, 0) say, lying on line /
(lis parallel to < 1,1,% > /I unit vector
A

(1/3) <2,2,1>).

0,0, 0) 1/3 <2,2,1> unit vector // line |

| <1,2,3>x<2/3,2/3,1/3> |
13)l <-4,5,-2> |
V5

Required distance P A
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4. Distance between two lines

1 2

X—x Y-y _2-2 X—X, Y-y, 2-2

l: and 2

a b1 G a, b2 )

Take any point on /;, P; = (x;,y;,z:)) say,and any pointon [, P> = (x:, y., 22) say.

P2

From the diagram, we see the required distance D
Lix D>

x|

D = |P1P2|00S9= IP]Pz. I

where l, = <a,b,,c;,>  parallel to line /,
& L =<a,b,c> parallel to line /;

To see this, I imagine finding the distance between two parallel

planes 7, and 7, containing lines /, and /; respectively.
Iixl>

Il | is a unit normal to the two parallel planes 7, and 7,
1X {2

Example.

Find the distance between the two lines: x =y =2z and x-1 =y =z +2.

Solution:

Choose arbitrary point P; = (0, 0, 0) on the line: x = y = 2z which is parallel to <2,2,1 >.
Choose arbitrary point P, = (1,0, -2) on line: x—/ = y = z+2 which is parallelto <1,1,1>.
Distance = 1< 1-0,0-0,2-0>.<2,2,1>x<1,1,1> 72 = IN2.

Note 1<22,1>x<1,1,1>1= +2.

Example.
Show that the lines x-/=2y-2=z/4 and x-2=y-I]=z-7 intersectand find the

point of intersection.

Solution:
Similar to the above example, we show that the distance between the lines is zero. We then

solve the four sets of equations to find the (common) point of intersection to be (3, 2, 8).
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To find the distance between two locations on earth, using vectors.

Here we set up the x-y-z coordinate axes with the origin at the centre of the earth, the z-axis
running through the North and South poles and the x-axis meeting the equator at the

Greenwich meridian.
We find the vector v associated with any city with longitude 6 and latitude ¢, then use vector
methods to solve the above problem. Most would agree that the spherical geometry methods
are easier to manipulate and interpret, but this method of vectors is a nice application
(revision) of vector methods, using the dot product to find angles and the cross product to

find perpendicular vectors.
Longitude 6 will be measured anticlockwise from the x—axis, so that western longitudes will
be — 6. Latitude ¢ will be measured upwards from the x—y plane, so that southern latitudes

will be — @.
Nisrlls Pole
e P —
e S
P , § \ ~—
yd " X N
s S
/ = ‘ AN
/s = AN
s o %,
& fo P Y
£ '
\

.!1
{.. ::\,
5
/ S !
; |
} . |
] o
j o
[ ‘
O i i
e odk. Vs
@\xf_/k“”—“ggyﬁf Kk@iﬁ “,/ /5
Rocosfain i e /

7
Pusing P bs ot surface of /
earth. Vector OF has A
length Re. A

South Pode

We see that the x-y-z coordinates for location (6, ¢) on the surface of the earth would be:
Re ( cos (@) cos (0), cos (@) sin(0), sin(p)). R, = earth’s radius.

The vector v from the centre of the earth O to location (6, ¢) on the surface is

v= Re <cos() cos (8), cos () sin(0), sin(¢p) >

Note that < cos(8), sin (@), 0 > is a unit vector in the x-y plane going through longitude 6.
< sin(0),—-cos(0), 0 > is a perpendicular unit vector to the plane containing longitude 6,

(since  <cos(0), sin(0), 0> . <sin(8),—cos(8), 0>= 0).
This will be used in part (c) below.
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Example.
For a flight from Lethbridge to Tokyo along the connecting great circle find:
(a) The (shortest) distance between the two cities Lethbridge & Tokyo.
(b) The initial bearing setting off from Lethbridge.
© The final bearing upon landing in Zokyo.
(d) The most northern latitude reached on this shortest route.

Given co-ordinates: Lethbridge (113°W, 50°N) & Tokyo (139°E, 35°N).

North Pole
JI————

108°

40° S
. N *
'f T R }*
/ B Lethbridge:, \\\
/ s \ \
\
{ Fauat
\ N ]
\ !mlgfiudei 139°E longitude ;} 13w
'\\ ;&\
AN \ ; )
\\,
”3\\ 5,

e

Seuith Pole

To make the calculations slightly easier, we set the zero longitude at
either city, Lethbridge say, so that Lethbridge coordinates become
(0°, 50°N), and the coordinates for Tokyo become (108°W, 35°N).

Let L be the vector from the centre of the earth O to Lethbridge.

Let T be the vector from the earth’s centre O to Tokyo.

Let R, denote the radius of the earth, approximately 6400 kms.

Then L =R, <cos(50) cos(0), cos(50) sin(0), sin(50)>
=R.<cos(50), 0, sin(50) >

and T =R. <cos(35) cos(-108), cos (35) sin(-108), sin(35) >
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(a)

To find the distance between the two cities, we find angle o
between the vectors L & T. We use the dot product.

L.T = ILIITI cos(a).

o =cos! [cos (50) cos (35) cos(—108) + 0 + sin(50) sin(35)]
= 73.94°

So that the great circle (shortest) distance is = 8,259 kms.

(b)

cos Y

To find the bearing with which the aeroplane sets off from Lethbridge, we
find the angle y between the plane containing L. & T and the plane
containing the zero meridian (remember that we have adjusted our axes, so
that Lethbridge is on the zero meridian).

= TxL.<0,-1,0 >
ITxL |

ITxLI = Rsina (see below)

()

cos-! { sin(35) cos(50) — cos(35) cos(—108) sin(50) }
sin(73.938)

'Y:

= 54.165° = 54°09'54" West of North.

To find the bearing that the aeroplane has on landing in 7okyo, we find the
angle B between the plane containing L. & T and the plane containing the

108°W meridian, remembering that we have adjusted our axes, so that
Tokyo is not on 139°E, but on 108°West (of Lethbridge).

TxL. < sin(-108), — cos(-108),0 >
ITxLI

cos P = ITXLI=R25inoc

B= cos'1 A where angle A is given by:

— { cos(35) sin(—108) sin(50) sin(—108) +[cos(35) cos(—=108) sin(50) — sin(35) cos(50)] cos(—108) }
sin(73.938)

R

39.5061322875....°

39°30'22" East of North.

u
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Note:
A normal to the plane containing meridian 0° is < sin(0),— cos (8),0>.
To see this, think of a unit normal to the plane containing the Greenwich

meridian, this could be j or —j. Letustake — j (as it is a little easier to
draw the diagram), then if this plane is rotated anticlockwise 0° around the
z-axis (the line joining North and South Poles), the unit normal to this

plane will change from —j to <sin (0),— cos (6),0>.

Had we taken the unit normal to be j, then on rotation anticlockwise ¢° the unit
normal would have become < —sin (0), cos (6),0 >.

XN

egvis

S
o O

R e figure 423

Plane ABCD contains the z-axis, has normal n.

If 6 =0° then plane ABCD contains the z-axis and the x-axis, and B = —j

We see for any angle 0 » n = isin(0) —jcos(0) =<sin(0), —cos(0), 0>
(d) To find the northernmost latitude, we find the angle 8 between the plane

containing L. & T and the horizontal plane containing the equator. That is the angle between
the normals to these two planes, the angle between the two vectors: TxL and k.

TxL.k= ITxLIIkIcos (d)
ITxLl =R%sina with a=73.94°

N cos_l [ —cos(50) cos‘(O)cos(35) sin(—100) ]
sin(73.94°)
~ 58.5930998215..° = 58°35'35" North.
Note: ITxLI = R?sin(a)
sinceTxL = ITILIsin(a)c with I TI=ILI=R and l¢cl=1.
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Note:

The above method gives the latitude of the point nearest the North Pole on the great
circle connecting the two cities. It could happen that this point is on the larger of the
two great circle arcs connecting the cities. In which case the ‘upper’ city would be
the highest latitude on that particular journey.

For example, if the two cities were on the same meridian, then 6 = 90°. The point of
highest latitude on the great circle connecting the two cities would be the North Pole,
which would not be on the shortest route between the two cities. Note that a great
circle through the North Pole comprises two meridians.

It might seem surprising that on a flight from Vancouver at 50°N to Tokyo at 35°N,
the plane goes close to Alaska on 60° North. The Aleutian Islands can be seen on
such a flight.

Of interest, the great circle Los Angeles to Sydney Australia contains two convenient
refueling islands, Hawaii and Fiji. However these refuelling stops are no longer

necessary with today’s long-range jets, which fly non-stop Los Angeles to Sydney.

Find the direct distance from Los Angeles to Sydney and compare with the
sum of the three distances: L.A.to Hawaii, Hawaii to Fiji, Fiji to Sydney.
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Chapter 6.
Non-Euclidean Geometry,
Spherical Geometry

Euclids Axiom 5: The parallel postulate:

That, if a straight line falling on two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.

Axiom 5 was the cause of much interest for over 2000 years. Geometers tried to prove that
Axiom 5 was a natural consequence of the first four axioms. It seems obvious enough, but it
turned out impossible to prove and led to non-Euclidean geometries.

Playfair’s Axiom:
At most one line can be drawn through any point not on a given line parallel to the
given line in a plane. This axiom is equivalent to Euclid’s Axiom 5.

The sum of the angles in every triangle is 180°

There exists a triangle whose angles add up to 180°.

The sum of the angles is the same for every triangle.

There exists a pair of similar, but not congruent, triangles.

Every triangle can be circumscribed.

If three angles of a quadrilateral are right angles, then the fourth angle is also a

right angle.

There exists a quadrilateral in which all angles are right angles.

There exists a pair of straight lines that are at constant distance from each other.

Two lines that are parallel to the same line are also parallel to each other.

0. In aright angled triangle, the square of the hypotenuse equals the sum of the
squares of the other two sides. (Pythagoras’ theorem.)

11. There is no upper limit to the area of a triangle. (Wallis Axiom.)

12. The summit angles of the Saccheri quadrilateral are 90°.

13. If a line intersects one of two parallel lines, both of which are coplanar with the

original line, then it also intersects the other. (Proclus’ axiom).

AU AW~

S e e

Most people are aware of these properties, if not the fact that they are all equivalent
to Euclid’s famous Axiom 5. At the beginning of the 19" century Gauss, Bolyai and
Lobachesky began to look at alternative geometries to Euclid; Geometries where
Axiom 5 did not hold:

Geometries where no line could be drawn parallel to the given line /, through a given
point P not on /.

Or Geometries where an infinity of lines could be drawn parallel to a given line /,
through a given point not on /.

These new geometries were labelled Non-Euclidean, elliptical and hyperbolic
respectively.
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It is a little perplexing that it took so long to come up with these Non-Euclidean Geometries
when the properties of Spherical Geometry were so well known and much used. Spherical
Geometry is an example of the Non-Euclidean elliptical geometry. In Spherical Geometry
(described in some detail below) no line can be drawn through parallel to the given line
through a given point P not on the given line. I n Spherical Geometry all triangles have more
than 180°, different triangles have different angle sums, and Pythagoras’ theorem does not
hold, ..... We will see that none of the above listed 14 equivalent statements hold.

One clearly sees that Playfair’s axiom does not hold in Spherical Geometry. However, I find
it more difficult to imagine the hyperbolic geometry where you can draw more more than
one line through any point P not on a given line and parallel to the given line. The great
mathematician Poincare gives a very nice example which helps us to imagine hyperbolic
geometry. We will consider this example at the end of this chapter. Let us first look at the
Non-Euclidean Spherical Geometry.

Spherical Geometry.

A sphere is defined as a surface, all points on which are at the same distance from a certain
fixed point. This point is the centre, and the constant distance is the radius.

A great circle of a sphere is the circle in which the sphere is cut by any plane passing
through the centre of the sphere. A small circle is the circle in which the sphere is cut by any
plane not passing through the centre.

The axis of a great or small circle is the diameter of the sphere perpendicular to the plane of
the circle. The poles of the circle are the extremities of this diameter. Secondaries to a circle
(great or small) are great circles passing through its poles.

If the radius of the sphere is R and the
P angle POQ subtended by the arc PQ at
o the centre O is denoted by ¢, the length

-~
~i

¥
%

1 circle

B

) . of the arc PQ is R¢, where ¢ is expressed

in circular measure, or radians.

It is convenient and conventional to take
the radius of the sphere as unit length; the
length of the arc PQ is then equal to ¢.
Thus the angular distance between two
points on a sphere is measured by the arc
of the great circle joining them or by the
angle which this arc subtends at the
centre of the sphere.

If the angle POQ is 60°, we can say that
the length of the great circle PQ is /3
radians, or that it is 60°.

Note the custom to denote points
diametrically opposite with a prime:

Aand A’,Pand P’, G and G’ are diametrically opposite pairs of points.

A great circle on a sphere is analogous to a straight line in a plane. A straight line joining two
points in a plane is the shortest distance between those two points; so also the shortest
distance between two points on a sphere is the arc of the great circle passing through those
two points.
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Small circles on a sphere are analogous in their general properties to circles in a plane.
Secondaries to a great circle are analogous to perpendiculars to a straight line. The distance
of a point from any great circle is the length of the arc of a secondary drawn from the point
to the circle.

The angle between two great circles is the angle between their planes.

The angle between two great circles is equal to any of the following:

1. The angle between the tangents to them at their points of intersection.
2. The arc, which they intercept on a great circle to which they are both secondaries.
3. The angular distance between their poles.

Spherical Triangles.

A spherical triangle is a portion of a spherical surface bounded by three arcs of great
circles. Perhaps note that P’DE in the above diagram, is not a spherical triangle since
side DE is not an arc of a great circle.

A spherical triangle, like a plane triangle, has six parts, its three sides and its three
angles. The sides are generally measured by the angles they subtend at the centre of
the sphere, so that the six parts are all expressed as angles. No part is supposed to
exceed 180°. No angle of a spherical triangle can exceed 180°.

A spherical triangle has the property, in common with plane triangles, that the sum of
any two sides is greater than the third side. But whereas the sum of the three angles
of a plane triangle is equal to 180°, the sum of the angles of a spherical triangle is
always greater than 180°. The amount by which the sum of the three angles exceeds
180° is termed the spherical excess.

A plane triangle may have one angle a right angle. A spherical triangle, on the other
hand, may have one, two or three angles that are right angles.

Terrestrial Longitude.

The longitude of a place on Earth is the angle between the terrestrial meridian
through that place, and a certain meridian fixed on the Earth, and called the Prime
Meridian or the Greenwich Meridian. By international agreement, the prime meridian
from which the longitudes of all places on the Earth are measured is defined as the
meridian passing through the Airy transit instrument at the Royal Observatory
Greenwich.

As all places on a given meridian have the same longitude, the terrestrial meridians
are often called meridians of longitude.

Longitudes are measured eastwards and westwards from the prime meridian, from 0°
to 180°.

Terrestrial Latitude.

The latitude of a place on the Earth is its angular distance from the equator, measured
along the meridian. All points on a small circle parallel to the equator, have the same
latitude. For this reason, parallels to the equator are usually termed parallels of
latitude. Latitudes are measured both northwards and southwards, from 0° to 90°.
The complement (with respect to 90°) of the latitude is called the colatitude. The
colatitude is the angular radius of the parallel of latitude.
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Solving Spherical Triangles.

The formulae for solving spherical triangles are in every case different from the
analogous formulae in plane trigonometry. A further difference is that a spherical
triangle is completely determined if its three angles are given.

Two spherical triangles will, in general, be equal if they have the following parts equal:

1. Three sides 4. Three angles
2. Two sides & included angle. 5. Two angles & adjacent side.
3. Two sides & one opposite angle 6. Two angles & one opposite side.

Cases 3 and 6 may be ambiguous.

Cosine rule for spherical trigonometry.
This is the most important and most used rule in spherical trig. namely:
For any triangle with vertex angles A, B, C and opposite sides a, b, c,

cos a = cos b cos ¢ + sin b sin c cos A |

We give a proof on the following page.

Sine rule for spherical trigsonometry.
For any triangle with vertex angles A, B, C and opposite sides a, b, c:

sina sinb sinc
sin A sin B sinC L2

We give a proof later.

Of interest, we list a few more trigonometric identities from Spherical Trigonometry

cos A=—cos B cos C+sinB sinCcosa 3

sinacos B = cosbsinc—sinbcosccos A 4

sinacos C= coscsinb—sinccosbcos A S

cotasinb= cosb cos C+ cot AsinC e 6
1/2

A sin(s— b)sin(s—c¢)
s1n(7) =

sinb sinc .... 7T etc.

where s =(a+ b+ c)/2.
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For any right-Angled Triangles ABC with C = 90°, and with parts

a, b, 90— A, 90 — ¢, 90 — B arranged around the circle below:

It can be shown that
sin (Any) = tan (Adjacent 1) fan (Adjacent 2)
e.g. sin (a) = tan (b) tan (90 — B)

and

90°-A

sin (Any) = cos (Opposite 1) cos (Opposite 2)
e.g. sin(90—-A) =cos (a) cos (90 — B)

In many cases the simplest way to solve a general triangle is to draw a great circle
through one of the angles at right angles to the opposite side, and then apply the
formulae applicable to right-angled triangles.

Proof of the Cosine Rule in Spherical Geometry
For arbitrary spherical triangle ABC with sides a, b, ¢

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A)

To help interpret diagram below, rotate the sphere (unit radius) with arbitrary
triangle ABC so that point A is the North Pole. Then think of triangle sides AB and
AC arcs of the longitudes through the North and South Poles.

Note that the 4 triangles: ADE, ODE, ADO and AEO are in 4 distinct planes.

Triangle ADE is in a tangent plane to the sphere. This plane touches the sphere at the
north pole A. This plane is parallel to the plane of the equator and tangent to sides
AB and AC, so that Euclidean triangles ADO and AEOQ are right-angled triangles.
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Proof:

We see

so that
or

Non-Euclidean Geometry — Spherical Geometry

DE? = OD? + OE? - 20D.OE cos(a) cosine rule on A ODE
DE? = AD? + AE? — 2AD.AE cos(A) cosine rule on A ADE

OD’+ OE? - 20D.OE cos(a) = DE? = AD? + AE? — 2AD. AE cos(A)
20D.OE cos(a) = OD? + OE? -AD? - AE’ + 2AD. AE cos(A)
20D.0E cos(a) = (OD?> —~AD?) + (OE? —AE?)  + 2AD. AE cos(A)

20D.0OE cos(a) = OA? + OA? + 2AD. AE cos(A)

OD.OE cos(a) = OA? + AD. AE cos(A)
cost) = QAL+ MDA st

cos(a) = cos(c)cos(b) + sin(c)sin(b) cos(A) Q.E.D.

Note: cos(c) = OA/OD
cos(b) = OA/OE
sin(c) =AD/OD
sin(b) =AE/OE using right triangles ADO & AEO.
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Proof of the Sine Rule for Spherical Geometry

sin(a) _ sin(b) _ sin(c)
sin(A) sin(B) sin(C)

For arbitrary spherical triangle ABC with sides a, b, ¢

Proof: (unusual)

For arbitrary spherical triangle ABC we have (the cosine rule)
cos(a) = cos(c) cos(b) + sin(c) sin(b) cos(A)
or sin(c) sin(b) cos(A) = cos(c) cos(b) - cos(a)  squaring both sides:
sin®(c) sin®(b) cos*(A) = cos*(c) cos’(b) — 2 cos(a) cos(b) cos(c) + cos*(a)
sin®(c) sin’(b)(1-sin’(A)) = cos*(c)cos*(b) — 2 cos(a) cos(b cos(c) + cos*(a)
sin?(c) sin’(b) sin’(A) = — cos?(c) cos’(b) + 2 cos(a) cos(b) cos(c) — cos*(a) +

sinz(c) sinz(b)

sinz(c) sinz(b) sin2(A) =-— cosz(c) cosz(b) + 2 cos(a) cos(b) cos(c) — cosz(a) +
(1- cosz(c))(l - cosz(b))

sin2(c) sinz(b) sin2(A) = 1- cosz(a) - cos2(b) - cosz(c) +2 cos(a) cos(b) cos(c)

The RHS is symmetric in variables a, b, ¢ so that

rotating a —> b, b = ¢, and ¢ —> a etc. we get a total of three different
expressions on the LHS, but the right hand side stays unchanged (equal) so that we
have:

sin’(c) sin’(b) sin’(A) = sin’(a) sin’(c) sin’(B) =  sin’(b) sin’(a) sin*(C)

dividing through by sinz( a) sinz( b) sinz( c)

sin®*(a) _ sin®(b) _ sin®(c) or sin(a) _ sin(b) _ sin(c) 0ED
sin?(4) sin?(B) sin*(0) sin(4) sin(B) sin(C) T
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Of interest:

Note that there are no parallel lines in Spherical geometry.
Playfair’s axiom is a non-starter here.

Note that we can construct a triangle with more than 180°. It fact, it can be shown
that all triangles in this geometry have more than 180° and less than 540°, that is
180 ° <A+ B + C < 540°.

A Nautical Mile (6, 082 feet) is one minute of arc along a great circle of the earth’s
surface (taking the earth’s radius as 3,960 (land) miles; a land mile is 5,280 feet).

A Knot is a speed of one nautical mile per hour.
Perhaps note that knots per hour is not a speed, but a measure of acceleration of one
nautical mile/hour/hour.

How long would it take to cross the Atlantic (3000 nautical miles) at a rate of 1 knot
per hour? (Answer: Just under 80 hours).

A Metre was originally defined to be one ten-millionth of the quadrant of the of the great
circle on Earth’s surface running from the north pole to the equator through Paris.

A slight error was made in the measurement of this quadrant (1792-1799), so that the official
metre at the time, a platinum bar in Paris, was just short of one forty millionth of a great
circle going through the north and south poles.

Previous to this definition, a metre was defined to be the length of a pendulum with a period
of precisely 2 seconds. This definition was abandoned when it was realised that the
acceleration of gravity was not constant over the surface of the earth. Consequently, a
pendulum with period 2 seconds would have lengths that depended upon the location of the
pendulum.

A metre is now defined as the distance light travels in a certain fraction of a second.
Equivalently, light travels 299, 792, 458 metres in one second.
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Global distances. Using spherical geometry.

Example.
We give the same example from the previous chapter 5 where the problem was solved
using vectors. Let us hope that we get the identical answers.

Consider the two cities as in Chapter 4:

Lethbridge (113°W,50°N) and Tokyo (139°E, 35°N).
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~ >,
- N
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Find

(a) The shortest (great circle) distance Lethbridge to Tokyo.
(b) The initial bearing setting off from Lethbridge.

(c) The final bearing upon landing in Tokyo.

(d) The most northern latitude reached on this shortest route.

81



Chapter 6 Non-Euclidean Geometry — Spherical Geometry

A S S

All sides are great circle arcs

= 40°
7 1 C  Lthbridye

(a) Consider the spherical triangle ABC as shown:

Using the spherical cosine rule:

cos (a) =cos (b) cos (¢) + sin (b) sin (c) cos (A) b=40°, ¢ =55°, A=108°.
a = cos [cos (40) cos (55) + sin (40) sin (55) cos (108)] =~ 73.93814240...°

So that the distance from Lethbridge to Tokyo is = 8,259 kms.

(b)  We want to find angle C.
We could use the cosine rule or the sine rule on A ABC.
Using the sine rule: C = sin” (sin (c) sin (A) / sin (a)

= sin_l[sin (55) sin (108) / sin (73.938)] = 54.1650659459...°
So that the aeroplane heads off from Lethbridge 54°09'54.2" West of North.

(c) We want to find angle B. Similar to finding angle C, we use the sine rule on A ABC.

sin(A) sin(B)
sin(a@)  sin(b)

B =sin ' [sin (b) sin (A) /sin (@) |  =sin ' [sin (40) sin (108) /sin (73.938) |
= 39.5061322875..°
So that the aeroplane would be heading 39°30'22" East of North landing in Tokyo.

(d) To find the most northern point of the journey, drop a line (great circle) from A,
perpendicular to side BC at point D.

Using the sine rule on A ABD

A S Pt
All sides are great circle arcs| Sin(b‘) = sin(c)
sin(B) sin(90)
b (We could have used A ACD)
b' =sin! (sin (c) sin (B))
e B € = 31.406900178°

So that the most northern latitude reached is 58° 35' 35" N (of the equator)
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The Celestial Sphere.

On observing the stars it is not difficult to imagine that they are bright points dotted about on
the inside of a hollow spherical dome, whose centre is at the eye of the observer. Such a
sphere is called the Celestial Sphere. The sphere may be taken as a dome upon which the
stars appear to lie.

If through the observer, a line be drawn in the direction in which gravity acts, that is, the
direction indicated by a plumb line, it will meet the celestial sphere in two points. One of
these is vertically above the observer, and is called the Zenith; the other is vertically below
the observer, and is called the Nadir. For an observer at the earth’s north pole, the zenith Z
and Celestical Pole P coincide. For an observer on earth’s equator, the Celestial Pole P lies on
the celestial horizon. The celestial equator is at right angles to the horizon.

The plane through the observer perpendicular to the direction to the zenith will cut the
celestial sphere in a great circle. This great circle is called the Celestial Horizon. Its poles are
the zenith and the nadir.

If we observe the sky at different intervals during the night, we find that the stars always
maintain the same configurations relative to one another, but that their actual situations in the
sky, relative to the horizon, are continually changing. Some stars will set in the west, others
will rise in the east. One star remains almost fixed. This star is called Polaris, or the Pole
Star. All the other stars north and south of the equator describe on the celestial sphere small
circles having a common pole P very near the Pole Star, and the revolutions are performed in
the same period of time (about 23 hours 56 minutes of our ordinary time).

The common motion of the stars may most easily be conceived by imagining them to be
attached to the surface of a sphere which is made to revolve uniformly about the diameter
PP' (see diagram below). The extremities of this diameter P and P' are called the Celestial
Poles. That pole P, which is above the horizon in northern latitudes is called the North Pole,
the other, diametrically opposite, P', is called the South Pole.

The great circle EQWR, having these two points for its poles, is called the Celestial Equator.
It is, therefore, the circle which would be traced out by the diurnal path of a star distant 90°
from either pole. The Meridian is the great circle PZP'N passing through the zenith and the
nadir and the celestial poles. It cuts both the horizon and the equator at right angles, since it
passes through their poles.

Z Zenith
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Cardinal Points.
The East and West Points are the points of the intersection of the equator and the horizon.
The North and South Points are the intersections of the meridian with the horizon.

Verticals.

Secondaries to the horizon, that is, great circles through the zenith and nadir, are called
Vertical Circles, or, briefly, Verticals. Thus, the meridian is a vertical. The Prime Vertical is
the vertical circle passing though the east and west points.

The North Polar Distance of a star is its angular distance from the celestial pole.

The Declination is the angular distance from the equator, measured along a secondary, and
is, therefore, the complement of the north polar distance. The declination may be considered
positive or negative, according to the star’s position to the north or south of the equator; it is
also customary to specify this by the letter N. or S., as the case may be, and this is called the
name of the declination. South declinations are always to be regarded as negative.

The great circle through the pole and the star is called the star’s Declination Circle.

The Hour Angle of the star is the angle which the star’s declination circle makes with the
meridian. The hour angle is generally measured along the equator from the meridian towards
the west, and is reckoned from 0° to 360°. The hour angle of a star is generally measured by
the number of hours, minutes, and seconds of sidereal time (see below). The hour angle of a
star, when expressed in time, is the interval of sidereal time that has elapsed since the star
was on the meridian.

The declination and the hour angle may be taken as the two coordinates of a star.

This is referred to as the Equatorial System of Coordinates.

Z zenith

Nadir
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Sidereal Day and Sidereal Time.

The rotation of the Earth causes the stars to transit in succession across any given meridian.
The interval between two successive passages of a fixed star over the meridian of a place is
called a sidereal day. The sidereal day is the true period of the Earth’s rotation. Like the civil
day, it is divided into 24 hours, and these are divided into 60 minutes and 60 seconds each.
The sidereal day is about 4 minutes shorter than the civil day.

It should be noted that at any instant the sidereal time is different for two different meridians.
Thus the sidereal time at any instant is related to the observer’s meridian and for this reason
it is often called local sidereal time.

Transits.

The passage of a star across the meridian is called its Transit.

Azimuth and Altitude. Horizontal System of Coordinates.

The Azimuth of a star is the arc of the horizon intercepted between the north point and the
vertical of the star, or the angle, which the star’s vertical makes with the meridian. The
azimuth is measured from 0° to 180° eastwards or westwards.

The Altitude of a star is its angular distance from the horizon, measured along a vertical.
The Zenith Distance is its angular distance from the zenith, or the complement of the
altitude.

Star west
0°<h < 180°
0°<a<180W

Azimuth @ isarc nX = angle PZX

Azimuth always measured from n, west or east
Hour angle h isarc QM = angle ZPX

Hour angle measured from meridian westwards.
Declination O isarc MX

Observer is at centre of Celestial Sphere O.

Nadir
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Hour-angle and Azimuth of the Sun’s Rising and Setting.
When the latitude of the observer, ¢, and the declination of the star, d, is known, the hour-
angles and azimuths at rising and setting are easily found.

7Z. Zenith

¢ Observer’s latitude

h Sun’s hour angle at sunset
-23°27' < § < 23°27"
cos h=-tané tan ¢

Nadir

a The distance NA along the horizon is azimuth,
measured east or west from N ranging 0°-180°

h The hour angle APZ measured westwards along the equator from the
meridian, ranging 0°— 360°

() Latitude of observer measured north or south from equator, + 90° to — 90°
) Sun’s declination ranging from + 23° 27" to —23°27".

A Point of Sun’s setting, as it goes below the horizon.

Using the cosine rule of spherical trigonometry on triangle PNA we can find:

1. The hour angle of the Sun’s setting with cos(h) = —tan(d) tan ()
2. The azimuth of the Sun’s setting with sin(d) = cos(a) cos(9).

(Perhaps recall:  sin(90 —a) = cos(a) and cos(90 — a) = sin(a).)
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Example:
(a) Find the time (summer time) of the Sun’s transit over Brooks (AB) on June 21.
(b) Find the time (summer time) and direction of sunrise in Brooks on June 21.

(c) Approximately how long (in hours) is maximum nautical twilight in Brooks?
Nautical twilight is defined: sunset until the Sun is 12° below the horizon.
The horizon is generally not visible after nautical twilight. Sailors cannot use their
sextants after nautical twilight as the horizon is no longer visible. Civil twilight ends when
the sun is 6° below the horizon and astronomical twilight ends when the sun is 18° below
the horizon (and the sun no longer interferes with astronomical observations).

Brooks: 50°35’N, 111° 54’W. Sun’s declination (June 21) is approx. +23°30".

Solution:

(a) The sun will transit at 1:00 PM summer time + equation of time June 21 +
Brooks’ longitude adjustment. Thatis: 1:00 PM + 2 minutes + (6+54/60)x4 minutes.
Approximately: 1:30 PM. Summer time. (We had to look up the Equation of Time values.)

Z Zenith (b) We will compute the time of
sunset and azimuth of sunset first,
because the diagram is a little
easier to draw and read.

The key triangle to look at is ZPA.
This triangle gives us the azimuth a
/ of sunset and the hour angle %4 of
Brooks Alberta / sunset.

(i’ Observer's latitude = 50° 3;/

h Sun’s hour angle at sunset

We apply the cosine rule in two

N\\\\__‘/ cases.

Nadir

(b) 1. To find hs cos(90) = cos(90 — @) cos(90-06) + sin(90- ¢) sin (90— ) cos(ha)
0 = sin(¢) sin(6) + cos(¢p) cos(d) cos(ha)
cos(ha) = — tan(¢) tan(6) = —tan(50°35’) tan(23°30°) = — 0. 5290
ha=121.94°
=~ 8.129 hours =~ 8 hours 8 min.  (Recall 15° = 1 hour)
So that sunrise would be 8 hours 8 mins. before transit, approx: 5:22 AM.
(The sun would set at 8 hrs 8 mins after transit, approx. 9:38 PM.)

(b) 2. To find a: cos(90- 6) = cos(90—¢) cos(90) + sin(90—¢) sinv(90) cos(a)
sin(6) = cos(¢) cos(a)
sin(23°30°) = cos(50°35’) cos(a)
cos(a) = 0.627995 ax~51.0976°=~51°5'51"

So that the sun would rise in Brooks, June 21, 51°5’51”” East of North.
(The sun would set approx. 51°5'51” West of North.)
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(¢) To find the amount of nautical twilight in Brooks on June 21, consider the following
diagram. The diagram is not to scale, as the 12° marking has been enlarged to make the
point T more visible relative to the horizon.

7 Zenith The key triangle here is PZT; all
= sides are sections of great circles. P
is the pole for the great circle
‘Equator’ and hence PT goes on to
meet the equator at right angles.

Similarly Z is the pole for the great
circle ‘Horizon’ so that ZT meets
the horizon at right angles.

\" r
S Brooks Alberta
q1 Observer’s latitude = 30° 357

h Sun’s hour angle at sunset f

From the diagram, we see that nautical twilight ends when the Sun passes through point T
12° below the horizon. Sunset was when the Sun passed through point A. We have

computed the hour angle 44 when the Sun was on the horizon at this point A.
We need to calculate the hour angle /7 of the Sun as it passes through point T.

We apply the cosine rule to the triangle PZT.
cos(102°) = cos(90—¢) cos(90-0) + sin(90 — ¢) sin(90- 8) cos(hr)

_ co0s(102) — cos(90 — ¢)cos(90 —3) _ cos(102) — sin( ¢ )sin(d)

cos(hr)
sin(90 — ¢ )sin(90 - 5) cos(¢)cos(d)
— cos(102) — sin(50°35")sin(23°30") fOl’ Brooks on June 21.
cos(50°35")cos(23°30")
~ —0.88609...
hr = cos'(-0.88609...) = 152.3863...°
=~ 10.15908... hours (recall 15° = 1 hour).
=~ 10 hours 9 mins 32 seconds.
ha = 8 hours 8 mins (calculated above, for sunset (b))

Amount of nautical twilight
for Brooks at Summer Solstice =~ hr—ha = 2 hours 2 minutes. QED
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Poincare’s Model of Hyperbolic (Non-Euclidean) Geometry.

Our space is the set of all points in the interior of a circle: D = {(x, y): x 24 y <1 }

The lines or so called P-lines in this space are straight lines within D which are perpendicular
to the boundary of D, or any part of a circle (a Euclidean circle) within D, that is
perpendicular to the boundary of D. We saw how to construct such circles towards the end
of Chapter 2, section: Euclidean Constructions of Perpendicular Circles.

We immediately see that all diameters through point O of the circle enclosing D are P-lines.
It can be shown that there are an infinity of lines through any one point C say, in D and that
there is only one line through any two distinct points (A and B shown) in D

Parallel lines are lines that do not meet. We divide parallel lines into two categories:

i. We say two P-lines are (simply) parallel if they do not meet in D, but would meet at a
point on the boundary of D if extended. Recall that boundary points are not in our space.

ii. We say two P-lines are ultra parallel if they do not meet in D nor on the boundary of D if
extended.

For any given line | and any given point P (not on l) there are an infinity of parallel lines that
go through P and do not meet line 1.

It can be shown that all triangles in this geometry have their three angles sum to less than

180°. Recall that in Euclidean geometry all triangle have angle sums to exactly 180° and in
Elliptical geometry, all triangle have angle sums to more than 180°.
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Appendix I Induction

Axiom of Induction:

Let P(n) be any statement defined for positive integers n.
If 1. P(ny) istrue

and ii. Pm = P(n+I)

then the statement P (n) is true for all n > n,.

To prove P (n) => P (n+1), we usually write down the statement P (n+1) for
arbitrary n and rearrange it, often with elementary algebra, so that we can see that
P(n+1) is clearly true if P(n) were a true statement. Or equivalently, we use P(n) to
rearrange the statement P(n+1) so that it is obviously true, such as a statement that
“2 <3” or maybe “a’=(0” etc. two obviously true statements.

Exercises.

1. Showthat S'r = n(n+1)/2 is true for all n.
1

2. Show n’/7 + n’/3 + 1In/ (21) is an integer all n.

3. Show that P(n) => P(n+1) for the statement P(n) : “n’+ n+ 1 iseven”.

: n
4. Use induction to prove [COS(I) —Ssin ¢] = [cos nd -—sin nq)]

sin¢g cos¢ sinng  cosnd

5. Showthat Yr° = [3r]?istueforall nx1.
1 1

n

6. The famous binomial theorem: (a+b)" = E ( :f) a7 b istrueall n> 1.

r=0

Of interest:

1. Euler’s formula for primes: E;(n) =n?+n + 41
Gives 40 different prime numbers forn =0, 1, 2, ... 39.
Obviously E; (41) cannot be prime.

2. E>(n) =n?—-79n + 1601 is prime for n=0,1,2,...,79
Not all 80 primes are distinct. Obviously E, (1601) is not prime.
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n
3. Fermat numbers: F,=22 +1 n=0,123 ..

Pierre Fermat conjectured in 17th century that such numbers were always
prime. L. Euler noticed that F'5 had a factor of 641.

To this day, no Fermat number other than the first five has been found to be
prime. These numbers are the same Fermat numbers in Gauss’ theorem on
regular polygon construction.

4. Consider the statement  P(n): n <10'%
This statement is true for n=1,2,3, ..., 10 %,

Clearly P(n)is false for n=10'" +1.

5. Two examples showing the necessity of induction.

Example 5.1
Place n distinct points on a circle. Join all n points together with lines.
How many segments of area are obtained?

Solution: Draw diagrams for the following cases. We see:
For n=1 we get S(1) the number of segments =1 = 20

n=2 we get S(2) the number of segments =2 = 2!
n=23 we get S(3) the number of segments =4 = 22
n=4 we get S(4) the number of segments =8 = 23
n=>5 we get S(5) the number of segments = 16 = 24

Surely Sn)=2"" all n=1.

It turns out that this is true only for n<35

n'—6n’+23n*—18n+24
and that S(n) = istrue forall n=1.

24

See Martin Gardner’s “Mathematical Circus” Pages 177, 180,181.
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Example 5.2

I Induction.

II Kepler’s Laws.

We demonstrate a remarkable statement P (n) which is true for
n=1,2,3,.., 26,860 then suddenly fails for the case n= 26,861.

III Sundials.

Let 7, (n) denote the number of primes of the form 4k + I which are not greater than n.
Let t;5(n) denote the number of primes of the form 4k + 3 which are not greater than n.

m (1) =0 my(1) =0

m (2) =0 m;(2) =0

mw (3) =0 w(3) =1 3 (whenk=0)

m (4) =0 m; (4) =1

m(5) = 5 (whenk=1) m(5) =1

m (6) =1 m; (6) =1

m((7) =1 (7)) =2 3,7 (whenk=0,2)
m (10)=1 i (10)=2

m (1) =1 w(11) =3 3,7,11 (whenk=0_2,3)
mw(17)=3 5,13,17 (whenk=1,3,4) w (17)=3  3,7,11 (whenk=02,3)
m (100) =11 n; (100) = 13

5,13,17,29,37,41,53,61,73, 89,97

3,7,11,19,23,31,43,47,59,67,71,79, 83

Consider the statement P(n): (n) < ms3(n)

We see that P(n) is true forn=1,2,3,...,7 and for n =10, 11, 17 & 100. With
much patience, the inequality can be shown to hold for n=1, 2, ...,26,860. Surely
the statement is always true?

In 1957 J.Leech showed that
m; (26,861) = 1473 and m5(26,861) = 1472,

ie. m(n)>m;(n) for n=26,861. P (n) is false for n = 26,861.

Induction is certainly necessary if we want to sleep soundly at night and not have
nightmares about possible exceptions to various equations and inequalities.
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Induction examples.

Example ir =n(n+l)/2 istrueforalln=1.
1
Proof by induction. Let P(n) be the statement: Er =n(n+1)/2
1

We easily see that P([) is true.
We next show that P(n) = P(n+1) (for arbitraryn =1.)

n+l

P(n+1) is the statement: Er =(n+l)(n+2)/2
1

Our aim is to rearrange this statement P(n+1) somehow so that we can see:

If P(n) were true, then the statement P (n+1) would be obviously true.
Consider LHS of the statement P(n+1):

n+l

Er = >r + (n+l) summation definition
1 1

n(n+l)/2 +(n+l) if P(n) were true
(n+l1) (n+2)/2

= RHS of statement P(n+1)
Therefore P(n) = P(n+1), and recall P(1) is true.

By the axiom of induction P(n) is true alln = 1. 0.E.D.
Example: Erz = n(n+l)(2n+1)/6 is true forall n > 1.
1

Proof by induction. Let P(n) be the statement: E r’ =n(n+1)(2n+1)/6
1

We easily see that P([) is true.
We next show that P(n) = P(n+1) (for arbitraryn =1.)

n+l

P(n+1) is the statement: 27‘2 = (n+l)(n+2)(2n+3)/6
1

n+l

Consider LHS of P(n+1): 27“2 = Er2 + (n+1)? summation definition
1 1

= n(n+l)(2n+1)/6 +(n+1) if P(n) were true
= (n+l)(n+2)(2n+3)/6 basic algebra
= RHS of statement P(n+1)

Therefore P(n) =>P(n+1). By the axiom of induction P(n) is true alln > 1. Q.E.D.
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Example: ErS = (n+1)?/4 istrueforalln>1.
1

Proof by induction. Let P(n) be the statement: 27"3 =n?(n+1)?/4
1

We easily see that P(1) is true.
We next show that P(n) => P(n+1) (For arbitraryn =1.)

n+l

P(n+1) is the statement: Erg = (n+1)(n+2)%4
1
Consider LHS of P(n+1):
n+1 n

Zra = Er?’ + (n+1)®  summation definition
1 1

n’(n+1)°/4 + (n+1)°  if P(n) were true

(n+1)?(n+2)2/4 basic algebra

RHS of statement P (n+1)

Therefore P (n) = P (n+1). By axiom of induction P (n) is indeed true n = 1. QO.E.D.

Example 1If P(n) is the statement: “ n“+n+1 iseven ” then P(n) = P(n+I) .

Proof  Statement Pm+1) is “m+D’+ (m+ 1)+ 1 iseven”
or “(n’+n+1) + (2n+2) is even ” simple rearrangement.

Clearly, if P(n) were true,then P (n+1) would also be true, i.e. P(n) = P(n+1)
Q.E.D.

Perhaps note that P(n) is never a true statement.
But, if P(n) were true, then P(n+1) would also be true for any positive integer n.

A most common error is saying:

‘P(n)is even’ or ‘P(n)is divisible by 5’ or ‘n(n+l)/2istrue’ etc.
P(n) is a statement (equation, inequality, etc.). The statement can be true or false;
a statement is never even nor odd, we do not divide statements by numbers etc.

Whereas a number can be even or odd, or divisible by 5 etc.
We never say a number is true or false.
What would it mean to say (n+1) (n+4) is true, or that (n+5) is false?
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Example. n’/7+n’/3+1In/(21) isaninteger forall n >1.

Proof Let P(n)be the statement: “n’/ 7 + n’/3 + 1In/(21) is an integer ”
We immediately see: P(I): “(7/7 + I°/3 + 11/(21) ) is an integer ”
is a true statement.

We show that P(n) => P (n+1), for arbitrary n= 1.

P(n+1) is the statement: “ (n+1)7/7 + (n+1)3/3 + 11(n+1)/(21) is an integer ”

In this form, it is certainly not obviously true, even if we assumed P (n) to be true.
We try and rearrange the statement P(n+1) somehow, so that we can see that
P(n+1) is indeed obviously true if P(n) were true.

Consider the number: (n+1)7/ 7 + (n+1)°/ 3 + 11(n+1) / (21)  this number can be
rearranged to: n’/7 + n3/3+1n/(21) +m where m is some integer.

In this form, it is clear that if P(n) were true, then P(n+1) would also be a true statement.
P(1) is true and P(n) = P(n+1) so that by (mathematical) induction P(r)is true all n = 1.
QED.

The difficulty above is in rearranging (n+1) 717 + (n+1)°/3 + 11(n+1)/(21) to
(n/7+ n’/3+1In/(21))+m (m integer)
The binomial theorem is most useful here with the fact that the binomial coefficients

’C;, are easily seen to be divisible by 7 for [ <r<6.

Example: 11" 4" is divisible by 7 foralln=1,2,3,4, ..
Proof: (By induction) Let P(n) be the statement: ~ “ 11" — 4™ s divisible by 7 ”

We see: P(1): “11-41isdivisible by 7” is a true statement.
Consider P(n+1): «pptl_gntl s divisible by 7

We try and rearrange the statement P (n+1) somehow, so that we can see that P (n+1)
is indeed clearly true if P(n) were true.

That is, we try to rearrange the number 11 n+l_ g+l p (n+1) somehow, so that
it is obvious that if P(n) were true, then P (n+1) would also be true.

it gt g4

=11.11"— 114"+ 747"

= 1" —4")+ 747 (using basic algebra)
P(n+1) can be written: “11(11™-4")+ 74" is divisible by 7.

In this form it is now obvious that if P(n) were true, then P(n+1) would also be true.

P(1)is true and P(n) = P(n+1)
so that by (mathematical) induction P(n) is true all n > 1. Q.ED.
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Example: 77"-2" isdivisible by 5 foralln=1,2,3,4,..

Proof: (By induction) Let P(n) be the statement:  “ 72" is divisible by 5”
We see: P (I): “7-2 isdivisible by 5” is a true statement.

We show that P (n) = P(n+1)

Consider P(n+1): “7mt _2n+1 js divisible by 5 7
wesee 7Mtl_ontl _ 7 gn_s0on) _ 7gn_sn) 50N

So that P (n+1) is the statement: “ 7 (7"=2") + 5(2™) is divisible by 5 ”

With P(n+1) in this form, it is clear that if P(n) were true, then P(n+1) is also true.

P(1) is true and P(n) => P(n+1) so that by induction P (n)istrue alln > 1. Q.ED.

Example. Show that P (n) = P(n+1) for the statement
Pn): “n“+5n+2 isodd”

Consider P(n+1):  (n+1)?+5(n+1)+2  is odd
or ( n+5n 42 )+ 2(n+3) isodd (using basic algebra)

With P(n+1) in this form it is obvious that if P (n) were true, then P (n+1) would
also be true, i.e. P(n) = P(n+1).

Of course P (n) is never true, but :

If P(n) were true, then we know that P(n+1) would also be true.
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Induction proof of the Binomial Theorem (not easy, but a nice example to go over).

We show the statement P(n): “ (a+b) " = E(f) a b’ istruealln=1.
r=0
We easily see that P(1) is true.

We next show that P(n) = P(n+1) (For arbitraryn =1.)

n+l
P(n+1) is the statement: (a+b)" 1! = E(;Hl) aVt i Rt
r=0
Our aim is to rearrange this statement P (n+/) somehow so that we can see:

If P (n) were true, then the statement P (n+1) would be (clearly) true.
Consider (a+b)" *1 the LHS of the statement Pn+1):

(a+b)"T = (a+b)(a+b)"
Now if P(n) were true, then we could write the LHS of P(n+1) as follows:

@@+ = (a+b) 3(r) b

r=0

= a ()Y + b ST
r=0 r=0
= i(;‘) AT 4 i(f) avTy equation 1
r=0 r=0

Our aim is to somehow combine these two sums to look identical to the one sum on the RHS

n+1-r bl’

of P(n+1). We note that the term a in the left sum of equation 1 above looks

closer to our desired form than does the term """ " oy the right sum of equation 1.

This suggests that we fiddle with the right sum, change the dummy variable » hoping that
we can combine these two sums into one sum.

Set r+1 =k in the sum E(”) aVT prt to get 'El(kn 1) G-k

r=0
sincek=1whenr=0, & k=n+1whenr=n, & k= r-I. k
n =n+l n
So that equation 1  becomes: (a+b)"t! = E(") AT+ kE (k—l) an+]—kbk
r=0 r -1

(a+b)n+1 = e el (3 more lines)

nzﬂ(;Hl) an+1—r bl‘ QED
r=0

((14'17)114_1

We have shown that if P (n) were true, then P (n+1) would be true,
i.e. we’ve shown P (n) = P (n+1).

This implication (which was done for arbitrary n), together with statement P(/) being true,
guarantees (by the principle of induction) that P (n) is indeed true for all integers n> 1.
The usual difficulty in a proof by induction is rearranging P (n+1); this is especially true in
the above example.
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Some fun examples from Polya’s Mathematics and Plausible Reasoning
and Colin Clark’s Elementary Mathematical Analysis.

1. En 1 = n/2n+1) Show true for alln = 1,2,3, ....
14r° -1
n 1
2. — )= 1)/2 =2,3,4..
l_[r=2(1 r2) (n+1)/2n Show true for all n
3. n 4 = (2n+2)/(2n-1)  Show true foralin = 2,3, ....
[[a- ")
(=)
4. En(zr _ 1) = n? Show true for alln = 1,2, 3, ....
1
5. E” J = 1—a"™"  a#1ofcourse. Show frueforalln=1,2,3, ...
r=0
l1-a
6. What is the formula for #7 above when a =17
7. (1+&)" > 1+ ne for any ¢ > 0. Show true for alln =1, ,2, 3, ....
8. A What values of 7 is this statement true?

Show true for all integers n= 1.

9. If O0<a;j<l1 foralli=1,23,..,n with n>2 then

(I-ap)(1l-ap)...(I-a,) > I-aj—ap —az —... —ay,.

Show true alln = 2, 3, ...

i.e. " > 1- " is true foralln =2, 3,4, ....
[T, a-a) E a f

=1 !
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Appendix 11 Kepler’s Laws.

Kepler’s Laws 1 & 2 were proposed in year 1609 (the year the telescope was invented).
Law #3 was proposed in year 1619.

1. The [six] planets describe ellipses about the Sun as focus.

2. The radius vector drawn from a planet to the Sun describes
equal areas in equal times.

3. The squares of the periodic times of the different planets are
proportional to the cubes of the respective mean distances from the Sun.

Kepler based these results on naked eye observations, his own and those of Tycho Brahe.
These were incredibly accurate observations considering that the telescope was not invented
until 1609. Isaac Newton’s theory of gravity confirmed, 60 years later, that indeed the planets
should follow these rules very closely.

Kepler noticed that the Sun’s diameter as observed from earth varied ever so slightly. The
change was around 0.4 seconds of arc per day, as seen from earth. If the earth was orbiting in
a circle around the sun, then the observed diameter of the Sun should remain constant. From
earth, the maximum angular diameter of the Sun is 32" 36” (at Perigee), the minimum is
3122”7 (at Apogee).

Kepler observed that the Sun’s diameter varied inversely with the quantity (1+ e cos 6)
where 0 was the angle between Earth’s radius vector and its apse line, e is a constant
(eccentricity of the ellipse). Using the maximum and minimum angular diameter of the sun,
Kepler showed that e = 1/60 for Earth’s orbit.

Since the polar equation of an ellipse is A/r = (1+ e cos 8) some constant A, it follows that
the Earth does indeed describe an ellipse around the sun.

For the ellipse in the diagram below, e = 0.7. A diagram with an ellipse with e = 1/60 would
be indistinguishable from a circle, both being within the thickness of the boundary lines
drawn by the finest laser printer.

Alr=(1 +ecos0)

Apogee Apse line Perigee

e=1/60 for Earth

e= 0.7 for this diagram
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Newton’s theory of gravity showed that Kepler’s second law was essentially the fact
that angular momentum for any planet is constant.

P2

P3
(Apogee)

Po
(Perigee)

Sun

e=1/60 for Earth
e = 0.7 for this diagram

If area 1 equals area 2, then the time taken for a planet
to travel from Po to P1 is the same as taken to travel from
P2 to Ps. The planet travels fastest when nearest the Sun
and slowest when furthest from the sun.

Corrections to Kepler’s Third Law.  (From Horace Lamb’s “Dynamics”)

When prolonged observations are made, it is found that Kepler’s laws do not give a
perfect description of the planetary motions; and the theory of universal gravitation
supplies a reason why they should be departed from. The laws in question would, on
this theory, hold rigorously for a system of planets which were themselves destitute
of attractive power; but the accelerations usually produced by the planets in one
another, and in the Sun, though comparatively slight, are sufficient to produce
modifications of the orbits. As some of the effects are cumulative, the changes may in
time become considerable.

Comparing the mass of two planets m, m” revolving round the Sun, whose mass is S
(say). With D, D’ average distances to the Sun and T, T” periods of revolution about
Sun for the respective planets, we have the amended form of Kepler’s third law:

) - S
D) (S+m)\T'
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Appendix III. Sundials

(a) The Horizontal Sundial.

There are five adjustments needed to set up and read an accurate sundial. Once set up, the
sundial will be accurate for at least 10, 000 years.

1. The style must have the same inclination as the latitude of the location of the sundial.
Latitude at Lethbridge is 50° North. The high end of the style is North, the
low end South.

2. The plane of the gnomon must be vertical and must align along the local meridian.
That is, the style must point true north, not magnetic north which could be quite
different. Magnetic north is 15° East of True North in Lethbridge, 2013.

This difference varies slightly year to year.

3. The hour lines on the horizontal base of the sundial must be calculated for the
appropriate latitude of the sundial. The sundial will then work for any location on that
latitude (northern or southern hemisphere). At latitude ¢ the hour angles are seen to be

oy, = tan”[tan (15h) sin (§)] forhours h=1,2,3,.....

see diagram below.
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tanfey, ) = sin(@) tan (15h)
= fan :Isin(m tan (15h) ]
Angle OBC = 9P

Angle OCA =9
Angle BUA =90°

At noon (sundial noon) the sun is directly above the meridian of the sundial location.
The shadow of the style will fall along the North—South line directly below the style.

When the Sun is / hours past noon, the shadow of the style will fall along OA.
To construct the sundial, we need to find the hour angles o, for various values of A.

Let OC = 1 unit, then BC =sin ¢ (right triangle OBC)
AC = sin(¢) tan (15h) (right triangle ACB)
tan oy, = sin(¢) tan (15h) (right triangle OCA)

on = tan'(sin(¢) tan (15h))

Recall that the sun moves 15° per
hour, hence the argument 154 in
the above functions.

For the half hour markings, we can
use h=05,1.5, etc.

and for the quarter hour markings
we use £ =0.25,0.75,1.25, etc.
(however, it is usually accurate
enough to simply bisect the hour
angles, repeatedly).

oy = tait’ [sin(gd tan (15H)]

Always the 6 PM hour line is due East.
Always the 6 AM hour line is due West.

The 7,8,9, ... PM lines are extensions of the 7,8,9, ... AM lines.
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4. Longitude adjustment.

As well as the latitude, we need to know the longitude of the sundial location.

To every sundial reading we must add four minutes for each degree west of a
meridian that is a multiple of 15°. Meridian 105° (Moose Jaw) is for Lethbridge a
convenient reference meridian. Since Lethbridge is 113°W, we add 4 minutes for
each of the eight degrees west of Moose Jaw, to the time showing on the sundial. So
that for Lethbridge, we will always add 32 minutes to the time showing on the
sundial. This will then give the same time (after the equation of time adjustment) as
given by all clocks in the 7* time zone.

If we wanted Pacific Time, we would subtract 4 minutes for each of the the 7 degrees
east of the 120° meridian, of the 8" time zone. This would give us Pacific Time, one
hour earlier than Mountain Standard Time of zone 7.

Of interest: for sundials in Lethbridge, or anywhere along the 113° W meridian, it is
usually convenient to add 32 minutes to each value in the equation of time. This
adjusted equation of time table with 32 minutes added to each entry is good for all
sundials along longitude 113°W (but not for other longitudes).

Sunlight

g

\ v '

v 1°0f ) 1°0of s

*, longitude 1 longitude /'
'

S !
') st e
|

If a sundial is reading 12 noon at point B, we see that a sundial gnomon is casting a
shadow on the PM side at point C. The sundial will read 4 minutes past noon if C is
1° different from B’s longitude. Recall that the gnomon of the sundial is always up in
the vertical plane.

Similarly, if a sundial is reading 12 noon at point B (above), then at point A, the sun
has not yet reached transit. The shadow of the gnomon at A will be on the AM side,
by an amount of 4 minutes for every 1° difference A’s longitude is from B’s
longitude.

105



Appendix IIl Sundials

5. Equation of Time adjustment.

We must add (or subtract) the amount of time indicated by the Equation of Time tables for
the day of reading the sundial. This adjustment varies day to day. This adjustment is the same
for all longitudes and all latitudes around the globe. The one set of adjustments is good for
all sundial owners.

Although the Earth rotates about its axis at a very constant rate, it moves around the Sun at
various speeds. It moves fastest when closest to the Sun (Kepler’s second law), that is, near
the end of December. This varying speed along with the tilt of the earth’s axis combines to
make sundial noon differ from clock noon in a range from

—16 to +14 minutes (to the nearest minute). The daily differences are pretty well constant
from year to year for all locations on Earth. These minor differences are available in all
almanacs. See below.

Summer Time.

If summer time is in effect, we must add a further hour to the time shown by the sundial.
Perhaps note that Saskatchewan has no summer time adjustments. Summer time in Canada is
in effect from the second week in March through through first week of November.

Setting up.

The first two requirements 1 and 2 above, ensure that the style is aligned parallel to the line
(axis) joining the North pole to the South pole that the earth spins around once every 24
hours, 15° every hour, 1° every 4 minutes. In Australia the gnomon is set pointing true South,
with the high end South, since the Australian sun shines from the North (in most locations of
Australia).

Finding True North.

1. If you know the deviation from the magnetic north you can find True North with a
magnetic compass. For Lethbridge, True North is approximately 17° west of
Magnetic North. The amount of magnetic deviation varies around the globe; some
locations have no deviation (if they are on a so called Agonic line).

2. Another method to find True North is to find the time of the Sun’s transit, i.e.
when it is highest in the sky, directly over the local meridian. This is the mid point in
time between sunrise and sunset. Sunrise-sunset times are usually given in the local
newspapers. At the sun’s transit the shadow of any vertical pole points true north.

For Lethbridge December 2/2005: Sunrise was 8:09 AM, Sunset was 4:33 PM so that
the Sun’s transit (over the meridian 113°) was 12:21 PM on Dec. 2. In fact, this holds
true for any year.

3. Another method, perhaps the easiest: Add the location longitude adjustment and
the appropriate equation of time adjustment to 12:00. At this adjusted time, on your
watch, the shadow of any vertical pole points true north, i.e. the shadow falls along
the meridian of the pole’s location.

For example: In Lethbridge the longitude adjustment of time is +32 minutes. The
equation of time adjustment on December 2 for example, is —11 minutes. So that at
12:21 PM MST, December 2, the shadow of any vertical pole in Lethbridge falls
along the meridian 113° W. (through Lethbridge) thus pointing due North. Your
sundial should be set so that it reads 12:00 noon when your watch reads 12:21 PM on
December 2.
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Example 1.

The Jim Coutts horizontal sundial near Nanton, Alberta, at 50.35° N, 113.75°W has its
style set at 50.35° pointing North. The hour lines I to VI are at: 12°,24°,38°,53°,71° & 90°.
The daily longitude adjustment is (113.75 — 105)x4 = + 35 minutes for all readings.
Always 35 minutes must be added to every sundial reading.

Example 2.

The Bill Hird horizontal sundial near Nerang, Qld. Australia, at 28° S, 153. 25°E has its
style set at 28° pointing South. The hour lines I to VI are at: 7°, 15°,25°,39°, 60° & 90°.
The daily longitude adjustment is (150 — 153.25)x 4 = — 13 minutes for all readings.
Always 13 minutes must be subtracted from every sundial reading.

Example 3.
When a Lethbridge (50°N, 113°W) sundial reads 1:46 PM on December 11, then
MST = 1:46 — 7 minutes + 32 minutes = 2:11 PM. (Mountain Standard Time.)

Since the equation of time for December 11" is —7 minutes.

Example 4.
When a Lethbridge sundial reads 12:00 noon (the sun is at transit) on February 5",

then MST = 12:00 + 14 minutes + 32 minutes = 12:46 PM

Since the equation of time for February 5* is +14 minutes.

Example 5.
When a Lethbridge sundial in Medicine Hat (50°N, 110.5° W) reads 8:21 AM on April 12,

then MST = 8:21 + 1 minute + 22 minutes = 8:44 AM

Note 1. Since Medicine Hat and Lethbridge share the same latitude 50°N, a Lethbridge sundial works
equally well in Medicine Hat.

Note 2. Since Medicine Hat is on longitude 110°30°W, it is 5.5° west of longitude 105° W, the
longitude adjustment for any sundial reading in Medicine Hat is always + 22 minutes.

Example 6.
When a Lethbridge sundial in Vancouver (49°N, 123° W) reads 11:02 AM on August

1#, then PST = 11:02 + 6 minutes + 12 minutes + 1 hour = 12:20 PM  (Pacific
Summer Time)

Note 1. Vancouver’s latitude is close enough to that of Lethbridge so that the sundial works well
enough.

Note 2. Vancouver is 3°W of longitude 120° W, so that 12 minutes must be added to all sundial
readings.

Note 3. The date is August, summer time (+1 hour) will be in effect in British Columbia.

Example 7.
When a Los Angeles sundial in L.A. (33°N, 118° W) reads 4:22 PM on April 15%,

then Pacific Time = 4:22 + 0 minutes — 8 minutes = 4:14 PM

Note 1. A Lethbridge sundial is no use in L.A. The style is too steep and the hour angles all wrong.
We must use an L.A. sundial with a 33° style and corresponding hour angles.

Note 2. Los Angeles is 2° East of 120° W. L.A. uses the 8" time zone (Pacific Time) so that 8
minutes must be subtracted from every sundial reading taken in L.A.

If Los Angeles chose to use Mountain Standard Time, then we would note that L.A. is 13° West of
longitude 105° W and add 52 minutes to every sundial reading to get MST.
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Constructing the hour lines for the horizontal sundial using an epure.

The following diagram is an epure, a device for constructing the hour lines on the base of the
horizontal sundial. This diagram is on the cover of Rohr’s great book on sundials.

To understand the diagram, imagine a circular disc with centre O at the tip of the style, the
normal to this disc (going through O) lying along the style. The hour markings on the
circumference of this disk would be uniformly distributed every 15°. This set up is the same
as in an armillary sphere sundial.

Now imagine the hour lines from point O extended to meet the front, west-east line of the
sundial plate. Finally, imagine the circular disk along with these extended hour lines rotated
about this west-east line until the disk is horizontal and in the same plane as the sundial base.
In the picture below, the gnomon has been laid horizontal, 90° about the south-north line for
esthetic reasons only; this is not necessary.

We see, as with the armillary sundial, that circle C can have any diameter; however, for
practical purposes, the larger the diameter the better the accuracy. These epures were used by
sundial makers as they required no trigonometric tables to construct their dials.

Perhaps note, any carpenter can easily make 15° angles.

North

south-north line

Epure for

horizontal sundial to be located
at  ¢° latitude

Circle C can have any diameter
but must have centre 0.

; el East
) S U W N T
\ <1/ m v _.-west-east line
\ o -

£ <

o D vl.-

(v} (§' L

2 &

= \
% g &

o\z|//7
(2]
O
Shadow line at 6 PM A

The following diagram on the next page may help to understand the epure. Imagine an
armillary circle attached to the end of the gnomon, such that the circle touches the horizontal
plane. Recall that the hourly markings on the armillary circle are evenly spaced, every 15°.
Next, imagine that the armillary circle is rotated about an East-West horizontal line through
the point where the armillary circle touches the base, rotated (away from the gnomon) until it
lies flat with on the horizontal plane. So that the centre of the armillary circle pt. sssA of the
figure below goes to point O in the diagram of the epure above.

Recall that the radius of this circle is not relevant, only the position of its centre on the
horizontal plane. 108
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West

In the above diagram, the style OA is perpendicular to the line A to XII.
The style OA is normal to the plane containing A and the East-West line.

The angles XIIAI, IAII, ITAIIL, IITAIV etc. are each 15°.

Recall as the sun rotates around the style OA, it moves 15° each hour for a total of
360° in 24 hours (of apparent time).
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Equation of Time. From Whitaker’s Almanack.

“Time shown by a sundial is called Apparent Solar Time. It differs from Mean Solar Time
(clock time if on a longitude being a multiple of 15°) by an amount known as the Equation of
Time, which is the total effect of two causes, which make the length of the apparent solar day
non-uniform. One cause of variation is that the orbit of the Earth is not a circle, but an
ellipse, having the Sun at one focus. As a consequence, the angular speed of the Earth in its
orbit is not constant; it is greatest at the beginning of January when the Earth is nearest the
Sun. The other cause is due to the obliquity of the ecliptic, as the plane of the equator
(which is at right angles to the axis of the Earth) does not coincide with the ecliptic (the
plane defined by the apparent annual motion of the Sun around the celestial sphere) but is
inclined at an angle of 23° 27’. As a result the apparent solar day is shorter than average at
the equinoxes and longer in the solstices. From the combined effects of the components due
to obliquity and eccentricity, the Equation of Time reaches its maximum values in February
(-14 minutes) and early November (+16 minutes). It has a zero value on four days of the
year, and it is only on those dates (approx. April 15, June 14, Sept. 1 and Dec. 25) that a
sundial shows Mean Solar Time.”

Minutes

-15 @

L » ® ®
Jan 1 April 1 July 1 Oct 1 Dec 31

The two dashed curves are representations of the components that sum to make the solid
curve:

The smaller dashed curve represents the changes due to the 23° tilt of Earth to the plane of
motion.

The larger dashed curve represents the changes due to the varying speed of Earth about the
Sun.

The solid curve above is a graphical representation of the Equation of Time.
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(b) The Analemmatic Sundial at CCHS West Lethbridge.

This rather new type of sundial is from the 18" century. The time is read by the shadow of a
vertical post (or person) standing on the North-South axis of an ellipse mathematically
configured for our latitude of 49.75° North. A person stands at the very centre of the ellipse
on March 22 and Sept. 22. In the ‘summer’ months March 20 onwards to Sept. 24, one
stands (always on the meridian line) a little north of centre, and a little south of centre in the
‘winter’ months September 24 to March 20. These different positions are related to the
height of the sun (its declination) as it passes overhead. In mid summer, the overhead sun is
some 47° higher than it is in mid winter.

To read the solar time, i.e. sundial time, stand on the North-South axis of the ellipse,
positioned according to the date. The hour markers here have been set so as to take into
account the sundial’s longitude (113° West). The noon marker is 32 minutes to the left of the
North-South axis (the meridian) of the ellipse. To get watch time, read the sundial time from
your shadow, then add the appropriate ‘ Equation of Time’ value for the date of reading. Add
one hour if Daylight Savings is in effect. The Equation of Time values can range from plus
14 minutes (in February) to minus16 minutes (in late October and early November).

Alberta Daylight Savings: Begins the 2" week of March and ends the 1* week of Nov.

Example 1:  Suppose the date is February 1.
a. Stand on the north-south axis, 50 centimetres south of centre of the ellipse.
Since 2.5 tan (—17°) cos (49.67°) = 0.495 metres = approx. 50 cms  see general dial below
since 2a = 5 metres for the width (main axis) of the CCHS dial
Declination of the sun on February 1 is —17°
Latitude of CCHS dial is 49° 40’ North
b. Read from the dial the time that the middle of your shadow falls upon: 10:30 AM say.

For MST: Add the equation of time adjustment for February 1: + 14 minutes.
Mountain Standard Time: 10:44 AM

Example 2: Suppose the date is May 21.
a. Stand on the north-south axis, 59 centimetres north of the centre of the ellipse.

Since 2.5 tan (20°) cos(49.67°) = 0.589 metres = approx. + 59 cms
Declination of the sun on May 21 is +20°
b. Read from the dial the time that the centre of your shadow falls upon: 3:00 PM say.

For MST: Add the equation of time adjustment for May 20: 3 minutes.
Add 1 hour for summer time.
Mountain Standard Time: 4:03 PM

Example 3  Suppose the date is October 10. See diagram below.
a. Stand on the north-south axis, 18 centimetres south of the centre of the ellipse.

Since 2.5 tan(— 6.5 °) cos(49.67°)= —0.184 metres = approx. — 18 cms
Declination of the sun on October 10 is — 6.5 °
b. Read from the dial the time that the centre of your shadow falls upon: 2:30 PM say.

For MST: °‘Add’ the equation of time adjustment for October 10: —13 minutes.
Add 1 hour for summer time.

Mountain Standard Time: 3:17 PM
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Analemmatic Sundial Constriuction at latitiede $°

Do ellipse with minor axis on the meridiar:
Semi major axis {East-West) size a metres, say.
and semi-muinor axis (North-South) size b = o sin ¢

foci are a cos ¢ either side of ellipse centre.
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d® angle of Sun’s declination
Hour points have coordinates (o sin @, b cos 8 )
where H= I5h ho= howur I, 2, &, ...}
only v-coordinate is needed if ellipse is droorn.,

The two focal points are used only to easily draw the ellipse. The semi major axis length
a metres can be any length, but is usually chosen to be the length of an average person’s
shadow around 6 PM.
Note the standing point on the meridian through the centre of the ellipse varies with the Sun’s
daily declination. In summer, when the declination d° is positive, one stands a tan(d) cos (¢)
metres above the major axis. In winter, the declination d° is negative, so that

a tan(d) cos (@) is negative, hence one stands below the centre of the ellipse in winter.

Note that one always stands along the minor axis which is aligned along the meridian
112°55' West. Only the distance along the meridan, above or below the centre of the ellipse
varies. This standing point depends on the Sun’s declination for the day of reading.

Recall 2a metres is the East-West width of the ellipse and that @° is the dial’s latitude.
For the CCHS West dial, 2a = 5 metres.

Perhaps again note that the CCHS dial has each hourly marker set 32 minutes (in time) to the
left (anticlockwise on the ellipse) of hourly markers of the general dial described above. This
CCHS setting incorporates the longitude adjustment for the location of the CCHS dial, which
is 8° west of longitude 105° (= 7x15°). So that when the shadow falls on the meridian, the
time reads 12:32 PM, hence only the equation of time and summer hour (if in effect) need be
added to the sundial time. The longitude adjustment for this dial has been incorporated into
the hourly markers. The equation of time adjustments vary throughout the year and cannot
be incorporated into the fixed dial.

A Sumo wrestler would have difficulty reading this dial; for greater accuracy, he might hold
a thin vertical rod to cast the shadow.
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Equation of Time

Day Jan Feb Mar

1 3 14
2 4 14
3 4 14
4 5 14
5 6 14
6 6 14
7 6 14
8 6 14
9 7 14
10 7 14
11 8 14
12 8 14
13 8 14
14 9 14
15 9 14

16 10 14
17 10 14
18 10 14
19 11 14
20 11 14
21 11 14
22 11 14
23 12 13
24 12 13
25 12 13
26 12 13

27 13 13

28 13 13

291 13
30 13
31 13

= R R e e e e e
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April May

4 -3
4 -3
4 -3
3 -3
3 -3
3 -3
2 -3
2 -4
2 -4
1 -4
1 -4
1 -4
0o -4
0 -4
0 -4
0 -4
o -4
‘1 -4
-1 _4f
-1 -4
-1 -3
-1 -3
-2 -3
-2 -3
2 -3
2 -3
-2 -3
-2 -3
-3 -3
-3 -3
: 3

June July Aug Sept Oct  Nov  Dec

-2 0 -10 -16
-2 0 -10 -16
-2 0 -11  -16
-2 -1 -11 -16
-2 -1 -11 -16
-2 -1 -12. -16
-1 -2 -12 -16
-1 -2 -12 -16
-1 -2 13 -16
-1 -3 -13 -16
-1 -3 -13 -16

-3 -13 -16
-4 -13  -16
-4 -14  -16

5 -14 16
5 -14 -15
-5 -14  -15

-6 -15  -15
-6 -15  -15
-6 -15  -15
-7 -15 -14
-7 -15  -14
-7 -16  -13
-8 -16  -13
-8 -16  -13
-8  -16 13
-9 -16  -13
-9 -16  -12
-9 -16  -12

-10  -16  -11

: -16@

PRRPPRRNNRRARNRNNNNINNNDINONNUVTNUIUTISDDD S
L PEEREENNNROOOWRARARAAAOIUNUNNUUNOODDODDO

The time (in mmutes) must be added to the sundial time to glve clock tlme 7
A longltude adjustment must be made 1f not on a longltude of a multlple of 15°.

Examples: If Sundlal locatlon is on Iongltude 0°, 150, 30° or some multiple of 159

Sundial reads Noon on January 10, then clock time is 12:07 PM
Sundial reads 2:30 PM on October 20 then clock tlme 1s 2:15 PM

The sundlal of course does not know about summer tlme add|t|on of 1 hour

Chrlstmas Day, Boxing Day, mid June, mid Aprll early September j
on these days the sundial and wall clock read the same time, no adjustment needed.
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Equation of Time (nearest minute) with 31 minutes added to each value to account for Lethbridge longitude

Lethbridge Longitude is 112°48'W.

7° 48' west of longitude 105°W

( Leth. latitude: 49° 42' N.)

DAY JAN FEB MAR APR MAY | JUNE | JULY | AUG | SEPT | OCT NOV DEC
1 33 44 43 34 27 28 34 36 30 20 14 19
2 34 44 42 34 27 28 34 36 30 20 14 19
3 34 44 42 34 27 28 34 36 30 19 14 20
4 35 44 42 33 27 28 34 36 29 19 14 20
5 35 44 42 33 27 28 34 36 29 19 14 20
6 36 44 42 33 27 29 35 36 29 18 14 21
7 36 44 41 32 27 29 35 36 28 18 14 21
8 37 44 41 32 27 29 35 36 28 18 14 22
9 37 44 41 32 26 29 35 36 28 17 14 22

10 37 44 41 32 26 29 35 35 27 17 14 23
11 38 44 40 31 26 29 35 35 27 17 14 23
12 38 44 40 30 26 30 35 35 27 17 14 24
13 39 44 40 31 26 30 36 35 26 16 14 24
14 39 44 39 30 26 30 36 35 26 16 14 24
15 39 44 39 30 26 30 36 35 25 16 15 25
16 40 44 39 30 26 30 36 34 25 16 15 25
17 40 44 39 30 26 31 36 34 25 16 15 26
18 40 44 38 30 26 31 36 34 25 15 15 26
19 41 44 38 29 26 31 36 34 24 15 15 27
20 41 44 38 29 26 31 36 34 24 15 16 27
21 41 44 37 29 27 32 36 33 23 15 16 28
22 42 43 37 29 27 32 36 33 23 15 16 28
23 42 44 37 28 27 32 36 33 23 14 16 29
24 42 43 37 28 27 32 36 33 22 14 17 29
25 42 43 36 28 27 32 36 32 22 14 17 30
26 43 43 36 28 27 33 36 32 22 14 17 30
27 43 43 36 28 27 33 36 32 21 14 18 31
28 43 43 35 28 27 33 36 31 21 14 18 31
29 43 43 35 27 27 33 36 31 21 14 18 32
30 43 35 27 27 33 36 31 20 14 19 32
31 43 34 28 36 31 14 33
Examples:.

Lethbridge sundial reads Noon Nov 15, then Mountain Standard Time (MST) is 12:15 PMl

Lethbridge sundial reads 2:15 PM June 20 then MST is 2:45 + 1 hr summer time:3:45 PM
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Declination of the Sun

Day Jan| Feb| Mar| April| May| June July, Aug| Sept| Oct| Nov Dec
-17| -8 5 15 22 23 18 8 -3 -14 -22
-17| -7 5 15 22 23 18 8 -4 -14 -22
-17 -7 5 16 22 23 17 8 -4 -15 -22
-17 -6 6 16 22 23 17 7 -4 -15 -22
-16] -6 6 16 23 23 17 7 -5 -16 -22
-16 -6 6 16 23 23 17 6 -5 -16 -22
-16| -5 7 17 23 23 16 6/ -5 -16 -23
-15| -5 7 17 23 22 16 6| -6 -16 -23
-15| -5 8 17 23 22 16 5/ -6 -17 -23
-15| -4 8 18 23 22 16 5 -7 -17 -23

-4 8 18 23 22 15 5 -7 -17 -23
-4 9 18 23 22 15 4, -7 -18 -23
-3 9 18 23 22 15 4, -7 -18 -23
-3 9 19 23 22 14 3] -8 -18 -23
-2 10 19 23 22 14 3] -8 -18 -23
-2 10 19 23 21 14 3] -9 -19 -23
-1 10 19 23 21 13 2| -9 -19 -23
-1 11 20 23 21 13 2| -10 -19 -23
-1 11 20 23 21 13 2| -10 -19 -23
0 12 20 23 21 12 1] -10 -20 -23
0 12 20/23°27' 20 12 1] -11 -20(-23°27'
1 12 20 23 20 12 0| -11 -20 -23
1 13 21 23 20 11 0| -11 -20 -23
1 13 21 23 20 11 0 -12 -21 -23
2 13 21 23 20 11 -1 -12 -21 -23
2 14 21 23 19 10 -1 -12 -21 -23
3 14 21 23 19 10 -2| -13 -21 -23
3 14 21 23 19 10 -2| -13 -21 -23
3 14 22 23 19 9 -2 -13 -21 -23
4 15 22 23 19 9 -3| -14 -22 -23
4 22 18 9 -14 -23

The above figures, to the nearest degree, are from Whitaker's Almanack.
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Coordinates

Adelaide 34°56'S 138°56'E
Alice Springs ~ 23.698° S, 133.88°E
Austin, Texas  30°20'N 47°46'E
Auckland NZ ~ 35°45'S 174°45'E
Battle (UK.)  50°55'N 03°30'W
Berlin 52°32’N 13°25'E
Boston 42.360° N 71.059°W
Brooks (Alta):  50°35°N  111°54' W

Calgary 51°05'N  114°05'W
Calcutta 22.573°N  88.3639°E
Darwin 12.463°S 130.846° E
Delhi: 28°40' N 77°14'E
Empress (AB)  50.953°N, 110.009° W
Glasgow 55°52'N  4°15'W
Halifax: 44°38'N  63°35W
Hong Kong 22°30'N 114° 10'E
Kabol: 34°30'N  69° 10'E

Lethbridge 49°43'N 112048 W
Lisbon 38°44'N  9°08'W
Los Angeles 34.052° N 118.244° W

Mecca: 21°26'N  39°49'E
Medicine Hat ~ 50° 03’ N 110° 47 W
Moscow 55.756° N 37.617°E
Mt Everest 27.988°N  86.925°E
Nairobi 1°177S  36°50'E
New York 40°40'N  73° 500 W
Paris 48°52'N  2°20 E
Reykjavik 64°09'N 21°58 W

Rio de Janeiro  22°53'S 43°17W

Saint Johns 47°34'N 52041 W
Salem Oregon  44°56'34"N  123°2' 6"W

Shanghai 34°27 N 121°22'E
Singapore 1°22/N  103°55 E
South Pole 90° 00’ 00" S

Sydney (Aust.) 33°55'S 151°10'E

N. Magnetic pole 86.39° N 169.80°W

Tallai (QId) 28.0678° S, 153.3300° E
Tokyo 35°27'N 139°22' E
Vancouver 49° 13N 123°06 W

Wagga Wagga 35°07'S 147°24'E
Walla Walla 46°3'52.5"N 18°20'35'W

Alexandria
Aswan

Athens
Bagdad
Beijing

Bern

Brisbane
Burnley (U.K.)

Canberra ACT
Cardston AB
Dunedin

Edmonton
Fernie (B.C.)

Greenwich
Hobart

Juneau
Kingaroy (QId)

Lands End:
London

Mexico City
Moose Jaw

Mt Rushmore
Moscow
North Pole
Perth WA
Rimbey AB
Rome

San Francisco
Salzberg
Shiraz Iran
Skagway US
Stewart B.C
Sundre AB

S. Magnetic pole

Tehran
Tuktoyaktuk

Whitehorse

31° 13’ N 29°55'E
24° 05N 32°56'E
37°59'N 23°42'E
33°20/N  44°26'E
39°55' N 116°25'E
46.948°N  7.447°E
27.470° S, 153.025°E
53°47'N  2°15'W

35°18'S  149°08'E
49.195°N 113.302° W
45°52'S  170°30'E
53°34/N 113°25'W
49.504°N  115.063° W

51°28'36.7"N 0°0' 1.8" W
42.8821°S  147.3272°E
58.3019°N  134.4197° W
26.5309°S  151.8400° E

50°03' N 5°45'W
51°32/N  0°06/ W

19°25'N 99° 10/ W
50.3916° N 105.5349° W

43.879°N  103.459° W
55°45'N  37°42'E

90° 00’ 00" N

31.9505°S  115.8605° E
52°3827' N 114°14' 8.7"W
41° 54'N 12°29'E

37°48' N 122°24' W
47°54' N 13°03 W
29°36'N 52033 E
59°23'N  135°200 W
55°56/ N 130°01' W
51°47'50" N 114°38726" W

64.11°S 135.76° E

35°40'N 51°26' E
68°24'N  133°01' W

60°41'N  135°08' W



