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Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that youmay better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com², and HTML versions of the book can be found at opentext.uleth.ca³.

These three texts are intended towork together andmake one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com⁴.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—level top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and endswith a look ahead
to see how the just—learned material helps address future problems.

• Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

²apexcalculus.com
³opentext.uleth.ca/calculus.html
⁴amazon.com
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• You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

• Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theoremmeans and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX – Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculuswould not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
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need. The source files can be found at github.com/APEXCalculus⁵.
You can learn more at www.vmi.edu/APEX⁶.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

• The underlying source code has been completely rewritten, to use the
PreTeXt⁷ language, instead of the original LATEX .

• Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is bothmore accessible andmore interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca⁸.

• The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

• In the html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathematical corrections (again, thanks
to all my close readers!).

• “Large”mathematical corrections and adjustments. Therewere a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com⁹ for more information.

• More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

• The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

• The addition of Chapter 14: Vector Analysis.

⁵github.com/APEXCalculus
⁶www.vmi.edu/APEX
⁷pretextbook.org
⁸opentext.uleth.ca/calculus.html
⁹apexcalculus.com

https://github.com/APEXCalculus
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https://apexcalculus.com


A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate × time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
IsaacNewton andGottfried Leibniz, are creditedwith independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

viii
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Chapter 1

Limits

The foundation of “the calculus” is the limit. It is a tool to describe a particular
behavior of a function. This chapter begins our study of the limit by approximat-
ing its value graphically and numerically. After a formal definition of the limit,
properties are established that make “finding limits” tractable. Once the limit is
understood, then the problems of area and rates of change can be approached.

1.1 An Introduction To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the function y = sin(x)
x . When x is near the value 1, what value (if

any) is y near?
While our question is not precisely formed (what constitutes “near the value

1”?), the answer does not seem difficult to find. One might think first to look
at a graph of this function to approximate the appropriate y values. Consider
Figure 1.1.2, where y = sin(x)

x is graphed. For values of x near 1, it seems that
y takes on values near 0.85. In fact, when x = 1, then y = sin(1)

1 ≈ 0.84, so it
makes sense that when x is “near” 1, y will be “near” 0.84.

−6 −4 −2 2 4 6

0.5

1

x

y

Figure 1.1.1 sin(x)/x

0.5 1 1.5

0.6

0.8

1

x

y

Figure 1.1.2 sin(x)/x near x = 1

Consider this same function again at a different value for x. When x is near
0, what value (if any) is y near? By considering Figure 1.1.3, one can see that it
seems that y takes on values near 1. But what happens when x = 0? We have

y → sin(0)
0

→ “ 0
0

”
.

1



CHAPTER 1. LIMITS 2

The expression 0/0 has no value; it is indeterminate. Such an expression gives
no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

−1 −0.5 0.5 1

0.8

0.9

1

x

y

Figure 1.1.3 sin(x)/x near x = 0

Finding a limit entails understanding how a function behaves near a particu-
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f . The expression
“the limit of y as x approaches 1” describes a number, often referred to as L,
that y nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definition (that will come in the next section); this is a
pseudo-definition that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin(x)
x

≈ 0.84 and lim
x→0

sin(x)
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)

Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approxi-
mate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can
provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.

Consider again limx→1
sin(x)

x . To approximate this limit numerically, we can
create a table of x and f(x) values where x is “near” 1. This is done in Fig-
ure 1.1.4.

Notice that for values of x near 1, we have sin(x)/x near 0.841. The x = 1
row is included, but we stress the fact that when considering limits, we are not
concerned with the value of the function at that particular x value; we are only
concerned with the values of the function when x is near 1.

x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471
1.001 0.841170
1.01 0.838447
1.1 0.810189

Figure 1.1.4 Values of sin(x)/xwith x
near 1

Now approximate limx→0
sin(x)

x numerically. We already approximated the
value of this limit as 1 graphically in Figure 1.1.3. Figure 1.1.5 shows the value
of sin(x)/x for values of x near 0. Ten places after the decimal point are shown
to highlight how close to 1 the value of sin(x)/x gets as x takes on values very
near 0. We include the x = 0 row but again stress that we are not concerned
with the value of our function at x = 0, only on the behavior of the function
near 0.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.1.5 Values of sin(x)/xwith x
near 0

This numerical method gives confidence to say that 1 is a good approxima-
tion of limx→0

sin(x)
x ; that is,

lim
x→0

sin(x)
x

≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects of

the limit concept.

Example 1.1.6 Approximating the value of a limit.

Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6

6x2 − 19x+ 3
.
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Solution. To graphically approximate the limit, graph

y =
x2 − x− 6

6x2 − 19x+ 3

on a small interval that contains 3. To numerically approximate the limit,
create a table of values where the x values are near 3. This is done in
Figure 1.1.7 and Figure 1.1.8, respectively.

2.4 2.6 2.8 3 3.2 3.4 3.6

0.25

0.3

0.35

x

y

Figure 1.1.7 Graphically approxi-
mating a limit in Example 1.1.6

x x2−x−6
6x2−19x+3

2.9 0.29878

2.99 0.294569

2.999 0.294163

3 not defined
3.001 0.294073

3.01 0.293669

3.1 0.289773

Figure 1.1.8 Numerically approxi-
mating a limit in Example 1.1.6

The graph shows that when x is near 3, the value of y is very near 0.3.
By considering values of x near 3, we see that y = 0.294 is a better
approximation. The graph and the table imply that

lim
x→3

x2 − x− 6

6x2 − 19x+ 3
≈ 0.294.

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be-
havior of a function. Sometimes a function may act “erratically” near certain x
values which is hard to discern numerically but very plain graphically (see Exam-
ple 1.1.18). Since graphing utilities are very accessible, it makes sense to make
proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.6, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 1.1.9 Approximating the value of a limit.

Graphically and numerically approximate the limit of f(x) as x ap-



CHAPTER 1. LIMITS 4

proaches 0, where

f(x) =

{
x+ 1 x < 0

−x2 + 1 x > 0
.

Solution. Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function,
so it behaves differently on either side of 0. Figure 1.1.10 shows a graph
of f(x), and on either side of 0 it seems the y values approach 1. Note
that f(0) is not actually defined, as indicated in the graph with the open
circle.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

x

y

Figure 1.1.10 Graphically approxi-
mating a limit in Example 1.1.9

x f(x)

−0.1 0.9

−0.01 0.99

−0.001 0.999

0.001 0.999999

0.01 0.9999

0.1 0.99

Figure 1.1.11 Numerically approx-
imating a limit in Example 1.1.9

Figure 1.1.11 shows values of f(x) for values of x near 0. It is clear that
as x takes on values very near 0, f(x) takes on values very near 1. It
turns out that if we let x = 0 for either “piece” of f(x), 1 is returned;
this is significant and we’ll return to this idea later.
The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we
are probably very sure it equals 1.

1.1.1 Identifying When Limits Do Not Exist
A function may not have a limit for all values of x. That is, we cannot write that
limx→c f(x) = L (where L is some real number) for all values of c, for there
may not be a number that f(x) is approaching. There are three common ways
in which a limit may fail to exist.

1. The function f(x)may approach different values on either side of c.

2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches c without approaching a spe-
cific value.

We’ll explore each of these in turn.

Example 1.1.12 Different Values Approached From Left and Right.

Explore why limx→1 f(x) does not exist, where

f(x) =

{
x2 − 2x+ 3 x ≤ 1

x x > 1
.
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Solution. A graph of f(x) around x = 1 and a table are given in Fig-
ures Figure 1.1.13 and Figure 1.1.14, respectively. It is clear that as x ap-
proaches 1, f(x) does not seem to approach a single number. Instead,
it seems as though f(x) approaches two different numbers. When con-
sidering values of x less than 1 (approaching 1 from the left), it seems
that f(x) is approaching 2; when considering values of x greater than
1 (approaching 1 from the right), it seems that f(x) is approaching 1.
Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x)
is approaching two different values as x approaches 1.

0.5 1 1.5 2

1

2

3

x

y

Figure 1.1.13 Observing no limit
as x → 1 in Example 1.1.12

x f(x)

0.9 2.01

0.99 2.0001

0.999 2.000001

1.001 1.001

1.01 1.01

1.1 1.1

Figure 1.1.14 Values of f(x) near
x = 1 in Example 1.1.12

Example 1.1.15 The Function Grows Without Bound.

Explore why limx→1
1

(x−1)2 does not exist.

Solution. A graph and table of f(x) = 1
(x−1)2 are given in Figure 1.1.16

and Figure 1.1.17, respectively. Both show that as x approaches 1, f(x)
grows larger and larger.

0.5 1 1.5 2

20

40

60

80

100

x

y

Figure 1.1.16 Observing no limit
as x → 1 in Example 1.1.15

x f(x)

0.9 100.
0.99 10000.
0.999 1.× 106

1.001 1.× 106

1.01 10000.
1.1 100.

Figure 1.1.17 Values of f(x) near
x = 1 in Example 1.1.15

We can deduce this on our own, without the aid of the graph and table.
If x is near 1, then (x− 1)2 is very small, and:

1

very small number
= very large number .

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1

(x− 1)2
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does not exist.

Example 1.1.18 The Function Oscillates.

Explore why limx→0 sin(1/x) does not exist.
Solution. Two graphs of f(x) = sin(1/x) are given in Figure 1.1.19. Fig-
ure 1.1.19(a) shows f(x) on the interval [−1, 1]; notice how f(x) seems
to oscillate near x = 0. One might think that despite the oscillation, as
x approaches 0, f(x) approaches 0. However, Figure 1.1.19(b) zooms
in on sin(1/x), on the interval [−0.1, 0.1]. Here the oscillation is even
more pronounced. Finally, in Figure 1.1.20, we see sin(1/x) evaluated
for values of x near 0. As x approaches 0, f(x) does not appear to ap-
proach any value.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

(a)

−0.1 −5 · 10−2 5 · 10−2 0.1

−1

−0.5

0.5

1

x

y

(b)

Figure 1.1.19 Observing that f(x) = sin(1/x) has no limit as x → 0 in
Example 1.1.18

x sin(1/x)
0.1 −0.544021

0.01 −0.506366

0.001 0.82688

0.0001 −0.305614

1.× 10−5 0.0357488

1.× 10−6 −0.349994

1.× 10−7 0.420548

Figure 1.1.20 Observing that f(x) =
sin(1/x) has no limit as x → 0 in Ex-
ample 1.1.18

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all
values between −1 and 1 infinitely many times! Because of this oscilla-
tion, limx→0 sin(1/x) does not exist.

1.1.2 Limits of Difference Quotients
We have approximated limits of functions as x approached a particular number.
We will consider another important kind of limit after explaining a few key ideas.

Let f(x) represent the position function, in feet, of some particle that is
moving in a straight line, where x is measured in seconds. Let’s say that when
x = 1, the particle is at position 10 ft., and when x = 5, the particle is at 20 ft.
Another way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the particle traveled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:

f(5)− f(1)

5− 1

ft
s

=
10 ft
4 s

= 2.5 ft/s .

This difference quotient can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essentially what we are doing:
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given two points on the graph of f , we are finding the slope of the secant line
through those two points. See Figure 1.1.21.

2 4 6

5

10

15

20

25

x

y

Figure 1.1.21 Interpreting a differ-
ence quotient as the slope of a secant
line

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,
consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient (excluding units) is now

f(1 + h)− f(1)

(1 + h)− 1
=

f(1 + h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.22. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

lim
h→0

f(1 + h)− f(1)

h
= ?

2 4 6

5

10

15

20

25

x

y

(a) h = 2

2 4 6

5

10

15

20

25

x

y

(b) h = 1

2 4 6

5

10

15

20

25

x

y

(c) h = 0.5

Figure 1.1.22 Secant lines of f(x) at x = 1 and x = 1 + h, for shrinking values
of h (i.e., h → 0)

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.23. The table gives us reason to assume the value of the limit is
about 8.5.

h f(1+h)−f(1)
h

−0.5 9.25

−0.1 8.65

−0.01 8.515

0.01 8.485

0.1 8.35

0.5 7.75

Figure 1.1.23 The difference quotient
evaluated at values of h near 0

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. In the following exercises, we continue our
introduction and approximate the value of limits.



CHAPTER 1. LIMITS 8

1.1.3 Exercises

Terms and Concepts

1. In your own words, what does it mean to “find the limit of f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. (□ True □ False) The limit of f(x) as x approaches 5 is f(5).

4. Describe three situations where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quotient?

6. When x is near 0,
sinx
x

is near what value?

Problems

Exercise Group. Approximate the limit numerically and graphically.
7. lim

x→1

(
x2 + 2x+ 2

)
8. lim

x→1

(
x3 + 4x2 − 4x+ 2

)
9. lim

x→0

(
x−5

x2−4x

)
10. lim

x→−4

(
x2+2x−8
x2−x−20

)
11. lim

x→−3

(
x2+10x+21
x2+5x+6

)
12. lim

x→−4

(
x2−13x−32
x2+8x+16

)
13. lim

x→−1
f(x), where

f(x) =

{
x+ 1 if x ≤ −1

− (3x+ 4) if x > −1

14. lim
x→−2

f(x), where

f(x) =

{
x2 − 2x− 2 if x ≤ −2

2x+ 10 if x > −2

15. lim
x→0

f(x), where

f(x) =

{
cos(x) if x ≤ 0

x2 + 2x+ 1 if x > 0

16. lim
x→π

6

f(x), where f(x) =

{
sin(x) x ≤ π

6

cos(x) x > π
6

17. lim
x→0

|x|x 18. lim
x→0

e−e1/x

19. lim
x→−5

⌊
|x|
⌋
!, where |x| is the absolute value of

x, ⌊x⌋ is the floor of x (the greatest integer less
than or equal to x), and x! is x factorial.

20. lim
x→−1

⌊
|x|
⌋
!, where |x| is the absolute value of

x, ⌊x⌋ is the floor of x (the greatest integer less
than or equal to x), and x! is x factorial.

Exercise Group. Approximate the limit of the difference quotient, lim
h→0

f(a+h)−f(a)
h , using h = ±0.1,±0.01.

21. f(x) = 2− 7x, a = 3 22. f(x) = 9x+ 0.06, a = −1

23. f(x) = x2 + 3x− 7, a = 1 24. f(x) = 1
x+1 , a = 2

25. f(x) = 5x− 4x2 − 1, a = −3 26. f(x) = ln(x), a = 5

27. f(x) = sin(x), a = π 28. f(x) = cos(x), a = π
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1.2 Epsilon-Delta Definition of a Limit

This section introduces the formal definition of a limit. Many refer to this as “the
epsilon-delta” definition, referring to the letters ε and δ of the Greek alphabet.

Note: the common phrase “the
ε-δ definition” is read aloud as
“the epsilon delta definition.” The
hyphen between ϵ and δ is not a
minus sign.

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an x-value, c, we say that “the
limit of the function f , as x approaches c, is a value L” if:

Tends “y tends to L” as “x tends to c.”
Approaches “y approaches L” as “x approaches c.”

Near “y is near L” whenever “x is near c.”

The problem with these definitions is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respectively?

The definition we describe in this section comes from formalizing “Near”. A
quick restatement gets us closer to what we want:

Tolerance Levels
If x is within a certain tolerance level of c, then the corresponding
value y = f(x) is within a certain tolerance level of L.

The traditional notation for the x-tolerance is the lowercase Greek letter
delta, or δ, and the y-tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of “Tolerance Levels” nearly gets us to the actual definition:

Named Tolerance Levels
If x is within δ units of c, then the corresponding value of y is
within ε units of L.

We can write “x is within δ units of c” mathematically as

|x− c| < δ,

which is equivalent to
c− δ < x < c+ δ.

Letting the symbol “ =⇒ ” represent the word “implies,” we can rewrite
“Named Tolerance Levels” as

|x− c| < δ =⇒ |y − L| < ε

or
c− δ < x < c+ δ =⇒ L− ε < y < L+ ε.

The point is that δ and ε, being tolerances, can be any positive (but typically
small) values satisfying this implication. Finally, we have the formal definition of
the limit with the notation seen in the previous section.

Definition 1.2.1 The Limit of a Function f at a point.

Let I be an open interval containing c, and let f be a function defined
on I , except possibly at c. The statement that “the limit of f(x), as x
approaches c, is L” is denoted by

lim
x→c

f(x) = L,

and means that given any ε > 0, there exists δ > 0 such that for all x in



CHAPTER 1. LIMITS 10

I , where x ̸= c, if |x− c| < δ, then |f(x)− L| < ε.

Mathematicians often enjoy writing ideas without using any words. Here is
the wordless definition of the limit:

lim
x→c

f(x) = L

⇐⇒
∀ ε > 0, ∃ δ > 0 s.t. 0 < |x− c| < δ =⇒ |f(x)− L| < ε.

Note the order in which ε and δ are given. In the definition, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

An examplewill help us understand this definition. Note that the explanation
is long, but it will take one through all steps necessary to understand the ideas.

Example 1.2.2 Evaluating a limit using the definition.

Show that lim
x→4

√
x = 2.

Solution. Before we use the formal definition, let’s try some numerical
tolerances. What if the y tolerance is 0.5, or in other words ε = 0.5?
How close to 4 does x have to be so that y is within 0.5 units of 2? That
is, 1.5 < y < 2.5? In this case, we can proceed as follows:

1.5 < y < 2.5

1.5 <
√
x < 2.5 (Let y =

√
x)

1.52 < x < 2.52 (Square the inequality)
2.25 < x < 6.25

2.25− 4 < x− 4 < 6.25− 4 (Subtract 4 from both sides)
−1.75 < x− 4 < 2.25

So, what is the desired x tolerance? Remember, we want to find a δ
so that |x− 4| is smaller than δ. Since 1.75 < 2.25, then if we require
|x− 4| < 1.75, then we have

|x− 4| < 1.75

=⇒ −1.75 < x− 4 < 1.75 < 2.25

Therefore we can have δ ≤ 1.75. See Figure 1.2.3.

2 4 6

1

2

ε = 0.5

ε = 0.5

Choose ε > 0. Then …

x

y

(a)

2 4 6

1

2

ε = 0.5

ε = 0.5

width
1.75

width
2.25

…choose δ smaller
than each of these:

x

y

(b)

Figure 1.2.3 Illustrating the ε − δ process. With ε = 0.5, we pick any
δ < 1.75



CHAPTER 1. LIMITS 11

Given the y tolerance ε = 0.5, we have found an x tolerance, δ < 1.75,
such that whenever x is within δ units of 4, then y is within ε units of 2.
That’s what we were trying to find.
Let’s try another value of ε.
What if the y tolerance is 0.01, i.e. ε = 0.01? How close to 4 does x
have to be in order for y to be within 0.01 units of 2? (In other words for
1.99 < y < 2.01?) Again, we just square these values to get 1.992 <
x < 2.012, or

3.9601 < x < 4.0401

−0.0399 < x− 4 < 0.0401

What is the desired x tolerance? In this case we must have δ < 0.0399,
which is the minimum distance from 4 of the two bounds given above.
What we have so far: if ε = 0.5, then δ < 1.75 leads to f(x) being less
than ε from f(4) and if ε = 0.01, then δ < 0.0399 being less than ε
from f(4). A pattern is not easy to see, so we switch to general ε try to
determine an adequate δ symbolically. We start by assuming y =

√
x is

within ε units of 2:

|y − 2| < ε

−ε < y − 2 < ε

−ε <
√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2 + ε (Add 2)

(2− ε)2 < x < (2 + ε)2 (Square all)

4− 4ε+ ε2 < x < 4 + 4ε+ ε2 (Expand)

−4ε+ ε2 < x− 4 < 4ε+ ε2 (Subtract 4)

The “desired form” in the last step is “4 − something < x < 4 +
something.” Since we want this last interval to describe an x tolerance
around 4, we have that either δ < 4ε− ε2 or δ < 4ε+ ε2, whichever is
smaller:

δ < min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, we have 4ε − ε2 < 4ε + ε2, the minimum is δ ≤ 4ε − ε2.
That’s the formula: given an ε, set δ ≤ 4ε− ε2.
We can check this for our previous values. If ε = 0.5, the formula gives
δ < 4(0.5) − (0.5)2 = 1.75 and when ε = 0.01, the formula gives
δ < 4(0.01)− (0.01)2 = 0.0399.
So given any ε > 0, set δ < 4ε−ε2. Then if |x− 4| < δ (andx ̸= 4), then
|f(x)− 2| < ε, satisfying the definition of the limit. We have shown
formally (and finally!) that limx→4

√
x = 2.

The previous example was a little long in that we sampled a few specific
cases of ε before handling the general case. Normally this is not done. The
previous example is also a bit unsatisfying in that

√
4 = 2; why work so hard

to prove something so obvious? Many ε-δ proofs are long and difficult to do.
In this section, we will focus on examples where the answer is, frankly, obvious,
because the non-obvious examples are even harder. In the next section we will
learn some theorems that allowus to evaluate limits analytically, that is, without
using the ε-δ definition.
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Example 1.2.4 Evaluating a limit using the definition.

Show that lim
x→2

x2 = 4.

Solution. Let’s do this example symbolically from the start. Let ε > 0
be given; wewant |y − 4| < ε, i.e.,

∣∣x2 − 4
∣∣ < ε. How dowe find δ such

that when |x− 2| < δ, we are guaranteed that
∣∣x2 − 4

∣∣ < ε?
This is a bit trickier than the previous example, but let’s start by noticing
that

∣∣x2 − 4
∣∣ = |x− 2| · |x+ 2|. Consider:∣∣x2 − 4
∣∣ < ε =⇒ |x− 2| · |x+ 2| < ε =⇒ |x− 2| < ε

|x+ 2|
.

Could we not set δ = ε
|x+2|?

We are close to an answer, but the catch is that δ must be a constant
value (so it can’t depend on x). There is a way to work around this, but
we do have to make an assumption. Remember that ε is supposed to
be a small number, which implies that δ will also be a small value. In
particular, we can (probably) assume that δ < 1. If this is true, then
|x− 2| < δ would imply that |x− 2| < 1, giving 1 < x < 3.
Now, back to the fraction ε

|x+2| . If 1 < x < 3, then 3 < x+ 2 < 5 (add
2 to all terms in the inequality). Taking reciprocals, we have

1

5
<

1

|x+ 2|
<

1

3
,

which implies
1

5
<

1

|x+ 2|
,

which implies
ε

5
<

ε

|x+ 2|
. (1.2.1)

This suggests that we set δ < ε
5 . To see why, let consider what follows

when we assume |x− 2| < δ:

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(Multiply by |x+ 2| )∣∣x2 − 4
∣∣ < |x+ 2| · ε

5
(Simplify left side)∣∣x2 − 4

∣∣ < |x+ 2| · ε

|x+ 2|
(Inequality (1.2.1), δ < 1)∣∣x2 − 4

∣∣ < ε

Wehave arrived at
∣∣x2 − 4

∣∣ < ε as desired. Note again, in order tomake
this happenweneeded δ to first be less than 1. That is a safe assumption;
we want ε to be arbitrarily small, forcing δ to also be small.
We have also picked δ to be smaller than “necessary.” We could get by
with a slightly larger δ, as shown in Figure 1.2.5. The outer lines show
the boundaries defined by our choice of ε. The inner lines show the
boundaries defined by setting δ = ε/5. Note how these dotted lines are
within the dashed lines. That is perfectly fine; by choosing x within the
dotted lines we are guaranteed that f(x) will be within ε of 4.

2

4

ε

ε
δ = ε/5

x

y

Figure 1.2.5 Choosing δ = ε/5 in Ex-
ample 1.2.4
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In summary, given ε > 0, set δ = ε/5. Then |x− 2| < δ implies∣∣x2 − 4
∣∣ < ε (i.e. |y − 4| < ε) as desired. This shows that limx→2 x

2 =
4. Figure 1.2.5 gives a visualization of this; by restricting x to values
within δ = ε/5 of 2, we see that f(x) is within ε of 4.

Make note of the general pattern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by doing what is essentially some “scratch-work” first:

1. assume |f(x)− L| < ε, then perform some algebraic manipulations to
give an inequality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side
of the inequality becomes our δ. We can refer to this as the “scratch-work”
phase of our proof. Once we have δ, we can formally start the actual proof with
|x− c| < δ and use algebraic manipulations to conclude that |f(x)− L| < ε,
usually by using the same steps of our “scratch-work” in reverse order.

We highlight this process in the following example.

Example 1.2.6 Evaluating a limit using the definition.

Prove that lim
x→1

(x3 − 2x) = −1.

Solution. We start our scratch-work by considering |f(x)− (−1)| < ε:

|f(x)− (−1)| < ε∣∣x3 − 2x+ 1
∣∣ < ε (Now factor)∣∣(x− 1)(x2 + x− 1)
∣∣ < ε

|x− 1| < ε

|x2 + x− 1|
. (1.2.2)

We are at the phase of saying that |x− 1| < something, where
something = ε/

∣∣x2 + x− 1
∣∣. We want to turn that something into

δ.
Since x is approaching 1, we are safe to assume that x is between 0 and
2. So

0 < x < 2

0 < x2 < 4 (Squared each term.)

Since 0 < x < 2, we can add 0, x and 2, respectively, to each part of the
inequality and maintain the inequality.

0 < x2 + x < 6

−1 < x2 + x− 1 < 5 (Subtracted 1 from each part.)

In Inequality (1.2.2), we wanted |x− 1| < ε/
∣∣x2 + x− 1

∣∣. The above
shows that given any x in [0, 2], we know that

x2 + x− 1 < 5 which implies that
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1

5
<

1

x2 + x− 1
which implies that

ε

5
<

ε

x2 + x− 1
. (1.2.3)

So we set δ < ϵ/5. This ends our scratch-work, and we begin the formal
proof (which also helps us understand why this was a good choice of δ).
Given ε, let δ < ε/5. We want to show that when |x− 1| < δ, then∣∣(x3 − 2x)− (−1)

∣∣ < ε. We start with |x− 1| < δ:

|x− 1| < δ

|x− 1| < ε

5

|x− 1| < ε

|x2 + x− 1|
(Inequality (1.2.3), x near 1)

|x− 1| ·
∣∣x2 + x− 1

∣∣ < ε∣∣x3 − 2x+ 1
∣∣ < ε∣∣(x3 − 2x)− (−1)
∣∣ < ε,

which is what we wanted to show. Thus limx→1(x
3 − 2x) = −1.

We illustrate evaluating limits once more.

Example 1.2.7 Evaluating a limit using the definition.

Prove that lim
x→0

ex = 1.

Solution. Symbolically, we want to take the inequality |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Here is our scratch-work:

|ex − 1| < ε

−ε < ex − 1 < ε (Definition of absolute value)
1− ε < ex < 1 + ε (Add 1)

ln(1− ε) < x < ln(1 + ε) (Take natural logs)

Making the safe assumption that ε < 1 ensures the last inequality is
valid (i.e., so that ln(1 − ε) is defined). We can then set δ to be the
minimum of |ln(1− ε)| and ln(1 + ε); i.e.,

δ = min{|ln(1− ε)| , ln(1 + ε)} = ln(1 + ε).

Recall ln 1 = 0 and lnx < 0
when 0 < x < 1. So ln(1 − ε)
is negative because 1 − ε < 1;
hence we consider its absolute
value:

|ln(1− ε)|
= − ln(1− ε)

= ln
(

1

1− ε

)
.

To determine which is smaller
between |ln(1− ε)| and
ln(1 + ε) amounts to determin-
ing which is smaller between
1

1−ε and 1 + ε. But

(1 + ε)/

(
1

1− ε

)
= (1 + ε)(1− ε)

= 1− ε2 < 1,

so (1+ε) < 1
1−ε . And therefore

ln(1 + ε) < |ln(1− ε)|.

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (Definition of absolute value)
− ln(1 + ε) < x < ln(1 + ε)

ln(1− ε) < x < ln(1 + ε) (since ln(1− ε) < − ln(1 + ε)).

The above line is true by our choice of δ and by the fact that since
|ln(1− ε)| > ln(1 + ε) and ln(1 − ε) < 0, we know ln(1 − ε) <
− ln(1 + ε).

1− ε < ex < 1 + ε (Exponentiate)
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−ε < ex − 1 < ε (Subtract 1)

In summary, given ε > 0, let δ = ln(1 + ε). Then |x− 0| < δ implies
|ex − 1| < ε as desired. We have shown that limx→0 e

x = 1.

We note that we could actually show that limx→c e
x = ec for any con-

stant c. We do this by factoring out ec from both sides, leaving us to show
limx→c e

x−c = 1 instead. By using the substitution u = x − c, this reduces
to showing limu→0 e

u = 1 which we just did in the last example. As an added
benefit, this shows that in fact the function f(x) = ex is continuous at all values
of x, an important concept we will define in Section 1.5.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square
roots and exponentials. It is very difficult to prove, using the techniques given
above, that limx→0

sin(x)
x = 1, as we approximated in Section 1.1.

There is hope. Section 1.3 shows how one can evaluate complicated lim-
its using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of Section 1.3 are
employed.
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1.2.1 Exercises

Terms and Concepts

1. What is wrong with the following “definition” of a limit?
“The limit of f(x), as x approaches a, is K” means that given any δ > 0 there exists ε > 0 such that

whenever |f(x)−K| < ε, we have |x− a| < δ.

2. Which is given first in establishing a limit?
(□ x-tolerance □ y-tolerance)

3. (□ True □ False) εmust always be positive.
4. (□ True □ False) δ must always be positive.

Problems

Exercise Group. Prove the given limit using an ε-δ proof.
5. lim

x→4
(2x+ 5) = 13 6. lim

x→5
(3− x) = −2

7. lim
x→3

(
x2 − 3

)
= 6 8. lim

x→4

(
x2 + x− 5

)
= 15

9. lim
x→1

(
2x2 + 3x+ 1

)
= 6 10. lim

x→2

(
x3 − 1

)
= 7

11. lim
x→2

5 = 5 12. lim
x→0

(
e2x − 1

)
= 0

13. lim
x→1

1
x = 1 14. lim

x→0
sin(x) = 0
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1.3 Finding Limits Analytically

In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi-
mations were correct. Thus far, our method of finding a limit is

1. make a really good approximation either graphically or numerically, and

2. verify our approximation is correct using a ε-δ proof.

Recognizing that ε-δ proofs are cumbersome, this section gives a series of
theorems which allow us to find limits much more quickly and intuitively.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x)+
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit Properties.

Let b, c, L andK be real numbers, let n be a positive integer, and let f
and g be functions defined on an open interval I containing c with the
following limits:

lim
x→c

f(x) = L lim
x→c

g(x) = K.

The following limits hold.

Constants lim
x→c

b = b

Identity lim
x→c

x = c

Sums/Differences lim
x→c

(f(x)± g(x)) = L±K

Scalar Multiples lim
x→c

(b · f(x)) = bL

Products lim
x→c

(f(x) · g(x)) = LK

Quotients lim
x→c

(f(x)/g(x)) = L/K, whenK ̸= 0

Powers lim
x→c

f(x)n = Ln

Roots lim
x→c

n
√
f(x) = n

√
L

(If n is even then require f(x) ≥ 0 on I .)

Compositions Adjust the limit requirements to

lim
x→c

f(x) = L lim
x→L

g(x) = K g(L) = K.

Then lim
x→c

g(f(x)) = K.

Many people like to remember
the Sum Property as stating that
“the limit of the sum is the sum
of the limits”, and the Product
Property as stating that the “limit
of a product is the product of the
limits.”

In practice, the Scalar Multi-
ple Property is often viewed as
telling us that we can “take con-
stants out of limits”:

lim
x→c

(b · f(x)) = b · lim
x→c

f(x).

We apply the theorem to an example.

Example 1.3.2 Using basic limit properties.

Let

lim
x→2

f(x) = 2 lim
x→2

g(x) = 3 p(x) = 3x2 − 5x+ 7.
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Find the following limits:

(a) lim
x→2

(f(x) +

g(x))

(b) lim
x→2

(5f(x) +

g(x)2)

(c) lim
x→2

p(x)

Solution.

(a) Using the Sums/Differences property, we know that

lim
x→2

(f(x) + g(x)) = lim
x→2

f(x) + lim
x→2

g(x)

= 2 + 3 = 5.

(b) Using the Scalar Multiples, Sums/Differences, and Powers proper-
ties, we find that

lim
x→2

(5f(x) + g(x)2) = lim
x→2

(5f(x)) + lim
x→2

(g(x)2)

= 5 lim
x→2

f(x) +
(
lim
x→2

g(x)
)2

= 5 · 2 + 32 = 19.

(c) Here we combine the Powers, Scalar Multiples, Sums/Differences
and Constants properties. We show quite a few steps, but in gen-
eral these can be omitted:

lim
x→2

p(x) = lim
x→2

(
3x2 − 5x+ 7

)
= lim

x→2

(
3x2
)
− lim

x→2
(5x) + lim

x→2
7

= 3
(
lim
x→2

x
)2 − 5 lim

x→2
(x) + 7

= 3 · 22 − 5 · 2 + 7

= 9

Part c of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 could have been found just by plugging 2 into the function.
This holds true for all polynomials, and also for rational functions (which are
quotients of polynomials), as stated in the following theorem.

Theorem 1.3.3 Limits of Polynomial and Rational Functions.

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x) = p(c)

q(c) , when q(c) ̸= 0.
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Example 1.3.4 Finding a limit of a rational function.

Using Theorem 1.3.3, find

lim
x→−1

3x2 − 5x+ 1

x4 − x2 + 3
.

Solution. Using Theorem 1.3.3, we can quickly state that

lim
x→−1

3x2 − 5x+ 1

x4 − x2 + 3
=

3(−1)2 − 5(−1) + 1

(−1)4 − (−1)2 + 3

=
9

3
= 3.

It was likely frustrating in Section 1.2 to do a lot of work with ε and δ to prove
that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function
in Example 1.3.4.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behavior is particularly “nice” in terms of limits. In Section 1.5, we will give a
formal name to these functions that behave “nicely.”

Theorem 1.3.5 Limits of Common Functions.

Let c be a real number in the domain of the given function and let n be
a positive integer. The following limits hold:

1. lim
x→c

sin(x) = sin(c)

2. lim
x→c

cos(x) = cos(c)

3. lim
x→c

tan(x) = tan(c)

4. lim
x→c

csc(x) = csc(c)

5. lim
x→c

sec(x) = sec(c)

6. lim
x→c

cot(x) = cot(c)

7. limx→c a
x = ac, if a > 0

8. lim
x→c

ln(x) = ln(c)

9. lim
x→c

n
√
x = n

√
c

(Item 9 follows from the Identity and Roots rules.)

Example 1.3.6 Evaluating limits analytically.

Evaluate the following limits.

(a) lim
x→π

cos(x)

(b) lim
x→3

(
sec2(x)− tan2(x)

)
(c) lim

x→π/2
(cos(x) sin(x))

(d) lim
x→1

eln(x)

(e) lim
x→0

sin(x)
x

Solution.
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(a) This is a straightforward application of Theorem 1.3.5:
lim
x→π

cos(x) = cos(π) = −1.

(b) We can approach this in at least two ways. First, by directly apply-
ing Theorem 1.3.5, we have:

lim
x→3

(
sec2(x)− tan2(x)

)
= sec2(3)− tan2(3).

Using the Pythagorean Theorem, this last expression is 1; there-
fore

lim
x→3

(
sec2(x)− tan2(x)

)
= 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(
sec2(x)− tan2(x)

)
= lim

x→3
1 = 1,

using the Constants rule. Either way, we find the limit is 1.

(c) Applying the Products rule and Theorem 1.3.5 gives

lim
x→π/2

cos(x) sin(x) = cos(π/2) sin(π/2) = 0 · 1 = 0.

(d) Again, we can approach this in two ways. First, we can use the
exponential/logarithmic identity that eln(x) = x and evaluate
lim
x→1

eln(x) = lim
x→1

x = 1.

We can also use the Compositions rule. Using Theorem 1.3.5, we
have lim

x→1
ln(x) = ln(1) = 0 and limx→0 e

x = e0 = 1, satisfying
the conditions of the Compositions rule. Applying this rule,

lim
x→1

eln(x) = elimx→1 ln(x) = eln(1) = e0 = 1.

Both approaches are valid, giving the same result.

(e) We encountered this limit in Section 1.1. Applying our theorems,
we attempt to find the limit as

lim
x→0

sin(x)
x

→ sin(0)
0

,

which is of the form 0
0 . This, of course, violates a condition of the

Quotients rule, as the limit of the denominator is not allowed to
be 0. Therefore, we are still unable to evaluate this limit with tools
we currently have at hand.

Based on what we’ve done so far, this section could have been titled “Using
Known Limits to Find Unknown Limits.” By knowing certain limits of functions,
we can find limits involving sums, products, powers, etc., of these functions. We
further the development of such comparative tools with the Squeeze Theorem,
a clever and intuitive way to find the value of some limits.

Before stating this theorem formally, suppose we have functions f , g, and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f andh have the same limit at c, and g is always “squeezed” between them,
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then g must have the same limit as well. That is what the Squeeze Theorem
states. This is illustrated in Figure 1.3.7.

c

L

g

f

h

x

y

Figure 1.3.7 An illustration of the
Squeeze Theorem

Theorem 1.3.8 Squeeze Theorem.

Let f , g and h be functions on an open interval I containing c such that
for all x in I ,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate functions bywhich to “squeeze”
a given function. However, that is generally the only place where work is neces-
sary; the theorem makes the “evaluating the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin(x)
x = 1.

Example 1.3.9 Using the Squeeze Theorem.

Use the Squeeze Theorem to show that

lim
x→0

sin(x)
x

= 1.

Solution. We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos(θ), sin(θ)) for some angle θ as shown in
Figure 1.3.10. Using similar triangles, we can extend the line from the
origin through the point to the point (1, tan(θ)), as shown. (Here we
are assuming that 0 ≤ θ ≤ π/2. Later we will show that we can also
consider θ ≤ 0.)

θ

(1, tan(θ))

(1, 0)

(cos(θ), sin(θ))

Figure 1.3.10 The unit circle and re-
lated triangles

Figure 1.3.10 shows three regions have been constructed in the first
quadrant, two triangles and a sector of a circle, which are also drawn
below. The area of the large triangle is 1

2 tan(θ); the area of the sector
is θ/2; the area of the triangle contained inside the sector is 1

2 sin(θ). It
is then clear from Figure 1.3.11 that

tan(θ)
2

≥ θ

2
≥ sin(θ)

2
.

(You may need to recall that the area of a sector of a circle is 1
2r

2θ with
θ measured in radians.)

θ

ta
n(
θ)

1

(a)

θ

1

ta
n(
θ)

(b)

θ

sin
(θ
)

1

ta
n(
θ)

(c)

Figure 1.3.11 Bounding the sector between two triangles
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Multiply all terms by 2
sin(θ) , giving

1

cos(θ)
≥ θ

sin(θ)
≥ 1.

Taking reciprocals reverses the inequalities, giving

cos(θ) ≤ sin(θ)
θ

≤ 1.

(These inequalities hold for all values of θ near 0, even negative values,
since cos(−θ) = cos(θ) and sin(−θ) = − sin(θ).)
Now take limits.

lim
θ→0

cos(θ) ≤ lim
θ→0

sin(θ)
θ

≤ lim
θ→0

1

cos(0) ≤ lim
θ→0

sin(θ)
θ

≤ 1

1 ≤ lim
θ→0

sin(θ)
θ

≤ 1

Clearly this means that lim
θ→0

sin(θ)
θ = 1.

Two notes about the Example 1.3.9 are worth mentioning. First, one might
be discouraged by this application, thinking “I would never have come up with
that on my own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin(x) are approaching 0, but the ratio of x and sin(x)
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functions y = x and y = sin(x)
are essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.12 Special Limits.

1. lim
x→0

sin(x)
x

= 1

2. lim
x→0

cos(x)− 1

x
= 0

3. lim
x→0

(1 + x)1/x = e

4. lim
x→0

ex − 1

x
= 1

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cos(x) goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos(x) is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulting in a limit of 1.



CHAPTER 1. LIMITS 23

The special limits stated in Theorem 1.3.12 are called indeterminate forms;
in this case they are of the form 0/0, except the third limit, which is of a differ-
ent form. You’ll learn techniques to find these limits exactly using calculus in
Section 6.7.

Our final theorem for this sectionwill bemotivated by the following example.

Example 1.3.13 Using algebra to evaluate a limit.

Evaluate the following limit:

lim
x→1

x2 − 1

x− 1
.

Solution. We begin by attempting to apply Theorem 1.3.3 and substi-
tuting 1 for x in the quotient. This gives:

lim
x→1

x2 − 1

x− 1
=

12 − 1

1− 1

which is of the form 0
0 , an indeterminate form. We cannot apply the

theorem.
By graphing the function, as in Figure 1.3.14, we see that the function
seems to be linear, implying that the limit should be easy to evaluate.
Recognize that the numerator of our quotient can be factored:

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
.

The function is not defined when x = 1, but for all other x,

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1

=
����(x− 1)(x+ 1)

����(x− 1)

= x+ 1, if x ̸= 1
0.5 1 1.5 2

1

2

3

x

y

Figure 1.3.14 Graphing f in Exam-
ple 1.3.13 to understand a limit

Clearly lim
x→1

(x+1) = 2. Recall that when considering limits, we are not
concernedwith the value of the function at 1, only the value the function
approaches as x approaches 1. Since (x2−1)/(x−1) and x+1 are the
same at all points except at x = 1, they both approach the same value
as x approaches 1. Therefore we can conclude that

lim
x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1)

= 2

The key to Example 1.3.13 is that the functions y = (x2 − 1)/(x − 1) and
y = x+1 are identical except atx = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Theorem 1.3.15 Limits of Functions Equal At All But One Point.

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
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lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-
tional function of the form g(x)/f(x) and directly evaluating the limit lim

x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then
use algebra to factor this binomial out, cancel, then apply Theorem 1.3.15. We
demonstrate this once more.

Example 1.3.16 Evaluating a limit using Theorem 1.3.15.

Evaluate

lim
x→3

x3 − 2x2 − 5x+ 6

2x3 + 3x2 − 32x+ 15
.

Solution. We attempt to apply Theorem 1.3.3 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numer-
ator and denominator are each polynomials, we know that (x − 3) is
factor of each. Using whatever method is most comfortable to you, fac-
tor out (x− 3) from each (using polynomial division, synthetic division,
a computer algebra system, etc.). We find that

x3 − 2x2 − 5x+ 6

2x3 + 3x2 − 32x+ 15
=

(x− 3)
(
x2 + x− 2

)
(x− 3) (2x2 + 9x− 5)

.

We can cancel the (x−3) factors as long asx ̸= 3. Using Theorem1.3.15
we conclude:

lim
x→3

x3 − 2x2 − 5x+ 6

2x3 + 3x2 − 32x+ 15
= lim

x→3

(x− 3)
(
x2 + x− 2

)
(x− 3) (2x2 + 9x− 5)

= lim
x→3

x2 + x− 2

2x2 + 9x− 5

=
10

40

=
1

4
.

Example 1.3.17 Evaluating a Limit with a Hole.

Evaluate
lim
x→9

√
x− 3

x− 9
.

Solution. We begin by trying to apply the Quotients limit rule, but the
denominator evaluates to zero. In fact, this limit is of the indeterminate
form 0/0. Wewill do some algebra to resolve the indeterminate form. In
this case, we multiply the numerator and denominator by the conjugate
of the numerator.

√
x− 3

x− 9
=

√
x− 3

x− 9
· (

√
x+ 3)

(
√
x+ 3)

=
x− 9

(x− 9)(
√
x+ 3)
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We can cancel the (x−9) factors as long asx ̸= 9. Using Theorem1.3.15
we conclude:

lim
x→9

√
x− 3

x− 9
= lim

x→9

x− 9

(x− 9) (
√
x+ 3)

= lim
x→9

1√
x+ 3

=
1

limx→9
√
x+ limx→9 3

=
1√

limx→9 x+ 3

=
1√
3 + 3

=
1

6
.

We end this section by revisiting a limit first seen in Section 1.1, a limit of a
difference quotient. Let f(x) = −1.5x2 + 11.5x; we approximated the limit
lim
h→0

f(1+h)−f(1)
h ≈ 8.5. We formally evaluate this limit in the following exam-

ple.

Example 1.3.18 Evaluating the limit of a difference quotient.

Let f(x) = −1.5x2 + 11.5x; find lim
h→0

f(1+h)−f(1)
h .

Solution. Since f is a polynomial, our first attempt should be to employ
Theorem 1.3.3 and substitute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a rational function hints that some algebra
will help. Consider the following steps:

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

−1.5(1 + h)2 + 11.5(1 + h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1 + 2h+ h2) + 11.5 + 11.5h− 10

h

= lim
h→0

−1.5h2 + 8.5h

h

= lim
h→0

h(−1.5h+ 8.5)

h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 1.3.15, as h ̸= 0)

= 8.5 (using Theorem 1.3.3)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.5; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 1.5 we give
a name to this nice behavior; we label such functions as continuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.
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1.3.1 Exercises

Terms and Concepts

1. Explain in your own words, without using ε-δ formality, why lim
x→c

b = b.

2. Explain in your own words, without using ε-δ formality, why lim
x→c

x = c.

3. What does the text mean when it says that certain functions’ “behavior is ‘nice’ in terms of limits”? What, in
particular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze Theorem.
5. You are given the following information:

lim
x→1

f(x) = 0 lim
x→1

g(x) = 0 lim
x→1

f(x)

g(x)
= 2

What can be said about the relative sizes of f(x) and g(x) as x approaches 1?

6. (□ True □ False) lim
x→1

lnx = 0.

Problems

Exercise Group. Use the following information to evaluate the given limit, when possible.

lim
x→9

f(x) = 6 lim
x→6

f(x) = 9 f(9) = 6

lim
x→9

g(x) = 3 lim
x→6

g(x) = 3 g(6) = 3

7. lim
x→9

(f(x) + g(x)) 8. lim
x→9

(
3f(x)
g(x)

)
9. lim

x→9

(
f(x)−2g(x)

g(x)

)
10. lim

x→6

(
f(x)

3−g(x)

)
11. lim

x→9
g(f(x)) 12. lim

x→6
f(g(x))

13. lim
x→6

g(f(f(x))) 14. lim
x→6

(
f(x)g(x)− f(x)2 + g(x)2

)
Exercise Group. Use the following information to evaluate the given limit, when possible. If it is not possible to
determine the limit, state why not.

lim
x→1

f(x) = 2 lim
x→10

f(x) = 1 f(1) = 1/5

lim
x→1

g(x) = 0 lim
x→10

g(x) = π g(10) = π

15. lim
x→1

(f(x)g(x)) 16. lim
x→10

cos(g(x))

17. lim
x→1

g(5f(x)) 18. lim
x→1

5g(x)

Exercise Group. Evaluate the given limit.
19. lim

x→6

(
x2 − 3x+ 5

)
20. lim

x→π

(
x−5
x−8

)4
21. lim

x→π
6

cos(x) sin(x) 22. lim
x→6

−(5x+2)
x+4

23. lim
x→0

ln(x) 24. lim
x→2

4x
3−2x

25. lim
x→π

3

csc(x) 26. lim
x→0

ln(4 + x)
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27. lim
x→π

x2−4x−2
2x2−2x+1

28. lim
x→π

2x−4
5x−5

29. lim
x→5

x2−11x+30
x2−14x+45 30. lim

x→0

x2−7x
x2+2x

31. lim
x→9

x2−x−72
x2−14x+45 32. lim

x→−8

x2+3x−40
x2+13x+40

33. lim
x→−6

x2+8x+12
x2+3x−18 34. lim

x→−4

x2+13x+36
x2+12x+32

Exercise Group. Use the Squeeze Theorem to evaluate the limit.
35. lim

x→0

(
x sin

(
1
x

))
36. lim

x→0

(
sin(x) cos

(
1
x2

))
37. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3 38. lim

x→3
f(x), where 6x− 9 ≤ f(x) ≤ x2

Exercise Group. The following exercises challenge your understanding of limits but can be evaluated using the
knowledge gained in Section 1.3.

39. lim
x→0

sin(8x)
x 40. lim

x→0

sin(9x)
8x

41. lim
x→0

ln(1+x)
x 42. lim

x→0

sin(x)
x , where x is measured in degrees, not

radians.

43. Let f(x) = 0 and g(x) = x
x .

(a) Explain why lim
x→2

f(x) = 0.

(b) Explain why lim
x→0

g(x) = 1.

(c) Explain why lim
x→2

g(f(x)) does not exist.

(d) Explain why the previous statement does not violate the Composition Rule of Theorem 1.3.1.



CHAPTER 1. LIMITS 28

1.4 One-Sided Limits

We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tedious method for evaluating them. Section 1.3 gave us tools
(whichwe call theorems) that allowus to compute limitswith greater ease. Chief
among the results were the facts that polynomials and rational, trigonometric,
exponential and logarithmic functions (and their sums, products, etc.) all be-
have “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we saw three ways in which limits of functions can fail to exist:

1. The function approaches different values from the left and right.

2. The function grows without bound.

3. The function oscillates.

In this sectionwe explore in depth the concepts behind Item1by introducing
the one-sided limit. We begin with formal definitions that are very similar to the
definition of the limit given in Section 1.2, but the notation is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.”

There is a slightly different definition for a left-hand limit, than for a right-
hand limit, but both have a lot in common with Definition 1.2.1.

Definition 1.4.1 One Sided Limits: Left- and Right-Hand Limits.

Left-Hand Limit
Let f be a function defined on (a, c) for some a < c and
let L be a real number. The statement that the limit of
f(x), as x approaches c from the left, is L, (alternatively,
that the left-hand limit of f at c is L) is denoted by

lim
x→c−

f(x) = L,

andmeans that for any ε > 0, there exists δ > 0 such that
for all x ∈ (a, c), if |x− c| < δ, then |f(x)− L| < ε.

Right-Hand Limit
Let f be a function defined on (c, b) for some b > c and let
L be a real number. The statement that the limit of f(x),
as x approaches c from the right, is L, (alternatively, that
the right-hand limit of f at c is L) is denoted by

lim
x→c+

f(x) = L,

andmeans that for any ε > 0, there exists δ > 0 such that
for all x ∈ (c, b), if |x− c| < δ, then |f(x)− L| < ε.

Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of x “to the left of c,” i.e., where x < c. The admittedly imperfect notation
x → c− is used to imply that we look at values of x to the left of c. The notation
has nothing to do with positive or negative values of either x or c. It’s more like
you are adding very small negative values to c to get values for x. A similar state-
ment holds for evaluating right-hand limits; there we consider only values of x
to the right of c, i.e., x > c. We can use the theorems from previous sections to
help us evaluate these limits; we just restrict our view to one side of c.
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We practice evaluating left- and right-hand limits through a series of exam-
ples.

Example 1.4.2 Evaluating one-sided limits.

Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2
, as shown in Figure 1.4.3. Find each of

the following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0+

f(x)

(f) f(0)

(g) lim
x→2−

f(x)

(h) f(2) 0.5 1 1.5 2

0.5

1

1.5

2

x

y

Figure 1.4.3 A graph of f in Exam-
ple 1.4.2

Solution. For these problems, the visual aid of the graph is likely more
effective in evaluating the limits than using f itself. Therefore we will
refer often to the graph.

(a) As x goes to 1 from the left, we see that f(x) is approaching the
value of 1.

Therefore lim
x→1−

f(x) = 1.

(b) As x goes to 1 from the right, we see that f(x) is approaching the
value of 2. Recall that it does not matter that there is an “open cir-
cle” there; we are evaluating a limit, not the value of the function.

Therefore lim
x→1+

f(x) = 2.

(c) The limit of f as x approaches 1 does not exist, as discussed in
Section 1.1. The function does not approach one particular value,
but two different values from the left and the right.

(d) Using the definition, and by looking at the graph, we see that
f(1) = 1.

(e) As x goes to 0 from the right, we see that f(x) is approaching
0. Therefore limx→0+ f(x) = 0. Note we cannot consider a left-
hand limit at 0 as f is not defined for values of x < 0.

(f) Using the definition and the graph, f(0) = 0.

(g) As x goes to 2 from the left, we see that f(x) is approaching the
value of 1.

Therefore lim
x→2−

f(x) = 1.

(h) The graph and the definition of the function show that f(2) is not
defined.

Note how the left- and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left- and right-hand limits are equal.
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Theorem 1.4.4 Limits and One-Sided Limits.

Let f be a function defined on an open interval I containing c, except
possibly at c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.2–1.4.9 is that the value of the func-
tionmay/may not be equal to the value(s) of its left/right-hand limits, evenwhen
these limits agree.

Example 1.4.5 Evaluating limits of a piecewise-defined function.

Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2
. Evaluate the following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0+

f(x)

(f) f(0)

(g) lim
x→2−

f(x)

(h) f(2)

Solution. In this example, we evaluate each expression using just the
definition of f , without using a graph as we did in the previous example.

(a) As x approaches 1 from the left, we consider a limit where all x-
values are less than 1. This means we use the “2 − x” piece of
the piecewise-defined function f . As the x-values near 1, 2 − x
approaches 1; that is, f(x) approaches 1.

Therefore lim
x→1−

f(x) = 1.

A concisemathematical presentationof the above argument could
be written as follows:

lim
x→1−

f(x) = lim
x→1−

(2− x) (f(x) = x− 2 for 0 < x < 1)

= 2− 1 = 1 ( properties of limits )

(b) As x approaches 1 from the right, we consider a limit where all x-
values are greater than 1. This means we use the “(x−2)2” piece
of f . As the x-values near 1, (x − 2)2 approaches 1; that is, we
see that again f(x) approaches 1.

Therefore lim
x→1+

f(x) = 1.
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Once again, we can present our work computationally as follows:

lim
x→1+

f(x) = lim
x→1+

(x− 2)2 (f(x) = (x− 2)2 for 1 < x < 2)

= (1− 2)2 = 1 ( properties of limits )

(c) The limit of f as x approaches 1 exists and is 1, as f approaches 1
from both the right and left.

Therefore lim
x→1

f(x) = 1.

(d) Neither piece of f is defined for the x-value of 1; in other words,
1 is not in the domain of f . Therefore f(1) is not defined.

(e) As x approaches 0 from the right, we consider a limit where all
x-values are greater than 0. This means we use the 2 − x piece
of f . As the x-values near 0, 2 − x approaches 2; that is, f(x)
approaches 2.

So lim
x→0+

f(x) = 2.

(f) f(0) is not defined as 0 is not in the domain of f .

(g) As x approaches 2 from the left, we consider a limit where all x-
values are less than 2. This means we use the (x− 2)2 piece of f .
As the x-values near 2, (x− 2)2 nears 0; that is, f(x) approaches
0.

So lim
x→2−

f(x) = 0.

(h) f(2) is not defined as 2 is not in the domain of f .

We can confirm our analytic result by consulting the graph of f shown
in Figure 1.4.6. Note the open circles on the graph at x = 0, 1 and 2,
where f is not defined.

0.5 1 1.5 2

0.5

1

1.5

2

x

y

Figure 1.4.6 A graph of f from Exam-
ple 1.4.5

Example 1.4.7 Evaluating limits of a piecewise-defined function.

Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1
as shown in Figure 1.4.8.

Evaluate the following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

0.5 1 1.5 2

0.5

1

x

y

Figure 1.4.8 Graphing f in Exam-
ple 1.4.7

Solution. It is clear by looking at the graph that both the left- and right-
hand limits of f , as x approaches 1, are 0. Thus it is also clear that the
limit is 0; i.e., limx→1 f(x) = 0. It is also clearly stated that f(1) = 1.
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Example 1.4.9 Evaluating limits of a piecewise-defined function.

Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2
as shown in Figure 1.4.10. Evaluate the

following:

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
0.5 1 1.5 2

0.5

1

x

y

Figure 1.4.10 Graphing f in Exam-
ple 1.4.9

Solution. It is clear from the definition of the function and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 1.4.2–1.4.9 we were asked to find both limx→1 f(x) and f(1).
Consider the following table:

lim
x→1

f(x) f(1)

Example 1.4.2 does not exist 1

Example 1.4.5 1 not defined
Example 1.4.7 0 1

Example 1.4.9 1 1

Only in Example 1.4.9 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in Section 1.5 entitled “Continuity.” In short, a continuous
function is one inwhichwhen a function approaches a value asx → c (i.e., when
limx→c f(x) = L), it actually attains that value at c. Such functions behave
nicely as they are very predictable.
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1.4.1 Exercises

Terms and Concepts

1. What are the three ways in which a limit may fail to exist?
2. (□ True □ False) If lim

x→1−
f(x) = 5, then lim

x→1
f(x) = 5.

3. (□ True □ False) If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5.

4. (□ True □ False) If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5.

Problems

Exercise Group. Evaluate each expression using the given graph of f .
5.

−1 1 2 3 4 5 6

2

4

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)

6.

−1 1 2 3 4 5 6

2

4

x

y

(a) lim
x→4−

f(x)

(b) lim
x→4+

f(x)

(c) lim
x→4

f(x)

(d) f(4)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)
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7.

−1 1 2 3 4

2

4

6

8

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→3−

f(x)

(f) lim
x→0+

f(x)

8.

−1 1 2 3

2

4

x

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

9.

−1 1 2 3 4 5 6

−1

1

2

3

x

y

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

10.

−4 −2 2 4 6

−6

−4

−2

2

4

x

y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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11.

−4 −2 2 4

−4

−2

2

4

x

y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)

12.

−4 −2 2 4

−4

−2

2

4

x

y

Let a be an integer with−3 ≤ a ≤ 3.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

Exercise Group. Evaluate the given limits of the piecewise defined function.

13. f(x) =

{
x− 1 if x ≤ 3

x2 − 3 if x > 3

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) f(3)

14. f(x) =

{
2x− 2x2 − 5 if x < 3

sin(x− 3) if x ≥ 3

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) f(3)
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15. f(x) =


x2 + 3x− 1 if x < 2

x3 + 1 if 2 ≤ x ≤ 5

x2 + 4x+ 81 if x > 5

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

(e) lim
x→5−

f(x)

(f) lim
x→5+

f(x)

(g) lim
x→5

f(x)

(h) f(5)

16. f(x) =

{
cos(x) x < π

sin(x) x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =

{
1− cos2(x) x < a

sin2(x) x ≥ a
where a is a real

number.

(a) lim
x→−

f(x)

(b) lim
x→+

f(x)

(c) lim
x→

f(x)

(d) f()

18. f(x) =


x+ 1 if x < −1

x− 1 if x = −1

x+ 2 if x > −1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

19. f(x) =


x2 − 2x− 7 if x < −1

x− 1 if x = −1

−
(
x2 + x+ 4

)
if x > −1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

20. f(x) =

{
a(x− b)2 + c x < b

a(x− b) + c x ≥ b

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =

{
|x|
x x ̸= 0

0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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1.5 Continuity

As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to

1, f(x) is close to 3. We have seen, though, that this is not necessarily a good
indicator of what f(1) actually is. This can be problematic; functions can tend
to one value but attain another. This section focuses on functions that do not
exhibit such behavior.

Definition 1.5.1 Continuous Function.

Let f be a function whose domain contains an open interval I .

1. f is continuous at a point c in I if lim
x→c

f(x) = f(c).

2. f is continuous on the open interval I if f is continuous at c for
all values of c in I . If f is continuous on (−∞,∞), we say f is
continuous everywhere (or everywhere continuous).

Note that in Definition 1.5.1, a function f can only be continuous at a point
c if c is in the domain of f .

A useful way to establish whether or not a function f is continuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 1.5.2 Finding intervals of continuity.

Let f be defined as shown in Figure 1.5.3. Give the interval(s) on which
f is continuous.

1 2 3

0.5

1

1.5

x

y

Figure 1.5.3 A graph of f in Exam-
ple 1.5.2

Solution. We proceed by examining the three criteria for continuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We
know immediately that f cannot be continuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of
course, for c = 1.

We conclude that f is continuous at every point of the interval (0, 3)
except at x = 1. Therefore f is continuous on (0, 1) and (1, 3).

Our definition of continuity (cur-
rently) only applies to open in-
tervals. After Definition 1.5.6,
we’ll be able to say that f is con-
tinuous on [0, 1) and (1, 3].

Example 1.5.4 Finding intervals of continuity.

The floor function, f(x) = ⌊x⌋, returns the largest integer smaller than,
or equal to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of
f in Figure 1.5.5 demonstrates why this is often called a “step function.”
Give the intervals on which f is continuous. −2 −1 1 2 3

−2

−1

1

2

x

y

Figure 1.5.5 A graph of the step func-
tion in Example 1.5.4

Solution. We examine the three criteria for continuity.

1. The limits lim
x→c

f(x) do not exist at the jumps from one “step” to
the next, which occur at all integer values of c. Therefore the limits
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exist for all c except when c is an integer.

2. The function is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of c where the limit exist,
since each step consists of just a line.

We conclude that f is continuous everywhere except at integer values
of c. So the intervals on which f is continuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

We could also say that f is continuous on all intervals of the form (n, n+
1) where n is an integer.

Our definition of continuity on an interval specifies the interval is an open inter-
val. We can extend the definition of continuity to closed intervals of the form
[a, b] by considering the appropriate one-sided limits at the endpoints.

In this text, when we use the
term “closed interval”, we mean
an interval of the form [a, b], where
a and b are real numbers. One
may be surprised to learn that
intervals of the form [a,∞), (−∞, b]
and even (−∞,∞) are all also
considered closed in advanced cal-
culus. While themathematics sup-
portedby this definitionof closed
is fascinating and important, it
is beyond the scope of our pur-
poses here.

Some results, such as The Ex-
treme Value Theorem, are valid
for intervals of the form [a, b], but
not for intervals such as [a,∞).
The latter interval is closed, but
not bounded.

A set of real numbers is bounded
if there is a number that is greater
than every element in the set (an
upper bound), and anumber that
is less than every element in the
set (a lower bound). When we
do calculus in higher dimensions,
we can no longer talk about in-
tervals, butwe can still talk about
sets being closed and bounded.
See Section 13.8 for details.

Definition 1.5.6 Continuity on Closed Intervals.

Let f be defined on the closed interval [a, b] for some real numbers a <
b.
We say f is continuous on the closed interval [a, b] if:

1. f is continuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about continuity on half-
open intervals such as [a, b) or (a, b] if necessary.

If the domain of f includes values less than a, we say that Item 2 in Defini-
tion 1.5.6 indicates that f is continuous from the right at a. But if f is undefined
for x < a, we can say that f is continuous at a without ambiguity.

Similarly, Item 3 indcates that f is continuous from the left at b, and if f is
not defined for x > b, we can simply say that f is continuous at b.

For example, it makes sense to say that the function f(x) =
√
1− x2 is

continuous at 1 and−1, while the floor function in Example 1.5.4 is continuous
from the left at 1 and−1, but is not continuous at these points.

Using this new definition, we can adjust our answer in Example 1.5.2 by stat-
ing that f is continuous on [0, 1) and (1, 3], as mentioned in that example. We
can also revisit Example 1.5.4 and state that the floor function is continuous on
the following half-open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

This can tempt us to conclude that f is continuous everywhere; after all, if
f is continuous on [0, 1) and [1, 2), isn’t f also continuous on [0, 2)? Of course,
the answer is no, and the graph of the floor function immediately confirms this.

Continuous functions are important as they behave in a predictable fashion:
functions attain the value they approach. Because continuity is so important,
most of the functions you have likely seen in the past are continuous on their
domains. This is demonstrated in the following example where we examine the
intervals of continuity of a variety of common functions.
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Example 1.5.7 Determining intervals on which a function is continu-
ous.

For each of the following functions, give the domain of the function and
the interval(s) on which it is continuous.

1. f(x) = 1/x

2. f(x) = sin(x)

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

Solution. We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0)∪ (0,∞). As it is a rational
function, we apply Theorem 1.3.3 to recognize that f is continu-
ous on all of its domain.

2. The domain of f(x) = sin(x) is all real numbers, or (−∞,∞). Ap-
plying Theorem 1.3.5 shows that sin(x) is continuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 1.3.5

shows that f(x) =
√
x is continuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theo-

rems 1.3.1 and 1.3.5 shows that f is continuous on all of its do-
main, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the ab-
solute value function as

f(x) =

{
−x x < 0

x x ≥ 0
.

Each “piece” of this piecewise defined function is continuous on all
of its domain, giving that f is continuous on (−∞, 0) and [0,∞).
We cannot assume this implies that f is continuous on (−∞,∞);
we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transitions from one “piece” of its definition to the other.
It is easy to verify that this is indeed true, hence we conclude that
f(x) = |x| is continuous everywhere.

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 1.3.1 and 1.3.3 apply to continuity as well.
Further, now knowing the definition of continuity we can re-read Theorem 1.3.5
as giving a list of functions that are continuous on their domains. The following
theorem states how continuous functions can be combined to form other con-
tinuous functions, followed by a theorem which formally lists functions that we
know are continuous on their domains.

Theorem 1.5.8 Properties of Continuous Functions.

Let f and g be continuous functions on an interval I , let c be a real num-
ber and let n be a positive integer. The following functions are continu-
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ous on I .

Sums/Difference f ± g

Constant Multiple c · f
Product f · g
Quotient f/g (as long as g ̸= 0 on I)
Power fn

Root n
√
f (If n is even then require f(x) ≥ 0 on I .)

Compositions Adjust the definitions of f and g to: Let f be
continuous on I , where the range of f on I is
J , and let g be continuous on J . Then g ◦ f ,
i.e., g(f(x)), is continuous on I .

We have defined what it means
for a function to be continuous
on an interval, butmany functions,
such as f(x) = tan(x), have do-
mains that are the unionofmore
than one interval.

If the domain of a function is
a union of intervals, saying that
a function is continuous on its do-
main means that the function is
continuous on each of those in-
tervals. But be careful to note
that the converse is not true. As
we learned in Example 1.5.4, a
function can be continuous on a
collectionof intervals, but not on
their union.

Theorem 1.5.9 Continuous Functions.

Let n be a positive integer. The following functions are continuous on
their domains.

1. f(x) = sin(x)

2. f(x) = tan(x)

3. f(x) = sec(x)

4. f(x) = ln(x)

5. f(x) = ax (a > 0)

6. f(x) = cos(x)

7. f(x) = cot(x)

8. f(x) = csc(x)

9. f(x) = n
√
x, where n is a

positive integer.

We apply these theorems in the following Example.

Example 1.5.10 Determining intervals on which a function is continu-
ous.

State the interval(s) on which each of the following functions is continu-
ous.

1. f(x) =
√
x− 1 +

√
5− x

2. f(x) = x sin(x)

3. f(x) = tan(x)

4. f(x) =
√
ln(x)

Solution. We examine each in turn, applying Theorems 1.5.8 and 1.5.9
as appropriate.

1 2 3 4 5

1

2

3

x

y

Figure 1.5.11 A graph of f(x) =√
x− 1 +

√
5− x

1. The square root terms are continuous on the intervals [1,∞) and
(−∞, 5], respectively. As f is continuous only where each term
is continuous, f is continuous on [1, 5], the intersection of these
two intervals. A graph of f is given in Figure 1.5.11.

2. The functions y = x and y = sin(x) are each continuous every-
where, hence their product is, too.

3. Theorem 1.5.9 states that f(x) = tan(x) is continuous on its do-
main. Its domain includes all real numbers except odd multiples
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of π/2. Thus the intervals on which f(x) = tan(x) is continuous
are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π

2

)
, . . . , .

4. Here, f(x) is the composition g(h(x)), where g(x) =
√
x and

h(x) = ln(x). The domain of g is [0,∞), while the range of h
is (−∞,∞). If we restrict the domain to [1,∞), then the output
from h(x) = ln(x) is restricted to [0,∞), on which g(x) =

√
x is

defined. Thus the domain of f(x) =
√
ln(x) is [1,∞).

Classification of discontinuities. We now know what it means for a function
to be continuous, so of course we can easily say what it means for a function
to be discontinuous; namely, not continuous. However, to better understand
continuity, it is worth our time to discuss the different ways in which a function
can fail to be discontinuous. By definition, a function f is continuous at a point
a in its domain if lim

x→a
f(x) = f(a). If this equality fails to hold, then f is not

continuous. We note, however, that there are a number of different things that
can go wrong with this equality.

1. lim
x→a

f(x) = L exists, but L ̸= f(a), or f(a) is undefined. Such a discon-
tinuity is called a removable discontinuity .
A removable discontinuity can be pictured as a “hole” in the graph of f .
The term “removable” refers to the fact that by simply redefining f(a) to
equalL (that is, changing the value of f at a single point), we can create a
new function that is continuous at x = a, and agrees with f at all x ̸= a.

2. lim
x→a+

f(x) = L and lim
x→a−

f(x) = M exist, but L ̸= M . In this case

the left and right hand limits both exist, but since they are not equal, the
limit of f as x → a does not exist. Such a discontinuity is called a jump
discontinuity.
The phrase “jump discontinuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value x = a.

3. The function f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and negative) as x approaches a. Such
a discontinuity is called an infinite discontinuity.
Infinite discontinuities are most easily understood in terms of infinite lim-
its, which are discussed in Section 1.6.

1 2 3 4
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y

(a) The graph of a func-
tion with a removable
discontinuity at x = 2

1 2 3 4
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y

(b) The graph of a func-
tion with a jump discon-
tinuity at x = 2
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(c) The graph of a func-
tion with an infinite dis-
continuity at x = 2

Figure 1.5.12 Illustrating three common types of discontinuity
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Consequences of continuity. A common way of thinking of a continuous func-
tion is that “its graph can be sketched without lifting your pencil.” That is, its
graph forms a “continuous” curve, without holes, breaks or jumps. This pseudo-
definition glosses over some of the finer points of continuity. There are some
very strange continuous functions that one would be hard pressed to actually
sketch by hand.

However, this intuitive notion of continuity does help us understand another
important concept as follows. Suppose f is defined on [1, 2], and f(1) = −10
and f(2) = 5. If f is continuous on [1, 2] (i.e., its graph can be sketched as a con-
tinuous curve from (1,−10) to (2, 5)) then we know intuitively that somewhere
on the interval [1, 2] f must be equal to −9, and −8, and −7,−6, . . . , 0, 1/2,
etc. In short, f takes on all intermediate values between−10 and 5. It may take
on more values; f may actually equal 6 at some time, for instance, but we are
guaranteed all values between−10 and 5.

1 1.5 2 2.5

−15

−10

−5

5

10

x

y

Figure 1.5.13 Illustration of the Inter-
mediate Value Theorem: the output
3 is in between−10 and 5, and there-
fore any continuous function on [1, 2]
with f(1) = −10 and f(2) = 5 will
achieve the output 3 somewhere in
[1, 2]

While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.5.14 Intermediate Value Theorem.

Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there
is at least one value c in (a, b) such that f(c) = y.

One important application of the Intermediate Value Theorem is root find-
ing. Given a function f , we are often interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
tions can be found through successive applications of this theorem. Suppose
through direct computation we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such
a value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b], with f(a) < 0 and f(b) > 0 and consider f(d).
There are three possibilities:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b]— we
have halved the size of our interval, hence are closer to a good approxima-
tion of the root.

3. f(d) > 0: Then we know there is a root of f on the interval [a, d] —
again,we have halved the size of our interval, hence are closer to a good
approximation of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.5.15 Using the Bisection Method.

Approximate the root of f(x) = x − cos(x), accurate to three places
after the decimal.
Solution. Consider the graph of f(x) = x − cos(x), shown in Fig-
ure 1.5.16. It is clear that the graph crosses the x-axis somewhere near
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x = 0.8. To start the Bisection Method, pick an interval that contains
0.8. We choose [0.7, 0.9]. Note that all we care about are signs of f(x),
not their actual value, so this is all we display.

0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

x

y

Figure 1.5.16 Graphing a root of
f(x) = x− cos(x)

Iteration 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So
replace 0.9 with 0.8 and repeat.

Iteration 2: f(0.7) < 0, f(0.8) > 0, and at the midpoint,
0.75, we have f(0.75) > 0. So replace 0.8
with 0.75 and repeat. Note thatwedon’t need
to continue to check the endpoints, just the
midpoint. Thus we put the rest of the itera-
tions in Table 1.5.17.

Table 1.5.17 Iterations of the Bisection Method of Root Finding

Iteration # Interval Midpoint Sign

1 [0.7, 0.9] f(0.8) > 0

2 [0.7, 0.8] f(0.75) > 0

3 [0.7, 0.75] f(0.725) < 0

4 [0.725, 0.75] f(0.7375) < 0

5 [0.7375, 0.75] f(0.7438) >

6 [0.7375, 0.7438] f(0.7407) > 0

7 [0.7375, 0.7407] f(0.7391) > 0

8 [0.7375, 0.7391] f(0.7383) < 0

9 [0.7383, 0.7391] f(0.7387) < 0

10 [0.7387, 0.7391] f(0.7389) < 0

11 [0.7389, 0.7391] f(0.7390) < 0

12 [0.7390, 0.7391]

Notice that in the 12th iteration we have the endpoints of the interval
each starting with 0.739. Thus we have narrowed the zero down to an
accuracy of the first three places after the decimal. Using a computer,
we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where f
is 0. The Theorem 1.5.14 states that the actual zero is still within this
interval. While we do not know its exact value, we know it starts with
0.739.
This type of exercise is rarely done by hand. Rather, it is simple to pro-
gram a computer to run such an algorithm and stop when the endpoints
differ by a preset small amount. One of the authors did write such a pro-
gram and found the zero of f to be 0.7390851332, accurate to 10 places
after the decimal. While it took a few minutes to write the program, it
took less than a thousandth of a second for the program to run the nec-
essary 35 iterations. In less than 8 hundredths of a second, the zero was
calculated to 100 decimal places (with less than 200 iterations).

It is a simplematter to extend theBisectionMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new function g where g(x) = f(x) − 1.
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Then use the Bisection Method to solve g(x) = 0.
Similarly, given two functions f and g, we can use the Bisection Method

to solve f(x) = g(x). Once again, create a new function h where h(x) =
f(x)− g(x) and solve h(x) = 0.

In Section 4.1 another equation solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathematics, though, so we will wait before introducing it.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.
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1.5.1 Exercises

Terms and Concepts

1. In your own words, describe what it means for a function to be continuous.
2. In your own words, describe what the Intermediate Value Theorem states.
3. What is a “root” of a function?
4. Given functions f and g on an interval I , how can the Bisection Method be used to find a value cwhere f(c) =

g(c)?

5. (□ True □ False) If f is defined on an open interval containing c, and lim
x→c

f(x) exists, then f is continuous
at c.

6. (□ True □ False) If f is defined on an open interval containing c, and f is continuous at c, then lim
x→c

f(x)

exists.
7. (□ True □ False) If f is defined on an open interval containing c, and f is continuous at c, then

lim
x→c+

f(x) = f(c).

8. (□ True □ False) If f is continuous on [a, b], then lim
x→a−

f(x) = f(a).

9. (□ True □ False) If f is continuous on [0, 1) and [1, 2), then f is continuous on [0, 2).

10. (□ True □ False) The sum of continuous functions is also continuous.

Problems

Exercise Group. Use the graph to determine if the function is continuous at the given point.
11. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)

12. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)
13. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)

14. Is f in the graph below continuous at 0?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)
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15. Is f in the graph below continuous at 1?

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

(□ Yes. □ No.)

16. Is f in the graph below continuous at 4?

−4 −2 2 4

−4

−2

2

4

6

x

y

(□ Yes. □ No.)
17. Is f in the graph below continuous at−2, 0, and

2?

−4 −2 2 4

−4

−2

2

4

x

y

At−2: (□ Yes. □ No.)
At 0: (□ Yes. □ No.)
At 2: (□ Yes. □ No.)

18. Is f in the graph below continuous at 3π
2 ?

−π
2

π
2

π 3π
2

2π

1

2

x

y

(□ Yes. □ No.)

Exercise Group. Determine if f is continuous at the indicated values.

19. f(x) =

{
1 x = 0
sin(x)

x x ̸= 0

(a) Is f is continuous at 0?
(□ Yes. □ No.)

(b) Is f is continuous at π?
(□ Yes. □ No.)

20. f(x) =

{
x3 − x2 if x < 1

x− 2 if x ≥ 1

(a) Is f is continuous at 0?
(□ Yes. □ No.)

(b) Is f is continuous at 1?
(□ Yes. □ No.)
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21. f(x) =


x2 + 5x+ 4

x2 + 3x+ 2
if x ̸= −1

3 if x = −1

(a) Is f is continuous at−1?

(□ Yes. □ No.)

(b) Is f is continuous at 10?
(□ Yes. □ No.)

22. f(x) =


x2 − 64

x2 − 11x+ 24
if x ̸= 8

5 if x = 8

(a) Is f is continuous at 0?
(□ Yes. □ No.)

(b) Is f is continuous at 8?
(□ Yes. □ No.)

Exercise Group. Give the intervals on which the function is continuous.
23. f(x) = x2 − 6x+ 2 24. f(x) =

√
x2 − 4

25. f(x) =
√
4− x2 26. f(x) =

√
3− x+

√
x+ 3

27. f(t) =
√
4t2 − 12 28. g(t) = 1√

49−t2

29. g(t) = 1
8+5t2

30. f(x) = πx

31. g(s) = log2(s) 32. h(t) = cos(t)

33. f(k) =
√
3− ek 34. f(x) = sin

(
ex + x4

)
Exercise Group. Test your understanding of the Intermediate Value Theorem.

35. Let f be continuous on [1, 5] where f(1) = −2 and f(5) = −10. Does a value 1 < c < 5 exist such that
f(c) = −9? Why/why not?

36. Let g be continuous on [−3, 7] where g(0) = 0 and g(2) = 25. Does a value −3 < c < 7 exist such that
g(c) = 15? Why/why not?

37. Let f be continuous on [−1, 1] where f(−1) = −10 and f(1) = 10. Does a value −1 < c < 1 exist such
that f(c) = 11? Why/why not?

38. Let h be a function on [−1, 1] where h(−1) = −10 and h(1) = 10. Does a value −1 < c < 1 exist such
that h(c) = 0? Why/why not?

Exercise Group. Use the Bisection Method to approximate, accurate to two decimal places, the value of the root of
the given function in the given interval.

39. f(x) = x2 + 2x− 4 on the interval [1, 1.5]

40. f(x) = sin(x)− 1
2 on the interval [0.5, 0.55]

41. f(x) = ex − 2 on the interval [0.65, 0.7]

42. f(x) = cos(x)− sin(x) on the interval [0.7, 0.8]
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1.6 Limits Involving Infinity

In Definition 1.2.1 we stated that in the equation limx→c f(x) = L, both c and
L were numbers. In this section we relax that definition a bit by considering
situations when it makes sense to let c and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x2, as shown in Figure 1.6.1.
Note how, as x approaches 0, f(x) grows very, very large—in fact, it grows with-
out bound. It seems appropriate, and descriptive, to state that

lim
x→0

1

x2
= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could
represent this concept with notation such as

lim
x→∞

1

x2
= 0.
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Figure 1.6.1 Graphing f(x) = 1/x2

for values of x near 0

We explore both types of use of∞ in turn.

Definition 1.6.2 Limit of Infinity,∞.

Let I be an open interval containing c, and let f be a function defined
on I , except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

if given any N > 0, there exists δ > 0 such that for all x in I ,
where x ̸= c, if |x− c| < δ, then f(x) > N .

• The limit of f(x), as x approaches c, is negative infinity, denoted
by

lim
x→c

f(x) = −∞,

if given any N < 0, there exists δ > 0 such that for all x in I ,
where x ̸= c, if |x− c| < δ, then f(x) < N .

The first definition is similar to the ε-δ definition in Definition 1.2.1 from
Section 1.2. In that definition, given any (small) value ε, if we let x get close
enough to c (within δ units of c) then f(x) is guaranteed to be within ε of L.
Here, given any (large) valueN , if we let x get close enough to c (within δ units
of c), then f(x) will be at least as large as N . In other words, if we get close
enough to c, then we can make f(x) as large as we want.

It is important to note that by saying limx→c f(x) = ∞ we are implicitly
stating that the limit of f(x), as x approaches c, does not exist. A limit only
exists when f(x) approaches an actual numeric value. We use the concept of
limits that approach infinity because it is helpful and descriptive. It is one specific
way in which a limit can fail to exist.

We define one-sided limits that approach infinity in a similar way.

Definition 1.6.3 One-Sided Limits of Infinity.

• Let f be a function defined on (a, c) for some a < c. We say the
limit of f(x), as x approaches c from the left, is infinity, or, the
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left-hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

if given anyN > 0, there exists δ > 0 such that for all a < x < c,
if |x− c| < δ, then f(x) > N .

• Let f be a function defined on (c, b) for some b > c. We say the
limit of f(x), as x approaches c from the right, is infinity, or, the
right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

if given anyN > 0, there exists δ > 0 such that for all c < x < b,
if |x− c| < δ, then f(x) > N .

• The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 1.6.2.

Example 1.6.4 Evaluating limits involving infinity.

Find lim
x→1

1
(x−1)2 as shown in Figure 1.6.5.
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Figure 1.6.5Observing infinite limit as
x → 1 in Example 1.6.4

Solution. In Example 1.1.15 of Section 1.1, by inspecting values of x
close to 1 we concluded that this limit does not exist. That is, it cannot
equal any real number. But the limit could be infinite. And in fact, we
see that the function does appear to be growing larger and larger, as
f(0.99) = 104, f(0.999) = 106, f(0.9999) = 108. A similar thing
happens on the other side of 1. From the graph and the numeric infor-
mation, we could state limx→1 1/(x − 1)2 = ∞. We can prove this by
using Definition 1.6.2
In general, let a “large” valueN be given. Let δ = 1/

√
N . If x is within

δ of 1, i.e., if |x− 1| < 1/
√
N , then:

|x− 1| < 1√
N

(x− 1)2 <
1

N
1

(x− 1)2
> N ,

which is what we wanted to show. So we may say limx→1 1/(x− 1)2 =
∞.

Example 1.6.6 Evaluating limits involving infinity.

Find lim
x→0

1
x , as shown in Figure 1.6.7.
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Figure 1.6.7 Evaluating lim
x→0

1
x

Solution. It is easy to see that the function grows without bound near 0,
but it does so in different ways on different sides of 0. Since its behavior
is not consistent, we cannot say that limx→0

1
x = ∞. Instead, wewill say

limx→0
1
x does not exist. However, we can make a statement about one-

sided limits. We can state that limx→0+
1
x = ∞ and limx→0−

1
x = −∞.
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1.6.1 Vertical asymptotes
The graphs in the two previous examples demonstrate that if a function f has a
limit (or, left- or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a vertical line near x = c. This observation leads to a definition.

Definition 1.6.8 Vertical Asymptote.

Let I be an interval that either contains c or has c as an endpoint, and
let f be a function defined on I , except possibly at c.
If the limit of f(x) as x approaches c from either the left or right (or
both) is∞ or−∞, then the line x = c is a vertical asymptote of f .

Example 1.6.9 Finding vertical asymptotes.

Find the vertical asymptotes of f(x) = 3x
x2−4 .

Solution. Vertical asymptotes occur where the function grows without
bound; this can occur at values of cwhere the denominator is 0. When x
is near c, the denominator is small, which in turn can make the function
take on large values. In the case of the given function, the denominator
is 0 at x = ±2. Substituting in values of x close to 2 and −2 seems to
indicate that the function tends toward∞ or −∞ at those points. We
can graphically confirm this by looking at Figure 1.6.10. Thus the vertical
asymptotes are at x = ±2.
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Figure 1.6.10 Graphing f(x) = 3x
x2−4

When a rational function has a vertical asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a vertical asymptote there. For
instance, f(x) = (x2 − 1)/(x− 1) does not have a vertical asymptote at x = 1,
as shown in Figure 1.6.11. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Canceling the common term, we get that f(x) = x+ 1 for x ̸= 1. So there
is clearly no asymptote; rather, a hole exists in the graph at x = 1.
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Figure 1.6.11 Graphically showing
that f(x) = x2−1

x−1 does not have an
asymptote at x = 1

The above example may seem a little contrived. Another example demon-
strating this important concept is f(x) = (sin(x))/x. We have considered this
function several times in the previous sections. We found that limx→0

sin(x)
x = 1;

i.e., there is no vertical asymptote. No simple algebraic cancellation makes this
fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

1.6.2 Indeterminate Forms

We have seen how the limits limx→0
sin(x)

x and limx→1
x2−1
x−1 each return the

indeterminate form 0/0 when we blindly plug in x = 0 and x = 1, respectively.
However, 0/0 is not a valid arithmetical expression. It gives no indication that
the respective limits are 1 and 2.
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With a little cleverness, one can come up with 0/0 expressions which have
a limit of∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0while the denominator is also shrinking to 0. The
respective rates at which they do this are very important and determine the ac-
tual value of the limit.

An indeterminate form indicates that one needs to do more work in order
to compute the limit. That work may be algebraic (such as factoring and cancel-
ing), it may involve using trigonometric identities or logarithm rules, or it may
require a tool such as the Squeeze Theorem. In Section 6.7 we will learn yet
another technique called L’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of directly sub-
stituting c into the expression, and each, in and of itself, has no meaning. The
expression∞−∞ does not really mean “subtract infinity from infinity.” Rather,
it means “One quantity is subtracted from the other, but both are growing with-
out bound.” What is the result? It is possible to get every value between −∞
and∞.

Note that 1/0 and∞/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be∞,−∞, or simply not exist if the
left- and right-hand limits do not match.

1.6.3 Limits at Infinity and Horizontal Asymptotes
At the beginning of this section we briefly considered what happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the function
to the “far right” of the graph. Wemake this notionmore explicit in the following
definition.

Definition 1.6.12 Limits at Infinity and Horizontal Asymptotes.

Let L be a real number.

1. Let f be a function defined on (a,∞) for some number a. The
limit of f at infinity is L, denoted limx→∞ f(x) = L, if for every
ϵ > 0 there existsM > a such that if x > M , then |f(x)− L| <
ϵ.

2. Let f be a function defined on (−∞, b) for some number b. The
limit of f at negative infinity is L, denoted limx→−∞ f(x) = L,
if for every ϵ > 0 there existsM < b such that if x < M , then
|f(x)− L| < ϵ.

3. If limx→∞ f(x) = L or limx→−∞ f(x) = L, we say the line y =
L is a horizontal asymptote of f .

We can also define limits such as limx→∞ f(x) = ∞ by combining this defi-
nition with Definition 1.6.2.
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Example 1.6.13 Approximating horizontal asymptotes.

Approximate the horizontal asymptote(s) of f(x) = x2

x2+4 .
Solution. We will approximate the horizontal asymptotes by approxi-
mating the limits limx→−∞

x2

x2+4 and limx→∞
x2

x2+4 . (A rational function
can have at most one horizontal asymptote. So we could get away with
only taking x → ∞).
Figure 1.6.14(a) shows a sketch of f , and the table in Figure 1.6.14(b)
gives values of f(x) for large magnitude values of x. It seems reason-
able to conclude from both of these sources that f has a horizontal as-
ymptote at y = 1.
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10000 0.999996

−10 0.9615

−100 0.9996

−10000 0.999996

(b)

Figure 1.6.14 Using a graph and a table to approximate a horizontal as-
ymptote in Example 1.6.13
Later, we will show how to determine this analytically.

Horizontal asymptotes can take on a variety of forms. Figure 1.6.15(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.6.15(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymp-

totes; one at y = 1 and the other at y = −1.
Figure 1.6.15(c) shows that f(x) = sin(x)/x has even more interesting be-

havior than at just x = 0; as x approaches ±∞, f(x) approaches 0, but oscil-
lates as it does this.
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Figure 1.6.15 Considering different types of horizontal asymptotes
We can analytically evaluate limits at infinity for rational functions once we

understand limx→∞
1
x . As x gets larger and larger, 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as we want by choosing a
large enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε.
Thus we have limx→∞ 1/x = 0.

It is now not much of a jump to conclude the following:

lim
x→∞

1

xn
= 0 lim

x→−∞

1

xn
= 0.
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Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1

4x3 − 2x2 + 9
.

A good way of approaching this is to divide through the numerator and de-
nominator by x3 (hence multiplying by 1), which is the largest power of x to
appear in the denominator. Doing this, we get

lim
x→∞

x3 + 2x+ 1

4x3 − 2x2 + 9
= lim

x→∞

1/x3

1/x3
· x3 + 2x+ 1

4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1 + 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well
as the fact about limits of 1/xn, we see that the limit becomes

1 + 0 + 0

4− 0 + 0
=

1

4
.

This procedure works for any rational function. In fact, it gives us the follow-
ing theorem.

Theorem 1.6.16 Limits of Rational Functions at Infinity.

Let f(x) be a rational function of the following form:

f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0
,

wherem,n are positive integers and where any of the coefficients may
be 0 except for an and bm. Then:

1. If n = m, then

lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm
.

2. If n < m, then

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then limx→∞ f(x) and limx→−∞ f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situation like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave
us with the limit an/bm. If n < m, then after dividing through by xm, all the
terms in the numerator will approach 0 in the limit, leaving us with 0/bm or 0.
If n > m, and we try dividing through by xm, we end up with the denominator
tending to bm while the numerator tends to∞.

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to anx

n, and likewise all the terms in the denominator are small
compared to bmxm. If n = m, looking only at these two important terms, we
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have (anxn)/(bmxm). This reduces to an/bm. If n < m, the function behaves
like an/(bmxm−n), which tends toward 0. If n > m, the function behaves like
anx

n−m/bm, which will tend to either∞ or−∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

Example 1.6.17 Finding a limit of a rational function.

Confirm analytically that y = 1 is the horizontal asymptote of f(x) =
x2

x2+4 , as approximated in Example 1.6.13.
Solution. Before using Theorem 1.6.16, let’s use the technique of evalu-
ating limits at infinity of rational functions that led to that theorem. The
largest power of x in f is 2, so divide the numerator and denominator
of f by x2, then take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1

1 + 4/x2

=
1

1 + 0

= 1.

We can also use Theorem 1.6.16 directly; in this case n = m so the limit
is the ratio of the leading coefficients of the numerator and denominator,
i.e., 1/1 = 1.

Example 1.6.18 Finding limits of rational functions.

Use Theorem 1.6.16 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1

x3 + 1

2. lim
x→∞

x2 + 2x− 1

1− x− 3x2

3. lim
x→∞

x2 − 1

3− x

Solution.

1. The highest power of x is in the denominator. Therefore, the limit
is 0; see Figure 1.6.19(a).

2. The highest power of x is x2, which occurs in both the numerator
and denominator. The limit is therefore the ratio of the coeffi-
cients of x2, which is−1/3. See Figure 1.6.19(b).

3. The highest power of x is in the numerator so the limit will be∞
or−∞. To see which, consider only the dominant terms from the
numerator and denominator, which are x2 and −x. The expres-
sion in the limit will behave like x2/(−x) = −x for large values of
x. Therefore, the limit is−∞. See Figure 1.6.19(c).
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Figure 1.6.19 Visualizing the functions in Example 1.6.18

With care, we can quickly evaluate limits at infinity for a large number of
functions by considering the long run behavior using “dominant terms” of f(x).
For instance, consider again limx→±∞

x√
x2+1

, graphed in Figure 1.6.15(b). The

dominant terms are x in the numerator and
√
x2 in the denominator. When x

is very large, x2 + 1 ≈ x2. Thus√
x2 + 1 ≈

√
x2 = |x| x√

x2 + 1
≈ x

|x|
.

This expression is 1 when x is positive and −1 when x is negative. Hence
we get asymptotes of y = 1 and y = −1, respectively. We will show this more
formally in the next example.

Example 1.6.20 Finding a limit using dominant terms.

Confirm analytically that y = 1 and y = −1 are the horizontal asymp-
tote of limx→±∞

x√
x2+1

, as graphed in Figure 1.6.15(b).

Solution. The dominating term of f in the denominator is
√
x2 = |x|

so divide the numerator and denominator of f by
√
x2, then take limits.

lim
x→∞

x√
x2 + 1

= lim
x→∞

x√
x2 + 1

·
1√
x2

1√
x2

= lim
x→∞

x
|x|√
x2+1
x2

= lim
x→∞

1√
1 + 1

x2

for x > 0

=
1√
1 + 0

= 1.

As x → −∞, the only thing that changes is the value of x
|x| . For x < 0,

we have x
|x| = −1, making limx→−∞

x√
x2+1

= −1. Therefore, the
horizontal asymptotes are y = 1 and y = −1.
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1.6.4 Exercises

Terms and Concepts

1. (□ True □ False) If lim
x→5

f(x) = ∞, then we are implicitly stating that the limit exists.

2. (□ True □ False) If lim
x→5

f(x) = 5, then we are implicitly stating that the limit exists.

3. (□ True □ False) If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞.

4. (□ True □ False) If lim
x→5

f(x) = ∞, then f has a vertical asymptote at x = 5.

5. (□ True □ False) ∞/0 is not an indeterminate form.

6. List five indeterminate forms.
7. Construct a function with a vertical asymptote at x = 5 and a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is or is not continuous at x = 7.

Problems

Exercise Group. Evaluate the given limits using the graph of the function.
9. f(x) = 1

(x+2)5
has the graph:
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y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

10. f(x) = 1
(x−1)(x−2)2

has the graph:
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) lim
x→2−

f(x)

(e) lim
x→2+

f(x)

(f) lim
x→2

f(x)
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11. f(x) = 3
e−x+1 has the graph:
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(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

12. f(x) = x3 sin(4πx) has the graph:
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(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

13. f(x) = sin(4x) has the graph:

−10 −5 5 10

−1

−0.5

0.5

1

x

y

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

14. f(x) = 2.4x − 9 has the graph:
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(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

Exercise Group. Numerically approximate the limits.

15. f(x) = x2−x−20
x2−3x−40

(a) lim
x→8−

f(x)

(b) lim
x→8+

f(x)

(c) lim
x→8

f(x)

16. f(x) = x2−4x−5
x3+26x2+225x+648

(a) lim
x→−9−

f(x)

(b) lim
x→−9+

f(x)

(c) lim
x→−9

f(x)
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17. f(x) = x2+13x+40
x3+7x2−24x−180

(a) lim
x→−6−

f(x)

(b) lim
x→−6+

f(x)

(c) lim
x→−6

f(x)

18. f(x) = x2−x−20
x2+3x−4

(a) lim
x→−4−

f(x)

(b) lim
x→−4+

f(x)

(c) lim
x→−4

f(x)

Exercise Group. Identify the horizontal and vertical asymptotes, if any, of the given function.

19. f(x) = 2x2+x−15
x2−7x−18 20. f(x) = 5x2+x−4

−2x2−20x−18

21. f(x) = 4x2−12x+8
6x3−36x2+48x 22. f(x) = 2x2−12x+16

−6x−18

23. f(x) = x2−10x+24
3x−18 24. f(x) = 4x2−44x+96

−x2−4x−8

Exercise Group. Evaluate the given limit.

25. lim
x→∞

x3−4x2−x+2
3x−3 26. lim

x→∞
x3+9x2+7x−6

3x+8

27. lim
x→∞

x3+3x2−4x+9
3x2−3 28. lim

x→∞
x3−5x2+5x+3

3x2+8
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Chapter Summary. In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed anot-so-easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined continuity and explored properties of continuous functions, and

• considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to be
no exception. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quantity by a smaller and smaller number and see
what value the quotient approaches. In other words, we will want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.



Chapter 2

Derivatives

Chapter 1 introduced the most fundamental of calculus topics: the limit. This
chapter introduces the second most fundamental of calculus topics: the deriva-
tive. Limits describewhere a function is going; derivatives describe how fast the
function is going.

2.1 Instantaneous Rates of Change: The Derivative

2.1.1 Introduction
A common amusement park ride lifts riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, t seconds after freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground when f(t) = 0 so at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose

the designers of the ride decide to begin slowing the riders’ fall after 2 seconds
(corresponding to a height of f(2) = 86 ft). How fast will the riders be traveling
at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, we do know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30mph.) We looked at this concept in Section 1.1 when we introduced the
difference quotient. We have

change in distance
change in time

=
“rise”
“run”

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some time period containing t = 2. If wemake the time in-
terval small, we will get a good approximation. (This fact is commonly used. For
instance, high speed cameras are used to track fast moving objects. Distances
are measured over a fixed number of frames to generate an accurate approxi-
mation of the velocity.)

60
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Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)

3− 2
=

6− 86

1
= −80ft/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)

2.5− 2
=

50− 86

0.5
= −72ft/s.

Units in Calculations. In the above
calculations, we left off the units
until the endof the problem. You
should always be sure that you
label your answer with the cor-
rect units. For example, if g(x)
gave you the cost (in $) of pro-
ducing x widgets, the units on
thedifferencequotientwould be
$/widget.

We can do this for smaller and smaller intervals of time. For instance, over
a time span of one tenth of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)

2.1− 2
=

79.44− 86

0.1
= −65.6ft/s.

Over a time span of one hundredth of a second, on [2, 2.01], the average
velocity is

f(2.01)− f(2)

2.01− 2
=

85.3584− 86

0.01
= −64.16ft/s.

Whatwe are really computing is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are computing

f(2 + h)− f(2)

h

where h is small.
We really want to use h = 0, but this, of course, returns the familiar “0/0”

indeterminate form. So we employ a limit, as we did in Section 1.1.
We can approximate the value of this limit numerically with small values of

h as seen in Figure 2.1.1. It looks as though the velocity is approaching−64 ft
s .

h Average Velocity ( fts )
1 −80

0.5 −72

0.1 −65.6

0.01 −64.16

0.001 −64.016

Figure 2.1.1 Approximating the in-
stantaneous velocity with average ve-
locities over a small time period h

Computing the limit directly gives

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

−16(2 + h)2 + 150− (−16(2)2 + 150)

h

= lim
h→0

−16(4 + 4h+ h2) + 150− 86

h

= lim
h→0

−64− 64h− 16h2 + 64

h

= lim
h→0

−64h− 16h2

h

= lim
h→0

(−64− 16h)

= −64.

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2 + h, f(2 + h)). In Figures 2.1.2–2.1.4, the secant line corresponding to
h = 1 is shown in three contexts. Figure 2.1.2 shows a “zoomed out” version
of f with its secant line. In Figure 2.1.3, we zoom in around the points of inter-
section between f and the secant line. Notice how well this secant line approx-
imates f between those two points — it is a common practice to approximate
functions with straight lines.
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Figure 2.1.2 The function f(t) and its
secant line corresponding to t = 2
and t = 3
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Figure 2.1.3 The function f(t) and a
secant line corresponding to t = 2
and t = 3, zoomed in near t = 2
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Figure 2.1.4 The function f(t) with
the same secant line, zoomed in fur-
ther
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Figure 2.1.5 The function f(t)with its
tangent line at t = 2

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In Figure 2.1.4 and
Figure 2.1.5, we zoom in around the point (2, 86). We see the secant line, which
approximates f well, but not as well the tangent line shown in Figure 2.1.5.

We have just introduced a number of important concepts that we will flesh
out more within this section. First, we formally define two of them.

Definition 2.1.6 Derivative at a Point.

Let f be a continuous function on an open interval I and let c be in I .
The derivative of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)

h
,

provided the limit exists. If the limit exists, we say that f is differentiable
at c; if the limit does not exist, then f is not differentiable at c. If f is
differentiable at every point in I , then f is differentiable on I .

Definition 2.1.7 Tangent Line.

Let f be continuous on an open interval I and differentiable at c, for
some c in I . The line with equation ℓ(x) = f ′(c)(x − c) + f(c) is the
tangent line to the graph of f at c; that is, it is the line through (c, f(c))
whose slope is the derivative of f at c.

Some examples will help us understand these definitions.
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Example 2.1.8 Finding derivatives and tangent lines.

Let f(x) = 3x2 + 5x− 7. Find:

(a) f ′(1)

(b) The equation of the tangent
line to the graph of f at x =
1.

(c) f ′(3)

(d) The equation of the tangent
line to the graph f at x = 3.

Solution.

(a) We compute this directly using Definition 2.1.6.

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h)2 + 5(1 + h)− 7− (3(1)2 + 5(1)− 7)

h

= lim
h→0

3(1 + 2h+ h2) + 5 + 5h− 7− 1

h

= lim
h→0

3 + 6h+ 3h2 + 5 + 5h− 8

h

= lim
h→0

3h2 + 11h

h

= lim
h→0

(3h+ 11)

= 11.

(b) The tangent line at x = 1 has slope f ′(1) and goes through the
point (1, f(1)) = (1, 1). Thus the tangent line has equation, in
point-slope form, y = 11(x− 1) + 1. In slope-intercept form we
have y = 11x− 10.

(c) Again, using the definition,

f ′(3) = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

3(3 + h)2 + 5(3 + h)− 7− (3(3)2 + 5(3)− 7)

h

= lim
h→0

3(9 + 6h+ h2) + 15 + 3h− 7− 35

h

= lim
h→0

27 + 18h+ 3h2 + 15 + 3h− 42

h

= lim
h→0

3h2 + 23h

h

= lim
h→0

3h+ 23

= 23.

(d) The tangent line at x = 3 has slope 23 and goes through the
point (3, f(3)) = (3, 35). Thus the tangent line has equation
y = 23(x− 3) + 35 = 23x− 34.

A graph of f is given in Figure 2.1.9 along with the tangent lines at x = 1
and x = 3.
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Figure 2.1.9 A graph of f(x) = 3x2 +
5x − 7 and its tangent lines at x = 1
and x = 3
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Another important line that can be created using information from the de-
rivative is the normal line. It is perpendicular to the tangent line, hence its slope
is the negative-reciprocal of the tangent line’s slope.

Definition 2.1.10 Normal Line.

Let f be continuous on an open interval I and differentiable at c, for
some c in I . The normal line to the graph of f at c is the line with equa-
tion

n(x) =
−1

f ′(c)
(x− c) + f(c),

when f ′(c) ̸= 0. (When f ′(c) = 0, the normal line is the vertical line
through (c, f(c)); that is, x = c.)

Example 2.1.11 Finding equations of normal lines.

Let f(x) = 3x2 +5x− 7, as in Example 2.1.8. Find the equations of the
normal lines to the graph of f at x = 1 and x = 3.
Solution. In Example 2.1.8, we found that f ′(1) = 11. Hence at x = 1,
the normal line will have slope −1/11. An equation for the normal line
is

n(x) =
−1

11
(x− 1) + 1.

The normal line is plotted with y = f(x) in Figure 2.1.12. Note how
the line looks perpendicular to f . (A key word here is “looks.” Mathe-
matically, we say that the normal line is perpendicular to f at x = 1 as
the slope of the normal line is the negative-reciprocal of the slope of the
tangent line. However, normal lines may not always look perpendicular.
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Figure 2.1.12Agraph of f(x) = 3x2+
5x − 7, along with its normal line at
x = 1

The aspect ratio of the picture of the graph plays a big role in this. When
using graphing software, there is usually an option called Zoom Square
that keeps the aspect ratio 1 : 1
We also found that f ′(3) = 23, so the normal line to the graph of f at
x = 3 will have slope−1/23. An equation for the normal line is

n(x) =
−1

23
(x− 3) + 35.

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not-
so-difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f , the best linear approximation
to f is its tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit froma tangent line approximation
is a line; it is rather simple to recognize that the tangent line to a line is the line
itself. We look at this in the following example.

Example 2.1.13 Finding the derivative of a linear function.

Consider f(x) = 3x + 5. Find the equation of the tangent line to f at
x = 1 and x = 7.
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Solution. We find the slope of the tangent line by using Definition 2.1.6.

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h) + 5− (3 + 5)

h

= lim
h→0

3h

h

= lim
h→0

3

= 3.

We just found that f ′(1) = 3. That is, we found the instantaneous
rate of change of f(x) = 3x + 5 is 3. This is not surprising; lines are
characterized by being the only functions with a constant rate of change.
That rate of change is called the slope of the line. Since their rates of
change are constant, their instantaneous rates of change are always the
same; they are all the slope.
So given a line f(x) = ax + b, the derivative at any point x will be a;
that is, f ′(x) = a.
It is now easy to see that the tangent line to the graph of f at x = 1 is
just f , with the same being true at x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. While we will eventually be able
to find derivatives of many common functions, the algebra and limit calculations
on some functions are complex. Until we develop further techniques, the best
we may be able to do is approximate the tangent line. We demonstrate this in
the next example.

Example 2.1.14 Numerical approximation of the tangent line.

Approximate the equation of the tangent line to the graph of f(x) =
sin(x) at x = 0.
Solution. In order to find the equation of the tangent line, we need
a slope and a point. The point is given to us: (0, sin(0)) = (0, 0). To
compute the slope, we need the derivative. This is where we will make
an approximation. Recall that

f ′(0) ≈ sin(0 + h)− sin(0)
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1.
Thus

f ′(0) ≈ sin(0.1)− sin(0)
0.1

≈ 0.9983.

Thus our approximation of the equation of the tangent line is y =
0.9983(x− 0) + 0 = 0.9983x; it is graphed in Figure 2.1.15. The graph
seems to imply the approximation is rather good.
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Figure 2.1.15 f(x) = sin(x) graphed
with an approximation to its tangent
line at x = 0

Recall from Section 1.3 that limx→0
sin(x)

x = 1, meaning for values of x near
0, sin(x) ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin(x)” is near 1 at x = 0. In fact, since
we approximated the value of the slope to be 0.9983, wemight guess the actual
value is 1. We’ll come back to this later.
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Consider again Example 2.1.8. To find the derivative of f at x = 1, we
needed to evaluate a limit. To find the derivative of f at x = 3, we needed
to again evaluate a limit. We have this process:

input specific
number c

−→ do something
to f and c

−→ return
number f ′(c)

This process describes a function; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input
variable x

−→ do something
to f and x

−→ return
function f ′(x)

The output is the derivative function, f ′(x). The f ′(x) function will take a
number c as input and return the derivative of f at c. This calls for a definition.

Definition 2.1.16 Derivative Function.

Let f be a differentiable function on an open interval I . The function

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

is the derivative of f .
Let y = f(x). The following notations all represent the derivative of f :

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
(f) =

d

dx
(y).

Important: The notation dy
dx is one symbol; it is not the fraction “dy/dx”. The

notation, while somewhat confusing at first, was chosen with care. A fraction-
looking symbol was chosen because the derivative has many fraction-like prop-
erties. Among other places, we see these properties atworkwhenwe talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

Examples will help us understand this definition.

Example 2.1.17 Finding the derivative of a function.

Let f(x) = 3x2 + 5x− 7 as in Example 2.1.8. Find f ′(x).
Solution. We apply Definition 2.1.16.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)

h

= lim
h→0

3h2 + 6xh+ 5h

h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) =
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23. Note our new computation of f ′(x) affirms these facts.

Example 2.1.18 Finding the derivative of a function.

Let f(x) = 1
x+1 . Find f

′(x).
Solution. We apply Definition 2.1.16.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h+1 − 1

x+1

h

Now find common denominator then subtract; pull 1/h out front to fa-
cilitate reading.

= lim
h→0

1

h
·
(

x+ 1

(x+ 1)(x+ h+ 1)
− x+ h+ 1

(x+ 1)(x+ h+ 1)

)
Now simplify algebraically.

= lim
h→0

1

h
·
(
x+ 1− (x+ h+ 1)

(x+ 1)(x+ h+ 1)

)
= lim

h→0

1

h
·
(

−h

(x+ 1)(x+ h+ 1)

)
Finally, apply the limit.

= lim
h→0

−1

(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

So f ′(x) = −1
(x+1)2 . To practice using our notation, we could also state

d

dx

(
1

x+ 1

)
=

−1

(x+ 1)2
.

Example 2.1.19 Finding the derivative of a function.

Find the derivative of f(x) = sin(x).
Solution. Before applying Definition 2.1.16, note that once this is found,
we can find the actual tangent line to f(x) = sin(x) at x = 0, whereas
we settled for an approximation in Example 2.1.14.

f ′(x) = lim
h→0

sin(x+ h)− sin(x)
h

Derivative definition

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)
h

Angle addition identity

= lim
h→0

sin(x)(cos(h)− 1) + cos(x) sin(h)
h

Regrouped and factored
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= lim
h→0

(
sin(x)(cos(h)− 1)

h
+
cos(x) sin(h)

h

)
Split into two fractions

= lim
h→0

sin(x) · lim
h→0

cos(h)− 1

h

+ lim
h→0

cos(x) · lim
h→0

sin(h)
h

Product/sum limit rules

= sin(x) · 0 + cos(x) · 1 Applied Theorem 1.3.12
= cos(x). (Are you surprised?)

We have found that when f(x) = sin(x), f ′(x) = cos(x). This should
be somewhat amazing; the result of a tedious limit process on the sine
function is a nice function. Then again, perhaps this is not entirely sur-
prising. The sine function is periodic — it repeats itself on regular inter-
vals. Therefore its rate of change also repeats itself on the same regular
intervals. We should have known the derivative would be periodic; we
now know exactly which periodic function it is.
Thinking back to Example 2.1.14, we can find the slope of the tangent
line to f(x) = sin(x) at x = 0 using our derivative. We approximated
the slope as 0.9983; we now know the slope is exactly cos(0) = 1.

Example 2.1.20 Finding the derivative of a piecewise defined function.

Find the derivative of the absolute value function,

f(x) = |x| =

{
−x x < 0

x x ≥ 0
.

See Figure 2.1.21.
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Figure 2.1.21 The absolute value func-
tion f(x) = |x|. Notice how the
slope of the lines (and hence the tan-
gent lines) abruptly changes at x = 0.

Solution. We need to evaluate limh→0
f(x+h)−f(x)

h . As f is piecewise-
defined, weneed to consider separately the limitswhenx < 0 andwhen
x > 0.
When x < 0:

d

dx
(−x) = lim

h→0

−(x+ h)− (−x)

h

= lim
h→0

−h

h

= lim
h→0

−1

= −1.

When x > 0, a similar computation shows that d
dx (x) = 1.

We need to also find the derivative at x = 0. By the definition of the
derivative at a point, we have

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
.

Since x = 0 is the point where our function’s definition switches from
one piece to the other, we need to consider left and right-hand limits.
Consider the following, where we compute the left and right hand limits
side by side.
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lim
h→0−

f(0 + h)− f(0)

h

= lim
h→0−

−h− 0

h

= lim
h→0−

−1

= −1

lim
h→0+

f(0 + h)− f(0)

h

= lim
h→0+

h− 0

h

= lim
h→0+

1

= 1

The last lines of each column tell the story: the left and right hand lim-
its are not equal. Therefore the limit does not exist at 0, and f is not
differentiable at 0. So we have

f ′(x) =

{
−1 x < 0

1 x > 0
.

At x = 0, f ′(x) does not exist; there is a jump discontinuity at 0; see
Figure 2.1.22. So f(x) = |x| is differentiable everywhere except at 0.
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Figure 2.1.22 A graph of the deriva-
tive of f(x) = |x|The point of non-differentiability came where the piecewise defined func-

tion switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 2.1.23 Finding the derivative of a piecewise defined function.

Find the derivative of f(x), where

f(x) =

{
sin(x) x ≤ π/2

1 x > π/2
.

See Figure 2.1.24.

π
2

0.5

1

x

y

Figure 2.1.24 A graph of f(x) as de-
fined in Example 2.1.23

Solution. Using Example 2.1.19, we know that when x < π/2, f ′(x) =
cos(x). It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1− 1

h
= lim

h→0
0 = 0.

So far we have

f ′(x) =

{
cos(x) x < π/2

0 x > π/2
.

We still need to find f ′(π/2). Notice at x = π/2 that both pieces of f ′

are 0, meaning we can state that f ′(π/2) = 0.
Beingmore rigorous, we can again evaluate the difference quotient limit
at x = π/2, utilizing again left- and right-hand limits. We will begin with
the left-hand limit:

lim
h→0−

f(π/2 + h)− f(π/2)

h

= lim
h→0−

sin(π/2 + h)− sin(π/2)
h

= lim
h→0−

sin(π2 ) cos(h) + sin(h) cos(π2 )− sin(π2 )
h
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= lim
h→0−

1 · cos(h) + sin(h) · 0− 1

h

= lim
h→0−

cos(h)− 1

h
· lim
h→0−

sin(h)
h

= 1 · 0
= 0.

Notice we used Limits of Common Functions to finally evaluate the limit.
Now we will find the right-hand limit:

lim
h→0+

f(π/2 + h)− f(π/2)

h

= lim
h→0+

1− 1

h

= lim
h→0+

0

h

= 0.

Since both the left and right hand limits are 0 at x = π/2, the limit exists
and f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =

{
cos(x) x ≤ π/2

0 x > π/2
.

See Figure 2.1.25 for a graph of this derivative function.
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Figure 2.1.25 A graph of f ′(x) in Ex-
ample 2.1.23.

Recall we pseudo-defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo-definition for
differentiability as well: it is a continuous function that does not have any “sharp
corners” or a vertical tangent line. One such sharp corner is shown in Figure 2.1.21.
Even though the function f in Example 2.1.23 is piecewise-defined, the transi-
tion is “smooth” hence it is differentiable. Note how in the graph of f in Fig-
ure 2.1.24 it is difficult to tell when f switches from one piece to the other;
there is no “corner.”

2.1.2 Differentiability on Closed Intervals
When we defined the derivative at a point in Definition 2.1.6, we specified that
the interval I over which a function f was defined needed to be an open inter-
val. Open intervals are required so that we can take a limit at any point c in I ,
meaning we want to approach c from both the left and right.

Recall we also required open intervals in Definition 1.5.1 when we defined
what it meant for a function to be continuous. Later, we used one-sided limits to
extend continuity to closed intervals. We now extend differentiability to closed
intervals by again considering one-sided limits.

Our motivation is three-fold. First, we consider “common sense.” In Exam-
ple 2.1.17 we found that when f(x) = 3x2 + 5x− 7, f ′(x) = 6x+ 5, and this
derivative is defined for all real numbers, hence f is differentiable everywhere.
It seems appropriate to also conclude that f is differentiable on closed intervals,
like [0, 1], as well. After all, f ′(x) is defined at both x = 0 and x = 1.

Secondly, consider f(x) =
√
x. The domain of f is [0,∞). Is f differentiable

on its domain — specifically, is f differentiable at 0? (We’ll consider this in the
next example.)
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Finally, in later sections, having the derivative defined on closed intervals will
prove useful. One such place is Section 7.4 where the derivative plays a role in
measuring the length of a curve.

After a formal definition of differentiability on a closed interval, we explore
the concept in an example.

Definition 2.1.26 Differentiability on a Closed Interval.

Let f be continuous on [a, b] and differentiable on (a, b). If the one-sided
limits

lim
h→0+

f(a+ h)− f(a)

h
lim

h→0−

f(b+ h)− f(b)

h

exist, then we say f is differentiable on [a, b].

For all the functions f in this text, we can determine differentiability on [a, b]
by considering the limits limx→a+ f ′(x) and limx→b− f ′(x). This is often easier
to evaluate than the limit of the difference quotient.

Example 2.1.27 Differentiability at an endpoint.

Consider f(x) =
√
x = x1/2 and g(x) =

√
x3 = x3/2. The domain of

each function is [0,∞). It can be shown that each is differentiable on
(0,∞); determine the differentiability of each at x = 0.
Solution. We start by considering f and take the right-hand limit of the
difference quotient:

lim
h→0+

f(a+ h)− f(a)

h
= lim

h→0+

√
0 + h−

√
0

h

= lim
h→0+

√
h

h

= lim
h→0+

1

h1/2
= ∞.

The one-sided limit of the difference quotient does not exist at x = 0
for f ; therefore f is differentiable on (0,∞) and not differentiable on
[0,∞).
We state (without proof) that f ′(x) = 1/

(
2
√
x
)
. Note that

limx→0+ f ′(x) = ∞; this limit was easier to evaluate than the limit
of the difference quotient, though it required us to already know the
derivative of f .
Now consider g:

lim
h→0+

g(a+ h)− g(a)

h
= lim

h→0+

√
(0 + h)3 −

√
0

h

= lim
h→0+

h3/2

h

= lim
h→0+

h1/2 = 0.

As the one-sided limit exists at x = 0, we conclude g is differentiable on
its domain of [0,∞).
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y = x1/2

y = x3/2
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y

Figure 2.1.28A graph of y = x1/2 and
y = x3/2 in Example 2.1.27

We state (without proof) that g ′(x) = 3
√
x/2. Note that

limx→0+ g ′(x) = 0; again, this limit is easier to evaluate than the limit
of the difference quotient.
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The two functions are graphed in Figure 2.1.28. Note how f(x) =
√
x

seems to “go vertical” as x approaches 0, implying the slopes of its tan-
gent lines are growing toward infinity. Also note how the slopes of the
tangent lines to g(x) =

√
x3 approach 0 as x approaches 0.

Most calculus textbooks omit this topic and simply avoid specific caseswhere
it could be applied. We choose in this text to not make use of the topic unless
it is “needed.” Many theorems in later sections require a function f to be differ-
entiable on an open interval I; we could remove the word “open” and just use
“. . . on an interval I ,” but choose to not do so in keeping with the current math-
ematical tradition. Our first use of differentiability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivativemean?”
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2.1.3 Exercises

Terms and Concepts

1. (□ True □ False) Let f be a position function. The average rate of change on [a, b] is the slope of the line
through the points (a, f(a)) and (b, f(b)).

2. (□ True □ False) The definition of the derivative of a function at a point involves taking a limit.
3. In your ownwords, explain the difference between the average rate of change and instantaneous rate of change.
4. In your own words, explain the difference between Definitions 2.1.7 and Definition 2.1.19.
5. Let y = f(x). Give three different notations equivalent to “f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems

Exercise Group. Use the definition of the derivative to compute the derivative of the given function.
7. f(x) = 6 8. f(x) = 2x

9. f(t) = 4− 3t 10. g(x) = x2

11. h(x) = x3 12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x 14. r(s) = 1

s−2

Exercise Group. A function and an x-value are given. (Note: these functions are the same as those given in Exer-
cises 7–14.) Give the equations of the tangent line and the normal line at that x-value.

15. f(x) = 6 at x = −2 16. f(x) = 2x at x = 3

17. f(x) = 4− 3x at x = 7 18. g(x) = x2 at x = 2

19. h(x) = x3 at x = 4 20. f(x) = 3x2 − x+ 4 at x = −1

21. r(x) = 1
x at x = −2 22. r(x) = 1

x−2 at x = 3

Exercise Group. A function f and an x-value a are given. Approximate the equation of the tangent line to the graph
of f at x = a by numerically approximating f ′(a), using h = 0.1.

23. f(x) = x2 − 2x+ 5 and a = −2 24. f(x) = − 10
x+8 and a = −9

25. f(x) = ex and a = −4 26. f(x) = cos(x) and a = 0

27. The graph of f(x) = x2 − 1 is shown.

−2 −1 1 2

−1

1

2

3

x

y

(a) Use the graph to approximate the slope of the tangent line to f at (−1, 0), (0,−1), and (2, 3).
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(b) Using the definition of the derivative, find f ′(x).

(c) Use the derivative to find the slope of the tangent line at the points (−1, 0), (0,−1) and (2, 3).

28. The graph of f(x) = 1
x+1 is shown.

−1 1 2 3
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(a) Use the graph to approximate the slope of the tangent line to f at (0, 1) and (1, 0.5).

(b) Using the definition of the derivative, find f ′(x).

(c) Use the derivative to find the slope of the tangent line at the points (0, 1) and (1, 0.5).

Exercise Group. A graph of a function f(x) is given. Using the graph, sketch f ′(x).
29.

−2 −1 1 2 3 4 5

−1

1

2

3

x

y
30.

−6 −4 −2 2
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2

x

y

31.

−3 −2 −1 1 2 3
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4

x

y
32.

−2π −π π 2π
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y
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Exercise Group. Use the graph of the function to answer the following questions.

(a) Where is g(x) > 0?

(b) Where is g(x) < 0?

(c) Where is g(x) = 0?

(d) Where is g′(x) < 0?

(e) Where is g′(x) > 0?

(f) Where is g′(x) = 0?

33.

−2 −1 1 2

−4

−2

2

4

x

y
34.

−2 −1 1 2

−2

2

4

6

x

y

Exercise Group. A function f(x) is given, along with its domain and derivative. Determine if f(x) is differentiable
on its domain.

35. f(x) =
√
x5(1− x), domain is [0, 1], f ′(x) = (5−6x)x3/2

2
√
1−x

(□ yes □ no)

36. f(x) = cos (
√
x) , domain is [0,∞), f ′(x) = − sin(

√
x)

2
√
x

(□ yes □ no)
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2.2 Interpretations of the Derivative

Section 2.1 defined the derivative of a function and gave examples of how to
compute it using its definition (i.e., using limits). The section also started with a
briefmotivation for this definition, that is, finding the instantaneous velocity of a
falling object given its position function. Section 2.3 will give us more accessible
tools for computing the derivative; tools that are easier to use than repeated
use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do I compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em-
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

2.2.1 Interpretation of the Derivative as Instantaneous Rate of
Change

Section 2.1 started with an example of using the position of an object (in this
case, a falling amusement park rider) to find the object’s velocity. This type of
example is often used when introducing the derivative because we tend to read-
ily recognize that velocity is the instantaneous rate of change in position. In
general, if f is a function of x, then f ′(x) measures the instantaneous rate of
change of f with respect to x. Put another way, the derivative answers “When
x changes, at what rate does f change?” Thinking back to the amusement park
ride, we asked “When time changed, at what rate did the height change?” and
found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads
“60mph.” Five minutes later, you wonder how far you have traveled. Certainly,
lots of things could have happened in those 5minutes; you could have intention-
ally sped up significantly, you might have come to a complete stop, you might
have slowed to 20mph as you passed through construction. But suppose that
you know, as the driver, none of these things happened. You know you main-
tained a fairly consistent speed over those 5 minutes. What is a good approxi-
mation of the distance traveled?

One could argue the only good approximation, given the information pro-
vided, would be based on “distance = rate × time.” In this case, we assume a
constant rate of 60mph with a time of 5minutes or 5/60 of an hour. Hence we
would approximate the distance traveled as 5miles.

Referring back to the falling amusement park ride, knowing that at t =
2 the velocity was −64 ft/s, we could reasonably approximate that 1 second
later the riders’ height would have dropped by about 64 feet. Knowing that
the riders were accelerating as they fell would inform us that this is an under-
approximation. If all we knew was that f(2) = 86 and f ′(2) = −64, we’d know
that we’d have to stop the riders quickly otherwise they would hit the ground.

In both of these cases, we are using the instantaneous rate of change to
predict future values of the output.

2.2.2 Units of the Derivative
It is useful to recognize the units of the derivative function. If y is a function of x,
i.e., y = f(x) for some function f , and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly written as “ft/s.” In
general, if y is measured in units P and x is measured in unitsQ, then y′ will be
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measured in units “P perQ”, or “P/Q.” Here we see the fraction-like behavior
of the derivative in the notation: the units of dy

dxare
units of y
units of x .

Example 2.2.1 The meaning of the derivative: World Population.

Let P (t) represent the world population tminutes after 12:00 a.m., Jan-
uary 1, 2012. It is fairly accurate to say that P (0) = 7,028,734,178
(www.prb.org). It is also fairly accurate to state that P ′(0) = 156; that is,
atmidnight on January 1, 2012, the population of theworldwas growing
by about 156 people per minute (note the units). Twenty days later (or
28,800minutes later) we could reasonably assume the population grew
by about 28,800 · 156 = 4,492,800 people.

Example 2.2.2 The meaning of the derivative: Manufacturing.

The term widget is an economic term for a generic unit of manufactur-
ing output. Suppose a company produces widgets and knows that the
market supports a price of $10 per widget. Let P (n) give the profit, in
dollars, earned by manufacturing and selling n widgets. The company
likely cannot make a (positive) profit making just one widget; the start-
up costs will likely exceed $10. Mathematically, we would write this as
P (1) < 0.
What do P (1000) = 500 and P ′(1000) = 0.25 mean? Approximate
P (1100).
Solution. The equation P (1000) = 500 means that selling 1000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning
that when we are selling 1000 widgets, the profit is increasing at rate of
$0.25 per widget (the units are “dollars per widget.”) Since we have no
other information to use, our best approximation for P (1100) is:

P (1100) ≈ P (1000) + P ′(1000)× 100

= $500 + (100 widgets ) · $0.25/widget
= $525.

We approximate that selling 1100 widgets returns a profit of $525.

The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60mph” example at the begin-
ning of this section. Five minutes after looking at the speedometer, our best
approximation for distance traveled assumed the rate of change was constant.
In Examples 2.2.1 and Example 2.2.2 wemade similar approximations. We were
given rate of change information which we used to approximate total change.
Notationally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximation is best when h is “small.” “Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

2.2.3 The Derivative and Motion
One of the most fundamental applications of the derivative is the study of mo-
tion. Let s(t) be a position function, where t is time and s(t) is distance. For

https://www.prb.org
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instance, s could measure the height of a projectile or the distance an object
has traveled.

Convention with s. Using s(t)
to represent position is a fairly
common mathematical conven-
tion. It is also common to use s
to represent arc length.

Let s(t) measure the distance traveled, in feet, of an object after t seconds
of travel. Then s′(t) has units “feet per second,” and s′(t)measures the instan-
taneous rate of distance change with respect to time— it measures velocity.

Now consider v(t), a velocity function. That is, at time t, v(t) gives the ve-
locity of an object. The derivative of v, v′(t), gives the instantaneous rate of
velocity change with respect to time — acceleration. (We often think of accel-
eration in terms of cars: a car may “go from 0 to 60 in 4.8 seconds.” This is an
average acceleration, a measurement of how quickly the velocity changed.) If
velocity is measured in feet per second, and time is measured in seconds, then
the units of acceleration (i.e., the units of v′(t)) are “feet per second per sec-
ond,” or (ft/s)/s. We often shorten this to “feet per second squared,” or ft

s2 , but
this tends to obscure the meaning of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32ft/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleration of 32 ft/s
s means that the velocity changes by 32ft/s

each second. For instance, let v(t)measure the velocity of a ball thrown straight
up into the air, where v has units ft/s and t is measured in seconds. The ball will
have a positive velocity while traveling upwards and a negative velocity while
falling down. The acceleration is thus−32ft/s2. If v(1) = 20ft/s, then 1 second
later, the velocitywill have decreased by 32ft/s; that is, v(2) = −12ft/s. We can
continue: v(3) = −44ft/s. Working backward, we can also figure that v(0) =
52ft/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 2.2.3 The Derivative and Motion.

1. Let s(t) be the position function of an object. Then s′(t) = v(t) is
the velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v′(t) = a(t) is
the acceleration function of the object.

2.2.4 Interpretation of the Derivative as the Slope of the Tangent
Line

Wenow consider the second interpretation of the derivative given in this section.
This interpretation is not independent from the first by any means; many of the
same concepts will be stressed, just from a slightly different perspective.

Given a function y = f(x), the difference quotient f(c+h)−f(c)
h gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the secant line that goes through two points on
the graph of f : (c, f(c)) and (c + h, f(c + h)). As h shrinks to 0, these two
points come close together; in the limit we find f ′(c), the slope of a special line
called the tangent line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by computing f ′(c). We can get an idea of how f
is behaving by looking at the slopes of its tangent lines. We explore this idea in
the following example.
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Example 2.2.4 Understanding the derivative: the rate of change.

Consider f(x) = x2 as shown in Figure 2.2.5. It is clear that at x = 3
the function is growing faster than at x = 1, as it is steeper at x = 3.
How much faster is it growing at 3 compared to 1?
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Figure 2.2.5 A graph of f(x) = x2

Solution. We can answer this exactly (and quickly) after Section 2.3,
where we learn to quickly compute derivatives. For now, we will answer
graphically, by considering the slopes of the respective tangent lines.
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Figure 2.2.6 A graph of f(x) = x2

and tangent lines at x = 1 and x = 3

With practice, one can fairly effectively sketch tangent lines to a curve at
a particular point. In Figure 2.2.6, we have sketched the tangent lines to
f at x = 1 and x = 3, along with a grid to help us measure the slopes
of these lines. At x = 1, the slope is 2; at x = 3, the slope is 6. Thus we
can say not only is f growing faster at x = 3 than at x = 1, it is growing
three times as fast.

Example 2.2.7 Understanding the graph of the derivative.

Consider the graph of f(x) and its derivative, f ′(x), in Figure 2.2.8. Use
these graphs to find the slopes of the tangent lines to the graph of f at
x = 1, x = 2, and x = 3.
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f ′(x)
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Figure 2.2.8 Graphs of f and f ′ in Ex-
ample 2.2.7

Solution. To find the appropriate slopes of tangent lines to the graph
of f , we need to look at the corresponding values of f ′.

• The slope of the tangent line to f at x = 1 is f ′(1); this looks to
be about−1.

• The slope of the tangent line to f at x = 2 is f ′(2); this looks to
be about 4.

• The slope of the tangent line to f at x = 3 is f ′(3); this looks to
be about 3.

Using these slopes, tangent line segments to f are sketched in Fig-
ure 2.2.9. Included on the graph of f ′ in this figure are points where
x = 1, x = 2 and x = 3 to help better visualize the y value of f ′ at
those points.
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Figure 2.2.9 Graphs of f and f ′ in Ex-
ample 2.2.7

Example 2.2.10 Approximation with the derivative.

Consider again the graph of f(x) and its derivative f ′(x) in Exam-
ple 2.2.7. Use the tangent line to f at x = 3 to approximate the value
of f(3.1).
Solution. Figure 2.2.11 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near x = 3, the tangent line makes
an excellent approximation of f . Since lines are easy to deal with, often
it works well to approximate a function with its tangent line. (This is
especially true when you don’t actually know much about the function
at hand, as we don’t in this example.)
While the tangent line to f was drawn in Example 2.2.7, it was not
explicitly computed. Recall that the tangent line to f at x = c is
y = f ′(c)(x − c) + f(c). While f is not explicitly given, by the graph
it looks like f(3) = 4. Recalling that f ′(3) = 3, we can compute the
tangent line to be approximately y = 3(x− 3) + 4. It is often useful to
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leave the tangent line in point-slope form.

2.8 2.9 3 3.1 3.2 3.3
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Figure 2.2.11 Zooming in on f and its
tangent line at x = 3 for the func-
tion given in Examples 2.2.7 and Ex-
ample 2.2.10

To use the tangent line to approximate f(3.1), we simply evaluate y at
3.1 instead of f .

f(3.1) ≈ y(3.1)

= 3(3.1− 3) + 4

= 0.1 · 3 + 4

= 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 2.2.10, f(x) = −x3 + 7x2 − 12x + 4. We can evalu-
ate f(3.1) = 4.279. Had we known f all along, certainly we could have just
made this computation. In reality, we often only know two things:

1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the location of an object and its instan-
taneous velocity at a particular point in time. We do not have a “function f”
for the location, just an observation. This is enough to create an approximating
function for f .

This last example has a direct connection to our approximation method ex-
plained above after Example 2.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some valuex = c, then computing the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x− c)+f(c). In Example 2.2.10, we used
the tangent line to approximate a value of f . Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c+ h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c) ((c+ h)− c) + f(c)

= f ′(c) · h+ f(c).

This is the exact same approximation method used above! Not only does
it make intuitive sense, as explained above, it makes analytical sense, as this
approximationmethod is simply using a tangent line to approximate a function’s
value.

The importanceof understanding thederivative cannot beunderstated. When
f is a function of x, f ′(x)measures the instantaneous rate of change of f with
respect to x and gives the slope of the tangent line to f at x.
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2.2.5 Exercises

Terms and Concepts

1. What is the instantaneous rate of change of position called?
2. Given a function y = f(x), in your own words describe how to find the units of f ′(x).

3. What functions have a constant rate of change?

Problems

4. Given f(4) = 18 and f ′(4) = 2, approximate f(5).

5. Given P (100) = −19 and P ′(100) = −7, approximate P (110).

6. Given z(60) = 106 and z′(60) = 3, approximate z(55).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods described in this section, which approximation is likely
to be most accurate? (□ f(10.1) □ f(11) □ f(20))

8. Given f(8) = 43 and f(9) = 41, approximate f ′(8).

9. GivenH(5) = 12 andH(8) = 33, approximateH ′(5).

10. Let V (x)measure the volume, in decibels, measured inside a restaurant with x customers. What are the units
of V ′(x)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a straight line t seconds after starting. What are the
units of v′(t)?

12. The heightH , in feet, of a river is recorded t hours after midnight, April 1. What are the units ofH ′(t)?

13. P is the profit, in thousands of dollars, of producing and selling c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P (0)?

14. T is the temperature in degrees Fahrenheit, h hours after midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T (8) likely greater than or less than 0? Why?

Exercise Group. Graphs of functions f and g are given. Identify which function is the derivative of the other.
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15.
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• f is the derivative of g.

• g is the derivative of f .

16.
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• f is the derivative of g.

• g is the derivative of f .
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• f is the derivative of g.

• g is the derivative of f .

18.
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• f is the derivative of g.

• g is the derivative of f .
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2.3 Basic Differentiation Rules

The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx+ b. What is y′? With-
out limits, recognize that linear functions are characterized by being functions
with a constant rate of change (the slope). The derivative, y′, gives the instanta-
neous rate of change; with a linear function, this is constant,m. Thus y′ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = ax2 + bx+ c. Using the definition of the derivative, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)

h

= lim
h→0

ax2 + 2ahx+ ah2 + bx+ bh+ c− ax2 − bx− c)

h

= lim
h→0

ah2 + 2ahx+ bh

h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y′ = 12x+ 11.
In this section (and in some sections to follow) we will learn some of what

mathematicians have already discovered about the derivatives of certain func-
tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 2.3.1 Derivatives of Common Functions.

Constant Rule d
dx (c) = 0, where c is a constant.

Power Rule d
dx (x

n) = nxn−1, where n is an integer, n >
0.

Other common
functions

d
dx (sin(x)) = cos(x)
d
dx (cos(x)) = − sin(x)
d
dx (e

x) = ex

d
dx (ln(x)) =

1
x , for x > 0.

This theorem starts by stating an intuitive fact: constant functions have zero
rate of change as they are constant. Therefore their derivative is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivatives of Power Functions (of the form y = xn) are very
straightforward: multiply by the power, then subtract 1 from the power. We see
something incredible about the function y = ex: it is its own derivative. We
also see a new connection between the sine and cosine functions.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x.
What is f ′(x)? According to the Power Rule,

f ′(x) =
d

dx
(x) =

d

dx

(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?”
Since f is x, we are asking “At what rate does x change with respect to x?”
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The answer is: 1. They change at the same rate. We can also interpret the
derivative as the slope of the tangent line to the function at a point (c, f(c)).
Since f(x) = x is a linear function with constant slope 1, we can say that the
derivative of f(x) = x is f ′(x) = 1.

Let’s practice using this theorem.

Example 2.3.2 Using common derivative rules to find, and use, deriva-
tives.

Let f(x) = x3.

1. Find f ′(x).

2. Find the equation of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f , f ′ and the tangent line from Item 2 on the same axis.

Solution.

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equation of the line tangent to the graph of f at x =
−1, we need a point and the slope. The point is (−1, f(−1)) =
(−1,−1). The slope is f ′(−1) = 3. Thus the tangent line has
equation y = 3(x− (−1)) + (−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 since−1.1 is
close to−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual value: (−1.1)3 = −1.331.

4. See Figure 2.3.3.

−2 −1 1 2

−4

−2

2

4

f(x)

f ′(x)

ℓ(x)

x

y

Figure 2.3.3 A graph of f(x) = x3,
along with its derivative f ′(x) = 3x2

and its tangent line at x = −1

Theorem 2.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = x3, but it
does not tell how to compute the derivative of y = 2x3, y = x3 + sin(x) nor
y = x3 sin(x). The following theorem helps with the first two of these examples
(the third is answered in the next section).

Theorem 2.3.4 Properties of the Derivative.

Let f and g be differentiable on an open interval I and let c be a real
number. Then:

Sum/Difference Rule
d

dx
(f(x)± g(x)) =

d

dx
(f(x))± d

dx
(g(x))

= f ′(x)± g′(x)



CHAPTER 2. DERIVATIVES 85

Constant Multiple
Rule d

dx
(c · f(x)) = c · d

dx
(f(x))

= c · f ′(x).

Theorem 2.3.4 allows us to find the derivatives of a wide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 2.1.17 that we found, using the limit definition,
the derivative of f(x) = 3x2 + 5x− 7. We can now find its derivative without
expressly using limits:

d

dx

(
3x2 + 5x− 7

)
= 3

d

dx

(
x2
)
+ 5

d

dx
(x)− d

dx
(7)

= 3 · 2x+ 5 · 1− 0

= 6x+ 5.

We were a bit pedantic here, showing every step. Normally we would do
all the arithmetic and steps in our head and readily find d

dx

(
3x2 + 5x+ 7

)
=

6x+ 5.

Example 2.3.5 Using the tangent line to approximate a function value.

Let f(x) = sin(x) + 2x + 1. Approximate f(3) using an appropriate
tangent line.
Solution. This problem is intentionally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximation
are we seeking? What does “appropriate” mean?
In the “real world,” people solving problems deal with these issues all
time. One must make a judgment using whatever seems reasonable. In
this example, the actual answer is f(3) = sin(3) + 7, where the real
problem spot is sin(3). What is sin(3)?
Since 3 is close toπ, we can assume sin(3) ≈ sin(π) = 0. Thus one guess
is f(3) ≈ 7. Can we do better? Let’s use a tangent line as instructed and
examine the results; it seems best to find the tangent line at x = π.
Using Theorem 2.3.1 we find f ′(x) = cos(x) + 2. The slope of the
tangent line is thus f ′(π) = cos(π)+2 = 1. Also, f(π) = 2π+1 ≈ 7.28.
So the tangent line to the graph of f at x = π is y = 1(x−π)+2π+1 =
x + π + 1 ≈ x + 4.14. Evaluated at x = 3, our tangent line gives
y = 3 + 4.14 = 7.14. Using the tangent line, our final approximation is
that f(3) ≈ 7.14.
Using a calculator, we get an answer accurate to four places after the
decimal: f(3) = 7.1411. Our initial guess was 7; our tangent line ap-
proximation was more accurate, at 7.14.
The point is not “Here’s a cool way to do some math without a calcula-
tor.” Sure, that might be handy sometime, but your phone could prob-
ably give you the answer. Rather, the point is to say that tangent lines
are a good way of approximating, and many scientists, engineers and
mathematicians often face problems too hard to solve directly. So they
approximate.
The graphs in Figure 2.3.6 shows the graph of the function f(x) along
with the tangent line constructed at x = π. The graph in Figure 2.3.6
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shows the same tangent line and function. Once zoomed in, you can
barely distinguish the tangent line from the function. This indicates that
the tangent line is a good a approximation of the function so long as we
are near the point of tangency.
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Figure 2.3.6 A graph of f(x) =
sin(x) + 2x+1 along with its tan-
gent line approximation at x = π
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Figure 2.3.7 A graph of f(x) =
sin(x) + 2x+1 along with its tan-
gent line approximation at x = π,
zoomed in

2.3.1 Higher Order Derivatives

Note: The second derivative no-
tation could be written as

d2y

dx2
=

d2y

(dx)2
=

d2

(dx)2
(
y
)
.

That is, we take the deriva-
tive of y twice (hence d2), both
times with respect to x (hence
(dx)2 = dx2).

The derivative of a function f is itself a function, therefore we can take its
derivative. The following definition gives a name to this concept and introduces
its notation.

Definition 2.3.8 Higher Order Derivatives.

Let y = f(x) be a differentiable function on I . The following are defined,
provided the corresponding limits exist.

1. The second derivative of f is:

f ′′(x) =
d

dx
(f ′(x)) =

d

dx

(
dy

dx

)
=

d2y

dx2
= y′′.

2. The third derivative of f is:

f ′′′(x) =
d

dx
(f ′′(x)) =

d

dx

(
d2y

dx2

)
=

d3y

dx3
= y′′′.

3. The nth derivative of f is:

f (n)(x) =
d

dx

(
f (n−1)(x)

)
=

d

dx

(
dn−1y

dxn−1

)
=

dny

dxn
= y(n).

Higher Order Derivative Caveat.
Definition 2.3.8 comes with the
caveat “Where the correspond-
ing limits exist.” With f differen-
tiable on I , it is possible that f ′

is not differentiable on all of I ,
and so on.

In general, whenfinding the fourth derivative andon, we resort to the f (4)(x)
notation, not f ′′′′(x); after a while, too many ticks is confusing.

Let’s practice using this new concept.
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Example 2.3.9 Finding higher order derivatives.

Find the first four derivatives of the following functions:

1. f(x) = 4x2 2. f(x) = sin(x) 3. f(x) = 5ex

Solution.

1. Using the Power and Constant Multiple Rules, we have: f ′(x) =
8x. Continuing on, we have

f ′′(x) =
d

dx
(8x) = 8 f ′′′(x) = 0 f (4)(x) = 0.

Notice how all successive derivatives will also be 0.

2. We employ Theorem 2.3.1 repeatedly.

f ′(x) = cos(x) f ′′′(x) = − cos(x)
f ′′(x) = − sin(x) f (4)(x) = sin(x)

Note howwehave come right back to f(x) again. (Can you quickly
figure what f (23)(x) is?)

3. Employing Theorem 2.3.1 and the Constant Multiple Rule, we can
see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

2.3.2 Interpreting Higher Order Derivatives
What do higher order derivativesmean? What is the practical interpretation?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function f is the rate of change of the
rate of change of f .

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 2.2.3, f ′ describes the rate of position change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement park riders free-falling with posi-
tion function f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t ft/s and
f ′′(t) = −32 (ft/s)/s. We may recognize this latter constant; it is the accelera-
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” written as “ft/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f .” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”
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Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of seriesmakes extensive use of higher order derivatives.
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2.3.3 Exercises

Terms and Concepts

1. What is the name of the rule which states that d
dx (x

n) = nxn−1, where n > 0 is an integer?

2. What is d
dx (ln(x))?

3. Give an example of a function f(x) where f ′(x) = f(x).

4. Give an example of a function f(x) where f ′(x) = 0.

5. The derivative rules introduced in Section 2.3 explain how to compute the derivative of which of the following
functions?

•
3

x2

• 3x2 − x+ 17

• ex
2

• sin(x) cos(x)

•
√
x

• 5 ln(x)

6. Explain in your own words how to find the third derivative of a function f(x).

7. Give an example of a function where f ′(x) ̸= 0 and f ′′(x) = 0.

8. Explain in your own words what the second derivative “means”.
9. If f(x) describes a position function, then f ′(x) describes what kind of function? What kind of function is

f ′′(x)?

10. Let f(x) be a function measured in pounds (lb), where x is measured in feet (ft). What are the units of f ′′(x)?

Problems

Exercise Group. Compute the derivative of the given function.
11. f(x) = −

(
7x2 + 8x+ 7

)
12. g(x) = 14x2 − 16x3 + 5x+ 2

13. m(t) = 9t−
(
4t5 + 1

4 t
3
)
− 6 14. f(θ) = − (3 sin(θ) + 19 cos(θ))

15. f(r) = 3er 16. g(t) = 7t3 − 5 cos(t)− 2 sin(t)
17. f(x) = 6 ln(x) + 9x 18. p(s) = 1

4s
4 + 1

3s
3 + 1

2s
2 + s+ 1

19. h(t) = − (et + sin(t) + cos(t)) 20. f(x) = ln
(
3x8
)

21. f(t) = ln(6) + e6 + sin
(
π
2

)
22. g(t) = (4 + 3t)

2

23. g(x) = (2x+ 4)
3 24. f(x) = (3 + x)

3

25. f(x) = (7 + 2x)
2

26. A property of logarithms is that loga(x) =
logb(x)
logb(a)

, for all bases a, b > 0, ̸= 1.

(a) Rewrite this identity when b = e, i.e., using loge(x) = ln(x), with a = 10.

(b) Use part (a) to find the derivative of y = log10(x).

(c) Find the derivative of y = loga(x) for any a > 0, ̸= 1.

Exercise Group. Compute the first four derivatives of the given function.
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27. f(x) = x9 28. g(x) = 8 cos(x)

29. h(t) = −
(
4t2 + 3t+ et

)
30. p(θ) = θ2 + θ8

31. f(θ) = − (sin(θ) + cos(θ)) 32. f(x) = 692

Exercise Group. Find the equations of the tangent and normal lines to the graph of the function at the given point.
33. f(x) = x3 + 8x at x = 2 34. f(t) = et − 2 at t = 0

35. g(x) = ln(x) at x = 1 36. f(x) = 4 sin(x) at x = π/6

37. f(x) = −2 cos(x) at x = π/6 38. f(x) = 9− 9x at x = −9



CHAPTER 2. DERIVATIVES 91

2.4 The Product and Quotient Rules

Section 2.3 showed that, in some ways, derivatives behave nicely. The Constant
Multiple Rule and Sum/Difference Rule established that the derivative of f(x) =
5x2 + sin(x) was not complicated. We neglected computing the derivative of
things like g(x) = 5x2 sin(x) andh(x) = 5x2

sin(x) on purpose; their derivatives are
not as straightforward. (If you had to guess what their respective derivatives are,
youwould probably guess wrong.) For these, we need the Product andQuotient
Rules, respectively, which are defined in this section. We begin with the Product
Rule.

Theorem 2.4.1 Product Rule.

Let f and g be differentiable functions on an open interval I . Then fg
is a differentiable function on I , and

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x).

Warning 2.4.2 d
dx (f(x)g(x)) ̸= f ′(x)g′(x)! While this would be simpler than

the Product Rule, it is wrong.
We practice using this new rule in an example, followed by an example that

demonstrates why this theorem is true.

Example 2.4.3 Using the Product Rule.

Use the Product Rule to compute the derivative of y = 5x2 sin(x). Eval-
uate the derivative at x = π/2.
Solution. To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin(x). We easily compute/recall that f ′(x) = 10x and
g′(x) = cos(x). Employing the rule, we have

d

dx

(
5x2 sin(x)

)
=

d

dx

(
5x2
)
sin(x) + 5x2 d

dx
(sin(x))

= 10x sin(x) + 5x2 cos(x).

At x = π/2, we have

y′(π/2) = 10 · π
2
sin
(π
2

)
+ 5

(π
2

)2
cos
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π,
in Figure 2.4.4. While this does not prove that the Product Rule is the
correct way to handle derivatives of products, it helps validate its truth.

π
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15

20

x

y

Figure 2.4.4Agraphof y = 5x2 sin(x)
and its tangent line at x = π/2

We now investigate why the Product Rule is true.

Proof of Product Rule. We can use the definition of the derivative to prove The-
orem 2.4.1.
By the limit definition, we have

d

dx
(f(x)g(x)) = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
.

We nowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of − f(x)g(x + h) + f(x)g(x + h), then do some
regrouping as shown. Adding 0 in some clever form is

a common mathematical proof
technique.
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d

dx
(f(x)g(x)) = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

(regroup)

= lim
h→0

[f(x+ h)g(x+ h)− f(x)g(x+ h)] + [f(x)g(x+ h)− f(x)g(x)]

h

(split fraction)

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)

h
+ lim

h→0

f(x)g(x+ h)− f(x)g(x)

h

(factor)

= lim
h→0

(
f(x+ h)− f(x)

h
g(x+ h)

)
+ lim

h→0

(
f(x)

g(x+ h)− g(x)

h

)
(apply limit properties)

= lim
h→0

f(x+ h)− f(x)

h
· lim
h→0

g(x+ h) + f(x) · lim
h→0

g(x+ h)− g(x)

h

(apply limits)
= f ′(x)g(x) + f(x)g′(x)

(by definition of the derivative).

We have proven the product rule as desired. (In the last step, we also relied on
the fact that since g is differentiable, it is also continuous, which guarantees that
limh→0 g(x+ h) = g(x).) ■

It is often true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.5 Exploring alternate derivative methods.

Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y′ two ways: first, by
expanding the given product and then taking the derivative, and second,
by applying the Product Rule. Verify that both methods give the same
answer.
Solution. We first expand the expression for y; a little algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y′:

y′ = 8x3 + 9x2 − 12x.

Instead, let’s apply the Product Rule to the original factored form:

y′ =
d

dx

(
x2 + 3x+ 1

)
(2x2 − 3x+ 1) + (x2 + 3x+ 1)

d

dx

(
2x2 − 3x+ 1

)
= (2x+ 3)(2x2 − 3x+ 1) + (x2 + 3x+ 1)(4x− 3)

=
(
4x3 − 7x+ 3

)
+
(
4x3 + 9x2 − 5x− 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivative of the product is
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the product of the derivatives.” Thus we are tempted to say that y′ =
(2x+ 3)(4x− 3) = 8x2 + 6x− 9. Obviously this is not correct.

Example 2.4.6 Using the Product Rule with a product of three func-
tions.

Let y = x3 ln(x) cos(x). Find y′.
Solution. We have a product of three functions while the Product Rule
only specifies how to handle a product of two functions. Our method
of handling this problem is to simply group the latter two functions to-
gether, and consider y = x3 · [ln(x) cos(x)]. Following the Product Rule,
we have

y ′ =
d

dx

(
x3
)
ln(x) cos(x) + (x3)

d

dx
(ln(x) cos(x))

To evaluate d
dx (ln(x) cos(x)), we apply the Product Rule again:

y ′ = 3x2 [ln(x) cos(x)] + (x3)

[
1

x
cos(x) + ln(x)(− sin(x))

]
= 3x2 ln(x) cos(x) + x3 1

x
cos(x) + x3 ln(x)(− sin(x)).

Recognize the pattern in our answer above: when applying the Product
Rule to a product of three functions, there are three terms added to-
gether in the final derivative. Each term contains only one derivative of
one of the original functions, and each function’s derivative shows up in
only one term. It is straightforward to extend this pattern to finding the
derivative of a product of four or more functions.
Ultimately though, we would simplify our final computation to:

y ′ = 3x2 ln(x) cos(x) + x2 cos(x) +−x3 ln(x) sin(x)

If you check this answer with a cas, it may factor and give the answer:

y ′ = −x2 [x ln(x) sin(x) + cos(x) + 3 ln(x) cos(x)]

We consider one more example before discussing another derivative rule.

Example 2.4.7 Using the Product Rule.

Find the derivatives of the following functions.

1. f(x) = x ln(x)

2. g(x) = x ln(x)− x

Solution. Recalling that the derivative of ln(x) is 1/x, we use the Prod-
uct Rule to find our answers.

1. Applying the Product Rule:

d

dx
(x ln(x)) = 1 · ln(x) + x · 1/x

= ln(x) + 1.
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2. Using the result from above, we compute

d

dx
(x ln(x)− x) = ln(x) + 1− 1

= ln(x).

This seems significant; if the natural log function ln(x) is an important
function (it is), it seems worthwhile to know a function whose derivative
is ln(x). We have found one. (We leave it to the reader to find another;
a correct answer will be very similar to this one.)

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 2.4.8 Quotient Rule.

Let f and g be differentiable functions defined on an open interval I ,
where g(x) ̸= 0 on I . Then f/g is differentiable on I , and

d

dx

(
f(x)

g(x)

)
=

g(x)f ′(x)− f(x)g′(x)

g(x)2
.

The Quotient Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fraction’s numerator
and denominator as “HI” and “LO”, respectively. Then

d

dx

(
HI
LO

)
=

LO · dHI− HI · dLO
LOLO

,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivatives of the numerator and denominator, respectively.

Let’s practice using the Quotient Rule.

Example 2.4.9 Using the Quotient Rule.

Let f(x) = 5x2

sin(x) . Find f
′(x).

Solution. Directly applying the Quotient Rule gives:

d

dx

(
5x2

sin(x)

)
=
sin(x) · d

dx

(
5x2
)
− 5x2 · d

dx (sin(x))
sin2(x)

=
10x sin(x)− 5x2 cos(x)

sin2(x)
.

TheQuotient Rule allows us to fill in holes in our understanding of derivatives
of the common trigonometric functions. We start with finding the derivative of
the tangent function.

Example 2.4.10 Using the Quotient Rule to find d
dx (tan(x)).

Find the derivative of y = tan(x).
Solution. At first, one might feel unequipped to answer this question.
But recall that tan(x) = sin(x)/ cos(x), so we can apply the Quotient
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Rule.

d

dx
(tan(x)) =

d

dx

(
sin(x)
cos(x)

)
=
cos(x) d

dx (sin(x))− sin(x) d
dx (cos(x))

cos2(x)

=
cos(x) cos(x)− sin(x)(− sin(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
= sec2(x).

This is a beautiful result. To confirm its truth, we can find the equation of
the tangent line to y = tan(x) at x = π/4. The slope is sec2(π/4) = 2;
y = tan(x), along with its tangent line, is graphed in Figure 2.4.11. −π
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Figure 2.4.11 A graph of y = tan(x)
along with its tangent line at x = π/4

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sin(x) in Exam-
ple 2.1.19 and stated the derivative of the cosine function in Theorem 2.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 2.3.1 and the Quotient Rule.

Theorem 2.4.12 Derivatives of Trigonometric Functions.

1.
d

dx
(sin(x)) = cos(x)

2.
d

dx
(cos(x)) = − sin(x)

3.
d

dx
(tan(x)) = sec2(x)

4.
d

dx
(cot(x)) = − csc2(x)

5.
d

dx
(sec(x)) = sec(x) tan(x)

6.
d

dx
(csc(x)) = − csc(x) cot(x)

To remember the above, it may be helpful to keep in mind that the deriv-
atives of the trigonometric functions that start with “c” have a minus sign in
them.

Example 2.4.13 Exploring alternate derivative methods.

In Example 2.4.9 the derivative of f(x) = 5x2

sin(x) was found using the
Quotient Rule. Rewriting f as f(x) = 5x2 csc(x), find f ′ using Theo-
rem 2.4.12 and verify the two answers are the same.

Solution. We found in Example 2.4.9 that f ′(x) = 10x sin(x)−5x2 cos(x)
sin2(x) .

We now find f ′ using the Product Rule, considering f as f(x) =
5x2 csc(x).

f ′(x) =
d

dx

(
5x2 csc(x)

)
= 5x2 d

dx
(csc(x)) +

d

dx

(
5x2
)
csc(x)

= 5x2 (− csc(x) cot(x)) + 10x csc(x) (now rewrite trig functions)
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= 5x2 · −1

sin(x)
· cos(x)
sin(x)

+
10x

sin(x)

=
−5x2 cos(x)
sin2(x)

+
10x

sin(x)
(get common denominator)

=
10x sin(x)− 5x2 cos(x)

sin2(x)
.

Finding f ′ using either method returned the same result. At first, the
answers looked different, but some algebra verified they are the same.
In general, there is not one final form that we seek; the immediate result
from the Product Rule is fine. Work to “simplify” your results into a form
that is most readable and useful to you.

The Quotient Rule gives other useful results, as shown in the next example.

Example 2.4.14 Using the Quotient Rule to expand the Power Rule.

Find the derivatives of the following functions.

1. f(x) =
1

x

2. f(x) =
1

xn
, where n > 0 is an integer.

Solution. We employ the Quotient Rule.

1.

f ′(x) =
x · 0− 1 · 1

x2

= − 1

x2

2.

f ′(x) =
xn · 0− 1 · nxn−1

(xn)2

= −nxn−1

x2n

= − n

xn+1
.

The derivative of y = 1
xn turned out to be rather nice. It gets better. Con-

sider:
d

dx

(
1

xn

)
=

d

dx

(
x−n

)
(apply result from Example 2.4.14)

= − n

xn+1
(rewrite algebraically)

= −nx−(n+1)

= −nx−n−1 .

This is reminiscent of the Power Rule: multiply by the power, then subtract
1 from the power. We now add to our previous Power Rule, which had the re-
striction of n > 0.
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Theorem 2.4.15 Power Rule with Integer Exponents.

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend-
ing on how the function is treated. One of the beautiful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivative. We demonstrate this concept in an example.

Example 2.4.16 Exploring alternate derivative methods.

Let f(x) = x2−3x+1
x . Find f ′(x) in each of the following ways:

1. By applying the Quotient Rule,

2. by viewing f as f(x) =
(
x2 − 3x+ 1

)
· x−1 and applying the

Product Rule and Power Rule with Integer Exponents, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.
Solution.

1. Applying the Quotient Rule gives:

f ′(x) =
x · d

dx

(
x2 − 3x+ 1

)
−
(
x2 − 3x+ 1

)
d
dx (x)

x2

=
x · (2x− 3)−

(
x2 − 3x+ 1

)
· 1

x2

=
x2 − 1

x2

= 1− 1

x2
.

2. By rewriting f , we can apply the Product Rule and Power Rulewith
Integer Exponents as follows:

f ′(x) =
(
x2 − 3x+ 1

) d

dx

(
x−1

)
+

d

dx

(
x2 − 3x+ 1

)
x−1

=
(
x2 − 3x+ 1

)
· (−1)x−2 + (2x− 3) · x−1

= −x2 − 3x+ 1

x2
+

2x− 3

x

= −x2 − 3x+ 1

x2
+

2x2 − 3x

x2

=
x2 − 1

x2
= 1− 1

x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x− 3 +
x−1. Now apply the Power Rule with Integer Exponents.

f ′(x) = 1− 1

x2
,

the same result as before.
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Example 2.4.16 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1

x2

x · (2x− 3)−
(
x2 − 3x+ 1

)
· 1

x2(
x2 − 3x+ 1

)
· (−1)x−2 + (2x− 3) · x−1.

They are equal; they are all correct; only the first is “simple.” Work to make
answers simple.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo-
rize the derivatives of a certain set of functions, such as “the derivative of sin(x)
is cos(x).” The Sum/Difference Rule, Constant Multiple Rule, Power Rule with
Integer Exponents, Product Rule and Quotient Rule show us how to find the de-
rivatives of certain combinations of these functions. The next section shows how
to find the derivatives when we compose these functions together.
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2.4.1 Exercises

Terms and Concepts

1. (□ True □ False) The Product Rule states that d
dx

(
x2 sin(x)

)
= 2x cos(x).

2. (□ True □ False) The Quotient Rule states that d
dx

(
x2

sin(x)

)
= cos(x)

2x .

3. (□ True □ False) The derivatives of the trigonometric functions that start with “c” have minus signs in
them.

4. What derivative rule is used to extend the Power Rule to include negative integer exponents?
5. (□ True □ False) Regardless of the function, there is always exactly one right way of computing its deriv-

ative.
6. In your own words, explain what it means to make your answers “clear.”

Problems

Exercise Group.

(a) Use the Product Rule to differentiate the function.

(b) Manipulate the function algebraically and differentiate without using the Product Rule.

(c) Show that the two derivatives are equivalent.

7. f(x) = x
(
x2 + 3x

)
8. f(x) = 2x2 · 5x3

9. f(s) = (2s− 1) (s+ 4) 10. f(x) =
(
x2 + 5

) (
3− x3

)
Exercise Group.

(a) Use the Quotient Rule to differentiate the function.

(b) Manipulate the function algebraically and differentiate without using the Quotient Rule.

(c) Show that the two derivatives are equivalent.

11. f(x) = x2+3
x 12. f(x) = x3−2x2

2x2

13. f(x) = 3
4s3 14. f(x) = t2−1

t+1

Exercise Group. Compute the derivative of the given function.
15. k(y) = y sin(y) 16. k(t) = t3 cos(t)
17. p(q) = eq ln(q) 18. f(y) = 1

y6 (csc(y)− 5)

19. f(t) = t+8
t−4 20. g(q) = q3

sin(q)−8q2

21. h(y) = csc(y)− ey 22. h(t) = tan(t) ln(t)
23. j(q) = 7q2 − 6q − 6 24. k(y) = y6+9y5

y+9

25. k(r) =
(
5r2 + 7r + 3

)
er 26. p(z) = z9+z5

ez

27. p(x) =
(
8x3 − 22x2 + 5x

)
3x−25

8x3−22x2+5x
28. f(r) = r5(tan(r) + er)

29. g(z) = csc(z)
cos(z)+2 30. g(θ) = θ4 sec(θ) + sec(θ)

θ4

31. h(r) = cot(r)
r + r

tan(r)
32. j(z) = e3(cos(π/6)− 1)

33. j(x) = 7x5ex − sin(x) cos(x) 34. k(r) = r2 sin(r)−7
r2 cos(r)−9



CHAPTER 2. DERIVATIVES 100

35. p(z) = z4 ln(z) cos(z) 36. p(x) = 9x cos(x) tan(x)

Exercise Group. Find the equations of the tangent and normal lines to the graph of g at the indicated point.
37. g(x) = ex

(
x2 − 7

)
at (0,−7) 38. g(x) = x cos(x) at

(
5π
3 , 5π

6

)
39. g(x) = x2

x−(−4) at (−5,−25) 40. g(x) = sin(x)−2x
x−8 at (0, 0)

Exercise Group. Find the x-values where the graph of the function has a horizontal tangent line.
41. f(x) = x2 − 17x− 29 42. f(x) = x sin(x) on [−1, 1]

43. f(x) = 2x
−3x+3 44. f(x) = 3x2

x−2

Exercise Group. Find the requested higher order derivative.
45. f ′′(x), where f(x) = x sin(x) 46. f (4)(x), where f(x) = x sin(x)
47. f ′′(x), where f(x) = csc(x) 48. f (9)(x), where

f(x) =
(
x3 − 4x− 3

) (
x2 − 9x− 2

)



CHAPTER 2. DERIVATIVES 101

2.5 The Chain Rule

Wehave covered almost all of the derivative rules that deal with combinations of
two (or more) functions. The operations of addition, subtraction, multiplication
(including by a constant) and division led to the Sum/Difference Rule, the Con-
stant Multiple Rule, the Power Rule with Integer Exponents, the Product Rule
and the Quotient Rule. To complete the list of differentiation rules, we look at
the last way two (or more) functions can be combined: the process of composi-
tion (i.e. one function “inside” another).

One example of a composition of functions is f(x) = cos(x2). We currently
do not know how to compute this derivative. If forced to guess, onemight guess
f ′(x) = − sin(2x), where we recognize− sin(x) as the derivative of cos(x) and
2x as the derivative of x2. However, this is not the case; f ′(x) ̸= − sin(2x). One
way to see this is to examine the graph of y = cos

(
x2
)
in Figure 2.5.1 and its

tangent line at x = π/2. Clearly the slope of the tangent line there is nonzero,
but−2 sin(2 · π/2) = 0. So it can’t be correct to say that y′ = − sin(2x).

0.5 1 1.5 2 2.5 3 3.5

−1

1

x

y

Figure 2.5.1 A graph of y = cos(x2)
and a tangent line at π/2

In Example 2.5.7 we’ll see the correct way to compute the derivative of
sin
(
x2
)
, which employs the new rule this section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func-
tions. Wewrite (f ◦g)(x) or f(g(x)), read as “f of g of x,” to denote composing
f with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Be-
fore giving the corresponding differentiation rule, we note that the rule extends
to multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 2.5.2 Exploring similar derivatives.

Find the derivatives of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and
F3(x) = (1 − x)4. (We’ll see later why we are using subscripts for dif-
ferent functions and an uppercase F .)
Solution. In order to use the rules we already have, we must first ex-
pand each function as

F1(x) = 1− 2x+ x2

F2(x) = 1− 3x+ 3x2 − x3

F3(x) = 1− 4x+ 6x2 − 4x3 + x4

It is not hard to see that:

F ′
1(x) = −2 + 2x

F ′
2(x) = −3 + 6x− 3x2

F ′
3(x) = −4 + 12x− 12x2 + 4x3

An interesting fact is that these can be rewritten as:

F ′
1(x) = −2(1− x)

F ′
2(x) = −3(1− x)2

F ′
3(x) = −4(1− x)3

A pattern might jump out at you; note how the we end up multiplying
by the old power and the new power is reduced by 1. We also always
multiply by (−1).
Recognize that each of these functions is a composition, letting g(x) =
1− x:

F1(x) = f1(g(x)), where f1(x) = x2,
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F2(x) = f2(g(x)), where f2(x) = x3,

F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example after giving the formal statements of
the Chain Rule; for now, we are just illustrating a pattern.

When composing functions, we
need to make sure that the new
function is actually defined. For
instance, consider f(x) =

√
x

and g(x) = −x2 − 1. The do-
main of f excludes all negative
numbers, but the range of g is
only negative numbers. There-
fore the composition f(g(x)) =√
−x2 − 1 is not defined for any

x, andhence is not differentiable.
The statement of Theorem2.5.3

takes care to ensure this problem
does not arise, but our focus is
moreon thederivative result than
on thedomain/range conditions.

Theorem 2.5.3 The Chain Rule.

Let g be a differentiable function on an interval I , let the range of g be
a subset of the interval J , and let f be a differentiable function on J .
Then y = f(g(x)) is a differentiable function on I , and

y′ = f ′(g(x)) · g′(x).

Here is the Chain Rule in words:

The derivative of the outside function, evaluated at the inside func-
tion, multiplied by the derivative of the inside function.

To help understand the Chain Rule, we return to Example 2.5.2.

Example 2.5.4 Using the Chain Rule.

Use the Chain Rule to find the derivatives of the functions F1(x), F2(x),
and F3(x), as given in Example 2.5.2.
Solution. Example 2.5.2 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confu-
sion, we ignore most of the subscripts here.

F1(x) = (1− x)2 We found that

y = (1− x)2 = f(g(x)),

where f(x) = x2 and g(x) = 1 − x. To find
y′, we apply the The Chain Rule. We need to
note that f ′(x) = 2x and g′(x) = −1.
Part of the The Chain Rule uses f ′(g(x)). This
means substitute g(x) for x in the equation
for f ′(x). That is, f ′(x) = 2(1− x). Finishing
out the The Chain Rule we have

y′ = f ′(g(x)) · g′(x)
= 2(1− x) · (−1)

= −2(1− x)

= 2x− 2.



CHAPTER 2. DERIVATIVES 103

F2(x) = (1− x)3 Let y = (1−x)3 = f(g(x)), where f(x) = x3

and g(x) = (1 − x). We have f ′(x) = 3x2,
so f ′(g(x)) = 3(1− x)2. The The Chain Rule
then states

y′ = f ′(g(x)) · g′(x)
= 3(1− x)2 · (−1)

= −3(1− x)2.

F3(x) = (1− x)4 Finally, when y = (1−x)4, wehave f(x) = x4

and g(x) = (1 − x). Thus f ′(x) = 4x3 and
f ′(g(x)) = 4(1− x)3. Thus

y′ = f ′(g(x)) · g′(x)
= 4(1− x)3 · (−1)

= −4(1− x)3.

Example 2.5.4 demonstrated a particular pattern: when f(x) = xn, then
y′ = n · (g(x))n−1 · g′(x). This is called the Generalized Power Rule.

Theorem 2.5.5 Generalized Power Rule.

Let g(x) be a differentiable function and let n ̸= 0 be an integer. Then

d

dx
(g(x)n) = n · (g(x))n−1 · g′(x).

This allows us to quickly find the derivative of functions like y = (3x2−5x+
7+ sin(x))20. While it may look intimidating, the Generalized Power Rule states
that

y′ = 20(3x2 − 5x+ 7 + sin(x))19 · (6x− 5 + cos(x)).

Treat the derivative-taking process step-by-step. In the example just given,
first multiply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

We now consider more examples that employ the The Chain Rule.

Example 2.5.6 Using the Chain Rule.

Find the derivatives of the following functions:

1. y = sin(2x). 2. y = ln(4x3 −
2x2).

3. y = e−x2

.

Solution.

1. Consider y = sin(2x). Recognize that this is a composition of
functions, where f(x) = sin(x) and g(x) = 2x. Thus

y′ = f ′(g(x)) · g′(x)

= cos(2x) · d

dx
(2x)
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= cos(2x) · 2
= 2 cos(2x).

2. Recognize that y = ln
(
4x3 − 2x2

)
is the composition of f(x) =

ln(x) and g(x) = 4x3 − 2x2. Also, recall that

d

dx
(ln(x)) =

1

x
.

This leads us to:

y′ =
1

4x3 − 2x2
· d

dx

(
4x3 − 2x2

)
=

1

4x3 − 2x2
·
(
12x2 − 4x

)
=

12x2 − 4x

4x3 − 2x2

=
4x(3x− 1)

2x(2x2 − x)

=
2(3x− 1)

2x2 − x
.

Note that ln
(
4x3 − 2x2

)
= ln

(
4x2(x− 1/2)

)
was only defined

for x > 1/2, so the result of y′ = 2(3x−1)
2x2−x is only valid for x > 1/2

as well.

3. Recognize that y = e−x2

is the composition of f(x) = ex and
g(x) = −x2. Remembering that f ′(x) = ex, we have

y′ = e−x2

· d

dx

(
−x2

)
= e−x2

· (−2x)

= −2xe−x2

.

Example 2.5.7 Using the Chain Rule to find a tangent line.

Let f(x) = cos(x2). Find the equation of the line tangent to the graph
of f at x = 1.
Solution. The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the The Chain Rule.
f ′(x) = − sin(x2) · (2x) = −2x sin(x2). Evaluated at x = 1, we have
f ′(1) = −2 sin(1) ≈ −1.68. Thus the equation of the tangent line is
approximated by

y ≈ −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.8. −3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

y

Figure 2.5.8 f(x) = cos(x2)
sketched along with its tangent line
at x = 1

The The Chain Rule is used often in taking derivatives. Because of this, one
can become familiar with the basic process and learn patterns that facilitate find-
ing derivatives quickly. For instance,

d

dx
(ln(anything)) =

1

anything
· d

dx
(anything) =

d
dx (anything)
anything

.
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A concrete example of this is

d

dx

(
ln(3x15 − cos(x) + ex)

)
=

45x14 + sin(x) + ex

3x15 − cos(x) + ex
.

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the numer-
ator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In gen-
eral, instead of writing “anything”, we use u as a generic function of x. We then
say

d

dx
(ln(u)) =

u′

u
.

The following is a short list of how the The Chain Rule can be quickly applied
to familiar functions.

1. d
dx (u

n) = n · un−1 · u′.

2. d
dx (e

u) = eu · u′.

3. d
dx (sin(u)) = cos(u) · u′.

4. d
dx (cos(u)) = − sin(u) · u′.

5. d
dx (tan(u)) = sec2(u) · u′.

Of course, the The Chain Rule can be applied in conjunction with any of the
other rules we have already learned. We practice this next.

Example 2.5.9 Using the Product, Quotient and Chain Rules.

Find the derivatives of the following functions.

1. f(x) = x5 sin(2x3). 2. f(x) =
5x3

e−x2 .

Solution.

1. We must use the Product Rule and The Chain Rule. Do not think
that you must be able to “see” the whole answer immediately;
rather, just proceed step-by-step.

f ′(x) = x5 · d

dx

(
sin
(
2x3
))

+ sin
(
2x3
)
· d

dx

(
x5
)

= x5

(
cos
(
2x3
)
· d

dx

(
2x3
))

+ 5x4
(
sin
(
2x3
))

= x5
(
6x2 cos

(
2x3
) )

+ 5x4
(
sin
(
2x3
) )

= 6x7 cos
(
2x3
)
+ 5x4 sin

(
2x3
)
.

2. Wemust employ the Quotient Rule along with the The Chain Rule.
Again, proceed step-by-step.

f ′(x) =
e−x2 · d

dx

(
5x3
)
− 5x3 · d

dx

(
e−x2

)
(
e−x2

)2
=

e−x2 · 15x2 − 5x3 · e−x2 · d
dx

(
−x2

)(
e−x2

)2
=

e−x2 (
15x2

)
− 5x3

(
(−2x)e−x2

)
(
e−x2

)2
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=
e−x2 (

10x4 + 15x2
)

e−2x2

= ex
2 (

10x4 + 15x2
)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
Rule and The Chain Rule together, just consider the first part of the Product Rule
at first: f(x)g′(x). Just rewrite f(x), then find g′(x). Then move on to the
f ′(x)g(x) part. Don’t attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

We can also employ the The Chain Rule itself several times, as shown in the
next example.

Example 2.5.10 Using the Chain Rule multiple times.

Find the derivative of y = tan5(6x3 − 7x).
Solution. Recognize that we have the g(x) = tan

(
6x3 − 7x

)
function

“inside” the f(x) = x5 function; that is, we have y =
(
tan
(
6x3 − 7x

))5.
We begin using the Generalized Power Rule; in this first step, we do not
fully compute the derivative. Rather, we are approaching this step-by-
step.

y′ = 5
(
tan
(
6x3 − 7x

))4 · g′(x).
We now find g′(x). We again need the The Chain Rule;

g′(x) = sec2
(
6x3 − 7x

)
· d

dx

(
6x3 − 7x

)
.

= sec2
(
6x3 − 7x

)
·
(
18x2 − 7

)
.

Combine this with what we found above to give

y′ = 5
(
tan
(
6x3 − 7x

))4 · sec2(6x3 − 7x
)
·
(
18x2 − 7

)
=
(
90x2 − 35

)
sec2

(
6x3 − 7x

)
tan4

(
6x3 − 7x

)
.

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many ver-
tical asymptotes and 6x3 − 7x grows so very fast. The important thing
to learn from this is that the derivative can be found. In fact, it is not
“hard”; one can take several simple steps and should be careful to keep
track of how to apply each of these steps.

It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 2.5.11 Using the Product, Quotient and Chain Rules.

Find the derivative of f(x) = x cos(x−2)−sin2(e4x)
ln(x2+5x4) .

Solution. This function likely has no practical use outside of demonstrat-
ing derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the The Chain Rule
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three times.

f ′(x)

=

(
ln
(
x2 + 5x4

)
·
[(

x ·
(
− sin

(
x−2

))
·
(
−2x−3

)
+ 1 · cos

(
x−2

) )
− 2 sin

(
e4x
)
· cos

(
e4x
)
·
(
4e4x

) ]
−
(
x cos

(
x−2

)
− sin2

(
e4x
))

· 2x+ 20x3

x2 + 5x4

)
/(
ln
(
x2 + 5x4

))2 .
The reader is highly encouraged to look at each term and recognize why
it is there. (i.e., the Quotient Rule is used; in the numerator, identify
the “LOdHI” term, etc.) This example demonstrates that derivatives can
be computed systematically, no matter how arbitrarily complicated the
function is.

The The Chain Rule also has theoretic value. That is, it can be used to find the
derivatives of functions that we have not yet learned as we do in the following
example.

Example 2.5.12 The Chain Rule and exponential functions.

Use the Chain Rule to find the derivative of y = 2x.
Solution. We only know how to find the derivative of one exponential
function, y = ex. We can accomplish our goal by rewriting 2 in termsof e.
Recalling that ex and ln(x) are inverse functions, we can write 2 = eln 2

and so
y = 2x =

(
eln 2
)x

= ex(ln(2)),

using the “power to a power” property of exponents.
The function is now the composition y = f(g(x)), with f(x) = ex and
g(x) = x(ln(2)). Since f ′(x) = ex and g′(x) = ln(2), the The Chain
Rule gives

y′ = ex(ln(2)) · ln 2.

Recall that the ex(ln(2)) term on the right hand side is just 2x, our original
function. Thus, the derivative contains the original function itself. We
have

y′ = y · ln(2) = 2x · ln(2).

We can extend this process to use any basea, wherea > 0 anda ̸= 1. All
we need to do is replace each “2” in our work with “a.” The Chain Rule,
coupled with the derivative rule of ex, allows us to find the derivatives
of all exponential functions.

The comment at the end of previous example is important and is restated
formally as a theorem.
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Theorem 2.5.13 Derivatives of Exponential Functions.

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differentiable for all real
numbers (i.e., differentiable everywhere) and

f ′(x) = ln(a) · ax.

Alternate Chain Rule Notation. It is instructive to understand what the The
Chain Rule “looks like” using “ dydx” notation instead of y

′ notation. Suppose that
y = f(u) is a function of u, where u = g(x) is a function of x, as stated in
Theorem 2.5.3. Then, through the composition f ◦ g, we can think of y as a
function of x, as y = f(g(x)). Thus the derivative of y with respect to xmakes
sense; we can talk about dy

dx . This leads to an interesting progression of notation:

y′ = f ′(g(x)) · g′(x)
dy

dx
= y′(u) · u′(x) since y = f(u) and u = g(x)

dy

dx
=

dy

du
· du
dx

(using “fractional notation” for the derivative)

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy

dx
=

dy

dx
.

It is important to realize thatwe are not canceling these terms; the derivative
notation of dy

du is one symbol. It is equally important to realize that this notation
was chosen precisely because of this behavior. It makes applying the The Chain
Rule easy with multiple variables. For instance,

dy

dt
=

dy

d⃝
· d⃝
d△

· d△
dt
.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the The Chain Rule is to con-

sider a set of gears, as shown in Figure 2.5.14. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolution is twice as fast as
the rate at which the x gear makes a revolution.
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Using the terminology of calculus, the
rate of u-change, with respect to x, is
du
dx = 2.
Likewise, every revolution of u causes
3 revolutions of y: dy

du = 3. How does
y change with respect to x? For each
revolution of x, y revolves 6 times;
that is,

dy

dx
=

dy

du
· du
dx

= 2 · 3 = 6.

We can then extend the The Chain
Rule with more variables by adding
more gears to the picture.

x

u

dy

du
= 3

du

dx
= 2

dy

dx
= 6

y

Figure 2.5.14 A series of gears to
demonstrate the Chain Rule. Note
how dy

dx = dy
du · du

dx

It is difficult to overstate the importance of the The Chain Rule. So often the
functions that we deal with are compositions of two or more functions, requir-
ing us to use this rule to compute derivatives. It is also often used in real life
when actual functions are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the The Chain Rule, we can

find dy
dx .
In Section 2.6, we use the The Chain Rule to justify another differentiation

technique. There are many curves that we can draw in the plane that fail the
“vertical line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. We may still be interested in finding slopes of tangent lines to the circle
at various points. Section 2.6 shows how we can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.
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2.5.1 Exercises

Terms and Concepts

1. (□ True □ False) The Chain Rule describes how to evaluate the derivative of a composition of functions.

2. (□ True □ False) The Generalized Power Rule states that d
dx (g(x)

n) = n (g(x))
n−1 .

3. (□ True □ False) d
dx

(
ln
(
x2
))

= 1
x2 .

4. (□ True □ False) d
dx (3

x) ≈ 1.1 · 3x.

5. (□ True □ False) dx
dy = dx

dt · dt
dy .

6. (□ True □ False) Taking the derivative of f(x) = x2 sin(5x) requires the use of both the Product and
Chain Rules.

Problems

Exercise Group. Compute the derivative of the given function.

7. f(x) =
(
4x3 − x

)10 8. f(t) = (3t− 2)5

9. g(θ) = (sin(θ) + cos(θ))3 10. h(t) = e3t
2+t−1

11. j(x) =
(
ln(x)− x4

)4 12. j(q) = 2q
5+4q

13. k(y) =
(
y + 1

y

)5 14. p(t) = cos(5t)

15. p(q) = tan(2q) 16. f(θ) = cot
(
θ2 + 3

)
17. g(t) = sin

(
t6 + 1

t3

)
18. g(q) = cos5(7q)

19. h(y) = cos3
(
y2 + 3y − 3

)
20. j(t) = ln(cos(t))

21. j(q) = ln
(
q8
)

22. k(y) = 3 ln(y)

23. p(t) = 6t 24. p(z) = 2csc(z)

25. f(x) = 810 26. g(t) = 4t

9t

27. h(w) = 6w+5
5w+6 28. h(y) = 7y+8

5y

29. j(r) = 5r
2
−r

6r2
30. k(w) = w3 cot(5w)

31. p(x) =
(
x2 + 4x

)6 (
7x4 + x

)3 32. m(r) = sin(8− 4r) cos
(
6r + r2

)
33. m(w) = cos(4w − 5) sin(9 + 7w) 34. f(x) = e8x

2

sin
(
1
x

)
35. g(r) = cos(6r+4)

(3r+1)3 36. h(z) = (3z+5)2

sin(9z)

Exercise Group. Find the equations of tangent and normal lines to the graph of the function at the given point. Note:
the functions here are the same as in Exercises 7–10.

37. f(x) =
(
4x3 − x

)10 at x = 0 38. f(x) = (3x− 2)5 at x = 1

39. g(x) = (sin(x) + cos(x))3 at x = π/2. 40. h(x) = e3x
2+x−1 at x = −1

41. Compute d
dx (ln(kx)) two ways. First by using the Chain Rule. Second, by using the logarithm rule ln(ab) =

ln(a) + ln(b) and then taking the derivative.

42. Compute d
dx

(
ln
(
xk
))
two ways. First by using the Chain Rule. Second, by using the logarithm rule ln(ap) =

p ln(a) (for positive a) and then taking the derivative.
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2.6 Implicit Differentiation

In the previous sections we learned to find the derivative, dy
dx , or y

′, when y is
given explicitly as a function of x. That is, if we know y = f(x) for some function
f , we can find y′. For example, given y = 3x2 − 7, we can easily find y′ = 6x.
(Here we explicitly state how y depends on x. Knowing x, we can directly find
y.)

Sometimes the relationship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relationship between x and y; if we know x, we could figure out y. Can we still
find y′? In this case, sure; we solve for y to get y = x2− 4 (hence we now know
y explicitly) and then differentiate to get y′ = 2x.

Sometimes the implicit relationship between x and y is complicated. Sup-
pose we are given sin(y) + y3 = 6 − x3. A graph of this implicit relationship
is given in Figure 2.6.1. In this case there is absolutely no way to solve for y in
terms of elementary functions. The surprising thing is, however, that we can
still find y′ via a process known as implicit differentiation.

−3 −2 −1 1 2 3

−2

2

x

y

Figure 2.6.1 A graph of the implicit re-
lationship sin(y) + y3 = 6− x3

2.6.1 The method of implicit differentiation
Implicit differentiation is a technique based on the The Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be functions of x. Then

d

dx
(f(g(x))) = f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d

dx
(f(y)) = f ′(y) · y′, or

d

dx
(f(y)) = f ′(y) · dy

dx
. (2.6.1)

These equations look strange; the key concept to learn here is that we can
find y′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.2 Using Implicit Differentiation.

Find y′ given that sin(y) + y3 = 6− x3.
Solution. We start by taking the derivative of both sides (thus maintain-
ing the equality.) We have:

d

dx

(
sin(y) + y3

)
=

d

dx

(
6− x3

)
.

The right hand side is easy; it returns−3x2.
The left hand side requires more consideration. We take the derivative
term-by-term. Using the technique derived from Equation (2.6.1) above,
we can see that

d

dx
(sin(y)) = cos(y) · y′.

We apply the same process to the y3 term.

d

dx

(
y3
)
=

d

d(y)3
(=)3(y)2 · y′.
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Putting this together with the right hand side, we have

cos(y)y′ + 3y2y′ = −3x2.

Now solve for y′. It’s important to treat y′ as an algebraically indepen-
dent variable from y and x.

cos(y)y′ + 3y2y′ = −3x2(
cos(y) + 3y2

)
y′ = −3x2

y′ =
−3x2

cos(y) + 3y2

This equation for y′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com-
puting the corresponding y value. With an implicit function, one often has to
find x and y values at the same time that satisfy the equation. It is much eas-
ier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point
(

3
√
6, 0
)
lies on the graph of

the implicit function sin(y) + y3 = 6 − x3. Plugging in 0 for y, we see the left
hand side is 0. Setting x = 3

√
6, we see the right hand side is also 0; the equation

is satisfied. The following example finds the equation of the tangent line to this
function at this point.

Example 2.6.3 Using implicit differentiation to find a tangent line.

Find the equation of the line tangent to the curve of the implicitly de-
fined function sin(y) + y3 = 6− x3 at the point

(
3
√
6, 0
)
.

Solution. In Example 2.6.2 we found that

y′ =
−3x2

cos(y) + 3y2
.

We find the slope of the tangent line at the point
(

3
√
6, 0
)
by substituting

3
√
6 for x and 0 for y. Thus at the point

(
3
√
6, 0
)
, we have the slope as

y′ =
−3
(

3
√
6
)2

cos(0) + 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equation of the tangent line to the implicitly defined func-
tion sin(y) + y3 = 6− x3 at the point

(
3
√
6, 0
)
is

y = −3
3
√
36
(
x− 3

√
6
)
+ 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.6.4. −3 −2 −1 1 2 3

−2

2

x

y

Figure 2.6.4 The function sin(y) +
y3 = 6 − x3 and its tangent line at
the point ( 3

√
6, 0)

This suggests a general method for implicit differentiation. For the steps be-
low assume y is a function of x.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply
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except that, because of the Theorem 2.5.3, we need tomultiply each term
by y′.

2. Get all the y′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y′; solve for y′ by dividing.

(Practical Note: when working by hand, it may be beneficial to use the sym-
bol dydx instead of y

′, as the latter can be easily confused for y or y1.)

Example 2.6.5 Using Implicit Differentiation.

Given the implicitly defined function y3 + x2y4 = 1 + 2x, find y′.
Solution. We will take the implicit derivatives term by term. The deriv-
ative of y3 is 3y2y′.
The second term, x2y4, is a little tricky. It requires the Product Rule
as it is the product of two functions of x: x2 and y4. Its derivative is
x2(4y3y′)+2xy4. The first part of this expression requires a y′ because
we are taking the derivative of a y term. The second part does not re-
quire it because we are taking the derivative of x2.
The derivative of the right hand side is easily found to be 2. In all, we
get:

3y2y′ + 4x2y3y′ + 2xy4 = 2.

Move terms around so that the left side consists only of the y′ terms and
the right side consists of all the other terms:

3y2y′ + 4x2y3y′ = 2− 2xy4.

Factor out y′ from the left side and solve to get

y′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equation of a tangent
line to this function at a point. It is easy to confirm that the point (0, 1)
lies on the graph of this function. At this point, y′ = 2/3. So the equa-
tion of the tangent line is y = 2/3(x − 0) + 1. The function and its
tangent line are graphed in Figure 2.6.6.

2 4 6 8 10

−10

−8

−6

−4

−2

2

x

y

Figure 2.6.6 A graph of the implicitly
defined function y3 + x2y4 = 1+2x
alongwith its tangent line at the point
(0, 1)

Notice how our curve looks much different than for functions we have
seen. For one, it fails the vertical line test, and so the complete curve is
not truly representing y as a function of x. But when we indicate we are
interested in the derivative at (0, 1), we are indicating that we want the
function defined by the small portion of the curve that passes through
(0, 1), and that small portion does pass the vertical line test. Such func-
tions are important in many areas of mathematics, so developing tools
to deal with them is also important.

Example 2.6.7 Using Implicit Differentiation.

Given the implicitly defined function sin
(
x2y2

)
+ y3 = x+ y, find y′.

Solution. Differentiating term by term, we find the most difficulty in
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the first term. It requires both the The Chain Rule and Product Rule.

d

dx

(
sin
(
x2y2

))
= cos

(
x2y2

)
· d

dx

(
x2y2

)
= cos

(
x2y2

)
·
(
x2(2yy′) + 2xy2

)
= 2

(
x2yy′ + xy2

)
cos
(
x2y2

)
.

We leave the derivatives of the other terms to the reader. After taking
the derivatives of both sides, we have

2
(
x2yy′ + xy2

)
cos
(
x2y2

)
+ 3y2y′ = 1 + y′.

We now have to be careful to properly solve for y′, particularly because
of the product on the left. It is best to multiply out the product. Doing
this, we get

2x2y cos
(
x2y2

)
y′ + 2xy2 cos

(
x2y2

)
+ 3y2y′ = 1 + y′.

From here we can safely move around terms to get the following:

2x2y cos
(
x2y2

)
y′ + 3y2y′ − y′ = 1− 2xy2 cos

(
x2y2

)
.

Then we can solve for y′ to get

y′ =
1− 2xy2 cos

(
x2y2

)
2x2y cos(x2y2) + 3y2 − 1

.

A graph of this implicit function is given in Figure 2.6.8.

−1 1

−1

1

x

y

Figure 2.6.8 A graph of the implicitly
defined curve sin

(
x2y2

)
+y3 = x+y

It is easy to verify that the points (0, 0), (0, 1) and (0,−1) all lie on the
graph. We can find the slopes of the tangent lines at each of these points
using our formula for y′.

• At (0, 0), the slope is−1.

• At (0, 1), the slope is 1/2.

• At (0,−1), the slope is also 1/2.

The tangent lines have been added to the graph of the function in Fig-
ure 2.6.9.

−1 1

−1

1

x

y

Figure 2.6.9 A graph of the implicitly
defined curve sin

(
x2y2

)
+y3 = x+y

and certain tangent lines

Quite a few “famous” curves have equations that are given implicitly. We can
use implicit differentiation to find the slope at various points on those curves.
We investigate two such curves in the next examples.

Example 2.6.10 Finding slopes of tangent lines to a circle.

Find the slope of the tangent line to the circle x2 + y2 = 1 at the point(
1/2,

√
3/2
)
.

Solution. Taking derivatives, we get 2x+2yy′ = 0. Solving for y′ gives:

y′ =
−x

y
.

This is a clever formula. Recall that the slope of the line through the ori-
gin and the point (x, y) on the circle will be y/x. We have found that
the slope of the tangent line to the circle at that point is the opposite
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reciprocal of y/x, namely,−x/y. Hence these two lines are always per-
pendicular.
At the point

(
1/2,

√
3/2
)
, we have the tangent line’s slope as

y′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at
(
1/2,

√
3/2
)
is given in Fig-

ure 2.6.11, along with a thin dashed line from the origin that is perpen-
dicular to the tangent line. (It turns out that all normal lines to a circle
pass through the center of the circle.) −1 −0.5 0.5 1

−1

−0.5

0.5

1
(
1/2,

√
3/2
)

x

y

Figure 2.6.11 The unit circle with its
tangent line at (1/2,

√
3/2)

This section has shown how to find the derivatives of implicitly defined func-
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu-
lar” differentiation.

One hole in our current understanding of derivatives is this: what is the de-
rivative of the square root function? That is,

d

dx

(√
x
)
=

d

dx

(
x1/2

)
= ?

We allude to a possible solution, as we can write the square root function as
a power function with a rational (or, fractional) power. We are then tempted to
apply the Power Rule with Integer Exponents and obtain

d

dx

(
x1/2

)
=

1

2
x−1/2 =

1

2
√
x
.

The trouble with this is that the Power Rule with Integer Exponents was ini-
tially defined only for positive integer powers, n > 0. While we did not justify
this at the time, generally the Power Rule with Integer Exponents is proved us-
ing something called the Binomial Theorem, which deals only with positive in-
tegers. The Quotient Rule allowed us to extend the Power Rule with Integer Ex-
ponents to negative integer powers. Implicit Differentiation allows us to extend
the Power Rule with Integer Exponents to rational powers, as shown below.

Let y = xm/n, where m and n are integers with no common factors (so
m = 2 and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this
explicit function implicitly as yn = xm. Now apply implicit differentiation.

y = xm/n

yn = xm

d

dx
(yn) =

d

dx
(xm)

n · yn−1 · y′ = m · xm−1

y′ =
m

n

xm−1

yn−1
(now substitute xm/n for y)

=
m

n

xm−1

(xm/n)n−1
(apply lots of algebra)

=
m

n
x(m−n)/n

=
m

n
xm/n−1.

The above derivation is the key to the proof extending the Power Rule with
Integer Exponents to rational powers. Using limits, we can extend this once
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more to include all powers, including irrational (even transcendental!) powers,
giving the following theorem.

Theorem 2.6.12 Power Rule for Differentiation.

Let f(x) = xn, where n ̸= 0 is a real number. Then f is differentiable
on its domain, except possibly at x = 0, and f ′(x) = n · xn−1.

This theorem allows us to say the derivative of xπ is πxπ−1.
We now apply this final version of the Power Rule for Differentiation in the

next example, the second investigation of a “famous” curve.

Example 2.6.13 Using the Power Rule.

Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).
Solution. This is a particularly interesting curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling
around inside of a larger circle, as shown in Figure 2.6.14. −20 −10 10 20

−20

−10

10

20
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y

Figure 2.6.14 An astroid, traced out
by a point on the smaller circle as it
rolls inside the larger circle

To find the slope of the astroid at the point (8, 8), we take the derivative
implicitly.

2

3
x−1/3 +

2

3
y−1/3y′ = 0

2

3
y−1/3y′ = −2

3
x−1/3

y′ = −x−1/3

y−1/3

y′ = −y1/3

x1/3
= − 3

√
y

x
.

Plugging in x = 8 and y = 8, we get a slope of−1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.15.
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Figure 2.6.15 An astroid with a tan-
gent line

2.6.2 Implicit Differentiation and the Second Derivative
We can use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find dy

dx , then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.16 Finding the second derivative.

Given x2 + y2 = 1, find d2y
dx2 = y′′.

Solution. We found that y′ = dy
dx = −x/y in Example 2.6.10. To find

y′′, we apply implicit differentiation to y′.

y′′ =
d

dx
(y′)

=
d

dx

(
−x

y

)
(Now use the Quotient Rule.)

= −y · 1− x(y′)

y2
replace y′ with − x/y:



CHAPTER 2. DERIVATIVES 117

= −y − x(−x/y)

y2

= −y + x2/y

y2
.

While this is not a particularly simple expression, it is usable. We can see
that y′′ > 0when y < 0 and y′′ < 0when y > 0. In Section 3.4, we will
see how this relates to the shape of the graph.
Also, if we remember that we are only considering points on the curve
x2 + y2 = 1, then we know that x2 = 1− y2. So we can replace the x2

in the expression for y′′ to get

y′′ = −
y +

(
1− y2

)
/y

y2
= − 1

y3

which is a simpler expression. Recognizing when simplifications like this
are possible is not always easy.

2.6.3 Logarithmic Differentiation
Consider the function y = xx; it is graphed in Figure 2.6.17. It is well-defined
for x > 0 and we might be interested in finding equations of lines tangent and
normal to its graph. How do we take its derivative?

In calculus the expression 00 is
also consideredwell-defined and
equal to 1. This is easily confused
with a limit of the form 00, which
is indeterminate. We skirt the is-
sue here.

0.5 1 1.5 2

1

2

3

4

x

y

Figure 2.6.17 A plot of y = xx

The function is not a power function: it has a “power” of x, not a constant.
It is not an exponential function either: it has a “base” of x, not a constant.

A differentiation technique known as logarithmic differentiation becomes
useful here. The basic principle is this: take the natural log of both sides of an
equation y = f(x), then use implicit differentiation to find y′. We demonstrate
this in the following example.

Example 2.6.18 Using Logarithmic Differentiation.

Given y = xx, use logarithmic differentiation to find y′.
Solution. As suggested above, we start by taking the natural log of both
sides then applying implicit differentiation.

y = xx

ln(y) = ln(xx) (apply logarithm rule)
ln(y) = x ln(x) (now use implicit differentiation)

d

dx
(ln(y)) =

d

dx
(x ln(x))

y′

y
= ln(x) + x · 1

x

y′

y
= ln(x) + 1

y′ = y (ln(x) + 1) (substitute y = xx)
y′ = xx (ln(x) + 1) .

To “test” our answer, let’s use it to find the equation of the tangent line
at x = 1.5. The point on the graph our tangent line must pass through
is
(
1.5, 1.51.5

)
≈ (1.5, 1.837). Using the equation for y′, we find the
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slope as

y′ = 1.51.5 (ln(1.5) + 1) ≈ 1.837(1.405) ≈ 2.582.

Thus the equation of the tangent line is (approximately) y ≈ 2.582(x−
1.5) + 1.837. Figure 2.6.19 graphs y = xx along with this tangent line.

0.5 1 1.5 2

1

2

3

4

(
1.5, 1.51.5

)

x

y

Figure 2.6.19 A graph of y = xx and
its tangent line at x = 1.5

Implicit differentiation proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of functions. In particular, it extended the
Power Rule for Differentiation to rational exponents, which we then extended
to all real numbers. In Section 2.7, implicit differentiation will be used to find
the derivatives of inverse functions, such as y = sin−1(x).
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2.6.4 Exercises

Terms and Concepts

1. In your own words, explain the difference between implicit functions and explicit functions.
2. Implicit differentiation is based on what other differentiation rule?

3. (□ True □ False) Implicit differentiation can be used to find the derivative of y =
√
x.

4. (□ True □ False) Implicit differentiation can be used to find the derivative of y = x3/4.

Problems

Exercise Group. Compute the derivative of the given function.
5. j(w) =

√
w − 1√

w 6. k(y) = 6
√
y + y(

5
6 )

7. p(t) =
√
9 + t2 8. m(w) =

√
w tan(w)

9. m(y) = y1.2 10. f(r) = rπ + r3.8 + π3.8

11. g(w) = w+(−8)√
w

12. h(x) = 6
√
x(cos(x) + ex)

Exercise Group. Find dy
dx using implicit differentiation.

13. x4 + y2 + y = 7 14. x2/5 + y2/5 = 1

15. cos(x) + sin(y) = 1 16.
x

y
= 10

17.
y

x
= 10 18. x2ex + 2y = 5

19. x2 tan(y) = 50 20.
(
3x2 + 2y3

)4
= 2

21.
(
y2 + 2y − x

)2
= 200 22. x2+y

x+y2 = 17

23. sin(x)+y
cos(y)+x = 1 24. ln

(
x2 + y2

)
= e

25. ln
(
x2 + xy + y2

)
= 1

26. Show that dy
dx is the same for each of the following implicitly defined functions.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

Exercise Group. Find the equation of the tangent line to the graph of the implicitly defined function at the indicated
points. As a visual aid, the function is graphed.
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27. On the curve x2/5 + y2/5 = 1.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

(0.1, 0.281)

x

y

(a) At (1, 0).

(b) At (0.1, 0.2811) (which does not exactly
lie on the curve, but is very close).

28. On the curve x4 + y4 = 1.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

(
√
0.6,

√
0.8)

x

y

(a) At (1, 0).

(b) At
(√

0.6,
√
0.8
)
.

29. On the curve (x2 + y2 − 4)3 = 108y2.

−4 −2 2 4

−4

−2

2

4

(2,− 4
√
108)

x

y

(a) At (0, 4).

(b) At
(
2,− 4

√
108
)
.

30. On the curve (x2 + y2 + x)2 = x2 + y2.

−2.5 −2 −1.5 −1 −0.5 0.5

−1

1

(
− 3

4 ,
3
√
3

4

)

x

y

(a) At (0, 1).

(b) At
(
− 3

4 ,
3
√
3

4

)
.
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31. On the curve (x− 2)2 + (y − 3)2 = 9.

2 4 6

2

4

6

(
4+3

√
3

2 , 1.5
)

(
3.5, 6+3

√
3

2

)

x

y

(a) At
(

7
2 ,

6+3
√
3

2

)
.

(b) At
(

4+3
√
3

2 , 3
2

)
.

32. On the curve x2 + y3 + 2xy = 0.

−2 −1 1 2

−2

−1

1

2

(−1, 1)

(
−1, −1−

√
5

2

)

(
−1, −1+

√
5

2

)
x

y

(a) At (−1, 1).

(b) At
(
−1, 1

2 (−1 +
√
5)
)
.

(c) At
(
−1, 1

2 (−1−
√
5)
)
.

Exercise Group. An implicitly defined function is given. Find d2y
dx2 . Note: these are the same functions used in

Exercises 13 through 16.
33. x4 + y2 + y = 7 34. x2/5 + y2/5 = 1

35. cos(x) + sin(y) = 1 36.
x

y
= 10

Exercise Group. Use logarithmic differentiation to find dy
dx , then find the equation of the tangent line at the indicated

x-value.
37. y = (1 + x)1/x at x = 1 38. y = (2x)x

2

at x = 1

39. y =
xx

x+ 1
at x = 1 40. y = xsin(x)+2 at x = π/2

41. y =
x+ 1

x+ 2
at x = 1 42. y =

(x+ 1)(x+ 2)

(x+ 3)(x+ 4)
at x = 0
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2.7 Derivatives of Inverse Functions

Recall that a function y = f(x) is said to be one-to-one if it passes the horizontal
line test; that is, for two different x values x1 and x2, we do not have f(x1) =
f(x2). In some cases the domain of f must be restricted so that it is one-to-one.
For instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one-to-one
on its regular domain, but by restricting f to (0,∞), f is one-to-one.

Now recall that one-to-one functions have inverses. That is, if f is one-to-
one, it has an inverse function, denoted by f−1, such that if f(a) = b, then
f−1(b) = a. The domain of f−1 is the range of f , and vice-versa. For ease of
notation, we set g = f−1 and treat g as a function of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)

)
= x. This gives us a convenient way

to check if two functions are inverses of each other: compose them and if the
result is x (on the appropriate domains), then they are inverses.

When the point (a, b) lies on the graph of f , the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflection of f across the
line y = x. In Figure 2.7.1 we see a function graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relationship, whatever we know about f can quickly be transferred
into knowledge about g.

−1 1 2

−1

1

2

(−0.5, 0.375)

(0.375,−0.5)

(1, 1.5)

(1.5, 1)

x

y

Figure 2.7.1 A function f along with
its inverse f−1. (Note how it does not
matter which function we refer to as
f ; the other is f−1.)

For example, consider Figure 2.7.2 where the tangent line to f at the point
(1, 1.5) is drawn. That line has slope 3. Through reflection across y = x, we can
see that the tangent line to g at the point (1.5, 1) has slope 1/3. Their slopes
are reciprocals. This should make sense since reflecting a line (such as a tangent
line) across the line y = x switches the x and y values. Also consider the point
(0, 0.5) on the graph of f , where the tangent line is horizontal. At the point
(0.5, 0) on g, the tangent line is vertical.

More generally, consider the tangent line to f at the point (a, b). That line
has slope f ′(a). Through reflection across y = x, we can extend our above
observation to say that the tangent line to g at the point (b, a) should have slope
1/f ′(a). This then tells us that g′(b) = 1/f ′(a).

−1 1

−1

1

(−0.5, 0.375)

(0.375,−0.5)

(1, 1.5)

(1.5, 1)

x

y

Figure 2.7.2 Corresponding tangent
lines drawn to f and f−1

The information from these two graphs is summarized in Table 2.7.3 below:

Table 2.7.3

Information about f Information about g = f−1

(1, 1.5) lies on f (1.5, 1) lies on g
Slope of tangent line to

f at x = 1 is 3
Slope of tangent line to
g at x = 1.5 is 1/3

f ′(1) = 3 g′(1.5) = 1/3

We have discovered a relationship between f ′ and g′ in a mostly graphical
way. We can realize this relationship analytically as well. Let y = g(x), where
again g = f−1. We want to find y′. Since y = g(x), we know that f(y) = x.
Using the The Chain Rule and Implicit Differentiation, take the derivative of both
sides of this last equality.

d

dx
(f(y)) =

d

dx
(x)

f ′(y) · y′ = 1

y′ =
1

f ′(y)
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y′ =
1

f ′(g(x))
.

This leads us to the following theorem.

Theorem 2.7.4 Derivatives of Inverse Functions.

Let f be differentiable and one-to-one on an open interval I , where
f ′(x) ̸= 0 for all x in I , let J be the range of f on I , let g be the inverse
function of f , and let f(a) = b for some a in I . Then g is a differentiable
function on J , and in particular,

1.
(
f−1

)′
(b) = g′(b) =

1

f ′(a)
2.
(
f−1

)′
(x) = g′(x) =

1

f ′(g(x))

The results of Theorem2.7.4 are not trivial; the notationmay seemconfusing
at first. Careful consideration, along with examples, should earn understanding.

In the next example we apply Theorem 2.7.4 to the arcsine function.

Example 2.7.5 Finding the derivative of an inverse trigonometric func-
tion.

Let y = arcsin(x) = sin−1(x). Find y′ using Theorem 2.7.4.
Solution. Adopting our previously defined notation, let g(x) =
arcsin(x) and f(x) = sin(x). Thus f ′(x) = cos(x). Applying the theo-
rem, we have

g′(x) =
1

f ′(g(x))

=
1

cos(arcsin(x))
.

This last expression is not immediately illuminating. Drawing a figure
will help, as shown in Figure 2.7.6. Recall that the sine function can be
viewed as taking in an angle and returning a ratio of sides of a right trian-
gle, specifically, the ratio “opposite over hypotenuse.” This means that
the arcsine function takes as input a ratio of sides and returns an angle.
The equation y = arcsin(x) can be rewritten as y = arcsin(x/1); that
is, consider a right triangle where the hypotenuse has length 1 and the
side opposite of the angle with measure y has length x. This means the
final side has length

√
1− x2, using the Pythagorean Theorem.

√
1− x2

1
x

y

Figure 2.7.6 A right triangle defined
by y = sin−1(x/1) with the length
of the third leg found using the
Pythagorean Theorem

Therefore

cos
(
sin−1(x)

)
= cos(y)

=

√
1− x2

1

=
√

1− x2,

resulting in
d

dx
(arcsin(x)) =

1√
1− x2

.

Remember that the input x of the arcsine function is a ratio of a side of a
right triangle to its hypotenuse; the absolute value of this ratio will never be
greater than 1. Therefore the inside of the square root will never be negative.
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In order tomake y = sin(x)one-to-one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin(x) is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the derivative of
the arcsine function is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach vertical lines with undefined slopes.

−π
2 −π

4
π
4

π
2

−1

1

y
=
sin
(x
)

(
π
3 ,

√
3
2

)

x

y

−2 −1 1 2

−π
2

−π
4

π
4

π
2

y
=
sin

−1 (
x)

(√
3
2 , π

3

)
x

y

Figure 2.7.7 Graphs of sin(x) and sin−1(x) along with corresponding tangent
lines

In Figure 2.7.7 we see f(x) = sin(x) and f−1(x) = sin−1(x) graphed on
their respective domains. The line tangent to sin(x) at the point

(
π/3,

√
3/2
)

has slope cos(π)/3 = 1/2. The slope of the corresponding point on sin−1(x),
the point

(√
3/2, π/3

)
, is

1√
1−

(√
3/2
)2 =

1√
1− 3/4

=
1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a function and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederivatives of all the inverse trigono-
metric functions. In Table 2.7.8 we show the restrictions of the domains of the
standard trigonometric functions that allow them to be invertible.

Table 2.7.8 Domains and ranges of the trigonometric and inverse trigonometric
functions

Function Domain Range
sin(x) [−π/2, π/2] [−1, 1]

sin−1(x) [−1, 1] [−π/2, π/2]

cos(x) [0, π] [−1, 1]

cos−1(x) [−1, 1] [0, π]

tan(x) (−π/2, π/2) (−∞,∞)

tan−1(x) (−∞,∞) (−π/2, π/2)

csc(x) [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞)

csc−1(x) (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec(x) [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞)

sec−1(x) (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot(x) (0, π) (−∞,∞)

cot−1(x) (−∞,∞) (0, π)



CHAPTER 2. DERIVATIVES 125

Theorem 2.7.9 Derivatives of Inverse Trigonometric Functions.

The inverse trigonometric functions are differentiable on all open sets
contained in their domains (as listed in Table 2.7.8) and their derivatives
are as follows:

1.
d

dx

(
sin−1(x)

)
=

1√
1− x2

2.
d

dx

(
cos−1(x)

)
= − 1√

1− x2

3.
d

dx

(
tan−1(x)

)
=

1

1 + x2

4.
d

dx

(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

5.
d

dx

(
sec−1(x)

)
=

1

|x|
√
x2 − 1

6.
d

dx

(
cot−1(x)

)
= − 1

1 + x2

Note how each derivative is the negative of the derivative of its “co” function.
Because of this, derivatives of sin−1(x), tan−1(x), and sec−1(x) are used almost
exclusively throughout this text.

In Section 2.3, we stated without proof or explanation that d
dx (ln(x)) =

1
x .

We can justify that now using Theorem 2.7.4, as shown in the example.

Example 2.7.10 Finding the derivative of y = ln(x).

Use Theorem 2.7.4 to compute d
dx (ln(x)).

Solution. View y = ln(x) as the inverse of y = ex. Therefore, using
our standard notation, let f(x) = ex and g(x) = ln(x). We wish to find
g′(x). Theorem 2.7.4 gives:

g′(x) =
1

f ′(g(x))

=
1

eln(x)

=
1

x
.

In this chapter we have defined the derivative, given rules to facilitate its
computation, and given the derivatives of a number of standard functions. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.11 Glossary of Derivatives of Elementary Functions.

Let f and g be differentiable functions, and let a, c and n be real numbers, a > 0, n ̸= 0.
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1.
d

dx
(c) = 0

2.
d

dx
(x) = 1

3.
d

dx
(xn) = nxn−1

4.
d

dx
(f(x)± g(x)) = f ′(x)± g′(x)

5.
d

dx
(c · f(x)) = c · f ′(x)

6.
d

dx
(f(x) · g(x)) = f ′(x) ·g(x)+f(x) ·g′(x)

7.
d

dx
(f(g(x))) = f ′(g(x)) · g′(x)

8.
d

dx

(
f(x)

g(x)

)
=

f ′(x) · g(x)− f(x) · g′(x)
(g(x))2

9.
d

dx
(ex) = ex

10.
d

dx
(ln(x)) =

1

x

11.
d

dx
(ax) = ln(a) · ax

12.
d

dx
(loga x) =

1

ln(a)
· 1
x

13.
d

dx
(sin(x)) = cos(x)

14.
d

dx
(cos(x)) = − sin(x)

15.
d

dx
(tan(x)) = sec2(x)

16.
d

dx
(csc(x)) = − csc(x) cot(x)

17.
d

dx
(sec(x)) = sec(x) tan(x)

18.
d

dx
(cot(x)) = − csc2(x)

19.
d

dx

(
sin−1(x)

)
=

1√
1− x2

20.
d

dx

(
cos−1(x)

)
= − 1√

1− x2

21.
d

dx

(
tan−1(x)

)
=

1

1 + x2

22.
d

dx

(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

23.
d

dx

(
sec−1(x)

)
=

1

|x|
√
x2 − 1

24.
d

dx

(
cot−1(x)

)
= − 1

1 + x2
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2.7.1 Exercises

Terms and Concepts

1. (□ True □ False) Every function has an inverse.
2. In your own words explain what it means for a function to be “one-to-one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what can be said about y = f−1(x)?

Problems

Exercise Group. Verify that the given functions are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and g(x) =
√
x− 2− 3, x ≥ 2

7. f(x) = 3
x−5 , x ̸= 5 and g(x) = 3+5x

x , x ̸= 0

8. f(x) = x+1
x−1 , x ̸= 1 and g(x) = f(x)

Exercise Group. An invertible function f(x) is given along with a point that lies on its graph. Using Theorem 2.7.4,
evaluate

(
f−1

)′
(x) at the indicated value.

9. The point (9, 65) is on the graph of f(x) = 7x+ 2. Find
(
f−1

)′
(65).

10. The point (−6, 51) is on the graph of f(x) = x2 − 2x+ 3, x ≥ 1. Find
(
f−1

)′
(51).

11. The point
(

π
24 ,

√
3
2

)
is on the graph of f(x) = cos(4x), 0 ≤ x ≤ π

4 . Find
(
f−1

)′ (√
3
2

)
.

12. The point (3, 576) is on the graph of f(x) = x3 − 27x2 + 267x− 9. Find
(
f−1

)′
(576).

13. The point
(
2, 1

5

)
is on the graph of f(x) = 1

1+x2 , x ≥ 0. Find
(
f−1

)′ ( 1
5

)
.

14. The point (0, 3) is on the graph of f(x) = 3e4x. Find
(
f−1

)′
(3).

Exercise Group. Compute the derivative of the given function.
15. h(w) = cos−1(4w) 16. h(x) = csc−1(7x)

17. j(r) = tan−1(2r) 18. k(w) = w cos−1(w)

19. p(x) = tan(x) cos−1(x) 20. f(t) = ln(t)et

21. m(z) = tan−1(z)
sin−1(z)

22. f(x) = tan( 4
√
x)

23. g(q) = csc
(

1
q3

)
24. g(z) = sin

(
sin−1(z)

)
Exercise Group. Compute the derivative of the given function in two ways:

(a) By simplifying first, then taking the derivative, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1(x)) 26. f(x) = tan−1(tan(x))

27. f(x) = sin(cos−1(x)) 28. f(x) = sin(2 sin−1(x))

Exercise Group. Find the equation of the line tangent to the graph of f at the indicated x value.
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29. f(x) = sin−1(x) at x = −
√
3

2 30. f(x) = cos−1(2x) at x =
√
3
4



Chapter 3

The Graphical Behavior of Func-
tions

Our study of limits led to continuous functions, a certain class of functions that
behave in a particularly nice way. Limits then gave us an even nicer class of
functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor-
mation that continuous and differentiable functions provide.

3.1 Extreme Values

Given any quantity described by a function, we are often interested in the largest
and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 3.1.1 Extreme Values.

Let f be defined on an interval I containing c.

1. f(c) is theminimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I .

2. f(c) is themaximum (also, absolutemaximum) of f on I if f(c) ≥
f(x) for all x in I .

Themaximum andminimum values are the extreme values, or extrema,
of f on I .

Note: The extreme values of a
function are “y” values, values
the function attains, not the in-
put values. However we often
say there is an extreme value at
certain input values. For exam-
ple, “sin(x) has a maximum at
π/2, and themaximumof sin(x)
is 1.”

Consider Figure 3.1.2. The function displayed in Figure 3.1.2(a) has a max-
imum, but no minimum, as the interval over which the function is defined is
open. In Figure 3.1.2(b), the function has a minimum, but no maximum; there
is a discontinuity in the “natural” place for the maximum to occur. Finally, the
function shown in Figure 3.1.2(c)has both amaximumand aminimum; note that
the function is continuous and the interval on which it is defined is closed.

129
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Figure 3.1.2 Graphs of functions with and without extreme values
It is possible for discontinuous functions defined on an open interval to have

both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al-
ways have a maximum and minimum value.

Theorem 3.1.3 The Extreme Value Theorem.

Let f be a continuous function defined on a closed interval I = [a, b].
Then f has both a maximum and minimum value on I .

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. After the example, we will draw on lessons
learned to form a more general and powerful method for finding extreme val-
ues.

Example 3.1.4 Approximating extreme values.

Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 3.1.5.
Approximate the extreme values of f . −2 2 4

−20

20

(−1,−11)

(0, 0)

(3,−27)

(5, 25)

x

y

Figure 3.1.5 A graph of f(x) = 2x3−
9x2 as in Example 3.1.4

Solution. The graph is drawn in such a way to draw attention to certain
points. It certainly seems that the smallest y-value is −27, found when
x = 3. It also seems that the largest y-value is 25, found at the endpoint
of I , x = 5. We use the word seems, for by the graph alone we cannot
be sure the smallest value is not less than −27. Since the problem asks
for an approximation, we approximate the extreme values to be 25 and
−27.

Notice how the minimum value came at “the bottom of a hill,” and the maxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the location of an extreme value for some interval is important, leading us to
a definition of a relative maximum. In short, a “relative max” is a y-value that’s
the largest y-value “nearby.”

Definition 3.1.6 Relative Minimum and Relative Maximum.

Let f be defined on an interval I containing c.

1. If there is a δ > 0 such that f(c) ≤ f(x) for all x in I where
|x− c| < δ, then f(c) is a relative minimum of f . We also say
that f has a relative minimum at (c, f(c)).

2. If there is a δ > 0 such that f(c) ≥ f(x) for all x in I where
|x− c| < δ, then f(c) is a relative maximum of f . We also say
that f has a relative maximum at (c, f(c)).



CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 131

The relative maximum and minimum values comprise the relative ex-
trema of f .

AlternativeVocabulary. The terms
localminimum and localmaximum
are often used as synonyms for
relativeminimum and relativemax-
imum.

As itmakes intuitive sense that
an absolute maximum is also a
relativemaximum, Definition3.1.6
allows a relativemaximum to oc-
cur at an interval’s endpoint.

We briefly practice using these definitions.

Example 3.1.7 Approximating relative extrema.

Consider f(x) = (3x4 − 4x3 − 12x2 + 5)/5, as shown in Figure 3.1.8.
Approximate the relative extrema of f . At each of these points, evaluate
f ′.

−2 −1 1 2 3

−6

−4

−2

2

4

6

x

y

Figure 3.1.8 A graph of f(x) =
(3x4 − 4x3 − 12x2 + 5)/5 as in Ex-
ample 3.1.7

Solution. We still do not have the tools to exactly find the relative ex-
trema, but the graph does allow us to make reasonable approximations.
It seems f has relative minima at x = −1 and x = 2, with values of
f(−1) = 0 and f(2) = −5.4. It also seems that f has a relative maxi-
mum at the point (0, 1).
We approximate the relative minima to be 0 and−5.4; we approximate
the relative maximum to be 1.
It is straightforward to evaluate f ′(x) = 1

5

(
12x3 − 12x2 − 24x

)
at x =

0, 1 and 2. In each case, f ′(x) = 0.

Example 3.1.9 Approximating relative extrema.

Approximate the relative extrema of f(x) = (x − 1)2/3 + 2, shown in
Figure 3.1.10. At each of these points, evaluate f ′.

−0.5 0.5 1 1.5 2 2.5

1

2

3

x

y

Figure 3.1.10 A graph of f(x) = (x−
1)2/3 + 2 as in Example 3.1.9

Solution. The figure implies that f does not have any relative maxima,
but has a relative minimum at (1, 2). In fact, the graph suggests that not
only is this point a relative minimum, y = f(1) = 2 is the minimum
value of the function.
We compute f ′(x) = 2

3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading
to a definition and a theorem.

Definition 3.1.11 Critical Numbers and Critical Points.

Let f be defined at c. The value c is a critical number (or critical value)
of f if f ′(c) = 0 or f ′(c) is not defined.
If c is a critical number of f , then the point (c, f(c)) is a critical point of
f .

In this text we use “critical num-
ber” and “critical value” interchange-
ably. Other textbooks reserve the
term critical value for the func-
tion value f(c), when c is a criti-
cal number.

Theorem 3.1.12 Relative Extrema and Critical Points.

Let a function f be defined on an open interval I containing c, and let
f have a relative extremum at the point (c, f(c)). Then c is a critical
number of f .

Be careful to understand that this theorem states “Relative extrema on open
intervals occur at critical points.” It does not say “All critical numbers produce
relative extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straightforward to determine that x = 0 is a critical number of f . However, f
has no relative extrema, as illustrated in Figure 3.1.13.
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Figure 3.1.13 A graph of f(x) = x3

which has a critical value ofx = 0, but
no relative extrema

Theorem3.1.3 states that a continuous functionon a closed intervalwill have
both an absolute maximum and an absolute minimum. Common sense tells us
“extrema occur either at the endpoints or somewhere in between.” It is easy
to check for extrema at endpoints, but there are infinitely many points to check
that are “in between.” Theorem 3.1.12 tells us we need only check at the critical
points that are in between the endpoints. We combine these concepts to offer
a strategy for finding extrema.

Key Idea 3.1.14 Finding Extrema on a Closed Interval.

Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the critical numbers of f in [a, b].

3. Evaluate f at each critical number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We practice these ideas in the next examples.

Example 3.1.15 Finding extreme values.

Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed
in Figure 3.1.16.

0.5 1 1.5 2 2.5 3

10

20

30

40

x

y

Figure 3.1.16 A graph of f(x) =
2x3 + 3x2 − 12x on [0, 3] as in Exam-
ple 3.1.15

Solution. We follow the steps outlined in Key Idea 3.1.14. We first
evaluate f at the endpoints:

f(0) = 0 f(3) = 45.

Next, we find the critical values of f on [0, 3]. f ′(x) = 6x2 +6x− 12 =
6(x+2)(x−1); therefore the critical values of f are x = −2 and x = 1.
Since x = −2 does not lie in the interval [0, 3], we ignore it. Evaluating
f at the only critical number in our interval gives: f(1) = −7.
Figure 3.1.17 gives f evaluated at the “important” x values in [0, 3]. We
can easily see the maximum and minimum values of f : the maximum
value is 45 and the minimum value is−7.

x f(x)

0 0

1 −7

3 45

Figure 3.1.17 Finding the extreme val-
ues of f(x) = 2x3 + 3x2 − 12x in
Example 3.1.15

Note that all this was done without the aid of a graph; this work followed an
analytic algorithm and did not depend on any visualization. Figure 3.1.16 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We practice again.

Example 3.1.18 Finding extreme values.

Find the maximum and minimum values of f on [−4, 2], where

f(x) =

{
(x− 1)2 x ≤ 0

x+ 1 x > 0
.

Solution. Here f is piecewise-defined, but we can still apply Key
Idea 3.1.14 as it is continuous on [−4, 2] (one should check to verify that
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lim
x→0

f(x) = f(0)).
Evaluating f at the endpoints gives:

f(−4) = 25 f(2) = 3.

We now find the critical numbers of f . We have to define f ′ in a piece-
wise manner; it is

f ′(x) =

{
2(x− 1) x < 0

1 x > 0
.

Note thatwhile f is defined for all of [−4, 2], f ′ is not, as the derivative of
f does not exist when x = 0. (From the left, the derivative approaches
−2; from the right the derivative is 1.) Thus one critical number of f is
x = 0.
We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0,
f ′(x) is also never 0, so we find no critical values from setting f ′(x) = 0.
So we have three important x-values to consider: x = −4, 2 and 0. Eval-
uating f at each gives, respectively, 25, 3 and 1, shown in Figure 3.1.19.
Thus the absolute minimum of f is 1, the absolute maximum of f is 25.
Our answer is confirmed by the graph of f in Figure 3.1.20.

x f(x)

−4 25

0 1

2 3

Figure 3.1.19 Finding the extreme
values of a piecewise-defined
function in Example 3.1.18
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Figure 3.1.20 A graph of f(x) on
[−4, 2] as in Example 3.1.18

Example 3.1.21 Finding extreme values.

Find the extrema of f(x) = cos
(
x2
)
on [−2, 2].

Solution. We again use Key Idea 3.1.14. Evaluating f at the endpoints
of the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536. We now find
the critical values of f .
Applying the The Chain Rule, we find f ′(x) = −2x sin

(
x2
)
. Set f ′(x) =

0 and solve for x to find the critical values of f .
We have f ′(x) = 0 when x = 0 and when sin

(
x2
)
. In general,

sin(t) = 0 when t = . . . − 2π,−π, 0, π, . . . Thus sin
(
x2
)
= 0 when

x2 = 0, π, 2π, . . . (x2 is always nonnegative so we ignore −π, etc.) So
sin
(
x2
)
= 0 when x = 0,±

√
π,±

√
2π, . . .. The only values to fall in

the given interval of [−2, 2] are 0 and±
√
π, where

√
π ≈ 1.77.

We again construct a table of important values in Figure 3.1.22. In this
example we have five values to consider: x = 0,±2,±

√
π. From the

table it is clear that themaximumvalue of f on [−2, 2] is 1; theminimum
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value is−1. The graph in Figure 3.1.23 confirms our results.

x f(x)

−2 −0.65

−
√
π −1

0 1√
π −1

2 −0.65

Figure 3.1.22 Finding the extrema
of f(x) = cos

(
x2
)
in Exam-

ple 3.1.21
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Figure 3.1.23 A graph of f(x) =
cos
(
x2
)
on [−2, 2] as in Exam-

ple 3.1.21

We consider one more example.

Example 3.1.24 Finding extreme values.

Find the extreme values of f(x) =
√
1− x2.

Solution. A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1− x2 ≥ 0; thus the domain
of f is [−1, 1]. Evaluating f at either endpoint returns 0.

−1 −0.5 0.5 1
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−0.5

0.5
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Figure 3.1.25 A graph of f(x) =√
1− x2 on [−1, 1] as in Exam-

ple 3.1.24

x f(x)

−1 0

0 1

1 0

Figure 3.1.26 Finding the extrema
of the half-circle in Example 3.1.24

Using the The Chain Rule, we find f ′(x) = −x
/√

1− x2. The critical
points of f are found when f ′(x) = 0 or when f ′ is undefined. It is
straightforward to find that f ′(x) = 0 when x = 0, and f ′ is undefined
when x = ±1, the endpoints of the interval (which are in the domain of
f .) The table of important values is given in Figure 3.1.26. Themaximum
value is 1, and the minimum value is 0.

Circle Revisited. We implicitly found
the derivative of x2 + y2 = 1,
the unit circle, in Section 2.6 Ex-
ample 2.6.10 as dy

dx = −x/y. In
Example 3.1.24, half of the unit
circle is given as y = f(x) =√
1− x2.
We found f ′(x) = −x

/√
1− x2.

Recognize that the denominator
of this fraction is y; that is, we
again found f ′(x) = dy

dx = −x/y.

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In Section 3.2, we further our study of the information we can
glean from “nice” functions with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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3.1.1 Exercises

Terms and Concepts

1. Describe what an “extreme value” of a function is in your own words.
2. Sketch the graph of a function f on (−1, 1) that has both a maximum and minimum value.

3. Describe the difference between absolute and relative maxima in your own words.
4. Sketch the graph of a function f where f has a relative maximum at x = 1 and f ′(1) is undefined.

5. (□ True □ False) If c is a critical value of a function f , then f has either a relative maximum or relative
minimum at x = c.

6. Fill in the blanks: The critical points of a function f are found where f ′(x) is equal to or where f ′(x)
is .

Problems

Exercise Group. Identify each of the marked points as being an absolute maximum or minimum, a relative maximum
or minimum, or none of the above.

7.

1 2 3 4 5 6

−2

2

A

D

B

C
E

F

G

x

y
8.

1 2 3 4 5

−2

−1

1

2

A

B

C

D

E

x

y

Exercise Group. Evaluate f ′(x) at the points indicated in the graph.

9. f(x) = 2
x2+1

−4 −2 2 4

1

2
(0, 2)

x

y
10. f(x) = x2

√
6− x2

−3 −2 −1 1 2 3

2

4

6

(0, 0)

(2, 4
√
2)

x

y
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11. f(x) = sin(x)

1 2 3 4 5 6

−1

1
(π/2, 1)

(3π/2,−1)

x

y
12. f(x) = x2

√
4− x

−2 −1 1 2 3 4

2

4

6

8

10

(0, 0)

(
16
5 , 512

25
√
5

)

(4, 0) x

y

13. f(x) = 1 + (x−2)
2
3

x

2 4 6 8 10

2

4

6

(2, 1)

(
6, 1 +

3√2
3

)

x

y

14. f(x) = 3
√
x4 − 2x2 + 1

−2 −1 1 2

1

2

3

(1, 0)(−1, 0) x

y

15. f(x) =

{
x2, x ≤ 0

x5, x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)

x

y

16. f(x) =

{
x2, x ≤ 0

x, x > 0

−1 −0.5 0.5 1

−0.5

0.5

1

(0, 0)

x

y

Exercise Group. Find the extreme values of the function on the given interval.
17. f(x) = x2 + 2x− 1 on [−5, 1] 18. f(x) = x3 +

(
3
2

)
x2 − 18x− 6 on [0, 3]

19. f(x) = 4 cos(x) on
[
3π
4 , 7π

6

]
20. f(x) = x6

√
4− x2 on [−2, 2]

21. f(x) = x+ 2
x on [1, 4] 22. f(x) = x2

x2+7 on [−2, 2]

23. f(x) = ex cos(x) on [0, π] 24. f(x) = ex sin(x) on [0, π]
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25. f(x) = ln(x)
x2 on [1, 7] 26. f(x) = x(

3
4 ) − x3 on [0, 2]
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3.2 The Mean Value Theorem

We motivate this section with the following question: Suppose you leave your
house and drive to your friend’s house in a city 100miles away, completing the
trip in two hours. At any point during the trip do you necessarily have to be going
50miles per hour?

In answering this question, it is clear that the average speed for the entire
trip is 50mph (i.e. 100miles in 2 hours), but the question is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50mph? The answer, under some very reasonable assump-
tions, is “yes.”

Let’s now see why this situation is in a calculus text by translating it into
mathematical symbols.

First assume that the function y = f(t) gives the distance (in miles) traveled
from your home at time t (in hours) where 0 ≤ t ≤ 2. In particular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line connecting the starting
and ending points (0, f(0)) and (2, f(2)) is therefore

∆f

∆t
=

f(2)− f(0)

2− 0

=
100− 0

2
= 50mph.

The slope at any point on the graph itself is given by the derivative f ′(t). So,
since the answer to the question above is “yes,” this means that at some time
during the trip, the derivative takes on the value of 50mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some time 0 ≤ c ≤ 2.
How about more generally? Given any function y = f(x) and a range a ≤

x ≤ b does the value of the derivative at some point between a and b have to
match the slope of the secant line connecting the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equation f ′(c) = f(b)−f(a)

b−a have to hold for some
a < c < b?

Let’s look at two functions in an example.

Example 3.2.1 Comparing average and instantaneous rates of change.

Consider functions

f1(x) =
1

x2
f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.2.2. Both functions have a
value of 1 at a and b. Therefore the slope of the secant line connecting
the end points is 0 in each case. But if you look at the plots of each, you
can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1]
such that

f ′(c) =
f(1)− f(−1)

1− (−1)
= 0.
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(a) A graph of f1(x) = 1/x2
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(b) A graph of f2(x) = |x|

Figure 3.2.2 Graphs of two “misbehaving” functions

Sowhatwent “wrong”? Itmay not be surprising to find that the discontinuity
of f1 and the corner of f2 play a role. If our functions had been continuous and
differentiable, would we have been able to find that special value c? This is our
motivation for the following theorem.

Theorem 3.2.3 The Mean Value Theorem of Differentiation.

Let y = f(x) be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the functions in Example 3.2.1 fail are indeed that
f1 has a discontinuity on the interval [−1, 1] and f2 is not differentiable at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.4 Rolle’s Theorem.

Let f be continuous on [a, b] and differentiable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

Consider Figure 3.2.5 where the graph of a function f is given, where f(a) =
f(b). It should make intuitive sense that if f is differentiable (and hence, con-
tinuous) that there would be a value c in (a, b) where f ′(c) = 0; that is, there
would be a relative maximum or minimum of f in (a, b). Rolle’s Theorem guar-
antees at least one; there may be more.
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8
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y

Figure 3.2.5 A graph of f(x) = x3 −
5x2 + 3x + 5, where f(a) = f(b).
Note the existence of c, where a <
c < b, where f ′(c) = 0.

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem. Let f be differentiable on (a, b) where f(a) = f(b).
We consider two cases.

Case. Consider the case when f is constant on [a, b]; that is, f(x) = f(a) =
f(b) for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least
one value c in (a, b) where f ′(c) = 0.
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Case. Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at
the endpoints or at a critical value in (a, b). Since f(a) = f(b) and f is not
constant, it is clear that the maximum and minimum cannot both be found at
the endpoints. Assume, without loss of generality, that the maximum of f is
not found at the endpoints. Therefore there is a c in (a, b) such that f(c) is the
maximum value of f . By Theorem 3.1.12, cmust be a critical number of f ; since
f is differentiable, we have that f ′(c) = 0, completing the proof of the theorem.

■
We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem. Define the function

g(x) = f(x)− f(b)− f(a)

b− a
x.

We know g is differentiable on (a, b) and continuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)− g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c in (a, b) such
that g′(c) = 0. But note that

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
;

hence
f ′(c) =

f(b)− f(a)

b− a
,

which is what we sought to prove. ■
Going back to the very beginning of the section, we see that the only assump-

tionwewould need about our distance function f(t) is that it be continuous and
differentiable for t from 0 to 2 hours (both reasonable assumptions). By the The-
orem 3.2.3, we are guaranteed a time during the trip where our instantaneous
speed is 50mph. This fact is used in practice. Some law enforcement agencies
monitor traffic speeds while in aircraft. They do not measure speed with radar,
but rather by timing individual cars as they pass over lines painted on the high-
way whose distances apart are known. The officer is able to measure the aver-
age speed of a car between the painted lines; if that average speed is greater
than the posted speed limit, the officer is assured that the driver exceeded the
speed limit at some time.

Note that the Theorem 3.2.3 is an existence theorem. It states that a special
value c exists, but it does not give any indication about how to find it. It turns
out that when we need the Theorem 3.2.3, existence is all we need.

Example 3.2.6 Using the Mean Value Theorem.

Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that satisfies
the Theorem 3.2.3.
Solution. The average rate of change of f on [−3, 3] is:

f(3)− f(−3)

3− (−3)
=

47− (−37)

6

=
84

6
= 14.

We want to find c such that f ′(c) = 14. We find f ′(x) = 3x2 + 5. We
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set this equal to 14 and solve for x.

f ′(x) = 14

3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found two values c in [−3, 3] where the instantaneous rate of
change is equal to the average rate of change; the Theorem 3.2.3 guar-
anteed at least one. In Figure 3.2.7, f is graphedwith a line representing
the average rate of change; the lines tangent to f at x = ±

√
3 are also

given. Note how these lines are parallel (i.e., have the same slope) to
the secant line.

−3 −2 −1 1 2 3

−40

−20

20

40

x

y

Figure 3.2.7Demonstrating theMean
Value Theorem in Example 3.2.6

While the Theorem 3.2.3 has practical use (for instance, the speed monitor-
ing application mentioned before), it is mostly used to advance other theory.
We will use it in the next section to relate the shape of a graph to its derivative.

Before ending this section, wegive two important consequences of theMean
Value Theorem. Each of these consequences has important applications tomath-
ematical theory, and can be easily understood in the context of the position and
velocity of objects in motion.

First, we recall that the derivative of any constant function is zero. Is the
converse true? That is, are constant functions the only ones whose derivative is
zero? The Mean Value Theorem says yes. This officially establishes our intuition
about objects in (or, actually, not in) motion: if the velocity of an object is 0, then
the object’s position is unchanged; it is constant. Second, if two functions f and
g have the same derivative, what does this tell us about f and g? The Mean
Value Theorem implies that these functions must only differ by a constant; that
is, f(x) = g(x) + C, for some constant C.

This has an application to motion that is not intuitive to some. Suppose two
objects start moving while 5 ft apart, and always move with the same velocity.
Then the two objects will always be 5 ft apart. (If two pennies are dropped from
the 30th and 31st stories of a tall building at the same time, they will always be
1 story apart as they fall.)

Theorem 3.2.8 Consequences of the Mean Value Theorem.

Let f , g, and h be differentiable (and therefore continuous) functions on
an in terval I .

1. If f ′(x) = 0 for all x in the interval I , then f is a constant function
on I .

2. If g′(x) = g′(x) for all x in I , then there is a constant C such that
g(x) = h(x) + C for all x in I .

Proof.

1. Choose any two points a and b in the interval I . By the Mean Value Theo-
rem, we must have

f ′(c) =
f(b)− f(a)

b− a

for some c between a and b. But f ′(c) = 0, so f(b) − f(a) = 0, or
f(a) = f(b). Since a and b were any two points, this tells us that f must
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have the same value at every point; that is, f must be constant.

2. Suppose g′(x) = h′(x) for each point x in I , and consider the function
f(x) = g(x)− h(x). By the difference rule for derivatives, we have

f ′(x) = g′(x)− h′(x) = 0,

since g′(x) = h′(x).

By the previous result, this means that f(x) is a constant function. That is,
f(x) = C for each x in I , giving us g(x)−h(x) = C, or g(x) = h(x)+C.

■



CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 143

3.2.1 Exercises

Terms and Concepts

1. Explain in your own words what the Mean Value Theorem states.
2. Explain in your own words what Rolle’s Theorem states.

Problems

Exercise Group. A function f(x) and interval [a, b] are given. Check if Rolle’s Theorem can be applied to f on [a, b];
if so, find c in (a, b) such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1] 4. f(x) = 6x on [−1, 1]

5. f(x) = x2 + x− 6 on [−3, 2] 6. f(x) = x2 + x− 2 on [−3, 2]

7. f(x) = x2 + x on [−2, 2] 8. f(x) = sin(x) on [π/6, 5π/6]
9. f(x) = cos(x) on [0, π] 10. f(x) = 1

x2−2x+1 on [0, 2]

Exercise Group. A function f(x) and interval [a, b] are given. Check if The Mean Value Theorem of Differentiation
can be applied to f on [a, b]; if so, find c in (a, b) guaranteed by the Mean Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2] 12. f(x) = 5x2 − 6x+ 8 on [0, 5]

13. f(x) =
√
9− x2 on [0, 3] 14. f(x) =

√
25− x on [0, 9]

15. f(x) = x2−9
x2−1 on [0, 2] 16. f(x) = ln(x) on [1, 5]

17. f(x) = tan(x) on [−π/4, π/4] 18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2]

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2] 20. f(x) = sin−1(x) on [−1, 1]
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3.3 Increasing and Decreasing Functions

Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these termsmathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

1 2 3

1

2

3

4

5

x

y

Figure 3.3.1 A graph of a function f
used to illustrate the concepts of in-
creasing and decreasing

Definition 3.3.2 Increasing and Decreasing Functions.

Let f be a function defined on an interval I .

1. f is increasing on I if for every a < b in I , f(a) < f(b).

2. f is decreasing on I if for every a < b in I , f(a) > f(b).

Caution: the definition we give
in Definition 3.3.2 is not the one
youwill find in formalmathemat-
ics textbooks. Such texts define
a function to be increasing on I
if, for every a < b in I , f(a) ≤
f(b). (Notice how equality is al-
lowed.) The condition f(a) <
f(b) is then referred to as strictly
increasing. Similar definitions are
made for decreasing and strictly
decreasing.

While this definition has cer-
tain technical advantages in a proof-
based course, it is also concep-
tually counterintuitive for many
students. For example, with this
definition a constant functionwould
be both increasing and decreas-
ing!

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, wemight want to knowwhen the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increas-
ing, differentiable function on an open interval I , such as the one shown in Fig-
ure 3.3.3, and let a < b be given in I . The secant line on the graph of f from
x = a to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a).

But note, since b > a and f is increasing, f(b) > f(a). And these facts
imply b− a > 0 and f(b)− f(a) > 0. Therefore:

f(b)− f(a)

b− a
> 0

=⇒ slope of the secant line > 0

=⇒ Average rate of change of f
on [a, b] is > 0.

0.5 1 1.5 2
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(a, f(a))

(b, f(b))
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y

Figure 3.3.3 Examining the secant line of an increasing function
We have shownmathematically whatmay have already been obvious: when

f is increasing, its secant lines will have a positive slope. Now recall that the
Mean Value Theorem guarantees that there is a number c, where a < c < b,
such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I , we strongly imply that f ′(x) > 0 on
I . A similar statement can be made for decreasing functions.
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Our above logic can be summarized as “If f is increasing, then f ′ is probably
positive.” Theorem 3.3.4 below turns this around by stating “If f ′ is positive,
then f is increasing.” This leads us to a method for finding when functions are
increasing and decreasing.

Theorem 3.3.4 Test For Increasing/Decreasing Functions.

Let f be a continuous function on [a, b] and differentiable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

The conclusions of Item 1 and Item 2 also hold if f ′(c) = 0 for a finite
number of nonadjacent values of c in I .

Let f bedifferentiable on an interval I and leta and bbe in I where f ′(a) > 0
and f ′(b) < 0. If f ′ is continuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value c between a and bwhere f ′(c) = 0. (It
turns out that this is still true even if f ′ is not continuous on [a, b].) This leads us
to the following method for finding intervals on which a function is increasing or
decreasing.

Key Idea 3.3.5 Finding Intervals onWhich f is Increasing or Decreasing.

Let f be a continuous functionon an interval I . To find intervals onwhich
f is increasing and decreasing:

1. If not stated, find the domain of f , D. Begin a number line that
only includesD.

2. Find the critical values of f . That is, find all c in the domain of
f where f ′(c) = 0 or f ′ is not defined. (Note: Any values of c
not in the domain of f where f ′(c) is undefined should already
be marked on your number line from Step 1).

3. Use the critical values to divideD into subintervals.

4. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

Note that although Theorem3.3.4 allows us to use determine that a func-
tion is increasing or decreasing on a closed interval, it is conventional to
state the intervals of increase and decrease as open intervals. Wewill fol-
low this convention in the examples that follow, but it is also acceptable
to answer using closed intervals.
In particular, one should note the following:

• If f ′(x) > 0 on (a, b) and on (b, c), with f ′(b) = 0, then we
should say that f is increasing on (a, c) (or on [a, c]) — the zero of
the derivative should be included.

• If f ′(x) > 0 on (a, b) and on (b, c), but f(b) is undefined (or f is
discontinuous at b), then we should not include the point b in our
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interval. Instead, we say that f is increasing on (a, b) and (b, c), or
on [a, b) and (b, c].

We demonstrate using this process in the following example.

Example 3.3.6 Finding intervals of increasing/decreasing.

Let f(x) = x3 + x2 − x + 1. Find intervals on which f is increasing or
decreasing.
Solution. Since an interval was not specified for us to consider, using
Key Idea 3.3.5, the domain of f is R or (−∞,∞). Next, we find the
critical values of f . We have f ′(x) = 3x2 + 2x− 1 = (3x− 1)(x+ 1),
so f ′(x) = 0 when x = −1 and when x = 1/3. f ′ is never undefined.
We thus break the domain (in this case the (−∞,∞)) into three subin-
tervals based on the two critical values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.3.7.

−1 1/3

Figure 3.3.7 Number line for f in Ex-
ample 3.3.6

We now pick a value p in each subinterval and find the sign of f ′(p). All
we care about is the sign, so we do not actually have to fully compute
f ′(p); pick “nice” values that make this simple.

Subinterval 1:
(−∞,−1)

We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2+2(−2)−
1 = 7 > 0. We conclude that f is increasing
on (−∞,−1).
Note we can arrive at the same conclusion
without computation. For instance, we could
choose p = −100. The first term in f ′(−100),
i.e., 3(−100)2 is clearly positive and very large.
The other terms are small in comparison, so
we know f ′(−100) > 0. All we need is the
sign.

Subinterval 2:
(−1, 1/3)

We pick p = 0 since that value seems easy to
deal with. f ′(0) = −1 < 0. We conclude f is
decreasing on (−1, 1/3).

Subinterval 3:
(1/3,∞)

Pick an arbitrarily large value for p > 1/3 and
note that f ′(p) = 3p2 + 2p − 1 > 0. We
conclude that f is increasing on (1/3,∞).

Figure 3.3.8 summarizes our work.

−1 1/3

f ′ > 0
f incr

f ′ < 0
f decr

f ′ > 0
f incr

Figure 3.3.8 Completed number line
for f in Example 3.3.6

We can verify our calculations by considering Figure 3.3.9, where f is
graphed. The graph also presents f ′; note how f ′ > 0 when f is in-
creasing and f ′ < 0 when f is decreasing.

−2 −1 1 2
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1/3

f(x)
f ′(x)
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Figure 3.3.9 A graph of f(x) in Exam-
ple 3.3.6, showing where f is increas-
ing and decreasing

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding critical values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increasing/
decreasing traits just fine. That is true. However, the technique prescribed here
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helps reinforce the relationship between increasing/decreasing and the sign of
f ′. Once mastery of this concept (and several others) is obtained, one finds that
either (a) just the critical points are computed and the graph shows all else that
is desired, or (b) a graph is never produced, because determining increasing/
decreasing using f ′ is straightforward and the graph is unnecessary. So our sec-
ond reason why the above work is worthwhile is this: once mastery of a subject
is gained, one has options for finding needed information. We are working to
develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice-versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = c, after which it de-
creases. A quick sketch helps confirm that f(c)must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.10 First Derivative Test.

Let f be continuous on an interval I , and differentiable on I , except pos-
sibly at c, where c is a critical number in I .

1. If the sign of f ′ switches from positive to negative at c, then f(c)
is a relative maximum of f .

2. If the sign of f ′ switches from negative to positive at c, then f(c)
is a relative minimum of f .

3. If f ′ is positive (or, negative) before and after c, then f(c) is not a
relative extrema of f .

Remark 3.3.11 Importance of Continuity. The continuity of f when using the
first derivative test is very important. Without continuity, almost anything can
happen at a critical number. For example, we can construct a piecewise function
where the sign of f ′ switches to positive to negative at c and f(c) is not a local
maximum. This is shown in Figure 3.3.12.
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Figure 3.3.12 A discontinuous func-
tion where f ′ changes sign at 1, but
f(1) is not a local maximum

Example 3.3.13 Using the First Derivative Test.

Find the intervals on which f is increasing and decreasing, and use the
First Derivative Test to determine the relative extrema of f , where

f(x) =
x2 + 3

x− 1
.
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Solution. We start by noting the domain of f : (−∞, 1) ∪ (1,∞).
Since f is not defined at x = 1 (it has a vertical asymptote), the increas-
ing/decreasing nature of f could switch at this value. Weknow that f ′(1)
will be undefined since f is discontinuous at 1. We do not formally con-
sider x = 1 to be a critical value of f , but we will use 1 to subdivide the
real number line.
Using the Quotient Rule, we find

f ′(x) =
x2 − 2x− 3

(x− 1)2
.

Weneed to find the critical values of f ; wewant to knowwhen f ′(x) = 0
and when f ′ is not defined. That latter is straightforward: when the
denominator of f ′(x) is 0, f ′ is undefined. That occurs when x = 1,
which we’ve already recognized as an important value, but not a critical
number.
f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2 −
2x− 3 = (x− 3)(x+ 1) = 0; i.e., when x = −1, 3.
We have found that f has two critical numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide
the real number line into four subintervals:

(−∞,−1), (−1, 1), (1, 3), and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to
determine whether f is increasing or decreasing on that interval. Again,
we do well to avoid complicated computations; notice that the denomi-
nator of f ′ is always positive so we can ignore it during our work.

Interval 1:
(−∞,−1)

Choosing a very small number (i.e., a nega-
tive number with a largemagnitude) p returns
p2−2p−3 in the numerator of f ′; that will be
positive. Hence f is increasing on (−∞,−1).

Interval 2: (−1, 1) Choosing 0 seems simple: f ′(0) = −3 < 0.
We conclude f is decreasing on (−1, 1).

Interval 3: (1, 3) Choosing 2 seems simple: f ′(2) = −3 < 0.
Again, f is decreasing.

Interval 4: (3,∞) Choosing an very large number p from this
subinterval will give a positive numerator and
(of course) a positive denominator. So f is in-
creasing on (3,∞).

In summary, f is increasing on the intervals (−∞,−1) and (3,∞) and
is decreasing on the intervals (−1, 1) and (1, 3). Since at x = −1, the
sign of f ′ switched from positive to negative, Theorem 3.3.10 states that
f(−1) is a relativemaximumof f . At x = 3, the sign of f ′ switched from
negative to positive, meaning f(3) is a relative minimum. At x = 1, f
is not defined, so there is no relative extremum at x = 1. As previously
stated, x = 1 is a vertical asymptote of f .

5−1 1 3

f ′ > 0
f incr

f ′ < 0
f decr

f ′ < 0
f decr

f ′ > 0
f incr

rel
max VA

rel
min

Figure 3.3.14 Number line for f in Ex-
ample 3.3.13

This is summarized in the number line shown in Figure 3.3.14. Also, Fig-
ure 3.3.15 shows a graph of f , confirming our calculations. This figure
also shows f ′, again demonstrating that f is increasing when f ′ > 0 and
decreasing when f ′ < 0.
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Figure 3.3.15 A graph of f(x) in Ex-
ample 3.3.13, showing where f is in-
creasing and decreasing
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One is often tempted to think that functions always alternate “increasing, de-
creasing, increasing, decreasing,…” around critical values. Our previous example
demonstrated that this is not always the case. While x = 1 was not technically
a critical value, it was an important value we needed to consider. We found that
f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.16 Using the First Derivative Test.

Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and de-
creasing and identify the relative extrema.
Solution. The domain of f is R (you can take the odd root of both
positive and negative nubmers). Next, we take the first derivative. Since
we know we want to solve f ′(x) = 0, we will do some algebra after
taking the derivative.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8

3
x

5
3 − 8

3
x− 1

3

=
8

3
x− 1

3

(
x

6
3 − 1

)
=

8

3
x− 1

3

(
x2 − 1

)
=

8

3
x− 1

3 (x− 1)(x+ 1).

This derivation of f ′ shows that f ′(x) = 0 when x = ±1 and f ′is not
defined when x = 0. Thus we have three critical values, breaking the
number line into four subintervals as shown in Figure 3.3.17.

Interval 1: (∞,−1) We choose p = −2; we can easily verify that
f ′(−2) < 0. So f is decreasing on (−∞,−1).

Interval 2: (−1, 0) Choose p = −1/2. Once more we prac-
tice finding the sign of f ′(p) without com-
puting an actual value. We have f ′(p) =
(8/3)p−1/3(p−1)(p+1); find the sign of each
of the three terms at the chosen value of p.

f ′(p) =
8

3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negative × negative × positive”
giving a positive number; f is increasing on
(−1, 0).

Interval 3: (0, 1) We do a similar sign analysis as before, using
p in (0, 1).

f ′(p) =
8

3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

−1 0 1

f ′ < 0
f decr

f ′ > 0
f incr

f ′ < 0
f decr

f ′ > 0
f incr

rel
min

rel
max

rel
min

Figure 3.3.17 Number line for f in Ex-
ample 3.3.16

Wehave two positive factors and one negative
factor; f ′(p) < 0 and so f is decreasing on
(0, 1).
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Interval 4: (1,∞) Similar work to that done for the other three
intervals shows that f ′(x) > 0 on (1,∞), so
f is increasing on this interval.

We conclude by stating that f is increasing on the intervals (−1, 0) and
(1,∞) and decreasing on the intervals (−∞,−1) and (0, 1). The sign
of f ′ changes from negative to positive around x = −1 and x = 1,
meaning by Theorem 3.3.10 that f(−1) and f(1) are relative minima of
f . As the sign of f ′ changes frompositive to negative atx = 0, we have a
relative maximum at f(0). Figure 3.3.18 shows a graph of f , confirming
our result. We also graph f ′, highlighting once more that f is increasing
when f ′ > 0 and is decreasing when f ′ < 0.

−3 −2 −1 1 2 3
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10f(x)

f ′(x)
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Figure 3.3.18 A graph of f(x) in Ex-
ample 3.3.16, showing where f is in-
creasing and decreasing

We have seen how the first derivative of a function helps determine when
the graph of a function is going “up” or “down.” In the next section, we will see
how the second derivative helps determine how the graph of a function curves.
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3.3.1 Exercises

Terms and Concepts

1. In your own words describe what it means for a function to be increasing.
2. What does a decreasing function “look like”?
3. Sketch a graph of a function on [0, 2] that is increasing, where it is increasing “quickly” near x = 0 and increasing

“slowly” near x = 2.
4. Give an example of a function describing a situation where it is “bad” to be increasing and “good” to be decreas-

ing.
5. (□ True □ False) Functions always switch from increasing to decreasing, or decreasing to increasing, at

critical points.

6. A function f has derivative f ′(x) = (sinx+ 2)ex
2+1, where f ′(x) > 1 for all x. Is f increasing, decreasing, or

can we not tell from the given information? Why or why not?

Problems

Exercise Group. A function f(x) is given. Graph f and f ′ on the same axes (using technology is permitted) and verify
Theorem 3.3.4.

7. f(x) = 2x+ 3 8. f(x) = x2 − 3x+ 5

9. f(x) = cos(x) 10. f(x) = tan(x)
11. f(x) = x3 − 5x2 + 7x− 1 12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4 14. f(x) = 1
x2+1

Exercise Group. A function f(x) is given.

(a) Give the domain of f .

(b) Find the critical numbers of f .

(c) Find the intervals on which f is increasing.

(d) Find the intervals on which f is decreasing.

(e) Use the First Derivative Test to determine which critical points are a relative maximum.

(f) Use the First Derivative Test to determine which critical points are a relative minimum.

15. f(x) = x2 + 4x 16. f(x) = x3 + 2x2 + 9

17. f(x) = 7x3 − 17x2 − 35x+ 1 18. f(x) = x3 − 9x2 + 27x− 27

19. f(x) = 1
x2−10x+34 20. f(x) = x2−1

x2−36

21. f(x) = x
x2+12x+35 22. f(x) = (x−(−5))

2
3

x

23. f(x) = sin(x) cos(x) on (−π, π) 24. f(x) = x6 + 192x
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3.4 Concavity and the Second Derivative

Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f ′, can relay important information about f . We
now apply the same technique to f ′ itself, and learn what this tells us about f .

The key to studying f ′ is to consider its derivative, namely f ′′, which is the
second derivative of f . When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′is
decreasing. f ′ has relative maxima and minima where f ′′ = 0 or is undefined.

This section explores how knowing information about f ′′ gives information
about f .

3.4.1 Concavity
We begin with a definition, then explore its meaning.

Definition 3.4.1 Concave Up and Concave Down.

Let f be continuous on an interval I . The graph of f is concave up on I
if for any a < b in I ,

f

(
a+ b

2

)
<

f(a) + f(b)

2
. (3.4.1)

The graph of f is concave down on I if for any a < b in I ,

f

(
a+ b

2

)
>

f(a) + f(b)

2
. (3.4.2)

Geometrically, the condition in Equation (3.4.1) states that a graph is concave
up if the midpoint of the secant line from (a, f(a)) to (b, f(b)) (and hence, the
secant line itself) is above the graph y = f(x). Similarly, Equation (3.4.2) states
that the secant line lies below the graph.

In order for equality to hold instead of Equation (3.4.1) or Equation (3.4.2),
the function would have to be of the form f(x) = mx + c, in which case the
graph is a straight line. Straight lines are considered to have no concavity.

−1 1 2

2

4

6

x

y

(a) A graph that is concave up. No-
tice how the secant line lies above the
graph.

−1 1 2

2

4

6

x

y

(b) A graph that is concave down. No-
tice how the secant line lies below the
graph.

Figure 3.4.2 Illustrating the nature of concave up and concave down

Loose Language. Weoften state
that “f is concave up” instead of
“the graphof f is concaveup” for
simplicity.

Consider a function f such that f is continuous on [a, b] and differentiable
on (a, b). Note that a+b

2 is the midpoint of the interval [a, b]. By the The Mean
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Value Theorem of Differentiation, there must be a point c1 in
[
a, a+b

2

]
such that

f ′(c1) =
f
(
a+b
2

)
− f(a)

a+b
2 − a

=
2

b− a

(
f

(
a+ b

2

)
− f(a)

)
.

Similarly, there must be a point c2 in
[
a+b
2 , b

]
such that

f ′(c2) =
f(b)− f

(
a+b
2

)
b− a+b

2

=
2

b− a

(
f(b)− f

(
a+ b

2

))
.

But then we have

f ′(c2)− f ′(c1) =
2

b− a

(
f(b)− f

(
a+ b

2

)
− f

(
a+ b

2

)
+ f(a)

)
=

4

b− a

(
f(a) + f(b)

2
− f

(
a+ b

2

))
.

Now, let us suppose that f ′(x) is an increasing function on (a, b). In that
case, f ′(c2)− f ′(c1) > 0, and since b− a > 0, this implies that

f(a) + f(b)

2
− f

(
a+ b

2

)
> 0,

which, by Definition 3.4.1 means that the graph of f is concave up.
Similarly, if f ′(x) is a decreasing function on (a, b), then the graph of f will

be concave down. Using Theorem 3.3.4, we arrive at the following theorem.

Theorem 3.4.3

Let f be a continuous function on [a, b] and differentiable on (a, b).

1. If f ′′(c) > 0 for all c in (a, b), then f is concave up on [a, b].

2. If f ′′(c) < 0 for all c in (a, b), then f is concave down on [a, b].

3. If f ′′(c) = 0 for all c in (a, b), then f is linear on [a, b].

Aswith Theorem3.3.4, Theorem3.4.3
lets us conclude that the graph
of a function is concave up (or
down) on a closed interval, assum-
ing that the function is continu-
ous on that interval. Again, we
follow the convention thatwhen
a problem asks us to give the in-
tervals onwhich the graph is con-
cave up or down, we give open
intervals, even if a closed inter-
val is technically correct.

If a functionhas the same con-
cavity on adjacent intervals (a, b)
and (b, c), and the function is con-
tinuous at b, we should combine
the intervals, and state the result
as (a, c). However, if b is a point
of discontinuity, wemust omit it
from our intervals.

The graph of a function f is concave upwhen f ′is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.4, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a lesser (large negative) value of f ′. On the right,
the tangent line is steep, upward, corresponding to a greater (large positive)
value of f ′.

−3 −2 −1 1 2 3

10

20

30

x

y

Figure 3.4.4 A function f with a con-
cave up graph. Notice how the slopes
of the tangent lines, when looking
from left to right, are increasing. (The
slope values pictured are −12,−6, 6
and 12).

If a function is decreasing and concave up, then its rate of decrease is slowing;
it is “leveling off.” You can see this in the left side of Figure 3.4.4. If the function is
increasing and concave up, then the rate of increase is increasing. The function
is increasing at a faster and faster rate. You can see this in the right side of
Figure 3.4.4.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function f is concave downwhen f ′is decreasing. Thatmeans
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.5, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a greater (large positive) value of f ′. On
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the right, the tangent line is steep, downward, corresponding to a lesser (large
negative) value of f ′.

−3 −2 −1 1 2 3
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y

Figure 3.4.5 A function f with a con-
cave down graph. Notice how the
slopes of the tangent lines, when
looking from left to right, are decreas-
ing.

If a function is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

ConcavityDepravity. Amnemonic
for remembering what concave
up/downmeans is: “Concave up
is like a cup; concave down is like
a frown.” It is admittedly terri-
ble, but it works.

Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section to find intervals on which a graph is concave up or down. That
is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.6 Test for Concavity.

Let f be twice differentiable on an interval I . The graph of f is concave
up if f ′′ > 0 on I , and is concave down if f ′′ < 0 on I .

(a) f ′ > 0, f in-
creasing; f ′′ <
0, f is concave
down

(b) f ′ < 0, f de-
creasing; f ′′ <
0, f is concave
down

(c) f ′ < 0, f de-
creasing; f ′′ >
0, f is concave
up

(d) f ′ > 0, f in-
creasing; f ′′ >
0, f is concave
up

Figure 3.4.7 Demonstrating the four ways that concavity interacts with increas-
ing/decreasing, alongwith the relationshipswith the first and second derivatives

Geometric Concavity. Geomet-
rically speaking, a function is con-
cave up if its graph lies above its
tangent lines and below secant
line segments. A function is con-
cave down if its graph lies below
its tangent lines and above secant
line segments.

If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 3.4.8 Point of Inflection.

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.9 shows a graph of a function with inflection points labeled.

1 2 3 4

5

10

15
f ′′ > 0,

f is
concave

up

f ′′ > 0,
f is
concave
up

f ′′ < 0,
f is

concave
down

x

y

Figure 3.4.9 A graph of a function
with its inflection points marked. The
intervals where concave up/down are
also indicated.

If the concavity of f changes at a point (c, f(c)), then f ′is changing from
increasing to decreasing (or, decreasing to increasing) at x = c. That means
that the sign of f ′′is changing from positive to negative (or, negative to positive)
at x = c. A sign changemay occur when f ′′ = 0 or f ′′ is undefined. This leads
to the following theorem.
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Theorem 3.4.10 Points of Inflection.

If (c, f(c)) is a point of inflection on the graph of f , then either f ′′(c) = 0
or f ′′ is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.11 Finding intervals of concave up/down, inflection
points.

Let f(x) = x3− 3x+1. Find the inflection points of f and the intervals
on which it is concave up/down.
Solution. We start by finding f ′(x) = 3x2− 3 and f ′′(x) = 6x. To find
the inflection points, we use Theorem 3.4.10 and find where f ′′(x) = 0
or where f ′′is undefined. We find f ′′is always defined, and is 0 only
when x = 0. So the point (0, f(0)) = (0, 1) is the only possible point of
inflection.
This possible inflection point divides the real line into two intervals,
(−∞, 0) and (0,∞). We use a process similar to the one used in the
previous section to determine increasing/decreasing. Pick any c < 0;
f ′′(c) < 0 so f is concave down on (−∞, 0). Pick any c > 0; f ′′(c) > 0
so f is concave up on (0,∞). Since the concavity changes at x = 0, the
point (0, 1) is an inflection point.
The number line in Figure 3.4.12 illustrates the process of determining
concavity; Figure 3.4.13 shows a graph of f and f ′′, confirming our re-
sults. Notice how f is concave down precisely when f ′′(x) < 0 and
concave up when f ′′(x) > 0.

f ′′ < 0
f is concave down

f ′′ > 0
f is concave up

0

Figure 3.4.12 A number line deter-
mining the concavity of f in Exam-
ple 3.4.11

−2 −1 1 2

−2

2

f(x)

f ′′(x)

x

y

Figure 3.4.13 A graph of f(x) used in
Example 3.4.11

Example 3.4.14 Finding intervals of concave up/down, inflection
points.

Let f(x) = x/(x2 − 1). Find the inflection points of f and the intervals
on which it is concave up/down.
Solution. We need to find f ′and f ′′. Using the Quotient Rule and sim-
plifying, we find

f ′(x) =
−(1 + x2)

(x2 − 1)2
f ′′(x) =

2x(x2 + 3)

(x2 − 1)3
.

To find the possible points of inflection, we seek to findwhere f ′′(x) = 0
and where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving
2x(x2 + 3) = 0; we find x = 0. We find that f ′′is not defined when
x = ±1, for then the denominator of f ′′is 0. We also note that f itself is
not defined at x = ±1, having a domain of (−∞,−1)∪(−1, 1)∪(1,∞).
Since the domain of f is the union of three intervals, it makes sense that
the concavity of f could switch across intervals. We technically cannot
say that f has a point of inflection at x = ±1 as they are not part of the
domain, but we must still consider these x-values to be important and
will include them in our number line.
The important x-values at which concavity might switch are x = −1,
x = 0 and x = 1, which split the number line into four intervals as
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shown in Figure 3.4.15. We determine the concavity on each. Keep in
mind that all we are concerned with is the sign of f ′′on the interval.

Interval 1:
(−∞,−1)

Select a number c in this interval with a large
magnitude (for instance, c = −100). The de-
nominator of f ′′(x)will be positive. In the nu-
merator, the

(
c2 + 3

)
factor will be positive

and the 2c factorwill be negative. Thus the nu-
merator is negative and f ′′(c) is negative. We
conclude f is concave down on (−∞,−1).

Interval 2: (−1, 0) For any number c in this interval, the factor
2c in the numerator will be negative, the fac-
tor
(
c2 + 3

)
in the numerator will be positive,

and the factor
(
c2 − 1

)3 in the denominator
will be negative. Thus f ′′(c) > 0 and f is con-
cave up on this interval.

Interval 3: (0, 1) Any number c in this interval will be posi-
tive and “small.” Thus the numerator is pos-
itive while the denominator is negative. Thus
f ′′(c) < 0 and f is concave down on this in-
terval.

Interval 4: (1,∞) Choose a large value for c. It is evident that
f ′′(c) > 0, so we conclude that f is concave
up on (1,∞).

−1 10

f ′′ < 0
f conc
down

f ′′ > 0
f conc
up

f ′′ < 0
f conc
down

f ′′ > 0
f conc
up

Figure 3.4.15 Number line for f in Ex-
ample 3.4.14

We conclude that f is concave up on (−1, 0) and (1,∞) and concave
down on (−∞,−1) and (0, 1). There is only one point of inflection,
(0, 0), as f is not defined at x = ±1. Our work is confirmed by the graph
of f in Figure 3.4.16. Notice how f is concave upwhenever f ′′is positive,
and concave downwhen f ′′is negative. The inflection in f occurs where
f ′′ changes sign.
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Figure 3.4.16 A graph of f(x) and
f ′′(x) in Example 3.4.14

Recall that relative maxima and minima of f are found at critical points of
f ; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relative maxima and minima of f ′are found when f ′′(x) = 0 or when f ′′is
undefined; note that these are the inflection points of f .

What does a “relative maximum of f ′”mean? The derivative measures the
rate of change of f ; maximizing f ′ means finding where f is increasing themost
— where f has the steepest tangent line. A similar statement can be made for
minimizing f ′; it corresponds to where f has the steepest negatively-sloped tan-
gent line.

We utilize this concept in the next example.

Example 3.4.17 Understanding inflection points.

The sales of a certain product over a three-year span are modeled by
S(t) = t4−8t2+20, where t is the time in years, shown in Figure 3.4.18.
Over the first two years, sales are decreasing. Find the point at which
sales are decreasing at their greatest rate.

0.5 1 1.5 2 2.5 3
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15

20

S(t)

t

y

Figure 3.4.18 A graph of S(t) in Ex-
ample 3.4.17, modeling the sale of a
product over time

Solution. Wewant tomaximize the rate of decrease, which is to say, we
want to find where S′ has a minimum. To do this, we find where S′′ is
0 and S′′ changes from negative to positive. We find S′(t) = 4t3 − 16t
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and S′′(t) = 12t2 − 16. Setting S′′(t) = 0 and solving, we get t =√
4/3 ≈ 1.16 (we ignore the negative solution for t since it does not lie

in the domain of our function S).
Since S′′(1) = −4 < 0 and S′′(2) = 32 > 0, we can say S′(

√
4/3) is

a local minimum of S′. This is both the inflection point and the point of
maximum decrease. This is the point at which things first start looking
up for the company. After the inflection point, sales are still decreasing,
but not decreasing quite as quickly as they had been.
A graph ofS(t) andS′(t) is given in Figure 3.4.19. WhenS′(t) < 0, sales
are decreasing; note how at t ≈ 1.16, S′(t) is minimized. That is, sales
are decreasing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2),
S is decreasing but concave up, so the decline in sales is “leveling off.”

0.5 1 1.5 2 2.5 3

−10
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20

S(t)

S′(t)

t

y

Figure 3.4.19 A graph of S(t) in Exam-
ple 3.4.17, along with S′(t)

Not every critical point corresponds to a relative extrema; f(x) = x3 has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f ′′(x) = 0we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.4.20.
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Figure 3.4.20 A graph of f(x) = x4.
Clearly f is always concave up, de-
spite the fact that f ′′(x) = 0 when
x = 0. In this example, the possible
point of inflection (0, 0) is not a point
of inflection.

3.4.2 The Second Derivative Test
The first derivative of a function gave us a test to find if a critical value corre-
sponded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function f is concave up, then that critical value
must correspond to a relative minimum of f , etc. See Figure 3.4.21 for a visual-
ization of this.
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Figure 3.4.21 Demonstrating the fact
that relative maxima occur when the
graph is concave down and relative
minima occur when the graph is con-
cave up

Theorem 3.4.22 The Second Derivative Test.

Let c be a critical value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second Derivative Test relates to the First Derivative Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a critical point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negative
to positive at c. This means the function goes from decreasing to increasing,
indicating a local minimum at c.

Example 3.4.23 Using the Second Derivative Test.

Let f(x) = 100/x + x. Find the critical points of f and use the The
Second Derivative Test to label them as relative maxima or minima.
Solution. We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3. We
set f ′(x) = 0 and solve for x to find the critical values (note that f ′ is
not defined at x = 0, but neither is f so this is not a critical value.) We
find the critical values are x = ±10. We now evaluate the second deriv-
ative at these critical numbers. Evaluating f ′′(10) = 0.1 > 0, so there
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is a local minimum at x = 10. Evaluating f ′′(−10) = −0.1 < 0, deter-
mining a relative maximum at x = −10. These results are confirmed in
Figure 3.4.24.
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f ′′(10) > 0

f ′′(−10) < 0

x

y

Figure 3.4.24 A graph of f(x) in Ex-
ample 3.4.23. The second deriva-
tive is evaluated at each critical point.
When the graph is concave up, the
critical point represents a local min-
imum; when the graph is concave
down, the critical point represents a
local maximum.

Use Wisely. The second deriva-
tive test can only be used on a
function that is twice differentiable
at c. For functions that are not
twice differentiable at c, youwill
need to use the First Derivative
Test. If you’ve already determined
the sign diagram for f ′, the First
Derivative Test is usually easier
to apply, and it applies in cases
when First Derivative Test does
not.

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter 1
we saw how limits explained asymptotic behavior. In the next section we com-
bine all of this information to produce accurate sketches of functions.
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3.4.3 Exercises

Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1) and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:

• increasing, concave up on (0, 1),

• increasing, concave down on (1, 2),

• decreasing, concave down on (2, 3), and

• increasing, concave down on (3, 4).

3. Is is possible for a function to be increasing and concave down on (0,∞)with a horizontal asymptote of y = 1?
If so, give a sketch of such a function.

4. Is is possible for a function to be increasing and concave up on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

Problems

Exercise Group. A function f(x) is given. Graph f and f ′′ on the same axes (using technology is permitted) and
verify Theorem 3.4.6.

5. f(x) = −7x+ 3 6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8 8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5 10. f(x) = sin(x)
11. f(x) = tan(x) 12. f(x) =

1

x2 + 1

13. f(x) = 1
x 14. f(x) = 1

x2

Exercise Group. A function f(x) is given.

(a) Find the possible points of inflection of f .

(b) Find the intervals on which the graph of f is concave up.

(c) Find the intervals on which the graph of f is concave down.

15. f(x) = x2 − 4x+ 4 16. f(x) = −x2 + 4x− 1

17. f(x) = x3 − 8x− 7 18. f(x) = 8x3 + 6x2 + 9x− 5

19. f(x) = x4

4 + 16x3

3 − 72x− 6 20. f(x) = 2x4 − 40x3 + 296x2 − 960x+ 7

21. f(x) = x4 + 8x3 + 24x2 + 32x+ 16 22. f(x) = sec(x) on (−3π/2, 3π/2)

23. f(x) = 1
x2+1 24. f(x) = 1

x2−7x+10

25. f(x) = sin(x) + cos(x) on (−π, π) 26. f(x) = x2ex

27. f(x) = x2 ln(x) 28. f(x) = e−x2

Exercise Group. A function f(x) is given. Find the critical points of f and use the Second Derivative Test, when
possible, to determine the relative extrema. (Note: these are the same functions as in Exercise Group 15–28.)

29. f(x) = x2 + 14x+ 49 30. f(x) = −x2 − 5x+ 3

31. f(x) = x3 − 4x− 4 32. f(x) = −x3 + 8x2 − 25x− 3

33. f(x) = x4

4 + 64x− 9 34. f(x) = 2x4 − 8x3 − 16x2 + 96x+ 9
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35. f(x) = x4 − 12x3 + 54x2 − 108x+ 81 36. f(x) = sec(x) on (−3π/2, 3π/2)

37. f(x) = 1
x2+18x+83 38. f(x) = 1

x2−49

39. f(x) = sin(x) + cos(x) on (−π, π) 40. f(x) = x2ex

41. f(x) = x2 ln(x) 42. f(x) = e−x2

Exercise Group. A function f(x) is given. Find the x values where f ′(x) has a relative maximum or minimum. (Note:
these are the same functions as in Exercise Group 15–28.)

43. f(x) = x2 − 8x+ 16 44. f(x) = −x2 + 6x+ 4

45. f(x) = x3 − 9x− 2 46. f(x) = −9x3 − 8x2 − 7x− 1

47. f(x) = x4

4 + 14x3

3 + 7 48. f(x) = 3x4 − 24x3 + 66x2 − 72x− 6

49. f(x) = x4 + 4x3 + 6x2 + 4x+ 1 50. f(x) = sec(x) on (−3π/2, 3π/2)

51. f(x) = 1
x2−2x+4 52. f(x) = 1

x2−13x+36

53. f(x) = sin(x) + cos(x) on (−π, π) 54. f(x) = x2ex

55. f(x) = x2 ln(x) 56. f(x) = e−x2
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3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a function based
on its first and second derivatives. While we have been treating the properties
of a function separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the function
without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand-held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not particularly fast— itwill require
time (but it is not hard). So again: why bother?

We are attempting to understand the behavior of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behavior we care about is
explained by f ′and f ′′. Understanding the interactions between the graph of f
and f ′and f ′′is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands how an engine works after looking only
at pictures. It is true that the basic ideaswill be conveyed, but “hands-on” access
increases understanding.

Key Idea 3.5.1 summarizes what we have learned so far that is applicable to
sketching graphs of functions and gives a framework for putting that information
together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching.

To produce an accurate sketch a given function f , consider the following
steps.

1. Find the domain of f . Generally, we assume that the domain is the
entire real line then find restrictions, such aswhere a denominator
is 0 or where negatives appear under the radical.

2. Find the critical values of f .

3. Find the possible points of inflection of f .

4. Find the location of any vertical asymptotes of f (usually done in
conjunction with Item 1).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the
end behavior of the function.

6. Create a number line that includes all critical points, possible
points of inflection, and locations of vertical asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each critical point and possible point of inflection.
Plot these points on a set of axes. Connect these points with
curves exhibiting the proper concavity. Sketch asymptotes and x
and y intercepts where applicable.
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Example 3.5.2 Curve sketching.

Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.
Solution. We follow the steps outlined in Key Idea 3.5.1.

1. The domain of f is the entire real line; there are no values x for
which f(x) is not defined.

2. Find the critical values of f . We compute f ′(x) = 9x2 − 20x+ 7.
Use the Quadratic Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)

=
1

9

(
10±

√
37
)

x ≈ 0.435, 1.787.

3. Find the possible points of inflection of f . Compute f ′′(x) =
18x− 20. We have

f ′′(x) = 0

18x− 20 = 0

x = 10/9

≈ 1.111.

4. There are no vertical asymptotes.

5. We determine the end behavior using limits as x approaches±∞.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a num-

ber line, as shown in Figure 3.5.3. Wemark each subinterval as in-
creasing or decreasing, concave up or down, using the techniques
used in Sections 3.3–3.4.

7. Evaluate f at each critical number and possible inflection point.

f(0.435) ≈ 6.400 f(1.111) ≈ 4.547 f(1.787) ≈ 2.695

We plot the appropriate points on axes as shown in Figure 3.5.4(a)
and connect the points with straight lines (to show increasing/
decreasig behavior). In Figure 3.5.4(b) we adjust these lines to
demonstrate the proper concavity. In Figure 3.5.4(c) we show a
graph of f drawn with a computer program, verifying the accu-
racy of our sketch.

1
9

(
10 −

√
37
)

≈ 0.435

10
9 ≈
1.111

1
9

(
10 +

√
37
)

≈ 1.787

f ′ > 0,
f incr

f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ > 0,
f c. up

Figure 3.5.3 Number line for f in Example 3.5.2
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Figure 3.5.4 Sketching f in Example 3.5.2

Example 3.5.5 Curve sketching.

Sketch f(x) =
x2 − x− 2

x2 − x− 6
.

Solution. We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and
look for restrictions. We find that at x = −2 and x = 3, f(x) is
not defined. So the domain of f isD = {x | x ̸= −2, 3}.

2. To find the critical values of f , we first find f ′(x). Using the Quo-
tient Rule, we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4

(x− 3)2(x+ 2)2
.

We get f ′(x) = 0 when x = 1/2, and f ′ is undefined when x =
−2, 3. Since f ′is undefined only when f is also undefined, these
are not critical values. The only critical value is x = 1/2.

3. To find the possible points of inflection, we find f ′′(x), again em-
ploying the Quotient Rule:

f ′′(x) =
24x2 − 24x+ 56

(x− 3)3(x+ 2)3
.

Wefind that f ′′(x) is never 0 (setting the numerator equal to 0 and
solving for x, we find the only roots to this quadratic are not real
numbers) and f ′′is undefined when x = −2, 3. Thus concavity
will possibly only change at x = −2 and x = 3 (which are not in
the domain of f , so these won’t be inflection points).

4. The vertical asymptotes of f are at x = −2 and x = 3, the places
where f is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and

lim
x→∞

f(x) = 1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number
line as shown in Figure 3.5.6. We mark in each interval whether
f is increasing or decreasing, concave up or down. We see that f
has a relativemaximum at x = 1/2; concavity changes only at the
vertical asymptotes.
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7. Evaluate f at each critical number.

f(0) = 1/3 f(1/2) = 9/25

In Figure 3.5.7(a), we plot the points from the number line on a set
of axes and connect the points with straight lines to get a general
idea of what the function looks like (these lines effectively only
convey increasing/decreasing information). In Figure 3.5.7(b), we
adjust the graph with the appropriate concavity. We also show f
crossing the x-axis at x = −1 and x = 2 and crossing the y-axis
at y = 1/3. Finally, Figure 3.5.7(c) shows a computer generated
graph of f , which verifies the accuracy of our sketch.

−2 1
2

3

f ′ > 0,
f incr

f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ < 0,
f c. down

f ′ < 0,
f incr

f ′′ < 0,
f c. down

Figure 3.5.6 Number line for f in Example 3.5.5
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Figure 3.5.7 Sketching f in Example 3.5.5

Example 3.5.8 Curve sketching.

Sketch f(x) =
5(x− 2)(x+ 1)

x2 + 2x+ 4
.

Solution. We again follow Key Idea 3.5.1.

1. We assume that the domain of f is all real numbers and consider
restrictions. The only restrictions could come when the denom-
inator is 0, but this never occurs because the denominator is a
quadratic polynomial with no real roots. Therefore the domain of
f is all real numbers, R.

2. We find the critical values of f by setting f ′(x) = 0 and solving
for x. We find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2

0 =
15x(x+ 4)

(x2 + 2x+ 4)2

x = −4, 0.

Since the denominator of f ′ is just the square of the denominator
of f , there are no values of x for which f ′ is undefined.



CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 165

3. We find the possible points of inflection by solving f ′′(x) = 0 for
x (again, there are no values of x for which f ′′ is undefined.) We
find

f ′′(x) = −30x3 + 180x2 − 240

(x2 + 2x+ 4)3
.

The cubic in the numerator does not factor very “nicely.” We in-
stead approximate the roots (using a cas) at x = −5.759, x =
−1.305 and x = 1.064.

4. There are no vertical asymptotes as the denominator never equals
zero.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) =

lim
x→∞

f(x) = 5.

6. We place the critical points and possible points on a number line
as shown in Figure 3.5.9 and mark each interval as increasing/
decreasing, concave up/down appropriately.

7. Evaluate f at each critical number, possible inflection point.

f(−5.759) ≈ 7.200 f(−4) = 7.5

f(−1.305) ≈ 1.630 f(0) = 2.5

f(1.064) ≈ −1.331

In Figure 3.5.10(a) we plot the significant points from the num-
ber line as well as the x- and y-intercepts, and connect the points
with straight lines to get a general impression about the graph
(this graph only includes increasing/decreasing information). In
Figure 3.5.10(b), we add concavity, drawing the function so that
it is smooth (since f is differentiable everywhere, there should be
no kinks or corners). Figure 3.5.10(c) shows a computer generated
graph of f , affirming our results.

−5.579 −4 −1.305 0 1.064

f ′ > 0,
f incr

f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ < 0,
f c. down

f ′ < 0,
f decr
f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ > 0,
f c. up

f ′ > 0,
f incr

f ′′ < 0,
f c. down

Figure 3.5.9 Number line for f in Example Example 3.5.8
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Figure 3.5.10 Sketching f in Example 3.5.8

In each of our examples, we found a few significant points on the graph of
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f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smarter”
than we are. Rather, it is largely because computers are much faster at comput-
ing than we are. In general, computers graph functions much like most students
dowhen first learning to draw graphs: they plot equally spaced points, then con-
nect the dots using lines. By using lots of points, the connecting lines are short
and the graph looks smooth.

This does a fine job of graphing inmost cases (in fact, this is themethod used
formany graphs in this text). However, in regionswhere the graph is very “curvy,”
this can generate noticeable sharp edges on the graph unless a large number of
points are used. High quality computer algebra systems, such as Mathematica
and Sage, use special algorithms to plot lots of points only where the graph is
“curvy.”

In Figure 3.5.11, two graph of y = sin(x) is given, generated by Sage and
Mathematica. The small points represent each of the places where each cas
sampled the function. Notice how at the “bends” of sin(x), lots of points are
used; where sin(x) is relatively straight, fewer points are used. (In the Math-
ematica plot, many points are also used at the endpoints to ensure the “end
behavior” is accurate.)

1 2 3 4 5 6

1.0

0.5

0.5

1.0

(a) Sage output (b)Mathematica output

Figure 3.5.11 CAS plots of y = sin(x) illustrating the sample points

How does Sage know where the graph is “curvy”? Calculus. When we study
curvature in a later chapter, we will see how the first and second derivatives of a
function work together to provide a measurement of “curviness.” Sage employs
algorithms to determine regions of “high curvature” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behavior of the
function at a fewkey places.” In Example 3.5.8, wewere able to accurately sketch
a complicated graph using only five points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond
curve sketching. The next chapter explores some of these applications, demon-
strating just a few kinds of problems that can be solved with a basic knowledge
of differentiation.
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3.5.1 Exercises

Terms and Concepts

1. Why is sketching curves by hand beneficial even though technology is ubiquitous?
2. What does “ubiquitous” mean?
3. T/F: When sketching graphs of functions, it is useful to find the critical points. (□ True □ False)
4. T/F: When sketching graphs of functions, it is useful to find the possible points of inflection. (□ True □ False)
5. T/F: When sketching graphs of functions, it is useful to find the horizontal and vertical asymptotes. (□ True

□ False)

Problems

Exercise Group. In the following exercises, practice using Key Idea 3.5.1 by applying the principles to the given
functions with familiar graphs.

6. Use Key Idea 3.5.1 to sketch a graph of f(x) = 2x+ 4

7. Use Key Idea 3.5.1 to sketch a graph of f(x) = −x2 + 1

8. Use Key Idea 3.5.1 to sketch a graph of f(x) = sin(x)

9. Use Key Idea 3.5.1 to sketch a graph of f(x) = ex

10. Use Key Idea 3.5.1 to sketch a graph of f(x) =
1

x

11. Use Key Idea 3.5.1 to sketch a graph of f(x) =
1

x2

Exercise Group. In the following exercises, sketch a graph of the given function using Key Idea 3.5.1. Show all work;
check your answer with technology.

12. Use Key Idea 3.5.1 to sketch a graph of f(x) = x3 − 2x2 + 4x+ 1

13. Use Key Idea 3.5.1 to sketch a graph of f(x) = −x3 + 5x2 − 3x+ 2

14. Use Key Idea 3.5.1 to sketch a graph of f(x) = x3 + 3x2 + 3x+ 1

15. Use Key Idea 3.5.1 to sketch a graph of f(x) = x3 − x2 − x+ 1

16. Use Key Idea 3.5.1 to sketch a graph of f(x) = (x− 2) ln(x− 2)

17. Use Key Idea 3.5.1 to sketch a graph of f(x) = (x− 2)2 ln(x− 2)

18. Use Key Idea 3.5.1 to sketch a graph of f(x) =
x2 − 4

x2

19. Use Key Idea 3.5.1 to sketch a graph of f(x) =
x2 − 4x+ 3

x2 − 6x+ 8

20. Use Key Idea 3.5.1 to sketch a graph of f(x) =
x2 − 2x+ 1

x2 − 6x+ 8

21. Use Key Idea 3.5.1 to sketch a graph of f(x) = x
√
x+ 1

22. Use Key Idea 3.5.1 to sketch a graph of f(x) = x2ex

23. Use Key Idea 3.5.1 to sketch a graph of f(x) = sin(x) cos(x) on [−π, π]

24. Use Key Idea 3.5.1 to sketch a graph of f(x) = (x− 3)2/3 + 2

25. Use Key Idea 3.5.1 to sketch a graph of f(x) =
(x− 1)2/3

x
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Exercise Group. In the following exercises, a function with the parameters a and b are given. Describe the critical
points and possible points of inflection of f in terms of a and b.

26. f(x) =
a

x2 + b2

(a) Find the critical points of f .

(b) Find the inflection points of f .

27. f(x) = sin(ax+ b)

(a) Find the critical points of f .

(b) Find the inflection points of f .

28. f(x) = (x− a)(x− b)

(a) Find the critical points of f .

(b) Find the inflection points of f .

29. Given x2 + y2 = 1, use implicit differentiation to find dy
dx and

d2y
dx2 . Use this information to justify the sketch

of the unit circle.



Chapter 4

Applications of the Derivative

In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method

Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x5 + x + 1 = 0 or cos(x) = x cannot be solved by
algebraicmethods in terms of familiar functions. Fortunately, there aremethods
that can give us approximate solutions to equations like these. These methods
can usually give an approximation correct to as many decimal places as we like.
In Section 1.5 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph
at (x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then re-
peat the process — draw the tangent line to the graph at (x1, f(x1)) and see
where it meets the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the
process again to get x3, x4, etc. This sequence of points will often converge
rather quickly to a root of f .
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Figure 4.1.1 Demonstrating the geometric concept behind Newton’s Method
We can use this geometric process to create an algebraic process. Let’s look

at howwe foundx1. We startedwith the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equation of the line is

y = f ′(x0)(x− x0) + f(x0).

169
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This line crosses the x-axis when y = 0, and the x-value where it crosses is
what we called x1. So let y = 0 and replace x with x1, giving the equation:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)

f ′(x0)
.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)

f ′(x1)
.

In general, given an approximation xn, we can find the next approximation,
xn+1 as follows:

xn+1 = xn − f(xn)

f ′(xn)
.

We summarize this process as follows.

Key Idea 4.1.2 Newton’s Method.

Let f be a differentiable function on an interval I with a root in I . To
approximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an initial approximation of the root. (This is
often done by looking at a graph of f .)

2. Create successive approximations iteratively; given an approxima-
tion xn, compute the next approximation xn+1 as

xn+1 = xn − f(xn)

f ′(xn)
.

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Newton’s Method is not Infalli-
ble. The sequenceof approximate
valuesmaynot converge, or itmay
converge so slowly that one is “tricked”
into thinking a certain approxima-
tion is better than it actually is.
These issues will be discussed at
the end of the section.

Let’s practice Newton’s Method with a concrete example.

Example 4.1.3 Using Newton’s Method.

Approximate the real root of x3 − x2 − 1 = 0, accurate to the first
three places after the decimal, using Newton’s Method and an initial
approximation of x0 = 1.
Solution. To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the
Newton’s Method algorithm, outlined in Key Idea 4.1.2.
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x1 = 1− f(1)

f ′(1)

= 1− 13 − 12 − 1

3 · 12 − 2 · 1
= 2

x2 = 2− f(2)

f ′(2)

= 2− 23 − 22 − 1

3 · 22 − 2 · 2
= 1.625

x3 = 1.625− f(1.625)

f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1

3 · 1.6252 − 2 · 1.625
≈ 1.48579

x4 = 1.48579− f(1.48579)

f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)

f ′(1.46596)

≈ 1.46557

We performed five iterations of Newton’s Method to find a root accu-
rate to the first three places after the decimal; our final approximation
is 1.465. The exact value of the root, to six decimal places, is 1.465571; It
turns out that our x5 is accurate to more than just three decimal places.
A graph of f(x) is given in Figure 4.1.4. We can see from the graph
that our initial approximation of x0 = 1 was not particularly accurate; a
closer guess would have been x0 = 1.5. Our choice was based on ease
of initial calculation, and shows that Newton’s Method can be robust
enough that we do not have to make a very accurate initial approxima-
tion.
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Figure 4.1.4 A graph of f(x) = x3 −
x2 − 1 in Example 4.1.3

We can automate this process on a calculator that has an ANS key that returns
the result of the previous calculation. Start by pressing 1 and then Enter. (We
have just entered our initial guess, x0 = 1.) Now compute

ANS − f( ANS )

f ′( ANS )

by entering the following and repeatedly press the Enter key.

ANS-(ANS^3-ANS^2-1)/(3*ANS^2-2*ANS)

Each time we press the Enter key, we are finding the successive approxima-
tions, x1, x2, …, and each one is getting closer to the root. In fact, once we get
past around x7 or so, the approximations don’t appear to be changing. They
actually are changing, but the change is far enough to the right of the decimal
point that it doesn’t show up on the calculator’s display. When this happens, we
can be pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many itera-
tions can be computed very quickly.

Example 4.1.5 Using Newton’s Method to find where functions inter-
sect.

Use Newton’s Method to approximate a solution to cos(x) = x, accu-
rate to five places after the decimal.
Solution. Newton’sMethod provides amethod of solving f(x) = 0; it is
not (directly) amethod for solving equations like f(x) = g(x). However,
this is not a problem; we can rewrite the latter equation as f(x)−g(x) =
0 and then use Newton’s Method.
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So we rewrite cos(x) = x as cos(x) − x = 0. Written this way, we are
finding a root of f(x) = cos(x)−x. We compute f ′(x) = − sin(x)− 1.
Next we need a starting value, x0. Consider Figure 4.1.6, where f(x) =
cos(x) − x is graphed. It seems that x0 = 0.75 is pretty close to the
root, so we will use that as our x0. (The figure also shows the graphs of
y = cos(x) and y = x. Note how they intersect at the same x value as
when f(x) = 0.) −1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

Figure 4.1.6 A graph of f(x) =
cos(x) − x used to find an initial ap-
proximation of its root

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75

− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388

− sin(0.7391111388)− 1

≈ 0.7390851334.

We can continue this way, but it is really best to automate this process.
On a calculator with an ANS key, we would start by entering 0.75, then
Enter, inputting our initial approximation. We then enter:

ANS - (cos(ANS)-ANS)/(-sin(ANS)-1)

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

x3 = 0.7390851332

x4 = 0.7390851332.

Our approximations x2 and x3 did not differ for at least the first five
places after the decimal, so we could have stopped. However, using our
calculator in the manner described is easy, so finding x4 was not hard.
It is interesting to see how we found an approximation, accurate to as
many decimal places as our calculator displays, in just four iterations.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computation in this problem.

x = 0.75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < 0.0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The previ-
ous approximation is stored in the variable oldx. We continue looping until the
difference between two successive approximations, abs(x-oldx), is less than
some small tolerance, in this case, 0.0000000001.

Convergence of Newton’s Method. What should one use for the initial guess,
x0? Generally, the closer to the actual root the initial guess is, the better. How-



CHAPTER 4. APPLICATIONS OF THE DERIVATIVE 173

ever, some initial guesses should be avoided. For instance, consider Example 4.1.3
where we sought the root to f(x) = x3 − x2 − 1. Choosing x0 = 0would have
been a particularly poor choice. Consider Figure 4.1.7, where f(x) is graphed
along with its tangent line at x = 0. Since f ′(0) = 0, the tangent line is horizon-
tal and does not intersect the x-axis. Graphically, we see that Newton’s Method
fails.
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Figure 4.1.7 A graph of f(x) = x3 −
x2−1, showing why an initial approx-
imation of x0 = 0 with Newton’s
Method fails

We can also see analytically that it fails. Since

x1 = 0− f(0)

f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

Adjusting the initial approximation x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.8.
It is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Fig-
ure 4.1.8(a) shows graphically the calculation of x1; notice how it is farther from
the root than x0. Figure 4.1.8(b) and Figure 4.1.8(c) show the calculation of x2

and x3, which are even farther away; our successive approximations are getting
worse. (It turns out that in this particular example, each successive approxima-
tion is twice as far from the true answer as the previous approximation.)
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Figure 4.1.8 Newton’s Method fails to find a root of f(x) = x1/3, regardless of
the choice of x0.

There is no “fix” to this problem; Newton’s Method simply will not work
and another method must be used. (In this case the particular reason Newton’s
Method fails is that the tangent line is vertical at the root).

While Newton’s Method does not always work, it does work “most of the
time,” and it is generally very fast. Once the approximations get close to the root,
Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro-
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.
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4.1.1 Exercises

Terms and Concepts

1. (□ True □ False) Given a function f(x), Newton’s Method produces an exact solution to f(x) = 0.

2. (□ True □ False) In order to get a solution to f(x) = 0 accurate to d places after the decimal, at least
d+ 1 iterations of Newton’s Method must be used.

Problems

Exercise Group. The roots of the function f(x) are known or are easily found. Use five iterations of Newton’sMethod
with the given initial approximation to approximate the root. Compare it to the known value of the root.

3. f(x) = cos(x), x0 = 1.5 4. f(x) = sin(x), x0 = 1

5. f(x) = x2 + x− 2, x0 = 0 6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln(x), x0 = 2 8. f(x) = x3 − x2 + x− 1, x0 = 2

Exercise Group. Use Newton’s Method to approximate all roots of the given function accurate to three places after
the decimal. If an interval is given, find only the roots that lie within that interval. Use technology to obtain good
initial approximations.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos(x) + (x− 1) sin(x) on (−3, 3)

Exercise Group. Use Newton’s Method to approximate when the given functions are equal, accurate to 3 places after
the decimal. Use technology to obtain good initial approximations.

13. f(x) = x2, g(x) = cos(x)

14. f(x) = x2 − 1, g(x) = sin(x)

15. f(x) = ex
2

, g(x) = cos(x)

16. f(x) = x, g(x) = tan(x) on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) = x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) = −17x4 + 130x3 − 301x2 + 156x + 156 when
x0 = 1?
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4.2 Related Rates

When two quantities are related by an equation, knowing the value of one quan-
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C is 6π in determines
the radius must be 3 in.

But what if both variables are changing with time? If we know how two
variables are related and we know how one of them changes with time, can we
find how the other variable changes with time?

The topic of related rates allows us to answer this question: knowing the
rate at which one quantity is changing can determine the rate at which another
changes.

Remark 4.2.1 This section relies heavily on implicit differentiation, so referring
back to Section 2.6 may help.

We demonstrate the concepts of related rates through examples.

Example 4.2.2 Understanding related rates.

The radius of a circle is growing at a rate of 5 in
h . At what rate is the

circumference growing?
Solution. The circumference and radius of a circle are related by C =
2πr. We are given information about how the length of r changes with
respect to time; that is, we are told dr

dt is 5
in
h . We want to know how the

length of C changes with respect to time, i.e., we want to know dC
dt .

Implicitly differentiate both sides of C = 2πr with respect to t:

C = 2πr

d

dt
(C) =

d

dt
(2πr)

dC

dt
= 2π

dr

dt
.

As we know dr
dt is 5

in
h , we know

dC

dt
= 2π5 = 10π ≈ 31.4 in/hr .

In related rates problems, we will be presented with an application prob-
lem that involves two or more variables and one or more rate. It is the job of
the reader to construct the appropriate model that can be used to answer the
posed question. Key Idea 4.2.3 outlines the basic steps for solving a related rates
problem.

Key Idea 4.2.3 Related Rates.

1. Read the problem carefully and identify the quantities that are
changing with time. (There may be many quantities that change
with time, try to identify which variables are important to your
goal and only focus on these quantities.)

2. Draw a diagram (if applicable) and assign mathematical variables
to each quantity that is changing with time. (If you are given a par-
ticular value of a quantity that is also changing with time, do not
include these values on your diagram. We will call these “instan-
taneous values” of the variable.)
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3. Relate the important variables using a mathematical model.
(Typical models are known formulas for area, perimeter, the
Pythagorean Theorem or Trigonometric Ratios.) It may be neces-
sary to use more than one technique (such as similar triangles) to
reduce your model down to one that only involves the variables
of interest.

4. Implicitly differentiate both sides of the equation found in Step 3
with respect to t.

5. Substitute in the known values of rates and known instantaneous
values of the variables.

6. Solve for the unknown rate.

7. Write a full sentence conclusion.

Consider another, similar example.

Example 4.2.4 Finding related rates.

Water streams out of a faucet at a rate of 2 in3
s onto a flat surface at a

constant rate, forming a circular puddle that is 1/8 in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Solution.

1. We can answer this question two ways: using “common sense” or
related rates. The common sense method states that the volume
of the puddle is growing by 2 in3

s , where

volume of puddle = area of circle× depth.

Since the depth is constant at 1/8 in, the area must be growing
by 16 in2

s since 16 · 1
8 = 2. This approach reveals the underlying

related rates principle.

Now let’s solve the problem using Key Idea 4.2.3. Based on the
problem description, the quantities that change with time are the
volume of water (the volume of the puddle), the area of the circu-
lar puddle and the radius of the circle. We don’t need a diagram
for this problem. The important variables for this part of the prob-
lem are the volume and area.

Let V and A represent the Volume and Area of the puddle. We
know V = A × 1

8 . Take the derivative of both sides with respect
to t, employing implicit differentiation.

V =
1

8
A

d

dt
(V ) =

d

dt

(
1

8
A

)
dV

dt
=

1

8

dA

dt
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We know the change in volume, dV
dt = 2, so we substitute this

value into our related rates equation: 2 = 1
8
dA
dt , and hence

dA
dt =

16. Thus the area is growing by 16 in2
s .

2. We already identified the quantities that are changing in Part 1.
The variables of interest in this problem are the radius and the
volume. We need an equation that relates the volume of the circle
to the radius. Since the puddle is a right circular cylinder, we will
use a known volume formula, V = πr2h where V is the volume
of the puddle (in in3, r is the radius (in inches) and h is the height
(i.e. depth) of the puddle in inches. (Notice that this formula is
equivalent toV = area×depth.) We know that the height (depth)
is a constant 1/8 inch. Since this quantity does not change in the
problem, we can safely substitute this value now.

Implicitly derive both sides of V = πr2 1
8 with respect to t:

V =
1

8
πr2

d

dt

(
V
)
=

d

dt

(
1

8
πr2
)

dV

dt
=

1

8
2πr

dr

dt
dV

dt
=

1

4
πr

dr

dt

We know that dV
dt is 2

in3
s . So we have:

2 =
1

4
πr

dr

dt

Solving for dr
dt , we have

dr

dt
=

8

πr
.

Note how our answer is not a number, but rather a function of r.
In other words, the rate at which the radius is growing depends on
how big the circle already is. If the circle is very large, adding 2 in3

s
of water will not make the circle much bigger at all. If the circle is
dime-sized, adding the same amount of water will make a radical
change in the radius of the circle.

In some ways, our problem was (intentionally) ill-posed. We need
to specify a current (instantaneous) value of the radius in order to
know a rate of change. When the puddle has a radius of 10 in, the
radius is growing at a rate of

dr

dt
=

8

10π
=

4

5π
≈ 0.25 in/s .
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Example 4.2.5 Studying related rates.

Radar guns measure the rate of distance change between the gun and
the object it is measuring. For instance, a reading of “55mph” means
the object is moving away from the gun at a rate of 55 miles per hour,
whereas a measurement of “−25mph” would mean that the object is
approaching the gun at a rate of 25miles per hour.
If the radar gun is moving (say, attached to a police car) then radar read-
outs are only immediately understandable if the gun and the object are
moving along the same line. If a police officer is traveling 60mph and
gets a readout of 15mph, he knows that the car ahead of him is moving
away at a rate of 15 miles an hour, meaning the car is traveling 75mph.
(This straight-line principle is one reason officers park on the side of the
highway and try to shoot straight back down the road. It gives the most
accurate reading.)
Suppose an officer is driving due north at 30mph and sees a car moving
due east, as shown in Figure 4.2.6. Using his radar gun, he measures
a reading of 20mph. By using landmarks, he believes both he and the
other car are about 1/2mile from the intersection of their two roads.

B = 1/2

C

A
=

1/
2

N

E

Officer

Car

Figure 4.2.6 A sketch of a police car
(at bottom) attempting to measure
the speed of a car (at right) in Exam-
ple 4.2.5

If the speed limit on the other road is 55mph, is the other driver speed-
ing?
Solution. The important quantities that are changing are: the distance
of the officer to the intersection, the distance of the car to the intersec-
tion, and the distance of the officer to the car. (There are other quanti-
ties that are changing as well such as the angles and area of the triangle,
but these are not important to this problem.)
Using the diagram in Figure 4.2.6, let’s label what we know about the sit-
uation. As both the police officer and other driver are 1/2mile from the
intersection, we haveA = 1/2,B = 1/2, and through the Pythagorean
Theorem,C = 1/

√
2 ≈ 0.707. These values are “instantaneous” values

for our variables, so we won’t use them until the end of the problem.
Instead, we will use the variables A,B, and C.
We need an equation that relates A, B, and C. The Pythagorean The-
orem is a good choice: A2 + B2 = C2. Differentiate both sides with
respect to t:

A2 +B2 = C2

d

dt

(
A2 +B2

)
=

d

dt

(
C2
)

2A
dA

dt
+ 2B

dB

dt
= 2C

dC

dt

We know the police officer is traveling at 30mph; that is, dA
dt = −30.

The reason this rate of change is negative is thatA is getting smaller; the
distance between the officer and the intersection is shrinking. The radar
measurement is dC

dt = 20. We want to find dB
dt .

We have values for everything except dB
dt . Solving for this we have:

dB

dt
=

C dC
dt −AdA

dt

B
.

Now we substitue in our known rates and instantaneous values of our
variables:

dB

dt
≈ 0.707(20)− 0.5(−30)

(0.5)
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= 58.28mph .

The other driver appears to be speeding slightly.

Practicality. Example 4.2.5 is both
interesting and impractical. It high-
lights the difficulty in using radar
in a nonlinear fashion, and explains
why “in real life” the police offi-
cer would follow the other dri-
ver to determine their speed, and
not pull out pencil and paper.

Theprinciples here are impor-
tant, though. Many automated
vehicles make judgments about
other moving objects based on
perceiveddistances, radar-likemea-
surements and the concepts of
related rates.

Example 4.2.7 Studying related rates.

A camera is placed on a tripod 10 ft from the side of a road. The camera
is to turn to track a car that is to drive by at 100mph for a promotional
video. The video’s planners want to knowwhat kind of motor the tripod
should be equipped with in order to properly track the car as it passes
by. Figure 4.2.8 shows the proposed setup.

θ

10ft

x

100mph

Figure 4.2.8 Tracking a speeding car
(at left) with a rotating camera

How fast must the camera be able to turn to track the car?
Solution. The quantities that changing are x and θ as drawn on Fig-
ure 4.2.8. (The hypotenuse of the triangle is also changing, but this isn’t
important to the problem). We seek information about how fast the
camera is to turn; therefore, we need an equation that will relate an an-
gle θ to the position of the camera and the speed and position of the
car.
Figure 4.2.8 suggests we use a trigonometric equation. Letting x repre-
sent the distance the car is from the point on the road directly in front
of the camera, we have

tan(θ) =
x

10
. (4.2.1)

Now take the derivative of both sides of Equation (4.2.1) using implicit
differentiation:

tan(θ) =
x

10
d

dt
(tan(θ)) =

d

dt

( x

10

)
sec2(θ)

dθ

dt
=

1

10

dx

dt

Now we solve for dθ
dt :

dθ

dt
=
cos2(θ)

10

dx

dt
(4.2.2)

As the car is moving at 100mph, we have that dx
dt is−100mph (as in the

last example, since x is getting smaller as the car travels, dxdt is negative).
We need to convert the measurements so they use the same units (we
chose ft); rewrite−100mph in terms of fts :

dx

dt
= −100

mi
hr

= −100
mi
hr

· 5280 ft
mi

· 1

3600

hr
s

= −146.6 ft/s .

We want to know the fastest the camera has to turn. Common sense
tells us this is when the car is directly in front of the camera (i.e., when
θ = 0). Our mathematics bears this out. In Equation (4.2.2) we see this
is when cos2(θ) is largest; this is when cos(θ) = 1, or when θ = 0. We
also know that we should get an answer that is in rad

s . Since cos(θ) is
a “dimensionless” measure, it won’t contribute to the units. However,
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radians are also dimensionless. This means we can write (or erase) the
word “radian” without any unit consequences. (The same is not true of
degrees — always convert degress to radians).
With dx

dt approximately−146.7 ft
s , we have

dθ

dt
≈ − 1

10 ft
146.67 ft/s

= −14.667 radians/s

We find that dθ
dt is negative; this matches our diagram in Figure 4.2.8 for

θ is getting smaller as the car approaches the camera.
What is the practical meaning of−14.667 rad

s ? Recall that 1 circular rev-
olution goes through 2π radians, thus 14.667 rad

s means 14.667/(2π) ≈
2.33 revolutions per second. The negative sign indicates the camera is
rotating in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’sMethod uses the derivative to approximate roots of functions; this sec-
tion stresses the “rate of change” aspect of the derivative to find a relationship
between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.
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4.2.1 Exercises

Terms and Concepts

1. (□ True □ False) Implicit differentiation is often used when solving “related rates” type problems.
2. (□ True □ False) A study of related rates is part of the standard police officer training.

Problems

3. Water flows onto a flat surface at a rate of 4 cm3

s forming a circular puddle 8mm deep. How fast is the radius
growing when the radius is:

(a) 2 cm

(b) 20 cm

(c) 200 cm

4. A spherical balloon is inflated with air flowing at a rate of 5 cm3

s . How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm

(b) 10 cm

(c) 100 cm
5. Consider the traffic situation introduced in Example 4.2.7. How fast is the “other car” traveling if the officer and

the other car are each 3
4 mile from the intersection, the other car is traveling due west, the officer is traveling

north at 55mph, and the radar reading is−75mph?
6. Consider the traffic situation introduced in Example 4.2.7. Calculate how fast the “other car” is traveling in each

of the following situations.

(a) The officer is traveling due north at 50mph and is 3
4 mile from the intersection, while the other car is 1

mile from the intersection traveling west and the radar reading is−85mph?

(b) The officer is traveling due north at 50mph and is 1 mile from the intersection, while the other car is 3
4

mile from the intersection traveling west and the radar reading is−85mph?
7. An F-22 aircraft is flying at 530mph with an elevation of 6600ft on a straight-line path that will take it directly

over an anti-aircraft gun.

θ

x

6600 ft

How fast (in radians per second) must the gun be able to turn to accurately track the aircraft when the plane
is:

(a) 1mile away?

(b) 1/5mile away?

(c) Directly overhead?
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8. An F-22 aircraft is flying at 500 mi/h with an elevation of 100ft on a straight-line path that will take it directly
over an anti-aircraft gun as in Exercise 4.2.7 (note the lower elevation here).

How fast must the gun be able to turn to accurately track the aircraft when the plane is:

(a) 1800 ft away?

(b) 350 ft away?

(c) Directly overhead?
9. A 24 ft ladder is leaning against a house while the base is pulled away at a constant rate of 1 ft/s.

24
ft 1 ft/s

At what rate is the top of the ladder sliding down the side of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?
10. A boat is being pulled into a dock at a constant rate of 30 ft/min by a winch located 10 ft above the deck of the

boat.

10ft

At what rate is the boat approaching the dock when the boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the boat is less than 10 feet long?

11. An inverted cylindrical cone, 28 ft deep and 25 ft across at the top, is being filled with water at a rate of 12 ft3

s .
At what rate is the water rising in the tank when the depth of the water is:

(a) 1 foot?

(b) 10 feet?

(c) 22 feet?

(d) How long will the tank take to fill when starting at empty?
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12. A rope, attached to a weight, goes up through a pulley at the ceiling and back down to a worker. The man holds
the rope at the same height as the connection point between rope and weight.

3
0
ft

2 ft/s

Suppose the man stands directly next to the weight (i.e., a total rope length of 60 feet) and begins to walk
away at a rate of 2 ft/s. How fast is the weight rising when the man has walked:

(a) 10 feet?

(b) 40 feet?

(c) How far must the man walk to raise the weight all the way to the pulley?
13. Consider the situation described in Exercise 4.2.12. Suppose the man starts 40 ft from the weight and begins to

walk away at a rate of 2 ft
s .

(a) How long is the rope?

(b) How fast is the weight rising after the man has walked 10 feet?

(c) How fast is the weight rising after the man has walked 30 feet?

(d) How far must the man walk to raise the weight all the way to the pulley?
14. A hot air balloon lifts off from ground rising vertically. From 90 feet away, a 6 ft tall woman tracks the path of

the balloon. When her sightline with the balloon makes a 45◦ angle with the horizontal, she notes the angle is
increasing at about 3◦ per minute.

(a) What is the elevation of the balloon?

(b) How fast is it rising?
15. A company that produces landscaping materials is dumping sand into a conical pile. The sand is being poured

at a rate of 5 ft3

s . The physical properties of the sand, in conjunction with gravity, ensure that the cone’s height
is roughly 4

7 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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4.3 Optimization

In Section 3.1 we learned about extreme values — the largest and smallest val-
ues a function attains on an interval. We motivated our interest in such values
by discussing how it made sense to want to know the highest/lowest values of
a stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.1 Optimization: perimeter and area.

Aman has 100 feet of fencing, a large yard, and a small dog. He wants to
create a rectangular enclosure for his dog with the fencing that provides
the maximal area. What dimensions provide the maximal area?
Solution. One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context
that proves this answer is correct.
It helps to make a sketch of the situation. Our enclosure is sketched
twice in Figure 4.3.2, either with treetop grass and nice fence boards or
as a simple rectangle. Either way, drawing a rectangle forces us to realize
that we need to know the dimensions of this rectangle so we can create
an area function — after all, we are trying to maximize the area.

x

y

x

y

Figure 4.3.2 A sketch of the enclosure in Example 4.3.1.
We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with two variables; we
need to reduce this down to a single variable. We knowmore about the
situation: the man has 100 feet of fencing. By knowing the perimeter of
the rectangle must be 100, we can create another equation:

Perimeter = 100 = 2x+ 2y.

We now have two equations and two unknowns. In the latter equation,
we solve for y:

y = 50− x.

Now substitute this expression for y in the area equation:

Area = A(x) = x(50− x).

Notewe nowhave an equation of one variable; we can truly call the Area
a function of x.
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This function only makes sense when 0 ≤ x ≤ 50, otherwise we get
negative values of area. So we find the extreme values of A(x) on the
interval [0, 50] using Key Idea 3.1.14.
To find the critical points, we take the derivative ofA(x) and set it equal
to 0, then solve for x.

A(x) = x(50− x)

= 50x− x2

A′(x) = 50− 2x

We solve 50 − 2x = 0 to find x = 25; this is the only critical point. We
evaluateA(x) at the endpoints of our interval and at this critical point to
find the extreme values; in this case, all we care about is the maximum.
Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625ft2. This is the
maximum. Since we earlier found y = 50 − x, we find that y is also
25. Thus the dimensions of the rectangular enclosure with perimeter of
100 ft. with maximum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi-variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

Key Idea 4.3.3 Solving Optimization Problems.

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We’ll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able functionusing substitutions derived from theother equations
(we’ll call these constraint equations).

4. Identify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. Identify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.3 in a variety of examples.
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Example 4.3.4 Optimization: perimeter and area.

Here is another classic calculus problem: Awoman has a 100 feet of fenc-
ing, a small dog, and a large yard that contains a stream (that is mostly
straight). Shewants to create a rectangular enclosurewithmaximal area
that uses the stream as one side. (Apparently her dogwon’t swim away.)
What dimensions provide the maximal area?
Solution. We will follow the steps outlined by Key Idea 4.3.3.

1. We are maximizing area. A sketch of the region will help; Fig-
ure 4.3.5 gives two sketches of the proposed enclosed area. A
key feature of the sketches is to acknowledge that one side is not
fenced.

x

y

x

y

Figure 4.3.5 A sketch of the enclosure in Example 4.3.4

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equation. This defines area as a function
of two variables, so we need another equation to reduce it to one
variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

The perimeter is our constraint equation. Note how this is a dif-
ferent equation for perimeter than in Example 4.3.1, since one of
the sides does not need to be fenced.

3. We now reduce the fundamental equation to a single variable us-
ing our constraint equation. In the perimeter equation, solve for
y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2)

= 50x− 1

2
x2.

Area is now defined as a function of one variable.

4. We want the area to be non-negative. SinceA(x) = x(50−x/2),
we want x ≥ 0 and 50 − x/2 ≥ 0. The latter inequality implies
that x ≤ 100, so 0 ≤ x ≤ 100.

5. We now find the extreme values. At the endpoints, the minimum
is found, giving an area of 0.
Find the critical points. We haveA′(x) = 50−x; setting this equal
to 0 and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.
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6. We earlier set y = 50−x/2; thus y = 25. Thus our rectangle will
have two sides of length 25 and one side of length 50, with a total
area of 1250 ft2.

Keep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a systemof equations. These equations
allow us to write a certain quantity as a function of one variable, which we then
optimize.

Example 4.3.6 Optimization: minimizing cost.

A power line needs to be run from a power station located on the beach
to an offshore facility. Figure 4.3.7 shows the distances between the
power station to the facility.
It costs $50/ ft to run a power line along the land, and $130/ ft to run
a power line under water. How much of the power line should be run
along the land to minimize the overall cost? What is the minimal cost?

5000 ft

1000 ft

Figure 4.3.7 Running a power line
from the power station to an offshore
facility with minimal cost in Exam-
ple 4.3.6

Solution. Wewill follow the strategy of Key Idea 4.3.3 implicitly, without
specifically numbering steps.
There are two immediate solutions that we could consider, each of
which we will reject through “common sense.” First, we could minimize
the distance by directly connecting the two locations with a straight line.
However, this requires that all the wire be laid underwater, the most
costly option. Second, we could minimize the underwater length by run-
ning a wire all 5000 ft along the beach, directly across from the offshore
facility. This has the undesired effect of having the longest distance of
all, probably ensuring a non-minimal cost.
The optimal solution likely has the line being run along the ground for
a while, then underwater, as the figure implies. We need to label our
unknown distances — the distance run along the ground and the dis-
tance run underwater. Recognizing that the underwater distance can
be measured as the hypotenuse of a right triangle, we choose to label
the distances as shown in Figure 4.3.8.

5000− x x

1000 ft√ x
2 + 100

0
2

Figure 4.3.8 Labeling unknown dis-
tances in Example 4.3.6

By choosing x as we did (instead of letting x be the distance along the
land), we make the expression under the square root simple. We now
create the cost function.

Cost = land cost + water cost
$50× land distance+ $130× water distance

50(5000− x) + 130
√

x2 + 10002.

So we have c(x) = 50(5000−x)+130
√
x2 + 10002. This function only

makes sense on the interval [0, 5000]. While we are fairly certain the
endpoints will not give a minimal cost, we still evaluate c(x) at each to
verify.

c(0) = 380,000 c(5000) ≈ 662,873.

(Notice that if x = 0, the line is run the full 5000 ft along land and a full
1000 ft under water. If x = 5000, the line is run the maximum distance
underwater.)
We now find the critical values of c(x). We compute c′(x) as

c′(x) = −50 +
130x√

x2 + 10002
.
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Recognize that this is never undefined. Setting c′(x) = 0 and solving for
x, we have:

−50 +
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)

1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000

120
=

1250

3
≈ 416.67.

Evaluating c(x) at x = 416.67 gives a minimal cost of about $370,000.
The distance the power line is laid along land is 5000−416.67 = 4583.33
ft., and the underwater distance is

√
416.672 + 10002 ≈ 1083 ft.

In the exercises you will see a variety of situations that require you to com-
bine problem-solving skills with calculus. Focus on the process; learn how to
form equations from situations that can bemanipulated into what you need. Es-
chew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

Section 4.4 introduces our final application of the derivative: differentials.
Given y = f(x), they offer a method of approximating the change in y after x
changes by a small amount.
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4.3.1 Exercises

Terms and Concepts

1. (□ True □ False) An “optimization problem” is essentially an “extreme values” problem in a “story prob-
lem” setting.

2. (□ True □ False) This section teaches one to find the extreme values of a function that has more than one
variable.

Problems

3. Find the maximum product of two numbers (not necessarily integers) that have a sum of 150.
4. Find the minimum sum of two positive numbers whose product is 560.
5. Find the maximum sum of two positive numbers whose product is 580.
6. Find the maximum sum of two numbers, each of which is less than or equal to 290, whose product is 400.
7. Find the maximal area of a right triangle with hypotenuse of length 2.
8. A rancher has 900 feet of fencing in which to construct adjacent, equally sized rectangular pens. What dimen-

sions should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355 cm3 of liquid. What dimensions should the cylinder
have to minimize the material needed to produce the can? Based on your dimensions, determine whether or
not the standard can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of 206 in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restaurant industry that holds about 206 in3with a diameter

of 6 3
16 in and height of 7 in. Does it seem these dimensions where chosen with minimization in mind?

11. A standard soda can is roughly cylindrical and holds 355 cm3 of liquid. A real-world soda can has material on
the top and bottom that is thicker than the material around the side. Assume that the top/bottom material
is twice as thick as the material around the side. What dimensions should the cylinder have to minimize the
material needed to produce the can? Based on your dimensions and the assumption about material thickness,
determine whether or not the standard can is produced to minimize the material costs.

12. The United States Postal Service charges more for boxes whose combined length and girth exceeds 108 inches.
(The “length” of a package is the length of its longest side; the girth is the perimeter of the cross section, i.e.,
2w + 2h).

What is the maximum volume of a package with a square cross section (w = h) that does not exceed the
108 inch standard?

13. The strength S of a wooden beam is directly proportional to its cross sectional width w and the square of its
height h. that is, S = kwh2 for some constant k.
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12 h

w

Given a circular log with diameter of 18 inches, what sized beam can be cut from the log with maximum
strength?

14. A power line is to be run to an offshore facility in the manner described in Example 4.3.7. The offshore facility
is 6miles at sea and 4miles along the shoreline from the power plant. It costs $35,000 per mile to lay a power
line underground and $70,000 to run the line underwater.

How much of the power line should be run underground? What is the minimum overall cost?
15. A power line is to be run to an offshore facility in the manner described in Example 4.3.7. The offshore facility

is 6miles at sea and 2miles along the shoreline from the power plant. It costs $45,000 per mile to lay a power
line underground and $75,000 to run the line underwater.

How much of the power line should be run underground? What is the minimum overall cost?
16. A woman throws a stick into a lake for her dog to fetch; the stick is 35 feet down the shore line and 13 feet into

the water from there. The dog may jump directly into the water and swim, or run along the shore line to get
closer to the stick before swimming. The dog runs about 19 ft

s and swims about 2
ft
s .

How far along the shore should the dog run tominimize the time it takes to get to the stick? (Hint: the figure
from Example 4.3.7 can be useful.)

17. A woman throws a stick into a lake for her dog to fetch; the stick is 25 feet down the shore line and 16 feet into
the water from there. The dog may jump directly into the water and swim, or run along the shore line to get
closer to the stick before swimming. The dog runs about 22 ft

s and swims about 1.7
ft
s .

How far along the shore should the dog run tominimize the time it takes to get to the stick? (Google “calculus
dog” to learn more about a dog’s ability to minimize times.)

18. What are the dimensions of the rectangle with largest area that can be drawn inside the unit circle?
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4.4 Differentials

In Section 2.2 we explored the meaning and use of the derivative. This section
starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f . At x = c, the tangent line to the graph of f has
equation

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximations of f(x) for values
of x near c.

For instance, we can approximate sin(1.1) using the tangent line to the graph
of f(x) = sin(x) at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866,

and f ′(π/3) = cos(π/3) = 1/2. Thus the tangent line to f(x) = sin(x) at
x = π/3 is:

ℓ(x) =
1

2
(x− π/3) + 0.866.

0.5

1

π
3

√
3
2

(π/3,
√
3/3)

x

y

(a)

0.87

0.88

0.89

π
3

1.1

√
3
2 (

π/3,
√
3/3

)

ℓ(1.1) ≈ sin(1.1) sin(1.1)

x

y

(b)

Figure 4.4.1 Graphing f(x) = sin(x) and its tangent line at x = π/3 in order to
estimate sin(1.1)

In Figure 4.4.1(a), we see a graph of f(x) = sin(x) graphed along with its
tangent line at x = π/3. The small rectangle shows the region that is displayed
in Figure 4.4.1(b). In this figure, we see how we are approximating sin(1.1)with
the tangent line, evaluated at 1.1. Together, the two figures show how close
these values are.

Using this line to approximate sin(1.1), we have:

ℓ(1.1) =
1

2
(1.1− π/3) + 0.866

=
1

2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximation this is.)
We now generalize this concept. Given f(x) and an x-value c, the tangent

line is y = ℓ(x), where ℓ(x) = f ′(c)(x−c)+f(c). Clearly, f(c) = ℓ(c). Let∆x
be a small number, representing a small change in the x-value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a function approximates well the values of that func-
tion near x = c. This tangent line approximation is used frequently enough in
applications that we give it a name.
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Definition 4.4.2

The function ℓ(x) is often referred to as the linearization, or linear ap-
proximation of f at c. It is the linear function that best approximates
the value of f(x) when x is close to c.

As the x-value changes from c to c+∆x, the y-value of f changes from f(c)
to f(c+∆x). We call this change of y-value∆y. That is:

∆y = f(c+∆x)− f(c).

Replacing f(c+∆x) with its tangent line approximation, we have

∆y ≈ ℓ(c+∆x)− f(c)

= f ′(c)
(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x. (4.4.1)

This final equation is important; it becomes the basis of Definition 4.4.3 and
Key Idea 4.4.4. In short, it says that when the x-value changes from c to c+∆x,
the y value of a function f changes by about f ′(c)∆x.

We introduce two new variables, dx and dy in the context of a formal defin-
ition.

Definition 4.4.3 Differentials of x and y.

Let y = f(x) be differentiable. The differential of x, denoted dx, is
any nonzero real number (usually taken to be a small number). The
differential of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equation: f ′(x) = dy/dx. This states
that the derivative of f with respect to x is the differential of y divided by the
differential of x; this is not the alternate notation for the derivative, dy

dx . This
latter notationwas chosen because of the fraction-like qualities of the derivative,
but again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place.

Differentials and linearization. The
relationship between the differ-
ential and the linearization given
in Definition 4.4.2 is as follows:

ℓ(x) = f(c) + dy,

if we take dy to be evaluated at
x = c.

It is often useful to think of
dy is the linear change in f , while
∆y represents the true change
in f .

Key Idea 4.4.4 Differential Notation.

Let y = f(x) be a differentiable function.

1. Let∆x represent a small, nonzero change in x value.

2. Let dx represent a small, nonzero change in x value (i.e., ∆x =
dx).

3. Let∆y be the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. Let dy = f ′(x)dx which, by Equation (4.4.1), is an approximation
of the change in y-value as x changes by∆x; dy ≈ ∆y.

What is the value of differentials? Like many mathematical concepts, differ-
entials provide both practical and theoretical benefits. We explore both here.
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Example 4.4.5 Finding and using differentials.

Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).
Solution. The x-value is changing from x = 3 to x = 3.1; therefore,
we see that dx = 0.1. If we know how much the y-value changes from
f(3) to f(3.1) (i.e., if we know∆y), we will know exactly what f(3.1) is
(since we already know f(3)). We can approximate∆y with dy.

∆y ≈ dy

= f ′(3)dx

= 2 · 3 · 0.1 = 0.6.

We expect the y-value to change by about 0.6, so we approximate
f(3.1) ≈ 9.6.
We leave it to the reader to verify this, but the preceding discussion links
the differential to the tangent line of f(x) at x = 3. One can verify that
the tangent line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximation is really good!)

So why bother?
In “most” real life situations, we do not know the function that describes

a particular behavior. Instead, we can only take measurements of how things
change — measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
tial Equations courses.

PID controllers. Another place
differentials are used is in a PID
controller, which stands for “Pro-
portional Integral Derivative”. A
PID controller uses concepts of
both derivative and integral cal-
culus to very accurately control
a process (such as maintaining a
stable temperature on anespresso
machine).

We use differentials once more to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques
can sometimes be used to easily compute something that looks rather hard.

Example 4.4.6 Using differentials to approximate a function value.

Approximate
√
4.5.

Solution. We expect
√
4.5 ≈ 2, yet we can do better. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so

f ′(4) = 1/4.
We approximate the difference between f(4.5) and f(4) using differen-
tials, with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy

= f ′(4) · dx
= 1/4 · 1/2
= 1/8

= 0.125.
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The approximate change in f from x = 4 to x = 4.5 is 0.125, so we
approximate

√
4.5 ≈ 2.125.

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as∫

f(x) dx

quite often. While we don’t discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practice finding differentials in general.

Example 4.4.7 Finding differentials.

In each of the following, find the differential dy.

1. y = sin(x) 2. y =
ex
(
x2 + 2

) 3. y =√
x2 + 3x− 1

Solution.

1. y = sin(x): As f(x) = sin(x), f ′(x) = cos(x). Thus

dy = cos(x)dx.

2. y = ex
(
x2 + 2

)
: Let f(x) = ex

(
x2 + 2

)
. We need f ′(x), requir-

ing the Theorem 2.4.1.

We have f ′(x) = ex
(
x2 + 2

)
+ 2xex, so

dy =
(
ex
(
x2 + 2

)
+ 2xex

)
dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x),

requiring the Theorem 2.5.3.

We have f ′(x) = 1
2

(
x2 + 3x− 1

)− 1
2 (2x + 3) = 2x+3

2
√
x2+3x−1

.
Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f ; we just multiply f ′(x) by dx. It is important to remember that
we are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method
of making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x+∆x (where∆x is the
error, which we hope is small). This measurement of xmay be used to compute
some other value; we can think of this latter value as f(x) for some function f .
As the true length is x+∆x, one really should have computed f(x+∆x). The
difference between f(x) and f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values:

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differentials.
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Example 4.4.8 Using differentials to approximate propagated error.

A steel ball bearing is to be manufactured with a diameter of 2 cm.
The manufacturing process has a tolerance of ±0.1mm in the diameter.
Given that the density of steel is about 7.85 g

cm3 , estimate the propa-
gated error in the mass of the ball bearing.
Solution. The mass of a ball bearing is found using the equation “mass
= volume × density.” In this situation the mass function is a product of
the radius of the ball bearing, hence it ism = 7.85 4

3πr
3. The differential

of the mass is
dm = 31.4πr2dr.

The radius is to be 1 cm; the manufacturing tolerance in the radius is
±0.05mm, or±0.005cm. The propagated error is approximately:

∆m ≈ dm

= 31.4π(1)2(±0.005)

= ±0.493g

Is this error significant? It certainly depends on the application, but
we can get an idea by computing the relative error. The ratio between
amount of error to the total mass is

dm

m
= ± 0.493

7.85 4
3π

= ±0.493

32.88
= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball
was supposed to be 10 cm, the same manufacturing tolerance would
give a propagated error in mass of ±12.33g, which corresponds to a
percent error of ±0.188%. While the amount of error is much greater
(12.33 > 0.493), the percent error is much lower.
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4.4.1 Exercises

Terms and Concepts

1. (□ True □ False) Given a differentiable function y = f(x), we are generally free to choose a value for dx,
which then determines the value of dy.

2. (□ True □ False) The symbols “dx” and “∆x” represent the same concept.
3. (□ True □ False) The symbols “dy” and “∆y” represent the same concept.
4. (□ True □ False) Differentials are important in the study of integration.
5. How are differentials and tangent lines related?
6. (□ True □ False) In real life, differentials are used to approximate function values when the function itself

is not known.

Problems

Exercise Group. Use differentials to approximate the given value by hand.
7. 2.072 8. 2.952

9. 4.43 10. 4.73

11.
√
25.5 12.

√
34.6

13. 3
√
124 14. 3

√
216.6

15. sin(3) 16. e0.1

Exercise Group. Compute the differential dy.
17. y = x2 − 5x− 6 18. y = x5 + x9

19. y =
1

4x6
20. y = (6x+ sin(x))2

21. y = x7 + e8x 22. y =
8

x5

23. y =
9x

tan(x) + 2

24. y = ln(9x)

25. y = ex sin(x) 26. y = cos(sin(x))

27. y =
x− 4

x+ 5

28. y = 5x ln(x)

29. y = x tan−1(x)− 0.5 ln
(
1 + x2

)
30. y = ln(sin(x))

31. A set of plastic spheres are to be made with a diameter of 4 cm. If the manufacturing process is accurate to
2mm, what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by d(t) = 16t2. The depth of a hole is to be approximated
by dropping a rock and listening for it to hit the bottom. What is the propagated error if the time measurement
is accurate to 4/10 of a second and the measured time is:

(a) 4 seconds?

(b) 6 seconds?
33. What is the propagated error in the measurement of the cross sectional area of a circular log if the diameter is

measured at 20′′, accurate to 1/8′′?

34. A wall is to be painted that is 8′ high and is measured to be 13′, 2′′ long. Find the propagated error in the
measurement of the wall’s surface area if the measurement is accurate to 1/− 2′′.
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ExerciseGroup. The following exercises explore some issues related to surveying inwhich distances are approximated
using other measured distances and measured angles. (Hint: Convert all angles to radians before computing.)

35. The length L of a long wall is to be
approximated. The angle θ, as shown in the
diagram (not to scale), is measured at a
distance of 25 feet from the wall, and found to
be 85.2◦, accurate to 1◦. Assume that the
triangle formed is a right triangle.

l =?

θ

25′

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?

36. The length L of a long wall is to be
approximated. The angle θ, as shown in the
diagram (not to scale), is measured at a
distance of 100 feet from the wall, and found to
be 71.5◦, accurate to 1◦. Assume that the
triangle formed is a right triangle.

l =?

θ

100′

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?
37. The length L of a long wall is to be calculated by

measuring the angle θ shown in the diagram
(not to scale) at a distance of 50 feet from the
wall. Assume the formed triangle is an isosceles
triangle. The measured angle is 143◦, accurate
to 1◦.

l =?θ 50′

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercise 4.4.35–4.4.37
are essentially the same. Which setup gives the
most accurate result?

• Right triangle at 25 feet

• Right triangle at 100 feet

• Isosceles triangle at 50 feet
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39. Consider the setup in Exercise 4.4.37. This time,
assume the angle measurement of 143◦ is exact
but the measured 50′ from the wall is accurate
to 6′′.

l =?θ 50′

What is the approximate percent error?
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We first learned of the derivative in the context of instantaneous rates of change
and slopes of tangent lines. We furthered our understanding of the power of the
derivative by studying how it relates to the graph of a function (leading to ideas
of increasing/decreasing and concavity). This chapter has put the derivative to
yet more uses:

• Equation solving (Newton’s Method),

• Related Rates (furthering our use of the derivative to find instantaneous
rates of change),

• Optimization (applied extreme values), and

• Differentials (useful for various approximations and for something called
integration).

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f , can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applica-
tions.



Chapter 5

Integration

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F (x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is an equation that incorpo-
rates y, x, and the derivatives of y. For instance, a simple differential equation
is:

y′ = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that y′ = 2x?

Can you find another?
And yet another?
Hopefully you were able to come up with at least one solution: y = x2.

“Finding another”may have seemed impossible until one realizes that a function
like y = x2 +1 also has a derivative of 2x. Once that discovery is made, finding
“yet another” is not difficult; the function y = x2 + 123,456,789 also has a
derivative of 2x. The differential equation y′ = 2x has many solutions. This
leads us to some definitions.

Definition 5.1.1 Antiderivatives and Indefinite Integrals.

Let a function f(x) be given. An antiderivative of f(x) is a functionF (x)
such that F ′(x) = f(x).
The set of all antiderivatives of f(x) is the indefinite integral of f , de-
noted by ∫

f(x) dx.

Make a note about our definition: we refer to an antiderivative of f , as op-
posed to the antiderivative of f , since there is always an infinite number of them.
We often use upper-case letters to denote antiderivatives.

200
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When f is continuous, knowing one antiderivative of f allows us to find in-
finitely more, simply by adding a constant. Not only does this give usmore anti-
derivatives, it gives us all of them.

Theorem 5.1.2 Antiderivative Forms.

Let F (x) and G(x) be antiderivatives of a continuous function f(x) on
an interval I . Then there exists a constant C such that, on I ,

G(x) = F (x) + C.

Given a continuous function f defined on an interval I and one of its anti-
derivatives F , we know all antiderivatives of f on I have the form F (x)+C for
some constant C. Using Definition 5.1.1, we can say that∫

f(x) dx = F (x) + C.

Note that we are abusing notation somewhat: when we write F (x) +C on
the right-hand side, we really mean the set of all such functions, for each real
number value of C. Let’s analyze this indefinite integral notation.

∫Integral symbol

f(x)

Integrand function

· dx

Differential of x

= F (x)

Any antiderivative of f

+ C

Constant of integration

Figure 5.1.3 Antiderivative notation
Figure 5.1.3 shows the typical notation of the indefinite integral. The integra-

tion symbol,
∫
, is in reality an “elongated S,” representing “take the sum.” We

will later see how sums and antiderivatives are related.
The function we want to find an antiderivative of is called the integrand. It

contains the differential of the variable we are integratingwith respect to. The
∫

symbol and the differential dx are not “bookends” with a function sandwiched
in between; rather, the symbol

∫
means “find all antiderivatives ofwhat follows,”

and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Anotherway of looking at the notation is that it tells us that f(x) dx is the dif-
ferential ofF (x): dF (x) = f(x) dx, confirming thatF ′(x) = f(x), as required
of an antiderivative. The integral symbol can then be viewed as an instruction
to “undo” the differential and recover the antiderivative F (x).

Another important aspect of the dx is that it tells us which variable we’re
taking the antiderivative with respect to, much like how d

dx would mean to take
the derivative with respect to x, while d

dt would be the derivative with respect
to t.

Let’s practice using this notation.

Example 5.1.4 Evaluating indefinite integrals.

Evaluate
∫
sin(x) dx.

Solution. We are asked to find all functions F (x) such that F ′(x) =
sin(x). Some thought will lead us to one solution: F (x) = − cos(x),
because d

dx (− cos(x)) = sin(x).
The indefinite integral of sin(x) is thus− cos(x), plus a constant of inte-
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gration. So: ∫
sin(x) dx = − cos(x) + C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The
integral ∫

sin(x) dx

presents us with a differential, dy = sin(x) dx. It is asking: “What is y?” We
found lots of solutions, all of the form y = − cos(x) + C.

Letting dy = sin(x) dx, rewrite∫
sin(x) dx as

∫
dy.

This is asking: “What functions have a differential of the form dy?” The an-
swer is “Functions of the form y+C, whereC is a constant.” What is y? Wehave
lots of choices, all differing by a constant; the simplest choice is y = − cos(x).

Understanding all of this is more important later as we try to find antideriv-
atives of more complicated functions. In this section, we will simply explore
the rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 5.1.5 Evaluating indefinite integrals.

Evaluate
∫ (

3x2 + 4x+ 5
)
dx.

Solution. We seek a function F (x) whose derivative is 3x2 + 4x + 5.
When taking derivatives, we can consider functions term-by-term, sowe
can likely do that here.
What functions have a derivative of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.
What functions have a derivative of 4x? Here the x term is raised to the
first power, so we likely seek a quadratic. Some thought should lead us
to 2x2 + C2, where C2 is a constant.
Finally, what functions have a derivative of 5? Functions of the form
5x+ C3, where C3 is a constant.
Our answer appears to be∫ (

3x2 + 4x+ 5
)
dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integration; combine them
as one constant, giving the final answer of∫ (

3x2 + 4x+ 5
)
dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivative of x3 +2x2 +5x+C
and see we indeed get 3x2 + 4x+ 5.



CHAPTER 5. INTEGRATION 203

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

d

dx

(∫
f(x) dx

)
= f(x).

Differentiation “undoes” the work done by antidifferentiation.
Theorem 2.7.11 gave a list of the derivatives of common functions we had

learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.

Theorem 5.1.6 Derivatives and Antiderivatives.

Here are the Common Differentiation Rules and their Common Indefinite Integral Rule
counterparts.

d

dx
(cf(x)) = c · f ′(x)

∫
c · f(x) dx = c ·

∫
f(x) dx

d

dx
(f(x)± g(x)) = f ′(x)± g′(x)

∫ (
f(x)± g(x)

)
dx =

∫
f(x) dx±

∫
g(x) dx

d

dx
(C) = 0

∫
0 dx = C

d

dx
(x) = 1

∫
1 dx =

∫
dx = x+ C

d

dx
(xn) = n · xn−1

∫
xn dx =

1

n+ 1
xn+1 + C (n ̸= −1)

d

dx
(sin(x)) = cos(x)

∫
cos(x) dx = sin(x) + C

d

dx
(cos(x)) = − sin(x)

∫
sin(x) dx = − cos(x) + C

d

dx
(tan(x)) = sec2(x)

∫
sec2(x) dx = tan(x) + C

d

dx
(csc(x)) = − csc(x) cot(x)

∫
csc(x) cot(x) dx = − csc(x) + C

d

dx
(sec(x)) = sec(x) tan(x)

∫
sec(x) tan(x) dx = sec(x) + C

d

dx
(cot(x)) = − csc2(x)

∫
csc2(x) dx = − cot(x) + C

d

dx
(ex) = ex

∫
ex dx = ex + C

d

dx
(ax) = ln(a) · ax

∫
ax dx =

1

ln(a)
· ax + C

d

dx
(ln(x)) =

1

x
, x > 0

∫
1

x
dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.6.

• ∫
c · f(x) dx = c ·

∫
f(x) dx
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This is the Constant Multiple Rule: we can temporarily ignore constants
when finding antiderivatives, just as we did when computing derivatives
(i.e., d

dx

(
3x2
)
is just as easy to compute as d

dx

(
x2
)
). An example:∫

5 cos(x) dx = 5 ·
∫
cos(x) dx = 5 · (sin(x) + C) = 5 sin(x) + C.

In the last step we can consider the constant as also being multiplied by 5,
but “5 times a constant” is still a constant, so we just write “C”.

• ∫ (
f(x)± g(x)

)
dx =

∫
f(x) dx±

∫
g(x) dx

This is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Exam-
ple 5.1.5. So:∫

(3x2 + 4x+ 5) dx =

∫
3x2 dx+

∫
4x dx+

∫
5 dx

= 3

∫
x2 dx+ 4

∫
x dx+

∫
5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

• ∫
xn dx =

1

n+ 1
xn+1 + C (n ̸= −1)

This is the Power Rule of indefinite integration. There are two important
things to keep in mind:

1. Notice the restriction that n ̸= −1. This is important:
∫

1
x dx ̸=

“ 10x
0 + C”; rather, see the last rule from the list.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the anti-
derivative, do the opposite things in the opposite order: first add 1
to the power, then second divide by the power.

• ∫
1

x
dx = ln |x|+ C

Note that this rule uses the absolute value of x. The exercises will work
the reader through why this is the case; for now, know the absolute value
is important and cannot be ignored.
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Initial Value Problems. In Section 2.3 we saw that the derivative of a position
function gave a velocity function, and the derivative of a velocity function de-
scribes acceleration. We can now go “the other way:” the antiderivative of an
acceleration function gives a velocity function, etc.. While there is just one de-
rivative of a given function, there are infinitely many antiderivatives. Therefore
we cannot ask “What is the velocity of an object whose acceleration is−32 ft

s2 ?”,
since there is more than one answer.

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 5.1.7 Solving initial value problems.

The acceleration due to gravity of a falling object is−32 ft
s2 . At time t = 3,

a falling object had a velocity of−10 ft
s . Find the equation of the object’s

velocity.
Solution. We want to know a velocity function, v(t). We know two
things:

• The acceleration, i.e., v′(t) = −32, and

• the velocity at a specific time, i.e., v(3) = −10.

Using the first piece of information, we know that v(t) is an antideriv-
ative of v′(t) = −32. So we begin by finding the indefinite integral of
−32: ∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C

v(3) = −10

−32(3) + C = −10

C = 86

Thus v(t) = −32t + 86. We can use this equation to understand the
motion of the object: when t = 0, the object had a velocity of v(0) =
86 fts . Since the velocity is positive, the object was moving upward.
When did the object begin moving down? Immediately after v(t) = 0:

−32t+ 86 = 0 =⇒ t =
43

16
≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of
the object knowing just its acceleration and its velocity at a single point
in time.

Example 5.1.8 Solving initial value problems.

Find f(t), given that f ′′(t) = cos(t), f ′(0) = 3 and f(0) = 5.
Solution. We start by finding f ′(t), which is an antiderivative of f ′′(t):∫

f ′′(t) dt =

∫
cos(t) dt
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= sin(t) + C

= f ′(t).

So f ′(t) = sin(t) + C for the correct value of C. We are given that
f ′(0) = 3, so:

sin(0) + C = 3

C = 3.

Using the initial value, we have found f ′(t) = sin(t) + 3. We now find
f(t) by integrating again. We will use a different integration constant
since we have already defined C to equal 3 above.

f(t) =

∫
f ′(t) dt =

∫
(sin(t) + 3) dt = − cos(t) + 3t+D.

We are given that f(0) = 5, so

− cos(0) + 3(0) +D = 5

−1 + C = 5

C = 6

Thus f(t) = − cos(t) + 3t+ 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, wewill see how areas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the name of the theorem
that describes it: The Fundamental Theorem of Calculus.
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5.1.1 Exercises

Terms and Concepts

1. Define the term “antiderivative” in your own words.
2. Is it more accurate to refer to “the” antiderivative of f(x) or “an” antiderivative of f(x)?

3. Use your own words to define the indefinite integral of f(x).

4. Fill in the blanks: “Inverse operations do the things in the order.”

5. What is an “initial value problem”?

6. The derivative of a position function is a/an function.

7. An antiderivative of an acceleration function is a/an function.

8. If F (x) is an antiderivative of f(x), andG(x) is an antiderivative of g(x), give an antiderivative of f(x) + g(x).

Problems

Exercise Group. Evaluate the indefinite integral. Don’t forget your constant of integration!
9.

∫
7x5 dx 10.

∫
x8 dx

11.
∫ (

14x7 + 6
)
dx 12.

∫
dt

13.
∫
1 ds 14.

∫
1
3t7 dt

15.
∫

4
t5 dt 16.

∫
1√
x
dx

17.
∫
sec(θ) tan(θ) dθ 18.

∫
sin(θ) dθ

19.
∫
(sec(x) tan(x)− csc(x) cot(x)) dx 20.

∫
8eθ dθ

21.
∫
9t dt 22.

∫
2t

9 dt

23.
∫
(3t+ 1)

2
dt 24.

∫ (
t3 − 6

) (
t4 − 4t

)
dt

25.
∫
x5x9 dx 26.

∫
e1.41421 dx

27.
∫
p dx

28. Consider the two integrals,
∫

sn ds and
∫

sn dn.

(a) What is the difference between these two indefinite integrals?

(b) Evaluate
∫

sn ds.

(c) Evaluate
∫

sn dn.

29. This problem investigates why Theorem 5.1.6 states that
∫

1

x
dx = ln |x|+ C.

(a) What is the domain of y = ln(x)?

(b) Find d
dx (ln(x)).

(c) What is the domain of y = ln(−x)?

(d) Find d
dx (ln(−x)).

(e) You should find that 1/x has two types of antiderivatives, depending on whether x > 0 or x < 0. In one

expression, give a formula for
∫

1

x
dx that takes these different domains into account, and explain your

answer.
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Exercise Group. Find the function determined by the given initial value problem.
30. f ′(x) = sin(x) and f(0) = 7

31. f ′(x) = 8ex and f(0) = 13

32. f ′(x) = 9x3 − 7x2 and f(−2) = −1

33. f ′(x) = sec2(x) and f
(
π
4

)
= 5

34. f ′(x) = 3x and f(2) = 4

35. f ′′(x) = 4 and f ′(0) = 2, f(0) = 9

36. f ′′(x) = −3x and f ′(1) = 6, f(1) = −4

37. f ′′(x) = 6ex and f ′(0) = −3, f(0) = 8

38. f ′′(θ) = cos(θ) and f ′ (0) = 3, f (0) = 5

39. f ′′(x) = 25x4 + 7x + sin(x) and f ′(0) = 1, f(0) = 6

40. f ′′(x) = 0 and f ′(4) = −3, f(4) = −8
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5.2 The Definite Integral

We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 ft

s for 10 seconds. How far away from its starting point is the object?
We approach this problem with the familiar “Distance = Rate × Time”

equation. In this case, the distance traveled is 5 ft
s × 10 s= 50 feet.

It is interesting to note that this solution of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5 ft

s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

2 4 6 8 10

5

t (s)

v
(ft
/s
)

Figure 5.2.1 The area under a con-
stant velocity function corresponds to
distance traveled

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5 ft

s for 10 seconds,
then instantly reverses course at a rate of 2 ft

s for 4 seconds. (Since the object is
traveling in the opposite direction when reversing course, we say the velocity is
a constant −2 ft

s .) How far away from the starting point is the object — what is
its displacement?

Here we use “Distance = Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10 + (−2) · 4 = 42 ft.

Hence the object is 42 feet from its starting location.
We can again depict this situation graphically. In Figure 5.2.2 we have the

velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis-
placement of the object is

“Area above the t-axis−Area below the t-axis,”

which is easy to calculate as 50− 8 = 42 feet.

2 4 6 8 10 12 14

−2

5

t (s)

v
(ft
/s
)

Figure 5.2.2 The total displacement is
the area above the t-axis minus the
area below the t-axis

Now consider a more difficult problem.

Example 5.2.3 Finding position using velocity.

The velocity of an object moving straight up/down under the accelera-
tion of gravity is given as v(t) = −32t + 48, where time t is given in
seconds and velocity is in ft

s . When t = 0, the object had a height of 0 ft.

1. What was the initial velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at time t = 2?

Solution. It is straightforward to find the initial velocity; at time t = 0,

v(0) = −32 · 0 + 48

= 48

The initial velocity was 48 ft
s .

To answer questions about the height of the object, we need to find the
object’s position function s(t). This is an initial value problem, which we
studied in the previous section. We are told the initial height is 0, i.e.,
s(0) = 0. We know s′(t) = v(t) = −32t + 48. To find s, we find the
indefinite integral of v(t):

s(t) =

∫
v(t) dt

=

∫
(−32t+ 48) dt
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= −16t2 + 48t+ C.

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maxi-
mum of s. Recalling our work finding extreme values, we find the critical
points of s by setting its derivative (the velocity function) equal to 0 and
solving for t:

0 = −32t+ 48

t = 48/32

= 1.5 s .

(Notice how we ended up just finding when the velocity was 0ft/s!) The
first derivative test shows this is a maximum, so the maximum height of
the object is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36 ft .

The height at time t = 2 is now straightforward to compute:

s(2) = −16(2)2 + 48(2)

= 32.

The height is 32 ft after 2 seconds.
While we have answered all three questions (using derivatives and anti-
derivatives), let’s look at them again graphically, using the concepts of
area that we explored earlier.
Figure 5.2.4 shows a graph of v(t) on axes from t = 0 to t = 3. It is
again straightforward to find v(0). How can we use the graph to find the
maximum height of the object? −0.5 0.5 1 1.5 2 2.5 3

−40

−20

20

40

t (s)
v
(ft
/s
)

Figure 5.2.4 A graph of v(t) = −32t+
48; the shaded areas help determine
displacement

Recall how in our previous work that the displacement of the object (in
this case, its height) was found as the area under the velocity curve, as
shaded in the figure. Moreover, the area between the curve and the
t-axis that is below the t-axis counted as “negative” area. That is, it rep-
resents the object coming back toward its starting position. So to find
the maximum distance from the starting point — the maximum height
— we find the area under the velocity line that is above the t-axis, i.e.,
from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1

2
Base × Height

=
1

2
× 1.5 s × 48 ft/s

= 36 ft

which matches our previous calculation of the maximum height.
Finally, to find the height of the object at time t = 2 we calculate the
total “signed area” (where some area is negative) under the velocity
function from t = 0 to t = 2. This signed area is equal to s(2), the
displacement (i.e., signed distance) from the starting position at t = 0
to the position at time t = 2. That is,
Displacement = Area above the t-axis− Area below t-axis.
The regions are triangles, and we find

Displacement =
1

2
(1.5s)(48 ft/s )− 1

2
(0.5s)(16 ft/s )
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= 32 ft .

This also matches our previous calculation of the height at t = 2.
Notice howwe answered each question in this example in twoways. Our
first method was to manipulate equations using our understanding of
antiderivatives and derivatives. Our second method was geometric: we
answered questions looking at a graph and finding the areas of certain
regions of this graph.

The above example does not prove a relationship between area under a ve-
locity function and displacement, but it does imply a relationship exists. Sec-
tion 5.4 will fully establish fact that the area under a velocity function is dis-
placement.

Given a graph of a function y = f(x), we will find that there is great use
in computing the area between the curve y = f(x) and the x-axis. Because of
this, we need to define some terms.

Definition 5.2.5 The Definite Integral, Total Signed Area.

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under y = f(x) and above the x-axis on [a, b]) − (area above
y = f(x) and under the x-axis on [a, b]).
The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a

f(x) dx,

where a and b are the bounds of integration.

By our definition, the definite integral gives the “signed area under f .” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which related to an-
tiderivatives. We have now defined the definite integral, which relates to areas
under a function. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f .

We practice using this notation.

Example 5.2.6 Evaluating definite integrals.

Consider the function f given in Figure 5.2.7. 1 2 3 4 5

−1

−0.5

0.5

1

x

y

Figure 5.2.7 A graph of f(x) in Exam-
ple 5.2.6

Find:
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1.
∫ 3

0

f(x) dx

2.
∫ 5

3

f(x) dx

3.
∫ 5

0

f(x) dx

4.
∫ 3

0

5f(x) dx

5.
∫ 1

1

f(x) dx

Solution.

1.
∫ 3

0
f(x) dx is the area under f on the interval [0, 3]. This region is

a triangle, so the area is
∫ 3

0
f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5

3
f(x) dx represents the area of the triangle found under the x-

axis on [3, 5]. The area is 1
2 (2)(1) = 1; since it is found under the

x-axis, this is “negative area.” Therefore
∫ 5

3
f(x) dx = −1.

3.
∫ 5

0
f(x) dx is the total signed area under f on [0, 5]. This is 1.5 +

(−1) = 0.5.

4.
∫ 3

0
5f(x) dx is the area under 5f on [0, 3]. This is sketched in Fig-

ure 5.2.8. Again, the region is a triangle, with height 5 times that of
the height of the original triangle. Thus the area is

∫ 3

0
5f(x) dx =

1
2 (15)(1) = 7.5.

5.
∫ 1

1
f(x) dx is the area under f on the “interval” [1, 1]. This de-

scribes a line segment, not a region; it has no width. Therefore
the area is 0. 1 2 3 4 5

−4

−2

2

4

x

y

Figure 5.2.8 A graph of 5f in Exam-
ple 5.2.6. (Yes, it looks just like the
graph of f in Figure 5.2.7, just with a
different y-scale.)

This example illustrates some of the properties of the definite integral, given
here.

Theorem 5.2.9 Properties of the Definite Integral.

Let f and g be defined on a closed interval I that contains the values a,
b and c, and let k be a constant. The following hold:

1.
∫ a

a

f(x) dx = 0

2.
∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

3.
∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

5.
∫ b

a

k · f(x) dx = k ·
∫ b

a

f(x) dx
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We give a brief justification of Theorem 5.2.9 here.

1. As demonstrated in Example 5.2.6, there is no “area
under the curve”when the region has nowidth; hence
this definite integral is 0.

2. This states that total area is the sum of the areas of
subregions. It is easily considered when we let a <
b < c. We can break the interval [a, c] into two subin-
tervals, [a, b] and [b, c]. The total area over [a, c] is the
area over [a, b] plus the area over [b, c]. It is important
to note that this still holds true even if a < b < c is
not true. We discuss this in the next point.

3. This property can be viewed a merely a convention to
make other properties work well. (Later we will see
how this property has a justification all its own, not
necessarily in support of other properties.) Suppose
b < a < c. The discussion from the previous point
clearly justifies∫ a

b

f(x) dx+

∫ c

a

f(x) dx =

∫ c

b

f(x) dx. (5.2.1)

However, we still claim that, as originally stated,∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx. (5.2.2)

How do Equations (5.2.1) and (5.2.2) relate? Start
with Equation (5.2.1):∫ a

b

f(x) dx+

∫ c

a

f(x) dx =

∫ c

b

f(x) dx∫ c

a

f(x) dx = −
∫ a

b

f(x) dx+

∫ c

b

f(x) dx

Property (3) justifies changing the sign and switching

the bounds of integration on the−
∫ a

b

f(x) dx term;

when this is done, Equations (5.2.1) and (5.2.2) are
equivalent. The conclusion is this: by adopting the
convention of Property (3), Property (2) holds no mat-
ter the order of a, b and c. Again, in the next section
we will see another justification for this property.

4,5. Eachof thesemaybenon-intuitive. Property (5) states
that when one scales a function by, for instance, 7, the
area of the enclosed region also is scaled by a factor
of 7. Both Properties (4) and (5) can be proved using
geometry. The details are not complicated but are not
discussed here.
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Example 5.2.10 Evaluating definite integrals using Theorem 5.2.9.

Consider the graph of a function f(x) shown in Figure 5.2.11. a b c

x

y

Figure 5.2.11 A graph of a function in
Example 5.2.10

Answer the following:

1. Which value is greater:
∫ b

a

f(x) dx or
∫ c

b

f(x) dx?

2. Is
∫ c

a

f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a

f(x) dx or
∫ b

c

f(x) dx?

Solution.

1.
∫ b

a
f(x) dx has a positive value (since the area is above the x-axis)

whereas
∫ c

b
f(x) dx has a negative value. Hence

∫ b

a
f(x) dx is big-

ger.

2.
∫ c

a
f(x) dx is the total signed area under f between x = a and

x = c. Since the region below the x-axis looks to be larger than
the region above, we conclude that the definite integral has a
value less than 0.

3. Note how the second integral has the bounds “reversed.” There-
fore

∫ b

c
f(x) dx = −

∫ c

b
f(x) dx represents a positive number,

greater than the area described by the first definite integral.
Hence

∫ b

c
f(x) dx is greater.

The area definition of the definite integral allows us to use geometry to com-
pute the definite integral of some simple functions.

Example 5.2.12 Evaluating definite integrals using geometry.

Evaluate the following definite integrals:

1.

∫ 5

−2

(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

Solution.

1. It is useful to sketch the function in the integrand, as shown in Fig-
ure 5.2.13. We see we need to compute the areas of two regions,
which we have labeledR1 andR2. Both are triangles, so the area
computation is straightforward:

R1 :
1

2
(4)(8) = 16 R2 :

1

2
(3)6 = 9.

Region R1 lies under the x-axis, hence it is counted as negative
area (we can think of the triangle’s height as being “−8”), so∫ 5

−2

(2x− 4) dx = −16 + 9 = −7.

2. Recognize that the integrand of this definite integral describes a
half circle, as sketched in Figure 5.2.14, with radius 3. Thus the
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area is: ∫ 3

−3

√
9− x2 dx =

1

2
πr2 =

9

2
π.

(−2,−8)

(5, 6)

R1

R2

−2 2 4

−10

−5

5

10

x

y

Figure 5.2.13 f(x) = 2x− 4

−3 3

5

x

y

Figure 5.2.14 f(x) =
√
9− x2

Example 5.2.15 Understanding motion given velocity.

Consider the graph of a velocity function of an objectmoving in a straight
line, given in Figure 5.2.16, where the numbers in the given regions gives
the area of that region. Assume that the definite integral of a velocity
function gives displacement. Find themaximum speed of the object and
its maximum displacement from its starting position.

11 11

38

−5

5

10

15

a b c

t (s)

v
(ft
/s
)

Figure 5.2.16 A graph of a velocity in
Example 5.2.15Solution. Since the graph gives velocity, finding the maximum speed is

simple: it looks to be 15ft/s.
At time t = 0, the displacement is 0; the object is at its starting position.
At time t = a, the object has moved backward 11 feet. Between times
t = a and t = b, the object moves forward 38 feet, bringing it into a
position 27 feet forward of its starting position. From t = b to t = c the
object is moving backwards again, hence its maximum displacement is
27 feet from its starting position.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.17, where a region below y = x2 is shaded.
What is its area? The function y = x2 is relatively simple, yet the shape it defines
has an area that is not simple to find geometrically.

1 2 3

2

4

6

8

10

x

y

Figure 5.2.17What is the area below
y = x2 on [0, 3]? The region is not a
usual geometric shape.

In Section 5.3 we will explore how to find the areas of such regions.
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5.2.1 Exercises

Terms and Concepts

1. What is “total signed area”?
2. What is “displacement”?

3. What is
∫ 3

3

sin(x) dx?

4. Give a single definite integral that has the same value as

I =

∫ 1

0

(2x+ 3) dx+

∫ 2

1

(2x+ 3) dx.

Problems

Exercise Group. A graph of a function f(x) is given. Using the geometry of the graph, evaluate the definite integrals.
5.

1 2 3 4

−4

−2

2

4

y = −2x+ 4

x

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) d

6.

1 2 3 4 5

−2

−1

1

2

y = f(x)

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx
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7.

1 2 3 4

1

2

3

4

y = f(x)

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

1 2 3 4

−1

1

2

3

y = x− 1

x

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

1 2 3 4

1

2

3

f(x) =
√
4− (x− 2)2

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx

10.

f(x) = 3

2 4 6 8 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a

f(x) dx, where 0 ≤ a ≤ b ≤ 10

Exercise Group. A graph of a function f(x) is given; the numbers inside the shaded regions give the area of that
region. Evaluate the definite integrals using this area information.
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11.

y = f(x)

59

11 21

1 2 3

−100

−50

50

x

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

f(x) = sin(πx/2)
4/π

4/π

1 2 3 4

−1

1

x

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

−4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

f(x) = x2

1/3 7/3

1 2

1

2

3

4

x

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

Exercise Group. A graph is given of the velocity function of an object moving in a straight line. Answer the questions
based on the graph.
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15.

1 2 3

−1

1

2

3

t (s)

y (ft/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum
displacement?

(c) What is the object’s total displacement
on [0, 3]?

16.

1 2 3 4 5

1

2

3

4

t (s)

y (ft/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum
displacement?

(c) What is the object’s total displacement
on [0, 5]?

17. An object is thrown straight up with a velocity, in ft/s, given by v(t) = −32t+ 64, where t is in seconds, from a
height of 48 feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find when the displacement is−48ft.)
18. An object is thrown straight up with a velocity, in ft/s, given by v(t) = −32t+ 96, where t is in seconds, from a

height of 64 feet.

(a) What is the object’s initial velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its initial height?

(d) What is the maximum height the object reaches?

Exercise Group. The values of several definite integrals are given as follows:∫ 2

0

f(x) dx = 5

∫ 3

0

f(x) dx = 7

∫ 2

0

g(x) dx = −3

∫ 3

2

g(x) dx = 5

Use these values and properties of definite integrals to evaluate the indicated definite integral.

19.
∫ 2

0

(
f(x) + g(x)

)
dx 20.

∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx 22. Find a formula for a in terms of b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0.

Exercise Group. The values of several definite integrals are given as follows:∫ 3

0

s(t) dt = 10

∫ 5

3

s(t) dt = 8

∫ 5

3

r(t) dt = −1

∫ 5

0

r(t) dt = 11
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Use these values and properties of definite integrals to evaluate the indicated definite integral.

23.
∫ 3

0

(
s(t) + r(t)

)
dt 24.

∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt 26. Find a formula for a in terms of b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0.
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5.3 Riemann Sums

In the previous section we defined the definite integral of a function on [a, b] to
be the signed area between the curve and the x-axis. Some areas were simple
to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2

on [0, 4]. What is the signed area of this region — i.e., what is
∫ 4

0
(4x− x2) dx?

1 2 3 4

1

2

3

4

x

y

Figure 5.3.1 A graph of f(x) = 4x −
x2. What is the area of the shaded
region?

We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over-approximation; we are including area in the rectangle
that is not under the parabola.

y = 4x− x2

1 2 3 4

1

2

3

4

x

y

Figure 5.3.2 Approximating area un-
der a curve with one rectangle

We have an approximation of the area, using one rectangle. How can we
refine our approximation tomake it better? The key to this section is this answer:
use more rectangles.

Let’s use four rectangles with an equal width of 1. This partitions the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval wewill
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Left Hand Rule, the Right Hand Rule, and theMidpoint Rule. The Left Hand
Rule says to evaluate the function at the left-hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.3, the rectangle drawn on the
interval [2, 3] has height determined by the Left Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

RHR MPR LHR other

1 2 3 4

1

2

3

4

x

y

Figure 5.3.3 Approximating
∫ 4

0
(4x −

x2) dx using rectangles. The heights
of the rectangles are determined us-
ing different rules.

The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

TheMidpoint Rule says that on each subinterval, evaluate the function at the
midpoint and make the rectangle that height. The rectangle drawn on [1, 2]was
made using theMidpoint Rule, with a height of f(1.5). That rectangle is labeled
“MPR.”

These are the three most common rules for determining the heights of ap-
proximating rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4

0
(4x − x2) dx using

these rules.

Example 5.3.4 Using the Left Hand, Right Hand and Midpoint Rules.

Approximate the value of
∫ 4

0
(4x− x2) dx using the Left Hand Rule, the

Right Hand Rule, and the Midpoint Rule, using 4 equally spaced subin-
tervals.
Solution. We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.5(a) we see 4 rectangles drawn on f(x) = 4x − x2 using
the Left Hand Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) =
0. We add up the areas of each rectangle (height× width) for our Left
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Hand Rule approximation:

f(0) · 1 + f(1) · 1 + f(2) · 1 + f(3) · 1
=0 + 3 + 4 + 3 = 10.

Figure 5.3.5(b) shows 4 rectangles drawn under f using the Right Hand
Rule; note how the [3, 4] subinterval has a rectangle of height 0.
In this example, these rectangles seem to be the mirror image of those
found in Figure 5.3.5(a). This is because of the symmetry of our shaded
region. Our approximation gives the same answer as before, though cal-
culated a different way:

f(1) · 1 + f(2) · 1 + f(3) · 1 + f(4) · 1
= 3 + 4 + 3 + 0 = 10.

Figure 5.3.5(c) shows 4 rectangles drawn under f using the Midpoint
Rule.
This gives an approximation of

∫ 4

0
(4x− x2) dx as:

f(0.5) · 1 + f(1.5) · 1 + f(2.5) · 1 + f(3.5) · 1
= 1.75 + 3.75 + 3.75 + 1.75 = 11.

Our three methods provide two approximations of
∫ 4

0
(4x − x2) dx: 10

and 11.
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(a) using the Left Hand
Rule
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(b) using the Right
Hand Rule
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(c) using the Midpoint
Rule

Figure 5.3.5 Approximating
∫ 4

0
(4x− x2) dx in Example 5.3.4

5.3.1 Summation Notation
It is hard to tell at this moment which is a better approximation: 10 or 11? We
can continue to refineour approximationbyusingmore rectangles. The notation
can become unwieldy, though, as we add up longer and longer lists of numbers.
We introduce summation notation to ameliorate this problem.

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
writing

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summation notation and write
∑9

i=1 ai. The upper case sigma, Sigma
represents the term “sum”. The index (counter) of summation in this example
is i; any symbol can be used. By convention, the index takes on only the integer
values between (and including) the lower and upper bounds. To the right of Σ,
the expression ai is called the summand. It tells us what we are summing. This
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is summarized in Equation (5.3.1).
upper bound︷︸︸︷

9∑
i = 1︸ ︷︷ ︸

i-index of summation

ai︸︷︷︸
summand

(5.3.1)

Let’s practice using this notation.

Example 5.3.6 Using summation notation.

Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where
i ≥ 1. So a1 = 1, a2 = 3, a3 = 5, etc. (The output is the positive odd
integers). Evaluate the following summations:

1.
6∑

i=1

ai

2.
7∑

i=3

(3ai − 4)

3.
4∑

i=1

(ai)
2

Solution.

1.

6∑
i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1 + 3 + 5 + 7 + 9 + 11

= 36.

2. Note the starting value is different than 1:

7∑
i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11 + 17 + 23 + 29 + 35

= 115.

3.

4∑
i=1

(ai)
2 = (a1)

2 + (a2)
2 + (a3)

2 + (a4)
2

= 12 + 32 + 52 + 72

= 84.

It might seem odd to stress a new, concise way of writing summations only
to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without
writing individual terms. Examples will follow.
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Theorem 5.3.7 Properties of Summations.

1.
n∑

i=1

c = c · n, where c is a

constant.

2.
n∑

i=m

(ai ± bi) =

n∑
i=m

ai ±

n∑
i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1

ai =
n∑

i=m

ai

5.
n∑

i=1

i =
n(n+ 1)

2

6.
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

7.
n∑

i=1

i3 =

(
n(n+ 1)

2

)2

Example 5.3.8 Evaluating summations using Theorem 5.3.7.

Revisit Example 5.3.6 and, using Theorem 5.3.7, evaluate

6∑
i=1

ai =

6∑
i=1

(2i− 1).

Solution.

6∑
i=1

(2i− 1) =

6∑
i=1

2i−
6∑

i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6 + 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without writing out all six terms. When
dealing with small sizes of n, it may be faster to write the terms out
by hand. However, Theorem 5.3.7 is incredibly important when dealing
with large sums as we’ll soon see.

5.3.2 Riemann Sums

Consider again
∫ 4

0
(4x − x2) dx. We will approximate this definite integral us-

ing 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.10.
Before doing so, it will pay to do some careful preparation. 0 1 2 3 4

x0 x4 x8 x12 x16

Figure 5.3.9 Dividing [0, 4] into 16
equally spaced subintervals

Figure 5.3.9 shows a number line of [0, 4] divided, or partitioned, into 16
equally spaced subintervals. We denote 0 as x0; we have marked the values of
x4, x8, x12 and x16. We could mark them all, but the figure would get crowded.
While it is easy to figure that x9 = 2.25, in general, we want a method of deter-
mining the value of xi without consulting the figure. Consider:
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xi = x0 + i∆x

starting
value

number of subintervals
between x0 and xi

subinterval
size

So x9 = x0 + 9(4/16) = 2.25.
If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x31 as

x31 = x0 + 31(4/100) = 1.24.

(That was far faster than creating a sketch first.)
Given any subdivision of [0, 4], the first subinterval is [x0, x1]; the second is

[x1, x2]; the ith subinterval is [xi−1, xi].
Whenusing the LeftHandRule, the height of the ith rectanglewill be f(xi−1).
When using the Right Hand Rule, the height of the ith rectanglewill be f(xi).

Whenusing theMidpoint Rule, the height of the ith rectanglewill be f
(
xi−1 + xi

2

)
.

Thus approximating
∫ 4

0
(4x−x2) dxwith 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

Left Hand Rule 16∑
i=1

f(xi−1)∆x

Right Hand Rule 16∑
i=1

f(xi)∆x

Midpoint Rule 16∑
i=1

f

(
xi−1 + xi

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us practice using the Right Hand Rule and the summation formulas introduced
in Theorem 5.3.7.

Example 5.3.10 Approximating definite integrals using sums.

Approximate
∫ 4

0
(4x−x2) dx using the Right Hand Rule and summation

formulas with 16 and 1000 equally spaced intervals.
Solution. Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite inte-
gral as

16∑
i=1

f(xi)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0 + i∆x, we have

xi = 0 + i∆x = i∆x.

Using the summation formulas, consider:∫ 4

0

(4x− x2) dx ≈
16∑
i=1

f(xi)∆x
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=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)

16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3.2)

= (4∆x2)
16 · 17

2
−∆x3 16(17)(33)

6

= 4 · 0.252 · 136− 0.253 · 1496
= 10.625

We were able to sum up the areas of 16 rectangles with very little
computation. In Figure 5.3.11 the function and the 16 rectangles are
graphed. While some rectangles over-approximate the area, other
under-approximate the area (by about the same amount). Thus our ap-
proximate area of 10.625 is likely a fairly good approximation.
Notice Equation (5.3.2); by replacing 16 by 1,000 (and appropriately
changing the value of ∆x), we can use that equation to sum up 1000
rectangles!

1 2 3 4

1

2

3

4

x

y

Figure 5.3.11 Approximating
∫ 4

0
(4x−

x2) dx with the Right Hand Rule and
16 evenly spaced subintervals

We do so here, skipping from the original summand to the equivalent of
Equation (5.3.2) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0

(4x− x2) dx ≈
1000∑
i=1

f(xi)∆x

= (4∆x2)

1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3 1000(1001)(2001)

6
= 10.666656

Using many, many rectangles, we have a likely good approximation of∫ 4

0
(4x− x2)∆x. That is,∫ 4

0

(4x− x2) dx ≈ 10.666656.

Before the above example, we statedwhat the summations for the LeftHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rec-
tangle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.
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One could partition an interval [a, b] with subintervals that do not have the
same size. We refer to the length of the ith subinterval as∆xi. Also, one could
determine each rectangle’s height by evaluating f at any point ci in the ith subin-
terval. Thus the height of the ith subinterval would be f(ci), and the area of the
ith rectangle would be f(ci)∆xi. These ideas are formally defined below.

Definition 5.3.12 Partition.

A partition ∆x of a closed interval [a, b] is a set of numbers x0, x1, . . .
xn where

a = x0 < x1 < . . . < xn−1 < xn = b.

The length of the ith subinterval, [xi−1, xi], is∆xi = xi −xi−1. If [a, b]
is partitioned into subintervals of equal length, we let∆x represent the
length of each subinterval.
The size of the partition, denoted ∥∆x∥, is the length of the largest
subinterval of the partition.

Summations of rectangles with area f(ci)∆xi are named after mathemati-
cian Georg Friedrich Bernhard Riemann, as given in the following definition.

Definition 5.3.13 Riemann Sum.

Let f be defined on a closed interval [a, b], let∆x be a partition of [a, b]
as given in Definition 5.3.12, and let ci denote any value in the ith subin-
terval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

Figure 5.3.14 shows the approximating rectangles of a Riemann sumof
∫ 4

0
(4x−

x2) dx. While the rectangles in this example do not approximatewell the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a particular rule.

1 2 3 4

1
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3

4

x

y

Figure 5.3.14 An example of a gen-
eral Riemann sum to approximate∫ 4

0
(4x− x2) dx

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of constructionmakes computations easier. Be-
fore working another example, let’s summarize some of what we have learned
in a convenient way.

Key Idea 5.3.15 Riemann Sum Concepts.

Consider
∫ b

a

f(x) dx ≈
n∑

i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a

n
.

2. The ith term of an equally spaced partition is xi = a+i∆x. (Thus
x0 = a and xn = b.)

3. The Left Hand Rule summation is:
n∑

i=1

f(xi−1)∆x.
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4. The Right Hand Rule summation is:
n∑

i=1

f(xi)∆x.

5. The Midpoint Rule summation is:
n∑

i=1

f

(
xi−1 + xi

2

)
∆x.

Let’s do another example.

Example 5.3.16 Approximating definite integrals with sums.

Approximate
∫ 3

−2
(5x + 2) dx using the Midpoint Rule and 10 equally

spaced intervals.
Solution. Following Key Idea 5.3.15, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i) = i/2− 2.

Aswe are using theMidpoint Rule, wewill also needxi−1 and
xi−1 + xi

2
.

Since xi = i/2− 2,xi−1 = (i− 1)/2− 2 = i/2− 5/2. This gives

xi−1 + xi

2
=

(i/2− 5/2) + (i/2− 2)

2
=

i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using sum-
mation formulas.∫ 3

−2

(5x+ 2) dx ≈
10∑
i=1

f

(
xi−1 + xi

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x

10∑
i=1

[(
5

2

)
i− 37

4

]

= ∆x

(
5

2

10∑
i=1

(i)−
10∑
i=1

(
37

4

))

=
1

2

(
5

2
· 10(11)

2
− 10 · 37

4

)
=

45

2
= 22.5

−2 −1 1 2 3

10

17

−8

x

y

Figure 5.3.17 Approximating∫ 3

−2
(5x + 2) dx using the Mid-

point Rule and 10 evenly spaced
subintervals in Example 5.3.16

Note the graph of f(x) = 5x + 2 in Figure 5.3.17. The regions whose
area is computed by the definite integral are triangles, meaning we can
find the exact answer without summation techniques. We find that the
exact answer is indeed 22.5. One of the strengths of theMidpoint Rule is
that often each rectangle includes area that should not be counted, but
misses other area that should. When the partition size is small, these
two amounts are about equal and these errors almost “cancel each other
out.” In this example, since our function is a line, these errors are exactly
equal and they do cancel each other out, giving us the exact answer.
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Note too that when the function is negative, the rectangles have a “neg-
ative” height. When we compute the area of the rectangle, we use
f(ci)∆x; when f is negative, the area is counted as negative.

Notice in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculations until the very end.
Mathematicians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, where we do not specify a value of n until the very
end.

Example 5.3.18 Approximating definite integrals with a formula, using
sums.

Revisit
∫ 4

0
(4x−x2) dx yet again. Approximate this definite integral using

the Right Hand Rule with n equally spaced subintervals.
Solution. Using Key Idea 5.3.15, we know∆x = 4−0

n = 4/n. We also
find xi = 0 + i∆x = 4i/n.
We construct the Right Hand Rule Riemann sum as follows. Be sure to
follow each step carefully. If you get stuck, and do not understand how
one line proceeds to the next, you may skip to the result and consider
how this result is used. You should comeback, though, andwork through
each step for full understanding.∫ 4

0

(4x− x2) dx ≈
n∑

i=1

f(xi)∆x

=

n∑
i=1

f

(
4i

n

)
∆x

=

n∑
i=1

[
4
4i

n
−
(
4i

n

)2
]
∆x

=

n∑
i=1

(
16∆x

n

)
i−

n∑
i=1

(
16∆x

n2

)
i2

=

(
16∆x

n

) n∑
i=1

i−
(
16∆x

n2

) n∑
i=1

i2

=

(
16∆x

n

)
· n(n+ 1)

2
−
(
16∆x

n2

)
n(n+ 1)(2n+ 1)

6

=
32(n+ 1)

n
− 32(n+ 1)(2n+ 1)

3n2
( recall∆x = 4/n)

=
32

3

(
1− 1

n2

)
(after simplifying)

The result is an amazing, easy to use formula. To approximate the def-
inite integral with 10 equally spaced subintervals and the Right Hand
Rule, set n = 10 and compute∫ 4

0

(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subinter-
vals; with n = 4, the formula gives 10, our answer as before.
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It is now easy to approximate the integral with 1,000,000 subintervals!
Hand-held calculators will round off the answer a bit prematurely giving
an answer of 10.66666667. (The actual answer is 10.666666666656.)
We now take an important leap. Up to this point, our mathematics has
been limited to geometry and algebra (finding areas and manipulating
expressions). Now we apply calculus. For any finite n, we know that∫ 4

0

(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high-level mathematics tell us that as n gets
large, the approximation gets better. In fact, if we take the limit as n →
∞, we get the exact area described by

∫ 4

0
(4x− x2) dx. That is,∫ 4

0

(4x− x2) dx = lim
n→∞

32

3

(
1− 1

n2

)
=

32

3
(1− 0)

=
32

3
= 10.6

This is a fantastic result. By considering n equally-spaced subintervals,
we obtained a formula for an approximation of the definite integral that
involved our variable n. As n grows large — without bound — the error
shrinks to zero and we obtain the exact area.

This section startedwith a fundamental calculus technique: make an approxi-
mation, refine the approximation tomake it better, then use limits in the refining
process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 5.3.19 Approximating definite integrals with a formula, using
sums.

Find a formula that approximates
∫ 5

−1
x3 dx using the Right Hand Rule

and n equally spaced subintervals, then take the limit as n → ∞ to find
the exact area.
Solution. Following Key Idea 5.3.15, we have∆x = 5−(−1)

n = 6/n. We
have xi = (−1)+i∆x, which is the right endpoint of the ith subinterval.
The Riemann sum corresponding to the Right Hand Rule is (followed by
simplifications):∫ 5

−1

x3 dx ≈
n∑

i=1

f(xi)∆x

=

n∑
i=1

f(−1 + i∆x)∆x

=

n∑
i=1

(−1 + i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)



CHAPTER 5. INTEGRATION 231

=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summation)

= ∆x4
n∑

i=1

i3 − 3∆x3
n∑

i=1

i2 + 3∆x2
n∑

i=1

i−
n∑

i=1

∆x

= ∆x4

(
n(n+ 1)

2

)2

− 3∆x3n(n+ 1)(2n+ 1)

6
+ 3∆x2n(n+ 1)

2
− n∆x

(use∆x = 6/n)

=
1296

n4
· n

2(n+ 1)2

4
− 3

216

n3
· n(n+ 1)(2n+ 1)

6
+ 3

36

n2

n(n+ 1)

2
− 6

(now do a sizable amount of algebra to simplify)

= 156 +
378

n
+

216

n2

Once again, we have found a compact formula for approximating the
definite integral with n equally spaced subintervals and the Right Hand
Rule. Using 10 subintervals, we have an approximation of 195.96 (these
rectangles are shown in Figure 5.3.20). Using n = 100 gives an approxi-
mation of 159.802.
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Figure 5.3.20 Approximating∫ 5

−1
x3 dx using the Right Hand

Rule and 10 evenly spaced subinter-
vals

Now find the exact answer using a limit:∫ 5

−1

x3 dx = lim
n→∞

(
156 +

378

n
+

216

n2

)
= 156.

5.3.3 Limits of Riemann Sums
Wehave used limits to evaluate given definite integrals. Will this alwayswork? It
can be shown, given not-very-restrictive conditions, that yes, it will always work
— this is the content of Theorem 5.3.21 below.

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi)∆x

can be rewritten as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summation as a function of n.

An n value is given (where n is a positive integer), and the sum of areas of n
equally spaced rectangles is returned, using the Left Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b

a
f(x) dx, let:

• SL(n) =

n∑
i=1

f(xi−1)∆x, the sum of equally spaced rectangles formed

using the Left Hand Rule,

• SR(n) =

n∑
i=1

f(xi)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and
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• SM (n) =

n∑
i=1

f

(
xi−1 + xi

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definition of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any
ε > 0, there existsN > 0 such that

|SL(n)−K| < ε when n ≥ N .

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b

a
f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be de-
termined following a specific rule, but could be f(ci), where ci is any point in
the ith subinterval, as discussed before Riemann Sums were defined in Defini-
tion 5.3.13.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 5.3.12, let∆xi denote the length
of the ith subinterval in a partition of [a, b] and let ∥∆x∥ represent the length
of the largest subinterval in the partition: that is, ∥∆x∥ is the largest of all the
∆xi. If ∥∆x∥ is small, then [a, b] must be partitioned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ∥∆x∥ goes
to zero” implies that the number n of subintervals in the partition is growing to
infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but getting small, and the height of each rectangle is
not necessarily determined by a particular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.21 Definite Integrals and the Limit of Riemann Sums.

Let f be continuous on the closed interval [a, b] and let SL(n), SR(n),
SM (n),∆x,∆xi and ci be defined as before. Then:

1.

lim
n→∞

SL(n) = lim
n→∞

SR(n)

= lim
n→∞

SM (n)

= lim
n→∞

n∑
i=1

f(ci)∆x

2. lim
n→∞

n∑
i=1

f(ci)∆x =

∫ b

a

f(x) dx

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =

∫ b

a

f(x) dx

Oneof the things Theorem5.3.21
tells us is that if f is continuous
on [a, b], then the definite inte-
gral

∫ b

a
f(x) dx is guaranteed to

exist.
Knowing that every continu-

ous function can be integrated
is useful, since most of the func-
tions we work with are continu-
ous. However, it turns out that a
function can be integrated even
if it has a finite number of dis-
continuities, as long as these are
removable or jumpdiscontinuities.

We summarize what we have learned over the past few sections here.

• Knowing the “area under the curve” can be useful. One common example:
the area under a velocity curve is displacement.
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• We have defined the definite integral,
∫ b

a
f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the Left Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivatives through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next sectionwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connection between
the indefinite integral and the definite integral.
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5.3.4 Exercises

Terms and Concepts

1. A fundamental calculus technique is to use to refine approximations to get an exact answer.

2. What is the upper bound in the summation
20∑
i=8

(40i− 80)?

3. This section approximates definite integrals using what geometric shape?
4. (□ True □ False) A sum using the Right Hand Rule is an example of a Riemann Sum.

Problems

Exercise Group. Write out each term of the summation and compute the sum.

5.
5∑

i=2

i2 6.
2∑

i=−3

(2i− 2)

7.
1∑

i=−2

sin
(
πi
2

)
8.

7∑
i=1

9

9.
5∑

i=1

1
i 10.

7∑
i=1

(−1)
i
i

11.
5∑

i=1

(
1
i −

1
i+1

)
12.

5∑
i=1

(−1)
i cos(πi)

Exercise Group. Write the sum in summation notation.
13. 3 + 6 + 9 + 12 14. 1 + 2 + 5 + 10 + 17 + 26

15. 1
4 + 2

5 + 3
6 + 4

7
16. 1− e+ e2 − e3 + e4

Exercise Group. Evaluate the summation using Theorem 5.3.7.

17.
7∑

i=1

8 18.
26∑
i=1

i

19.
11∑
i=1

(
2i2 − i

)
20.

19∑
i=1

(
5i3 + 7

)
21.

12∑
i=1

(
−4i3 − 7i2 − 10i+ 7

)
22.

8∑
i=1

(
i3 − 9i2 + 4i+ 7

)
23. 1 + 2 + 3 + · · ·+ 84 + 85 24. 1 + 4 + 9 + · · ·+ 361 + 400

Exercise Group. Theorem 5.3.7 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai, so
n∑

i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai. Use this fact, along

with other parts of Theorem 5.3.7, to evaluate the summation.

25.
21∑
i=9

i 26.
27∑

i=16

i3

27.
13∑
i=7

7 28.
15∑
i=7

4i3

Exercise Group. In the following exercises, a definite integral
∫ b

a

f(x) dx is given.

(a) Graph f(x) on [a, b].
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(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a

f(x) dx by summing the areas of the rectangles.

29.
∫ 3

−3

x2 dx, with 6 rectangles using the Left

Hand Rule.

30.
∫ 2

0

(5− x2) dx, with 4 rectangles using the

Midpoint Rule.

31.
∫ π

0

sin(x) dx, with 6 rectangles using the Right

Hand Rule.
32.

∫ 3

0

2x dx, with 5 rectangles using the Left Hand

Rule.

33.
∫ 2

1

ln(x) dx, with 3 rectangles using the

Midpoint Rule.

34.
∫ 9

1

1

x
dx, with 4 rectangles using the Right

Hand Rule.

Exercise Group. A definite integral is given below. As demonstrated in Examples 5.3.18 and 5.3.19, do the following:

(a) Find a formula to approximate the definite integral using n subintervals and the provided rule.

(b) Evaluate the formula using n = 10, 100, and 1000.

(c) Find the limit of the formula, as n → ∞, to find the exact value of the definite integral.

35.
∫ 1

0

x3 dx, using the Right Hand Rule. 36.
∫ 1

−2

4x2 dx, using the Right Hand Rule.

37.
∫ 4

−2

(3x− 1) dx, using the Midpoint Rule. 38.
∫ 6

2

(
2x2 + 1

)
dx, using the Left Hand Rule.

39.
∫ 11

−11

(4− x) dx, using the Left Hand Rule. 40.
∫ 1

0

(
x3 − x2

)
dx, using the Left Hand Rule.
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5.4 The Fundamental Theorem of Calculus

Let f(t)be a continuous functiondefinedon [a, b]. The definite integral
∫ b

a
f(x) dx

is the “area under f” on [a, b]. We can turn this concept into a function by letting
the upper (or lower) bound vary.

Let F (x) =
∫ x

a
f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.1. We can study this function using our knowledge of the definite
integral. For instance, F (a) = 0 since

∫ a

a
f(t) dt = 0.

a x b

t

y

Figure 5.4.1 The area of the shaded region is F (x) =
∫ x

a
f(t) dt

Example 5.4.2 Exploring the “Area so far” function.

Consider f(t) = 2t pictured in Figure Figure 5.4.3 and its associated
“area so far” function, F (x) =

∫ x

1
2t dt. Using the graph of f and geom-

etry, find an explicit formula for F .

−2

2

4

6

8

1 x

t

y

Figure 5.4.3 The area of the shaded
region is F (x) =

∫ x

1
2t dt

Solution. We can see from Figure 5.4.4 that for x ≥ 1, the area under
the curve can be found by subtracting the area of two triangles. The
larger triangle will have a base of x and a height of f(x) = 2x, while the
smaller triangle will have a base of 1 and a height of 2. Therefore, the
area under the curve forx ≥ 1 is given byA(x) = 1

2 (x)(2x)−
1
2 (1)(2) =

x2 − 1.

2
1

x

2x

−2

2

4

6

8

1 x

t

y

Figure 5.4.4 The area of the shaded
region is F (x) =

∫ x

1
2t dt

Note that this same formula holds for x < 1. If x < 1, then F (x) =∫ x

1
2t dt = −

∫ 1

x
2t dt. The areas to the left of x = 1 will have oppo-

site signs (since they areas are accumulated before x = 1). For exam-
ple, when x = 0, F (0) = −

∫ 1

0
2t dt = − 1

2 (1)(2) = −1. This is the
same value we get from evaluating x2 − 1 for x = 0. Also notice that
F (−1) =

∫ −1

1
2t dt = −

∫ 1

−1
2t dt. This integral is clearly 0 since the

areas over [−1, 0] and [0, 1] will sum to zero. Again, this is the same
answer obtained by evaluating x2 − 1 for x = −1.
Therefore, we can reasonably say that F (x) = x2 − 1. A plot of both
f(x) = 2x and F (x) = x2 − 1 are given in Figure Figure 5.4.5. You
should notice a familiar relationship between these two functions. This
relationship is formally stated in Theorem 5.4.6.
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−1 1 2 3

−2

2

4

6

8

x

y

Figure 5.4.5 Graphs of f(x) = 2x and F (x) = x2 − 1

5.4.1 Fundamental Theorem of Calculus, Parts 1 and 2
As Example 5.4.2 hinted, we can apply calculus ideas to F (x); in particular, we
can compute its derivative. In Example 5.4.2, F (x) = x2 − 1, so F ′(x) = 2x =
f(x). While this may seem like an innocuous thing to do, it has far-reaching
implications, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.6 The Fundamental Theorem of Calculus, Part 1.

Let f be continuous on [a, b] and let F (x) =
∫ x

a
f(t) dt. Then F is con-

tinuous on [a, b], differentiable on (a, b), and

F ′(x) = f(x).

In other words:
d

dx

(∫ x

a

f(t) dt

)
= f(x).

Initially this seems simple, as demonstrated in the following example.

Example 5.4.7 Using the Fundamental Theorem of Calculus, Part 1.

Let F (x) =

∫ x

−5

(t2 + sin(t)) dt. What is F ′(x)?

Solution. Using the Fundamental Theorem of Calculus, we have
F ′(x) = x2+sin(x). That is, the derivative of the “area so far” function,
is simply the integrand replacing x with t.
This simple example reveals something incredible: F (x) is an antideriv-
ative of x2 + sin(x)! Therefore, F (x) = 1

3x
3 − cos(x) + C for

some value of C. (We can find C, but generally we do not care. We
know that F (−5) = 0, which allows us to compute C. In this case,
C = cos(−5) + 125

3 .)

What we have done in Example 5.4.7 was more than finding a complicated
way of computing an antiderivative. Consider a function f defined on an open
interval containing a, b and c. Suppose we want to compute

∫ b

a
f(t) dt. First, let

F (x) =

∫ x

c

f(t) dt. (5.4.1)
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Using the properties of the definite integral found in Theorem 5.2.9, we know∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

= −
∫ a

c

f(t) dt+

∫ b

c

f(t) dt

Using Equation (5.4.1), let x = a in the first integral and x = b in the second
integral so that

∫ a

c
f(t) dt = F (a) and

∫ b

c
f(t) dt = F (b). Therefore:∫ b

a

f(t) dt = −F (a) + F (b)

= F (b)− F (a).

We now see how indefinite integrals and definite integrals are related: we
can evaluate a definite integral using antiderivatives! In fact, this is exactly what
we noticed in Example 5.4.2. The “area so far” function was indeed an anti-
derivative of the integrand. This is the second part of the Fundamental Theorem
of Calculus.

Theorem 5.4.8 Fundamental Theorem of Calculus, Part 2.

Let f be continuous on [a, b] and let F be any antiderivative of f . Then∫ b

a

f(x) dx = F (b)− F (a).

Example 5.4.9 Using the Fundamental Theorem of Calculus, Part 2.

We spent a great deal of time in the previous section studying
∫ 4

0
(4x−

x2) dx. Using the Fundamental Theorem of Calculus, evaluate this defi-
nite integral.
Solution. We need an antiderivative of f(x) = 4x− x2. All antideriva-
tives of f have the form F (x) = 2x2 − 1

3x
3 + C; for simplicity, choose

C = 0.
The Fundamental Theorem of Calculus states∫ 4

0

(4x− x2) dx = F (4)− F (0)

=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous section,
just with much less work.

Notation: A special notation is often used in the process of evaluating defi-
nite integrals using the Fundamental Theorem of Calculus. Instead of explicitly

writing F (b) − F (a), the notation F (x)
∣∣∣b
a
is used. Thus the solution to Exam-

ple 5.4.9 would be written as:∫ 4

0

(4x− x2) dx =

(
2x2 − 1

3
x3

)∣∣∣∣4
0
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=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.

The ConstantC: Any antiderivativeF (x) can be chosen when using the Fun-
damental Theorem of Calculus to evaluate a definite integral, meaning any value
ofC can be picked. The constant always cancels out of the expressionwhen eval-
uating F (b) − F (a), so it does not matter what value is picked. This being the
case, we might as well let C = 0.

Example 5.4.10 Using the Fundamental Theorem of Calculus, Part 2.

Evaluate the following definite integrals.

1.
∫ 2

−2

x3 dx

2.
∫ π

0

sin(x) dx

3.
∫ 5

0

et dt

4.
∫ 9

4

√
u du

5.
∫ 5

1

2 dx

Solution.

1. ∫ 2

−2

x3 dx =
1

4
x4

∣∣∣∣2
−2

=

(
1

4
24
)
−
(
1

4
(−2)4

)
= 0.

2. ∫ π

0

sin(x) dx = − cos(x)
∣∣∣π
0

= − cos(π)−
(
− cos(0)

)
= 1 + 1 = 2.

(This is interesting; it says that the area under one “hump” of a
sine curve is 2.)

3. ∫ 5

0

et dt = et
∣∣∣5
0

= e5 − e0

= e5 − 1 ≈ 147.41.

4. ∫ 9

4

√
u du =

∫ 9

4

u
1
2 du

=
2

3
u

3
2

∣∣∣9
4

=
2

3

(
9

3
2 − 4

3
2

)
=

2

3

(
27− 8

)
=

38

3
.
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5. ∫ 5

1

2 dx = 2x
∣∣∣5
1

= 2(5)− 2

= 2(5− 1) = 8.

This integral is interesting; the integrand is a constant function,
hencewe are finding the area of a rectanglewithwidth (5−1) = 4
and height 2. Notice how the evaluationof the definite integral led
to 2(4) = 8. In general, if c is a constant, then

∫ b

a
c dx = c(b− a).

5.4.2 Understanding Motion with the Fundamental Theorem of
Calculus

We established, starting with Key Idea 2.2.3, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac-
celeration function. Now consider definite integrals of velocity and acceleration

functions. Specifically, if v(t) is a velocity function, what does
∫ b

a

v(t) dtmean?

The Fundamental Theorem of Calculus states that∫ b

a

v(t) dt = V (b)− V (a),

where V (t) is any antiderivative of v(t). Since v(t) is a velocity function, V (t)
must be a position function, and V (b)−V (a)measures a change in position, or
displacement.

Example 5.4.11 Finding displacement and distance.

A ball is thrown straight up with velocity given by v(t) = −32t + 20ft/
s, where t is measured in seconds. Find, and interpret,

∫ 1

0
v(t) dt and∫ 1

0
|v(t)| dt.

Solution. Using the Fundamental Theorem of Calculus, we have∫ 1

0

v(t) dt =

∫ 1

0

(−32t+ 20) dt

=
(
−16t2 + 20t

) ∣∣∣1
0

= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t+
20, the height of the ball, 1 second later, will be 4 feet above the initial
height.
Note that the ball has traveled much farther. It has gone up to its peak
and is falling down, but the difference between its height at t = 0 and
t = 1 is 4ft.
If we wish to find the total distance traveled, we must evaluate∫ 1

0
|v(t)| dt (noting that negative velocities will reduce the diplacement,

but we want distance, not displacement). In this case, we know that the
velocity changes sign once when v(t) = 0,so t = 20/32 = 5/8 seconds.
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The velocity is positive over [0, 5/8] and negative over [5/8, 1]. There-
fore ∫ 1

0

|v(t)| dt =
∫ 5/8

0

v(t) dt+

∫ 1

5/8

−v(t) dt

=

∫ 5/8

0

(−32t+ 20) dt−
∫ 1

5/8

(−32t+ 20) dt

=
(
−16t2 + 20t

) ∣∣∣5/8
0

−
(
−16t2 + 20t

) ∣∣∣1
0

=
25

4
−
(
−9

4

)
= 9.

So the total distance traveled over [0, 1] is
∫ 1

0
|−32t+ 20| dt = 9 feet .

As we can see in Figure 5.4.12, the positive area between v(t) and the
t-axis, A1 = 25/4, while the negative area, A2 = −9/4. When we add
these two areas, we get the displacement of 4 ft. But when we add the
absolute value of both of these areas (as in Figure 5.4.13), we get the
total distance of 9 ft.

A1

A2

−10

10

20

5/8 1

t

y

Figure 5.4.12 The area between
v(t) and the t-axis can be used to
represent displacement

A1
A3

−10

10

20

5/8 1

t

y

Figure 5.4.13 The area between
|v(t)| and the t-axis can be used
to represent distance

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. That is,
the speed an object is the absolute value of its velocity. This is what we saw
in Example 5.4.11 when we evaluated

∫ 1

0
|v(t)| dt. So integrating a speed func-

tion gives total change of position, without the possibility of “negative position
change.” Hence the integral of a speed function gives distance traveled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
then ∫ 3

0

a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.
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5.4.3 The Fundamental Theorem of Calculus and the Chain Rule
Part 1 of the Fundamental Theorem of Calculus (FTC) states that given

F (x) =

∫ x

a

f(t) dt,

we have F ′(x) = f(x). Using other notation,

d

dx
(F (x)) =

d

dx

(∫ x

a

f(t) dt

)
= f(x).

While we have just practiced evaluating definite integrals, sometimes finding
antiderivatives is impossible and we need to rely on other techniques to approx-
imate the value of a definite integral. Functions written as F (x) =

∫ x

a
f(t) dt

are useful in such situations.
It may be of further use to compose such a function with another. As an

example, we may compose F (x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a

f(t) dt.

What is the derivative of such a function? The Chain Rule can be employed
to state

d

dx

(
F
(
g(x)

))
= F ′(g(x))g′(x) = f

(
g(x)

)
g′(x).

An example will help us understand this.

Example 5.4.14 The FTC, Part 1, and the Chain Rule.

Find the derivative of F (x) =

∫ x2

2

ln(t) dt.

Solution. We can view F (x) as being the function G(x) =
∫ x

2
ln(t) dt

composed with g(x) = x2; that is, F (x) = G
(
g(x)

)
. The Fundamental

Theorem of Calculus states thatG′(x) = ln(x). The Chain Rule gives us

F ′(x) = G′(g(x))g′(x)
= ln(g(x))g′(x)

= ln(x2)2x

= 2x ln(x2)

Normally, the steps definingG(x) and g(x) are skipped.

Let’s practice this once more.

Example 5.4.15 The FTC, Part 1, and the Chain Rule.

Find the derivative of F (x) =

∫ 5

cos(x)
t3 dt.

Solution. Note that F (x) = −
∫ cos(x)

5

t3 dt. Viewed this way, the

derivative of F is straightforward:

F ′(x) = − cos3(x) (− sin(x))
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= cos3(x) sin(x).

5.4.4 Area Between Curves
Consider continuous functions f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.4.16. What is the area of the
shaded region bounded by the two curves over [a, b]?

f(x)

g(x)

a b

x

y

(a)

f(x)

g(x)

a b

x

y

(b)

Figure 5.4.16 Finding the area bounded by two functions on an interval by sub-
tracting the area under g from the area under f

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathematical notation, the area is∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Properties of the definite integral allow us to simplify this expression to∫ b

a

(
f(x)− g(x)

)
dx.

Theorem 5.4.17 Area Between Curves.

Let f(x) and g(x) be continuous functions defined on [a, b] where
f(x) ≥ g(x) for all x in [a, b]. The area of the region bounded by the
curves y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.4.18 Finding area between curves.

Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.
Solution. It will help to sketch these two functions, as done in Fig-
ure 5.4.19.

y = x2 + x− 5

y = 3x− 2

−2 −1 1 2 3 4

5

10

15

x

y

Figure 5.4.19 Sketching the region en-
closed by y = x2 + x − 5 and y =
3x− 2 in Example 5.4.18

The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = −1 and x = 3. To check, set
x2 + x− 5 = 3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
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(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0

(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 5.4.17, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1

(−x2 + 2x+ 3) dx

=

(
−1

3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1

3
(27) + 9 + 9−

(
1

3
+ 1− 3

)
= 10

2

3
= 10.6

5.4.5 The Mean Value Theorem and Average Value

1 2 3 4

x

y

Figure 5.4.20 A graph of a function
f to introduce the Mean Value Theo-
rem

Consider the graph of a function f in Figure 5.4.20 and the area defined by∫ 4

1
f(x) dx. Three rectangles are drawn in Figure 5.4.21; in Figure 5.4.21(a), the

height of the rectangle is greater than f on [1, 4], hence the area of this rectangle
is is greater than

∫ 4

1
f(x) dx.

In Figure 5.4.21(b), the height of the rectangle is smaller than f on [1, 4],
hence the area of this rectangle is less than

∫ 4

1
f(x) dx.

Finally, in Figure 5.4.21(c) the height of the rectangle is such that the area of
the rectangle is exactly that of

∫ 4

1
f(x) dx. Since rectangles that are “too big”,

as in (a), and rectangles that are “too little,” as in (b), give areas greater/lesser
than

∫ 4

1
f(x) dx, it makes sense that there is a rectangle, whose top intersects

f(x) somewhere on [1, 4], whose area is exactly that of the definite integral.

1 2 3 4

x

y

(a)

1 2 3 4

x

y

(b)

1 2 3 4

x

y

(c)

Figure 5.4.21 Differently sized rectangles give upper and lower bounds on∫ 4

1
f(x) dx; the last rectangle matches the area exactly

We state this idea formally in a theorem.

Theorem 5.4.22 The Mean Value Theorem of Integration.

Let f be continuous on [a, b]. There exists a value c in [a, b] such that∫ b

a

f(x) dx = f(c)(b− a).
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This is an existential statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.22 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 3.2.3; we leave it to the reader to see how.

The Theorem 5.4.22 simply says
that there is a rectanglewith height
f(c) andwidth b−a, the area of
which is the same as the area be-
tween f and thex-axis over[a, b].
Furthermore, we know that cwill
be in the interval [a, b].

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.23 Using the Mean Value Theorem.

Consider
∫ π

0
sin(x) dx. Find a value c guaranteed by the Mean Value

Theorem.
Solution. We first need to evaluate

∫ π

0
sin(x) dx. (This was previously

done in Example 5.4.10.)∫ π

0

sin(x) dx = − cos(x)
∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin(c) = 2.

π sin(c) = 2 ⇒ sin(c) = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

1 2

1

c π

sin(0.69)

x

y

Figure 5.4.24 A graph of y = sin(x)
on [0, π] and the rectangle guaran-
teed by the Mean Value Theorem

In Figure 5.4.24 sin(x) is sketched along with a rectangle with height
sin(0.69). The area of the rectangle is the same as the area under sin(x)
on [0, π].

We now turn our attention to a related topic —average value. Let f be a
functionon [a, b]with c such that f(c)(b−a) =

∫ b

a
f(x) dx. Consider

∫ b

a

(
f(x)−

f(c)
)
dx: ∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a

f(x)−
∫ b

a

f(c) dx

= f(c)(b− a)− f(c)(b− a)

= 0.

When f(x) is shifted by −f(c), the amount of area under f above the x-
axis on [a, b] is the same as the amount of area below the x-axis above f ; see
Figure 5.4.25 for an illustration of this. In this sense, we can say that f(c) is the
average value of f on [a, b].

y = f(x)

a bc

f(c)

x

y

y = f(x)− f(c)

a bc

f(c)

x

y

Figure 5.4.25 On the left, a graph of y = f(x) and the rectangle guaranteed by
the Mean Value Theorem. On the right, y = f(x) is shifted down by f(c); the
resulting “area under the curve” is 0

The value f(c) is the average value in another sense. First, recognize that
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the Mean Value Theorem can be rewritten as

f(c) =
1

b− a

∫ b

a

f(x) dx,

for some value of c in [a, b]. Replacing the integral with the limit of a Riemann
sum (as in Theorem 5.3.21):

f(c) =
1

b− a

∫ b

a

f(x) dx

=
1

b− a
lim

n→∞

n∑
i=1

f(ci)∆x Using Theorem 5.3.21

=
1

b− a
lim

n→∞

n∑
i=1

f(ci)
b− a

n
∆x =

b− a

n

= lim
n→∞

n∑
i=1

f(ci)
1

n
Cancelling the common factor of b− a.

Examining this last line closely, the expression
∑n

i=1 f(ci)
1
n represents adding

up n sample values of f(x)and then dividing by n. This is exactly what we do
when we calculate the average of a set of n numbers. Now when we consider
taking the limit as n goes to∞, lim

n→∞

∑n
i=1 f(ci)

1
n , we are adding up all of the

function’s output values over [a, b] and dividing by the “number of numbers”. In
a sense, we are adding up an infinite number of output values and then dividing
by the number of terms we summed (which is again infinite).

This leads us to a definition.

Definition 5.4.26 The Average Value of f on [a, b].

Let f be continuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. i.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a

f(x) dx.

An application of this definition is given in the following example.

Example 5.4.27 Finding the average value of a function.

An object moves back and forth along a straight line with a velocity given
by v(t) = (t− 1)2 on [0, 3], where t is measured in seconds and v(t) is
measured in ft/s.
What is the average velocity of the object?
Solution. By our definition, the average velocity is:

1

3− 0

∫ 3

0

(t− 1)2 dt =
1

3

∫ 3

0

(
t2 − 2t+ 1

)
dt

=
1

3

(
1

3
t3 − t2 + t

)∣∣∣∣3
0

=
1

3

[(
1

3
(3)3 − (3)2 + (3)

)
−
(
1

3
(0)3 − (0)2 + (0)

)]
= 1 ft/s .



CHAPTER 5. INTEGRATION 247

We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.27? We calculate
this by integrating its velocity function:

∫ 3

0
(t − 1)2 dt = 3 ft. Its final position

was 3 feet from its initial position after 3 seconds: its average velocity was 1 ft/s.
This section has laid the groundwork for a lot of great mathematics to follow.

The most important lesson is this: definite integrals can be evaluated using anti-
derivatives. Since Section 5.3 established that definite integrals are the limit of
Riemann sums, we can later create Riemann sums to approximate values other
than “area under the curve,” convert the sums to definite integrals, then evalu-
ate these using the Theorem 5.4.8. This will allow us to compute the work done
by a variable force, the volume of certain solids, the arc length of curves, and
more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. Chapter 6 is devoted to techniques
of finding antiderivatives so that a wide variety of definite integrals can be eval-
uated. Before that, Section 5.5 explores techniques of approximating the value
of definite integrals beyond using the Left Hand, Right Hand andMidpoint Rules.
These techniques are invaluable when antiderivatives cannot be computed, or
when the actual function f is unknown and all we know is the value of f at
certain x-values.



CHAPTER 5. INTEGRATION 248

5.4.6 Exercises

Terms and Concepts

1. How are definite and indefinite integrals related?
2. What constant of integration is most commonly used when evaluating definite integrals?

3. (□ True □ False) If f is a continuous function, then F (x) =

∫ x

a

f(t) dt is also a continuous function.

4. The definite integral can be used to find “the area under a curve.” Give two other uses for definite integrals.

Problems

Exercise Group. Evaluate the definite integral.

5.
∫ 3

2

(
3x2 + 2x− 8

)
dx 6.

∫ 5

0

(x− 8)
2
dx

7.
∫ 3

−3

(
x5 − x7

)
dx 8.

∫ π
2

0

sin(x) dx

9.
∫ π

3

π
4

sec2(x) dx 10.
∫ e5

1

1

x
dx

11.
∫ 1

−3

6x dx 12.
∫ −2

−3

(
4− 7x3

)
dx

13.
∫ π

0

(6 cos(x)− 4 sin(x)) dx 14.
∫ 4

3

ex dx

15.
∫ 16

0

√
t dt 16.

∫ 9

1

1√
t
dt

17.
∫ 64

27

3
√
x dx 18.

∫ 5

1

1

x
dx

19.
∫ 5

1

1

x2
dx 20.

∫ 9

1

1

x5
dx

21.
∫ 1

0

x dx 22.
∫ 1

0

x2 dx

23.
∫ 1

0

x3 dx 24.
∫ 1

0

x81 dx

25.
∫ 8

−8

dx 26.
∫ −2

−7

6 dx

27.
∫ 6

−6

0 dx 28.
∫ π

4

π
6

csc2(x) dx

29.

(a) Explain why
∫ 1

−1

xn dx = 0 when n is a positive, odd integer.

(b) Explain why
∫ 1

−1

xn dx = 2

∫ 1

0

xn dx when n is a positive, even integer.

30. Explain why
∫ a+2π

a

sin t dt = 0 for all values of a.
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Exercise Group. Find all values c such that
∫ b

a
f(x) dx = f(c)(b− a), as guaranteed by the Theorem 5.4.22.

31.
∫
x2 dx 32.

∫
x2 dx

33.
∫
ex dx 34.

∫ √
x dx

Exercise Group. Find the average value of the function on the given interval.
35. f(x) = sin(x) on

[
π
2 , π

]
36. y = sin(x) on [0, π

2 ]

37. y = x on [0, 5] 38. y = x2 on [0, 6]
39. y = x3 on [0, 7] 40. y =

1

t
on
[
1, e8

]
Exercise Group. A velocity function is given for an object moving along a straight line. Find the displacement of the
object over the given time interval.

41. v(t) = −32t+ 22 ft
s on [0, 8] 42. v(t) = −32t+ 140 ft

s on [0, 7]

43. v(t) = 19 ft
s on [0, 3] 44. v(t) = 2t mph on [−3, 2]

45. v(t) = sin(t) ft
s on [0, π] 46. v(t) = 4

√
t fts on [0, 256]

Exercise Group. An acceleration function of an object moving along a straight line is given. Find the change of the
object’s velocity over the given time interval.

47. a(t) = −32 ft
s2 on [0, 6] 48. a(t) = 7 ft

s2 on [0, 7]

49. a(t) = t ft
s2 on [0, 8] 50. a(t) = cos(t) ft

s2 on
[
0, 3π

2

]
Exercise Group. Sketch the given relations and find the area of the enclosed region.

51. y = 2x, y = 5x, and x = 3 52. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1

53. y = x2 − 2x+ 5, y = 5x− 5 54. y = 2x2 + 2x− 5, y = x2 + 3x+ 7,

Exercise Group. Find F ′(x).

55. F (x) =

∫ x3−7x

9

1

t
dt 56. F (x) =

∫ 5

x2

t2 dt

57. F (x) =

∫ x3

x

(t− 5) dt 58. F (x) =

∫ ex

ln(x)
sin(t) dt

59. F (x) =

∫ x3

3

(sin
(
4t2
)
) dt 60. F (x) =

∫ ex

ln(x)
(
√

t4 + 2t2) dt
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5.5 Numerical Integration

The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on computing an-
tiderivatives. Despite the power of this theorem, there are still situations where
wemust approximate the value of the definite integral instead of finding its exact
value. The first situation we explore is where we cannot compute the antideriv-
ative of the integrand. The second case is when we actually do not know the
function in the integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomial,
nth root, rational, exponential, logarithmic and trigonometric functions. We can
compute the derivative of any elementary function, but there are many elemen-
tary functions of which we cannot compute an antiderivative. For example, the
following functions do not have antiderivatives thatwe can expresswith elemen-
tary functions:

ex
2

, sin(x3), sin(x)
x .

The simplest way to refer to the antiderivatives of e−x2

is to simply write∫
e−x2

dx.
This section outlines three common methods of approximating the value of

definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite
integrals:∫ 1

0
e−x2

dx,
∫ π

2

−π
4
sin(x3) dx,

∫ 4π

0.5
sin(x)

x dx,

as pictured in Figure 5.5.1.

y = e−x2

−0.2 0.2 0.4 0.6 0.8 1

0.5

1

x

y

(a)

y = sin(x3)

−1 −0.5 0.5 1 1.5

−0.5

0.5

1

x

y

(b)

y =
sin(x)
x

5 10 15

0.5

1

x

y

(c)

Figure 5.5.1Graphically representing three definite integrals that cannot be eval-
uated using antiderivatives

5.5.1 The Left and Right Hand Rule Methods
In Section 5.3 we addressed the problem of evaluating definite integrals by ap-
proximating the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

interval [a, b]. We wish to approximate
∫ b

a

f(x) dx. We partition [a, b] into n

equally spaced subintervals, each of length∆x =
b− a

n
. The endpoints of these

subintervals are labeled as

x0 = a, x1 = a+∆x, x2 = a+ 2∆x, . . . , xi = a+ i∆x, . . . , xn = b.
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Key Idea 5.3.15 states that to use the Left Hand Rule we use the summation
n∑

i=1

f(xi−1)∆x and to use the Right Hand Rule we use
n∑

i=1

f(xi)∆x. We review

the use of these rules in the context of examples.

Example 5.5.2 Approximating definite integrals with rectangles.

Approximate
∫ 1

0

e−x2

dx using the Left and Right Hand Rules with 5

equally spaced subintervals.
Solution. We begin by partitioning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, and x5 = 1.

Using the Left Hand Rule, we have:
n∑

i=1

f(xi−1)∆x =
(
f(x0) + f(x1) + f(x2) + f(x3) + f(x4)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈ (1 + 0.9608 + 0.8521 + 0.6977 + 0.5273)(0.2)

≈ 0.8076.

Using the Right Hand Rule, we have:
n∑

i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈ (0.9608 + 0.8521 + 0.6977 + 0.5273 + 0.3678)(0.2)

≈ 0.6812.

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

(a) Using the Left Hand Rule

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

(b) Using the Right Hand Rule

Figure 5.5.3 Approximating
∫ 1

0
e−x2

dx in Example 5.5.2

Figure 5.5.3 shows the rectangles used in each method to approximate
the definite integral. These graphs show that in this particular case, the
Left Hand Rule is an over approximation and the Right Hand Rule is an
under approximation. To get a better approximation, we could usemore
rectangles, as we did in Section 5.3. We could also average the Left and
Right Hand Rule results together, giving

0.8076 + 0.6812

2
= 0.7444.
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The actual answer, accurate to 4 places after the decimal, is 0.7468,
showing our average is a good approximation.

Example 5.5.4 Approximating definite integrals with rectangles.

Approximate
∫ π

2

−π
4

sin(x3) dx using the Left and Right Hand Rules with

10 equally spaced subintervals.
Solution. We begin by finding∆x:

b− a

n
=

π/2− (−π/4)

10
=

3π

40
≈ 0.2356.

It is useful to write out the endpoints of the subintervals in a table; in
Figure 5.5.5, we give the exact values of the endpoints, their decimal ap-
proximations, and decimal approximations of sin(x3) evaluated at these
points.

xi Exact Approx. sin(x3
i )

x0 −π/4 −0.7854 −0.4657

x1 −7π/40 −0.5498 −0.1654

x2 −π/10 −0.3142 −0.0310

x3 −π/40 −0.0785 −0.0005

x4 π/20 0.1571 0.0039

x5 π/8 0.3927 0.0605

x6 π/5 0.6283 0.2455

x7 11π/40 0.8639 0.6011

x8 7π/20 1.0996 0.9710

x9 17π/40 1.3352 0.6899

x10 π/2 1.5708 −0.6700

Figure 5.5.5 Values used to ap-
proximate

∫ π
2

−π
4
sin(x3) dx in Exam-

ple 5.5.4

Once this table is created, it is straightforward to approximate the defi-
nite integral using the Left and Right Hand Rules. (Note: the table itself
is easy to create, especially with a standard spreadsheet program on a
computer. The last two columns are all that are needed.) The Left Hand
Rule sums the first 10 values of sin(x3

i ) and multiplies the sum by ∆x;
the Right Hand Rule sums the last 10 values of sin(x3

i ) and multiplies by
∆x. Therefore we have:

Left Hand Rule:
∫ π

2

−π
4

sin(x3) dx ≈ (1.9093)(0.2356) ≈ 0.4498.

Right Hand Rule:
∫ π

2

−π
4

sin(x3) dx ≈ (1.705)(0.2356) ≈ 0.4017.

Average of the Left and Right Hand Rules: 0.4258.

y = sin(x3)

−1 −0.5 0.5 1 1.5

−0.5

0.5

1

x

y

(a)

y = sin(x3)

−1 −0.5 0.5 1 1.5

−0.5

0.5

1

x

y

(b)

Figure 5.5.6 Approximating
∫ π

2

−π
4
sin(x3) dx in Example 5.5.4

The actual answer, accurate to 4 places after the decimal, is 0.4609. Our
approximationswere once again fairly good. The rectangles used in each
approximation are shown in Figure 5.5.6(a). It is clear from the graphs
that using more rectangles (and hence, narrower rectangles) should re-
sult in a more accurate approximation.
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5.5.2 The Trapezoidal Rule

In Example 5.5.2 we approximated the value of
∫ 1

0

e−x2

dxwith 5 rectangles of

equal width. Figure 5.5.3 shows the rectangles used in the Left and Right Hand
Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximations will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.7, we show the region under f(x) = e−x2

on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a better
approximation of

∫ 1

0
e−x2

dx. (In fact, these trapezoids seem to give a great
approximation of the area!)

y = e−x2

0.2 0.4 0.6 0.8 1

0.5

1

x

y

Figure 5.5.7 Approximating∫ 1

0
e−x2

dx using 5 trapezoids of
equal widths

The formula for the area of a trapezoid is given in Figure 5.5.8. We approxi-
mate

∫ 1

0
e−x2

dx with these trapezoids in the following example. a
b

h

Area = a+b
2 h

Figure 5.5.8 The area of a trapezoid

Example 5.5.9 Approximating definite integrals using trapezoids.

Use 5 trapezoids of equal width to approximate
∫ 1

0

e−x2

dx.

Solution. To compute the areas of the 5 trapezoids in Figure 5.5.7, it
will again be useful to create a table of values as shown in Figure 5.5.10.

xi e−x2
i

0 1

0.2 0.9608

0.4 0.8521

0.6 0.6977

0.8 0.5273

1 0.3679

Figure 5.5.10A table of values of e−x2

The leftmost trapezoid has legs of length 1 and 0.9607 and a height of
0.2. Thus, by our formula, the area of the leftmost trapezoid is:

1 + 0.9608

2
(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.9607 and 0.8521
and a height of 0.2. Thus its area is:

0.9608 + 0.8521

2
(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1 + 0.9608

2
(0.2) +

0.9608 + 0.8521

2
(0.2) +

0.8521 + 0.6977

2
(0.2)+

0.6977 + 0.5273

2
(0.2) +

0.5273 + 0.3679

2
(0.2) = 0.7444.

We approximate
∫ 1

0
e−x2

dx ≈ 0.7444.

There are many things to observe in this example. Note how each term in
the final summationwasmultiplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summation as:

1

2
(0.2)

[
(1 + 0.9608) + (0.9608 + 0.8521) + (0.8521 + 0.6977)

+ (0.6977 + 0.5273) + (0.5273 + 0.3679)
]
.

Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2

2

[
1 + 2(0.9608 + 0.8521 + 0.6977 + 0.5273) + 0.3679

]
.
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This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x) dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f . Using n equally spaced subintervals with endpoints x0,

x1, . . ., xn, we again have∆x =
b− a

n
. Thus:

∫ b

a

f(x) dx ≈
n∑

i=1

f(xi−1) + f(xi)

2
∆x

=
∆x

2

n∑
i=1

(
f(xi−1) + f(xi)

)
=

∆x

2

[
f(x0) +

(
2

n−1∑
i=1

f(xi)

)
+ f(xn)

]
.

Example 5.5.11 Using the Trapezoidal Rule.

Revisit Example 5.5.4 and approximate
∫ π

2

−π
4

sin(x3) dx using the Trape-

zoidal Rule and 10 equally spaced subintervals.
Solution. We refer back to Figure 5.5.5 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

−π
4

sin(x3) dx

≈ 0.236

2

[
− 0.4657 + 2

(
− 0.1654 + (−0.031) + . . .+ 0.68999

)
+ (−0.67)

]
= 0.4258.

The actual answer, accurate to 4 decimal places is 0.4609. So the Trape-
zoidal Rule with 10 subintervals is an under-approximation by about
0.0351.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of xi and f(xi) values. Once this is completed,
approximating the definite integral is not difficult. Again, using technology is
wise. Spreadsheets can make quick work of these computations and make us-
ing lots of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effectively
renders the Left and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximation is needed, one is gener-
ally better off using the Trapezoidal Rule instead of either the Left or Right Hand
Rule. However, there are two other methods that are also generally more accu-
rate than the Left or Right Hand Rule.

5.5.3 The Midpoint Rule
Another method that can bemore accurate than the Trapezoidal Rule is theMid-
point Rule:

SM (n) =

n∑
i=1

f

(
xi−1 + xi

2

)
∆x
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=

n∑
i=1

f (xi)∆x

where xi is the midpoint of each subinterval,

xi = a+∆x

(
i− 1

2

)
Example 5.5.12 Using the Midpoint Rule.

Use the Midpoint Rule with n = 5 to approximate
∫ 1

0

e−x2

dx.

Solution. We cannot use the table in Figure 5.5.10 that we used for the
Trapezoidal, Right and Left Hand Rules when using the Midpoint Rule.
The Trapezoidal rule averages the outputs of the function to obtain a
more accurate estimate of the definite integral. The Midpoint Rule av-
erages the inputs of each subinterval to create a rectangle with height
f
(

xi−1+xi

2

)
. Generally f

(
xi−1+xi

2

)
̸= f(xi−1)+f(xi)

2 .
So we will create a new table of values as shown in Figure 5.5.13. We
have ∆x = (1 − 0)/5 = 0.2. The midpoint of the first subinteval is at
0 + 0.2(1/2) = 0.1 and each successive midpoint is 0.2 from the last.

xi e−x2
i

0.1 0.9900

0.3 0.9139

0.5 0.7788

0.7 0.6126

0.9 0.4449

Figure 5.5.13A table of values of e−x2

So we have∫ 1

0

e−x2

dx ≈ 0.2(0.99 + 0.9139 + 0.7788 + 0.6126 + 0.4449)

≈ 0.7480

We approximate
∫ 1

0

e−x2

dx ≈ 0.7480.

Example 5.5.14 Using the Midpoint Rule.

Revisit Example 5.5.11 and approximate
∫ π

2

−π
4

sin(x3) dx using the Mid-

point Rule and 10 equally spaced subintervals.
Solution. Again, a table will be useful. Recall that ∆x = 3π/40 ≈
0.2356. Themidpoint of the first subinterval isx1 = a+∆x/2 = −π/4+
3π/40(1/2) = −17π/80 (notice that x1 is half of a subinterval width to
the right of a). Each successive midpoint is ∆x = 3π/40 = 6π/80 to
the right of the last. So we have:

xi Exact Approx. sin(x3
i )

x1 −17π/80 −0.6676 −0.2932

x2 −11π/80 −0.4320 −0.0805

x3 −5π/80 −0.1963 −0.0076

x4 1π/80 −0.0393 0.0001

x5 7π/80 0.2749 0.0208

x6 13π/80 0.5105 0.1327

x7 19π/80 0.7461 0.4035

x8 25π/80 0.9817 0.8112

x9 31π/80 1.2174 0.9729

x10 37π/80 1.4530 0.0740

Figure 5.5.15 Values used to ap-
proximate

∫ π
2

−π
4
sin(x3) dx in Exam-

ple 5.5.14

Thus we have:∫ π
2

−π
4

sin(x3) dx

≈ 0.2356
[
− 0.2932 + (−0.0805) + (−0.0076) + · · ·+ 0.9729 + 0.0740

]
= 0.2356 · 2.0339
≈ 0.4792.

The actual answer, accurate to 4 decimal places is 0.4609. So the
Midpoint Rule with 10 subintervals is an overrapproximation by about
0.0183. Notice that this error is about half of the error in using the Trape-
zoidal Rule.
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In many cases, the Midpoint Rule will more accurate than the Trapezoidal
Rule. You may wonder though, how can we improve on the Trapezoidal and
Midpoint Rules, apart from using more and more subintervals? The answer is
clear once we look back and consider what we have really done so far. The
Left Hand Rule, Right Hand Rule and Midpoint Rules are not really about using
rectangles to approximate area. Instead, they approximate a function f with
constant functions on small subintervals and then compute the definite integral
of these constant functions. The Trapezoidal Rule is really approximating a func-
tion f with a linear function on a small subinterval, then computing the definite
integral of this linear function. In all of these cases the definite integrals are easy
to compute in geometric terms.

So we have a progression: we start by approximating f with a constant func-
tion and then with a linear function. What is next? A quadratic function. By
approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp-
son’s Rule, named after Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

5.5.4 Simpson’s Rule
Given one point, we can create a constant function that goes through that point.
Given two points, we can create a linear function that goes through those points.
Given three points, we can create a quadratic function that goes through those
three points (given that no two have the same x-value).

Consider three points (x0, y0), (x1, y1) and (x2, y2)whosex-values are equally
spaced and x0 < x1 < x2. Let f be the quadratic function that goes through
these three points. It is not hard to show that∫ x2

x0

f(x) dx =
x2 − x0

6

(
y0 + 4y1 + y2

)
. (5.5.1) While it’s not hard to show the

results of Equation (5.5.1), it’s also
not exactly easy. This videomight
help: youtu.be/uc4xJsi99bk

Consider Figure 5.5.16. A function f goes through the 3 points shown and
the parabola g that also goes through those points is graphedwith a dashed line.
Using our equation from above, we know exactly that∫ 3

1

g(x) dx =
3− 1

6

(
3 + 4(1) + 2

)
= 3.

Since g is a good approximation for f on [1, 3], we can state that∫ 3

1

f(x) dx ≈ 3.

1 2 3

1

2

3

x

y

Figure 5.5.16 A graph of a function f
and a parabola that approximates it
well on [1, 3]

Notice how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a

f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width ∆x =
(b− a)/n. We approximate f with n/2 parabolic curves, using Equation (5.5.1)
to compute the area under these parabolas. Adding up these areas gives the
formula:∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0)+4f(x1)+2f(x2)+4f(x3)+. . .+2f(xn−2)+4f(xn−1)+f(xn)

]
.

Note how the coefficients of the terms in the summation have the pattern 1,
4, 2, 4, 2, 4, . . ., 2, 4, 1.

https://www.youtube.com/embed/uc4xJsi99bk
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Figure 5.5.17 illustrates how the area calculated by Simpson’s Rule approxi-
mates

∫ 5

0
f(x) dx for the function f(x) = sin(πx). In this case, 8 subintervals

were used, resulting in 4 quadratic curves (dashed lines) being fitted to each
pair of subintervals. The actual answer (accurate to 4 decimal places) is about
10.6366, while Simpson’s rule gives 10.7294. Of coursemore subintervals would
result in better accuracy. However 8 intervals were chosen specifically so that
you could see how the parabolas compare to the original function. With larger
values of n, it becomes difficult to distinguish the function and its quadratic ap-
proximations on each subinterval.

y = sin(πx) + 2

−1 1 2 3 4 5

1

2

3

x

y

Figure 5.5.17 An illustration of Simp-
son’s rule on f(x) = sin(πx)+2 over
[0, 5] using 8 subintervals, resulting in
4 quadratic approximations

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.18 Using Simpson’s Rule.

Approximate
∫ 1

0

e−x2

dx using Simpson’s Rule and 4 equally spaced

subintervals.
Solution. We begin by making a table of values as we have in the past,
as shown in Figure 5.5.19(a).

xi e−x2
i

0 1

0.25 0.939

0.5 0.779

0.75 0.570

1 0.368

(a)

y = e−x2

0.25 0.5 0.75 1

0.5

1

x

y

(b)

Figure 5.5.19 A table of values to approximate
∫ 1

0
e−x2

dx, along with a
graph of the function
Simpson’s Rule states that∫ 1

0

e−x2

dx ≈ 0.25

3

[
1+4(0.939)+2(0.779)+4(0.570)+0.368

]
= 0.74683.

Recall in Example 5.5.2 we stated that the correct answer, accurate to
4 places after the decimal, was 0.7468. Our approximation with Simp-
son’s Rule, with 4 subintervals, is better than our approximation with
the Trapezoidal Rule using 5!
Figure 5.5.19(b) shows f(x) = e−x2

along with its approximating
parabolas, demonstrating how good our approximation is. The approxi-
mating curves are nearly indistinguishable from the actual function.

Example 5.5.20 Using Simpson’s Rule.

Approximate
∫ π

2

−π
4

sin(x3) dx using Simpson’s Rule and 10 equally

spaced intervals.
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Solution. Figure 5.5.21 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x =
(π/2 + π/4)/10 ≈ 0.236.

xi sin(x3
i )

−0.7854 −0.4657

−0.5498 −0.1654

−0.3142 −0.0310

−0.0785 −0.0005

0.1571 0.0039

0.3927 0.0605

0.6283 0.2455

0.8639 0.6011

1.0996 0.9710

1.3352 0.6899

1.5708 −0.6700

Figure 5.5.21 Values used to ap-
proximate

∫ π
2

−π
4
sin(x3) dx in Exam-

ple 5.5.20

Simpson’s Rule states that∫ π
2

−π
4

sin(x3) dx ≈ 0.2356

3

[
(−0.4657) + 4(−0.1654) + 2(−0.0310) + . . .

. . .+ 2(0.9710) + 4(0.6899) + (−0.6700)
]

≈ 0.4701

y = sin(x3)

−1 −0.5 0.5 1 1.5

−0.5

0.5

1

x

y

Figure 5.5.22 Approximating∫ π
2

−π
4
sin(x3) dx in Example 5.5.20

with Simpson’s Rule and 10 equally
spaced intervals

Recall that the actual value, accurate to 3 decimal places, is 0.4609. Our
approximation is within one 1/100th of the correct value. The graph in
Figure 5.5.22 shows how closely the parabolas match the shape of the
graph.

5.5.5 Summary and Error Analysis
We summarize the key concepts of this section thus far in the following Key Idea.

Key Idea 5.5.23 Numerical Integration.

Let f be a continuous function on [a, b], let n be a positive integer, and

let∆x =
b− a

n
.

Set x0 = a, x1 = a+∆x, . . ., xi = a+ i∆x, xn = b.

Consider
∫ b

a

f(x) dx.

Left Hand Rule:
∫ b

a

f(x) dx ≈ ∆x
[
f(x0) + f(x1) + . . .+ f(xn−1)

]
.

Right Hand Rule:
∫ b

a

f(x) dx ≈ ∆x
[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Trapezoidal Rule:
∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + . . .+

2f(xn−1) + f(xn)
]
.

Midpoint Rule:
∫ b

a

f(x) dx ≈
n∑

i=1

f

(
xi−1 + xi

2

)
∆x.

Simpson’s Rule:
∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + . . . +

4f(xn−1) + f(xn)
]
for n even.

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several questions in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximating?

3. If there is value to approximating, how are we supposed to know if the
approximation is any good?

These are good questions, and their answers are educational. In the exam-
ples, the right answer was never computed. Rather, an approximation accurate
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to a certain number of places after the decimal was given. In Example 5.5.2, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximations were computed using numerical integration but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximation still has its place.
How are we to tell if the approximation is any good?

“Trial and error” provides one way. Using technology, make an approxima-
tion with, say, 10, 100, and 200 subintervals. This likely will not take much time
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximationwill be. For instance, the formulamight state that the approxima-
tion is within 0.1 of the correct answer. If the approximation is 1.58, then one
knows that the correct answer is between 1.48 and 1.68. By using lots of subin-
tervals, one can get an approximation as accurate as one likes. Theorem 5.5.24
states what these bounds are.

Theorem 5.5.24 Error Bounds in the Trapezoidal Rule and Simpson’s
Rule.

1. Let ET and EMbe the error in approximating
∫ b

a

f(x) dx using

the Trapezoidal and Midpoint Rules respectively, with n subinter-
vals. If f has a continuous second derivative on [a, b] andK is any
upper bound of |f ′′(x)| on [a, b], then

ET ≤ (b− a)3

12n2
K.

and

EM ≤ (b− a)3

24n2
K.

2. LetES be the error in approximating
∫ b

a

f(x) dx using Simpson’s

Rule with n subintervals.. If f has a continuous 4th derivative on
[a, b] andK is any upper bound of

∣∣f (4)(x)
∣∣ on [a, b], then

ES ≤ (b− a)5

180n4
K.

There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
itively.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The maximum error in the Midpoint Rule is half of the maximum error in
the Trapezoidal Rule. (Usually the errors in these two rules have opposite
signs as well, that is one will be an under approximation and the other will
be an over approximation).

4. The error in Simpson’s Rule has a term relating to the 4th derivative of f .
Consider a cubic polynomial: its 4th derivative is 0. Therefore, the error in
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approximating the definite integral of a cubic polynomial with Simpson’s
Rule is 0— Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.9 and 5.5.18 and compute the error bounds using
Theorem 5.5.24 in the following example.

Example 5.5.25 Computing error bounds.

Find the error bounds when approximating
∫ 1

0

e−x2

dx using the Trape-

zoidal and Midpoint Rules and 5 subintervals, and using Simpson’s Rule
with 4 subintervals.
Solution. Trapezoidal and Midpoints Rules with n = 5:
We start by computing the 2nd derivative of f(x) = e−x2

:

f ′′(x) = e−x2

(4x2 − 2).

Figure 5.5.26 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest
value of f ′′, in absolute value, is 2.

y = e−x2

(4x2 − 2)

0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0.5

x

y

Figure 5.5.26 Graphing f ′′(x) in Ex-
ample 5.5.25 to help establish error
bounds

Thus we letK = 2 and apply the error formula from Theorem 5.5.24.

ET ≤ (1− 0)3

12 · 52
· 2 = 0.006.

Since the maximum error in the Midpoint rule is half the error in the
Trapezoidal Rule, we can say: EM ≤ 0.003
Our error estimation formula states that our approximation of 0.7444
found in Example 5.5.9 is within 0.0067 of the correct answer. Hence we
know that the actual value iswithin [0.7444−0.0067, 0.7444+0.0067] =
[0.7377, 0.7511]. So:

0.7377 ≤
∫ 1

0

e−x2

dx ≤ 0.7511

But we can do better than this with the Midpoint Rule since its er-
ror is at most half of the error of the Trapezoidal Rule. Our error es-
timate formula state that our approximate of 0.7480 found in Exam-
ple 5.5.12 is within 0.0034 of the correct answer. Hence Hence we know
that the actual value is within [0.7480 − 0.0034, 0.7480 + 0.0033] =
[0.7447, 0.7513].
We had earlier stated the actual answer, correct to 4 decimal places, to
be 0.7468, affirming the validity of Theorem 5.5.24.
Simpson’s Rule with n = 4:
We start by computing the 4th derivative of f(x) = e−x2

:

f (4)(x) = e−x2

(16x4 − 48x2 + 12).

Figure 5.5.27 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest
value of f (4), in absolute value, is 12. Thus we letK = 12 and apply the
error formula from Theorem 5.5.24.

Es =≤ (1− 0)5

180 · 44
· 12 = 0.00026.

y = e−x2

(16x4 − 48x2 + 12)

0.2 0.4 0.6 0.8 1

−5

5

10

x

y

Figure 5.5.27 Graphing f (4)(x) in Ex-
ample 5.5.25 to help establish error
bounds

Our error estimation formula states that our approximation of 0.74683
found in Example 5.5.18 is within 0.00026 of the correct answer,
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hence we know that the correct answer is in the interval [0.74683 −
0.00026, 0.74683 + 0.00026] = [0.74657, 0.74709]. So:

0.74657 ≤
∫ 1

0

e−x2

dx ≤ 0.74709.

Once again we affirm the validity of Theorem 5.5.24 since the answer to
4 decimal places is actually 0.7468.

At the beginning of this section we mentioned two main situations where
numerical integration was desirable. We have considered the case where an
antiderivative of the integrand cannot be computed. We now investigate the
situation where the integrand is not known. This is, in fact, the most widely
used application of Numerical Integration methods. “Most of the time” we ob-
serve behavior but do not know “the” function that describes it. We instead
collect data about the behavior and make approximations based on this data.
We demonstrate this in an example.

Example 5.5.28 Approximating distance traveled.

One of the authors drove his daughter home from school while she
recorded their speed every 30 seconds. The data is given in Figure 5.5.29.
Approximate the distance they traveled.

Time Speed
(min) (mph)
0 0

1 25

2 22

3 19

4 39

5 0

6 43

7 59

8 54

9 51

10 43

11 35

12 40

13 43

14 30

15 0

16 0

17 28

18 40

19 42

20 40

21 39

22 40

23 23

24 0

Figure 5.5.29 Speed data collected
at 30 second intervals for Exam-
ple 5.5.28

Solution. Recall that by integrating a speed function we get distance
traveled. We have information about v(t); we will use Simpson’s Rule to

approximate
∫ b

a

v(t) dt.

Themost difficult aspect of this problem is converting the given data into
the form we need it to be in. The speed is measured in miles per hour,
whereas the time is measured in minutes.
We need to compute ∆x = (b − a)/n. With 25 data points collected,
there are n = 24 subintervals. What are a and b? Since we start at time
t = 0, we have a = 0. The final recorded time was t = 12 minutes,
which is 1/5 of an hour. Thus we have

∆x =
b− a

n
=

1/5− 0

24
=

1

120
;
∆x

3
=

1

360
.

Thus the distance traveled is approximately:∫ 0.2

0

v(t) dt ≈ 1

360

[
f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)

]
=

1

360

[
0 + 4 · 25 + 2 · 22 + · · ·+ 2 · 40 + 4 · 23 + 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the
reader wants to know, the author’s odometer recorded the distance as
about 6.05 miles.)
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5.5.6 Exercises

Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximating antiderivatives. (□ True □ False)
2. What are the two basic situations where approximating the value of a definite integral is necessary?
3. Why are the Left and Right Hand Rules rarely used?
4. Simpson’s Rule is based on approximating portions of a function with what type of function?

Problems

Exercise Group. In the following exercises, approximate the definite integral with the Trapezoidal Rule and Simpson’s
Rule, with n = 4. Then find the exact value.

5. For the integral
∫ 1

−1
x2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

6. For the integral
∫ 10

0
5x dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.
7. For the integral

∫ π

0
sin(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

8. For the integral
∫ 4

0

√
x dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

9. For the integral
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

10. For the integral
∫ 1

0
x4 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

11. For the integral
∫ 2π

0
cos(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

12. For the integral
∫ 3

−3

√
9− x2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

Exercise Group. In the following exercises, approximate the definite integral with the Trapezoidal Rule and Simpson’s
Rule, with n = 6.

13. For the integral
∫ 1

0
cos
(
x2
)
dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

14. For the integral
∫ 1

−1
ex

2

dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

15. For the integral
∫ 5

0

√
x2 + 1 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

16. For the integral
∫ π

0
x sin(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.
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17. For the integral
∫ π/2

0

√
cos(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

18. For the integral
∫ 4

1
ln(x) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

19. For the integral
∫ 1

−1
1

sin(x)+2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

20. For the integral
∫ 6

0
1

sin(x)+2 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

Exercise Group. In the following exercises, find n such that the error in approximating the given definite integral is
less than 0.0001 when using the Trapezoidal Rule and Simpson’s Rule.

21. For the integral
∫ π

0
sin(x) dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

22. For the integral
∫ 4

1
1√
x
dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.
23. For the integral

∫ π

0
cos
(
x2
)
dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

24. For the integral
∫ 5

0
x4 dx:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

Exercise Group. In the following exercises, a region is given. Find the area of the region using Simpson’s Rule:

(a) where the measurements are in centimeters, taken in 1 cm increments, and

(b) where the measurements are in hundreds of feet, taken in 100 ft increments.

25.

4.
7

6.
3

6
.9

6
.6

5.
1

26.

3.
6

3.
6

4.
5 6.
6

5.
6
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We started this chapter learning about antiderivatives and indefinite integrals.
We then seemed to change focus by looking at areas between the graph of a
function and the x-axis. We defined these areas as the definite integral of the
function, using a notation very similar to the notation of the indefinite integral.
The Fundamental Theorem of Calculus tied these two seemingly separate con-
cepts together: we can find areas under a curve, i.e., we can evaluate a definite
integral, using antiderivatives.

We ended the chapter by noting that antiderivatives are sometimes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximations of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applications of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integration, analogous to learning
rules like the Product, Quotient and Chain Rules of differentiation.



Chapter 6

Techniques ofAntidifferentiation

The previous chapter introduced the antiderivative and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applications of definite integrals than just area. As eval-
uating definite integrals will become important, we will want to find antideriva-
tives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions (a con-
cept introduced in the section on Numerical Integration), we can still find anti-
derivatives of a wide variety of functions.

6.1 Substitution

Wemotivate this section with an example. Let f(x) = (x2+3x− 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3)

= (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x + 30)(x2 + 3x − 5)9 dx? We have the

answer in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starting with
f(x) as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not-so-complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the
integrand is (x2 + 3x− 5)9. We wish to make this simpler; we do so through a
substitution. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

265
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We have established u as a function of x, so now consider the differential of
u:

du = (2x+ 3)dx.

Keep in mind that (2x+ 3) and dx are multiplied; the dx is not “just sitting
there.”

Return to the original integral and do some substitutions through algebra:∫
(20x+ 30)(x2 + 3x− 5)9 dx =

∫
10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x− 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F (x) and g(x) be differentiable functions and consider the de-
rivative of their composition:

d

dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

Thus ∫
F ′(g(x))g′(x) dx = F (g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x)
and replacing it with a variable. By setting u = g(x), we can rewrite the deriva-
tive as

d

dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F (u) + C = F (g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Theorem 6.1.1 Integration by Substitution.

LetF and g be differentiable functions, where the range of g is an interval
I contained in the domain of F . Then∫

F ′(g(x))g′(x) dx = F (g(x)) + C.

If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F (u) + C = F (g(x)) + C.
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The point of substitution is to make the integration step easy. Indeed, the
step

∫
F ′(u) du = F (u) + C looks easy, as the antiderivative of the deriva-

tive of F is just F , plus a constant. The “work” involved is making the proper
substitution. There is not a step-by-step process that one can memorize; rather,
experience will be one’s guide. To gain experience, we now embark on many
examples.

Example 6.1.2 Integrating by substitution.

Evaluate
∫

x sin(x2 + 5) dx.

Solution. Knowing that substitution is related to the Chain Rule, we
choose to letu be the “inside” function of sin(x2+5). (This is not always
a good choice, but it is often the best place to start.)
Let u = x2+5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x
does not physically have to be next to dx for there to be an x dx term.)
We can divide both sides of the du expression by 2:

du = 2x dx ⇒ 1

2
du = x dx.

We can now substitute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

)x dx︸︷︷︸
1
2du

=

∫
1

2
sin(u) du

= −1

2
cos(u) + C (now replace u with x2 + 5)

= −1

2
cos(x2 + 5) + C.

Thus
∫
x sin(x2+5) dx = − 1

2 cos(x
2+5)+C. We can check our work

by evaluating the derivative of the right hand side.

Example 6.1.3 Integrating by substitution.

Evaluate
∫
cos(5x) dx.

Solution. Again let u replace the “inside” function. Letting u = 5x,
we have du = 5 dx. Since our integrand does not have a 5 dx term, we
can divide the previous equation by 5 to obtain 1

5du = dx. We can now
substitute. ∫

cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5du

=

∫
1

5
cos(u) du

=
1

5
sin(u) + C

=
1

5
sin(5x) + C.
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We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 6.1.4 Substitution With A Linear Function.

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Letting

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1

a
F (ax+ b) + C.

Thus
∫
sin(7x − 4) dx = − 1

7 cos(7x − 4) + C. Our next example can use
Key Idea 6.1.4, but we will only employ it after going through all of the steps.

Example 6.1.5 Integrating by substituting a linear function.

Evaluate
∫

7

−3x+ 1
dx.

Solution. View the integrand as the composition of functions f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding
of substitution, we let u = −3x + 1, the inside function. Thus du =
−3 dx. The integrand lacks a−3; hence divide the previous equation by
−3 to obtain −du/3 = dx. We can now evaluate the integral through
substitution. ∫

7

−3x+ 1
dx =

∫
7

u

du

−3

=
−7

3

∫
du

u

=
−7

3
ln |u|+ C

= −7

3
ln |−3x+ 1|+ C.

Using Key Idea 6.1.4 is faster, recognizing that u is linear and a = −3.
One may want to continue writing out all the steps until they are com-
fortable with this particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.6 Integrating by substitution.

Evaluate
∫
sin(x) cos(x) dx.

Solution. There is not a composition of functions here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given
an integral to evaluate, it is often beneficial to think “If I let u be this,
then dumust be that …” and see if this helps simplify the integral at all.
In this example, let’s set u = sin(x). Then du = cos(x) dx, which we
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have as part of the integrand! The substitution becomes very straight-
forward: ∫

sin(x) cos(x) dx =

∫
u du

=
1

2
u2 + C

=
1

2
sin2(x) + C.

One would do well to ask “What would happen if we let u = cos(x)?”
The result is just as easy to find, yet looks very different. The challenge
to the reader is to evaluate the integral letting u = cos(x) and discover
why the answer is the same, yet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 6.1.7 Integrating by substitution.

Evaluate
∫

x
√
x+ 3 dx.

Solution. Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitution.
But at this stage, we have:∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We
need to convert the x to an expression involving just u.
Since we set u = x+ 3, we can also state that u− 3 = x. Thus we can
replace x in the integrand with u − 3. It will also be helpful to rewrite√
u as u 1

2 . ∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2

)
du

=
2

5
u

5
2 − 2u

3
2 + C

=
2

5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this particular case, some
algebra will be needed to make one’s answer match the integrand in the
original problem.

Example 6.1.8 Integrating by substitution.

Evaluate
∫

1

x ln(x)
dx.

Solution. This is another example where there does not seem to be
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an obvious composition of functions. The line of thinking used in Exam-
ple 6.1.7 is useful here: choose something for u and consider what this
implies dumust be. If u can be chosen such that du also appears in the
integrand, then we have chosen well.
Choosing u = 1/x makes du = −1/x2 dx; that does not seem helpful.
However, setting u = ln(x) makes du = 1/x dx, which is part of the
integrand. Thus: ∫

1

x ln(x)
dx =

∫
1

ln(x)︸ ︷︷ ︸
u

1

x
dx︸ ︷︷ ︸

du

=

∫
1

u
du

= ln |u|+ C

= ln |ln(x)|+ C.

The final answer is interesting; the natural log of the natural log. Take
the derivative to confirm this answer is indeed correct.

6.1.1 Integrals Involving Trigonometric Functions
Section 6.3 delves deeper into integrals of a variety of trigonometric functions;
here we use substitution to establish a foundation that we will build upon.

The next three examples will help fill in somemissing pieces of our antideriv-
ative knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.9 Integrating by substitution: the antiderivative of tan(x).

Evaluate
∫
tan(x) dx.

Solution. The previous paragraph established that we did not know the
antiderivatives of tangent, hence wemust assume that we have learned
something in this section that can help us evaluate this indefinite inte-
gral.
Rewrite tan(x) as sin(x)/ cos(x). While the presence of a composition
of functions may not be immediately obvious, recognize that cos(x) is
“inside” the 1/x function. Therefore, we see if setting u = cos(x) re-
turns usable results. We have that du = − sin(x) dx, hence −du =
sin(x) dx. We can integrate:∫

tan(x) dx =

∫
sin(x)
cos(x)

dx

=

∫
1

cos(x)︸ ︷︷ ︸
u

sin(x) dx︸ ︷︷ ︸
−du

=

∫
−1

u
du

= − ln |u|+ C

= − ln |cos(x)|+ C.
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Some texts prefer to bring the −1 inside the logarithm as a power of
cos(x), as in:

− ln |cos(x)|+ C = ln
∣∣(cos(x))−1

∣∣+ C

= ln
∣∣∣∣ 1

cos(x)

∣∣∣∣+ C

= ln |sec(x)|+ C.

Thus the result they give is
∫
tan(x) dx = ln |sec(x)| + C. These two

answers are equivalent.

Example 6.1.10 Integrating by substitution: the antiderivative of
sec(x).

Evaluate
∫
sec(x) dx.

Solution. This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case,
we write “1” as

1 =
sec(x) + tan(x)
sec(x) + tan(x)

.

This may seem like it came out of left field, but it works beautifully. Con-
sider: ∫

sec(x) dx =

∫
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx

=

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx.

Now let u = sec(x) + tan(x); this means du = (sec(x) tan(x) +
sec2(x)) dx, which is our numerator. Thus:

=

∫
du

u

= ln |u|+ C

= ln |sec(x) + tan(x)|+ C.

We can use similar techniques to those used in Examples 6.1.9 and 6.1.10
to find antiderivatives of cot(x) and csc(x) (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.11 Antiderivatives of Trigonometric Functions.

1.
∫
sin(x) dx = − cos(x) + C,

2.
∫
cos(x) dx = sin(x) + C,

3.
∫
tan(x) dx = − ln |cos(x)|+ C,

4.
∫
csc(x) dx = − ln |csc(x) + cot(x)|+ C,

5.
∫
sec(x) dx = ln |sec(x) + tan(x)|+ C,

6.
∫
cot(x) dx = ln |sin(x)|+ C,
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We explore one more common trigonometric integral.

Example 6.1.12 Integration by substitution: powers of cos(x) and
sin(x).

Evaluate
∫
cos2(x) dx.

Solution. We have a composition of functions as cos2(x) =
(
cos(x)

)2.
However, setting u = cos(x)means du = − sin(x) dx, which we do not
have in the integral. Another technique is needed. The power reduction identities

can be found in List B.3.5 in Ap-
pendix B.

The process we’ll employ is to use a Power Reducing formula for cos2(x),
which states

cos2(x) =
1 + cos(2x)

2
.

The right hand side of this equation is not difficult to integrate. We have:∫
cos2(x) dx =

∫
1 + cos(2x)

2
dx

=

∫ (
1

2
+

1

2
cos(2x)

)
dx

=
1

2
x+

1

2

sin(2x)
2

+ C

=
1

2
x+

sin(2x)
4

+ C,

where we used Key Idea 6.1.4 for the antiderivative of cos(2x).
We’ll make significant use of this power-reducing technique in future
sections.

6.1.2 Simplifying the Integrand
It is common to be reluctant to manipulate the integrand of an integral; at first,
our grasp of integration is tenuous and onemay think that working with the inte-
grandwill improperly change the results. Integration by substitutionworks using
a different logic: as long as equality is maintained, the integrand can be manipu-
lated so that its form is easier to deal with. The next two examples demonstrate
common ways in which using algebra first makes the integration easier to per-
form.

Example 6.1.13 Integration by substitution: simplifying first.

Evaluate
∫

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx.

Solution. Onemay try to start by settingu equal to either the numerator
or denominator; in each instance, the result is not workable.
When dealing with rational functions (i.e., quotients made up of poly-
nomial functions), it is an almost universal rule that everything works
better when the degree of the numerator is less than the degree of the
denominator. Hence we use polynomial division.
We skip the specifics of the steps, but note that when x2 + 2x + 1 is
divided into x3 + 4x2 + 8x+ 5, it goes in x+ 2 times with a remainder
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of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
= x+ 2 +

3x+ 3

x2 + 2x+ 1
.

Integrating x + 2 is simple. The fraction can be integrated by setting
u = x2 + 2x + 1, giving du = (2x + 2) dx. This is very similar to
the numerator. Note that du/2 = (x + 1) dx and then consider the
following:∫

x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2 +

3x+ 3

x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1

2
x2 + 2x+ C1 +

∫
3

u

du

2

=
1

2
x2 + 2x+ C1 +

3

2
ln |u|+ C2

=
1

2
x2 + 2x+

3

2
ln
∣∣x2 + 2x+ 1

∣∣+ C.

In some ways, we “lucked out” in that after dividing, substitution was
able to be done. In later sections we’ll develop techniques for handling
rational functions where substitution is not directly feasible.

Example 6.1.14 Integration by alternate methods.

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, substitution.

Solution. We already know how to integrate this particular example.
Rewrite

√
x as x 1

2 and simplify the fraction:

x2 + 2x+ 3

x1/2
= x

3
2 + 2x

1
2 + 3x− 1

2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x− 1

2

)
dx

=
2

5
x

5
2 +

4

3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be
solved using substitution as its implementation is rather clever.
Let u =

√
x = x

1
2 ; therefore

du =
1

2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =

∫
(x2 +2x+3) · 2 du. What are we

to do with the other x terms? Since u = x
1
2 , u2 = x, etc. We can then

replace x2 and x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du
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=

∫
2(u4 + 2u2 + 3) du

=
2

5
u5 +

4

3
u3 + 6u+ C

=
2

5
x

5
2 +

4

3
x

3
2 + 6x

1
2 + C,

which is obviously the same answerweobtained before. In this situation,
substitution is arguablymorework than our othermethod. The fantastic
thing is that it works. It demonstrates how flexible integration is.

6.1.3 Substitution and Inverse Trigonometric Functions
When studying derivatives of inverse functions, we learned that

d

dx

(
tan−1(x)

)
=

1

1 + x2
.

Applying the Chain Rule to this is not difficult; for instance,

d

dx

(
tan−1(5x)

)
=

5

1 + 25x2
.

We now explore how Substitution can be used to “undo” certain derivatives
that are the result of the Chain Rule applied to Inverse Trigonometric functions.
We begin with an example.

Example 6.1.15 Integratingby substitution: inverse trigonometric func-
tions.

Evaluate
∫

1

25 + x2
dx.

Solution. The integrand looks similar to the derivative of the arctangent
function. Note:

1

25 + x2
=

1

25
(
1 + x2

25

)
=

1

25(1 +
(
x
5

)2
)

=
1

25

1

1 +
(
x
5

)2 .
Thus ∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx.

This can be integrated using Substitution. Set u = x/5, hence du =
dx/5 or dx = 5 du. Thus∫

1

25 + x2
dx =

1

25

∫
1

1 +
(
x
5

)2 dx

=
1

5

∫
1

1 + u2
du

=
1

5
tan−1(u) + C
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=
1

5
tan−1

(x
5

)
+ C

Example 6.1.15 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 6.1.16 Integrals Involving Inverse Trigonometric Functions.

Let a > 0.

1.
∫

1

a2 + x2
dx =

1

a
tan−1

(x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
(x
a

)
+ C

3.
∫

1

x
√
x2 − a2

dx =
1

a
sec−1

(
|x|
a

)
+ C

Let’s practice using Theorem 6.1.16.

Example 6.1.17 Integratingby substitution: inverse trigonometric func-
tions.

Evaluate the given indefinite integrals:

1.
∫

1

9 + x2
dx 2.

∫
1√

5− x2
dx 3.

∫
1

x
√
x2 − 1

100

dx

Solution. Each can be answered using a straightforward application of
Theorem 6.1.16.

1.
∫

1

9 + x2
dx =

1

3
tan−1

(x
3

)
+ C, as a = 3.

2.
∫

1√
5− x2

= sin−1

(
x√
5

)
+ C, as a =

√
5.

3.
∫

1

x
√
x2 − 1

100

dx = 10 sec−1(10x) + C, as a = 1
10 .

Most applications of Theorem 6.1.16 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

Example 6.1.18 Integrating by substitution: completing the square.

Evaluate
∫

1

x2 − 4x+ 13
dx.

Solution. Initially, this integral seems to have nothing in common with
the integrals in Theorem 6.1.16. As it lacks a square root, it almost cer-
tainly is not related to arcsine or arcsecant. It is, however, related to the
arctangent function.
We see this by completing the square in the denominator. We give a
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brief reminder of the process here.
Start with a quadraticwith a leading coefficient of 1. It will have the form
of x2+ bx+ c. Take 1/2 of b, square it, and add/subtract it back into the
expression. i.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b

2

)2

+ c− b2

4

In our example, we take half of −4 and square it, getting 4. We add/
subtract it into the denominator as follows:

1

x2 − 4x+ 13
=

1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4 + 13

=
1

(x− 2)2 + 9

We can now integrate this using the arctangent rule. Technically, we
need to substitute first with u = x−2, but we can employ Key Idea 6.1.4
instead. Thus we have∫

1

x2 − 4x+ 13
dx =

∫
1

(x− 2)2 + 9
dx

=
1

3
tan−1

(
x− 2

3

)
+ C.

Example 6.1.19 Integrals requiring multiple methods.

Evaluate
∫

4− x√
16− x2

dx.

Solution. This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral into two terms:∫

4− x√
16− x2

dx =

∫
4√

16− x2
dx−

∫
x√

16− x2
dx.

We handle each separately. The first integral is handled using a straight-
forward application of Theorem 6.1.16:∫

4√
16− x2

dx = 4 sin−1
(x
4

)
+ C.

The second integral is handled by substitution, with u = 16 − x2.∫
x√

16− x2
dx: Set u = 16−x2, so du = −2x dx and x dx = −du/2.

We have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1

2

∫
1√
u
du

= −
√
u+ C
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= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1
(x
4

)
+
√
16− x2 + C.

As with all definite integrals, you can check your work by differentiation.

6.1.4 Substitution and Definite Integration
This section has focused on evaluating indefinite integrals as we are learning a
new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

1. Start with a definite integral
∫ b

a

f(x) dx that requires substitution.

2. Ignore the bounds; use substitution to evaluate
∫

f(x) dx and find an

antiderivative F (x).

3. Evaluate F (x) at the bounds; that is, evaluate F (x)
∣∣∣b
a
= F (b)− F (a).

This workflow works fine, but substitution offers an alternative that is pow-
erful and amazing (and a little time saving).

At its heart, (using the notation of Theorem 6.1.1) substitution converts in-
tegrals of the form

∫
F ′(g(x))g′(x) dx into an integral of the form

∫
F ′(u) du

with the substitution ofu = g(x). The following theorem states how the bounds
of a definite integral can be changed as the substitution is performed.

Theorem 6.1.20 Substitution with Definite Integrals.

LetF and g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F and u = g(x). Then∫ b

a

F ′(g(x))g′(x) dx =

∫ g(b)

g(a)

F ′(u) du.

In effect, Theorem 6.1.20 states that once you convert to integrating with
respect to u, you do not need to switch back to evaluating with respect to x. A
few examples will help one understand.

Example 6.1.21 Definite integrals and substitution: changing the
bounds.

Evaluate
∫ 2

0

cos(3x− 1) dx using Theorem 6.1.20.

Solution. Observing the composition of functions, letu = 3x−1, hence
du = 3 dx. As 3 dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.
By setting u = 3x − 1, we are implicitly stating that g(x) = 3x − 1.
Theorem 6.1.20 states that the new lower bound is g(0) = −1; the new
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upper bound is g(2) = 5. We now evaluate the definite integral:∫ 2

0

cos(3x− 1) dx =

∫ 5

−1

cos(u)
du

3

=
1

3
sin(u)

∣∣∣5
−1

=
1

3

(
sin(5)− sin(−1)

)
≈ −0.039.

Notice how once we converted the integral to be in terms of u, we never
went back to using x.

y = cos(3x− 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

y = 1
3 cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

(b)

Figure 6.1.22 Graphing the areas defined by the definite integrals of Ex-
ample 6.1.21
The graphs in Figure 6.1.22 tell more of the story. In Figure 6.1.22(a)
the area defined by the original integrand is shaded, whereas in Fig-
ure 6.1.22(b) the area defined by the new integrand is shaded. In
this particular situation, the areas look very similar; the new region is
“shorter” but “wider,” giving the same area.

Example 6.1.23 Definite integrals and substitution: changing the
bounds.

Evaluate
∫ π/2

0

sin(x) cos(x) dx using Theorem 6.1.20.

Solution. Wesaw the corresponding indefinite integral in Example 6.1.6.
In that example we set u = sin(x) but stated that we could have let
u = cos(x). For variety, we do the latter here.
Let u = g(x) = cos(x), giving du = − sin(x) dx and hence sin(x) dx =
−du. The new upper bound is g(π/2) = 0; the new lower bound is
g(0) = 1. Note how the lower bound is actually larger than the upper
bound now. We have∫ π/2

0

sin(x) cos(x) dx =

∫ 0

1

−u du (switch bounds and change sign)

=

∫ 1

0

u du

=
1

2
u2
∣∣∣1
0
= 1/2.
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In Figure 6.1.24 we have again graphed the two regions defined by our
definite integrals. Unlike the previous example, they bear no resem-
blance to each other. However, Theorem 6.1.20 guarantees that they
have the same area.

y = sin(x) cos(x)

−0.5

0.5

1

π
2

x

y

(a)

y = u

1

−0.5

0.5

1

π
2

u

y

(b)

Figure 6.1.24 Graphing the areas defined by the definite integrals of Ex-
ample 6.1.23

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundationonwhichmost
other integration techniques are based.
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6.1.5 Exercises

Terms and Concepts

1. Substitution “undoes” what derivative rule?
2. (□ True □ False) One can use algebra to rewrite the integrand of an integral to make it easier to evaluate.

Problems

Exercise Group. Evaluate the indefinite integral to develop an understanding of Substitution.

3.
∫

4x3
(
x4 + 3

)8
dx 4.

∫
(2x+ 6)

(
x2 + 6x− 5

)3
dx

5.
∫

x
(
x2 + 8

)9
dx 6.

∫
(9− 54x)

(
3x− 9x2 + 9

)5
dx

7.
∫

1

3x+ 4
dx 8.

∫
1√

3x+ 9
dx

9.
∫

x√
x− 3

dx 10.
∫

x3 − x√
x

dx

11.
∫

e
√
x

√
x
dx 12.

∫
x5

√
x6 + 4

dx

13.
∫ 1

x + 6

x2
dx 14.

∫
ln(x)
x

dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving trigonometric functions.

15.
∫
sin2(x) cos(x) dx 16.

∫
cos3(x) sin(x) dx

17.
∫
cos(7− 7x) dx 18.

∫
sec2(4− 6x) dx

19.
∫
sec(5x) dx 20.

∫
tan6(x) sec2(x) dx

21.
∫

x6 sin
(
x7
)
dx 22.

∫
tan2(x)dx

23.
∫
cot(x) dx

Do not just refer to Theorem 6.1.14 for the
answer; justify it through Substitution.

24.
∫
csc(x) dx

Do not just refer to Theorem 6.1.14 for the
answer; justify it through Substitution.

Exercise Group. Use Substitution to evaluate the indefinite integral involving exponential functions.

25.
∫

e3x+9 dx 26.
∫

ex
3

x2 dx

27.
∫

ex
2−6x+9(x− 3) dx 28.

∫
ex − 1

ex
dx

29.
∫

ex

ex + 6
dx 30.

∫
ex + e−x

e2x
dx

31.
∫

88x dx 32.
∫

95x dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving logarithmic functions.
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33.
∫
ln(x)
x

dx 34.
∫

(ln(x))2

x
dx

35.
∫ ln

(
x3
)

x
dx 36.

∫
1

x ln(x4)
dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving rational functions.

37.
∫

x2 − x+ 6

x
dx 38.

∫
x3 + x2 + x+ 1

x
dx

39.
∫

x3 − 7

x+ 1
dx 40.

∫
x2 + 6x+ 5

x− 8
dx

41.
∫

8x2 − 2x+ 1

x+ 4
dx 42.

∫
x2 − 6x− 2

x3 − 9x2 − 6x+ 9
dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving inverse trigonometric functions.

43.
∫

3

x2 + 3
dx 44.

∫
3√

9− x2
dx

45.
∫

2√
6− x2

dx 46.
∫

7

x
√
x2 − 25

dx

47.
∫

4x√
x6 − 36x4

dx 48.
∫

x√
1− x4

dx

49.
∫

1

x2 + 10x+ 36
dx 50.

∫
5√

−x2 − 14x− 33
dx

51.
∫

6√
−x2 + 18x

dx 52.
∫

6

x2 − 14x+ 85
dx

Exercise Group. Evaluate the indefinite integral.

53.
∫

x3

(x4 − 5)
2 dx 54.

∫ (
3x5 + 2x

) (
4x6 + 8x2 + 9

)6
dx

55.
∫

x√
5 + x2

dx 56.
∫

x5 csc2
(
x6 − 6

)
dx

57.
∫
sin(x)

√
cos(x) dx 58.

∫
cos(8x+ 2) dx

59.
∫

1

x+ 7
dx 60.

∫
1

8x+ 5
dx

61.
∫

4x3 − 35x2 + 47x

x2 − 7x− 1
dx 62.

∫
2x− 5

x2 − 5x− 7
dx

63.
∫

24(1− x)

6x− 3x2 + 4
dx 64.

∫
−x3 − 6x2 + 11x+ 13

x2 − x− 2
dx

65.
∫

x

x4 + 36
dx 66.

∫
7

49x2 + 1
dx

67.
∫

1

x
√
64x2 − 1

dx 68.
∫

1√
81− 4x2

dx

69.
∫

9x+ 76

x2 + 18x+ 130
dx 70.

∫
7x− 37

x2 − 14x+ 65
dx

71.
∫

x2 − x− 2

x2 − 10x+ 40
dx 72.

∫
x3

x2 + 16
dx

73.
∫

x3 + 19x+ 40

x2 − 2x+ 6
dx 74.

∫
sin(x)

cos2(x) + 1
dx
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75.
∫

cos(x)
sin2(x) + 1

dx 76.
∫

sin(x)
1− cos2(x)

dx

77.
∫

6x− 42√
x2 − 14x+ 48

dx 78.
∫

x− 9√
x2 − 18x+ 77

dx

Exercise Group. Evaluate the definite integral.

79.
∫ 2

−1

1

x− 7
dx 80.

∫ 69

54

x
√
x− 5 dx

81.
∫ π

−π
2

sin4(x) cos(x) dx 82.
∫ 1

0

2x
(
1− x2

)6
dx

83.
∫ 1

−3

(x+ 1) ex
2+2x+1 dx 84.

∫ 1

−1

1

1 + x2
dx

85.
∫ −4

−6

1

x2 + 10x+ 26
dx 86.

∫ √
3

√
2

1√
4− x2

dx
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6.2 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:∫
x cos(x) dx.

It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule
for derivatives. It will enable us to evaluate this integral.

The Product Rule says that if u and v are functions of x, then (uv)′ = u′v +
uv′. For simplicity, we’vewrittenu foru(x) and v for v(x). Supposewe integrate
both sides with respect to x. This gives∫

(uv)′ dx =

∫
(u′v + uv′) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The
right side can be broken up into two integrals, and we have

uv =

∫
u′v dx+

∫
uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv −

∫
u′v dx.

Using differential notation, we can write du = u′(x)dx and dv = v′(x)dx
and the expression above can be written as follows:∫

u dv = uv −
∫

v du.

This is the Integration by Parts formula. For reference purposes, we state
this in a theorem.

Theorem 6.2.1 Integration by Parts.

Let u and v be differentiable functions of x on an interval I containing a
and b. Then ∫

u dv = uv −
∫

v du,

and ∫ x=b

x=a

u dv = uv
∣∣∣b
a
−
∫ x=b

x=a

v du.

The integrationbyparts formula
can also be written as∫

f(x) g′(x) dx

= f(x)g(x)−
∫

f ′(x) g(x) dx

for differentiable functions f and
g.

Let’s try an example to understand our new technique.

Example 6.2.2 Integrating using Integration by Parts.

Evaluate
∫

x cos(x) dx.

Solution. The key to Integration by Parts is to identify part of the inte-
grand as “u” and part as “dv.” Regular practice will help one make good
identifications, and later wewill introduce some principles that help. For
now, let u = x and dv = cos(x) dx.
It is generally useful to make a small table of these values as done below.
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Right now we only know u and dv as shown on the left of Figure 6.2.3;
on the right we fill in the rest of what we need. If u = x, then du = dx.
Since dv = cos(x) dx, v is an antiderivative of cos(x). We choose v =
sin(x).

u = x v = ?

du = ? dv = cos(x) dx
=⇒ u = x v = sin(x)

du = dx dv = cos(x) dx

Figure 6.2.3 Setting up Integration by Parts
Now substitute all of this into the Integration by Parts formula, giving∫

x cos(x) dx = x sin(x)−
∫
sin(x) dx.

We can then integrate sin(x) to get− cos(x)+C and overall our answer
is ∫

x cos(x) dx = x sin(x) + cos(x) + C.

Note how the antiderivative contains a product, x sin(x). This product
is what makes Integration by Parts necessary.
We can check our work by taking the derivative:

d

dx
(x sin(x) + cos(x) + C) = x cos(x) + sin(x)− sin(x) + 0

= x cos(x).

Youmay wonder what would have happened in Example 6.2.2 if we had cho-
sen our u and dv differently. If we had chosen u = cos(x) and dv = x dx then
du = − sin(x) dx and v = x2/2. Our second integral is not simpler than the
first; we would have∫

x cos(x) dx = cos(x)
x2

2
−
∫

x2

2
(− sin(x)) dx.

The only way to approach this second integral would be yet another integration
by parts.

Example 6.2.2 demonstrates how Integration by Parts works in general. We
try to identify u and dv in the integral we are given, and the key is that we usually
want to choose u and dv so that du is simpler than u and v is hopefully not too
much more complicated than dv. This will mean that the integral on the right
side of the Integration by Parts formula,

∫
v du will be simpler to integrate than

the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos(x) dx. Then du = dx
was simpler than u and v = sin(x) is no more complicated than dv. Therefore,
instead of integrating x cos(x) dx, we could integrate sin(x) dx, which we knew
how to do.

A useful mnemonic for helping to determine u is “liate,” where
l = Logarithmic, i = Inverse Trig., a = Algebraic (polynomials, roots, power

functions), t = Trigonometric, and e = Exponential.
If the integrand contains both a logarithmic and an algebraic term, in general

letting u be the logarithmic term works best, as indicated by l coming before a
in liate.

We now consider another example.
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Example 6.2.4 Integrating using Integration by Parts.

Evaluate
∫

xex dx.

Solution. The integrand contains an Algebraic term (x) and an
Exponential term (ex). Our mnemonic suggests letting u be the alge-
braic term, so we choose u = x and dv = ex dx. Then du = dx and
v = ex as indicated by the tables below.

u = x v = ?

du = ? dv = ex dx

=⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.2.5 Setting up Integration by Parts
We see du is simpler than u, while there is no change in going from dv
to v. This is good. The Integration by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the antiderivatives contain a product term.

Example 6.2.6 Integrating using Integration by Parts.

Evaluate
∫

x2 cos(x) dx.

Solution. The mnemonic suggests letting u = x2 instead of the
trigonometric function, hence dv = cos(x) dx. Then du = 2x dx and
v = sin(x) as shown below.

u = x2 v = ?

du = ? dv = cos(x) dx
=⇒ u = x2 v = sin(x)

du = 2x dx dv = cos(x) dx

Figure 6.2.7 Setting up Integration by Parts
The Integration by Parts formula gives∫

x2 cos(x) dx = x2 sin(x)−
∫

2x sin(x) dx.

At this point, the integral on the right is indeed simpler than the one
we started with, but to evaluate it, we need to do Integration by Parts
again. Here we choose r = 2x and ds = sin(x) and fill in the rest below.
(We are choosing new names since we have already used u and v. Our
integration by parts formula is now

∫
r ds = rs−

∫
s dr.)
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u = 2x v = ?
du = ? dv = sin(x) dx

⇒ u = 2x v = − cos(x)
du = 2 dx dv = sin(x) dx

Figure 6.2.8 Setting up Integration by Parts (again)

∫
x2 cos(x) dx = x2 sin(x)−

(
−2x cos(x)−

∫
−2 cos(x) dx

)
.

The integral all theway on the right is now somethingwe can evaluate. It
evaluates to−2 sin(x). Then going through and simplifying, being care-
ful to keep all the signs straight, our answer is∫

x2 cos(x) dx = x2 sin(x) + 2x cos(x)− 2 sin(x) + C.

Example 6.2.9 Integrating using Integration by Parts.

Evaluate
∫

ex cos(x) dx.

Solution. This is a classic problem. Our mnemonic suggests letting u be
the trigonometric function instead of the exponential. In this particular
example, one can letu be either cos(x) or ex; to demonstrate thatwe do
not have to follow liate, we choose u = ex and hence dv = cos(x) dx.
Then du = ex dx and v = sin(x) as shown below.

u = ex v = ?

du = ? dv = cos(x) dx
=⇒ u = ex v = sin(x)

du = ex dv = cos(x) dx

Figure 6.2.10 Setting up Integration by Parts
Notice that du is no simpler than u, going against our general rule (but
bear with us). The Integration by Parts formula yields∫

ex cos(x) dx = ex sin(x)−
∫

ex sin(x) dx.

The integral on the right is not much different than the one we started
with, so it seems like we have gotten nowhere. Let’s keep working and
apply Integration by Parts to the new integral, using u = ex and dv =
sin(x) dx. This leads us to the following:

r = ex s = ?

dr = ? ds = sin(x) dx
=⇒ r = ex s = − cos(x)

dr = ex dx ds = sin(x) dx

Figure 6.2.11 Setting up Integration by Parts (again)
The Integration by Parts formula then gives:∫

ex cos(x) dx = ex sin(x)−
(
−ex cos(x)−

∫
−ex cos(x) dx

)
= ex sin(x) + ex cos(x)−

∫
ex cos(x) dx.



CHAPTER 6. TECHNIQUES OF ANTIDIFFERENTIATION 287

It seems we are back right where we started, as the right hand side con-
tains

∫
ex cos(x) dx. But this is actually a good thing.

Add
∫

ex cos(x) dx to both sides. This gives

2

∫
ex cos(x) dx = ex sin(x) + ex cos(x)

Now divide both sides by 2 and then add the integration constant:∫
ex cos(x) dx =

1

2

(
ex sin(x) + ex cos(x)

)
+ C.

Simplifying a little, our answer is thus∫
ex cos(x) dx =

1

2
ex (sin(x) + cos(x)) + C.

Example 6.2.12 Integrating using Integration by Parts: antiderivative
of ln(x).

Evaluate
∫
ln(x) dx.

Solution. One may have noticed that we have rules for integrating the
familiar trigonometric functions and ex, but we have not yet given a rule
for integrating ln(x). That is because ln(x) can’t easily be integrated
with any of the rules we have learned up to this point. But we can find
its antiderivative by a clever application of Integration by Parts. Set u =
ln(x) and dv = dx. This is a good, sneaky trick to learn as it can help in
other situations. This determines du = (1/x) dx and v = x as shown
below.

u = ln(x) v = ?

du = ? dv = 1 dx

=⇒ u = ln(x) v = x

du = 1/x dx dv = 1 dx

Figure 6.2.13 Setting up Integration by Parts
Putting this all together in the Integration by Parts formula, things work
out very nicely: ∫

ln(x) dx = x ln(x)−
∫

x
1

x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things

get. Its integral is x+ C and our answer is∫
ln(x) dx = x ln(x)− x+ C.

Example 6.2.14 Integrating using Int. by Parts: antiderivative of
arctanx.

Evaluate
∫
arctanx dx.
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Solution. The same sneaky trick we used above works here. Let u =
arctanx and dv = dx. Then du = 1/(1 + x2) dx and v = x. The
Integration by Parts formula gives∫

arctanx dx = x arctanx−
∫

x

1 + x2
dx.

The integral on the right canbe solvedby substitution. Takingw = 1+x2,
we get dw = 2x dx. The integral then becomes∫

arctanx dx = x arctanx− 1

2

∫
1

w
dw.

The integral on the right evaluates to ln |w|+ C, which becomes ln(1 +
x2) + C (we can drop the absolute values as 1 + x2 is always positive).
Therefore, the answer is∫

arctanx dx = x arctanx− 1

2
ln(1 + x2) + C.

Substitution Before Integration. When taking derivatives, it was common to
employ multiple rules (such as using both the Quotient and the Chain Rules).
It should then come as no surprise that some integrals are best evaluated by
combining integration techniques. In particular, here we illustrate making an
“unusual” substitution first before using Integration by Parts.

Example 6.2.15 Integration by Parts after substitution.

Evaluate
∫
cos(ln(x)) dx.

Solution. The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = ln(x), we have
du = 1/x dx. This seems problematic, as we do not have a 1/x in the
integrand. But consider:

du =
1

x
dx ⇒ x · du = dx.

Since u = ln(x), we can use inverse functions and conclude that x = eu.
Therefore we have that

dx = x · du
= eu du.

We can thus replace ln(x) with u and dx with eu du. Thus we rewrite
our integral as ∫

cos(ln(x)) dx =

∫
eu cosu du.

We evaluated this integral on the right in Example 6.2.9. (This integral
can also be found in a table of integrals). Using the result there, we have:∫

cos(ln(x)) dx =

∫
eu cos(u) du
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=
1

2
eu
(
sin(u) + cos(u)

)
+ C

=
1

2
eln(x)

(
sin(ln(x)) + cos(ln(x))

)
+ C

=
1

2
x
(
sin(ln(x)) + cos(ln(x))

)
+ C.

Definite Integrals and Integration By Parts. So far we have focused only on
evaluating indefinite integrals. Of course, we can use Integration by Parts to
evaluate definite integrals as well, as Theorem 6.2.1 states. We do so in the next
example.

Example 6.2.16 Definite integration using Integration by Parts.

Evaluate
∫ 2

1

x2 ln(x) dx.

Solution. Our mnemonic suggests letting u = ln(x), hence dv = x2 dx.
We then get du = (1/x) dx and v = x3/3 as shown below.

u = ln(x) v = ?

du = ? dv = x2 dx

⇒ u = ln(x) v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.2.17 Setting up Integration by Parts
The Integration by Parts formula then gives∫ 2

1

x2 ln(x) dx =
x3

3
ln(x)

∣∣∣∣2
1

−
∫ 2

1

x3

3

1

x
dx

=
x3

3
ln(x)

∣∣∣∣2
1

−
∫ 2

1

x2

3
dx

=
x3

3
ln(x)

∣∣∣∣2
1

− x3

9

∣∣∣∣2
1

=

(
x3

3
ln(x)− x3

9

)∣∣∣∣2
1

=

(
8

3
ln(2)− 8

9

)
−
(
1

3
ln(1)− 1

9

)
=

8

3
ln(2)− 7

9
≈ 1.07.

In general, Integration by Parts is useful for integrating certain products of
functions, like

∫
xex dx or

∫
x3 sin(x) dx. It is also useful for integrals involving

logarithms and inverse trigonometric functions.
As stated before, integration is generally more difficult than derivation. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar-looking integrals∫

xex dx,

∫
xex

2

dx and
∫

xex
3

dx.
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While the first is calculated easilywith Integrationby Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to Substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. Section 6.3 focuses on handling integrals containing trigonometric
functions.
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6.2.1 Exercises

Terms and Concepts

1. (□ True □ False) Integration by Parts is useful in evaluating integrands that contain products of functions.
2. (□ True □ False) Integration by Parts can be thought of as the “opposite of the Chain Rule.”
3. For what is “LIATE” useful?
4. (□ True □ False) If the integral that results from Integration by Parts appears to also need Integration by

Parts, then a mistake was made in the original choice of “u”.

Problems

Exercise Group. Evaluate the given indefinite integral.

5.
∫

x sin(x) dx 6.
∫

xe−x dx

7.
∫

x2 sin(x) dx 8.
∫

x3 sin(x) dx

9.
∫

xex
2

dx 10.
∫

x3ex dx

11.
∫

xe−2x dx 12.
∫

ex sin(x) dx

13.
∫

e2x cos(x) dx 14.
∫

e5x sin(9x) dx

15.
∫

e6x cos(6x) dx 16.
∫
sin(x) cos(x) dx

17.
∫
sin−1(x) dx 18.

∫
tan−1(8x) dx

19.
∫

x tan−1(x) dx 20.
∫
cos−1(x) dx

21.
∫

x ln(x) dx 22.
∫

(x− 3) ln(x) dx

23.
∫

x ln(x+ 1) dx 24.
∫

x ln(x2) dx

25.
∫

x2 ln(x) dx 26.
∫

(ln(x))2 dx

27.
∫
ln2(x+ 7) dx 28.

∫
x sec2(x) dx

29.
∫

x csc2(x) dx 30.
∫

x
√
x− 6 dx

31.
∫

x
√
x2 − 4 dx 32.

∫
sec(x) tan(x) dx

33.
∫

x sec(x) tan(x) dx 34.
∫

x csc(x) cot(x) dx

Exercise Group. Evaluate the indefinite integral after first making a substitution.

35.
∫
cos(ln(x)) dx 36.

∫
e2x cos(ex) dx

37.
∫
cos
(√

x
)
dx 38.

∫
ln(

√
x) dx
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39.
∫

e
√
x dx 40.

∫
eln(x) dx

Exercise Group. Evaluate the definite integral. Note: the corresponding indefinite integral appears in Exercises 5–13.

41.
∫ π

0

x sin(x) dx 42.
∫ 1

−2

xe−x dx

43.
∫ π/3

−π/3

x2 sin(x) dx 44.
∫ π/2

−π/2

x3 sin(x) dx

45.
∫ √

ln(2)

0

xex
2

dx 46.
∫ 1

0

x3ex dx

47.
∫ 3

1

xe−2x dx 48.
∫ π/2

0

ex sin(x) dx

49.
∫ π

−π

e2x cos(x) dx
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6.3 Trigonometric Integrals

Functions involving trigonometric functions are useful as they are good at de-
scribing periodic behavior. This section describes several techniques for finding
antiderivatives of certain combinations of trigonometric functions.

6.3.1 Integrals of the form
∫
sinm(x) cosn(x) dx

In learning the technique of Substitution, we saw the integral
∫
sin(x) cos(x) dx

in Example 6.1.6. The integration was not difficult, and one could easily evalu-
ate the indefinite integral by letting u = sin(x) or by letting u = cos(x). This
integral is easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm(x) cosn(x) dx,

where m,n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the identity cos2(x) + sin2(x) = 1 to convert high powers of one
trigonometric function into the other, leaving a single sine or cosine term in the
integrand. Let’s see an example of how this technique works.

Example 6.3.1 Integrating powers of sine and cosine.

Evaluate
∫
sin3(x) cos(x) dx.

Solution. We have used substitution on problems similar to this prob-
lem in Section 6.1 . If we let u = sin(x), then du = cos(x) dx, and∫

sin3(x) cos(x) dx =

∫
u3 du =

u4

4
+ C =

1

4
sin4(x) + C.

But what if, for some reason, we wanted to let u = cos(x) instead?
Unfortunately, we have sin3(x) as part of our integrand, not just sin(x).
The solution to this problem is to replace some of our powers of sine
(two of them to be exact) with expressions that involve cosine. We will
use the Pythagorean Identity sin2(x) = 1− cos2(x).∫

sin3(x) cos(x) dx =

∫
sin(x) · sin2(x) cos(x) dx

=

∫
sin(x)

(
1− cos2(x)

)
cos(x) dx.

Now we let u = cos(x) so that−du = sin(x) dx.∫
sin3(x) cos(x) dx =

∫
sin(x)

(
1− cos2(x)

)
cos(x) dx

=

∫
−
(
1− u2

)
u du

=

∫
−
(
u− u3

)
du

= −u2

2
+

u4

4
+ C

= −cos
2(x)

2
+
cos4(x)

4
+ C.

This looks like a very different answer, so you might wonder if we went
wrong somewhere. But in fact, the two answers are equivalent, in the
sense that they differ by a constant! (So the “+C” is different in each
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case, if you like.) Notice that

1

4
sin4(x) =

1

4
(1− cos2(x))2

=
1

4
− 1

2
cos2(x) +

1

4
cos4(x),

so the difference between the two answers is the constant 1
4 .

We summarize the general technique in the following Key Idea.

Key Idea 6.3.2 Integrals Involving Powers of Sine and Cosine.

Consider
∫
sinm(x) cosn(x) dx, wherem,n are nonnegative integers.

1. Ifm is odd, thenm = 2k + 1 for some integer k. Rewrite

sinm(x) = sin2k+1(x)

= sin2k(x) sin(x)

= (sin2(x))k sin(x)

= (1− cos2(x))k sin(x).

Then∫
sinm(x) cosn(x) dx =

∫
(1− cos2(x))k sin(x) cosn(x) dx

= −
∫
(1− u2)kun du,

where u = cos(x) and du = − sin(x) dx.

2. If n is odd, then using substitutions similar to that outlined above
(replacing all of the even powers of cosine using a Pythagorean
identity) we have:∫

sinm(x) cosn(x) dx =

∫
um(1− u2)k du,

where u = sin(x) and du = cos(x) dx.

3. If bothm and n are even, use the power-reducing identities:

cos2(x) =
1 + cos(2x)

2
and sin2(x) =

1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply
the principles of this Key Idea again.

We practice applying Key Idea 6.3.2 in the next examples.

Example 6.3.3 Integrating powers of sine and cosine.

Evaluate
∫
sin5(x) cos8(x) dx.
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Solution. The power of the sine term is odd, so we rewrite sin5(x) as

sin5(x) = sin4(x) sin(x)

= (sin2(x))2 sin(x)

= (1− cos2(x))2 sin(x).

Our integral is now
∫
(1− cos2(x))2 cos8(x) sin(x) dx. Let u = cos(x),

hence du = − sin(x) dx. Making the substitution and expanding the
integrand gives∫

(1− cos2)2 cos8(x) sin(x) dx = −
∫

(1− u2)2u8 du

= −
∫ (

1− 2u2 + u4
)
u8 du

= −
∫ (

u8 − 2u10 + u12
)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2

11
u11 − 1

13
u13 + C

= −1

9
cos9(x) +

2

11
cos11(x)− 1

13
cos13(x) + C.

Example 6.3.4 Integrating powers of sine and cosine.

Evaluate
∫
sin5(x) cos9(x) dx.

Solution. The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 6.3.2 to either power. We
choose to work with the power of the cosine term since the previous
example used the sine term’s power.
We rewrite cos9(x) as

cos9(x) = cos8(x) cos(x)

=
(
cos2(x)

)4 cos(x)
=
(
1− sin2(x)

)4
cos(x).

We rewrite the integral as∫
sin5(x) cos9(x) dx =

∫
sin5(x)

(
1− sin2(x)

)4
cos(x) dx.

Now substitute and integrate, using u = sin(x) and du = cos(x) dx.
Expand the binomial using algebra.

∫
u5(1− u2)4 du

=

∫
u5(1− 4u2 + 6u4 − 4u6 + u8) du
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=

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1

6
u6 − 1

2
u8 +

3

5
u10 − 1

3
u12 +

1

14
u14 + C

=
1

6
sin6(x)− 1

2
sin8(x) +

3

5
sin10(x)− 1

3
sin12(x) +

1

14
sin14(x) + C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.
Nowadays problems of this sort are often solved using a computer algebra sys-
tem. The powerful programMathematica™ integrates

∫
sin5(x) cos9(x) dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

−cos(10x)
81920

−cos(12x)
24576

−cos(14x)
114688

,

which clearly has a different form than our answer in Example 6.3.4, which is

g(x) =
1

6
sin6(x)− 1

2
sin8(x) +

3

5
sin10(x)− 1

3
sin12(x) +

1

14
sin14(x).

Figure 6.3.5 shows a graph of f and g; they are clearly not equal, but they
differ only by a constant. That is g(x) = f(x) + C for some constant C. So we
have two different antiderivatives of the same function, meaning both answers
are correct.

g(x)

f(x)

0.5 1 1.5 2 2.5 3

−0.002

0.002

0.004

x

y

Figure 6.3.5 A plot of f(x) and g(x)
from Example 6.3.4 and the Technol-
ogy Note

Example 6.3.6 Integrating powers of sine and cosine.

Evaluate
∫
cos4(x) sin2(x) dx.

Solution. The powers of sine and cosine are both even, so we employ
the power-reducing formulas and algebra as follows.∫

cos4(x) sin2(x) dx =

∫ (
1 + cos(2x)

2

)2(
1− cos(2x)

2

)
dx

=

∫
1 + 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1

8

(
1 + cos(2x) + cos2(2x)− cos3(2x)

)
dx

=
1

8

∫ 1 dx︸ ︷︷ ︸
a

+

∫
cos(2x) dx︸ ︷︷ ︸

b

−
∫
cos2(2x) dx︸ ︷︷ ︸

c

−
∫
cos3(2x) dx︸ ︷︷ ︸

d


The first integral labeled a is easy to integrate. The cos(2x) term is also
easy to integrate, especially with Key Idea 6.1.4. The cos2(2x) term is
another trigonometric integral with an even power, requiring the power-
reducing formula again. The cos3(2x) term is a cosine function with an
odd power, requiring a substitution as done before. We integrate each
in turn below. ∫

cos(2x) dx︸ ︷︷ ︸
b

=
1

2
sin(2x) + C
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∫
cos2(2x) dx︸ ︷︷ ︸

c

=

∫
1 + cos(4x)

2
dx

=
1

2

(
x+

1

4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x)

=
(
1− sin2(2x)

)
cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx︸ ︷︷ ︸

d

=

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1

2
(1− u2) du

=
1

2

(
u− 1

3
u3
)
+ C

=
1

2

(
sin(2x)− 1

3
sin3(2x)

)
+ C.

Putting all the pieces together, we have∫
cos4(x) sin2(x) dx

=

∫
1

8

(
1 + cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1

8

[
x+

1

2
sin(2x)− 1

2

(
x+

1

4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1

8

[1
2
x− 1

8
sin(4x) +

1

6
sin3(2x)

]
+ C.

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

6.3.2 Integrals of the form
∫
sin(mx) sin(nx) dx,

∫
cos(mx) cos(nx) dx,

and
∫
sin(mx) cos(nx) dx

Functions that contain products of sines and cosines of differing periods are im-
portant in many applications including the analysis of sound waves. Integrals of
the form∫

sin(mx) sin(nx) dx,
∫
cos(mx) cos(nx) dx and

∫
sin(mx) cos(nx) dx

are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1

2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1

2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1

2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
.
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Example 6.3.7 Integrating products of sin(mx) and cos(nx).

Evaluate
∫
sin(5x) cos(2x) dx.

Solution. The application of the formula and subsequent integration
are straightforward:∫

sin(5x) cos(2x) dx =

∫
1

2

[
sin((5− 2)x) + sin((5 + 2)x)

]
dx

=

∫
1

2

[
sin(3x) + sin(7x)

]
dx

= −1

6
cos(3x)− 1

14
cos(7x) + C

6.3.3 Integrals of the form
∫
tanm(x) secn(x) dx

When evaluating integrals of the form
∫
sinm(x) cosn(x) dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise-versa. If, for instance, the power of sine was odd, we pulled out one
sin(x) and converted the remaining even power of sin(x) into a function using
powers of cos(x), leading to an easy substitution.

The samebasic strategy applies to integrals of the form
∫
tanm(x) secn(x) dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan(x)) = sec2(x),

• d
dx (sec(x)) = sec(x) tan(x),

• 1 + tan2(x) = sec2(x) (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2(x) term with the
remaining secant power even, or if a sec(x) tan(x) term can be separated with
the remaining tan(x) power even, the Pythagorean Theorem can be employed,
leading to a simple substitution. This strategy is outlined in the following Key
Idea.

Key Idea 6.3.8 Integrals Involving Powers of Tangent and Secant.

Consider
∫
tanm(x) secn(x) dx, wherem,n are nonnegative integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn(x) as

secn(x) = sec2k(x)

= sec2k−2(x) sec2(x)

= (1 + tan2(x))k−1 sec2(x).

Then∫
tanm(x) secn(x) dx =

∫
tanm(x)(1 + tan2(x))k−1 sec2(x) dx

=

∫
um(1 + u2)k−1 du,

where u = tan(x) and du = sec2(x) dx.
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2. Ifm is odd, thenm = 2k + 1 for some integer k. Rewrite tanm(x) secn(x)
as

tanm(x) secn(x) = tan2k+1(x) secn(x)

= tan2k(x) secn−1(x) sec(x) tan(x)

= (sec2(x)− 1)k secn−1(x) sec(x) tan(x).

Then∫
tanm(x) secn(x) dx =

∫
(sec2(x)− 1)k secn−1(x) sec(x) tan(x) dx

=

∫
(u2 − 1)kun−1 du,

where u = sec(x) and du = sec(x) tan(x) dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm(x)
to (sec2(x) − 1)k. Expand the new integrand and use Integration By Parts,
with dv = sec2(x) dx.

4. Ifm is even and n = 0, rewrite tanm(x) as

tanm(x) = tanm−2(x) tan2(x)

= tanm−2(x)(sec2(x)− 1)

= tanm−2 sec2(x)− tanm−2(x).

So ∫
tanm(x) dx =

∫
tanm−2 sec2(x) dx︸ ︷︷ ︸

apply rule 1

−
∫
tanm−2(x) dx︸ ︷︷ ︸
apply rule 4 again

.

The techniques described in Item 1 and Item 2 of Key Idea 6.3.8 are relatively
straightforward, but the techniques in Item 3 and Item 4 can be rather tedious.
A few examples will help with these methods.

Example 6.3.9 Integrating powers of tangent and secant.

Evaluate
∫
tan2(x) sec6(x) dx.

Solution. Since the power of secant is even, we use Rule 1from Key
Idea 6.3.8 and pull out a sec2(x) in the integrand. We convert the re-
maining powers of secant into powers of tangent.∫

tan2(x) sec6(x) dx =

∫
tan2(x) sec4(x) sec2(x) dx

=

∫
tan2(x)

(
1 + tan2(x)

)2 sec2(x) dx
Now substitute, with u = tan(x), with du = sec2(x) dx.

=

∫
u2
(
1 + u2

)2
du
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We leave the integration and subsequent substitution to the reader. The
final answer is

=
1

3
tan3(x) +

2

5
tan5(x) +

1

7
tan7(x) + C.

Example 6.3.10 Integrating powers of tangent and secant.

Evaluate
∫
sec3(x) dx.

Solution. We apply Rule 3 from Key Idea 6.3.8 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use
Integration by Parts; the rule suggests letting dv = sec2(x) dx, meaning
that u = sec(x).

u = sec(x) v = ?

du = ? dv = sec2(x) dx

=⇒
u = sec(x) v = tan(x)

du = sec(x) tan(x) dx dv = sec2(x) dx

Figure 6.3.11 Setting up Integration by Parts
Employing Integration by Parts, we have∫

sec3(x) dx =

∫
sec(x)︸ ︷︷ ︸

u

· sec2(x) dx︸ ︷︷ ︸
dv

= sec(x) tan(x)−
∫
sec(x) tan2(x) dx.

This new integral also requires applying Rule 3 of Key Idea 6.3.8:∫
sec3(x) dx = sec(x) tan(x)−

∫
sec(x)

(
sec2(x)− 1

)
dx

= sec(x) tan(x)−
∫
sec3(x) dx+

∫
sec(x) dx

= sec(x) tan(x)−
∫
sec3(x) dx+ ln |sec(x) + tan(x)|

In previous applications of Integration by Parts, we have seen where the
original integral has reappeared in our work. We resolve this by adding∫
sec3(x) dx to both sides, giving:

2

∫
sec3(x) dx = sec(x) tan(x) + ln |sec(x) + tan(x)|∫
sec3(x) dx =

1

2

(
sec(x) tan(x) + ln |sec(x) + tan(x)|

)
+ C

We give one more example.

Example 6.3.12 Integrating powers of tangent and secant.

Evaluate
∫
tan6(x) dx.



CHAPTER 6. TECHNIQUES OF ANTIDIFFERENTIATION 301

Solution. We employ Rule 3 of Key Idea 6.3.8.∫
tan6(x) dx =

∫
tan4(x) tan2(x) dx

=

∫
tan4(x)

(
sec2(x)− 1

)
dx

=

∫
tan4(x) sec2(x) dx−

∫
tan4(x) dx

Integrate the first integral with substitution, u = tan(x); integrate the
second by employing rule Rule 4 again.

=
1

5
tan5(x)−

∫
tan2(x) tan2(x) dx

=
1

5
tan5(x)−

∫
tan2(x)

(
sec2(x)− 1

)
dx

=
1

5
tan5(x)−

∫
tan2(x) sec2(x) dx︸ ︷︷ ︸

a

+

∫
tan2(x) dx︸ ︷︷ ︸

b

Again, use substitution (u = tan(x)) for the first integral (a) and Rule 4
for the second (b).

=
1

5
tan5(x)− 1

3
tan3(x) +

∫ (
sec2(x)− 1

)
dx∫

tan6(x) dx =
1

5
tan5(x)− 1

3
tan3(x) + tan(x)− x+ C.

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

Section 6.4 introduces an integration technique known as Trigonometric Sub-
stitution, a clever combination of Substitution and the Pythagorean Theorem.
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6.3.4 Exercises

Terms and Concepts

1. (□ True □ False)
∫
sin2(x) cos2(x) dx cannot be evaluated using the techniques described in this section

since both powers of sin(x) and cos(x) are even.

2. (□ True □ False)
∫
sin3(x) cos3(x) dx cannot be evaluated using the techniques described in this section

since both powers of sin(x) and cos(x) are odd.

3. (□ True □ False) This section addresses how to evaluate indefinite integrals such as
∫
sin5(x) tan3(x) dx.

4. (□ True □ False) Sometimes computer programs evaluate integrals involving trigonometric functions dif-
ferently than one would using the techniques of this section. When this is the case, the techniques of this
section have failed and one should only trust the answer given by the computer.

Problems

Exercise Group. Evaluate the indefinite integral.

5.
∫
sin(x) cos4(x) dx 6.

∫
sin3(x) cos(x) dx

7.
∫
sin3(x) cos2(x) dx 8.

∫
sin3(x) cos3(x) dx

9.
∫
sin4(x) cos5(x) dx 10.

∫
sin2(x) cos7(x) dx

11.
∫
sin2(x) cos2(x) dx 12.

∫
sin(5x) cos(3x) dx

13.
∫
sin(x) cos(3x) dx 14.

∫
sin(8x) sin(9x) dx

15.
∫
sin(πx) sin(5πx) dx 16.

∫
cos(x) cos(2x) dx

17.
∫
cos
(π
6
x
)
cos(πx) dx 18.

∫
tan4(x) sec2(x) dx

19.
∫
tan2(x) sec4(x) dx 20.

∫
tan6(x) sec4(x) dx

21.
∫
tan7(x) sec2(x) dx 22.

∫
tan3(x) sec7(x) dx

23.
∫
tan5(x) sec8(x) dx 24.

∫
tan4(x) dx

25.
∫
sec5(x) dx 26.

∫
tan2(x) sec(x) dx

27.
∫
tan2(x) sec3(x) dx

Exercise Group. Evaluate the definite integral. Note: the corresponding indefinite integrals appear in Exercises 5–27.

28.
∫ π

0

sin(x) cos4(x) dx 29.
∫ 3π

2

− 3π
2

sin3(x) cos(x) dx

30.
∫ 3π

2

− 3π
2

sin2(x) cos7(x) dx 31.
∫ 3π

2

0

sin(5x) cos(3x) dx
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32.
∫ 2π

−2π

cos(x) cos(2x) dx 33.
∫ π

4

−π
4

tan4(x) sec2(x) dx

34.
∫ π/4

−π/4

tan2(x) sec4(x) dx
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6.4 Trigonometric Substitution

In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π

2
(6.4.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integration techniques, including Sub-

stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte-
gration skill. This techniqueworks on the sameprinciple as Substitution as found
in Section 6.1, though it can feel “backward.” In Section 6.1, we setu = f(x), for
some function f , and replaced f(x)with u. In this section, we will set x = f(θ),
where f is a trigonometric function, then replace x with f(θ).

We start by demonstrating this method in evaluating the integral in Equa-
tion (6.4.1). After the example, we will generalize the method and give more
examples.

Example 6.4.1 Using Trigonometric Substitution.

Evaluate
∫ 3

−3

√
9− x2 dx.

Solution. We begin by noting that 9
(
sin2(θ) + cos2(θ)

)
= 9, and

hence 9 cos2(θ) = 9 − 9 sin2(θ). If we let x = 3 sin(θ), then 9 − x2 =
9− 9 sin2(θ) = 9 cos2(θ).
Setting x = 3 sin(θ) gives dx = 3 cos(θ) dθ. We are almost ready
to substitute. We also wish to change our bounds of integration. The
bound x = −3 corresponds to θ = −π/2 (for when θ = −π/2,
x = 3 sin(θ) = −3). Likewise, the bound of x = 3 is replaced by the
bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2(θ) (3 cos(θ)) dθ

=

∫ π/2

−π/2

3
√

9 cos2(θ) cos(θ) dθ

=

∫ π/2

−π/2

3 |3 cos(θ)| cos(θ) dθ.

On [−π/2, π/2], cos(θ) is always positive, so we can drop the absolute
value bars, then employ a power-reducing formula:∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

9 cos2(θ) dθ

=

∫ π/2

−π/2

9

2

(
1 + cos(2θ)

)
dθ

=
9

2

(
θ +

1

2
sin(2θ)

)∣∣∣∣π/2
−π/2



CHAPTER 6. TECHNIQUES OF ANTIDIFFERENTIATION 305

=
9

2
π.

This matches our answer from before.

We now describe in detail Trigonometric Substitution. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the rela-
tionships between x and θ.

Key Idea 6.4.2 Trigonometric Substitution.

1. Integrands containing
√
a2 − x2.

Let x = a sin(θ), dx = a cos(θ) dθ.
Thus θ = sin−1(x/a), for −π/2 ≤
θ ≤ π/2. On this interval, cos(θ) ≥
0, so

√
a2 − x2 = a cos(θ).

√
a2 − x2

x
a

θ

Figure 6.4.3

2. Integrands containing
√
x2 + a2.

Let x = a tan(θ), dx = a sec2(θ) dθ.
Thus θ = tan−1(x/a), for −π/2 <
θ < π/2. On this interval, sec(θ) >
0, so

√
x2 + a2 = a sec(θ).

a

x√ x
2 +

a
2

θ

Figure 6.4.4

3. Integrands containing
√
x2 − a2.

Let x = a sec(θ), dx =
a sec(θ) tan(θ) dθ. Thus
θ = sec−1(x/a). If x/a ≥ 1,
then 0 ≤ θ < π/2; if x/a ≤ −1,
then π/2 < θ ≤ π. We restrict
our work to where x ≥ a, so
x/a ≥ 1, and 0 ≤ θ < π/2.
On this interval, tan(θ) ≥ 0, so√
x2 − a2 = a tan(θ).

a

√
x
2−

a
2

x

θ

Figure 6.4.5

Example 6.4.6 Using Trigonometric Substitution.

Evaluate
∫

1√
5 + x2

dx.

Solution. Using Item 2 in Key Idea 6.4.2, we recognize a =
√
5 and set

x =
√
5 tan(θ). This makes dx =

√
5 sec2(θ) dθ. We will use the fact

that
√
5 + x2 =

√
5 + 5 tan2(θ) =

√
5 sec2(θ) =

√
5 sec(θ). Substi-
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tuting, we have:∫
1√

5 + x2
dx =

∫
1√

5 + 5 tan2(θ)

√
5 sec2(θ) dθ

=

∫ √
5 sec2(θ)√
5 sec(θ)

dθ

=

∫
sec(θ) dθ

= ln |sec(θ) + tan(θ)|+ C.

While the integration steps are over, we are not yet done. The original
problem was stated in terms of x, whereas our answer is given in terms
of θ. We must convert back to x.
The reference triangle given in Figure 6.4.4 helps. With x =

√
5 tan(θ),

we have

tan(θ) =
x√
5
and sec(θ) =

√
x2 + 5√

5
.

This gives ∫
1√

5 + x2
dx = ln |sec(θ) + tan(θ)|+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic identity to
simplify it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5 + x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣∣√x2 + 5 + x

∣∣∣+ C

= ln
∣∣∣√x2 + 5 + x

∣∣∣+ C,

where the ln
(
1/
√
5
)
term is absorbed into the constant C. (In Sec-

tion 6.6 we will learn another way of approaching this problem.)

Example 6.4.7 Using Trigonometric Substitution.

Evaluate
∫ √

4x2 − 1 dx.

Solution. We start by rewriting the integrand so that it looks like√
x2 − a2 for some value of a:√

4x2 − 1 =

√
4

(
x2 − 1

4

)

= 2

√
x2 −

(
1

2

)2

.

So we have a = 1/2, and following Part 3 of Key Idea 6.4.2, we set
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x = 1
2 sec(θ), and hence dx = 1

2 sec(θ) tan(θ) dθ. We now rewrite the
integral with these substitutions:

∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1

2

)2

dx

=

∫
2

√
1

4
sec2(θ)− 1

4

(
1

2
sec(θ) tan(θ)

)
dθ

=

∫ √
1

4
(sec2(θ)− 1)

(
sec(θ) tan(θ)

)
dθ

=

∫ √
1

4
tan2(θ)

(
sec(θ) tan(θ)

)
dθ

=

∫
1

2
tan2(θ) sec(θ) dθ

=
1

2

∫ (
sec2(θ)− 1

)
sec(θ) dθ

=
1

2

∫ (
sec3(θ)− sec(θ)

)
dθ.

We integrated sec3(θ) in Example 6.3.10, finding its antiderivatives to be∫
sec3(θ) dθ =

1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
+ C.

Thus∫ √
4x2 − 1 dx =

1

2

∫ (
sec3(θ)− sec(θ)

)
dθ

=
1

2

(
1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
− ln |sec(θ) + tan(θ)|

)
+ C

=
1

4
(sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|) + C.

We are not yet done. Our original integral is given in terms of x, whereas
our final answer, as given, is in terms of θ. Weneed to rewrite our answer
in terms of x. With a = 1/2, and x = 1

2 sec(θ), the reference triangle in
Figure 6.4.5 shows that

tan(θ) =
√
x2 − 1/4

/
(1/2) = 2

√
x2 − 1/4 and sec(θ) = 2x.

Thus

1

4

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)
+ C

=
1

4

(
2x · 2

√
x2 − 1/4− ln

∣∣∣2x+ 2
√

x2 − 1/4
∣∣∣ )+ C

=
1

4

(
4x
√
x2 − 1/4− ln

∣∣∣2x+ 2
√
x2 − 1/4

∣∣∣ )+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1

4

(
4x
√
x2 − 1/4− ln

∣∣∣2x+ 2
√
x2 − 1/4

∣∣∣ )+ C.
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Example 6.4.8 Using Trigonometric Substitution.

Evaluate
∫ √

4− x2

x2
dx.

Solution. We use Part 1 of Key Idea 6.4.2 with a = 2, x = 2 sin(θ),
dx = 2 cos(θ) and hence

√
4− x2 = 2 cos(θ). This gives∫ √

4− x2

x2
dx =

∫
2 cos(θ)
4 sin2(θ)

(2 cos(θ)) dθ

=

∫
cot2(θ) dθ

=

∫
(csc2(θ)− 1) dθ

= − cot(θ)− θ + C.

We need to rewrite our answer in terms of x. Using the reference tri-
angle found in Figure 6.4.3, we have cot(θ) =

√
4− x2/x and θ =

sin−1(x/2). Thus∫ √
4− x2

x2
dx = −

√
4− x2

x
− sin−1

(x
2

)
+ C.

Trigonometric Substitution can be applied in many situations, even those
not of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example,

we apply it to an integral we already know how to handle.

Example 6.4.9 Using Trigonometric Substitution.

Evaluate
∫

1

x2 + 1
dx.

Solution. We know the answer already as tan−1(x) + C. We apply
Trigonometric Substitution here to show that we get the same answer
without inherently relying on knowledge of the derivative of the arctan-
gent function.
Using Part 2 of Key Idea 6.4.2, let x = tan(θ), dx = sec2(θ) dθ and note
that x2 + 1 = tan2(θ) + 1 = sec2(θ). Thus∫

1

x2 + 1
dx =

∫
1

sec2(θ)
sec2(θ) dθ

=

∫
1 dθ

= θ + C.

Since x = tan(θ), θ = tan−1(x), and we conclude that
∫

1

x2 + 1
dx =

tan−1(x) + C.

The next example is similar to the previous one in that it does not involve a
square-root. It shows how several techniques and identities can be combined
to obtain a solution.
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Example 6.4.10 Using Trigonometric Substitution.

Evaluate
∫

1

(x2 + 6x+ 10)2
dx.

Solution. We start by completing the square, then make the substitu-
tionu = x+3, followed by the trigonometric substitution of u = tan(θ):∫

1

(x2 + 6x+ 10)2
dx =

∫
1(

(x+ 3)2 + 1
)2 dx =

∫
1

(u2 + 1)2
du.

Now make the substitution u = tan(θ), du = sec2(θ) dθ:

=

∫
1

(tan2(θ) + 1)2
sec2(θ) dθ

=

∫
1

(sec2(θ))2
sec2(θ) dθ

=

∫
cos2(θ) dθ.

Applying a power reducing formula, we have

=

∫ (
1

2
+

1

2
cos(2θ)

)
dθ

=
1

2
θ +

1

4
sin(2θ) + C.

(6.4.2)

Weneed to return to the variablex. Asu = tan(θ), θ = tan−1(u). Using
the identity sin(2θ) = 2 sin(θ) cos(θ) and using the reference triangle
found in Figure 6.4.4, we have

1

4
sin(2θ) =

1

2

u√
u2 + 1

· 1√
u2 + 1

=
1

2

u

u2 + 1
.

Finally, we return to x with the substitution u = x + 3. We start with
the expression in Equation (6.4.2):

1

2
θ +

1

4
sin(2θ) + C =

1

2
tan−1(u) +

1

2

u

u2 + 1
+ C

=
1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Stating our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1

2
tan−1(x+ 3) +

x+ 3

2(x2 + 6x+ 10)
+ C.

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converting back tox) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.



CHAPTER 6. TECHNIQUES OF ANTIDIFFERENTIATION 310

Example 6.4.11 Definite integration and Trigonometric Substitution.

Evaluate
∫ 5

0

x2

√
x2 + 25

dx.

Solution. Using Part 2 of Key Idea 6.4.2, we set x = 5 tan(θ), dx =
5 sec2(θ) dθ, and note that

√
x2 + 25 = 5 sec(θ). As we substitute, we

can also change the bounds of integration.
The lower bound of the original integral is x = 0. As x = 5 tan(θ),
we solve for θ and find θ = tan−1(x/5). Thus the new lower bound is
θ = tan−1(0) = 0. The original upper bound is x = 5, thus the new
upper bound is θ = tan−1(5/5) = π/4.
Thus we have∫ 5

0

x2

√
x2 + 25

dx =

∫ π/4

0

25 tan2(θ)
5 sec(θ)

5 sec2(θ) dθ

= 25

∫ π/4

0

tan2(θ) sec(θ) dθ.

We encountered this indefinite integral in Example 6.4.7wherewe found∫
tan2(θ) sec(θ) dθ =

1

2

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)
.

So

25

∫ π/4

0

tan2(θ) sec(θ) dθ =
25

2

(
sec(θ) tan(θ)− ln |sec(θ) + tan(θ)|

)∣∣∣∣π/4
0

=
25

2

(√
2− ln(

√
2 + 1)

)
≈ 6.661.

The following equalities are very usefulwhenevaluating integrals using Trigono-
metric Substitution.

Key Idea 6.4.12 Useful Equalities with Trigonometric Substitution.

1. sin(2θ) = 2 sin(θ) cos(θ)

2. cos(2θ) = cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ)

3.
∫
sec3(θ) dθ =

1

2

(
sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|

)
+ C

4.
∫
cos2(θ) dθ =

∫
1

2

(
1 + cos(2θ)

)
dθ =

1

2

(
θ + sin(θ) cos(θ)

)
+

C.

The next section introduces Partial Fraction Decomposition, which is an alge-
braic technique that turns “complicated” fractions into sums of “simpler” frac-
tions, making integration easier.
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6.4.1 Exercises

Terms and Concepts

1. Trigonometric Substitution works on the same principles as Integration by Substitution, though it can feel “
”.

2. If one uses Trigonometric Substitution on an integrand containing
√
16− x2, then one should set x =

.

3. Consider the Pythagorean Identity sin2(θ) + cos2(θ) = 1.

a. What identity is obtained when both sides are divided by cos2(θ)?

b. Use the new identity to simplify 9 tan2(θ) + 9.

4. Why does Part 1 of Key Idea 6.4.3 state that
√
a2 − x2 = a cos(θ), and not |a cos(θ)| ?

Problems

Exercise Group. Apply Trigonometric Substitution to evaluate the indefinite integral.

5.
∫ √

x2 + 1 dx 6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx 8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx 10.
∫ √

x2 − 16 dx

11.
∫ √

16x2 + 1 dx 12.
∫ √

1− 25x2 dx

13.
∫ √

36x2 − 1 dx 14.
∫

6√
x2 + 2

dx

15.
∫

7√
13− x2

dx 16.
∫

8√
x2 − 6

dx

Exercise Group. Evaluate the indefinite integral. Trigonometric Substitution may not be required.

17.
∫ √

x2 − 15

x
dx 18.

∫
1

(x2 + 1)2
dx

19.
∫

x√
x2 − 3

dx 20.
∫

x2
√

1− x2 dx

21.
∫

x

(x2 + 25)(
3
2 )

dx 22.
∫

6x2

√
x2 − 5

dx

23.
∫

1

(x2 − 4x+ 85)
2 dx 24.

∫
x2(1− x2)−3/2 dx

25.
∫ √

5− x2

8x2
dx 26.

∫
x2

√
x2 + 15

dx

Exercise Group. Evaluate the definite integral by making the proper trigonometric substitution and changing the
bounds of integration. (Note: the corresponding indefinite integrals appeared previously in the Section 6.4 exercises.)

27.
∫ 1

−1

√
1− x2 dx 28.

∫ 6

4

√
x2 − 16 dx
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29.
∫ 3

0

√
x2 + 4 dx 30.

∫ 4

−4

1

(x2 + 1)2
dx

31.
∫ 2

−2

√
9− x2 dx 32.

∫ 1

−1

x2
√

1− x2 dx
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6.5 Partial Fraction Decomposition

In this sectionwe investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = p(x)

q(x) , where p(x) and q(x)
are polynomials and q(x) ̸= 0. Such functions arise in many contexts, one of
which is the solving of certain fundamental differential equations.

We beginwith an example that demonstrates themotivation behind this sec-

tion. Consider the integral
∫

1

x2 − 1
dx. We do not have a simple formula for

this (if the denominator were x2 + 1, we would recognize the antiderivative as
being the arctangent function). It can be solved using Trigonometric Substitu-
tion, but note how the integral is easy to evaluate once we realize:

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

Thus ∫
1

x2 − 1
dx =

∫
1/2

x− 1
dx−

∫
1/2

x+ 1
dx

=
1

2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This section teaches how to decompose

1

x2 − 1
into

1/2

x− 1
− 1/2

x+ 1
.

We start with a rational function f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadratic terms. The following Key Idea states how to decompose a
rational function into a sum of rational functions whose denominators are all of
lower degree than q.

Key Idea 6.5.1 Partial Fraction Decomposition.

Let
p(x)

q(x)
be a rational function, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decompositionof p(x)q(x)

will contain the sum
A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. Quadratic Terms: Let x2 + bx+ c be an irreducible quadratic that
divides q(x), where (x2+bx+c)n is the highest power ofx2+bx+

c that divides q(x). Then the decomposition of p(x)
q(x) will contain

the sum
B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai,Bi and Ci:

1. Multiply all fractions by q(x), clearing the denominators. Collect
like terms.
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2. Equate the resulting coefficients of the powers of x and solve the
resulting system of linear equations.

An irreducible quadratic is a qua-
dratic that has no real solutions.
Solving ax2 + bx + c = 0 us-
ing the quadratic equation will
determine if a quadratic is irre-
ducible. Completing the square
(which is a common integration
technique) will also tell you if a
quadratic is irreducible.

The following examples will demonstrate how to put this Key Idea into prac-
tice. Example 6.5.2 stresses the decomposition aspect of the Key Idea.

Example 6.5.2 Decomposing into partial fractions.

Decompose f(x) =
1

(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2
with-

out solving for the resulting coefficients.
Solution. The denominator is already factored, as both x2 + x+ 2 and
x2 + x + 7 cannot be factored further. We need to decompose f(x)
properly. Since (x + 5) is a linear term that divides the denominator,
there will be a

A

x+ 5

term in the decomposition.
As (x − 2)3 divides the denominator, we will have the following terms
in the decomposition:

B

x− 2
,

C

(x− 2)2
and

D

(x− 2)3
.

The x2 + x+ 2 term in the denominator results in a
Ex+ F

x2 + x+ 2
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+H

x2 + x+ 7
and

Ix+ J

(x2 + x+ 7)2
.

All together, we have

1

(x+ 5)(x− 2)3(x2 + x+ 2)(x2 + x+ 7)2

=
A

x+ 5
+

B

x− 2
+

C

(x− 2)2
+

D

(x− 2)3

+
Ex+ F

x2 + x+ 2
+

Gx+H

x2 + x+ 7
+

Ix+ J

(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not
“hard.”

Example 6.5.3 Decomposing into partial fractions.

Perform the partial fraction decomposition of
1

x2 − 1
.

Solution. The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1

x2 − 1
=

A

x− 1
+

B

x+ 1
.
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To solve forA andB, first multiply through by x2 − 1 = (x− 1)(x+1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+ 1)

x+ 1

= A(x+ 1) +B(x− 1)

= Ax+A+Bx−B

= (A+B)x+ (A−B),

by collecting like terms.
The next step is key. Note the equality we have:

1 = (A+B)x+ (A−B).

For clarity’s sake, rewrite the left hand side as

0x+ 1 = (A+B)x+ (A−B).

On the left, the coefficient of the x term is 0; on the right, it is (A+B).
Since both sides are equal, we must have that 0 = A+B.
Likewise, on the left, we have a constant term of 1; on the right, the
constant term is (A−B). Therefore we have 1 = A−B.
We have two linear equations with two unknowns. This one is easy to
solve by hand, leading to

A+B = 0

A−B = 1

If we add these two equations, we get 2A = 1 ⇒ A = 1/2. Substitution
into the first equation gives B = −1/2.
Thus

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

There is anothermethod for finding the partial fraction decomposition called
the “Heaviside” method, named after Oliver Heaviside. We show a variation of
this process using the same example as in Example 6.5.2.

Example 6.5.4 Decomposing into partial fractions using the Heaviside
method.

Perform the partial fraction decomposition of
1

x2 − 1
.

Solution. As we saw in Example 6.5.3,

1

x2 − 1
=

A

x− 1
+

B

x+ 1
.

To solve forA andB using the Heaviside method, we will build to a com-
mon denominator:

1

x2 − 1
=

A(x+ 1)

(x− 1)(x+ 1)
+

B(x− 1)

(x+ 1)(x− 1)

=
A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)
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Now since the denomiators match, we will only consider the numerator
equation (essentially if we multiply both sides of the equation by (x −
1)(x+ 1), we will clear the denomiators):

1 = A(x+ 1) +B(x− 1)

Now we substitute in “convenient” values of x. When x = 1, we get
1 = 2A ⇒ A = 1/2. When x = −1, we get 1 = −2B ⇒ B = −1/2.
You may note that x = 1 and x = −1 were not in the domain of the
original fraction. However,

1

x2 − 1
=

A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

is an identity, meaning it is true for all values of x, even those for which
the equation is undefined. We could have chosen any values of x to
substitute. Whenever possible, we choose values of x that will make
one of the factors zero. In this way, we can avoid solving a system of
equations.
Thus as in Example 6.5.2, we get

1

x2 − 1
=

1/2

x− 1
− 1/2

x+ 1
.

For the remaining examples, we will use a combination of systems of equa-
tions and the Heaviside method to get partial fraction decompositions.

Example 6.5.5 Integrating using partial fractions.

Use partial fraction decomposition to integrate
∫

1

(x− 1)(x+ 2)2
dx.

Solution. We decompose the integrand as follows, as described by Key
Idea 6.5.1:

1

(x− 1)(x+ 2)2
=

A

x− 1
+

B

x+ 2
+

C

(x+ 2)2
.

To solve for A,B and C, we multiply both sides by (x− 1)(x+ 2)2:

1 = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1) (6.5.1)

Now we collect like terms:

1 = A(x+ 2)2 +B(x− 1)(x+ 2) + C(x− 1)

= Ax2 + 4Ax+ 4A+Bx2 +Bx− 2B + Cx− C

= (A+B)x2 + (4A+B + C)x+ (4A− 2B − C)

Equation (6.5.1) offers a direct
route to finding the values of A,
B and C. Since the equation
holds for all values of x, it holds
in particular when x = 1. How-
ever, when x = 1, the right
hand side simplifies to A(1 +
2)2 = 9A. Since the left hand
side is still 1, we have 1 = 9A.
Hence A = 1/9.
Likewise, the equality holds
when x = −2; this leads to
the equation 1 = −3C. Thus
C = −1/3.
Knowing A and C, we can find
the value of B by choosing yet
another value of x, such as x =
0, and solving forB.

We have

0x2 + 0x+ 1 = (A+B)x2 + (4A+B + C)x+ (4A− 2B − C)

leading to the equations

A+B = 0, 4A+B + C = 0 and 4A− 2B − C = 1.

These three equations of three unknowns lead to a unique solution:

A = 1/9, B = −1/9 and C = −1/3.
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Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9

x− 1
dx+

∫
−1/9

x+ 2
dx+

∫
−1/3

(x+ 2)2
dx.

Each can be integrated with a simple substitution with u = x − 1 or
u = x + 2 (or by directly applying Key Idea 6.1.4 as the denominators
are linear functions). The end result is∫

1

(x− 1)(x+ 2)2
dx =

1

9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

Example 6.5.6 Integrating using partial fractions.

Use partial fraction decomposition to integrate
∫

x3

(x− 5)(x+ 3)
dx.

Solution. Key Idea 6.5.1 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case
here, we begin by using polynomial division to reduce the degree of the
numerator. We omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2 +

19x+ 30

(x− 5)(x+ 3)
.

Using Key Idea 6.5.1, we can rewrite the new rational function as:

19x+ 30

(x− 5)(x+ 3)
=

A

x− 5
+

B

x+ 3

for appropriate values of A andB. Clearing denominators, we have
The values of A and B can
be quickly found using the
technique described in Exam-
ple 6.5.5, or they can be found
by equating coefficients, as we
do in Example 6.5.6.

19x+ 30 = A(x+ 3) +B(x− 5)

= (A+B)x+ (3A− 5B).

This implies that:

19 = A+B

30 = 3A− 5B.

Solving this system of linear equations gives

125/8 = A

27/8 = B.

We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2 +

125/8

x− 5
+

27/8

x+ 3

)
dx

=
x2

2
+ 2x+

125

8
ln |x− 5|+ 27

8
ln |x+ 3|+ C.
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Example 6.5.7 Integrating using partial fractions.

Use partial fraction decomposition to evaluate∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx.

Solution. The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.1. We have:

7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
=

A

x+ 1
+

Bx+ C

x2 + 6x+ 11
.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)

Now, letting x = −1 we have 30 = 6A ⇒ A = 5. When x = 0,
54 = 11A + C. But we know that A = 5, so 54 = 55 + C ⇒ C = −1
Finally, we choose x = 1 (with A = 5, C = −1) we have 92 = 90 +
(B − 1)(2) ⇒ B = 2.
Thus∫

7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1

x2 + 6x+ 11

)
dx.

The first term of this new integrand is easy to evaluate; it leads to a
5 ln |x+ 1| term. The second term is not hard, but takes several steps
and uses substitution techniques.
The integrand

2x− 1

x2 + 6x+ 11
has a quadratic in the denominator and a

linear term in the numerator. This leads us to try substitution. Let u =
x2+6x+11, so du = (2x+6) dx. The numerator is 2x−1, not 2x+6,
but we can get a 2x+ 6 term in the numerator by adding 0 in the form
of “7− 7.”

2x− 1

x2 + 6x+ 11
=

2x− 1 + 7− 7

x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

We can now integrate the first term with substitution, leading to a
ln
∣∣x2 + 6x+ 11

∣∣ term. The final term can be integrated using arctan-
gent. (We can tell there is no further factoring for this quadratic since
the denominator has no real solutions). First, complete the square in
the denominator:

7

x2 + 6x+ 11
=

7

(x+ 3)2 + 2
.

An antiderivative of the latter term can be found using Theorem 6.1.16
and substitution:∫

7

x2 + 6x+ 11
dx =

7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx
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=

∫ (
5

x+ 1
+

2x− 1

x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

(x+ 3)2 + 2
dx

= 5 ln |x+ 1|+ ln
∣∣x2 + 6x+ 11

∣∣− 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember
that one is not expected to “see” the final answer immediately after see-
ing the problem. Rather, given the initial problem, we break it down into
smaller problems that are easier to solve. The final answer is a combina-
tion of the answers of the smaller problems.

Partial Fraction Decomposition is an important tool when dealing with ratio-
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

Section 6.6 introduces new functions, called the Hyperbolic Functions. They
will allow us tomake substitutions similar to those foundwhen studying Trigono-
metric Substitution, allowing us to approach even more integration problems.
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6.5.1 Exercises

Terms and Concepts

1. Partial Fraction Decomposition is a method of rewriting functions.

2. (□ True □ False) It is sometimes necessary to use polynomial division before using Partial Fraction De-
composition.

Exercise Group. Decompose without solving for the coefficients, as done in Example 6.5.2.

3.
1

x2 + 8x
4.

8− 2x

x2 − 1

5.
x− 8

x2 − 3
6.

7x+ 6

x3 + 4x

Problems

Exercise Group. Evaluate the indefinite integral.

7.
∫

7x+ 19

x2 + 5x+ 6
dx 8.

∫
−5x+ 63

x2 + 9x
dx

9.
∫

−72

4x2 − 64
dx 10.

∫
17− 8x

17x− 4x2 − 4
dx

11.
∫

9x− 47

(x− 6)
2 dx 12.

∫
6x− 46

(x− 8)
2 dx

13.
∫

10x2 + 96x+ 192

x(x+ 8)
2 dx 14.

∫
28x2 + 74x+ 1780

(x+ 7) (x− 8) (2− 8x)
dx

15.
∫

31x2 + 427x

(5x− 60) (4x+ 3) (7x+ 10)
dx 16.

∫
x2 + 14x+ 42

x2 + 9x+ 18
dx

17.
∫

x3

x2 − 7x− 8
dx 18.

∫
4x2 − 8x+ 16

x2 − 2x+ 4
dx

19.
∫

1

x3 − 4x2 + 6x
dx 20.

∫
x2 − 4x+ 21

x2 − 6x+ 15
dx

21.
∫

27x2 − 20x+ 10

(x− 1) (9x2 − x+ 9)
dx 22.

∫
9x2 + 91x+ 226

(x+ 7) (x2 + 8x+ 17)
dx

23.
∫

(8)x2 + (9)x+ (1)

(x− 6) (x2 + 4)
dx 24.

∫
x2 + (3)x+ (40)

(x+ 5) (x2 + 4x+ 20)
dx

25.
∫

x2 − x− 25

(x− 3) (x2 + 2x+ 4)
dx 26.

∫
(290)−

(
(1)x2 + (49)x

)
(x+ 7) (x2 − 10x+ 27)

dx

Exercise Group. Evaluate the definite integral.

27.
∫ 2

1

14x+ 12

(x+ 3) (x− 3)
dx 28.

∫ 7

0

4x− 6

(5x+ 3) (x+ 9)
dx

29.
∫ 1

−1

x2 − 5x+ 5

(x− 5) (x2 − 6x+ 10)
dx 30.

∫ 1

0

x

(x+ 1)(x2 + 2x+ 1)
dx
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6.6 Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to
mathematics, physics, and engineering. Among many other applications, they
are used to describe the formation of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many, many connections between them and the stan-
dard trigonometric functions. Figure 6.6.1 demonstrates one such connection.
Just as cosine and sine are used to define points on the circle defined by x2 +
y2 = 1, the functions hyperbolic cosine and hyperbolic sine are used to define
points on the hyperbola x2 − y2 = 1.

(cos(θ),sin(θ))

θ

2

x2 + y2 = 1

−1 −0.5 0.5 1

−1

1

x

y

(a)

(cosh(θ),sinh(θ))

θ

2

x2 − y2 = 1

−2 2

−2

2

x

y

(b)

Figure 6.6.1Using trigonometric functions to define points on a circle and hyper-
bolic functions to define points on a hyperbola. The area of the shaded regions
are included in them.

6.6.1 The Hyperbolic Functions and their Properties
We begin with their definition.

Definition 6.6.2 Hyperbolic Functions.

1. cosh(x) =
ex + e−x

2

2. sinh(x) =
ex − e−x

2

3. tanh(x) =
sinh(x)
cosh(x)

4. sech(x) =
1

cosh(x)

5. csch(x) =
1

sinh(x)

6. coth(x) =
cosh(x)
sinh(x) Pronunciation Note:

“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,”

and
“tanh” rhymes with “ranch.”

These hyperbolic functions are graphed in Figure 6.6.3 and Figure 6.6.4.
In the graph of cosh(x) in Figure 6.6.3(a), the graphs of ex/2 and e−x/2 are

included with dashed lines. In the graph of sinh(x) in Figure 6.6.3(b), the graphs
of ex/2 and −e−x/2 are included with dashed lines. As x gets “large,” cosh(x)
and sinh(x) each act like ex/2; when x is a large negative number, cosh(x) acts
like e−x/2 whereas sinh(x) acts like−e−x/2.
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f(x) = cosh(x)

ex/2 e−x/2

−3 −2 −1 1 2 3

−10

−5

5

10

x

y

(a)

f(x) = sinh(x)

ex/2 −e−x/2

−3 −2 −1 1 2 3

−10

−5

5

10

x

y

(b)

Figure 6.6.3 Graphs of sinh(x) and cosh(x)

In Figure Figure 6.6.4, notice thedomains of tanh(x) and sech(x) are (−∞,∞),
whereas both coth(x) and csch(x) have vertical asymptotes at x = 0. Also note
the ranges of these functions, especially tanh(x): as x → ∞, both sinh(x) and
cosh(x) approach e−x/2, hence tanh(x) approaches 1.

tanh(x)

coth(x)

−3 −2 −1 1 2 3

−2

2

x

y

(a)

sech(x) csch(x)

−3 −2 −1 1 2 3

−2

2

x

y

(b)

Figure 6.6.4 Graphs of tanh(x), coth(x), csch(x) and cosh(x)

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun-
terparts.

Example 6.6.5 Exploring properties of hyperbolic functions.

Use Definition 6.6.2 to rewrite the following expressions.

1. cosh2(x)− sinh2(x)

2. tanh2(x) + sech2(x)

3. 2 cosh(x) sinh(x)

4.
d

dx

(
cosh(x)

)

5.
d

dx

(
sinh(x)

)
6.

d

dx

(
tanh(x)

)

Solution.

1. By Definition 6.6.2

cosh2(x)− sinh2(x) =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2
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=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4

4
= 1.

So cosh2(x)− sinh2(x) = 1.

2. Again, use Definition 6.6.2

tanh2(x) + sech2(x) =
sinh2(x)
cosh2(x)

+
1

cosh2(x)

=
sinh2(x) + 1

cosh2(x)
Now use identity from Part 1

=
cosh2(x)
cosh2(x)

= 1.

So tanh2(x) + sech2(x) = 1.

3. Again, use Definition 6.6.2

2 cosh(x) sinh(x) = 2

(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh(x) sinh(x) = sinh(2x).

4. Again, use Definition 6.6.2

d

dx

(
cosh(x)

)
=

d

dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh(x)

So d
dx

(
cosh(x)

)
= sinh(x).

5. Apply derivatives to Definition 6.6.2:

d

dx

(
sinh(x)

)
=

d

dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh(x).

So d
dx

(
sinh(x)

)
= cosh(x).

6. Apply derivatives to Definition 6.6.2:

d

dx

(
tanh(x)

)
=

d

dx

(
sinh(x)
cosh(x)

)
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=
cosh(x) cosh(x)− sinh(x) sinh(x)

cosh2(x)

=
1

cosh2(x)
= sech2(x).

So d
dx

(
tanh(x)

)
= sech2(x).

The following Key Idea summarizes many of the important identities relat-
ing to hyperbolic functions. Each can be verified by referring back to Defini-
tion 6.6.2.

Key Idea 6.6.6 Useful Hyperbolic Function Properties.

List 6.6.7 Basic Identities

1. cosh2(x)− sinh2(x) = 1

2. tanh2(x) + sech2(x) = 1

3. coth2(x)− csch2(x) = 1

4. cosh(2x) = cosh2(x) + sinh2(x)

5. sinh(2x) = 2 sinh(x) cosh(x)

6. cosh2(x) =
cosh(2x) + 1

2

7. sinh2(x) =
cosh(2x)− 1

2

List 6.6.8 Derivatives

1.
d

dx

(
cosh(x)

)
= sinh(x)

2.
d

dx

(
sinh(x)

)
= cosh(x)

3.
d

dx

(
tanh(x)

)
= sech2(x)

4.
d

dx

(
sech(x)

)
= − sech(x) tanh(x)

5.
d

dx

(
csch(x)

)
= − csch(x) coth(x)

6.
d

dx

(
coth(x)

)
= − csch2(x)
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List 6.6.9 Integrals

1.
∫
cosh(x) dx = sinh(x) + C

2.
∫
sinh(x) dx = cosh(x) + C

3.
∫
tanh(x) dx = ln(cosh(x)) + C

4.
∫
coth(x) dx = ln |sinh(x) |+ C

We practice using Key Idea 6.6.6.

Example 6.6.10 Derivatives and integrals of hyperbolic functions.

Evaluate the following derivatives and integrals.

1.
d

dx

(
cosh(2x)

)
2.
∫
sech2(7t− 3) dt

3.
∫ ln(2)

0

cosh(x) dx

Solution.

1. Using the Chain Rule directly, we have d
dx

(
cosh(2x)

)
=

2 sinh(2x). Just to demonstrate that it works, let’s also use the
Basic Identity found in Key Idea 6.6.6: cosh(2x) = cosh2(x) +
sinh2(x).

d

dx

(
cosh(2x)

)
=

d

dx

(
cosh2(x) + sinh2(x)

)
= 2 cosh(x) sinh(x) + 2 sinh(x) cosh(x)
= 4 cosh(x) sinh(x).

Using another Basic Identity, we can see that 4 cosh(x) sinh(x) =
2 sinh(2x). We get the same answer either way.

2. We employ substitution, with u = 7t− 3 and du = 7dt. Applying
Key Ideas 6.1.4 and 6.6.6 we have:∫

sech2(7t− 3) dt =
1

7
tanh(7t− 3) + C.

3. ∫ ln(2)

0

cosh(x) dx = sinh(x)
∣∣∣ln(2)
0

= sinh(ln(2))− sinh(0)
= sinh(ln(2)).
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We can simplify this last expression as sinh(x) is based on expo-
nentials:

sinh(ln(2)) =
eln(2) − e− ln(2)

2

=
2− 1/2

2

=
3

4
.

6.6.2 Inverse Hyperbolic Functions
Just as the inverse trigonometric functions are useful in certain applications, the
inverse hyperbolic functions are useful with others. Figure 6.6.12(a) shows re-
striction on the domain of cosh(x) to make the function one-to-one and the re-
sulting domain and range of its inverse function. Since sinh(x) is already one-to-
one, no domain restriction is needed as shown in Figure 6.6.12(b). Since sech(x)
is not one to one, it also needs a restricted domain in order to be invertible. Fig-
ure 6.6.12(d) shows the graph of sech−1(x). You should carefully compare the
graph of this function to the graph given in Figure 6.6.4(b) to see how this inverse
was constructed. The rest of the hyperbolic functions area already one-to-one
and need no domain restrictions. Their graphs are also shown in Figure 6.6.12.

Because the hyperbolic functions are defined in terms of exponential func-
tions, their inverses can be expressed in terms of logarithms as shown in Key
Idea 6.6.13. It is often more convenient to refer to sinh−1(x) than to ln

(
x +√

x2 + 1
)
, especially when one is working on theory and does not need to com-

pute actual values. On the other hand, when computations are needed, technol-
ogy is often helpful but many hand-held calculators lack a convenient sinh−1(x)
button. (Often it can be accessed under a menu system, but not conveniently.)
In such a situation, the logarithmic representation is useful. The reader is not
encouraged to memorize these, but rather know they exist and know how to
use them when needed.

Table 6.6.11 Domains and ranges of the hyperbolic and inverse hyperbolic func-
tions

Function Domain Range Function Domain Range
cosh(x) [0,∞) [1,∞) cosh−1(x) [1,∞) [0,∞)

sinh(x) (−∞,∞) (−∞,∞) sinh−1(x) (−∞,∞) (−∞,∞)

tanh(x) (−∞,∞) (−1, 1) tanh−1(x) (−1, 1) (−∞,∞)

sech(x) [0,∞) (0, 1] sech−1(x) (0, 1] [0,∞)

csch(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞) csch−1(x) (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)

coth(x) (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞) coth−1(x) (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)
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Figure 6.6.12 Graphs of the hyperbolic functions (with restricted domains) and
their inverses

Key Idea 6.6.13 Logarithmic definitions of Inverse Hyperbolic Func-
tions.

1. cosh−1(x) = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1(x) =
1

2
ln
(
1 + x

1− x

)
; |x| < 1

3. sech−1(x) = ln

(
1 +

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1(x) = ln
(
x+

√
x2 + 1

)
5. coth−1(x) =

1

2
ln
(
x+ 1

x− 1

)
; |x| > 1

6. csch−1(x) = ln

(
1

x
+

√
1 + x2

|x|

)
; x ̸= 0

The following Key Ideas give the derivatives and integrals relating to the in-
verse hyperbolic functions. In Key Idea 6.6.15, both the inverse hyperbolic and
logarithmic function representations of the antiderivative are given, based on
Key Idea 6.6.13. Again, these latter functions are often more useful than the
former. Note how inverse hyperbolic functions can be used to solve integrals
we used Trigonometric Substitution to solve in Section 6.4.
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Key Idea 6.6.14 Derivatives Involving Inverse Hyperbolic Functions.

1.
d

dx

(
cosh−1(x)

)
=

1√
x2 − 1

;

x > 1

2.
d

dx

(
sinh−1(x)

)
=

1√
x2 + 1

3.
d

dx

(
tanh−1(x)

)
=

1

1− x2
;

|x| < 1

4.
d

dx

(
sech−1(x)

)
=

−1

x
√
1− x2

;

0 < x < 1

5.
d

dx

(
csch−1(x)

)
=

−1

|x|
√
1 + x2

;

x ̸= 0

6.
d

dx

(
coth−1(x)

)
=

1

1− x2
;

|x| > 1

Key Idea 6.6.15 Integrals Involving Inverse Hyperbolic Functions.

Assume a > 0.

1. ∫
1√

x2 − a2
dx = ln

∣∣∣x+
√
x2 − a2

∣∣∣+ C

(for 0 < x < a) = cosh−1
(x
a

)
+ C

2. ∫
1√

x2 + a2
dx = ln

∣∣∣x+
√
x2 + a2

∣∣∣+ C

= sinh−1
(x
a

)
+ C

3. ∫
1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

=

{
1
a tanh

−1
(
x
a

)
+ C x2 < a2

1
a coth

−1
(
x
a

)
+ C a2 < x2

4. ∫
1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

(for 0 < x < a) = −1

a
sech−1

(x
a

)
+ C
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5. ∫
1

x
√
x2 + a2

dx =
1

a
ln
∣∣∣∣ x

a+
√
a2 + x2

∣∣∣∣+ C

= −1

a
csch−1

∣∣∣x
a

∣∣∣+ C

We practice using the derivative and integral formulas in the following exam-
ple.

Example 6.6.16 Derivatives and integrals involving inverse hyperbolic
functions.

Evaluate the following.

1.
d

dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1

x2 − 1
dx 3.

∫
1√

9x2 + 10
dx

Solution.

1. Applying Key Idea 6.6.14 with the Chain Rule gives:

d

dx

[
cosh−1

(
3x− 2

5

)]
=

1√(
3x−2

5

)2 − 1
· 3
5
.

2. Multiplying the numerator and denominator by (−1) gives:∫
1

x2 − 1
dx =

∫
−1

1− x2
dx. The second integral can be solved

with a direct application of item #3 from Key Idea 6.6.15, with
a = 1. Thus∫

1

x2 − 1
dx = −

∫
1

1− x2
dx

=


− tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1

2
ln
∣∣∣∣x+ 1

x− 1

∣∣∣∣+ C

=
1

2
ln
∣∣∣∣x− 1

x+ 1

∣∣∣∣+ C. (6.6.1)

We should note that this exact problem was solved at the begin-
ning of Section 6.5. In that example the answer was given as
1
2 ln |x− 1| − 1

2 ln |x+ 1|+C. Note that this is equivalent to the
answer given in Equation (6.6.1), as ln(a/b) = ln(a)− ln(b).

3. This requires a substitution, then item #2 of Key Idea 6.6.15 can
be applied. Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1

3

∫
1√

u2 + 10
du.
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Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1

3
sinh−1

(
3x√
10

)
+ C

=
1

3
ln
∣∣∣3x+

√
9x2 + 10

∣∣∣+ C.

This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be mem-
orized, but rather as a reference for future problem solving. Key Idea 6.6.15
contains perhaps the most useful information. Know the integration forms it
helps evaluate and understand how to use the inverse hyperbolic answer and
the logarithmic answer.

The next section takes a brief break from demonstrating new integration
techniques. It instead demonstrates a technique of evaluating limits that return
indeterminate forms. This technique will be useful in Section 6.8, where limits
will arise in the evaluation of certain definite integrals.
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6.6.3 Exercises

Terms and Concepts

1. In Key Idea 6.6.8, the equation
∫
tanh(x) dx = ln(cosh(x))+C is given. Why is “ln |cosh(x)|” not used— i.e.,

why are absolute values not necessary?

2. The hyperbolic functions are used to define points on the right hand portion of the hyperbola x2 − y2 = 1, as
shown in Figure 6.6.2. How can we use the hyperbolic functions to define points on the left hand portion of the
hyperbola?

Problems

Exercise Group. In the following exercises, verify the given identity using Definition 6.6.2, as done in Example 6.6.5.

3. Verify the identity coth2(x)− csch2(x) = 1 using the definitions of the hyperbolic functions.

4. Verify the identity cosh(2x) = cosh2(x) + sinh2(x) using the definitions of the hyperbolic functions.

5. Verify the identity cosh2(x) =
cosh(2x) + 1

2
using the definitions of the hyperbolic functions.

6. Verify the identity sinh2(x) =
cosh(2x)− 1

2
using the definitions of the hyperbolic functions.

7. Verify the identity
d

dx
[sech(x)] = − sech(x) tanh(x) using the definitions of the hyperbolic functions.

8. Verify the identity
d

dx
[coth(x)] = − csch2(x) using the definitions of the hyperbolic functions.

9. Verify the identity
∫
tanh(x) dx = ln(cosh(x)) + C using the definitions of the hyperbolic functions.

10. Verify the identity
∫
coth(x) dx = ln |sinh(x)|+ C using the definitions of the hyperbolic functions.

Exercise Group. In the following exercises, find the derivative of the given function.
11. Find the derivative of f(x) = sinh(2x). 12. Find the derivative of f(x) = cosh2 x.
13. Find the derivative of f(x) = tanh(x2). 14. Find the derivative of f(x) = ln(sinh(x)).
15. Find the derivative of f(x) = sinh(x) cosh(x). 16. Find the derivative of

f(x) = x sinh(x)− cosh(x).

17. Find the derivative of f(x) = sech−1(x2). 18. Find the derivative of f(x) = sinh−1(3x).

19. Find the derivative of f(x) = cosh−1(2x2). 20. Find the derivative of f(x) = tanh−1(x+ 5).

21. Find the derivative of f(x) = tanh−1(cos(x)). 22. Find the derivative of f(x) = cosh−1(sec(x)).

Exercise Group. In the following exercises, find the equation of the line tangent to the function at the given x-value.
23. Find the equation of the tangent line to

y = f(x) at x = 0, where f(x) = sinh(x).
y =

24. Find the equation of the tangent line to
y = f(x) at x = ln(2), where f(x) = cosh(x).

y =

25. Find the equation of the tangent line to
y = f(x) at x = − ln(3), where
f(x) = tanh(x).

y =

26. Find the equation of the tangent line to
y = f(x) at x = ln(3), where f(x) = sech2(x).

y =

27. Find the equation of the tangent line to
y = f(x) at x = 0, where f(x) = sinh−1(x).

y =

28. Find the equation of the tangent line to
y = f(x) at x =

√
2, where f(x) = cosh−1(x).

y =
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Exercise Group. In the following exercises, evaluate the given indefinite integral.

29. Evaluate the indefinite integral
∫
tanh(2x) dx.

30. Evaluate the indefinite integral∫
cosh(3x− 7) dx.

31. Evaluate the indefinite integral∫
sinh(x) cosh(x) dx.

32. Evaluate the indefinite integral
∫

x cosh(x) dx.

33. Evaluate the indefinite integral
∫

x sinh(x) dx. 34. Evaluate the indefinite integral
∫

1√
x2 + 1

dx.

35. Evaluate the indefinite integral
∫

1√
x2 − 9

dx. 36. Evaluate the indefinite integral
∫

1

9− x2
dx.

37. Evaluate the indefinite integral
∫

2x√
x4 − 4

dx. 38. Evaluate the indefinite integral
∫ √

x√
1 + x3

dx.

39. Evaluate the indefinite integral
∫

1

x4 − 16
dx. 40. Evaluate the indefinite integral

∫
1

x2 + x
dx.

41. Evaluate the indefinite integral
∫

ex

e2x + 1
dx. 42. Evaluate the indefinite integral

∫
sinh−1(x) dx.

43. Evaluate the indefinite integral∫
tanh−1(x) dx.

44. Evaluate the indefinite integral
∫
sech(x) dx.

(Hint: mutiply by cosh(x)
cosh(x) ; set u = sinh(x).)

Exercise Group. In the following exercises, evaluate the given definite integral.

45. Evaluate the definite integral
∫ 1

−1

sinh(x) dx.
46. Evaluate the definite integral∫ ln(2)

− ln(2)
cosh(x) dx.

47. Evaluate the definite integral
∫ 1

0

sech2(x) dx. 48. Evaluate the definite integral
∫ 2

0

1√
x2 + 1

dx.
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6.7 L’Hospital’s Rule

While this chapter is devoted to learning techniques of integration, this section
is not about integration. Rather, it is concerned with a technique of evaluating
certain limits that will be useful in the following section, where integration is
once more discussed.

Our treatment of limits exposed us to the notion of “0/0”, an indeterminate
form. If lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0, wedonot conclude that lim

x→c
f(x)/g(x)

is 0/0; rather, we use 0/0 as notation to describe the fact that both the numer-
ator and denominator approach 0. The expression 0/0 has no numeric value;
other work must be done to evaluate the limit.

Other indeterminate forms exist; they are:∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be.

This section introduces l’Hospital’s Rule, a method of resolving limits that
produce the indeterminate forms 0/0 and∞/∞. We’ll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

6.7.1 L’Hospital’s Rule with indeterminate forms 0/0 and∞/∞

Theorem 6.7.1 L’Hospital’s Rule, Part 1.

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differentiable
functions on an open interval I containing c, and g′(x) ̸= 0 on I except
possibly at c. If

lim
x→c

f ′(x)

g′(x)
= L,

then
lim
x→c

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. The result applies to one-sided
limits as well.

To use Theorem 6.7.1 in prac-
tice, notice that there are two con-
ditions we need to check. First,
the original limit needs to be of
the “0/0” form. Second, the new
limit (involving the derivatives of
f and g) must exist (or be infi-
nite).

In some cases, the new limit
will also be 0/0, in which case
we can apply l’Hospital’s rule again.
The rule can be applied repeat-
edly (taking additional derivatives),
as long aswe reach a stepwhere
the limit exists.We demonstrate the use of l’Hospital’s Rule in the following examples; we

will often use “LHR” as an abbreviation of “l’Hospital’s Rule.”

Example 6.7.2 Using l’Hospital’s Rule.

Evaluate the following limits, using l’Hospital’s Rule as needed.

1. lim
x→0

sin(x)
x

2. lim
x→1

√
x+ 3− 2

1− x

3. lim
x→0

x2

1− cos(x)

4. lim
x→2

x2 + x− 6

x2 − 3x+ 2

Solution.
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1. We proved this limit is 1 in Example 1.3.9 using the Squeeze The-
orem. Here we use l’Hospital’s Rule to show its power.

lim
x→0

sin(x)
x

by LHR
= lim

x→0

cos(x)
1

= 1.

2.

lim
x→1

√
x+ 3− 2

1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3.

lim
x→0

x2

1− cos(x)
by LHR
= lim

x→0

2x

sin(x)
.

This latter limit also evaluates to the 0/0 indeterminate form. To
evaluate it, we apply l’Hospital’s Rule again.

lim
x→0

2x

sin(x)
by LHR
=

2

cos(x)
= 2.

Thus lim
x→0

x2

1−cos(x) = 2.

4. We already know how to evaluate this limit; first factor the numer-
ator and denominator. We then have:

lim
x→2

x2 + x− 6

x2 − 3x+ 2
= lim

x→2

(x− 2)(x+ 3)

(x− 2)(x− 1)
= lim

x→2

x+ 3

x− 1
= 5.

We now show how to solve this using l’Hospital’s Rule.

lim
x→2

x2 + x− 6

x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1

2x− 3
= 5.

Note that at each step where l’Hospital’s Rule was applied, it was needed:
the initial limit returned the indeterminate form of “0/0.” If the initial limit re-
turns, for example, 1/2, then l’Hospital’s Rule does not apply.

The following theorem extends our initial version of l’Hospital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem 6.7.3 L’Hospital’s Rule, Part 2.

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are
differentiable on an open interval I containing a. If

lim
x→a

f ′(x)

g′(x)
= L,

then
lim
x→a

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. The result applies to one-
sided limits as well.

2. Let f and g be differentiable functions on the open interval (a,∞)
for some value a, where g′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)
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returns either 0/0 or∞/∞. If

lim
x→∞

f ′(x)

g′(x)
= L,

then
lim

x→∞

f(x)

g(x)
= L,

where L is a real number, or L = ±∞. A similar statement can
be made for limits where x approaches−∞.

Example 6.7.4 Using l’Hospital’s Rule with limits involving∞.

Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2

4x2 + 5x− 1000
2. lim

x→∞

ex

x3
.

Solution.

1. We can evaluate this limit already using Theorem 1.6.16; the an-
swer is 3/4. We apply l’Hospital’s Rule to demonstrate its applica-
bility.

lim
x→∞

3x2 − 100x+ 2

4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100

8x+ 5

by LHR
= lim

x→∞

6

8
=

3

4
.

2.

lim
x→∞

ex

x3

by LHR
= lim

x→∞

ex

3x2

by LHR
= lim

x→∞

ex

6x

by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x ap-
proaches∞, the expression ex/x3 grows without bound. We can
infer from this that ex grows “faster” than x3; as x gets large, ex is
far larger than x3. (This has important implications in computing
when considering efficiency of algorithms.)

6.7.2 Indeterminate Forms 0 · ∞ and∞−∞
L’Hospital’s Rule can only be applied to ratios of functions. When faced with an
indeterminate form such as 0 · ∞ or∞−∞, we can sometimes apply algebra
to rewrite the limit so that l’Hospital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.7.5 Applying l’Hospital’s Rule to other indeterminate forms.

Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln(x)

4. lim
x→∞

x2 − ex

Solution.
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1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeter-

minate form 0 · ∞. We rewrite the expression x · e1/x as e1/x

1/x
;

now, as x → 0+, we get the indeterminate form∞/∞ to which
l’Hospital’s Rule can be applied.

lim
x→0+

x·e1/x = lim
x→0+

e1/x

1/x

by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

Interpretation: e1/x grows “faster” than x shrinks to zero, mean-
ing their product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates
to 0 ·0which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit initially evaluates to the indeterminate form∞−∞. By
applying a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln(x) = lim
x→∞

ln
(
x+ 1

x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to
which we can apply l’Hospital’s Rule.

lim
x→∞

x+ 1

x

by LHR
=

1

1
= 1.

Since x → ∞ implies
x+ 1

x
→ 1, it follows that

x → ∞ implies ln
(
x+ 1

x

)
→ ln(1) = 0.

Thus

lim
x→∞

ln(x+ 1)− ln(x) = lim
x→∞

ln
(
x+ 1

x

)
= 0.

Interpretation: since this limit evaluates to 0, it means that for
large x, there is essentially no difference between ln(x + 1) and
ln(x); their difference is essentially 0.

4. The limit lim
x→∞

x2−ex initially returns the indeterminate form∞−
∞. We can rewrite the expression by factoring out x2; x2 − ex =

x2

(
1− ex

x2

)
. We need to evaluate how ex/x2 behaves as x →

∞:
lim

x→∞

ex

x2

by LHR
= lim

x→∞

ex

2x

by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞· (−∞), which is not
an indeterminate form; rather,∞ · (−∞) evaluates to −∞. We
conclude that lim

x→∞
x2−ex = −∞. Interpretation: asx gets large,

the difference between x2 and ex grows very large.
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6.7.3 Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it often helps to
employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.7.6 Evaluating Limits Involving Indeterminate Forms 00, 1∞
and∞0.

If lim
x→c

ln
(
f(x)

)
= L, then

lim
x→c

f(x) = lim
x→c

eln(f(x)) = eL.

Example 6.7.7 Using l’Hospital’s Rule with indeterminate forms involv-
ing exponents.

Evaluate the following limits.

1. lim
x→∞

(
1 +

1

x

)x
2. lim

x→0+
xx

Solution.

1. This is equivalent to a special limit given in Theorem 1.3.12;
these limits have important applications within mathematics and
finance. Note that the exponent approaches ∞ while the base
approaches 1, leading to the indeterminate form 1∞. Let f(x) =
(1 + 1/x)x; the problem asks to evaluate lim

x→∞
f(x). Let’s first

evaluate lim
x→∞

ln
(
f(x)

)
.

lim
x→∞

ln
(
f(x)

)
= lim

x→∞
ln
(
1 +

1

x

)x

= lim
x→∞

x ln
(
1 +

1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1/x

This produces the indeterminate form 0/0, sowe apply l’Hospital’s
Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1

1 + 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)

)
= 1. We return to the original limit and apply

Key Idea 6.7.6.

lim
x→∞

(
1 +

1

x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.
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2. This limit leads to the indeterminate form 00. Let f(x) = xx and
consider first lim

x→0+
ln
(
f(x)

)
.

lim
x→0+

ln
(
f(x)

)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln(x)

= lim
x→0+

ln(x)
1/x

.

This produces the indeterminate form −∞/∞ so we apply
l’Hospital’s Rule.

= lim
x→0+

1/x

−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)

)
= 0. We return to the original limit and apply

Key Idea 6.7.6.

lim
x→0+

xx = lim
x→0+

f(x) = lim
x→0+

eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Fig-
ure 6.7.8.

f(x) = xx

0.5 1 1.5 2

1

2

3

4

x

y

Figure 6.7.8 A graph of f(x) = xx

supporting the fact that as x → 0+,
f(x) → 1

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0

f(x) dx. Improper integra-

tion considers integrals where one, or both, of the bounds are “infinity.” Such
integrals have many uses and applications, in addition to generating ideas that
are enlightening.
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6.7.4 Exercises

Terms and Concepts

1. List the different indeterminate forms described in this section.
2. T/F: l’Hospital’s Rule provides a faster method of computing derivatives. (□ True □ False)

3. l’Hospital’s Rule states that
d

dx

[
f(x)

g(x)

]
=

f ′(x)

g′(x)
. (□ True □ False)

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: The Quotient Rule is applied to
f(x)

g(x)
when taking ; l’Hospital’s Rule is applied when taking

certain .
6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a function f(x) such that lim
x→1

f(x) returns “00”.

8. Create a function f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems

Exercise Group. Evaluate the given limit using l’Hospital’s rule.

9. lim
x→1

x2+x−2
x−1

10.
lim
x→2

x2 + x− 6

x2 − 7x+ 10
11.

lim
x→π

sin(x)
x− π

12.
lim

x→π/4

sin(x)− cos(x)
cos(2x)

13.
lim
x→0

sin(5x)
x

14.
lim
x→0

sin(2x)
x+ 2

15.
lim
x→0

sin(2x)
sin(3x)

16.
lim
x→0

sin(ax)
sin(bx)

17.
lim

x→0+

ex − 1

x2

18.
lim

x→0+

ex − x− 1

x2

19.
lim

x→0+

x− sin(x)
x3 − x2

20.
lim

x→∞

x4

ex

21.
lim

x→∞

√
x

ex

22.
lim

x→∞

ex

x2

23.
lim

x→∞

ex√
x

24.
lim

x→∞

ex

2x

25.
lim

x→∞

ex

3x

26.
lim
x→3

x3 − 5x2 + 3x+ 9

x3 − 7x2 + 15x− 9
27.

lim
x→−2

x3 + 4x2 + 4x

x3 + 7x2 + 16x+ 12

28.
lim

x→∞

ln(x)
x

29.

lim
x→∞

ln
(
x2
)

x

30.

lim
x→∞

ln2(x)
x
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31.
lim

x→0+
x · ln(x)

32.
lim

x→0+

√
x · ln(x)

33.
lim

x→0+
x · e 1

x

34.
lim

x→∞
x3 − x2

35.
lim

x→∞

√
x− ln(x)

36.
lim

x→−∞
x · ex

37.
lim

x→0+

1

x2
· e

−1
x

38.
lim

x→0+
(1 + x)

1
x

39.
lim

x→0+
(2x)x

40.
lim

x→0+
(
2

x
)x

41.
lim

x→0+
(sin(x))x

Hint: use the Squeeze Theorem.

42.
lim

x→1−
(1− x)1−x

43.
lim

x→∞
(x)

1
x

44.
lim

x→∞
(
1

x
)x

45.
lim

x→1+
(ln(x))1−x

46.
lim

x→∞
(1 + x)

1
x

47.
lim

x→∞
(1 + x2)

1
x

48.
lim

x→π/2
tan(x)cos(x)

49.
lim

x→π/2
tan(x)sin(2x)

50.
lim

x→1+

1

ln(x)
− 1

x− 1

51.
lim

x→3+

5

x2 − 9
− x

x− 3

52.
lim

x→∞
xtan

(
1

x

)
53.

lim
x→∞

ln3(x)
x

54.
lim
x→1

x2 + x− 2

ln(x)
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6.8 Improper Integration

We begin this section by considering the following definite integrals:

•
∫ 100

0

1

1 + x2
dx ≈ 1.5608

•
∫ 1000

0

1

1 + x2
dx ≈ 1.5698

•
∫ 10,000

0

1

1 + x2
dx ≈ 1.5707

Notice how the integrand is 1/(1+x2) in each integral (which is sketched in
Figure 6.8.1). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1

1 + x2
dx = tan−1(x)

∣∣∣b
0
= tan−1(b)− tan−1(0) = tan−1(b).

As b → ∞, tan−1(b) → π/2. Therefore it seems that as the upper bound

b grows, the value of the definite integral
∫ b

0

1

1 + x2
dx approaches π/2 ≈

1.5708. This should strike the reader as being a bit amazing: even though the
curve extends “to infinity,” it has a finite amount of area underneath it.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.1Graphing f(x) =
1

1 + x2

When we defined the definite integral
∫ b

a

f(x) dx, we made two stipula-

tions:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

In this section we consider integrals where one or both of the above condi-
tions do not hold. Such integrals are called improper integrals.

6.8.1 Improper Integrals with Infinite Bounds

Definition 6.8.2 Improper Integrals with Infinite Bounds; Converge, Di-
verge.

1. Let f be a continuous function on [a,∞). Define∫ ∞

a

f(x) dx to be lim
b→∞

∫ b

a

f(x) dx.

2. Let f be a continuous function on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a

f(x) dx.

3. Let f be a continuous function on (−∞,∞). Let c be any real
number; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a

f(x) dx + lim
b→∞

∫ b

c

f(x) dx.
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An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part 3 converges if and
only if both of its limits exist.

Example 6.8.3 Evaluating improper integrals.

Evaluate the following improper integrals.

1.
∫ ∞

1

1

x2
dx

2.
∫ ∞

1

1

x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1

1 + x2
dx

Solution.

1. ∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞

−1

x

∣∣∣b
1

= lim
b→∞

−1

b
+ 1

= 1.

A graph of the area defined by this integral is given in Figure 6.8.4.

f(x) =
1

x2

1 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.4 A graph of f(x) = 1
x2 in

Example 6.8.3

2. ∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1

x
dx

diverges. Compare the graphs in Figures 6.8.4 and 6.8.5; notice
how the graph of f(x) = 1/x is noticeably larger. This difference
is enough to cause the improper integral to diverge.

f(x) =
1

x

1 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 6.8.5 A graph of f(x) = 1
x in

Example 6.8.3

3. ∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a

ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.

A graph of the area defined by this integral is given in Figure 6.8.6.

f(x) = ex

−1−5−10

1

x

y

Figure 6.8.6 A graph of f(x) = ex in
Example 6.8.3
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4. Wewill need to break this into two improper integrals and choose
a value of c as in part 3 of Definition 6.8.2. Any value of c is fine;
we choose c = 0.∫ ∞

−∞

1

1 + x2
dx = lim

a→−∞

∫ 0

a

1

1 + x2
dx+ lim

b→∞

∫ b

0

1

1 + x2
dx

= lim
a→−∞

tan−1(x)
∣∣∣0
a
+ lim

b→∞
tan−1(x)

∣∣∣b
0

= lim
a→−∞

(
tan−1(0)− tan−1(a)

)
+ lim

b→∞

(
tan−1(b)− tan−1(0)

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has
value:

= π.

A graph of the area defined by this integral is given in Figure 6.8.7.

f(x) =
1

1 + x2

−10 −5 5 10

1

x

y

Figure 6.8.7 A graph of f(x) = 1
1+x2

in Example 6.8.3

The previous section introduced L’Hospital’s Rule, a method of evaluating
limits that return indeterminate forms. It is not uncommon for the limits result-
ing from improper integrals to need this rule as demonstrated next.

Example 6.8.8 Improper integration and L’Hospital’s Rule.

Evaluate the improper integral
∫ ∞

1

ln(x)
x2

dx.

Solution. This integral will require the use of Integration by Parts. Let
u = ln(x) and dv = 1/x2 dx. Then

f(x) =
ln(x)
x2

1 5 10

0.2

0.4

x

y

Figure 6.8.9 A graph of f(x) = ln(x)
x2

in Example 6.8.8

∫ ∞

1

ln(x)
x2

dx = lim
b→∞

∫ b

1

ln(x)
x2

dx

= lim
b→∞

(
− ln(x)

x

∣∣∣b
1
+

∫ b

1

1

x2
dx

)

= lim
b→∞

(
− ln(x)

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln(b)

b
− 1

b
− (− ln(1)− 1)

)
.

The 1/b and ln(1) terms go to 0, leaving lim
b→∞

− ln(b)
b + 1. We need to

evaluate lim
b→∞

ln(b)
b with l’Hospital’s Rule. We have:

lim
b→∞

ln(b)
b

by LHR
= lim

b→∞

1/b

1

= 0.
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Thus the improper integral evaluates as:∫ ∞

1

ln(x)
x2

dx = 1.

6.8.2 Improper Integrals with Infinite Range
We have just considered definite integrals where the interval of integration was
infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.

Definition 6.8.10 Improper Integration with Infinite Range.

Let f(x) be a continuous function on [a, b] except at c, a ≤ c ≤ b, where
x = c is a vertical asymptote of f . Define∫ b

a

f(x) dx = lim
t→c−

∫ t

a

f(x) dx+ lim
t→c+

∫ b

t

f(x) dx.

Example 6.8.11 Improper integration of functions with infinite range.

Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1

x2
dx

Solution.

1. A graph of f(x) = 1/
√
x is given in Figure 6.8.12. Notice that f

has a vertical asymptote at x = 0; in some sense, we are trying to
compute the area of a region that has no “top.” Could this have a
finite value? ∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though
it has no upper bound (strange things can occur in mathematics
when considering the infinite).

In Definition 6.8.10, c can be
one of the endpoints (a or b). In
that case, there is only one limit
to consider as part of the defini-
tion.

f(x) =
1√
x

0.5 1 1.5 2
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y

Figure 6.8.12 A graph of f(x) = 1√
x

in Example 6.8.11

2. The function f(x) = 1/x2 has a vertical asymptote at x = 0,
as shown in Figure 6.8.13, so this integral is an improper integral.
Let’s eschew using limits for a moment and proceed without rec-
ognizing the improper nature of the integral. This leads to:∫ 1

−1

1

x2
dx = − 1

x

∣∣∣1
−1
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= −1− (1)

= −2. (!)

f(x) =
1

x2

−1 −0.5 0.5 1
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20
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y

Figure 6.8.13 A graph of f(x) = 1
x2 in

Example 6.8.11

Clearly the area in question is above the x-axis, yet the area is sup-
posedly negative! Why does our answer not match our intuition?
To answer this, evaluate the integral using Definition 6.8.10.∫ 1

−1

1

x2
dx = lim

t→0−

∫ t

−1

1

x2
dx+ lim

t→0+

∫ 1

t

1

x2
dx

= lim
t→0−

− 1

x

∣∣∣t
−1

+ lim
t→0+

− 1

x

∣∣∣1
t

= lim
t→0−

−1

t
− 1 + lim

t→0+
−1 +

1

t

⇒
(
∞− 1

)
+
(
− 1 +∞

)
.

Neither limit converges hence the original improper integral di-
verges. The nonsensical answer we obtained by ignoring the im-
proper nature of the integral is just that: nonsensical.

6.8.3 Understanding Convergence and Divergence
Oftentimes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integrating.

Our first tool is to understand the behavior of functions of the form
1

xp
.

Example 6.8.14 Improper integration of 1/xp.

Determine the values of p for which
∫ ∞

1

1

xp
dx converges.

Solution. We begin by integrating and then evaluating the limit.∫ ∞

1

1

xp
dx = lim

b→∞

∫ b

1

1

xp
dx

= lim
b→∞

∫ b

1

x−p dx (assume p ̸= 1)

= lim
b→∞

1

−p+ 1
x−p+1

∣∣∣b
1

= lim
b→∞

1

1− p

(
b1−p − 11−p

)
.

When does this limit converge— i.e., when is this limit not∞? This limit
converges precisely when the power of b is less than 0: when 1 − p <
0 ⇒ 1 < p.

f(x) =
1

xq

f(x) =
1

xp

p < 1 < q

1

x

y

Figure 6.8.15 Plotting functions of the
form 1/xp in Example 6.8.14

Our analysis shows that if p > 1, then
∫ ∞

1

1

xp
dx converges. When

p < 1 the improper integral diverges; we showed in Example 6.8.3 that
when p = 1 the integral also diverges.
Figure 6.8.15 graphs y = 1/x with a dashed line, along with graphs of
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y = 1/xp, p < 1, and y = 1/xq , q > 1. Somehow the dashed line forms
a dividing line between convergence and divergence.

The result of Example 6.8.14 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1

xp
dx. These results are summarized in the

following Key Idea.

Key Idea 6.8.16 Convergence of Improper Integrals involving 1/xp.

1. The improper integral
∫ ∞

1

1

xp
dx converges when p > 1 and di-

verges when p ≤ 1.

2. The improper integral
∫ 1

0

1

xp
dx converges when p < 1 and di-

verges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We often use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

We used the upper and lower
bound of “1” in Key Idea 6.8.16
for convenience. It canbe replaced
by any a where a > 0.

Theorem 6.8.17 Direct Comparison Test for Improper Integrals.

Let f and g be continuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a

g(x) dx converges, then
∫ ∞

a

f(x) dx converges.

2. If
∫ ∞

a

f(x) dx diverges, then
∫ ∞

a

g(x) dx diverges.

Example 6.8.18 Determining convergence of improper integrals.

Determine the convergence of the following improper integrals.

1.
∫ ∞

1

e−x2

dx 2.
∫ ∞

3

1√
x2 − x

dx

Solution.

1. The function f(x) = e−x2

does not have an antiderivative ex-
pressible in terms of elementary functions, sowe cannot integrate
directly. It is comparable to g(x) = 1/x2, and as demonstrated
in Figure 6.8.19, e−x2

< 1/x2 on [1,∞). We know from Key

Idea 6.8.16 that
∫ ∞

1

1

x2
dx converges, hence

∫ ∞

1

e−x2

dx also
converges.

f(x) = e−x2

f(x) =
1

x2
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Figure 6.8.19 Graphs of f(x) = e−x2

and f(x) = 1/x2 in Example 6.8.182. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1

x
. We know
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from Key Idea 6.8.16 and the subsequent note that
∫ ∞

3

1

x
dx di-

verges, so we seek to compare the original integrand to 1/x. It
is easy to see that when x > 0, we have x =

√
x2 >

√
x2 − x.

Taking reciprocals reverses the inequality, giving

1

x
<

1√
x2 − x

.

Using Theorem 6.8.17, we conclude that since
∫ ∞

3

1

x
dx diverges,∫ ∞

3

1√
x2 − x

dx diverges as well. Figure 6.8.20 illustrates this.
f(x) =

1√
x2 − x

f(x) =
1

x

1 2 3 4 5 6

0.2

0.4
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y

Figure 6.8.20 Graphs of f(x) =
1/

√
x2 − x and f(x) = 1/x in Exam-

ple 6.8.18

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a little

“too nice.” For instance, it was convenient that
1

x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x + 5”? That is, what can we say about the

convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1

x
>

1√
x2 + 2x+ 5

, so we

cannot use Theorem 6.8.17.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Theorem 6.8.21 Limit Comparison Test for Improper Integrals.

Let f and g be continuous functions on [a,∞) where f(x) > 0 and
g(x) > 0 for all x. If

lim
x→∞

f(x)

g(x)
= L, 0 < L < ∞,

then ∫ ∞

a

f(x) dx and
∫ ∞

a

g(x) dx

either both converge or both diverge.

Example 6.8.22 Determining convergence of improper integrals.

Determine the convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx.

Solution. As x gets large, the denominator of the integrand will begin

to behave much like y = x. So we compare
1√

x2 + 2x+ 5
to

1

x
with

the Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5

1/x
= lim

x→∞

x√
x2 + 2x+ 5

.

The immediate evaluation of this limit returns∞/∞, an indeterminate
form. Using L’Hospital’s Rule seems appropriate, but in this situation, it
does not lead to useful results. (We encourage the reader to employ
L’Hospital’s Rule at least once to verify this.)
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The trouble is the square root function. To get rid of it, we employ the
following fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true

when either c or L is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As

x gets very large, the function
1√

x2 + 2x+ 5
looks very much like

1

x
.

Since we know that
∫ ∞

3

1

x
dx diverges, by the Limit Comparison Test

we know that
∫ ∞

3

1√
x2 + 2x+ 5

dx also diverges. Figure 6.8.23 graphs

f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, illustrating that as x gets

large, the functions become indistinguishable.

f(x) =
1√

x2 + 2x+ 5

f(x) =
1

x

5 10 15 20

−0.1

0.1

0.2

0.3

x

y

Figure 6.8.23 Graphing f(x) =
1√

x2+2x+5
and f(x) = 1

x in Exam-
ple 6.8.22

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

If you do need to use compari-
son for an improper integralwith
infinite range, it is generallywise
to stick with direct comparison.
Direct comparison will continue
to work in more or less the way
you expect; however, limit com-
parison ismuchmore subtle, and
prone to incorrect conclusions.

This chapter has explored many integration techniques. We learned Substi-
tution, which “undoes” the Chain Rule of differentiation, as well as Integration
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric functions and introduced the hyperbolic functions,
which are closely related to the trigonometric functions. All techniques effec-
tively have this goal in common: rewrite the integrand in a new way so that the
integration step is easier to see and implement.

As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible to write in terms of elementary functions,
and evenwhen a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer al-
gebra systemMathematica™ has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in-
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximating
the value of integration.

The next chapter stresses the uses of integration. We generally do not find
antiderivatives for antiderivative’s sake, but rather because they provide the so-
lution to some typeof problem. The following chapter introduces us to a number
of different problems whose solution is provided by integration.
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6.8.4 Exercises

Terms and Concepts

1. The definite integral was defined with what two stipulations?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0

f(x) dx is said to .

3. If
∫ ∞

1

f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we know that
∫ ∞

1

g(x) dx .

4. For what values of p will
∫ ∞

1

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

5. For what values of p will
∫ ∞

10

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

6. For what values of p will
∫ 1

0

1

xp
dx converge?

(a) p < 1

(b) p ≤ 1

(c) p > 1

(d) p ≥ 1

Problems

Exercise Group. In the following exercises, evaluate the given improper integral.

7.
∫ ∞

0

e5−2x dx 8.
∫ ∞

1

1

x3
dx

9.
∫ ∞

1

x−4 dx 10.
∫ ∞

−∞

1

x2 + 9
dx

11.
∫ 0

−∞
2x dx 12.

∫ 0

−∞
0.5x dx

13.
∫ ∞

−∞

x

x2 + 1
dx 14.

∫ ∞

3

x

x2 − 4
dx

15.
∫ ∞

2

1

(x− 1)
2 dx 16.

∫ 2

1

1

(x− 1)
2 dx
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17.
∫ ∞

2

1

x− 1
dx 18.

∫ 2

1

1

x− 1
dx

19.
∫ 1

−1

1

x
dx 20.

∫ 3

1

1

x− 2
dx

21.
∫ π

0

sec2(x) dx 22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0

xe−x dx 24.
∫ ∞

0

xe−x2

dx

25.
∫ ∞

−∞
xe−x2

dx 26.
∫ ∞

−∞

1

ex + e−x
dx

27.
∫ 1

0

x ln(x) dx 28.
∫ 1

0

x2 ln(x) dx

29.
∫ ∞

1

ln(x)
x

dx 30.
∫ 1

0

ln(x) dx

31.
∫ ∞

1

ln(x)
x2

dx 32.
∫ ∞

1

ln(x)√
x

dx

33.
∫ ∞

0

e−x sin(x) dx 34.
∫ ∞

0

e−x cos(x) dx

Exercise Group. In the following exercises, use the Direct Comparison Test or the Limit Comparison Test to determine
whether the given definite integral converges or diverges. Clearly state what test is being used and what function the
integrand is being compared to.

35.
∫ ∞

10

3√
3x2 + 2x− 5

dx 36.
∫ ∞

2

4√
7x3 − x

dx

37.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx 38.

∫ ∞

1

e−x ln(x) dx

39.
∫ ∞

5

e−x2+3x+1 dx 40.
∫ ∞

0

√
x

ex
dx

41.
∫ ∞

2

1

x2 + sin(x)
dx 42.

∫ ∞

0

x

x2 + cos(x)
dx

43.
∫ ∞

0

1

x+ ex
dx 44.

∫ ∞

0

1

ex − x
dx



Chapter 7

Applications of Integration

Webegin this chapter with a reminder of a few key concepts from Chapter 5. Let
f be a continuous function on [a, b] which is partitioned into n equally spaced
subintervals as

a = x0 < x1 < · · · < xn < xn = b.

Let∆x = (b− a)/n denote the length of the subintervals, and let ci be any
x-value in the ith subinterval. Definition 5.3.13 states that the sum

n∑
i=1

f(ci)∆x

is a Riemann Sum. Riemann Sums are often used to approximate some quan-
tity (area, volume, work, pressure, etc.). The approximation becomes exact by
taking the limit

lim
n→∞

n∑
i=1

f(ci)∆x.

Theorem 5.3.21 connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑
i=1

f(ci)∆x =

∫ b

a

f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals
can be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications.
Suppose the valueQ of a quantity is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea 7.0.1 Application of Definite Integrals Strategy.

Let a quantity be given whose valueQ is to be computed.

1. Divide the quantity into n smaller “subquantities” of valueQi.

2. Identify a variable x and function f(x) such that each subquan-
tity can be approximated with the product f(ci)∆x, where ∆x
represents a small change in x. Thus Qi ≈ f(ci)∆x. A sample
approximation f(ci)∆x ofQi is called a differential element.

3. Recognize that Q =

n∑
i=1

Qi ≈
n∑

i=1

f(ci)∆x, which is a Riemann

Sum.

351
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4. Taking the appropriate limit givesQ =

∫ b

a

f(x) dx

This Key Idea will make more sense after we have had a chance to use it
several times. We begin with Area Between Curves, which we addressed briefly
in Section 5.4.

7.1 Area Between Curves

We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.4 and approach it instead using the
technique described in Key Idea 7.0.1.

Let Q be the area of a region bounded by continuous functions f and g. If
we break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systematically break a region into subre-

gions. A graph will help. Consider Figure 7.1.1(a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
particularly efficient way is to “slice” it vertically, as shown in Figure 7.1.1(b),
into n equally spaced slices.

We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value ci in the ith slice, we set
the height of the rectangle to be f(ci)−g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure 7.1.1(c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differential element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑
i=1

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b

a

(
f(x)− g(x)

)
dx.

f(x)

g(x)

a b

x

y

(a)

f(x)

g(x)

a b

x

y

(b)

f(x)

g(x)

a b

x

y

(c)

Figure 7.1.1 Subdividing a region into vertical slices and approximating the areas
with rectangles

Theorem 7.1.2 Area Between Curves (restatement of Theorem 5.4.17).

Let f(x) and g(x) be continuous functions defined on [a, b] where
f(x) ≥ g(x) for all x in [a, b]. The area of the region bounded by the
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curves y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 7.1.3 Finding area enclosed by curves.

Find the area of the region bounded by f(x) = sin(x) + 2, g(x) =
1
2 cos(2x)− 1, x = 0 and x = 4π, as shown in Figure 7.1.4.

f(x)

g(x)

2 4 6 8 10

−2

−1

1

2

3

4π

x

y

Figure 7.1.4 Graphing an enclosed re-
gion in Example 7.1.3

Solution. The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the
region is the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin(x) + 2−

(1
2
cos(2x)− 1

))
dx

= − cos(x)− 1

4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.

Example 7.1.5 Finding total area enclosed by curves.

Find the total area of the region enclosed by the functions f(x) = −2x+
5 and g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.1.6.

1 2 3 4

−4

−2

2

x

y

Figure 7.1.6 Graphing a region en-
closed by two functions in Exam-
ple 7.1.5

Solution. A quick calculation shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by computing
∫ 4

1

(
f(x)− g(x)

)
dx, but this

ignores the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless
integration returns −9/4, hardly the expected value of an area.) Thus
we compute the total area by breaking the interval [1, 4] into two subin-
tervals, [1, 2] and [2, 4] and using the proper integrand in each.

Total Area =
∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12 + 8/3

= 37/12 = 3.083 units2.

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 7.1.2. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.
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Example 7.1.7 Finding area: integrating with respect to y.

Find the area of the region enclosed by the functions y =
√
x+ 2, y =

−(x− 1)2 + 3 and y = 2, as shown in Figure 7.1.8.

y =
√
x+ 2 y = −(x− 1)2 + 3

1 2

1

2

3

x

y

Figure 7.1.8 Graphing a region for Ex-
ample 7.1.7

Solution. Wegive twoapproaches to this problem. In the first approach,
we notice that the region’s “top” is defined by two different curves. On
[0, 1], the top function is y =

√
x + 2; on [1, 2], the top function is

y = −(x− 1)2 + 3.
Thus we compute the area as the sum of two integrals:

Total Area =
∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3 + 2/3

= 4/3.

The second approach is clever and very useful in certain situations. We
are used to viewing curves as functions of x; we input an x-value and a
y-value is returned. Some curves can also be described as functions of y:
input a y-value and anx-value is returned. We can rewrite the equations
describing the boundary by solving for x:

y =
√
x+ 2 ⇒ x = (y − 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y + 1.

x = (y − 2)2 x =
√
3− y + 1

1 2

1

2

3

x

y

Figure 7.1.9 The region used in Exam-
ple 7.1.7 with boundaries relabeled
as functions of y

Figure 7.1.9 shows the region with the boundaries relabeled. A differ-
ential element, a horizontal rectangle, is also pictured. The width of the
rectangle is a small change in y: ∆y. The height of the rectangle is a dif-
ference in x-values. The “top” x-value is the largest value, i.e., the right-
most. The “bottom” x-value is the smaller, i.e., the leftmost. Therefore
the height of the rectangle is(√

3− y + 1
)
− (y − 2)2.

The area is found by integrating the above function with respect to y
with the appropriate bounds. We determine these by considering the y-
values the region occupies. It is bounded below by y = 2, and bounded
above by y = 3. That is, both the “top” and “bottom” functions exist on
the y interval [2, 3]. Thus

Total Area =
∫ 3

2

(√
3− y + 1− (y − 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y − 1

3
(y − 2)3

)∣∣∣3
2

= 4/3.

This calculus-based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 7.1.10 computes the area of a
triangle. While the formula “ 12 × base × height” is well known, in arbitrary
triangles it can be nontrivial to compute the height. Calculusmakes the problem
simple.
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Example 7.1.10 Finding the area of a triangle.

Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+ 5
2 , as shown in Figure 7.1.11.

y = x+ 1
y = −2x+ 7

y = − 1
2x+ 5

2

1 2 3

1

2

3

x

y

Figure 7.1.11Graphing a triangular re-
gion in Example 7.1.10

Solution. Recognize that there are two “top” functions to this region,
causing us to use two definite integrals.

Total Area =
∫ 2

1

(
(x+ 1)− (−1

2
x+

5

2
)
)
dx

+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5

2
)
)
dx

= 3/4 + 3/4

= 3/2.

We can also approach this by converting each function into a function
of y. This also requires 2 integrals, so there isn’t really any advantage to
doing so. We do it here for demonstration purposes.
The “top” function is always x = 7−y

2 while there are two “bottom”
functions. Being mindful of the proper integration bounds, we have

Total Area =
∫ 2

1

(7− y

2
− (5− 2y)

)
dy +

∫ 3

2

(7− y

2
− (y − 1)

)
dy

= 3/4 + 3/4

= 3/2.

Of course, the final answer is the same. (It is interesting to note that the
area of all 4 subregions used is 3/4. This is coincidental.)

Whilewehave focused on producing exact answers, we are also able tomake
approximations using the principle of Theorem 7.1.2. The integrand in the theo-
rem is a distance (“top minus bottom”); integrating this distance function gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integration techniques developed in Section 5.5. The fol-
lowing example demonstrates this.

Example 7.1.12 Numerically approximating area.

To approximate the area of a lake, shown in Figure 7.1.13(a), the
“length” of the lake is measured at 200-foot increments, as shown in Fig-
ure 7.1.13(b). The lengths are given in hundreds of feet. Approximate
the area of the lake.
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(a)

2.
25 5.
08

6.
35

5.
21

2.
76

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

x

y

(b)

Figure 7.1.13 (a) A sketch of a lake, and (b) the lake with lengthmeasure-
ments

Solution. The measurements of length can be viewed as measuring
“top minus bottom” of two functions. The exact answer is found by inte-

grating
∫ 12

0

(
f(x)−g(x)

)
dx, but of coursewedon’t know the functions

f and g. Our discrete measurements instead allow us to approximate.
We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2

3

(
1 · 0 + 4 · 2.25 + 2 · 5.08 + 4 · 6.35 + 2 · 5.21 + 4 · 2.76 + 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, square units are given
by (100 ft)2 =10, 000 ft2, giving a total area of 440, 133 ft2. (Sincewe are
approximating, we’d likely say the area was about 440, 000 ft2, which is
a little more than 10 acres.)

In the next section we apply our applications of integration techniques to
finding the volumes of certain solids.



CHAPTER 7. APPLICATIONS OF INTEGRATION 357

7.1.1 Exercises

Terms and Concepts

1. The area between curves is always positive. (□ True □ False)
2. Calculus can be used to find the area of basic geometric shapes. (□ True □ False)
3. In your own words, describe how to find the total area enclosed by y = f(x) and y = g(x).

4. Describe a situationwhere it is advantageous to find an area enclosed by curves through integrationwith respect
to y instead of x.

Problems

Exercise Group. In the following exercises, find the area of the shaded region in the given graph.
5. Between y = 1

2x+ 3 and y = 1
2 cos(x) + 1, for

0 ≤ x ≤ 2π.

y = 1
2 cos(x) + 1

y = 1
2x+ 3

2

4

6

π 2π

x

y

6. Between y = −3x3 + 3x+ 2 and
y = x2 + x− 1, for−1 ≤ x ≤ 1.

y = x2 + x− 1

y = −3x3 + 3x+ 2

−1 1

−1

1

2

3

x

y

7. Between y = 1 and y = 2, for 0 ≤ x ≤ π.

y = 1

y = 2

1

2

ππ/2

x

y
8. Between y = sin(x) + 1 and y = sin(x), for

0 ≤ x ≤ π.

y = sin(x)

y = sin(x) + 1

1

2

ππ/2

x

y
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9. Between y = sin(4x) and y = sec2(x), for
0 ≤ x ≤ π/4.

y = sin(4x)

y = sec2(x)

1

2

π/4π/8

x

y

10. Between y = sin(x) and y = cos(x), for
π/4 ≤ x ≤ 5π/4.

y = sin(x)

y = cos(x)

−1

−0.5

0.5

1

π/4 π/2 3π/4 π 5π/4

x

y

11. Between y = 2x and y = 4x, for 0 ≤ x ≤ 1.

y = 2x

y = 4x

0.2 0.4 0.6 0.8 1

1

2

3

4

x

y

12. Bounded by the curves y =
√
x+ 1,

y =
√
2− x+ 1, and y = 1.

y =
√
x+ 1 y =

√
2− x+ 1

0.5 1 1.5 2

0.5

1

1.5

2

2.5

x

y

Exercise Group. In the following exercises, find the total area enclosed by the functions f and g.
13. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1 14. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3

15. f(x) = sin(x), g(x) = 2x/π 16. f(x) = x3 − 4x2 +x− 1, g(x) = −x2 +2x− 4

17. f(x) = x, g(x) =
√
x 18. f(x) = −x3 + 5x2 + 2x+ 1,

g(x) = 3x2 + x+ 3

19. The functions f(x) = cos(x) and g(x) = sinx intersect infinitely many times, forming an infinite number of
repeated, enclosed regions. Find the areas of these regions.

20. The functions f(x) = cos(2x) and g(x) = sin(x) intersect infinitely many times, forming an infinite number of
repeated, enclosed regions. Find the areas of these regions.

Exercise Group. In the following exercises, find the area of the enclosed region in two ways:

(a) by treating the boundaries as functions of x, and

(b) by treating the boundaries as functions of y.
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21. Bounded by y = x2 + 1, y = 1
4 (x− 3)2 + 1,

and y = 1.

y = 1
4 (x− 3)2 + 1

y = x2 + 1

y = 1
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x

y

22. Bounded by y =
√
x, y = −2x+ 3, and

y = − 1
2x.

y =
√
x

y = − 1
2x

y = −2x+ 3
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23. Between the curves y = x+ 2 and y = x2.

y = x2

y = x+ 2
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y
24. Between the curves x = − 1

2y + 1 and x = 1
2y

2.

x = 1
2y

2

x = − 1
2y + 1
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25. Bounded by y = x1/3, y =
√

x− 1/2, y = 0,
and x = 1.

y = x1/3

y =
√
x− 1/2
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26. Bounded by the curves y =
√
x+ 1,

y =
√
2− x+ 1, and y = 1.

y =
√
x+ 1 y =

√
2− x+ 1
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2.5
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y

Exercise Group. In the following exercises, find the area of the triangle formed by the given three points.
27. (1, 1),(2, 3), and (3, 3) 28. (−1, 1),(1, 3), and (2,−1)

29. (1, 1),(3, 3), and (0, 4) 30. (0, 0),(2, 5), and (5, 2)

31. Use the Trapezoidal Rule to approximate the area of the pictured lake whose lengths, in hundreds of feet, are
measured in 100-foot increments.
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4.
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.2 7.
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32. Use Simpson’s Rule to approximate the area of the pictured lake whose lengths, in hundreds of feet, are mea-
sured in 200-foot increments.

4.
25

6.
6

7.
7

6
.4
5

4
.9
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7.2 Volume by Cross-Sectional Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.2.1, is

Area of the base × height.

Figure 7.2.1 The volume of a general
right cylinder

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sectional area × thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(xi) represent the cross-
sectional area of the ith slice, and let ∆xi represent the thickness of this slice
(the thickness is a small change in x). The total volume of the solid is approxi-
mately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 7.2.2 Volume By Cross-Sectional Area.

The volume V of a solid, oriented along the x-axis with cross-sectional
area A(x) from x = a to x = b, is

V =

∫ b

a

A(x) dx.

Example 7.2.3 Finding the volume of a solid.

Find the volume of a pyramid with a square base of side length 10 in and
a height of 5 in.
Solution. There aremanyways to “orient” the pyramid along thex-axis;
Figure 7.2.4 gives one such way, with the pointed top of the pyramid at
the origin and the x-axis going through the center of the base.

Figure 7.2.4 Orienting a pyramid
along the x-axis in Example 7.2.3

Each cross section of the pyramid is a square; this is a sample differential
element. To determine its area A(x), we need to determine the side
lengths of the square.
When x = 5, the square has side length 10; when x = 0, the square
has side length 0. Since the edges of the pyramid are lines, it is easy to
figure that each cross-sectional square has side length 2x, givingA(x) =
(2x)2 = 4x2.
If one were to cut a slice out of the pyramid at x = 3, as shown in
Figure 7.2.5, one would have a shape with square bottom and top with
sloped sides. If the slice were thin, both the bottom and top squares
would have sides lengths of about 6, and thus the cross-sectional area
of the bottom and top would be about 36 in2. Letting ∆xi represent
the thickness of the slice, the volume of this slice would then be about

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_cross1.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_disk0.html
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36∆xi in3.

Figure 7.2.5 Cutting a slice in the pyra-
mid in Example 7.2.3 at x = 3

Cutting the pyramid into n slices divides the total volume into n equally-
spaced smaller pieces, each with volume (2xi)

2∆x, where xi is the ap-
proximate location of the slice along the x-axis and ∆x represents the
thickness of each slice. One can approximate total volume of the pyra-
mid by summing up the volumes of these slices:

Approximate volume =
n∑

i=1

(2xi)
2∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid;
recoginizing this sum as a Riemann Sum allows us to find the exact an-
swer using a definite integral, matching the definite integral given by
Theorem 7.2.2.
We have

V = lim
n→∞

n∑
i=1

(2xi)
2∆x

=

∫ 5

0

4x2 dx

=
4

3
x3
∣∣∣5
0

=
500

3
in3 ≈ 166.67 in3.

We can check our work by consulting the general equation for the vol-
ume of a pyramid (see the back cover under “Volume of A General
Cone”):
1
3 × area of base × height.
Certainly, using this formula from geometry is faster than our new
method, but the calculus-based method can be applied to much more
than just cones.

An important special case of Theorem 7.2.2 is when the solid is a solid of
revolution, that is, when the solid is formed by rotating a shape around an axis.

Start with a function y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sections
are disks (thin circles). Let R(x) represent the radius of the cross-sectional disk
at x; the area of this disk is πR(x)2. Applying Theorem 7.2.2 gives the Disk
Method.

Key Idea 7.2.6 The Disk Method.

Let a solid be formed by revolving the curve y = f(x) from x = a to
x = b around a horizontal axis, and let R(x) be the radius of the cross-
sectional disk at x. The volume of the solid is

V = π

∫ b

a

R(x)2 dx.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_disk0a.html
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Example 7.2.7 Finding volume using the Disk Method.

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, around the x-axis.
Solution. A sketch can help us understand this problem. In Fig-
ure 7.2.8(a), the curve y = 1/x is sketched along with the differential
element — a disk — at xwith radiusR(x) = 1/x. In Figure 7.2.8(b) the
whole solid is pictured, along with the differential element.
The volume of the differential element shown in Figure 7.2.8(a) is ap-
proximately πR(xi)

2∆x, where R(xi) is the radius of the disk shown
and ∆x is the thickness of that slice. The radius R(xi) is the distance
from the x-axis to the curve, henceR(xi) = 1/xi.

(a)
(b)

Figure 7.2.8 Sketching a solid in Example 7.2.7
Slicing the solid into n equally-spaced slices, we can approximate the
total volume by adding up the approximate volume of each slice:

Approximate volume =
n∑

i=1

π

(
1

xi

)2

∆x.

Taking the limit of the above sumasn → ∞ gives the actual volume; rec-
ognizing this sum as a Riemann sum allows us to evaluate the limit with
a definite integral, which matches the formula given in Key Idea 7.2.6:

V = lim
n→∞

n∑
i=1

π

(
1

xi

)2

∆x

= π

∫ 2

1

(
1

x

)2

dx

= π

∫ 2

1

1

x2
dx

= π

[
− 1

x

] ∣∣∣2
1

= π

[
−1

2
− (−1)

]
=

π

2
units3.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_disk1a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_disk1b_3D.html
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While Key Idea 7.2.6 is given in terms of functions of x, the principle involved
can be applied to functions of y when the axis of rotation is vertical, not horizon-
tal. We demonstrate this in the next example.

Example 7.2.9 Finding volume using the Disk Method.

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, about the y-axis.
Solution. Since the axis of rotation is vertical, we need to convert
the function into a function of y and convert the x-bounds to y-bounds.
Since y = 1/x defines the curve, we rewrite it as x = 1/y. The bound
x = 1 corresponds to the y-bound y = 1, and the bound x = 2 corre-
sponds to the y-bound y = 1/2.
Thus we are rotating the curve x = 1/y, from y = 1/2 to y = 1 about
the y-axis to form a solid. The curve and sample differential element
are sketched in Figure 7.2.10(a), with a full sketch of the solid in Fig-
ure 7.2.10(b).

(a) (b)

Figure 7.2.10 Sketching a solid in Example 7.2.9
We integrate to find the volume:

V = π

∫ 1

1/2

1

y2
dy

= −π

y

∣∣∣1
1/2

= π units3.

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid isR(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a

R(x)2 dx− π

∫ b

a

r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_disk2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_disk2b_3D.html
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(a) (b)

Figure 7.2.11 Establishing the Washer Method; see also Figure 7.2.12
One can generate a solid of revolution with a hole in the middle by revolving

a region about an axis. Consider Figure 7.2.11(a), where a region is sketched
along with a dashed, horizontal axis of rotation. By rotating the region about
the axis, a solid is formed as sketched in Figure 7.2.11(b). The outside of the
solid has radius R(x), whereas the inside has radius r(x). Each cross section
of this solid will be a washer (a disk with a hole in the center) as sketched in
Figure 7.2.12. This leads us to the Washer Method.

Figure 7.2.12 Establishing theWasher
Method; see also Figure 7.2.11

Key Idea 7.2.13 The Washer Method.

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross section at xwill be a washer with outside radiusR(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.14 Finding volume with the Washer Method.

Find the volume of the solid formed by rotating the region bounded by
y = x2 − 2x+ 2 and y = 2x− 1 about the x-axis.
Solution. A sketch of the region will help, as given in Figure 7.2.15(a).
Rotating about the x-axis will produce cross sections in the shape of
washers, as shown in Figure 7.2.15(b); the complete solid is shown in
Figure 7.2.15(c). The outside radius of this washer is R(x) = 2x − 1;
the inside radius is r(x) = x2 − 2x+ 2. As the region is bounded from
x = 1 to x = 3, we integrate as follows to compute the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_washeridea1a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_washeridea1b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_washeridea2_3D.html
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=
104

15
π ≈ 21.78 units3.

(a) (b) (c)

Figure 7.2.15 Sketching the differential element and solid in Exam-
ple 7.2.14

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.

Example 7.2.16 Finding volume with the Washer Method.

Find the volume of the solid formed by rotating the triangular region
with vertices at (1, 1), (2, 1) and (2, 3) about the y-axis.
Solution. The triangular region is sketched in Figure 7.2.17(a); the differ-
ential element is sketched in Figure 7.2.17(b) and the full solid is drawn
in Figure 7.2.17(c). They help us establish the outside and inside radii.
Since the axis of rotation is vertical, each radius is a function of y.
The outside radius R(y) is formed by the line connecting (2, 1) and
(2, 3); it is a constant function, as regardless of the y-value the distance
from the line to the axis of rotation is 2. Thus R(y) = 2.

(a) (b) (c)

Figure 7.2.17 Sketching the solid in Example 7.2.16
The inside radius is formed by the line connecting (1, 1) and (2, 3). The
equation of this line is y = 2x−1, but we need to refer to it as a function
of y. Solving for x gives r(y) = 1

2 (y + 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y + 1)

)2)
dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y +

15

4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15

4
y
]∣∣∣3

1

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_wash1a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_wash1b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_wash1c_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_wash2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_wash2b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_wash2c_3D.html
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=
10

3
π ≈ 10.47 units3.

This section introduced a new application of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea 7.0.1: to find the exact value of some
quantity,

• we start with an approximation (in this section, slice the solid and approx-
imate the volume of each slice),

• then make the approximation better by refining our original approxima-
tion (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.

We practice this principle in the next section where we find volumes by slic-
ing solids in a different way.
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7.2.1 Exercises

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape around an axis.
2. In your own words, explain how the Disk and Washer Methods are related.

3. Explain the how the units of volume are found in the integral of Theorem 7.2.2: if A(x) has units of in2, how
does

∫
A(x) dx have units of in3?

Problems

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by revolving the
given region about the x-axis.

4. The region between y = 3− x2 and the x axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

5. The region between y = 5x and the x axis, for
1 ≤ x ≤ 2:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

6. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

7. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by revolving the
given region about the y-axis.
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8. The region bounded by the curve y = 3− x2,
the x axis, and the y axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

9. The region between y = 5x and the y axis, for
5 ≤ y ≤ 10:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

10. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

(Hint: Integration By Parts will be necessary,
twice. First let u = arccos2 x, then let
u = arccosx.)

y = cos(x)
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11. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Disk/Washer Method to find the volume of the solid of revolution formed by rotating the
given region about each of the given axes.

12. Region bounded by: y =
√
x, y = 0 and x = 1.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about the y axis.

(d) Rotate about x = 1.

13. Region bounded by: y = 4− x2 and y = 0.

(a) Rotate about the x axis.

(b) Rotate about y = 4.

(c) Rotate about y = −1.

(d) Rotate about x = 2.
14. The triangle with vertices (1, 1), (1, 2) and

(2, 1).

(a) Roate about the x axis.

(b) Roate about y = 2.

(c) Rotate about the y axis.

(d) Rotate about x = 1.

15. Region bounded by y = x2 − 2x+ 2 and
y = 2x− 1.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about y = 5.
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16. Region bounded by y = 1/
√
x2 + 1, x = −1,

x = 1 and the x-axis.

(a) Rotate about the x axis.

(b) Rotate about y = 1.

(c) Rotate about y = −1.

17. Region bounded by y = 2x, y = x and x = 2.

(a) Rotate about the x axis.

(b) Rotate about y = 4.

(c) Rotate about the y axis.

(d) Rotate about x = 2.

Exercise Group. Orient the given solid along thex-axis such that a cross-sectional area functionA(x) can be obtained,
then apply Theorem 7.2.2 to find the volume of the solid.

18. A right circular cone with height of 10 and base
radius of 5.

5

10
19. A skew right circular cone with height of 10 and

base radius of 5. (Hint: all cross-sections are
circles.)

5

10

20. A right triangular cone with height of 10 and
whose base is a right, isosceles triangle with
side length 4.

4 4

10

21. A solid with length 10 with a rectangular base
and triangular top, wherein one end is a square
with side length 5 and the other end is a
triangle with base and height of 5.

10

5
5

5
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7.3 The Shell Method

Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolution by integrating the cross-sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of rotation, creating
“shells.”

Consider Figure 7.3.1, where the region shown in Figure 7.3.1(a) is rotated
around the y-axis forming the solid shown in Figure 7.3.1(b). A small slice of
the region is drawn in Figure 7.3.1(a), parallel to the axis of rotation. When
the region is rotated, this thin slice forms a cylindrical shell, as pictured in Fig-
ure 7.3.1(c). The previous section approximated a solid with lots of thin disks
(or washers); we now approximate a solid with many thin cylindrical shells.

(a) (b) (c)

Figure 7.3.1 Introducing the Shell Method
To compute the volume of one shell, first consider the paper label on a soup

can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.3.2(a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.3.2(b). (We say “approximately” since our radius was an approxima-
tion.)

By breaking the solid into n cylindrical shells, we can approximate the vol-
ume of the solid as

V ≈
n∑

i=1

2πrihi∆xi,

where ri, hi and ∆xi are the radius, height and thickness of the ith shell, re-
spectively.

This is a Riemann Sum. Taking a limit as the thickness of the shells approaches
0 leads to a definite integral.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell_intro_b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_fig_shell_intro_a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell_intro_d_3D.html
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V ≈ 2πrh∆x

(b)

Figure 7.3.2 Determining the volume of a thin cylindrical shell

Key Idea 7.3.3 The Shell Method.

Let a solid be formedby revolving a regionR, bounded byx = a andx =
b, around a vertical axis. Let r(x) represent the distance from the axis
of rotation to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π

∫ b

a

r(x)h(x) dx.

Special Cases:

1. When the regionR is bounded above by y = f(x) and belowby y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotation is the y-axis (i.e., x = 0) then r(x) = x.

Let’s practice using the Shell Method.

Example 7.3.4 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the region bounded by
y = 0, y = 1/(1 + x2), x = 0 and x = 1 about the y-axis.
Solution. This is the region used to introduce the Shell Method in Fig-
ure 7.3.1, but is sketched again in Figure 7.3.5 for closer reference. A line
is drawn in the region parallel to the axis of rotation representing a shell
that will be carved out as the region is rotated about the y-axis. (This is
the differential element.)

h(x)


︸ ︷︷ ︸

r(x)

y =
1

1 + x2

1

1

x

x

y

Figure 7.3.5 Graphing a region in Ex-
ample 7.3.4

The distance this line is from the axis of rotation determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this
line determines h(x); the top of the line is at y = 1/(1 + x2), whereas
the bottom of the line is at y = 0. Thus h(x) = 1/(1 + x2) − 0 =
1/(1 + x2). The region is bounded from x = 0 to x = 1, so the volume
is

V = 2π

∫ 1

0

x

1 + x2
dx.

This requires substitution. Let u = 1 + x2, so du = 2x dx. We also
change the bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1

u
du

= π ln(u)
∣∣∣2
1

= π ln(2) ≈ 2.178 units3.
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Note: in order to find this volume using the Disk Method, two integrals
would be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.6 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the triangular region
determined by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.
Solution. The region is sketched in Figure 7.3.7(a) along with the differ-
ential element, a line within the region parallel to the axis of rotation. In
Figure 7.3.7(b), we see the shell traced out by the differential element,
and in Figure 7.3.7(c) the whole solid is shown.

y
=
2x

+
1

}
h(x).

︸ ︷︷ ︸
r(x)

1 2 3

1

2

3

x

x

y

(a)
(b) (c)

Figure 7.3.7 Graphing a region in Example 7.3.6
The height of the differential element is the distance from y = 1 to
y = 2x + 1, the line that connects the points (0, 1) and (1, 3). Thus
h(x) = 2x+1−1 = 2x. The radius of the shell formedby the differential
element is the distance from x to x = 3; that is, it is r(x) = 3− x. The
x-bounds of the region are x = 0 to x = 1, giving

V = 2π

∫ 1

0

(3− x)(2x) dx

= 2π

∫ 1

0

(
6x− 2x2

)
dx

= 2π

(
3x2 − 2

3
x3

) ∣∣∣1
0

=
14

3
π ≈ 14.66 units3.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height functions in terms of y, not x.

Example 7.3.8 Finding volume using the Shell Method.

Find the volume of the solid formed by rotating the region given in Ex-
ample 7.3.6 about the x-axis.
Solution. The region is sketched in Figure 7.3.9(a) with a sample dif-
ferential element. In Figure 7.3.9(b) the shell formed by the differential
element is drawn, and the solid is sketched in Figure 7.3.9(c). (Note that
the triangular region looks “short and wide” here, whereas in the previ-

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell2b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell2c_3D.html
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ous example the same region looked “tall and narrow.” This is because
the bounds on the graphs are different.)
The height of the differential element is an x-distance, between x =
1
2y − 1

2 and x = 1. Thus h(y) = 1− ( 12y − 1
2 ) = − 1

2y + 3
2 . The radius

is the distance from y to the x-axis, so r(y) = y. The y bounds of the
region are y = 1 and y = 3, leading to the integral

x
=
1
2
y −

1
2

︸ ︷︷ ︸
h(y)  r(y)

1

1

2

3

y

x

y

(a)
(b) (c)

Figure 7.3.9 Graphing a region in Example 7.3.8

V = 2π

∫ 3

1

[
y

(
−1

2
y +

3

2

)]
dy

= 2π

∫ 3

1

[
−1

2
y2 +

3

2
y

]
dy

= 2π

[
−1

6
y3 +

3

4
y2
] ∣∣∣3

1

= 2π

[
9

4
− 7

12

]
=

10

3
π ≈ 10.472 units3.

At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

Example 7.3.10 Finding volume using the Shell Method.

Find the volume of the solid formed by revolving the region bounded by
y = sin(x) and the x-axis from x = 0 to x = π about the y-axis.
Solution. The region and a differential element, the shell formed by this
differential element, and the resulting solid are given in Figure 7.3.11.

h(x)

r(x)︷ ︸︸ ︷

1

x π
2

π

x

y

(a)

(b) (c)

Figure 7.3.11 Graphing a region in Example 7.3.10

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell3b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell3c_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell4b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_shell4c_3D.html
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The radius of a sample shell is r(x) = x; the height of a sample shell is
h(x) = sin(x), each from x = 0 to x = π. Thus the volume of the solid
is

V = 2π

∫ π

0

x sin(x) dx.

This requires Integration By Parts. Set u = x and dv = sin(x) dx; we
leave it to the reader to fill in the rest. We have:

= 2π
[
− x cos(x)

∣∣∣π
0
+

∫ π

0

cos(x) dx
]

= 2π
[
π + sin(x)

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve
y = sinx for x, requiring the use of the arcsine function. We leave
it to the reader to verify that the outside radius function is R(y) =
π − arcsin y and the inside radius function is r(y) = arcsin y. Thus the
volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is
more onerous than the integral created by the Shell Method.

We end this section with a table summarizing the usage of the Washer and
Shell Methods.

Key Idea 7.3.12 Summary of the Washer and Shell Methods.

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal Axis π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c

r(y)h(y) dy

Vertical Axis π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a

r(x)h(x) dx

As in the previous section, the real goal of this section is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next section, where we find the
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length of curves in the plane.
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7.3.1 Exercises

Terms and Concepts

1. T/F: A solid of revolution is formed by revolving a shape around an axis.
2. T/F: The Shell Method can only be used when the Washer Method fails.
3. T/F: The Shell Method works by integrating cross-sectional areas of a solid.
4. T/F: When finding the volume of a solid of revolution that was revolved around a vertical axis, the Shell Method

integrates with respect to x.

Problems

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revolving the given
region about the y-axis.

5. The region bounded by the curve y = 3− x2,
the x axis, and the y axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

6. The region between y = 5x and the x axis, for
1 ≤ x ≤ 2:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

7. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

8. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revolving the given
region about the x-axis.
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9. The region between y = 3− x2 and the x axis:

y = 3− x2

−2 −1 1 2

1

2

3

x

y

10. The region between y = 5x and the y axis, for
5 ≤ y ≤ 10:

y = 5x

0.5 1 1.5 2

2

4

6

8

10

x

y

11. The region between y = cos(x) and the x axis,
for 0 ≤ x ≤ π/2:

y = cos(x)

0.5 1 1.5

0.2

0.4

0.6

0.8

1

x

y

12. The region between the curves y = x and
y =

√
x:

y =
√
x

y = x

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Exercise Group. Use the Shell Method to find the volume of the solid of revolution formed by revloving the given
region about each of the given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about the x axis.

(d) Rotate about y = 1.

14. Region bounded by: y = 4− x2 and y = 0.

(a) Rotate about x = 2.

(b) Rotate about x = −2.

(c) Rotate about the x axis.

(d) Rotate about y = 4.
15. The triangle with vertices (1, 1), (1, 2) and

(2, 1).

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about the x axis.

(d) Rotate about y = 2.

16. Region bounded by y = x2 − 2x+ 2 and
y = 2x− 1.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

(c) Rotate about x = −1.
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17. Region bounded by y = 1/
√
x2 + 1, x = 1 and

the x and y axes.

(a) Rotate about the y axis.

(b) Rotate about x = 1.

18. Region bounded by y = 2x, y = x and x = 2.

(a) Rotate about the y axis.

(b) Rotate about x = 2.

(c) Rotate about the x axis.

(d) Rotate about y = 4.
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7.4 Arc Length and Surface Area

In previous sections we have used integration to answer the following questions:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

In this section, we address two related questions:

1. Given a curve, what is its length? This is often referred to as arc length.

2. Given a solid, what is its surface area?

7.4.1 Arc Length
Consider the graph of y = sin(x) on [0, π] given in Figure 7.4.1(a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight-line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

0.5

1

π
4

π
2

3π
4

π

x

y

(a)

0.5

1

π
4

π
2

3π
4

π

√
2
2

x

y

(b)

Figure 7.4.1Graphing y = sin(x) on [0, π] and approximating the curvewith line
segments

In Figure 7.4.1(b), the curve y = sin(x) has been approximated with 4 line
segments (the interval [0, π]has beendivided into 4 subintervals of equal length).
It is clear that these four line segments approximate y = sin(x) very well on the
first and last subinterval, though not so well in the middle. Regardless, the sum
of the lengths of the line segments is 3.79, so we approximate the arc length of
y = sin(x) on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x0 < x1 < . . . < xn−1 < xn = b be a partition
of [a, b] into n subintervals. Let∆xi represent the length of the ith subinterval
[xi−1, xi].

∆yi

∆xi

xi−1 xi

yi−1

yi

x

y

Figure 7.4.2 Zooming in on the ith
subinterval [xi−1, xi] of a partition of
[a, b]

Figure 7.4.2 zooms in on the ith subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line
segment as the hypotenuse of a right triangle whose sides have length∆xi and
∆yi. Using the Pythagorean Theorem, the length of this line segment is√

∆x2
i +∆y2i .
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Summing over all subintervals gives an arc length approximation

L ≈
n∑

i=1

√
∆x2

i +∆y2i .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.

In the above expression factor out a∆x2
i term:

n∑
i=1

√
∆x2

i +∆y2i =

n∑
i=1

√
∆x2

i

(
1 +

∆y2i
∆x2

i

)
.

Now pull the∆x2
i term out of the square root:

=

n∑
i=1

√
1 +

∆y2i
∆x2

i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2
i term. The expression

∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run”
of f on the ith subinterval. The Mean Value Theorem of Differentiation (Theo-
rem3.2.3) states that there is a ci in the ith subintervalwhere f ′(ci) = ∆yi/∆xi.
Thus we can rewrite our above expression as:

=

n∑
i=1

√
1 + f ′(ci)2 ∆xi.

This is aRiemann Sum. As long as f ′ is continuous, we can invoke Theorem5.3.21
and conclude

=

∫ b

a

√
1 + f ′(x)2 dx.

Theorem 7.4.3 Arc Length.

Let f be differentiable on [a, b], where f ′ is also continuous on [a, b].
Then the arc length of f from x = a to x = b is

L =

∫ b

a

√
1 + f ′(x)2 dx.

Note: This is our first use of dif-
ferentiability on a closed interval
since Section 2.1.

The theoremalso requires that
f ′ be continuous on [a, b]; while
examples are arcane, it is possi-
ble for f to be differentiable yet
f ′ is not continuous.

As the integrand contains a square root, it is often difficult to use the formula
in Theorem 7.4.3 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximating definite
integrals. The following examples will demonstrate this.

Example 7.4.4 Finding arc length.

Find the arc length of f(x) = x3/2 from x = 0 to x = 4.
Solution. We find f ′(x) = 3

2x
1/2; note that on [0, 4], f is differentiable
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and f ′ is also continuous. Using the formula, we find the arc length L as

L =

∫ 4

0

√
1 +

(
3

2
x1/2

)2

dx

=

∫ 4

0

√
1 +

9

4
x dx

=

∫ 4

0

(
1 +

9

4
x

)1/2

dx

=
2

3
· 4
9
·
(
1 +

9

4
x

)3/2 ∣∣∣4
0

=
8

27

(
103/2 − 1

)
≈ 9.07 units.
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8

x

y

Figure 7.4.5 A graph of f(x) = x3/2

from Example 7.4.4

A graph of f is given in Figure 7.4.5.

Example 7.4.6 Finding arc length.

Find the arc length of f(x) =
1

8
x2 − ln(x) from x = 1 to x = 2.

Solution. This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 −
1/x. The arc length is

L =

∫ 2

1

√
1 +

(
x

4
− 1

x

)2

dx

=

∫ 2

1

√
1 +

x2

16
− 1

2
+

1

x2
dx

=

∫ 2

1

√
x2

16
+

1

2
+

1

x2
dx

=

∫ 2

1

√(
x

4
+

1

x

)2

dx

=

∫ 2

1

(
x

4
+

1

x

)
dx

=

(
x2

8
+ ln(x)

)∣∣∣∣2
1

=
3

8
+ ln(2) ≈ 1.07 units.

0.5 1 1.5 2 2.5 3

0.5

1

x

y

Figure 7.4.7 A graph of f(x) = 1
8x

2−
ln(x) from Example 7.4.6

A graph of f is given in Figure 7.4.7; the portion of the curve measured
in this problem is in bold.

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.
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Example 7.4.8 Approximating arc length numerically.

Find the length of the sine curve from x = 0 to x = π.
Solution. This is somewhat of a mathematical curiosity; in Exam-
ple 5.4.10 we found the area under one “hump” of the sine curve is 2
square units; now we are measuring its arc length.
The setup is straightforward: f(x) = sin(x) and f ′(x) = cos(x). Thus

L =

∫ π

0

√
1 + cos2(x) dx.

This integral cannot be evaluated in terms of elementary functions sowe
will approximate it with Simpson’s Method with n = 4.

x
√
1 + cos2(x)

0
√
2

π/4
√

3/2

π/2 1

3π/4
√
3/2

π
√
2

Figure 7.4.9 A table of values of y =√
1 + cos2(x) to evaluate a definite

integral in Example 7.4.8

Figure 7.4.9 gives
√
1 + cos2(x) evaluated at 5 evenly spaced points in

[0, π]. Simpson’s Rule then states that∫ π

0

√
1 + cos2(x) dx ≈ π − 0

4 · 3

(√
2 + 4

√
3/2 + 2(1) + 4

√
3/2 +

√
2
)

= 3.82918.

Using a computer with n = 100 the approximation is L ≈ 3.8202; our
approximation with n = 4 is quite good.

7.4.2 Surface Area of Solids of Revolution
We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

a xi−1 xi b

x

(a) (b)

Figure 7.4.10 Establishing the formula for surface area
We begin as we have in the previous sections: we partition the interval [a, b]

with n subintervals, where the ith subinterval is [xi−1, xi]. On each subinter-
val, we can approximate the curve y = f(x) with a straight line that connects
f(xi−1) and f(xi) as shown in Figure 7.4.10(a). Revolving this line segment
about the x-axis creates part of a cone (called a frustum of a cone) as shown in
Figure 7.4.10(b). The surface area of a frustum of a cone is

2π · length · average of the two radiiR and r.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_arc4b_3D.html
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The length is given by L; we use the material just covered by arc length to
state that

L ≈
√
1 + f ′(ci)2∆xi

for some ci in the ith subinterval. The radii are just the function evaluated at
the endpoints of the interval. That is,

R = f(xi) and r = f(xi−1).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi−1) + f(xi)

2

√
1 + f ′(ci)2∆xi.

Since f is a continuous function, the Intermediate Value Theorem states

there is some di in [xi−1, xi] such that f(di) =
f(xi−1) + f(xi)

2
; we can use

this to rewrite the above equation as

2πf(di)
√
1 + f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approx-
imately

Surface Area ≈
n∑

i=1

2πf(di)
√

1 + f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.

Theorem 7.4.11 Surface Area of a Solid of Revolution.

Let f be differentiable on [a, b], where f ′ is also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π

∫ b

a

x
√

1 + f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resulting frustum
are xi−1 and xi; their average value is simply themidpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 7.4.11.)

Example 7.4.12 Finding surface area of a solid of revolution.

Find the surface area of the solid formed by revolving y = sin(x) on
[0, π] around the x-axis, as shown in Figure 7.4.13.

Figure 7.4.13Revolving y = sin(x) on
[0, π] about the x-axis

Solution. The setup is relatively straightforward. Using Theorem 7.4.11,
we have the surface area SA is:

SA = 2π

∫ π

0

sin(x)
√

1 + cos2(x) dx

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sa1_3D.html
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= −2π
1

2

(
sinh−1(cos(x)) + cos(x)

√
1 + cos2(x)

)∣∣∣π
0

= 2π
(√

2 + sinh−1(1)
)

≈ 14.42 units2.

The integration step above is nontrivial, utilizing the integration method
of Trigonometric Substitution from Section 6.4.
It is interesting to see that the surface area of a solid, whose shape is
defined by a trigonometric function, involves both a square root and an
inverse hyperbolic trigonometric function.

Example 7.4.14 Finding surface area of a solid of revolution.

Find the surface area of the solid formed by revolving the curve y = x2

on [0, 1] about:

1. the x-axis

2. the y-axis.

(a) (b)

Figure 7.4.15 The solids used in Example 7.4.14

Solution.

1. The integral is straightforward to setup:

SA = 2π

∫ 1

0

x2
√
1 + (2x)2 dx.

Like the integral in Example 7.4.12, this requires Trigonometric
Substitution.

=
π

32

(
2(8x3 + x)

√
1 + 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18
√
5− sinh−1(2)

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed
in Figure 7.4.15(a).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sa2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sa2b_3D.html
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2. Since we are revolving around the y-axis, the “radius” of the solid
is not f(x) but rather x. Thus the integral to compute the surface
area is:

SA = 2π

∫ 1

0

x
√
1 + (2x)2 dx.

This integral can be solved using substitution. Set u = 1 + 4x2;
the new bounds are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4

2

3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed
in Figure 7.4.15(b).

Our final example is a famous mathematical “paradox.”

Example 7.4.16 The surface area and volume of Gabriel’s Horn.

Consider the solid formed by revolving y = 1/x about the x-axis on
[1,∞). Find the volume and surface area of this solid. (This shape, as
graphed in Figure 7.4.17, is known as “Gabriel’s Horn” since it looks like
a very long horn that only a supernatural person, such as an angel, could
play.)

Figure 7.4.17 A graph of Gabriel’s
Horn

Solution. To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1

x2
dx

= lim
b→∞

π

∫ b

1

1

x2
dx

= lim
b→∞

π

(
−1

x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume ofπ cubic units. Sincewe have already
seen that regions with infinite length can have a finite area, this is not
too difficult to accept.
We now consider its surface area. The integral is straightforward to
setup:

SA = 2π

∫ ∞

1

1

x

√
1 + 1/x4 dx.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_gabriel.html
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Integrating this expression is not trivial. We can, however, compare it to
other improper integrals. Since 1 <

√
1 + 1/x4 on [1,∞), we can state

that

2π

∫ ∞

1

1

x
dx < 2π

∫ ∞

1

1

x

√
1 + 1/x4 dx.

By Key Idea 6.8.16, the improper integral on the left diverges. Since
the integral on the right is larger, we conclude it also diverges, mean-
ing Gabriel’s Horn has infinite surface area.
Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount of
paint, but since it has infinite surface area, we can never paint it.
Somehow this paradox is striking when we think about it in terms of
volume and area. However, we have seen a similar paradox before, as
referenced above. We know that the area under the curve y = 1/x2 on
[1,∞) is finite, yet the shape has an infinite perimeter. Strange things
can occur when we deal with the infinite.

A standard equation from physics is “Work = force × distance”, when the
force applied is constant. In Section 7.5 we learn how to compute work when
the force applied is variable.
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7.4.3 Exercises

Terms and Concepts

1. T/F: The integral formula for computing Arc Length was found by first approximating arc length with straight line
segments.

2. T/F: The integral formula for computing Arc Length includes a square-root, meaning the integration is probably
easy.

Problems

Exercise Group. In the following exercises, find the arc length of the function on the given interval.
3. f(x) = x on [0, 1]. 4. f(x) =

√
8x on [−1, 1].

5. f(x) =
1

3
x3/2 − x1/2 on [0, 1]. 6. f(x) =

1

12
x3 +

1

x
on [1, 4].

7. f(x) = 2x3/2 − 1

6

√
x on [1, 4]. 8. f(x) = cosh(x) on [− ln(2), ln(2)].

9. f(x) =
1

2

(
ex + e−x

)
on [0, ln(5)]. 10. f(x) =

1

12
x5 +

1

5x3
on [0.1, 1].

11. f(x) = ln
(
sin(x)

)
on [π/6, π/2]. 12. f(x) = ln

(
cos(x)

)
on [0, π/4].

Exercise Group. In the following exercises, set up the integral to compute the arc length of the function on the given
interval. Do not evaluate the integral.

13. f(x) = x2 on [0, 1]. 14. f(x) = x10 on [0, 1].
15. f(x) = ln(x) on [1, e]. 16. f(x) =

1

x
on [1, 2].

17. f(x) = cos(x) on [0, π/2]. 18. f(x) = sec(x) on [−π/4, π/4].

Exercise Group. In the following exercises, use Simpson’s Rule, with n = 4, to approximate the arc length of the
function on the given interval. Note: these are the same problems as in Exercises 13–18.

19. f(x) = x2 on [0, 1]. 20. f(x) = x10 on [0, 1].
21. f(x) = ln(x) on [1, e]. 22. f(x) =

1

x
on [1, 2].

23. f(x) = cos(x) on [0, π/2]. 24. f(x) = sec(x) on [−π/4, π/4].

Exercise Group. In the following exercises, find the surface area of the described solid of revolution.
25. The solid formed by revolving y = 2x on [0, 1]

about the x-axis.
26. The solid formed by revolving y = 2x on [0, 1]

about the y-axis.
27. The solid formed by revolving y = x2 on [0, 1]

about the y-axis.
28. The solid formed by revolving y = x3 on [0, 1]

about the x-axis.

Exercise Group. The following arc length and surface area problems lead to improper integrals. Although the hy-
potheses of Theorem 7.4.3 and Theorem 7.4.11 are not satisfied, the improper integrals converge, and formulas for
arc length and surface area still give the correct result.

29. Find the length of the curve f(x) =
√
x on

[0, 1]. (Note: this is the same as the length of
f(x) = x2 on [0, 1]. Why?)

30. Find the length of the curve f(x) =
√
1− x2

on [−1, 1]. (Note: this describes the top half of
a circle with radius 1.)

31. Find the length of the curve f(x) =
√
1− x2/9

on [−3, 3]. (Note: this describes the top half of
an ellipse with a major axis of length 6 and a
minor axis of length 2.)

32. Find the surface area of the solid formed by
revolving y =

√
x on [0, 1] about the x-axis.
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33. Find the surface area of the sphere formed by
revolving y =

√
1− x2 on [−1, 1] about the

x-axis.
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7.5 Work

Work is the scientific term used to describe the action of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the newton; one newton is equal to one kg·m
s2 , and the

SI unit of distance is a meter (m). The fundamental unit of work is one newton–
meter, or a joule (J). That is, applying a force of one newton for one meter per-
forms one joule of work. In Imperial units (as used in the United States), force
is measured in pounds (lb) and distance is measured in feet (ft), hence work is
measured in ft–lb.

Mass and weight are closely re-
lated, yet different, concepts. The
mass m of an object is a quan-
titative measure of that object’s
resistance to acceleration. The
weight w of an object is a mea-
surement of the force applied to
the object by the acceleration of
gravity g.

Since the twomeasurements
are proportional,w = m·g, they
are often used interchangeably
in everyday conversation. When
computingwork, onemust be care-
ful to notewhich is being referred
to. When mass is given, it must
bemultiplied by the acceleration
of gravity to reference the related
force.

When force is constant, the measurement of work is straightforward. For
instance, lifting a 200 lb object 5 ft performs 200 · 5 = 1000 ft–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 ft rope up a vertical face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

7.5.1 Work Done by a Variable Force
In general, letF (x) be a force function on an interval [a, b]. Wewant tomeasure
the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by partitioning [a, b] into subinter-
vals a = x0 < x1 < · · · < xn = b and assuming that F is constant on each
subinterval. Let ci be a value in the ith subinterval [xi−1, xi]. Then the work
done on this interval is approximatelyWi ≈ F (ci) · (xi − xi−1) = F (ci)∆xi, a
constant force × the distance over which it is applied. The total work is

W =

n∑
i=1

Wi ≈
n∑

i=1

F (ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero gives an exact value of work which can be evaluated through a definite
integral.

Key Idea 7.5.1 Work.

Let F (x) be a continuous function on [a, b] describing the amount of
force being applied to an object in the direction of travel from distance
x = a to distance x = b. The total workW done on [a, b] is

W =

∫ b

a

F (x) dx.

Example 7.5.2 Computing work performed: applying variable force.

A 60m climbing rope is hanging over the side of a tall cliff. How much
work is performed in pulling the rope up to the top, where the rope has
a linear mass density of 66 g

m?
Solution. Weneed to create a force functionF (x)on the interval [0, 60].
To do so, wemust first decide what x is measuring: is it the length of the
rope still hanging or is it the amount of rope pulled in? As long as we
are consistent, either approach is fine. We adopt for this example the
convention that x is the amount of rope pulled in. This seems to match
intuition better; pulling up the first 10meters of rope involves x = 0 to
x = 10 instead of x = 60 to x = 50.
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As x is the amount of rope pulled in, the amount of rope still hanging is
60− x. This length of rope has a mass of 66 g

m or 0.066
kg
m . The mass of

the rope still hanging is 0.066(60 − x) kg; multiplying this mass by the
acceleration of gravity, 9.8 m

s2 , gives our variable force function

F (x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0

0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in lifting the entire rope 60me-
ters. The ropeweighs 60×0.066×9.8 = 38.808N, so thework applying
this force for 60meters is 60×38.808 = 2, 328.48 J. This is exactly twice
the work calculated before (and we leave it to the reader to understand
why.)

Example 7.5.3 Computing work performed: applying variable force.

Consider again pulling a 60m rope up a cliff face, where the rope has a
mass of 66 g

m . At what point is exactly half the work performed?
Solution. From Example 7.5.2 we know the total work performed is
1, 164.24 J. We want to find a height h such that the work in pulling the
rope from a height of x = 0 to a height of x = h is 582.12, or half the
total work. Thus we want to solve the equation∫ h

0

0.6468(60− x) dx = 582.12

for h. ∫ h

0

0.6468(60− x) dx = 582.12

(
38.808x− 0.3234x2

) ∣∣∣h
0
= 582.12

38.808h− 0.3234h2 = 582.12

−0.3234h2 + 38.808h− 582.12 = 0.

Apply the Quadratic Formula:

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57.
Thus about half the work is done pulling up the first 17.57m; the other
half of the work is done pulling up the remaining 42.43m.

In Example 7.5.3, we find that
half of the work performed in
pulling up a 60m rope is done
in the last 42.43m. Why is it
not coincidental that 60/

√
2 =

42.43?
Example 7.5.4 Computing work performed: applying variable force.

A box of 100 lb of sand is being pulled up at a uniform rate a distance
of 50 ft over 1minute. The sand is leaking from the box at a rate of 1 lb

s .
The box itself weighs 5 lb and is pulled by a rope weighing 0.2 lb

ft .
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1. How much work is done lifting just the rope?

2. How much work is done lifting just the box and sand?

3. What is the total amount of work performed?

Solution.

1. We start by forming the force function Fr(x) for the rope (where
the subscript denotes we are considering the rope). As in the pre-
vious example, let x denote the amount of rope, in feet, pulled in.
(This is the same as saying x denotes the height of the box.) The
weight of the rope with x feet pulled in is Fr(x) = 0.2(50− x) =
10− 0.2x. (Note that we do not have to include the acceleration
of gravity here, for theweight of the rope per foot is given, not its
mass per meter as before.) The work performed lifting the rope is

Wr =

∫ 50

0

(10− 0.2x) dx = 250ft–lb.

2. The sand is leaving the box at a rate of 1 lb
s . As the vertical trip

is to take one minute, we know that 60 lb will have left when the
box reaches its final height of 50 ft. Again letting x represent the
height of the box, we have two points on the line that describes
the weight of the sand: when x = 0, the sand weight is 100 lb,
producing the point (0, 100); when x = 50, the sand in the box
weighs 40 lb, producing the point (50, 40). The slope of this line is
100−40
0−50 = −1.2, giving the equation of the weight of the sand at
height x asw(x) = −1.2x+100. The box itself weighs a constant
5 lb, so the total force function is Fb(x) = −1.2x+ 105. Integrat-
ing from x = 0 to x = 50 gives the work performed in lifting box
and sand:

Wb =

∫ 50

0

(−1.2x+ 105) dx = 3750ft–lb.

3. The total work is the sum ofWr andWb: 250+3750 = 4000 ft–lb.
We can also arrive at this via integration:

W =

∫ 50

0

(Fr(x) + Fb(x)) dx

=

∫ 50

0

(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0

(−1.4x+ 115) dx

= 4000ft–lb.

7.5.2 Hooke’s Law and Springs
Hooke’s Law states that the force required to compress or stretch a springx units
from its natural length is proportional to x; that is, this force is F (x) = kx for
some constant k. For example, if a force of 1N stretches a given spring 2 cm,
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then a force of 5N will stretch the spring 10 cm. Converting the distances to
meters, wehave that stretching this spring 0.02 cm requires a force ofF (0.02) =
k(0.02) = 1 N, hence k = 1/0.02 = 50 N

m .

Example 7.5.5 Computing work performed: stretching a spring.

A force of 20 lb stretches a spring from a natural length of 7 inches to a
length of 12 inches. How much work was performed in stretching the
spring to this length?
Solution. In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do
not care that 20 lb of force stretches the spring to a length of 12 inches,
but rather that a force of 20 lb stretches the spring by 5 inches. This is
illustrated in Figure 7.5.6; we only measure the change in the spring’s
length, not the overall length of the spring.

F

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Figure 7.5.6 Illustrating the important
aspects of stretching a spring in com-
puting work in Example 7.5.5

Converting the units of length to feet, we have

F (5/12) = 5/12k = 20 lb.

Thus k = 48 lb
ft and F (x) = 48x.

We compute the total work performed by integrating F (x) from x = 0
to x = 5/12:

W =

∫ 5/12

0

48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667ft–lb.

7.5.3 Pumping Fluids
Another useful example of the applicationof integration to computework comes
in the pumping of fluids, often illustrated in the context of emptying a storage
tank by pumping the fluid out the top. This situation is different than our previ-
ous examples for the forces involved are constant. After all, the force required
to move one cubic foot of water (about 62.4 lb ) is the same regardless of its
location in the tank. What is variable is the distance that cubic foot of water has
to travel; water closer to the top travels less distance than water at the bottom,
producing less work.

Table 7.5.7 Weight and Mass densities

Fluid lb/ft3 kg/m3

Concrete 150 2400

Fuel Oil 55.46 890.13

Gasoline 45.93 737.22

Iodine 307 4927

Methanol 49.3 791.3

Mercury 844 13546

Milk 63.6–65.4 1020–1050
Water 62.4 1000



CHAPTER 7. APPLICATIONS OF INTEGRATION 394

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Example 7.5.8 Computing work performed: pumping fluids.

A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is
filled with water, which weighs approximately 62.4 lb

ft3 . Compute the
amount of work performed by pumping the water up to a point 5 feet
above the top of the tank.
Solution. Wewill refer often to Figure 7.5.9 which illustrates the salient
aspects of this problem.

y

0

30

35

35
−
y i

10

yi−1

yi }
∆yi

Figure 7.5.9 Illustrating a water tank
in order to compute the work re-
quired to empty it in Example 7.5.8

We start as we often do: we partition an interval into subintervals. We
orient our tank vertically since this makes intuitive sense with the base
of the tank at y = 0. Hence the top of the water is at y = 30, meaning
we are interested in subdividing the y-interval [0, 30] into n subintervals
as

0 = y0 < y1 < · · · < yn = 30.

Consider the work Wi of pumping only the water residing in the ith
subinterval, illustrated in Figure 7.5.9. The force required to move this
water is equal to its weight which we calculate as volume × density.
The volume of water in this subinterval is Vi = 102π∆yi; its density
is 62.4 lb

ft3 . Thus the required force is 6240π∆yi lb.
We approximate the distance the force is applied by using any y-value
contained in the ith subinterval; for simplicity, we arbitrarily use yi for
now (it will not matter later on). The water will be pumped to a point 5
feet above the top of the tank, that is, to the height of y = 35 ft. Thus
the distance the water at height yi travels is 35− yi ft.
In all, the approximate workWi performed in moving the water in the
ith subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi).

To approximate the total work performed in pumping out all the water
from the tank, we sum all the workWi performed in pumping the water
from each of the n subintervals of [0, 30]:

W ≈
n∑

i=1

Wi =
n∑

i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to
0 gives

W =

∫ 30

0

6240π(35− y) dy

= 6240π
(
35y − 1/2y2

) ∣∣∣30
0

= 11, 762, 123ft–lb

≈ 1.176× 107 ft–lb.

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.5.10 shows the tank from
Example 7.5.8 without the ith subinterval identified.

y

0

30

35

y

35
−

y i

10

V (y) = 100πdy

Figure 7.5.10 A simplified illustration
for computing work

Instead, we just drawonedifferential element. This helps establish the height
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a small amount of water must travel along with the force required to move it
(where the force is volume × density).

We demonstrate the concepts again in the next examples.

Example 7.5.11 Computing work performed: pumping fluids.

A conical water tank has its top at ground level and its base 10 feet be-
low ground. The radius of the cone at ground level is 2 ft. It is filled with
water weighing 62.4 lb

ft3 and is to be emptied by pumping the water to
a spigot 3 feet above ground level. Find the total amount of work per-
formed in emptying the tank.
Solution. The conical tank is sketched in Figure 7.5.12. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of
the tank and y = 10 represent the top of the tank, but we choose to
keep the convention of the wording given in the problem and let y = 0
represent ground level and hence y = −10 represents the bottom of
the tank. The actual “height” of the water does not matter; rather, we
are concerned with the distance the water travels.

y

−10

0

3

y

3
−

y i

2

V (y) = π(y5 + 2)2dy

Figure 7.5.12 A graph of the conical
water tank in Example 7.5.11

The figure also sketches a differential element, a cross-sectional circle.
The radius of this circle is variable, depending on y. When y = −10, the
circle has radius 0; when y = 0, the circle has radius 2. These two points,
(−10, 0) and (0, 2), allow us to find the equation of the line that gives
the radius of the cross-sectional circle, which is r(y) = 1/5y+2. Hence
the volume of water at this height is V (y) = π(1/5y + 2)2dy, where
dy represents a very small height of the differential element. The force
required to move the water at height y is F (y) = 62.4× V (y).
The distance the water at height y travels is given by h(y) = 3−y. Thus
the total work done in pumping the water from the tank is

W =

∫ 0

−10

62.4π(1/5y + 2)2(3− y) dy

= 62.4π

∫ 0

−10

(
− 1

25
y3 − 17

25
y2 − 8

5
y + 12

)
dy

= 62.2π · 220
3

≈ 14, 376ft–lb.

Example 7.5.13 Computing work performed: pumping fluids.

A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end”
and a 6 ft “deep end.” It is to have its water pumped out to a point 2 ft
above the current top of the water. The cross-sectional dimensions of
thewater in the pool are given in Figure 7.5.14; note that the dimensions
are for the water, not the pool itself. Compute the amount of work per-
formed in draining the pool.

10 ft.

10 ft.
3 ft.

6 ft.

25 ft

Figure 7.5.14 The cross-section of a
swimming pool filled with water in Ex-
ample 7.5.13

Solution. For the purposes of this problem we choose to set y = 0
to represent the bottom of the pool, meaning the top of the water is at
y = 6.

y

0
y
3

6
8

(10, 0)

(15, 3)

x
0 10 15

Figure 7.5.15 Orienting the pool and
showing differential elements for Ex-
ample 7.5.13

Figure 7.5.15 shows the pool oriented with this y-axis, along with 2 dif-
ferential elements as the pool must be split into two different regions.
The top region lies in the y-interval of [3, 6], where the length of the
differential element is 25 ft as shown. As the pool is 20 ft wide, this dif-
ferential element represents a thin slice of water with volume V (y) =
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20 ·25 ·dy. The water is to be pumped to a height of y = 8, so the height
function is h(y) = 8 − y. The work done in pumping this top region of
water is

Wt = 62.4

∫ 6

3

500(8− y) dy = 327, 600ft–lb.

The bottom region lies in the y-interval of [0, 3]; we need to compute
the length of the differential element in this interval.
One end of the differential element is at x = 0 and the other is along the
line segment joining the points (10, 0) and (15, 3). The equation of this
line is y = 3/5(x − 10); as we will be integrating with respect to y, we
rewrite this equation as x = 5/3y+10. So the length of the differential
element is a difference of x-values: x = 0 and x = 5/3y + 10, giving a
length of x = 5/3y + 10.
Again, as the pool is 20 ft wide, this differential element represents a
thin slice of water with volume V (y) = 20 · (5/3y+10) · dy; the height
function is the same as before at h(y) = 8− y. The work performed in
emptying this part of the pool is

Wb = 62.4

∫ 3

0

20(5/3y + 10)(8− y) dy = 299, 520ft–lb.

The total work in empyting the pool is

W = Wb +Wt = 327, 600 + 299, 520 = 627, 120ft–lb.

Notice how the emptying of the bottom of the pool performs almost
as much work as emptying the top. The top portion travels a shorter
distance but has more water. In the end, this extra water producesmore
work.

The next section introduces one final application of the definite integral, the
calculation of fluid force on a plate.
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7.5.4 Exercises

Terms and Concepts

1. What are the typical units of work?
2. If a man has a mass of 80 kg on Earth, will his mass on the moon be bigger, smaller, or the same?
3. If a woman weighs 130 lb on Earth, will her weight on the moon be bigger, smaller, or the same?
4. Fill in the blanks:

Some integrals in this section are set up by multiplying a variable by a constant distance; others
are set up by multiplying a constant force by a variable .

Problems

5. A 100 ft rope, weighing 0.1 lb
ft , hangs over the edge of a tall building.

(a) How much work is done pulling the entire rope to the top of the building?

(b) How much rope is pulled in when half of the total work is done?

6. A 50m rope, with a mass density of 0.2 kg
m , hangs over the edge of a tall building.

(a) How much work is done pulling the entire rope to the top of the building?

(b) How much work is done pulling in the first 20 m?
7. A rope of length ℓ ft hangs over the edge of tall cliff. (Assume the cliff is taller than the length of the rope.) The

rope has a weight density of d lb
ft .

(a) How much work is done pulling the entire rope to the top of the cliff?

(b) What percentage of the total work is done pulling in the first half of the rope?

(c) How much rope is pulled in when half of the total work is done?

8. A 20m rope with mass density of 0.5 kg
m hangs over the edge of a 10m building. Howmuch work is done pulling

the rope to the top?

9. A crane lifts a 2000 lb load vertically 30 ft with a 1 in cable weighing 1.68 lb
ft .

(a) How much work is done lifting the cable alone?

(b) How much work is done lifting the load alone?

(c) Could one conclude that the work done lifting the cable is negligible compared to the work done lifting
the load?

10. A100 lb bag of sand is lifted uniformly 120 ft in one minute. Sand leaks from the bag at a rate of 1/4 lb
s . What is

the total work done in lifting the bag?
11. A box weighing 2 lb lifts 10 lb of sand vertically 50 ft. A crack in the box allows the sand to leak out such that

9 lb of sand is in the box at the end of the trip. Assume the sand leaked out at a uniform rate. What is the total
work done in lifting the box and sand?

12. A force of 1000 lb compresses a spring 3 in. How much work is performed in compressing the spring?
13. A force of 2N stretches a spring 5 cm. How much work is performed in stretching the spring?
14. A force of 50 lb compresses a spring from a natural length of 18 in to 12 in. How much work is performed in

compressing the spring?
15. A force of 20 lb stretches a spring from a natural length of 6 in to 8 in. Howmuch work is performed in stretching

the spring?
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16. A force of 7N stretches a spring from a natural length of 11 cm to 21 cm. How much work is performed in
stretching the spring from a length of 16 cm to 21 cm?

17. A force of f N stretches a spring d m from its natural length. How much work is performed in stretching the
spring?

18. A 20 lb weight is attached to a spring. The weight rests on the spring, compressing the spring from a natural
length of 1 ft to 6 in.

Howmuchwork is done in lifting the box 1.5 ft (i.e, the springwill be stretched 1 ft beyond its natural length)?
19. A 20 lb weight is attached to a spring. The weight rests on the spring, compressing the spring from a natural

length of 1 ft to 6 in.
How much work is done in lifting the box 6 in (i.e, bringing the spring back to its natural length)?

20. A 5m tall cylindrical tank with radius of 2m is filled with 3m of gasoline, with a mass density of 737.22 kg
m3 .

Compute the total work performed in pumping all the gasoline to the top of the tank.

21. A 6 ft cylindrical tank with a radius of 3 ft is filled with water, which has a weight density of 62.4 lb
ft3 . The water

is to be pumped to a point 2 ft above the top of the tank.

(a) How much work is performed in pumping all the water from the tank?

(b) How much work is performed in pumping 3 ft of water from the tank?

(c) At what point is 1/2 of the total work done?

22. A gasoline tanker is filled with gasoline with a weight density of 45.93 lb
ft3 . The dispensing valve at the base is

jammed shut, forcing the operator to empty the tank via pumping the gas to a point 1 ft above the top of the
tank. Assume the tank is a perfect cylinder, 20 ft long with a diameter of 7.5 ft. Howmuch work is performed in
pumping all the gasoline from the tank?

23. A fuel oil storage tank is 10 ft deep with trapezoidal sides, 5 ft at the top and 2 ft at the bottom, and is 15 ft wide
(see diagram below). Given that fuel oil weighs 55.46 lb

ft3 , find the work performed in pumping all the oil from
the tank to a point 3 ft above the top of the tank.

10

2

15

5

24. A conical water tank is 5m deep with a top radius of 3m. (This is similar to Example 7.5.11.) The tank is filled
with pure water, with a mass density of 1000 kg

m3 .

(a) Find the work performed in pumping all the water to the top of the tank.

(b) Find the work performed in pumping the top 2.5m of water to the top of the tank.

(c) Find the work performed in pumping the top half of the water, by volume, to the top of the tank.
25. A water tank has the shape of a truncated cone, with dimensions given below, and is filled with water with a

weight density of 62.4 lb
ft3 . Find the work performed in pumping all water to a point 1 ft above the top of the

tank.
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2 ft

5 ft
10 ft

26. A water tank has the shape of an inverted pyramid, with dimensions given below, and is filled with water with
a mass density of 1000 kg

m3 . Find the work performed in pumping all water to a point 5m above the top of the
tank.

2 m

2 m

7 m

27. A water tank has the shape of a truncated, inverted pyramid, with dimensions given below, and is filled with
water with a mass density of 1000 kg

m3 . Find the work performed in pumping all water to a point 1m above the
top of the tank.

5 m

5 m

2 m
2 m

9 m
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7.6 Fluid Forces

In the unfortunate situation of a car driving into a body of water, the conven-
tional wisdom is that the water pressure on the doors will quickly be so great
that they will be effectively unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiting until
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
options.)

How can this be true? How much force does it take to open the door of
a submerged car? In this section we will find the answer to this question by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equations:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definition.

Definition 7.6.1 Fluid Pressure.

Let w be the weight-density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definition to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example 7.6.2 Computing fluid force.

1. A cylindrical storage tank has a radius of 2 ft and holds 10 ft of a
fluid with a weight-density of 50 lb

ft3 . (See Figure 7.6.3.) What is
the force exerted on the base of the cylinder by the fluid?

2 ft

10
ft

Figure 7.6.3 A cylindrical tank in Ex-
ample 7.6.2

2. A rectangular tank whose base is a 5 ft square has a circular hatch
at the bottom with a radius of 2 ft. The tank holds 10 ft of a fluid
with a weight-density of 50 lb

ft3 . (See Figure 7.6.4.) What is the
force exerted on the hatch by the fluid?

5 ft 5 ft
2 ft

10
ft

Figure 7.6.4 A rectangular tank in Ex-
ample 7.6.2

Solution.

1. Using Definition 7.6.1, we calculate that the pressure exerted on
the cylinder’s base isw ·d =50 lb

ft3 ×10 ft=500 lb
ft2 . The area of the

base is π · 22 = 4π ft2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effectively just computed the weight of the fluid in
the tank.

2. The dimensions of the tank in this problem are irrelevant. All we
are concernedwith are the dimensions of the hatch and the depth
of the fluid. Since the dimensions of the hatch are the same as
the base of the tank in the previous part of this example, as is the
depth, we see that the fluid force is the same. That is, F = 6283
lb. A key concept to understand here is that we are effectively
measuring the weight of a 10 ft column of water above the hatch.
The size of the tank holding the fluid does not matter.
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The previous example demonstrates that computing the force exerted on a
horizontally oriented plate is relatively easy to compute. What about a vertically
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all directions. Thus the pressure on any portion of a plate that is 1 ft be-
low the surface of water is the same no matter how the plate is oriented. (Thus
a hollow cube submerged at a great depth will not simply be “crushed” from
above, but the sides will also crumple in. The fluid will exert force on all sides of
the cube.)

So consider a vertically oriented plate as shown in Figure 7.6.5 submerged in
a fluid with weight-densityw. What is the total fluid force exerted on this plate?
We find this force by first approximating the force on small horizontal strips. }∆yi

ℓ(ci)

di

Figure 7.6.5 A thin, vertically ori-
ented plate submerged in a fluid with
weight-density w

Let the top of the plate be at depth b and let the bottom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the bottom of the
plate is 3 ft under the surface, we have a = −3. We will come back to this later.)
We partition the interval [a, b] into n subintervals

a = y0 < y1 < · · · < yn = b,

with the ith subinterval having length∆yi. The force Fi exerted on the plate in
the ith subinterval is Fi = Pressure× Area.

The pressure is depth times the weight density w. We approximate the
depth of this thin strip by choosing any value di in [yi−1, yi]; the depth is ap-
proximately −di. (Our convention has di being a negative number, so −di is
positive.) For convenience, we let di be an endpoint of the subinterval; we let
di = yi.

The area of the thin strip is approximately length × width. The width is∆yi.
The length is a function of some y-value ci in the ith subinterval. We state the
length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w × ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each
of the n thin strips:

F =

n∑
i=1

Fi ≈
n∑

i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by
taking a limit as the subinterval lengths go to 0; we evaluate this limit with a
definite integral.

Key Idea 7.6.6 Fluid Force on a Vertically Oriented Plate.

Let a vertically oriented plate be submerged in a fluid with weight-
density w, where the top of the plate is at y = b and the bottom is
at y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =

∫ b

a

w · (−y) · ℓ(y) dy.
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2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate
by the fluid is

F =

∫ b

a

w · d(y) · ℓ(y) dy.

Example 7.6.7 Finding fluid force.

Consider a thin plate in the shape of an isosceles triangle as shown in
Figure 7.6.8, submerged in water with a weight-density of 62.4 lb

ft3 . If
the bottom of the plate is 10 ft below the surface of the water, what is
the total fluid force exerted on this plate?

4 ft
4
ft

Figure 7.6.8 A thin plate in the
shape of an isosceles triangle in Exam-
ple 7.6.7

Solution. We approach this problem in two different ways to illustrate
the different ways Key Idea 7.6.6 can be implemented. First we will let
y = 0 represent the surface of the water, then we will consider an alter-
nate convention.

1. We let y = 0 represent the surface of the water; therefore the
bottom of the plate is at y = −10. We center the triangle on the
y-axis as shown in Figure 7.6.9. The depth of the plate at y is −y
as indicated by the Key Idea. We now consider the length of the
plate at y. We need to find equations of the left and right edges
of the plate. The right hand side is a line that connects the points
(0,−10) and (2,−6): that line has equation x = 1/2(y + 10).
(Find the equation in the familiar y = mx + b format and solve
for x.) Likewise, the left hand side is described by the line x =
−1/2(y+10). The total length is the distance between these two
lines: ℓ(y) = 1/2(y + 10)− (−1/2(y + 10)) = y + 10.

(2,−6)(−2,−6)

(0,−10)

y

y

x
−2−1 1 2

−10

−8

−4

−2

water line

d
(y
)
=

−
y

Figure 7.6.9 Sketching the triangular
plate in Example 7.6.7 with the con-
vention that the water level is at y =
0

The total fluid force is then:

F =

∫ −6

−10

62.4(−y)(y + 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. Sometimes it seems easier to orient the thin plate nearer the ori-
gin. For instance, consider the convention that the bottom of
the triangular plate is at (0, 0), as shown in Figure 7.6.10. The
equations of the left and right hand sides are easy to find. They
are y = 2x and y = −2x, respectively, which we rewrite as
x = 1/2y and x = −1/2y. Thus the length function is ℓ(y) =
1/2y − (−1/2y) = y.

(2, 4)(−2, 4)
y

y

x
−2−1 1 2

10

8

6

2

water line

d
(y
)
=

10
−

y

Figure 7.6.10 Sketching the triangular
plate in Example 7.6.7 with the con-
vention that the base of the triangle
is at (0, 0)

As the surface of the water is 10 ft above the base of the plate, we
have that the surface of the water is at y = 10. Thus the depth
function is the distance between y = 10 and y; d(y) = 10 − y.
We compute the total fluid force as:

F =

∫ 4

0

62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the
plate in the coordinate plane as long as we are consistent.
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Example 7.6.11 Finding fluid force.

Find the total fluid force on a car door submerged up to the bottomof its
window in water, where the car door is a rectangle 40 in long and 27 in
high (based on the dimensions of a 2005 Fiat Grande Punto.)
Solution. The car door, as a rectangle, is drawn in Figure 7.6.12. Its
length is 10/3 ft and its height is 2.25 ft. We adopt the convention that
the top of the door is at the surface of the water, both of which are at
y = 0. Using the weight-density of water of 62.4 lb

ft3 , we have the total
force as

F =

∫ 0

−2.25

62.4(−y)10/3 dy

=

∫ 0

−2.25

−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a
car door while seated inside, making the door effectively impossible to
open. This is counter-intuitive as most assume that the door would be
relatively easy to open. The truth is that it is not, hence the survival tips
mentioned at the beginning of this section.

(3.3, 0)

(3.3,−2.25)(0,−2.25)

(0, 0)

y

y

x

Figure 7.6.12 Sketching a submerged
car door in Example 7.6.11

Example 7.6.13 Finding fluid force.

An underwater observation tower is being built with circular viewing
portholes enabling visitors to see underwater life. Each vertically ori-
ented porthole is to have a 3 ft diameter whose center is to be located
50 ft underwater. Find the total fluid force exerted on each porthole.
Also, compute the fluid force on a horizontally oriented porthole that is
under 50 ft of water.

y

y

x

−2 −1 1 2

−2

−1

1

2

50

water line

not to scale

d
(y
)
=

5
0
−

y

Figure 7.6.14 Measuring the fluid
force on an underwater porthole in
Example 7.6.13

Solution. We place the center of the porthole at the origin, meaning
the surface of the water is at y = 50 and the depth function will be
d(y) = 50− y; see Figure 7.6.14
The equation of a circle with a radius of 1.5 is x2 + y2 = 2.25; solv-
ing for x we have x = ±

√
2.25− y2, where the positive square root

corresponds to the right side of the circle and the negative square root
corresponds to the left side of the circle. Thus the length function at
depth y is ℓ(y) = 2

√
2.25− y2. Integrating on [−1.5, 1.5] we have:

F = 62.4

∫ 1.5

−1.5

2(50− y)
√
2.25− y2 dy

= 62.4

∫ 1.5

−1.5

(
100
√
2.25− y2 − 2y

√
2.25− y2

)
dy

= 6240

∫ 1.5

−1.5

(√
2.25− y2

)
dy − 62.4

∫ 1.5

−1.5

(
2y
√
2.25− y2

)
dy.

The second integral above can be evaluated using substitution. Let u =
2.25 − y2 with du = −2y dy. The new bounds are: u(−1.5) = 0 and
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u(1.5) = 0; the new integral will integrate from u = 0 to u = 0, hence
the integral is 0.
The first integral above finds the area of half a circle of radius 1.5, thus
the first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total
fluid force on a vertically oriented porthole is 22, 054 lb.
Finding the force on a horizontally oriented porthole is more straightfor-
ward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the
fluid force applied to a vertically oriented circle whose center is at depth
d is the same as force applied to a horizontally oriented circle at depth
d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revolution. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximating the solution, then refining the approximation, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is bene-
ficial as it helps solve problems found in the exercises, and other mathematical
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summation of approximations; each summation was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.
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7.6.1 Exercises

Terms and Concepts

1. State in your own words Pascal’s Principle.
2. State in your own words how pressure is different from force.

Problems

Exercise Group. In the following exercises, find the fluid force exerted on the given plate, submerged in water with
a weight density of 62.4 lb

ft3 .
3.

2 ft

2 ft

1 ft

4.

1 ft

2 ft

1 ft

5.

4 ft

5 ft

6 ft

6.

4 ft

5 ft

6 ft

7.

2 ft

5 ft

8.

4 ft

5 ft
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9.

4 ft

2 ft

5 ft

10.

4 ft

2 ft

5 ft

11.

2 ft

2 ft

1 ft

12.

2 ft

2 ft

1 ft

Exercise Group. In the following exercises, the side of a container is pictured. Find the fluid force exerted on this
plate when the container is full of:

(a) water, with a weight density of 62.4 lb
ft3 , and

(b) concrete, with a weight density of 150 lb
ft3 .

13.

3 ft

5 ft

14.

4 ft

y = x2

4 ft

15.

4 ft

y = 4− x2

4 ft

16.

2 ft

y = −
√
1− x2
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17.

2 ft

y =
√
1− x2

18.

6 ft

y = −
√
9− x2

19. How deepmust the center of a vertically oriented circular plate with a radius of 1 ft be submerged in water, with
a weight density of 62.4 lb

ft3 , for the fluid force on the plate to reach 1, 000 lb?

20. How deep must the center of a vertically oriented square plate with a side length of 2 ft be submerged in water,
with a weight density of 62.4 lb

ft3 , for the fluid force on the plate to reach 1,000 lb?



Chapter 8

Differential Equations

One of the strengths of calculus is its ability to describe real-world phenomena.
We have seen hints of this in our discussion of the applications of derivatives
and integrals in the previous chapters. The process of formulating an equation
ormultiple equations to describe a physical phenomenon is calledmathematical
modeling. As a simple example, populations of bacteria are often described as
“growing exponentially.” Looking in a biology text, we might see P (t) = P0e

kt,
where P (t) is the bacteria population at time t, P0 is the initial population at
time t = 0, and the constant k describes how quickly the population grows. This
equation for exponential growth arises from the assumption that the population
of bacteria grows at a rate proportional to its size. Recalling that the derivative
gives the rate of change of a function, we can describe the growth assumption
precisely using the equation P ′ = kP . This equation is called a differential
equation, and these equations are the subject of the current chapter.

8.1 Graphical and Numerical Solutions to Differential
Equations

In Section 5.1, we were introduced to the idea of a differential equation. Given
a function y = f(x), we defined a differential equation as an equation involving
y, x, and derivatives of y. We explored the simple differential equation y ′ = 2x,
and saw that a solution to a differential equation is simply a function that satisfies
the differential equation.

8.1.1 Introduction and Terminology

Definition 8.1.1 Differential Equation.

Given a function y = f(x), a differential equation is an equation relat-
ing x, y, and derivatives of y.

• The variable x is called the independent variable.

• The variable y is called the dependent variable.

• The order of the differential equation is the order of the highest
derivative of y that appears in the equation.

408
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Let us return to the simple differential equation

y ′ = 2x.

To find a solution, we must find a function whose derivative is 2x. In other
words, we seek an antiderivative of 2x. The function

y = x2

is an antiderivative of 2x, and solves the differential equation. So do the func-
tions

y = x2 + 1

and
y = x2 − 2346.

We call the function
y = x2 + C,

with C an arbitrary constant of integration, the general solution to the differen-
tial equation.

In order to specify the value of the integration constant C, we require addi-
tional information. For example, if we know that y(1) = 3, it follows thatC = 2.
This additional information is called an initial condition.

Definition 8.1.2 Initial Value Problem.

A differential equation paired with an initial condition (or initial condi-
tions) is called an initial value problem.
The solution to an initial value problem is called a particular solution. A
particular solution does not include arbitrary constants.
The family of solutions to a differential equation that encompasses all
possible solutions is called the general solution to the differential equa-
tion.

Note: Ageneral solution typically
includes one or more arbitrary
constants. Different values of the
constant(s) specify differentmem-
bers in the family of solutions. The
particular solution to an initial value
problem is the specific member
in the family of solutions that cor-
responds to the given initial con-
dition(s).

Example 8.1.3 A simple first-order differential equation.

Solve the differential equation y ′ = 2y.
Solution. The solution is a function y such that differentiation yields
twice the original function. Unlike our starting example, finding the so-
lution here does not involve computing an antiderivative. Notice that
“integrating both sides” would yield the result y =

∫
2y dx, which is not

useful. Without knowledge of the function y, we can’t compute the in-
definite integral. Later sections will explore systematic ways to find ana-
lytic solutions to simple differential equations. For now, a bit of thought
might let us guess the solution

y = e2x.

Notice that application of the chain rule yields y ′ = 2e2x = 2y. Another
solution is given by

y = −3e2x.

In fact,
y = Ce2x,

where C is any constant, is the general solution to the differential equa-
tion because y ′ = 2Ce2x = 2y.
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If we are provided with a single initial condition, say y(0) = 3/2, we can
identify C = 3/2 so that

y =
3

2
e2x

is the particular solution to the initial value problem

y ′ = 2y, with y(0) =
3

2
.

Figure 8.1.4 shows variousmembers of the general solution to the differ-
ential equation y ′ = 2y. Each C value yields a different member of the
family, and a different function. We emphasize the particular solution
corresponding to the initial condition y(0) = 3/2.

−2 −1 1 2

−10

−5

5

10

x

y

Figure 8.1.4A representation of some
of themembers of general solution to
the differential equation y ′ = 2y, in-
cluding the particular solution to the
initial value problemwith y(0) = 3/2,
from Example 8.1.3

Example 8.1.5 A second-order differential equation.

Solve the differential equation y ′′ + 9y = 0.
Solution. We seek a function whose second derivative is negative 9
multiplied by the original function. Both sin(3x) and cos(3x) have this
feature. The general solution to the differential equation is given by

y = C1 sin(3x) + C2 cos(3x),

where C1 and C2 are arbitrary constants. To fully specify a particular
solution, we require two additional conditions. For example, the initial
conditions y(0) = 1 and y ′(0) = 3 yield C1 = C2 = 1.

The differential equation in Example 8.1.5 is second order, because the equa-
tion involves a second derivative. In general, the number of initial conditions
required to specify a particular solution depends on the order of the differential
equation. For the remainder of the chapter, we restrict our attention to first
order differential equations and first order initial value problems.

Example 8.1.6 Verifying a solution to the differential equation.

Which of the following is a solution to the differential equation

y ′ +
y

x
−√

y = 0?

(a) y = C (1 + ln(x))2

(b) y =

(
1

3
x+

C√
x

)2

(c) y = Ce−3x +
√
sin(x)

Solution. Verifying a solution to a differential equation is simply an ex-
ercise in differentiation and simplification. We substitute each potential
solution into the differential equation to see if it satisfies the equation.

(a) Testing the potential solution y = C (1 + ln(x))2:

Differentiating, we have y ′ =
2C(1 + ln(x))

x
. Substituting into
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the differential equation,

2C(1 + ln(x))
x

+
C(1 + ln(x))2

x
−
√
C(1 + ln(x))

= (1 + ln(x))
(
2C

x
+

C(1 + ln(x))
x

−
√
C

)
̸= 0.

Since it doesn’t satisfy the differential equation, y = C(1+ln(x))2
is not a solution.

(b) Testing the potential solution y =

(
1

3
x+

C√
x

)2

:

Differentiating, we have y ′ = 2

(
1

3
x+

C√
x

)(
1

3
− C

2x3/2

)
.

Substituting into the differential equation,

2

(
1

3
x+

C√
x

)(
1

3
− C

2x3/2

)
+

1

x

(
1

3
x+

C√
x

)2

−
(
1

3
x+

C√
x

)
=

(
1

3
x+

C√
x

)(
2

3
− C

x3/2
+

1

3
+

C

x3/2
− 1

)
= 0. (Note how the second parenthetical grouping above reduces to 0.)

Thus y =

(
1

3
x+

C√
x

)2

is a solution to the differential equation.

(c) Testing the potential solution y = Ce−3x +
√
sin(x):

Differentiating, y ′ = −3Ce−3x+
cos(x)

2
√
sin(x)

. Substituting into the

differential equation,

−3Ce−3x+
cos(x)

2
√
sin(x)

+
Ce−3x +

√
sin(x)

x
−
√

Ce−3x +
√
sin(x) ̸= 0.

The function y = Ce−3x +
√
sin(x) is not a solution to the differ-

ential equation.

Example 8.1.7 Verifying a solution to a differential equation.

Verify that x2 + y2 = Cy is a solution to y ′ =
2xy

x2 − y2
.

Solution. The solution in this example is called an implicit solution. That
means the dependent variable y is a function of x, but has not been
explicitly solved for. Verifying the solution still involves differentiation,
but we must take the derivatives implicitly. Differentiating, we have

2x+ 2yy ′ = Cy ′.
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Solving for y ′, we have

y ′ =
2x

C − 2y
.

From the solution, we know that C =
x2 + y2

y
. Then

y ′ =
2x

x2 + y2

y
− 2y

=
2xy

x2 + y2 − 2y2

=
2xy

x2 − y2
.

We have verified that x2 + y2 = Cy is a solution to y ′ =
2xy

x2 − y2
.

8.1.2 Graphical Solutions to Differential Equations
In the examples we have explored so far, we have found exact forms for the
functions that solve the differential equations. Solutions of this type are called
analytic solutions. Many times a differential equation has a solution, but it is dif-
ficult or impossible to find the solution analytically. This is analogous to algebraic
equations. The algebraic equationx2+3x−1 = 0has two real solutions that can
be found analytically by using the quadratic formula. The equation cos(x) = x
has one real solution, but we can’t find it analytically. As shown in Figure 8.1.8,
we can find an approximate solution graphically by plotting cos(x) and x and
observing the x-value of the intersection. We can similarly use graphical tools
to understand the qualitative behavior of solutions to a first order-differential
equation.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 8.1.8 Graphically finding an ap-
proximate solution to cos(x) = x

Consider the first-order differential equation

y ′ = f(x, y).

The function f could be any function of the two variables x and y. Written in
this way, we can think of the function f as providing a formula to find the slope
of a solution at a given point in the xy-plane. In other words, suppose a solu-
tion to the differential equation passes through the point (x0, y0). At the point
(x0, y0), the slope of the solution curve will be f(x0, y0). Since this calculation
of the slope is possible at any point (x, y)where the function f(x, y) is defined,
we can produce a plot called a slope field (or direction field) that shows the slope
of a solution at any point in the xy-plane where the solution is defined. Further,
this process can be done purely by working with the differential equation itself.
In other words, we can draw a slope field and use it to determine the qualita-
tive behavior of solutions to a differential equation without having to solve the
differential equation.

Definition 8.1.9 Slope Field.

A slope field for a first-order differential equation y ′ = f(x, y) is a plot
in the xy-planemade up of short line segments or arrows. At each point
(x0, y0) where f(x, y) is defined, the slope of the line segment is given
by f(x0, y0). Plots of solutions to a differential equation are tangent to
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the line segments in the slope field.

Example 8.1.10 Sketching a slope field.

Find a slope field for the differential equation y ′ = x+ y.
Solution. Because the function f(x, y) = x+ y is defined for all points
(x, y), every point in the xy-plane has an associated line segment. It is
not practical to draw an entire slope field by hand, but many tools exist
for drawing slope fields on a computer. Here, we explicitly calculate a
few of the line segments in the slope field.

• The slope of the line segment at (0, 0) is f(0, 0) = 0 + 0 = 0.

• The slope of the line segment at (1, 1) is f(1, 1) = 1 + 1 = 2.

• The slope of the line segment at (1,−1) is f(1,−1) = 1− 1 = 0.

• The slope of the line segment at (−2,−1) is f(−2,−1) = −2 −
1 = −3.

Though it is possible to continue this process to sketch a slope field, we
usually use a computer to make the drawing. Most popular computer
algebra systems can draw slope fields. There are also various online tools
that can make the drawings. The slope field for y ′ = x + y is shown in
Figure 8.1.11.

x

y

Figure 8.1.11 Slope field for y ′ = x+
y from Example 8.1.10

Example 8.1.12 A graphical solution to an initial value problem.

Approximate, with a sketch, the solution to the initial value problem
y ′ = x+ y, with y(1) = −1.
Solution. The solution to the initial value problem should be a continu-
ous smooth curve. Using the slope field, we can draw of a sketch of the
solution using the following two criteria:

1. The solution must pass through the point (1,−1).

2. When the solution passes through a point (x0, y0) it must be tan-
gent to the line segment at (x0, y0).

Essentially, we sketch a solution to the initial value problemby starting at
the point (1,−1) and “following the lines” in either direction. A sketch
of the solution is shown in Figure 8.1.13.

x

y

Figure 8.1.13 Solution to the initial
value problem y ′ = x + y, with
y(1) = −1 from Example 8.1.12

Example 8.1.14 Using a slope field to predict long term behavior.

Use the slope field for the differential equation y ′ = y(1− y), shown in
Figure 8.1.15, to predict long term behavior of solutions to the equation.

t

y

Figure 8.1.15 Slope field for the logis-
tic differential equation y ′ = y(1−y)
from Example 8.1.14

Solution. This differential equation, called the logistic differential equa-
tion, often appears in population biology to describe the size of a pop-
ulation. For that reason, we use t (time) as the independent variable
instead of x. We also often restrict attention to non-negative y-values
because negative values correspond to a negative population.
Looking at the slope field in Figure 8.1.15, we can predict long term be-
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havior for a given initial condition.

• If the initial y-value is negative (y(0) < 0), the solution curvemust
pass though the point (0, y(0)) and follow the slope field. We ex-
pect the solution y to become more and more negative as time
increases. Note that this result is not physically relevantwhen con-
sidering a population.

• If the initial y-value is greater than 0 but less than 1, we expect
the solution y to increase and level off at y = 1.

• If the initial y-value is greater than 1, we expect the solution y to
decrease and level off at y = 1.

The slope field for the logistic differential equation, along with represen-
tative solution curves, is shown in Figure 8.1.16. Notice that any solution
curve with positive initial value will tend towards the value y = 1. We
call this the carrying capacity.

t

y

Figure 8.1.16 Slope field for the logis-
tic differential equation y ′ = y(1−y)
from Example 8.1.14with a few repre-
sentative solution curves

8.1.3 Numerical Solutions toDifferential Equations: Euler’sMethod
While the slope field is an effective way to understand the qualitative behavior
of solutions to a differential equation, it is difficult to use a slope field to make
quantitative predictions. For example, if we have the slope field for the differ-
ential equation y ′ = x+ y from Example 8.1.10 along with the initial condition
y(0) = 1, we can understand the qualitative behavior of the solution to the ini-
tial value problem, but will struggle to predict a specific value, y(2) for example,
with any degree of confidence. The most straightforward way to predict y(2) is
to find the analytic solution to the the initial value problem and evaluate it at
x = 2. Unfortunately, we have already mentioned that it is impossible to find
analytic solutions to many differential equations. In the absence of an analytic
solution, a numerical solution can serve as an effective tool tomake quantitative
predictions about the solution to an initial value problem.

There aremany techniques for computing numerical solutions to initial value
problems. A course in numerical analysis will discuss various techniques along
with their strengths and weaknesses. The simplest technique is called Euler’s
Method.

Euler’sMethod is named for Leon-
hard Euler, a prolific Swiss math-
ematician during the 1700’s. His
last name is properly pronounced
“oil-er”, not “you-ler.”

Consider the first-order initial value problem

y ′ = f(x, y), with y(x0) = y0.

Using the definition of the derivative,

y ′(x) = lim
h→0

y(x+ h)− y(x)

h
.

This notation can be confusing at first, but “y(x)” simply means “the y-value
of the solution when the x-value is x”, and “y(x + h)” means “the y-value of
the solution when the x-value is x+ h”.

If we remove the limit but restrict h to be “small,” we have

y ′(x) ≈ y(x+ h)− y(x)

h
,

so that
f(x, y) ≈ y(x+ h)− y(x)

h
,
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because y ′ = f(x, y) according to the differential equation. Rearranging terms,

y(x+ h) ≈ y(x) + h f(x, y).

This statement says that if we know the solution (y-value) to the initial value
problem for somegivenx-value, we canfind an approximation for the solution at
the valuex+h by taking our y-value and addinghtimes the function f evaluated
at the x and y values. Euler’s method uses the initial condition of an initial value
problem as the starting point, and then uses the above idea to find approximate
values for the solution y at later x-values. The algorithm is summarized in Key
Idea 8.1.17.

Key Idea 8.1.17 Euler’s Method.

Consider the initial value problem

y ′ = f(x, y) with y(x0) = y0.

Let h be a small positive number andN be an integer.

1. For i = 0, 1, 2, . . . , N , define

xi = x0 + ih.

2. The value y0 is given by the initial condition. For i = 0, 1, 2, . . . , N − 1,
define

yi+1 = yi + hf(xi, yi).

This process yields a sequence ofN+1 points (xi, yi) for i = 0, 1, 2, . . . , N , where
(xi, yi) is an approximation for (xi, y(xi)).

Let’s practice Euler’s Method using a few concrete examples.

Example 8.1.18 Using Euler’s Method 1.

Find an approximation at x = 2 for the solution to y ′ = x + y with
y(1) = −1 using Euler’s Method with h = 0.5.
Solution. Our initial condition yields the starting values x0 = 1 and
y0 = −1. With h = 0.5, it takes N = 2 steps to get to x = 2. Using
steps 1 and 2 from the Euler’s Method algorithm,

x0 = 1 y0 = −1

x1 = x0 + h y1 = y0 + hf(x0, y0)

= 1 + 0.5 = −1 + 0.5(1− 1)

= 1.5 = −1

x2 = x0 + 2h y2 = y1 + hf(x1, y1)

= 1 + 2(0.5) = −1 + 0.5(1.5− 1)

= 2 = −0.75.

Using Euler’s method, we find the approximate y(2) ≈ −0.75.
To help visualize the Euler’s method approximation, these three points
(connected by line segments) are plotted along with the analytical solu-
tion to the initial value problem in Figure 8.1.19.

1 1.5 2

−1

−0.5

xy

Figure 8.1.19 Euler’s Method approxi-
mation to y ′ = x+ y with y(1) = −1
from Example 8.1.18, along with the
analytical solution to the initial value
problem

This approximation doesn’t appear terrific, though it is better than merely
guessing. Let’s repeat the previous example using a smaller h-value.
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Example 8.1.20 Using Euler’s Method 2.

Find an approximation on the interval [1, 2] for the solution to y ′ = x+y
with y(1) = −1 using Euler’s Method with h = 0.25.
Solution. Our initial condition yields the starting values x0 = 1 and
y0 = −1. With h = 0.25, we need N = 4 steps on the interval [1, 2]
Using steps 1 and 2 from the Euler’s Method algorithm (and rounding to
4 decimal points), we have

x0 = 1 y0 = −1

x1 = 1.25 y1 = −1 + 0.25(1− 1)

= −1

x2 = 1.5 y2 = −1 + 0.25(1.25− 1)

= −0.9375

x3 = 1.75 y3 = −0.9375 + 0.25(1.5− 0.9375)

= −0.7969

x4 = 2 y4 = −0.7969 + 0.25(1.75− 0.7969)

= −0.5586.

Using Euler’s method, we find y(2) ≈ −0.5586.
These five points, along with the points from Example 8.1.18 and the
analytic solution, are plotted in Figure 8.1.21.

1 1.5 2

−1

−0.5

h = 0.5

h = 0.25

xy

Figure 8.1.21 Euler’s Method approx-
imations to y ′ = x + y with y(1) =
−1 from Examples 8.1.18 and 8.1.20,
along with the analytical solution

Using the results from Examples 8.1.18 and 8.1.20, we can make a few ob-
servations about Euler’s method. First, the Euler approximation generally gets
worse aswe get farther from the initial condition. This is because Euler’smethod
involves two sources of error. The first comes from the fact that we’re using a
positive h-value in the derivative approximation instead of using a limit as h ap-
proaches zero. Essentially, we’re using a linear approximation to the solution y
(similar to the process described in Section 4.4 on Differentials.) This error is of-
ten called the local truncation error. The second source of error comes from the
fact that every step in Euler’s method uses the result of the previous step. That
means we’re using an approximate y-value to approximate the next y-value. Do-
ing this repeatedly causes the errors to build on each other. This second type of
error is often called the propagated or accumulated error.

A second observation is that the Euler approximation is more accurate for
smaller h-values. This accuracy comes at a cost, though. Example 8.1.20 is
more accurate than Example 8.1.18, but takes twice as many computations. In
general, numerical algorithms (even when performed by a computer program)
require striking a balance between a desired level of accuracy and the amount
of computational effort we are willing to undertake.

Let’s do one final example of Euler’s Method.

Example 8.1.22 Using Euler’s Method 3.

Find an approximation for the solution to the logistic differential equa-
tion
y ′ = y(1− y) with y(0) = 0.25, for 0 ≤ y ≤ 4. UseN = 10 steps.
Solution. The logistic differential equation is what is called an au-
tonomous equation. An autonomous differential equation has no ex-
plicit dependence on the independent variable (t in this case). This has
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no real effect on the application of Euler’s method other than the fact
that the function f(t, y) is really just a function of y. To take steps in the
y variable, we use

yi+1 = yi + hf(ti, yi) = yi + hyi(1− yi).

Using N = 10 steps requires h =
4− 0

10
= 0.4. Implementing Euler’s

Method, we have

x0 = 0 y0 = 0.25

x1 = 0.4 y1 = 0.25 + 0.4(0.25)(1− 0.25)

= 0.325

x2 = 0.8 y2 = 0.325 + 0.4(0.325)(1− 0.325)

= 0.41275

x3 = 1.2 y3 = 0.41275 + 0.4(0.41275)(1− 0.41275)

= 0.50970

x4 = 1.6 y4 = 0.50970 + 0.4(0.50970)(1− 0.50970)

= 0.60966

x5 = 2.0 y5 = 0.60966 + 0.4(0.60966)(1− 0.60966)

= 0.70485

x6 = 2.4 y6 = 0.70485 + 0.4(0.70485)(1− 0.70485)

= 0.78806

x7 = 2.8 y7 = 0.78806 + 0.4(0.78806)(1− 0.78806)

= 0.85487

x8 = 3.2 y8 = 0.85487 + 0.4(0.85487)(1− 0.85487)

= 0.90450

x9 = 3.6 y9 = 0.90450 + 0.4(0.90450)(1− 0.90450)

= 0.93905

x10 = 4.0 y10 = 0.93905 + 0.4(0.93905)(1− 0.93905)

= 0.96194.

These 11 points, along with the the analytic solution, are plotted in Fig-
ure 8.1.23. Notice how well they seem to match the true solution.

1 2 3 4

0.5

1

t

y

Figure 8.1.23 Euler’s Method approxi-
mation to y ′ = y(1− y) with y(0) =
0.25 from Example 8.1.22, along with
the analytical solution

The study of differential equations is a natural extension of the study of de-
rivatives and integrals. The equations themselves involve derivatives, and meth-
ods to find analytic solutions often involve finding antiderivatives. In this sec-
tion, we focus on graphical and numerical techniques to understand solutions
to differential equations. We restrict our examples to relatively simple initial
value problems that permit analytic solutions to the equations, but we should
remember that this is only for comparison purposes. In reality, many differential
equations, even some that appear straightforward, do not have solutionswe can
find analytically. Even so, we can use the techniques presented in this section
to understand the behavior of solutions. In the next two sections, we explore
two techniques to find analytic solutions to two different classes of differential
equations.
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8.1.4 Exercises

Terms and Concepts

1. In your own words, what is an initial value problem, and how is it different than a differential equation?
2. In your own words, describe what it means for a function to be a solution to a differential equation.
3. How can we verify that a function is a solution to a differential equation?
4. Describe the difference between a particular solution and a general solution.
5. Why might we use a graphical or numerical technique to study solutions to a differential equation instead of

simply solving the differential equation to find an analytic solution?
6. Describe the considerations that should be made when choosing an h value to use in a numerical method like

Euler’s Method.

Problems

Exercise Group. In the following exercises, verify that the given function is a solution to the differential equation or
initial value problem.

7. y = Ce−6x2

; y ′ = −12xy. 8. y = x sin(x);
y ′ − x cos(x) = (x2 + 1) sin(x)− xy, with
y(π) = 0.

9. 2x2 − y2 = C; yy ′ − 2x = 0 10. y = xex; y ′′ − 2y ′ + y = 0

Exercise Group. In the following exercises, verify that the given function is a solution to the differential equation and
find the C value required to make the function satisfy the initial condition.

11. y = 4e3x sin(x) +Ce3x; y ′ − 3y = 4e3x cos(x),
with y(0) = 2

12. y(x2 + y) = C; 2xy + (x2 + 2y)y ′ = 0, with
y(1) = 2

Exercise Group. In the following exercises, sketch a slope field for the given differential equation. Let x and y range
between−2 and 2.

13. y ′ = y − x 14. y ′ =
x

2y

15. y ′ = sin(πy) 16. y ′ = y
4

Exercise Group. Match each slope field below with the appropriate differential equation.

x

y

x

y

(a) (b)
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x

y

x

y

(c) (d)
17. y ′ = xy 18. y ′ = −y

19. y ′ = −x 20. y ′ = x(1− x)

Exercise Group. In the following exercises, sketch the slope field for the differential equation, and use it to draw a
sketch of the solution to the initial value problem.

21. y ′ =
y

x
− y, with y(0.5) = 1. 22. y ′ = y sin(x), with y(0) = 1.

23. y ′ = y2 − 3y + 2, with y(0) = 2. 24. y ′ = − xy

1 + x2
, with y(0) = 1.

Exercise Group. In the following exercises, use Euler’s Method to make a table of values that approximates the
solution to the initial value problem on the given interval. Use the specified h orN value.

25. y ′ = x+ 2y
y(0) = 1
interval: [0, 1]
h = 0.25

26. y ′ = xe−y

y(0) = 1
interval: [0, 0.5]
N = 5

27. y ′ = y + sin(x)
y(0) = 2
interval: [0, 1]
h = 0.2

28. y ′ = ex−y

y(0) = 0
interval: [0, 2]
h = 0.5

Exercise Group. In the following exercises, use the provided solution y(x) and Euler’s Method with the h = 0.2 and
h = 0.1 to complete the following table.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x)

h = 0.2

h = 0.1

29. y ′ = xy2

y(0) = 1

Solution: y(x) =
2

1− x2

30. y ′ = xex
2

+
1

2
xy

y(0) =
1

2

Solution: y(x) =
1

2
(x2 + 1)ex

2
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8.2 Separable Differential Equations

There are specific techniques that can be used to solve specific types of differ-
ential equations. This is similar to solving algebraic equations. In algebra, we
can use the quadratic formula to solve a quadratic equation, but not a linear or
cubic equation. In the same way, techniques that can be used for a specific type
of differential equation are often ineffective for a differential equation of a dif-
ferent type. In this section, we describe and practice a technique to solve a class
of differential equations called separable equations.

Definition 8.2.1 Separable Differential Equation.

A separable differential equation is one that can be written in the form

n(y)
dy

dx
= m(x),

where n is a function that depends only on the dependent variable y,
andm is a function that depends only on the independent variable x.

Below, we show a few examples of separable differential equations, along
with similar looking equations that are not separable.

1.
dy

dx
= x2y

2. y
√
y2 − 5

dy

dx
−

sin(x) cos(y) = 0

3.
dy

dx
=

(x2 + 1)ey

y

List 8.2.2 Separable

1.
dy

dx
= x2 + y

2. y
√
y2 − 5

dy

dx
−

sin(x) cos(y) = 1

3.
dy

dx
=

(xy + 1)ey

y

List 8.2.3 Not Separable

Notice that a separable equation requires that the functions of the depen-
dent and independent variables bemultiplied, not added (like Item1 in List 8.2.3).
An alternate definition of a separable differential equation states that an equa-
tion is separable if it can be written in the form

dy

dx
= f(x)g(y),

for some functions f and g.

8.2.1 Separation of Variables
Let’s find a formal solution to the separable equation

n(y)
dy

dx
= m(x).

Since the functions on the left and right hand sides of the equation are equal,
their antiderivatives should be equal up to an arbitrary constant of integration.
That is ∫

n(y)
dy

dx
dx =

∫
m(x) dx+ C.

Though the integral on the left may look a bit strange, recall that y itself is
a function of x. Consider the substitution u = y(x). The differential is du =
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dy

dx
dx. Using this substitution, the above equation becomes∫

n(u) du =

∫
m(x) dx+ C.

LetN(u) andM(x) be antiderivatives of n(u) andm(x), respectively. Then

N(u) = M(x) + C.

Since u = y(x), this is

N(y) = M(x) + C.

This relationship between y and x is an implicit form of the solution to the
differential equation. Sometimes (but not always) it is possible to solve for y to
find an explicit version of the solution.

Though the technique outlined above is formally correct, what we did es-
sentially amounts to integrating the function n with respect to its variable and
integrating the functionmwith respect to its variable. The informal way to solve

a separable equation is to treat the derivative
dy

dx
as if it were a fraction. The

separated form of the equation is

n(y) dy = m(x) dx.

To solve, we integrate the left hand side with respect to y and the right hand
sidewith respect tox and add a constant of integration. As long aswe are able to
find the antiderivatives, we can find an implicit form for the solution. Sometimes
we are able to solve for y in the implicit solution to find an explicit form of the
solution to the differential equation. We practice the technique by solving the
three differential equations listed in the separable column above, and conclude
by revisiting and finding the general solution to the logistic differential equation
from Section 8.1.

Example 8.2.4 Solving a Separable Differential Equation.

Find the general solution to the differential equation y ′ = x2y.
Solution. Using the informal solution method outlined above, we treat
dy

dx
as a fraction, and write the separated form of the differential equa-

tion as
dy

y
= x2dx.

The indefinite integrals
∫

dy
y

and
∫
x2 dx both produce arbi-

trary constants. Since both con-
stants are arbitrary, we combine
them into a single constant of in-
tegration.

Integrating the left hand side of the equation with respect to y and the
right hand side of the equation with respect to x yields

ln |y| = 1

3
x3 + C.

This is an implicit form of the solution to the differential equation. Solv-
ing for y yields an explicit form for the solution. Exponentiating both
sides, we have

|y| = ex
3/3+C = ex

3/3eC .

This solution is a bit problematic. First, the absolute value makes the
solution difficult to understand. The second issue comes from our desire
to find the general solution. Recall that a general solution includes all
possible solutions to the differential equation. In other words, for any
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given initial condition, the general solution must include the solution to
that specific initial value problem. We can often satisfy any given initial
condition by choosing an appropriate C value. When solving separable
equations, though, it is possible to lose solutions that have the form y =
constant. Notice that y = 0 solves the differential equation, but it is not
possible to choose a finite C to make our solution look like y = 0. Our

solution cannot solve the initial value problem
dy

dx
= x2y, with y(a) = 0

(wherea is any value). Thus, wehaven’t actually found a general solution
to the problem. We can clean up the solution and recover the missing
solution with a bit of clever thought.

Missing constant solutions can’t
always be recovered by clev-
erly redefining the arbitrary con-
stant. The differential equation
y ′ = y2 − 1 is an example of
this fact. Both y = 1 and y =
−1 are constant solutions to this
differential equation. Separa-
tionof variables yields a solution
where y = 1 can be attained
by choosing an appropriate C
value, but y = −1 can’t. The
general solution is the set con-
taining the solution produced by
separation of variables and the
missing solution y = −1. We
should always be careful to look
for missing constant solutions
when seeking the general solu-
tion to a separable differential
equation.

Recall the formal definition of the absolute value: |y| = y if y ≥ 0

and |y| = −y if y < 0. Our solution is either y = eCe
x3

3 or y =

−eCe
x3

3 . Further, note that C is constant, so eC is also constant. If
we write our solution as y = Ae

x3

3 , and allow the constant A to take
on either positive or negative values, we incorporate both cases of the
absolute value. Finally, if we allow A to be zero, we recover the missing
solution discussed above. The best way to express the general solution
to our differential equation is

y = Ae
x3

3 .

Example 8.2.5 Solving a Separable Initial Value Problem.

Solve the initial value problem (y
√
y2 − 5)y ′ − sin(x) cos(x) = 0, with

y(0) = −3.
Solution. We first put the differential equation in separated form

y
√
y2 − 5 dy = sin(x) cos(x) dx.

The indefinite integral
∫

y
√
y2 − 5 dy requires the substitution u =

y2 − 5. Using this substitute yields the antiderivative
1

3
(y2 − 5)3/2.

The indefinite integral
∫
sin(x) cos(x) dx requires the substitution u =

sin(x). Using this substitution yields the antiderivative
1

2
sin2 x. Thus,

we have an implicit formof the solution to the differential equation given
by

1

3
(y2 − 5)3/2 =

1

2
sin2 x+ C.

The initial condition says that y should be−3 when x is 0, or

1

3
((−3)2 − 5)3/2 =

1

2
sin2 0 + C.

Evaluating the line above, we find C = 8/3, yielding the particular solu-
tion to the initial value problem

1

3
(y2 − 5)3/2 =

1

2
sin2 x+

8

3
.
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Example 8.2.6 Solving a Separable Differential Equation.

Find the general solution to the differential equation
dy

dx
=

(x2 + 1)ey

y
.

Solution. We start by observing that there are no constant solutions to
this differential equation because there are no constant y values that
make the right hand side of the equation identically zero. Thus, we
need not worry about losing solutions during the separation of variables
process. The separated form of the equation is given by

ye−y dy = (x2 + 1) dx.

The antiderivative of the left hand side requires Integration by Parts.
Evaluating both indefinite integrals yields the implicit solution

−(y + 1)e−y =
1

3
x3 + x+ C.

Since we cannot solve for y, we cannot find an explicit form of the solu-
tion.

Example 8.2.7 Solving the Logistic Differential Equation.

Solve the logistic differential equation
dy

dt
= ky

(
1− y

M

)
Solution. We looked at a slope field for this equation in Section 8.1 in
the specific case of k = M = 1. Here, we use separation of variables to
find an analytic solution to the more general equation. Notice that the
independent variable t does not explicitly appear in the differential equa-
tion. We mentioned that an equation of this type is called autonomous.
All autonomous first order differential equations are separable.
We start bymaking the observation that both y = 0 and y = M are con-
stant solutions to the differential equation. We must check that these
solutions are not lost during the separation of variables process. The
separated form of the equation is

1

y
(
1− y

M

) dy = k dt.

The antiderivative of the left hand side of the equation can be found
by making use of partial fractions. Using the techniques discussed in
Section 6.5, we write

1

y
(
1− y

M

) =
1

y
+

1

M − y
.

Then an implicit form of the solution is given by

ln |y| − ln |M − y| = kt+ C.

Combining the logarithms,

ln
∣∣∣∣ y

M − y

∣∣∣∣ = kt+ C.
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Similarly to Example 8.2.4, we can write

y

M − y
= Aekt.

Letting A take on positive values or negative values incorporates both
cases of the absolute value. This is another implicit form of the solution.
Solving for y gives the explicit form

y =
M

1 + be−kt
,

where b is an arbitrary constant. Notice that b = 0 recovers the constant
solution y = M . The constant solution y = 0 cannot be produced
with a finite b value, and has been lost. The general solution the logistic

differential equation is the set containing y =
M

1 + be−kt
and y = 0.

Solving for y initially yields the

explicit solution y =
AMekt

1 +Aekt
.

Dividing numerator and denom-
inator by Aekt and defining b =
1/A yields the commonly presented
form of the solution given in Ex-
ample 8.2.7.
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8.2.2 Exercises

Problems

Exercise Group. In the following exercises, decide whether the differential equation is separable or not separable. If
the equation is separable, write it in separated form.

1. y ′ = y2 − y 2. xy ′ + x2y =
sin(x)
x− y

3. (y + 3)y ′ + (ln(x))y ′ − x sin y = (y + 3) ln(x) 4. y ′ − x2 cos y + y = cos y − x2y

Exercise Group. In the following exercises, find the general solution to the separable differential equation. Be sure
to check for missing constant solutions.

5. y ′ + 1− y2 = 0 6. y ′ = y − 2

7. xy ′ = 4y 8. yy ′ = 4x

9. exyy ′ = e−y + e−2x−y
10. (x2 + 1)y ′ =

x

y − 1

11. y ′ =
x
√
1− 4y2

x4 + 2x2 + 2

12. (ex + e−x)y ′ = y2

Exercise Group. In the following exercises, find the particular solution to the separable initial value problem.

13. y ′ =
sin(x)
cos y

, with y(0) =
π

2
14. y ′ =

x2

1− y2
, with y(0) = −2

15. y ′ =
2x

y + x2y
, with y(0) = −4 16. x+ ye−xy ′ = 0, with y(0) = −2

17. y ′ =
x ln(x2 + 1)

y − 1
, with y(0) = 2 18.

√
1− x2 y ′ − arcsinx

y cos(y2)
= 0, with

y(0) =

√
7π

6

19. y ′ = (cos2 x)(cos2 2y), with y(0) = 0
20. y ′ =

y2
√
1− y2

x
, with y(0) = 1
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8.3 First Order Linear Differential Equations

In the previous section, we explored a specific techique to solve a specific type of
differential equation called a separable differential equation. In this section, we
develop and practice a technique to solve a type of differential equation called
a first order linear differential equation.

Recall than a linear algebraic equation in one variable is one that can be
written ax+ b = 0, where a and b are real numbers. Notice that the variable x
appears to the first power. The equations

√
x+ 1 = 0 and sin(x)− 3x = 0 are

both nonlinear. A linear differential equation is one in which the dependent vari-
able and its derivatives appear only to the first power. We focus on first order
equations, which involve first (but not higher order) derivatives of the depen-
dent variable.

8.3.1 Solving First Order Linear Equations

Definition 8.3.1 First Order Linear Differential Equation.

A first order linear differential equation is a differential equation that
can be written in the form

dy

dx
+ p(x)y = q(x),

where p and q are arbitrary functions of the independent variable x.

Example 8.3.2 Classifying Differential Equations.

Classify each differential equation as first order linear, separable, both,
or neither.

(a) y ′ = xy

(b) y ′ = ey + 3x

(c) y ′ − (cos(x))y = cos(x)

(d) yy ′ − 3xy = 4 ln(x)

Solution.

(a) Both. We identify p(x) = −x and q(x) = 0. The separated form

of the equation is
dy

y
= x dx.

(b) Neither. The ey term makes the equation nonlinear. Because of
the addition, it is not possible to write the equation in separated
form.

(c) First order linear. We identify p(x) = − cos(x) and q(x) = cos(x).
The equation cannot be written in separated form.

(d) Neither. Notice that dividing by y results in the nonlinear term
4 ln(x)

y
. It is not possible to write the equation in separated form.

Notice that linearity depends on the dependent variable y, not the indepen-
dent variable x. The functions p(x) and q(x) need not be linear, as demon-
strated in part (c) of Example 8.3.2. Neither cos(x) nor sin(x) are linear func-
tions of x, but the differential equation is still linear.
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Before working out a general technique for solving first order linear differen-
tial equations, we look at a specific example. Consider the differential equation

d

dx

(
xy
)
= sin(x) cos(x).

This is an easy differential equation to solve. On the left, the antiderivative
of the derivative is simply the function xy. Using the substitution u = sin(x) on
the right and integrating results in the implicit solution

xy =
1

2
sin2 x+ C.

Solving for y yields the explicit solution

y =
sin2 x
2x

+
C

x
.

Though not obvious, the differential equation above is actually a linear dif-
ferential equation. Using the product rule and implicit differentiation, we can

write
d

dx

(
xy
)
= x

dy

dx
+ y. Our original differential equation can be written

x
dy

dx
+ y = sin(x) cos(x).

If we divide by x, we have

dy

dx
+

1

x
y =

sin(x) cos(x)
x

,

which matches the form in Definition 8.3.1. Reversing our steps would lead us
back to the original form our our differential equation.

In the examples in the previous
section, weperformedoperations
on the arbitrary constantC, but
still called the result C. The jus-
tification is that the result after
the operation is still an arbitrary
contant. Here, we divide C by
x, so the result depends explic-
itly on the independent variable
x. Since C/x is not contant, we
can’t just call it C.

As motivated by the problemwe just explored, the basic idea behind solving
first order linear differential equations is tomultiply both sides of the differential
equation by a function, called an integrating factor, thatmakes the left hand side
of the equation look like an expanded Product Rule. We then condense the left
hand side into the derivative of a product and integrate both sides. An obvious
question is, “How do you find this integrating factor?”

Consider the first order linear equation

dy

dx
+ p(x)y = q(x).

Let’s call the integrating factor µ(x). We multiply both sides of the differen-
tial equation by µ(x) to get

µ(x)

(
dy

dx
+ p(x)y

)
= µ(x)q(x).

Though we use µ(x) for our in-
tegrating factor, the symbol is unim-
portant. The notation µ(x) is a
common choice, but other texts
myuseα(x), I(x), or someother
symbol to designate the integrat-
ing factor.

Our goal is to choose µ(x) so that the left hand side of the differential equa-
tion looks like the result of a Product Rule. The left hand side of the equation
is

µ(x)
dy

dx
+ µ(x)p(x)y.

Using the Product Rule and Implicit Differentiation,

d

dx

(
µ(x)y

)
=

dµ

dx
y + µ(x)

dy

dx
.



CHAPTER 8. DIFFERENTIAL EQUATIONS 428

Equating d
dx

(
µ(x)y

)
and µ(x)

(
dy
dx + p(x)y

)
gives

dµ

dx
y + µ(x)

dy

dx
= µ(x)

dy

dx
+ µ(x)p(x)y,

which is equivalent to
dµ

dx
= µ(x)p(x).

In order for the integrating factor µ(x) to perform its job, it must solve the
differential equation above. But that differential equation is separable, so we
can solve it. The separated form is

dµ

µ
= p(x) dx.

Integrating,

lnµ =

∫
p(x) dx,

or
µ(x) = e

∫
p(x) dx.

Following the steps outlined in
the previous section, we should
technically end up with µ(x) =
Ce
∫
p(x) dx, where C is an arbi-

trary constant. Because we mul-
tiply both sides of the differen-
tial equation by µ(x), the arbi-
trary constant cancels, andweomit
itwhenfinding the integrating fac-
tor.

If µ(x) is chosen this way, after multiplying by µ(x), we can always write the
differential equation in the form

d

dx

(
µ(x)y

)
= µ(x)q(x).

Integrating and solving for y, the explicit solution is

y =
1

µ(x)

∫ (
µ(x)q(x)

)
dx.

Though this formula can be used to write down the solution to a first order
linear equation, we shy away from simply memorizing a formula. The process
is lost, and it’s easy to forget the formula. Rather, we always always follow the
steps outlined in Key Idea 8.3.3 when solving equations of this type.

Key Idea 8.3.3 Solving First Order Linear Equations.

1. Write the differential equation in the form

dy

dx
+ p(x)y = q(x).

2. Compute the integrating factor

µ(x) = e
∫
p(x) dx.

3. Multiply both sides of the differential equation by µ(x), and con-
dense the left hand side to get

d

dx

(
µ(x)y

)
= µ(x)q(x).

4. Integrate both sides of the differential equation with respect to x,
taking care to remember the arbitrary constant.

5. Solve for y to find the explicit solution to the differential equation.

Let’s practice the process by solving the two first order linear differential
equations from Example 8.3.2.
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Example 8.3.4 Solving a First Order Linear Equation.

Find the general solution to y ′ = xy.
Solution. We solve by following the steps in Key Idea 8.3.3. Unlike the
process for solving separable equations, we need not worry about losing
constant solutions. The answer we find will be the general solution to
the differential equation. We first write the equation in the form

dy

dx
− xy = 0.

By identifying p(x) = −x, we can compute the integrating factor

µ(x) = e
∫
−x dx = e−

1
2x

2

.

Multiplying both side of the differential equation by µ(x), we have

e−
1
2x

2

(
dy

dx
− xy

)
= 0.

The left hand side of the differential equation condenses to yield

d

dx

(
e−

1
2x

2

y
)
= 0. The step where the left hand

side of the differential equation
condenses to the derivative of
a product can feel a bit mag-
ical. The reality is that we
choose µ(x) so that we can get
exactly this condensing behav-
ior. It’s not magic, it’s math!
If you’re still skeptical, try us-
ing the Product Rule and Im-
plicit Differentiation to evaluate
d

dx

(
e−

1
2x

2

y
)
, and verify that it

becomes e− 1
2x

2

(
dy

dx
− xy

)
.

We integrate both sides with respect to x to find the implicit solution

e−
1
2x

2

y = C,

or the explicit solution
y = Ce

1
2x

2

.

Example 8.3.5 Solving a First Order Linear Equation.

Find the general solution to y ′ − (cos(x))y = cos(x).
Solution. The differential equation is already in the correct form. The
integrating factor is given by

µ(x) = e−
∫
cos(x) dx = e− sin(x).

Multiplying both sides of the equation by the integrating factor and con-
densing,

d

dx

(
e− sin(x)y

)
= (cos(x))e− sin(x)

Using the substitution u = − sin(x), we can integrate to find the implicit
solution

e− sin(x)y = −e− sin(x) + C.

The explicit form of the general solution is

y = −1 + Cesin(x).

We continue our practice by finding the particular solution to an initial value
problem.
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Example 8.3.6 Solving a First Order Linear Initial Value Problem.

Solve the initial value problem xy ′ − y = x3 ln(x), with y(1) = 0.
Solution. We first divide by x to get

dy

dx
− 1

x
y = x2 ln(x).

The integrating factor is given by

µ(x) = e
∫
− 1

x dx

= e− ln(x)

= eln(x)
−1

= x−1.

Multiplying both sides of the differential equation by the integrating fac-
tor and condensing the left hand side, we have

d

dx

(y
x

)
= x ln(x).

Using Integrating by Parts to find the antiderivative of x ln(x), we find
the implicit solution

y

x
=

1

2
x2 ln(x)− 1

4
x2 + C.

Solving for y, the explicit solution is

y =
1

2
x3 ln(x)− 1

4
x3 + Cx.

The initial condition y(1) = 0 yieldsC = 1/4. The solution to the initial
value problem is

y =
1

2
x3 ln(x)− 1

4
x3 +

1

4
x.

Differential equations are a valuable tool for exploring various physical prob-
lems. This process of using equations to describe real world situations is called
mathematical modeling, and is the topic of the next section. The last two exam-
ples in this section begin our discussion of mathematical modeling.

Example 8.3.7 A Falling Object Without Air Resistance.

Suppose an object with massm is dropped from an airplane. Find and
solve a differential equation describing the vertical velocity of the object
assuming no air resistance.
Solution. The basic physical law at play is Newton’s second law,

mass × acceleration = the sum of the forces .

Using the fact that acceleration is the derivative of velocity, mass × ac-
celeration can be writtingmv′. In the absence of air resistance, the only
force of interest is the force due to gravity. This force is approximately
constant, and is given bymg, where g is the gravitational constant. The
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word equation above can be written as the differential equation

m
dv

dt
= mg.

Because g is constant, this differential equation is simply an integration
problem, and we find

v = gt+ C.

Since v = C with t = 0, we see that the arbitrary constant here corre-
sponds to the initial vertical velocity of the object.

The process of mathematical modeling does not stop simply because we
have found an answer. We must examine the answer to see how well it can
describe real world observations. In the previous example, the answer may be
somewhat useful for short times, but intuition tells us that something is missing.
Our answer says that a falling object’s velocity will increase linearly as a function
of time, but we know that a falling object does not speed up indefinitely. In or-
der to more fully describe real world behavior, our mathematical model must
be revised.

Example 8.3.8 A Falling Object with Air Resistance.

Suppose an object with massm is dropped from an airplane. Find and
solve a differential equation describing the vertical velocity of the object,
taking air resistance into account.
Solution. We still begin with Newon’s second law, but now we assume
that the forces in the object come both from gravity and from air resis-
tance. The gravitational force is still given bymg. For air resistance, we
assume the force is related to the velocity of the object. A simple way
to describe this assumption might be kvp, where k is a proportionality
constant and p is a positive real number. The value k depends on various
factors such as the density of the object, surface area of the object, and
density of the air. The value p affects how changes in the velocity affect
the force. Taken together, a function of the form kvp is often called a
power law. The differential equation for the velocity is given by

m
dv

dt
= mg − kvp.

(Notice that the force from air resistance opposes motion, and points in
the opposite direction as the force from gravity.) This differential equa-
tion is separable, and can be written in the separated form

m

mg − kvp
dv = dt.

For arbitrary positive p, the integration is difficult, making this problem
hard to solve analytically. In the case that p = 1, the differential equa-
tion becomes linear, and is easy to solve either using either separation
of variables or integrating factor techniques. We assume p = 1, and pro-
ceedwith an integrating factor sowe can continue practicing the process.
Writing

dv

dt
+

k

m
v = g,

we identify the integrating factor

µ(t) = e
∫

k
m dt = e

k
m t.



CHAPTER 8. DIFFERENTIAL EQUATIONS 432

Then
d

dt

(
e

k
m tv

)
= ge

k
m t,

so
e

k
m tv =

mg

k
e

k
m t + C,

or
v =

mg

k
+ Ce−

k
m t.
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Figure 8.3.9 The velocity functions
from Examples 8.3.7 (dashed) and
8.3.8 (solid) under the assumption
that v(0) = 0, with g = 9.8,m = 1,
and k = 1

In the solution above, the exponential term decays as time increases, caus-
ing the velocity to approach the constant valuemg/k in the limit as t approaches
infinity. This value is called the terminal velocity. If we assume a zero initial ve-
locity (the object is dropped, not thrown from the plane), the velocities from
Examples 8.3.7 and 8.3.8 are given by v = gt and v =

mg

k

(
1− e−

k
m t
)
, re-

spectively. These two functions are shown in Figure 8.3.9, with g = 9.8,m = 1,
and k = 1. Notice that the two curves agree well for short times, but have
dramatically different behaviors as t increases. Part of the art in mathematical
modeling is deciding on the level of detail required to answer the question of
interest. If we are only interested in the initial behavior of the falling object,
the simple model in Example 8.3.7 may be sufficient. If we are interested in the
longer term behavior of the object, the simple model is not sufficient, and we
should consider a more complicated model.
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8.3.2 Exercises

Problems

Exercise Group. In the following exercises, Find the general solution to the first order linear differential equation.
1. y ′ = 2y − 3 2. x2y ′ + xy = 1

3. x2y ′ − xy = 1 4. xy ′ + 4y = x3 − x

5. (cos2 x sin(x))y ′ + (cos3 x)y = 1 6.
y ′

x
= 1− 2y

7. x3y ′ − 3x3y = x4e2x 8. y ′ + y = 5 sin(2x)

Exercise Group. In the following exercises, Find the particular solution to the initial value problem.
9. y ′ = y + 2xex, y(0) = 2 10. xy ′ + 2y = x2 − x+ 1, y(1) = 1

11. xy ′ + (x+ 2)y = x, y(1) = 0 12. y ′ + 2y = 0, y(0) = 3

13. (x+ 1)y ′ + (x+ 2)y = 2xe−x, y(0) = 1 14. (cos(x))y ′ + (sin(x))y = 1, y(0) = −3

15. (x2 − 1)y ′ + 2y = (x+ 1)2, y(0) = 2 16. xy ′ − 2y =
x3

1 + x2
, y(1) = 0

Exercise Group. In the following exercises, classify the differential equation as separable, first order linear, or both,
and solve the initial value problem using an appropriate method.

17. y ′ = y + yx2, y(0) = −5 18. xeyy ′ = x2 sin(x), y(0) = 0

19. (x− 1)y ′ + y = x2 − 1, y(0) = 2 20. y ′ = y2 + y − 2, y(0) = 1

Exercise Group. In the following exercises, draw a slope field for the differential equation. Use the slope field to
predict the behavior of the solution to the initial value problem for large x values. Solve the initial value problem, and
verify your prediction.

21. y ′ = x− y, y(0) = 0 22. (X + 1)y ′ + y =
1

x+ 1
, y(0) = 2
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8.4 Modeling with Differential Equations

In the first three sections of this chapter, we focused on the basic ideas behind
differential equations and the mechanics of solving certain types of differential
equations. We have only hinted at their practical use. In this section, we use dif-
ferential equations for mathematical modeling, the process of using equations
to describe real world processes. We explore a few different mathematical mod-
els with the goal of gaining an introduction to this large field of applied mathe-
matics.

8.4.1 Models Involving Proportional Change
Some of the simplest differential equation models involve one quantity that
changes at a rate proportional to another quantity. In the introduction to this
chapter, we considered a population that grows at a rate proportional to the
current population. The words in this assumption can be directly translated into
a differential equation as shown below.

dp

dt
= kp

The rate of
change of the
population

the pop-
ulation.

is proportional
to

Figure 8.4.1 Translating words into a
differential equation

There are some key ideas that can be helpful when translating words into a
differential equation. Any time we see something about rates or changes, we
should think about derivatives. The word “is” usually corresponds to an equal
sign in the equation. The words “proportional to” mean we have a constant
multiplied by something.

The differential equation in Figure 8.4.1 is easily solved using separation of
variables. We find

p = Cekt.

Notice that we need values for bothC and k before we can use this formula
to predict population size. We require information about the population at two
different times in order to fully determine the population model.

Example 8.4.2 Bacterial Growth.

Suppose a population of e-coli bacteria grows at a rate proportional to
the current population. If an initial popluation of 200 bacteria has grown
to 1600 three hours later, find a function for the size of the population at
time t, and use it to predict when the population size will reach 10,000.
Solution. We already know that the population at time t is given by
p = Cekt for some C and k. The information about the initial size of
the population means that p(0) = 200. Thus C = 200. Our knowledge
of the population size after three hours allows us to solve for k via the
equation

1600 = 200e3k.

Solving this exponential equation yields k = ln(8)/3 ≈ 0.6931. The
popluation at time t is given by

p = 200e(ln(8)/3)t.

Solving
10000 = 200e(ln(8)/3)t

yields t = (3 ln(50))/ ln(8) ≈ 5.644. The population is predicted to
reach 10,000 bacteria in slightly more than five and a half hours.

Another example of porportional change is Newton’s Law of Cooling. The
laws of thermodynamics state that heat flows from areas of higher temperature
to areas of lower temperature. A simple example is a hot object that cools down
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when placed in a cool room. Newton’s Law of Cooling is the simple assumption
that the temperature of the object changes at a rate proportional to the differ-
ence between the temperature of the object and the ambient temperature of
the room. If T is the temperature of the object and A is the constant ambi-
ent temperature, Newton’s Law of Cooling can be expressed as the differential
equation

dT

dt
= k(A− T ).

This differential equation is both linear and separable. The separated form
is

1

A− T
dT = k dt.

Then an implicit definition of the temperature is given by

− ln |A− T | = kt+ C.

If we solve for T , we find the explicit temperature

T = A− Ce−kt.

Though we didn’t show the steps, the explicit solution involves the typical
process of renaming the constant ±e−C as C, and allowing C to be positive,
negative, or zero to account for both cases of the absolution value and to catch
the constant solution T = A. Notice that the temperature of the object ap-
proaches the ambient temperature in the limit as t → ∞.

The equation
dT

dt
= k(T − A)

is also a valid representation of
Newton’s Law of Cooling. Intu-
ition tells us that T will increase
if T is less than A and decrease
if T is greater then A. The form
we use in the text follows this in-
tuitionwith a positivek value. The
formabovewill require thatk take
on a negative value. In the end,
both forms result in the same func-
tion.

Example 8.4.3 Hot Coffee.

A freshly brewed cup of coffee is set on the counter and has a temper-
ature of 200◦ Fahrenheit. After 3 minutes, it has cooled to 190◦, but is
still too hot to drink. If the room is 72◦ and the coffee cools according
to Newton’s Law of Cooling, how long will the impatient coffee drinker
have to wait until the coffee has cooled to 165◦?
Solution. Since we have already solved the differential equation for
Newton’s Law of Cooling, we can immediately use the function

T = A− Ce−kt.

Since the room is 72◦, we knowA = 72. The initial temperature is 200◦,
which means C = −128. At this point, we have

T = 72 + 128e−kt

The information about the coffee cooling to 190◦ in 3 minutes leads to
the equation

190 = 72 + 128e−3k.

Solving the exponential equation for k, we have

k = −1

3
ln
(
59

64

)
≈ 0.0271.

Finally, we finish the problem by solving the exponential equation

165 = 72 + 128e
1
3 ln(

59
64 )t.

The coffee drinker must wait t =
3 ln

(
93
128

)
ln
(
59
64

) ≈ 11.78minutes.
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Wefinish our discussion ofmodels of proportional change by exploring three
different models of disease spread through a population. In all of the models,
we let y denote the proportion of the population that is sick (0 ≤ y ≤ 1). We
assume a proportion of 0.05 is initially sick and that a proportion of 0.1 is sick 1
week later.

Example 8.4.4 Disease Spread 1.

Suppose a disease spreads through a population at a rate proportional
to the number of individuals who are sick. If 5% of the population is sick
initially and 10% of the population is sick one week later, find a formula
for the proportion of the popoulation that is sick at time t.
Solution. The assumption here seems to have some merit because it
matches our intuition that a disease should spread more rapidly when
more individuals are sick. The differential equation is simply

dy

dt
= ky,

with solution
y = Cekt.

The conditions y(0) = 0.05 and y(1) = 0.1 lead to C = 0.05 a and
k = ln(2), so the function is

y = 0.05e(ln(2)t.

We should point out a glaring problem with this model. The variable
y is a proportion and should take on values between 0 and 1, but the
function y = 0.05e2t grows without bound. After t ≈ 4.32 weeks, y
exceeds 1, and the model ceases to make physical sense.

Example 8.4.5 Disease Spread 2.

Suppose a disease spreads through a population at a rate proportional
to the number of individuals who are not sick. If 5% of the population
is sick initially and 10% of the population is sick one week later, find a
formula for the proportion of the popoulation that is sick at time t.
Solution. The intuition behind the assumption here is that a disease can
only spread if there are individuals who are susceptible to the infection.
As fewer and fewer people are able to be infected, the disease spread
should slow down. Since y is proportion of the population that is sick,
1− y is the proportion who are not sick, and the differential equation is

dy

dt
= k(1− y).

Though the context is quite different, the differential equation is identi-
cal to the differential equation for Newton’s Law of Cooling, withA = 1.
The solution is

y = 1− Ce−kt.

The conditions y(0) = 0.05 and y(1) = 0.1 yield C = 0.95 and k =
− ln

(
18
19

)
≈ 0.0541, so the final function is

y = 1− .95eln(
18
19 )t.
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Notice that this function approaches y = 1 in the limit as t → ∞,
and does not suffer from the non-physical behavior described in Exam-
ple 8.4.4.

In Example 8.4.4, we assumed disease spread depends on the number of in-
fected individuals. In Example 8.4.5, we assumeddisease spread depends on the
number of susceptible individuals who are able to become infected. In reality,
we would expect many diseases to require the interaction of both infected and
susceptible individuals in order to spread. One of the simplest ways to model
this required interaction is to assume disease spread depends on the product of
the proportions of infected and uninfected individuals. This assumption (regu-
larly seen in the context of chemical reactions) is often called the law of mass
action.

Example 8.4.6 Disease Spread 3.

Suppose a disease spreads through a population at a rate proportional
to the product of the number of infected and uninfected individuals. If
5% of the population is sick initially and 10% of the population is sick
one week later, find a formula for the proportion of the population that
is sick at time t.
Solution. The differential equation is

dy

dt
= ky(1− y).

This is exactly the logistic equation withM = 1. We solved this differ-
ential equation in Example 8.2.7, and found

y =
1

1 + be−kt
.

The conditions y(0) = 0.05 and y(1) = 0.1 yield b = 19 and k =
− ln

(
9
19

)
≈ 0.7472. The final function is

y =
1

1 + 19eln(
9
19 )t

.

Based on the three different assumptions about the rate of disease
spread explored in the last three examples, we now have three differ-
ent functions giving the proportion of a population that is sick at time
t. Each of the three functions meets the conditions y(0) = 0.05 and
y(1) = 0.1. The three functions are shown in Figure 8.4.7.
Notice that the logistic function mimics specific parts of the functions
from Examples 8.4.4 and 8.4.5. We see in Figure 8.4.7(a) that the logis-
tic and exponential functions are virtually indistinguishable for small t
values. When there are few infected individuals and lots of susceptible
individuals, the spread of a disease is largely determined by the number
of sick people. The logistic curve captures this feature, and is “almost
exponential” early on.
In Figure 8.4.7(b), we see that the logistic curve leaves the exponential
curve from Example 8.4.4 and approaches the curve from Example 8.4.5.
This result implies that when most of the population is sick, the spread
of the disease is largely dependent on the number of susceptible indi-
viduals. Though there are much more sophisticated mathematical mod-
els describing the spread of infections, we could argue that the logistic
model presented in this example is the “best” of the three.
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Figure 8.4.7 Plots of the functions from Example 8.4.4 (dotted), Exam-
ple 8.4.5 (dashed), and Example 8.4.6 (solid)

8.4.2 Rate-in Rate-out Problems
One of the classic ways to build a mathematical model involves tracking the
way the amount of something can change. We sometimes say these models
are based on conservation laws. Consider a box with some amount of a specific
type of material inside. (Some type of chemical, for example.) The amount of
material of the specific type in the box can only change in four ways; we can
add more to the box, we can remove some from the box, some of the material
can change into material of a different type, or some other type of material can
turn into the type we’re tracking. In the examples that follow, we assume mate-
rial doesn’t change type, so we only need to keep track of material coming into
the box and material leaving the box. To derive a differential equation, we track
rates:

rate of change of some quantity = rate in − rate out .
Though we stick to relatively simple examples, this basic idea can be used to

derive some very important differential equations in mathematics and physics.
The examples to follow involve tracking the amount of a chemical in solution.

We assume liquid containing some chemical flows into a container at some rate.
That liquid mixes instantaneously with the liquid already in the container. Then
the liquid from the container flows out at some (potentially different) rate.

The assumption about instanta-
neous mixing, though not phys-
ically accurate, leads to a differ-
ential equation we have hope of
solving. In reality, the amount
of chemical at a specific location
in the container depends bothon
the locationandhow longwehave
been waiting. This dependence
on both space and time leads to
a typeof differential equation called
apartial differential equation. Dif-
ferential equations of this type
are more interesting, but signifi-
cantly harder to study. Instanta-
neous mixing removes any spa-
tial dependence from the prob-
lem, and leaves us with an ordi-
nary differential equation.

Example 8.4.8 Equal Flow Rates.

Suppose a 10 liter tank has 5 liters of salt solution in it. The initial con-
centration of the salt solution is 1 gram per liter. A salt solution with
concentration 3 g

L flows into the tank at a rate of 2
L
min . Suppose the salt

solutionmixes instantaneously with the solution already in the tank, and
that the mixed solution from the tank flows out at a rate of 2 L

min . Find a
function that gives the amount of salt in the tank at time t.
Solution. We use the rate in - rate out setup described above. The
quantity here is the amount (in grams) of salt in the tank at time t. Let
y denote the amount of salt. In words, the differential equation is given
by

dy

dt
= rate in − rate out .

Thinking in terms of units can help fill in the details of the differential
equation. Since y has units of grams, the left hand side of the equation
has units g/min. Both termson the right hand sidemust have these same
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units. Notice that the product of a concentration (with units g/L) and a
flow rate (with units L/min) results in a quantity with units g/min. Both
terms on the right hand side of the equationwill include a concentration
multiplied by a flow rate.
For the rate in, we multiply the inflow concentration by the rate that

fluid is flowing into the bucket. This is
(
3
g
L

)(
2

L
min

)
= 6 g/min.

The rate out is more complicated. The flow rate is still 2 L
min , meaning

that the overall volume of the fluid in the bucket is the constant 5 L. The
salt concentration in the bucket is not constant though,meaning that the
outflow concentration is not constant. In particular, the outflow concen-
tration is not the constant 1 L

min . This is simply the initial concentration.
To find the concentration at any time, we need the amount of salt in the
bucket at that time and the volume of liquid in the bucket at that time.
The volume of liquid is the constant 5 L, and the amount of salt is given
by the dependent variable y. Thus, the outflow concentration is

y

5
g/L,

yielding a rate out given by(y
5

g
L

)(
2

L
min

)
=

2y

5
g/min .

The differential equation we wish to solve is given by

dy

dt
= 6− 2y

5
.

To furnish an initial condition, we must convert the initial salt concentra-
tion into an initial amount of salt. This is

(
1
g
L

)
(5 L ) = 5 g, so y(0) = 5

is our initial condition.
Our differential equation is both separable and linear. We solve using
separation of variables. The separated form of the differential equation
is

5

30− 2y
dy = dt.

Integration yields the implicit solution

−5

2
ln |30− 2y| = t+ C.

Solving for y (and redefining the arbitrary constant C as necessary)
yields the explicit solution

y = 15 + Ce−
2
5 t.

The initial condition y(0) = 5means that C = −10 so that

y = 15− 10e−
2
5 t

is the particular solution to our initial value problem.
This function is plotted in Figure 8.4.9. Notice that in the limit as t → ∞,
y approaches 15. This corresponds to a bucket concentration of 15/5 =
3 g/L. It should not be surprising that salt concentration inside the tank
will move to match the inflow salt concentration.

2 4 6 8 10

5

10

15

t

y

Figure 8.4.9 Salt concentration at
time t, from Example 8.4.8
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Example 8.4.10 Unequal Flow Rates.

Suppose the setup is identical to the setup in Example 8.4.8 except that
now liquid flows out of the bucket at a rate of 1 L/min. Find a function
that gives the amount of salt in the bucket at time t. What is the salt
concentration when the solution ceases to be valid?
Solution. Because the inflow and outflow rates no longer match, the
volume of liquid in the bucket is not the constant 5 L. In general, we can
find the volume of liquid via the equation

volume = initial volume + (inflow rate - outflow rate) t.

In this example, the volume at time t is 5 + t liters. Because the total
volume of the bucket is only 10 L, it follows that our solution will only be
valid for 0 ≤ t ≤ 5. At that point it is no longer possible to have liquid
flow into a the bucket at a rate of 2 L/min and out of the bucket at a rate
of 1 L/min.
To update the differential equation, we must modify the rate out. Since
the volume is 5+ t, the concentration at time t is given by y

5+t g/L. Thus

for rate out, we must use
(

y
5+t

)
(1) g/min. The initial value problem is

dy

dt
= 6− y

5 + t
, with y(0) = 5.

Unlike Example 8.4.8, where we had equal flow rates, this differential
equation is no longer separable. We must proceed with an integrating
factor. Writing the differential equation in the form

dy

dt
+

1

5 + t
y = 6,

we identify the integrating factor

µ(t) = e
∫

1
5+t dt = eln(5+t) = 5 + t.

Then
d

dt

(
(5 + t)y

)
= 6(5 + t),

yielding the implicit solution

(5 + t)y = 30t+ 3t2 + C.

The initial condition y(0) = 5 impliesC = 25, so the explicit solution to
our initial value problem is given by

y =
3t2 + 30t+ 25

5 + t
.

This solution ceases to be valid at t = 5. At that time, there are 25 g of
salt in the tank. The volume of liquid is 10 L, resulting in a salt concen-
tration of 2.5 g/L.

Differential equations are powerful tools that can be used to help describe
the world around us. Though relatively simple in concept, the ideas of pro-
portional change and matching rates can serve as building blocks in the devel-
opment of more sophisticated mathematical models. As we saw in this sec-
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tion, some simple mathematical models can be solved analytically using the
techniques developed in this chapter. Most sophisticated mathematical mod-
els don’t allow for analytic solutions. Even so, there are an array of graphical
and numerical techniques that can be used to analyze the model to make pre-
dictions and infer information about real world phenomena.
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8.4.3 Exercises

Problems

Exercise Group. In the following exercises, use the tools in the section to answer the questions presented.
1. Suppose the rate of change of y with respect to

x is proportional to 10− y. Write down and
solve a differential equation for y.

2. A rumor is spreading through a middle school
with 250 students. Suppose the rumor spreads
at a rate proportional to the number of
students who haven’t heard the rumor yet. If 1
person starts the rumor, and 75 students have
heard the rumor 3 days later, how many days
will it take until 80% of the students in the
school have heard the rumor?

3. A rumor is spreading through a middle school
with 250 students. Suppose the rumor spreads
at a rate proportional to the product of number
of students who have heard the rumor and the
number who haven’t heard the rumor. If 1
person starts the rumor, and 75 students have
heard the rumor 3 days later, how many days
will it take until 80% of the students in the
school have heard the rumor?

4. A feature of radioactive decay is that the
amount of a radioactive substance decreases at
a rate proportional to the current amount of
the substance. The half life of a substance is the
amount of time it takes for half of a given
amount of substance to decay. The half life of
carbon-14 is approximately 5730 years. If an
ancient object has a carbon-14 amount that is
20% of the original amount, how old is the
object?

5. Consider a chemical reaction where molecules
of type A combine with molecules of type B to
form molecules of type C. Suppose one
molecule of type A combines with one molecule
of type B to form one molecule of type C, and
that type C is produced at a rate proportional
the product of the remaining number of
molecules of types A and B. Let x denote moles
of molecules of type C. Find a function giving
the number of moles of type C at time t if there
are originally amoles of type A, bmoles of type
B, and zero moles of type C.

6. Suppose an object with a temperature of 100◦
is introduced into a room with an ambient
temperature of 70◦. Suppose the temperature
of the object changes at a rate proportional to
the difference between the temperature of the
object and the temperature of the room
(Newton’s Law of Cooling). If the object has
cooled to 92◦ in 10 minutes, how long until the
object has cooled to 84◦?

7. Suppose an object with a temperature of 100◦
is introduced into a room with an ambient
temperature given by 60 + 20e−

1
4 t degrees.

Suppose the temperature of the object changes
at a rate proportional to the difference between
the temperature of the object and the
temperature of the room (Newton’s Law of
Cooling). If the object is 80◦ after 20 minutes,
find a formula giving the temperature of the
object at time t. (Note: This problem requires a
numerical technique to solve for the unknown
constants.)

8. A tank contains 5 gallons of salt solution with
concentration 0.5 g/gal. Pure water flows into
the tank at a rate of 1 gallon per minute. Salt
solution flows out of the tank at a rate of 1
gallon per minute. (Assume instantaneous
mixing.) Find the concentration of the salt
solution at 10 minutes.
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9. Dead leaves accumulate on the ground at a rate
of 4 grams per square centimeter per year. The
dead leaves on the ground decompose at a rate
of 50% per year. Find a formula giving grams
per square centimeter on the ground if there
are no leaves on the ground at time t = 0.

10. A pond initially contains 10 million gallons of
fresh water. Water containing an undesirable
chemical flows into the pond at a rate of 5
million gallons per year, and fluid from the pond
flows out at the same rate. (Assume
instantaneous mixing.) If the concentration (in
grams per million gallons) of the incoming
chemical varies periodically according to the
expression 2 + sin(2t), find a formula giving the
amount of chemical in the pond at time t.

11. A large tank contains 1 gallon of a salt solution
with concentration 2 g/gal. A salt solution with
concentration 1 g/gal flows into the tank at a
rate of 4 gal/min. Salt solution flows out of the
tank at a rate of 3 gal/min. (Assume
instantaneous mixing.) Find the amount of salt
in the tank at 10 minutes.

12. A stream flows into a pond containing 2 million
gallons of fresh water at a rate of 1 million
gallons per day. The stream flows out of the
first pond and into a second pond containing 3
million gallons of fresh water. The stream then
flows out of the second pond. Suppose the
inflow and outflow rates are the same so that
both ponds maintain their volumes. A factory
upstream of the first pond starts polluting the
stream. Directly below the factory, pollutant has
a concentration of 55 grams per million gallons,
and this concentration starts to flow into the
first pond. Find the concentration of pollutant
in the first and second ponds at 5 days.



Chapter 9

Sequences and Series

This chapter introduces sequences and series, importantmathematical construc-
tions that are useful when solving a large variety ofmathematical problems. The
content of this chapter is considerably different from the content of the chap-
ters before it. While the material we learn here definitely falls under the scope
of “calculus,” we will make very little use of derivatives or integrals. Limits are
extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
information about a function and its derivatives at a point, such as f(1) = 3,
f ′(1) = 1, f ′′(1) = −2, f ′′′(1) = 7, and so on. What can I say about f(x) itself?
Is there any reasonable approximation of the value of f(2)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximations
of functions when limited knowledge of the function is available.

9.1 Sequences

We commonly refer to a set of events that occur one after the other as a se-
quence of events. In mathematics, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one after the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and often this can be done. For instance, the
sequence above could be described by the function a(n) = 2n, for the values
of n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definition of a sequence.

Definition 9.1.1 Sequence.

A sequence is a function a(n) whose domain is N. The range of a se-
quence is the set of all distinct values of a(n).
The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….
A sequence a(n) is often denoted as {an}.

Notation: We useN to describe
the set of natural numbers, that
is, the positive integers1, 2, 3, . . .Definition 9.1.2

A factorial refers to the product of a descending sequence of natural
numbers. For example, the expression 4! (read as 4 factorial) refers to
the number 4 · 3 · 2 · 1 = 24.

444
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In general, n! = n · (n−1) · (n−2) · · · 2 ·1, where n is a natural number.
We define 0! = 1. While this does not immediatelymake sense, it makes
many mathematical formulas work properly.

Example 9.1.3 Listing terms of a sequence.

List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4 + (−1)n}

3. {an} =

{
(−1)n(n+1)/2

n2

}
Solution.

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9

2
; a3 =

33

3!
=

9

2
; a4 =

34

4!
=

27

8
We can plot the terms of a sequence with a scatter plot. The hori-
zontal axis is used for the values of n, and the values of the terms
are plotted on the vertical axis. To visualize this sequence, see
Figure 9.1.4.

an =
3n

n!

1 2 3 4

1

2

3

4

5

n

y

Figure 9.1.4 Plotting the sequence in
Item 1

2. a1 = 4+(−1)1 = 3; a2 = 4+(−1)2 = 5; a3 = 4+(−1)3 =
3; a4 = 4 + (−1)4 = 5 .

Note that the range of this sequence is finite, consisting of only
the values 3 and 5. This sequence is plotted in Figure 9.1.5.

an = 4 + (−1)n

1 2 3 4

1

2

3

4

5

n

y

Figure 9.1.5 Plotting the sequence in
Item 2

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4
;

a3 =
(−1)3(4)/2

32
=

1

9
; a4 =

(−1)4(5)/2

42
=

1

16
; ; a5 =

(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pattern of signs is
“−,−,+,+,−,−, . . .”, due to the fact that the exponent of−1 is
a special quadratic. This sequence is plotted in Figure 9.1.6.

an =
(−1)n(n+1)/2

n2

1 2 3 4 5

−1

1/2

1/4

n

y

Figure 9.1.6 Plotting the sequence in
Item 3

Example 9.1.7 Determining a formula for a sequence.

Find the nth term of the following sequences, i.e., find a function that
describes each of the given sequences.

1. {an} = {2, 5, 8, 11, 14, . . .}

2. {bn} = {2,−5, 10,−17, 26,−37, . . .}

3. {cn} = {1, 1, 2, 6, 24, 120, 720, . . .}
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4. {dn} =

{
5

2
,
5

2
,
15

8
,
5

4
,
25

32
, . . .

}
Solution. We should first note that there is never exactly one function
that describes a finite set of numbers as a sequence. There are many
sequences that start with 2, then 5, as our first example does. We are
looking for a simple formula that describes the terms given, knowing
there is possibly more than one answer.

1. Note how each term is 3 more than the previous one. This implies
a linear function would be appropriate: a(n) = an = 3n + b
for some appropriate value of b. If we were to think in terms of
ordered pairs, they would be of the form (n, a(n)). So one such
ordered pair would be (1, 2). As we want a1 = 2, we set b = −1.
Thus an = 3n− 1.

2. First notice how the sign changes from term to term. This is most
commonly accomplished bymultiplying the terms by either (−1)n

or (−1)n+1. Using (−1)n multiplies the odd indexed terms by
(−1). Thus the first term would be negative and the second term
would be positive. Multiplying by (−1)n+1 multiplies the even
indexed terms by (−1). Thus the second term would be negative
and the first termwould bepositive. As this sequence has negative
even indexed terms, we will multiply by (−1)n+1.

After this, we might feel a bit stuck as to how to proceed. At this
point, we are just looking for a pattern of some sort: what do the
numbers 2, 5, 10, 17, etc., have in common? There are many cor-
rect answers, but the one that we’ll use here is that each is one
more than a perfect square. That is, 2 = 12 + 1, 5 = 22 + 1,
10 = 32 + 1, etc. Thus our formula is bn = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial function will readily recog-
nize these numbers. They are 0!, 1!, 2!, 3!, etc. Since our se-
quences start withn = 1, we cannotwrite cn = n!, for thismisses
the 0! term. Instead, we shift by 1, and write cn = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are
the same, but a little “sleuthing” will help. Notice how the terms
in the numerator are always multiples of 5, and the terms in the
denominator are always powers of 2. Does something as simple
as dn = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When
n = 2, we get 10/4 = 5/2. Further checking shows that this
formula indeed matches the other terms of the sequence.

A common mathematical endeavor is to create a new mathematical object
(for instance, a sequence) and then apply previously knownmathematics to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will investigate what it means to find the limit of a sequence.
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Definition 9.1.8 Limit of a Sequence, Convergent, Divergent.

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
an N can be found such that |an − L| < ε for all n > N , then we say
the limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definition states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjective
terms, but hopefully the intent is clear.

This definition is reminiscent of the ε-δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definition; we
do so here as well.

Definition 9.1.9 Limit of Infinity, Divergent Sequence.

Let {an} be a sequence. We say lim
n→∞

an = ∞ if for allM > 0, there
exists a number N such that if n ≥ N , then an > M . In this case, we
say the sequence diverges to∞.

This definition states, informally, that if the limit of an is∞, then you can
guarantee that the terms of an will get arbitrarily large (larger than any value of
M that you think of), by going out far enough in the sequence.

Theorem 9.1.10 Limit of a Sequence.

Let {an} be a sequence, letL be a real number, and let f(x) be a function
whose domain contains the positive real numbers where f(n) = an for
all n in N.

1. If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

2. If lim
x→∞

f(x) = ∞, then lim
n→∞

an = ∞.

Theorem 9.1.10 allows us, in certain cases, to apply the tools developed in
Chapter 1 to limits of sequences. Note two things not stated by the theorem:

1. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not
exist. It may, or may not, exist. For instance, we can define a sequence
{an} = {cos(2πn)}. Let f(x) = cos(2πx). Since the cosine function
oscillates over the real numbers, the limit lim

x→∞
f(x) does not exist. How-

ever, for every positive integer n, cos(2πn) = 1, so lim
n→∞

an = 1.

2. If we cannot find a function f(x)whose domain contains the positive real
numbers where f(n) = an for all n in N, we cannot conclude lim

n→∞
an

does not exist. It may, or may not, exist.



CHAPTER 9. SEQUENCES AND SERIES 448

Example 9.1.11 Determining convergence/divergence of a sequence.

Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1

n2 − 1000

}
2. {bn} = {cos(n)}

3. {cn} =

{
(−1)n

n

}
Solution.

1. Using Theorem1.6.16, we can state that lim
x→∞

3x2−2x+1
x2−1000 = 3. (We

could have also directly applied L’Hospital’s Rule.) Thus the se-
quence {an} converges, and its limit is 3. A scatter plot of every 5
values of an is given in Figure 9.1.12. The values of an vary widely
near n = 30, ranging from about−73 to 125, but as n grows, the
values approach 3.

an =
3n2 − 2n+ 1

n2 − 1000
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−10

−5

5

10

n

y

Figure 9.1.12 Scatter plot for the se-
quence in Item 1

2. The limit lim
x→∞

cos(x) does not exist, as cos(x) oscillates (and
takes on every value in [−1, 1] infinitely many times). Thus we
cannot apply Theorem 9.1.10. The fact that the cosine function
oscillates strongly hints that cos(n), when n is restricted toN, will
also oscillate. Figure 9.1.13, where the sequence is plotted, shows
that this is true. Because only discrete values of cosine are plot-
ted, it does not bear strong resemblance to the familiar cosine
wave. The proof of the following statement is beyond the scope
of this text, but it is true: there are infinitely many integers n that
are arbitrarily (i.e., very) close to an even multiple of π, so that
cosn ≈ 1. Similarly, there are infinitely many integersm that are
arbitrarily close to an odd multiple of π, so that cosm ≈ −1. As
the sequence takes on values near 1 and−1 infinitely many times,
we conclude that lim

n→∞
an does not exist.

20 40 60 80 100
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−0.5

0.5

1

n

y
an = cos(n)

Figure 9.1.13 Scatter plot for the se-
quence in Item 2

3. We cannot actually apply Theorem 9.1.10 here, as the function
f(x) = (−1)x/x is not well defined. (What does (−1)

√
2 mean?

In actuality, there is an answer, but it involves complex analysis,
beyond the scope of this text.) Instead, we invoke the definition
of the limit of a sequence. By looking at the plot in Figure 9.1.14,
we would like to conclude that the sequence converges to L = 0.
Let ϵ > 0 be given. We can find a natural number m such that
1/m < ε. Let n > m, and consider |an − L|:

|an − L| =
∣∣∣∣ (−1)n

n
− 0

∣∣∣∣
=

1

n

<
1

m
(since n > m)

< ε.
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We have shown that by picking m large enough, we can ensure
that an is arbitrarily close to our limit, L = 0, hence by the defini-
tion of the limit of a sequence, we can say lim

n→∞
an = 0.

an =
(−1)n

n

5 10 15 20

−1

−0.5

0.5

1

n

y

Figure 9.1.14 Scatter plot for the se-
quence in Item 3

In the previous example we used the definition of the limit of a sequence to
determine the convergence of a sequence aswe could not apply Theorem9.1.10.
In general, we like to avoid invoking the definition of a limit, and the following
theorem gives us tool that we could use in that example instead.

Theorem 9.1.15 Absolute Value Theorem.

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Proof. Let lim
n→∞

|an| = 0. We start by noting that − |an| ≤ an ≤ |an|. If we
apply limits to this inequality:

lim
n→∞

(− |an|) ≤ lim
n→∞

an ≤ lim
n→∞

|an|

− lim
n→∞

|an| ≤ lim
n→∞

an ≤ lim
n→∞

|an|

Using the fact that lim
n→∞

|an| = 0:

0 ≤ lim
n→∞

an ≤ 0

We conclude that the only possible answer for lim
n→∞

an is 0. ■

Example 9.1.16 Determining the convergence/divergence of a se-
quence.

Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
Solution.

1. This appeared in Example 9.1.11. We want to apply Theo-
rem 9.1.15, so consider the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1

n

= 0.

Since this limit is 0, we can apply Theorem 9.1.15 and state that
lim

n→∞
an = 0.

2. Because of the alternating nature of this sequence (i.e., every
other term is multiplied by −1), we cannot simply look at the
limit lim

x→∞
(−1)x(x+1)

x . We can try to apply the techniques of The-
orem 9.1.15:
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lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)

n

∣∣∣∣
= lim

n→∞

n+ 1

n

= 1.

We have concluded that when we ignore the alternating sign,
the sequence approaches 1. This means we cannot apply Theo-
rem 9.1.15; it states the the limit must be 0 in order to conclude
anything.

an =
(−1)n(n+ 1)

n
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Figure 9.1.17 A plot of a sequence in
Example 9.1.16, part 2

Since we know that the signs of the terms alternate and we know
that the limit of |an| is 1, we know that as n approaches infinity,
the terms will alternate between values close to 1 and−1, mean-
ing the sequence diverges. A plot of this sequence is given in Fig-
ure 9.1.17.

We continue our study of the limits of sequences by considering some of the
properties of these limits.

Theorem 9.1.18 Properties of the Limits of Sequences.

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K,
and let c be a real number.

1. lim
n→∞

(an ± bn) = L±K

2. lim
n→∞

(an · bn) = L ·K

3. lim
n→∞

(an/bn) = L/K,K ̸=
0

4. lim
n→∞

c · an = c · L

Example 9.1.19 Applying properties of limits of sequences.

Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1

n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1 +

1

n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

Solution. We will use Theorem 9.1.18 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an+

bn) = 0 + e = e. So even though we are adding something to
each term of the sequence bn, we are adding something so small
that the final limit is the same as before.
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2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn ·
cn) = e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does
not matter that we multiply each term by 1000; the sequence still
approaches 0. (It just takes longer to get close to 0.)

There is more to learn about sequences than just their limits. We will also
study their range and the relationships terms have with the terms that follow.
We start with some definitions describing properties of the range.

Definition 9.1.20 Bounded and Unbounded Sequences.

A sequence {an} is said to be bounded if there exist real numbers m
andM such thatm ≤ an ≤ M for all n in N. The numberm is called
a lower bound for the sequence, and the numberM is called an upper
bound for the sequence.
A sequence {an} is said to be unbounded if it is not bounded.
A sequence {an} is said to be bounded above if there exists anM such
that an < M for all n inN; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definition that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example 9.1.21 Determining boundedness of sequences.

Determine the boundedness of the following sequences.

1. {an} =

{
1

n

}
2. {an} = {2n}

Solution.

1. The terms of this sequence are always positive but are decreasing,
so we have 0 < an < 2 for all n. Thus this sequence is bounded.
Figure 9.1.22(a) illustrates this.

2. The terms of this sequence obviously grow without bound. How-
ever, it is also true that these terms are all positive, meaning
0 < an. Thus we can say the sequence is unbounded, but also
bounded below. Figure 9.1.22(b) illustrates this.
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Figure 9.1.22 A plot of {an} = {1/n} and {an} = {2n} from Exam-
ple 9.1.21

The previous example produces some interesting concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that the
sequence is bounded, using the following logic. First, “most” terms are near 0,
so we could find some sort of bound on these terms (using Definition 9.1.8, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Theorem 9.1.23 Convergent Sequences are Bounded.

Let {an} be a convergent sequence. Then {an} is bounded. Keep inmindwhat Theorem9.1.23
does not say. It does not say that
bounded sequencesmust converge,
nor does it say that if a sequence
does not converge, it is not bounded.

In Example 9.1.19 we saw the sequence {bn} = {(1 + 1/n)
n}, where it

was stated that lim
n→∞

bn = e. (Note that this is simply restating part of Theo-
rem 1.3.12. The limit can also be found using logarithms and L’Hospital’s rule.)
Even though it may be difficult to intuitively grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesting concept to come out of Example 9.1.21 again involves
the sequence {1/n}. We stated, without proof, that the terms of the sequence
were decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n+ 1. Taking reciprocals flips the inequality: 1/n > 1/(n+ 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

Definition 9.1.24 Monotonic Sequences.

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} ismonotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence is monotonic if it is monotonically increasing or mo-
notonically decreasing.

It is sometimes useful to call a
monotonically increasing sequence
strictly increasing if an < an+1

for all n; i.e, we remove the pos-
sibility that subsequent terms are
equal.

A similar statement holds for
strictly decreasing.
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Example 9.1.25 Determining monotonicity.

Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1

n

}

2. {an} =

{
n2 + 1

n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}
Solution. In each of the following, we will examine an+1 − an. If
an+1 − an ≥ 0, we conclude that an ≤ an+1 and hence the sequence
is increasing. If an+1 − an ≤ 0, we conclude that an ≥ an+1 and the
sequence is decreasing. Of course, a sequence need not be monotonic
and perhaps neither of the above will apply.
We also give a scatter plot of each sequence. These are useful as they
suggest a pattern of monotonicity, but analytic work should be done to
confirm a graphical trend.

1.

an+1 − an =
n+ 2

n+ 1
− n+ 1

n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)

< 0 for all n.

Since an+1 − an < 0 for all n, we conclude that the sequence is
decreasing.

2.

an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 3n

(n+ 1)(n+ 2)

> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is in-
creasing.

3. We can clearly see in Figure 9.1.26(c), where the sequence is plot-
ted, that it is not monotonic. However, it does seem that after
the first 4 terms it is decreasing. To understand why, perform the
same analysis as done before:

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8

n2 − 8n+ 17
− n2 − 9

n2 − 10n+ 26
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=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0. The
denominator is always positive, therefore we are only concerned
with the numerator. For small values of n, the numerator is pos-
itive. As n grows large, the numerator is dominated by −10n2,
meaning the entire fraction will be negative; i.e., for large enough
n, an+1−an < 0. Using the quadratic formula we can determine
that the numerator is negative for n ≥ 5. In short, the sequence
is simply not monotonic, though it is useful to note that for n ≥ 5,
the sequence is monotonically decreasing.

4. Again, the plot in Figure 9.1.26(d) shows that the sequence is not
monotonic, but it suggests that it ismonotonically decreasing after
the first term. We perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!

When n = 1, the above expression is > 0; for n ≥ 2, the above
expression is < 0. Thus this sequence is not monotonic, but it is
monotonically decreasing after the first term.
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Figure 9.1.26 Plots of sequences in Example 9.1.25

Knowing that a sequence is monotonic can be useful. Consider, for example,
a sequence that is monotonically decreasing and is bounded below. We know
the sequence is always getting smaller, but that there is a bound to how small it
can become. This is enough to prove that the sequence will converge, as stated
in the following theorem.

Theorem 9.1.27 Bounded Monotonic Sequences are Convergent.

1. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

2. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always positive (i.e., bounded below by
0). Therefore we can conclude by Theorem 9.1.27 that the sequence converges.
We already knew this by other means, but in the following section this theorem
will become very useful.

We can replace Theorem 9.1.27 with the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges; i.e., lim

n→∞
an exists.” We leave it to

the reader in the exercises to show the theorem and the above statement are
equivalent.

Sequences are a great source of mathematical inquiry. The On-Line Ency-
clopedia of Integer Sequences (oeis.org) contains thousands of sequences and
their formulae. (As of this writing, there are 328,977 sequences in the data-
base.) Perusing this database quickly demonstrates that a single sequence can
represent several different “real life” phenomena.

https://oeis.org
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Interesting as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1+a2+a3+ · · ·. Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many times, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to investigate in Section 9.2.
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9.1.1 Exercises

Terms and Concepts

1. Use your own words to define a sequence.

2. The domain of a sequence is the numbers.

3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems

Exercise Group. In the following exercises, give the first five terms of the given sequence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3

2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} ={

1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)}

Exercise Group. In the following exercises, determine the nth term of the given sequence.
9. 4, 7, 10, 13, 16, . . . 10. 3, −3

2
,
3

4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .
12. 1, 1,

1

2
,
1

6
,
1

24
,

1

120
, . . .

Exercise Group. In the following exercises, use the following information to determine the limit of the given se-
quences.

• {an} =

{
2n − 20

2n

}
; lim
n→∞

an = 1

• {bn} =

{(
1 +

2

n

)n}
; lim
n→∞

bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20

7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1 +

2

n

)n}
16. {an} =

{(
1 +

2

n

)2n
}

Exercise Group. In the following exercises, determine whether the sequence converges or diverges. If convergent,
give the limit of the sequence.

17. {an} =

{
(−1)n

n

n+ 1

}
18. {an} =

{
4n2 − n+ 5

3n2 + 1

}
19. {an} =

{
4n

5n

}
20. {an} =

{
n− 1

n
− n

n− 1

}
, n ≥ 2

21. {an} = {ln(n)}
22. {an} =

{
3n√
n2 + 1

}
23. {an} =

{(
1 +

1

n

)n}
24. {an} =

{
5− 1

n

}



CHAPTER 9. SEQUENCES AND SERIES 458

25. {an} =

{
(−1)n+1

n

}
26. {an} =

{
1.1n

n

}
27. {an} =

{
2n

n+ 1

}
28. {an} =

{
(−1)n

n2

2n − 1

}

Exercise Group. In the following exercises, determine whether the sequence is bounded, bounded above, bounded
below, or none of the above.

29. {an} = {sin(n)} 30. {an} = {tan(n)}

31. {an} =

{
(−1)n

3n− 1

n

}
32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos(n)} 34. {an} = {2n − n!}

Exercise Group. In the following exercises, determine whether the sequence is monotonically increasing or decreas-
ing. If it is not, determine if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}
36. {an} =

{
n2 − 6n+ 9

n

}
37. {an} =

{
(−1)n

1

n3

}
38. {an} =

{
n2

2n

}

Exercise Group. The following exercises explore further the theory of sequences.
39. Prove Theorem 9.1.15; that is, use the

definition of the limit of a sequence to show
that if lim

n→∞
|an| = 0, then lim

n→∞
an = 0.

40. Let {an} and {bn} be sequences such that
lim

n→∞
an = L and lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then
L ≤ K.

(b) Give an example where L = K.
41. Prove the Squeeze Theorem for sequences: Let

{an} and {bn} be such that lim
n→∞

an = L and
lim

n→∞
bn = L, and let {cn} be such that

an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

42. Prove the statement “Let {an} be a bounded,
monotonic sequence. Then {an} converges;
i.e., lim

n→∞
an exists.” is equivalent to

Theorem 9.1.27. That is,

(a) Show that if Theorem 9.1.27 is true, then
above statement is true, and

(b) Show that if the above statement is true,
then Theorem 9.1.27 is true.
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9.2 Infinite Series

Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 =1/2

a1 + a2 = 1/2 + 1/4 =3/4

a1 + a2 + a3 = 1/2 + 1/4 + 1/8 =7/8

a1 + a2 + a3 + a4 = 1/2 + 1/4 + 1/8 + 1/16 =15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1

2n
= 1− 1

2n
.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the
above, we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that
Sn = 1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = limn→∞
(
1− 1/2n

)
= 1. This

limit can be interpreted as saying something amazing: the sum of all the terms
of the sequence {1/2n} is 1.

This example illustrates some interesting concepts that we explore in this
section. We begin this exploration with some definitions.

9.2.1 Convergence of sequences

Definition 9.2.1 Infinite Series, nth Partial Sums, Convergence, Diver-
gence.

Let {an} be a sequence, beginning at some index value n = k.

1. The sum
∞∑

n=k

an is called an infinite series (or, simply series).

2. Let Sn denote the sum of the first n terms in the sequence {an},
known as the nth partial sum of the sequence. We can then de-
fine the sequence {Sn} of partial sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑

n=k

an

converges to L, and we write
∞∑

n=k

an = L.

4. If the sequence {Sn} diverges, the series
∞∑

n=k

an diverges.

Using our new terminology, we can state that the series
∞∑

n=1

1/2n converges,

and
∞∑

n=1

1/2n = 1.

Note that in the definition above, we do not necessarily assume that our
sum begins with n = 1. In fact, it is quite common to have a series beginning
at n = 0, and in some cases we may need to consider other values as well. The
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nth partial sum Sn will always denote the sum of the first n terms: For example,∑∞
n=1 1/n has

Sn =

n terms︷ ︸︸ ︷
1 +

1

2
+ · · ·+ 1

n
,

while
∑∞

n=0 3
−n has

Sn =

n terms︷ ︸︸ ︷
1 +

1

3
+ · · ·+ 1

3n−1
,

and
∑∞

n=3
1

n2−2n has

Sn =

n terms︷ ︸︸ ︷
1

3
+

1

8
+ · · ·+ 1

(n+ 2)2 − 2(n+ 2)
.

In general, for the series
∞∑

n=k

an, the nth partial sum will be Sn =

k+n−1∑
i=k

ai.

We will explore a variety of series in this section. We start with two series
that diverge, showing how we might discern divergence.

Example 9.2.2 Showing series diverge.

1. Let {an} = {n2}. Show
∞∑

n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑

n=1

bn diverges.

Solution.

1. Consider Sn, the nth partial sum.

Sn = a1 + a2 + a3 + · · ·+ an

= 12 + 22 + 32 · · ·+ n2.

By Theorem 5.3.7, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑

n=1

n2 diverges.

It is instructive to write
∞∑

n=1

n2 = ∞ for this tells us how the series

diverges: it grows without bound. A scatter plot of the sequences
{an} and {Sn} is given in Figure 9.2.3(a). The terms of {an} are
growing, so the terms of the partial sums {Sn} are growing even
faster, illustrating that the series diverges.

2. The sequence {bn} starts with 1, −1, 1, −1, . . .. Consider some
of the partial sums Sn of {bn}:

S1 = 1
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S2 = 0

S3 = 1

S4 = 0

This pattern repeats; we find that Sn =

{
1 n is odd
, 0 n is even

. As

{Sn} oscillates, repeating 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn

does not exist, hence
∞∑

n=1

(−1)n+1 diverges. A scatter plot of

the sequence {bn} and the partial sums {Sn} is given in Fig-
ure 9.2.3(b). When n is odd, bn = Sn so the marks for bn are
drawn oversized to show they coincide.
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Figure 9.2.3 Scatter plots relating to Example 9.2.2

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this section we will demonstrate
a few general techniques for determining convergence; later sections will delve
deeper into this topic.

9.2.2 Geometric Series
One important type of series is a geometric series.

Definition 9.2.4 Geometric Series.

A geometric series is a series of the form

∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this section with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properties.
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Theorem 9.2.5 Geometric Series Test.

Consider the geometric series
∞∑

n=0

rn.

1. For r ̸= 1, the nth partial sum is:

Sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
.

When r = 1, Sn = n.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

Proof. We begin by proving the formula for the simplied form for the partial
sums. Consider the nth partial sum of the geometric series, Sn =

∑n
i=0 r

i:

Sn = 1 + r + r2 + · · ·+ rn−2 + rn−1

Multiply both sides by r:

r · Sn = r + r2 + r3 + · · ·+ rn−1 + rn

Now subtract the second line from the first and solve for Sn:

Sn − r · Sn = 1− rn

Sn(1− r) = 1− rn

Sn =
1− rn

1− r
.

We have shown Part 1 of Geometric Series Test.
Now, examining the partial sums, we consider five cases to determine when Sn

converges:

1. If |r| < 1, then rn → 0 as n → ∞, so we have lim
n→∞

Sn = 1−0
1−r = 1

1−r , a
convergent sequence of partial sums.

2. If r > 1, then rn → ∞ as n → ∞, so

Sn =
1− rn

1− r
=

rn

r − 1
− 1

r − 1

diverges to infinity. (Note that r − 1 is a positive constant.)

3. If r < −1, then rn will oscillate between large positive and large negative
values as n increases. The same will be true of Sn, so lim

n→∞
Sn does not

exist.

4. If r = 1, then Sn = 1−1n+1

1−1 is undefined. However, examining Sn =

1+ r+ r2 + · · ·+ rn for r = 1, we can see that the partial sums simplify
to Sn = n, and this sequence diverges to∞.

5. If r = −1, then Sn = 1−(−1)n

2 . For even values of n, the partial sums
are always 0. For odd values of n, the partial sums are always 1. So the
sequence of partial sums diverges.

Therefore, a geometric series converges if and only if |r| < 1. ■
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According to Theorem 9.2.5, the series
∞∑

n=0

1

2n
=

∞∑
n=0

(
1

2

)2

= 1 +
1

2
+

1

4
+ · · ·

converges as r = 1/2 < 1, and
∞∑

n=0

1

2n
=

1

1− 1/2
= 2. This concurs with our

introductory example; while there we got a sum of 1, we skipped the first term
of 1.

Example 9.2.6 Exploring geometric series.

Check the convergence of the following series. If the series converges,
find its sum.

1.
∞∑

n=2

(
3

4

)n

2.
∞∑

n=0

(
−1

2

)n

3.
∞∑

n=0

3n

Solution.

1. Since r = 3/4 < 1, this series converges. By Theorem 9.2.5, we
have that

∞∑
n=0

(
3

4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summation in the given series:
we are to start with n = 2. Therefore we subtract off the first two
terms, giving:

∞∑
n=2

(
3

4

)n

= 4− 1− 3

4
=

9

4
.

This is illustrated in Figure 9.2.7.
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Figure 9.2.7 Scatter plots for the se-
ries in Item 1

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 9.2.5,

∞∑
n=0

(
−1

2

)n

=
1

1− (−1/2)
=

2

3
.

The partial sumsof this series are plotted in Figure 9.2.8. Note how
the partial sums are not purely increasing as some of the terms of
the sequence {(−1/2)n} are negative.
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Figure 9.2.8 Scatter plots for the se-
ries in Item 2

3. Since r > 1, the series diverges. (This makes “common sense”;
we expect the sum

1 + 3 + 9 + 27 + 81 + 243 + · · ·

to diverge.) This is illustrated in Figure 9.2.9.
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Figure 9.2.9 Scatter plots for the se-
ries in Item 3

9.2.3 p-Series
Another important type of series is the p-series.



CHAPTER 9. SEQUENCES AND SERIES 464

Definition 9.2.10 p-Series, General p-Series.

1. A p-series is a series of the form

∞∑
n=1

1

np
, where p > 0.

2. A general p-series is a series of the form

∞∑
n=1

1

(an+ b)p
,

where p > 0 and a, b are real numbers such that a ̸= 0 and an +
b > 0 for all n ≥ 1.

Like geometric series, one of the nice things about p-series is that they have
easy to determine convergence properties.

Theorem 9.2.11 p-Series Test.

A general p-series
∞∑

n=1

1

(an+ b)p
will converge if, and only if, p > 1.

We will be able to prove Theo-
rem 9.2.11 in Section 9.3. This
theorem assumes that an+ b >
0 for all n; if an + b < 0, (an +
b)p won’t be defined when p is
not an integer, and if an+ b = 0
for some n, then of course the
series does not converge regard-
less of p as not all of the terms of
the sequence are defined. These
requirements actually force us to
have a > 0, since if a < 0, we’ll
have an + b < 0 for sufficiently
large n.

Example 9.2.12 Determining convergence of series.

Determine the convergence of the following series.

1.
∞∑

n=1

1

n

2.
∞∑

n=1

1

n2

3.
∞∑

n=1

1√
n

4.
∞∑

n=1

(−1)n

n

5.
∞∑

n=11

1

( 12n− 5)3

6.
∞∑

n=1

1

2n

Solution.

1. This is a p-series with p = 1. By Theorem 9.2.11, this series di-
verges. This series is a famous series, called the Harmonic Series,
so named because of its relationship to harmonics in the study of
music and sound.

2. This is a p-series with p = 2. By Theorem 9.2.11, it converges.
Note that the theoremdoes not give a formula bywhichwe cande-
termine what the series converges to; we just know it converges.
A famous, unexpected result is that this series converges to π2/6.

3. This is a p-series with p = 1/2; the theorem states that it diverges.

4. This is not a p-series; the definition does not allow for alternat-
ing signs. Therefore we cannot apply Theorem 9.2.11. (Another
famous result states that this series, the Alternating Harmonic Se-
ries, converges to ln(2).)

5. This is a general p-series with p = 3, therefore it converges.
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6. This is not a p-series, but a geometric series with r = 1/2. It
converges.

Later sections will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example 9.2.13 Telescoping series.

Evaluate the sum
∞∑

n=1

(
1

n
− 1

n+ 1

)
.

Solution. It will help to write down some of the first few partial sums
of this series.

S1 =
1

1
− 1

2
= 1− 1

2

S2 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
= 1− 1

3

S3 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
= 1− 1

4

S4 =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
= 1− 1

5

Note how most of the terms in each partial sum are canceled out! In
general, we see that Sn = 1 − 1

n+ 1
. The sequence {Sn} converges,

as lim
n→∞

Sn = limn→∞

(
1− 1

n+1

)
= 1, and so we conclude that

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1. Partial sums of the series are plotted in Fig-

ure 9.2.14.
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Figure 9.2.14 Scatter plots relating to
the series of Example 9.2.13

The series in Example 9.2.13 is an example of a telescoping series. Informally,
a telescoping series is one in which most terms cancel with preceding or follow-
ing terms, reducing the number of terms in each partial sum. The partial sum
Sn did not contain n terms, but rather just two: 1 and 1/(n+ 1).

When possible, seek a way to write an explicit formula for the nth partial
sum Sn. This makes evaluating the limit lim

n→∞
Sn muchmore approachable. We

do so in the next example.

Example 9.2.15 Evaluating series.

Evaluate each of the following infinite series.

1.
∞∑

n=1

2

n2 + 2n
2.

∞∑
n=1

ln
(
n+ 1

n

)
Solution.

1. We can decompose the fraction 2/(n2 + 2n) as

2

n2 + 2n
=

1

n
− 1

n+ 2
.
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(See Section 6.5, Partial Fraction Decomposition, to recall how this
is done, if necessary.) Expressing the terms of {Sn} is now more
instructive:

S1 = 1− 1

3

S2 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
= 1 +

1

2
− 1

3
− 1

4

S3 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
= 1 +

1

2
− 1

4
− 1

5

S4 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
= 1 +

1

2
− 1

5
− 1

6

S5 =

(
1− 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+

(
1

4
− 1

6

)
+

(
1

5
− 1

7

)
= 1 +

1

2
− 1

6
− 1

7

We again have a telescoping series. In each partial sum, most of

the terms cancel andwe obtain the formulaSn = 1+
1

2
− 1

n+ 1
−

1

n+ 2
. Taking limits allows us to determine the convergence of

the series:

lim
n→∞

Sn = lim
n→∞

(
1 +

1

2
− 1

n+ 1
− 1

n+ 2

)
=

3

2
,

so
∑∞

n=1
1

n2+2n = 3
2 . This is illustrated in Figure 9.2.16(a).

2. We begin by writing the first few partial sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3

2

)
S3 = ln (2) + ln

(
3

2

)
+ ln

(
4

3

)
S4 = ln (2) + ln

(
3

2

)
+ ln

(
4

3

)
+ ln

(
5

4

)
At first, this does not seem helpful, but recall the logarithmic iden-
tity: ln(x) + ln(y) = ln(xy). Applying this to S4 gives:

S4 = ln (2) + ln
(
3

2

)
+ ln

(
4

3

)
+ ln

(
5

4

)
= ln

(
2

1
· 3
2
· 4
3
· 5
4

)
= ln (5) .
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We can conclude that {Sn} =
{
ln(n + 1)

}
. This sequence does

not converge, as lim
n→∞

Sn = ∞. Therefore
∞∑

n=1

ln
(
n+ 1

n

)
= ∞;

the series diverges. Note in Figure 9.2.16(b) how the sequence of
partial sums grows slowly; after 100 terms, it is not yet over 5.
Graphically we may be fooled into thinking the series converges,
but our analysis above shows that it does not.
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Figure 9.2.16 Scatter plots relating to the series in Example 9.2.15

We are learning about a new mathematical object, the series. As done be-
fore, we apply “old” mathematics to this new topic.

Theorem 9.2.17 Properties of Infinite Series.

Let
∞∑

n=1

an = L,
∞∑

n=1

bn = K, and let c be a constant.

1. Constant Multiple Rule:
∞∑

n=1

c · an = c ·
∞∑

n=1

an = c · L.

2. Sum/Difference Rule:
∞∑

n=1

(
an± bn

)
=

∞∑
n=1

an±
∞∑

n=1

bn = L±K.

Before using this theorem, we provide a few “famous” series.

Key Idea 9.2.18 Important Series.

1.
∞∑

n=0

1

n!
= e. (Note that the index starts with n = 0.)

2.
∞∑

n=1

1

n2
=

π2

6
.

3.
∞∑

n=1

(−1)n+1

n2
=

π2

12
.



CHAPTER 9. SEQUENCES AND SERIES 468

4.
∞∑

n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑

n=1

1

n
diverges. (This is called the Harmonic Series.)

6.
∞∑

n=1

(−1)n+1

n
= ln(2). (This is called the Alternating Harmonic

Series.)

Example 9.2.19 Evaluating series.

Evaluate the given series.

1.
∞∑

n=1

(−1)n+1
(
n2 − n

)
n3

2.
∞∑

n=1

1000

n!

3.
1

16
+

1

25
+

1

36
+

1

49
+ · · ·

Solution.

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

=

∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=

∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 9.2.20(a).

2. This looks very similar to the series that involves e in Key
Idea 9.2.18. Note, however, that the series given in this example
starts with n = 1 and not n = 0. The first term of the series in
the Key Idea is 1/0! = 1, so we will subtract this from our result
below:

∞∑
n=1

1000

n!
= 1000 ·

∞∑
n=1

1

n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 9.2.20(b). The graph shows how this
particular series converges very rapidly.
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Figure 9.2.20 Scatter plots relating to the series in Example 9.2.19

3. The denominators in each termare perfect squares; we are adding
∞∑

n=4

1

n2
(note we start with n = 4, not n = 1). This series will

converge. Using the formula from Key Idea 9.2.18, we have the
following:

∞∑
n=1

1

n2
=

3∑
n=1

1

n2
+

∞∑
n=4

1

n2

∞∑
n=1

1

n2
−

3∑
n=1

1

n2
=

∞∑
n=4

1

n2

π2

6
−
(
1

1
+

1

4
+

1

9

)
=

∞∑
n=4

1

n2

π2

6
− 49

36
=

∞∑
n=4

1

n2

0.2838 ≈
∞∑

n=4

1

n2

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
section, yet it still may “take some getting used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will still diverge if the first term is removed.
(b) The series will still diverge if the first 10 terms are removed.
(c) The series will still diverge if the first 1, 000, 000 terms are removed.
(d) The series will still diverge if any finite number of terms from any-

where in the series are removed.

These concepts are very important and lie at the heart of the next two theo-
rems.
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Theorem 9.2.21 nth-Term Test for Divergence.

Consider the series
∞∑

n=1

an. If lim
n→∞

an ̸= 0, then
∞∑

n=1

an diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑

n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 9.2.18. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Se-

ries,
∞∑

n=1

1

n
, diverges.

Looking back, we can apply this theorem to the series in Example 9.2.2. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

One can rewrite Theorem 9.2.21 to state “If a series converges, then the
underlying sequence converges to 0.” While it is important to understand the
truth of this statement, in practice it is rarely used. It is generally far easier to
prove the convergence of a sequence than the convergence of a series.

Theorem 9.2.22 Infinite Nature of Series.

The convergence or divergence of an infinite series remains unchanged
by the addition or subtraction of any finite number of terms. That is:

1. A divergent series will remain divergent with the addition or sub-
traction of any finite number of terms.

2. A convergent series will remain convergent with the addition or
subtraction of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑

n=1

1

n
which diverges; that is, the

sequence of partial sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of
the first 10 million terms of the Harmonic Series is about 16.7. Removing the
first 10 million terms from the Harmonic Series changes the nth partial sums,
effectively subtracting 16.7 from the sum. However, a sequence that is growing
without bound will still grow without bound when 16.7 is subtracted from it.

The equations below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equation shows us subtracting these first 10 mil-
lion terms from both sides. The final equation employs a bit of “psuedo-math”:
subtracting 16.7 from “infinity” still leaves one with “infinity.”

∞∑
n=1

1

n
=

10,000,000∑
n=1

1

n
+

∞∑
n=10,000,001

1

n

∞∑
n=1

1

n
−

10,000,000∑
n=1

1

n
=

∞∑
n=10,000,001

1

n

∞− 16.7 = ∞.

Just for fun, we can show that the Harmonic Series diverges algebraically
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(without the use of p-Series Test).

Divergence of the harmonic series. If you just consider the partial sums

S1, S2, S3, . . . , S1000, S1001, . . . ,

it is not apparent that the partial sums diverge. Indeed they do diverge, but very,
very slowly. (If you graph them on a logarithmic scale however, you can clearly
see the divergence of the partial sums.) Instead, we will consider the partial
sums, indexed by powers of 2. That is, we will consider S2, S4, S8, S16, . . ..

S2 = 1 +
1

2

S4 = 1 +
1

2
+

1

3
+

1

4

S8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

8

Next, we consider grouping together terms in each partial sum. We will use
these groupings to set up inequalities.

S2 = 1 +
1

2

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
S8 = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
In the partial sum S4, we note that since 1/3 > 1/4, we can say

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

(
1

4
+

1

4

)
︸ ︷︷ ︸

1/2

= 1 +
2

2
.

Do the same in S8 and also note that every term in the group
(
1
5 + 1

6 + 1
7 + 1

8

)
is larger than 1/8. So

S8 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1 +

1

2
+

(
1

4
+

1

4

)
︸ ︷︷ ︸

1/2

+

(
1

8
+

1

8
+

1

8
+

1

8

)
︸ ︷︷ ︸

1/2

= 1 +
3

2

Generally, we can see that S2n > 1+ n
2 . (In order to really show this, we should

employ proof by induction.) Since the sequence of partial sums clearly diverges,
so does the series

∑∞
n=1 1/n. ■

This section introduced us to series and defined a few special types of series
whose convergence properties are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are still interested in knowing whether or not
they converge. The next three sections introduce tests that help us determine
whether or not a given series converges.
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9.2.4 Exercises

Terms and Concepts

1. Use your own words to describe how sequences and series are related.
2. Use your own words to define a partial sum.

3. Given a series
∞∑

n=1

an, describe the two sequences related to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑

n=1

an is also convergent.

6. T/F: If {an} converges to 0, then
∞∑

n=0

an converges.

Problems

Exercise Group. In the following exercises, a series
∞∑

n=1

an is given.

(a) Give the first 5 partial sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the same axes.

7.
∞∑

n=1

(−1)n

n
8.

∞∑
n=1

1

n2

9.
∞∑

n=1

cos(πn) 10.
∞∑

n=1

n

11.
∞∑

n=1

1

n!
12.

∞∑
n=1

1

3n

13.
∞∑

n=1

(
− 9

10

)n

14.
∞∑

n=1

(
1

10

)n

Exercise Group. In the following exercises, use Theorem 9.2.21 to show the given series diverges.

15.
∞∑

n=1

3n2

n(n+ 2)
16.

∞∑
n=1

2n

n2

17.
∞∑

n=1

n!

10n
18.

∞∑
n=1

5n − n5

5n + n5

19.
∞∑

n=1

2n + 1

2n+1
20.

∞∑
n=1

(
1 +

1

n

)n

Exercise Group. In the following exercises, state whether the given series converges or diverges.

21.
∞∑

n=1

1

n5
22.

∞∑
n=0

1

5n

23.
∞∑

n=0

6n

5n
24.

∞∑
n=1

n−4
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25.
∞∑

n=1

√
n 26.

∞∑
n=1

10

n!

27.
∞∑

n=1

(
1

n!
+

1

n

)
28.

∞∑
n=1

2

(2n+ 8)2

29.
∞∑

n=1

1

2n
30.

∞∑
n=1

1

2n− 1

Exercise Group. In the following exercises, a series is given.

(a) Find a formula for Sn, the nth partial sum of the series.

(b) Determine whether the series converges or diverges. If it converges, state what it converges to.

31.
∞∑

n=0

1

4n
32.

∞∑
n=1

2

33. 13 + 23 + 33 + 43 + · · ·
34.

∞∑
n=1

(−1)nn

35.
∞∑

n=0

5

2n
36.

∞∑
n=0

e−n

37. 1− 1

3
+

1

9
− 1

27
+

1

81
+ · · · 38.

∞∑
n=1

1

n(n+ 1)

39.
∞∑

n=1

3

n(n+ 2)
40.

∞∑
n=1

1

(2n− 1)(2n+ 1)

41.
∞∑

n=1

ln
(

n

n+ 1

)
42.

∞∑
n=1

2n+ 1

n2(n+ 1)2

43.
1

1 · 4
+

1

2 · 5
+

1

3 · 6
+

1

4 · 7
+ · · · 44. 2 +

(
1

2
+

1

3

)
+

(
1

4
+

1

9

)
+

(
1

8
+

1

27

)
+ · · ·

45.
∞∑

n=2

1

n2 − 1
46.

∞∑
n=0

(
sin(1)

)n
47. Break the Harmonic Series into the sum of the odd and even terms:

∞∑
n=1

1

n
=

∞∑
n=1

1

2n− 1
+

∞∑
n=1

1

2n
.

The goal is to show that each of the series on the right diverge.

(a) Show why
∞∑

n=1

1

2n− 1
>

∞∑
n=1

1

2n
.

(Compare each nth partial sum.)

(b) Show why
∞∑

n=1

1

2n− 1
< 1 +

∞∑
n=1

1

2n

(c) Explain why (a) and (b) demonstrate that the series of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both converge or both diverge.)

(d) Explain why knowing the Harmonic Series is divergent determines that the even and odd series are also
divergent.
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48. Show the series
∞∑

n=1

n

(2n− 1)(2n+ 1)
diverges.
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9.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 9.6. Theorems 9.2.5 and 9.2.11 give criteria
for when Geometric and p-series converge, and Theorem 9.2.21 gives a quick
test to determine if a series diverges. There are many important series whose
convergence cannot be determined by these theorems, though, sowe introduce
a set of tests that allow us to handle a broad range of series. We start with the
Integral Test.

9.3.1 Integral Test
We stated in Section 9.1 that a sequence {an} is a function a(n)whose domain
is N, the set of natural numbers. If we can extend a(n) to R, the real numbers,

and it is both positive and decreasing on [1,∞), then the convergence of
∞∑

n=1

an

is the same as
∫ ∞

1

a(x) dx.

Theorem 9.3.1 Integral Test.

Let a sequence {an} be defined by an = a(n), where a(n) is continuous,

positive and decreasing on [1,∞). Then
∞∑

n=1

an converges, if, and only if,∫ ∞

1

a(x) dx converges.

Theorem9.3.1 does not state that
the integral and the summation
have the same value.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 9.3.2(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1

a(x) dx <

∞∑
n=1

an. (9.3.1)

1 2 3 4 5

1

2

y = a(x)

x

y

(a)

1 2 3 4 5

1

2

y = a(x)

x

y

(b)

Figure 9.3.2 Illustrating the truth of the Integral Test
In Figure 9.3.2(b), we draw rectangles under y = a(x) with the Right-Hand

rule, starting with n = 2. This time, the area of the rectangles is less than the

area under y = a(x), so
∞∑

n=2

an <

∫ ∞

1

a(x) dx. Note how this summation



CHAPTER 9. SEQUENCES AND SERIES 476

starts with n = 2; adding a1 to both sides lets us rewrite the summation starting
with n = 1:

∞∑
n=1

an < a1 +

∫ ∞

1

a(x) dx. (9.3.2)

Combining Equations (9.3.1) and (9.3.2), we have

∞∑
n=1

an < a1 +

∫ ∞

1

a(x) dx < a1 +

∞∑
n=1

an. (9.3.3)

From Equation (9.3.3) we can make the following two statements:

1. If
∞∑

n=1

an diverges, so does
∫ ∞

1

a(x) dx (because
∞∑

n=1

an < a1+

∫ ∞

1

a(x) dx)

2. If
∞∑

n=1

an converges, so does
∫ ∞

1

a(x) dx (because
∫ ∞

1

a(x) dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. The-
orem 9.2.22 allows us to extend this theorem to series where a(n) is positive
and decreasing on [b,∞) for some b > 1. A formal proof of the Integral Test is
shown below.

Proof of the Integral Test. Let a(x) = ax be a postive, continuous, decreasing
function on [1,∞). We will consider how the partial sums of

∑∞
n=1 an com-

pare to the integral
∫∞
0

a(x) dx. We first consider the case where
∫∞
1

a(x) dx
diverges.

1. Suppose that
∫∞
1

a(x) dx diverges. Using Figure 9.3.2(a), we can say that
Sn =

∑n
i=1 ai >

∫ n+1

1
a(x) dx. If we let n → ∞ in this inequality, we

know that
∫ n+1

1
a(x) dx will get arbitrarily large as n → ∞ (since a(x) >

0 and
∫∞
1

a(x) dx diverges). Therefore we conclude that Sn =
∑n

i=1 ai
will also get arbitrarily large as n → ∞, and thus

∑∞
n=1 an diverges.

2. Now suppose that
∫∞
1

a(x) dx converges to M , where M is some pos-
itive, finite number. Using Figure 9.3.2(b), we can say that 0 < Sn =∑n

i=1 ai <
∫∞
1

a(x) dx = M . Therefore our sequence of partial sums,
Sn is bounded. Furthermore, Sn is a monotonically increasing sequence
since all of the terms an are positive. Since Sn is both bounded and mo-
notonic, Sn converges by Convergent Sequences are Bounded and by De-
finition 9.2.1, the series

∑∞
n=1 an converges as well.

■

Example 9.3.3 Using the Integral Test.

Determine the convergence of
∞∑

n=1

ln(n)
n2

. (The terms of the sequence

{an} = {ln(n)/n2} and the nth partial sums are given in Figure 9.3.4.)
Solution. Figure 9.3.4 implies that a(n) = (ln(n))/n2 is positive and
decreasing on [2,∞). We can determine this analytically, too. We know
a(n) is positive as both ln(n) and n2 are positive on [2,∞). Treating
a(n) as a continuous function of n defined on [1,∞), consider a′(n) =
(1 − 2 ln(n))/n3, which is negative for n ≥ 2. Since a′(n) is negative,
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a(n) is decreasing for n ≥ 2. We can still use the integral test since a
finite number of terms will not affect convergence of the series.

2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

n

y

an Sn

Figure 9.3.4 Plotting the sequence
and series in Example 9.3.3

Applying the Integral Test, we test the convergence of
∫ ∞

1

ln(x)
x2

dx. In-

tegrating this improper integral requires the use of Integration by Parts,
with u = ln(x) and dv = 1/x2 dx.∫ ∞

1

ln(x)
x2

dx = lim
b→∞

∫ b

1

ln(x)
x2

dx

= lim
b→∞

− 1

x
ln(x)

∣∣∣b
1
+

∫ b

1

1

x2
dx

= lim
b→∞

− 1

x
ln(x)− 1

x

∣∣∣b
1

= lim
b→∞

1− 1

b
− ln(b)

b
. Apply L’Hospital’s Rule:

= 1.

Since
∫ ∞

1

ln(x)
x2

dx converges, so does
∞∑

n=1

ln(n)
n2

.

Theorem 9.2.11 was given without justification, stating that the general p-

series
∞∑

n=1

1

(an+ b)p
converges if, and only if, p > 1. In the following example,

we prove this to be true by applying the Integral Test.

Example 9.3.5 Using the Integral Test to establish Theorem 9.2.11.

Let a, b be real numbers such that a ̸= 0 and an + b > 0 for all n ≥ 1.

Use the Integral Test to prove that
∞∑

n=1

1

(an+ b)p
converges if, and only

if, p > 1.

Solution. Consider the integral
∫ ∞

1

1

(ax+ b)p
dx; assuming p ̸= 1 and

a ̸= 0,∫ ∞

1

1

(ax+ b)p
dx = lim

c→∞

∫ c

1

1

(ax+ b)p
dx

= lim
c→∞

1

a(1− p)
(ax+ b)1−p

∣∣∣c
1

= lim
c→∞

1

a(1− p)

(
(ac+ b)1−p − (a+ b)1−p

)
.

This limit converges if, and only if, p > 1 so that 1 − p < 0. It is easy to
show that the integral also diverges in the case of p = 1. (This result is
similar to the work preceding Key Idea 6.8.16.)

Therefore
∞∑

n=1

1

(an+ b)p
converges if, and only if, p > 1.

We consider two more convergence tests in this section, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.
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9.3.2 Direct Comparison Test

Theorem 9.3.6 Direct Comparison Test.

Let {an} and {bn} be positive sequences where an ≤ bn for all n ≥ N ,
for someN ≥ 1.

1. If
∞∑

n=1

bn converges, then
∞∑

n=1

an converges.

2. If
∞∑

n=1

an diverges, then
∞∑

n=1

bn diverges.

Proof. Let 0 < an ≤ bn for all n ≥ N ≥ 1. Note that both partial sums for
both series are positive and increasing since the terms of both sequences are
positive.

1. Suppose that
∞∑

n=1

bn converges, so
∞∑

n=1

bn = S, whereS is a finite, positive

number. (S must be positive since bn > 0.)

Comparing the partial sums, wemust have
n∑

i=N

ai ≤
n∑

i=N

bi since an ≤ bn

for all n ≥ N . Furthermore since
∞∑

n=1

bn converges to S, our partial sums

for an are bounded (note that the partial sums started at i = N , but
a finite number of terms will not affect the boundedness of the partial
sums).

0 <

n∑
i=N

ai ≤
n∑

i=N

bi < S.

Since the sequence of partial sums, sn =
∑n

i=1 ai is both monotonically
increasing and bounded, we can say that sn converges (by Convergent
Sequences are Bounded), and therefore so does

∑∞
n=1 an.

2. Suppose that
∞∑

n=1

an diverges, so
n∑

i=1

an = ∞. (We can say that the series

diverges to∞ since the terms of the series are always positive). Compar-
ing the partial sums, we have

n∑
i=N

ai ≤
n∑

i=N

bi

Then applying limits, we get

lim
n→∞

n∑
i=N

ai ≤ lim
n→∞

n∑
i=N

bi.

Since the limit on the left side diverges to ∞, we can say that
lim

n→∞

∑n
i=N bi also diverges to∞.

■

A sequence {an} is a positive se-
quence if an > 0 for all n.

Because of Theorem 9.2.22,
any theorem that relies on a pos-
itive sequence still holds truewhen
an > 0 for all but a finite num-
ber of values of n.
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Example 9.3.7 Applying the Direct Comparison Test.

Determine the convergence of
∞∑

n=1

1

3n + n2
.

Solution. This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger
terms that converges. (Note too that the Integral Test seems difficult to
apply here.)

Since 3n < 3n+n2,
1

3n
>

1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1

3n
is a

convergent geometric series; by Theorem 9.3.6,
∞∑

n=1

1

3n + n2
converges.

Example 9.3.8 Applying the Direct Comparison Test.

Determine the convergence of
∞∑

n=1

1

n− ln(n)
.

Solution. We know the Harmonic Series
∞∑

n=1

1

n
diverges, and it seems

that the given series is closely related to it, hence we predict it will di-
verge.

Since n ≥ n− ln(n) for all n ≥ 1,
1

n
≤ 1

n− ln(n)
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑

n=1

1

n− ln(n)
di-

verges as well.

The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑

n=1

1

n+ ln(n)
. It is very similar to the divergent series given in

Example 9.3.8. We suspect that it also diverges, as
1

n
≈ 1

n+ ln(n)
for large

n. However, the inequality that we naturally want to use “goes the wrong way”:

since n ≤ n+ ln(n) for all n ≥ 1,
1

n
≥ 1

n+ ln(n)
for all n ≥ 1. The given series

has terms less than the terms of a divergent series, and we cannot conclude
anything from this.

Fortunately, we can apply another test to the given series to determine its
convergence.
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9.3.3 Limit Comparison Test

Theorem 9.3.9 Limit Comparison Test.

Let {an} and {bn} be positive sequences.

1. If lim
n→∞

an
bn

= L, where L is a positive real number, then
∞∑

n=1

an

and
∞∑

n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑

n=1

bn converges, then so does
∞∑

n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑

n=1

bn diverges, then so does
∞∑

n=1

an.

Theorem 9.3.9 is most useful when the convergence of the series from {bn}
is known and we are trying to determine the convergence of the series from
{an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑

n=1

1

n+ ln(n)
which motivated this new test.

Example 9.3.10 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

1

n+ ln(n)
using the Limit Compari-

son Test.

Solution. We compare the terms of
∞∑

n=1

1

n+ ln(n)
to the terms of the

Harmonic Sequence
∞∑

n=1

1

n
:

lim
n→∞

1/(n+ ln(n))
1/n

= lim
n→∞

n

n+ ln(n)
= 1 (after applying L’Hospital’s Rule) .

Since the Harmonic Series diverges, we conclude that
∞∑

n=1

1

n+ ln(n)
di-

verges as well.

Example 9.3.11 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

1

3n − n2

Solution. This series is similar to the one in Example 9.3.7, but now we
are considering “3n − n2” instead of “3n + n2.” This difference makes
applying the Direct Comparison Test difficult.
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Instead, we use the Limit Comparison Test and compare with the series
∞∑

n=1

1

3n
:

lim
n→∞

1/(3n − n2)

1/3n
= lim

n→∞

3n

3n − n2

= 1 (after applying L’Hospital’s Rule twice) .

We know
∞∑

n=1

1

3n
is a convergent geometric series, hence

∞∑
n=1

1

3n − n2

converges as well.

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponentials, which dominate algebraic func-
tions (e.g., polynomials), which dominate logarithms. In the previous example,

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1

3n
. It

is hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hospital’s Rule to n!.

Example 9.3.12 Applying the Limit Comparison Test.

Determine the convergence of
∞∑

n=1

√
n+ 3

n2 − n+ 1
.

Solution. We naïvely attempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/n2.

Knowing that
∞∑

n=1

1

n2
converges, we attempt to apply the Limit Compar-

ison Test:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n2
= lim

n→∞

n2(
√
n+ 3)

n2 − n+ 1

= ∞ (Apply L’Hospital’s Rule) .

Theorem 9.3.9 part (3) only applies when
∞∑

n=1

bn diverges; in our case,

it converges. Ultimately, our test has not revealed anything about the
convergence of our series.
The problem is thatwe chose a poor series withwhich to compare. Since
the numerator and denominator of the terms of the series are both al-
gebraic functions, we should have compared our series to the dominant
term of the numerator divided by the dominant term of the denomina-
tor.
The dominant term of the numerator is n1/2 and the dominant term of
the denominator is n2. Thus we should compare the terms of the given
series to n1/2/n2 = 1/n3/2:

lim
n→∞

(
√
n+ 3)/(n2 − n+ 1)

1/n3/2
= lim

n→∞

n3/2(
√
n+ 3)

n2 − n+ 1
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= 1 (Apply L’Hospital’s Rule) .

Since the p-series
∞∑

n=1

1

n3/2
converges, we conclude that

∞∑
n=1

√
n+ 3

n2 − n+ 1
converges as well.

We mentioned earlier that the Integral Test did not work well with series
containing factorial terms. The next section introduces the Ratio Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.
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9.3.4 Exercises

Terms and Concepts

1. In order to apply the Integral Test to a sequence {an}, the function a(n) = anmust be , and
.

2. T/F: The Integral Test can be used to determine the sum of a convergent series.
3. What test(s) in this section do not work well with factorials?

4. Suppose
∞∑

n=0

an is convergent, and there are sequences {bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑

n=0

bn and
∞∑

n=0

cn?

Problems

Exercise Group. In the following exercises, use the Integral Test to determine the convergence of the given series.

5.
∞∑

n=1

1

2n
6.

∞∑
n=1

1

n4

7.
∞∑

n=1

n

n2 + 1
8.

∞∑
n=2

1

n ln(n)

9.
∞∑

n=1

1

n2 + 1
10.

∞∑
n=2

1

n(ln(n))2

11.
∞∑

n=1

n

2n
12.

∞∑
n=1

ln(n)
n3

Exercise Group. In the following exercises, use the Direct Comparison Test to determine the convergence of the given
series; state what series is used for comparison.

13.
∞∑

n=1

1

n2 + 3n− 5
14.

∞∑
n=1

1

4n + n2 − n

15.
∞∑

n=1

ln(n)
n

16.
∞∑

n=1

1

n! + n

17.
∞∑

n=2

1√
n2 − 1

18.
∞∑

n=5

1√
n− 2

19.
∞∑

n=1

n2 + n+ 1

n3 − 5
20.

∞∑
n=1

2n

5n + 10

21.
∞∑

n=2

n

n2 − 1
22.

∞∑
n=2

1

n2 ln(n)

Exercise Group. In the following exercises, use the Limit Comparison Test to determine the convergence of the given
series; state what series is used for comparison.

23.
∞∑

n=1

1

n2 − 3n+ 5
24.

∞∑
n=1

1

4n − n2
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25.
∞∑

n=4

ln(n)
n− 3

26.
∞∑

n=1

1√
n2 + n

27.
∞∑

n=1

1

n+
√
n

28.
∞∑

n=1

n− 10

n2 + 10n+ 10

29.
∞∑

n=1

sin
(
1/n

)
30.

∞∑
n=1

n+ 5

n3 − 5

31.
∞∑

n=1

√
n+ 3

n2 + 17
32.

∞∑
n=1

1√
n+ 100

Exercise Group. In the following exercises, determine the convergence of the given series. State the test used; more
than one test may be appropriate.

33.
∞∑

n=1

n2

2n
34.

∞∑
n=1

1

(2n+ 5)3

35.
∞∑

n=1

n!

10n
36.

∞∑
n=1

ln(n)
n!

37.
∞∑

n=1

1

3n + n
38.

∞∑
n=1

n− 2

10n+ 5

39.
∞∑

n=1

3n

n3
40.

∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑

n=1

an converges, state which of the following series converges, may converge, or does not converge.

(a)
∞∑

n=1

an
n

(b)
∞∑

n=1

anan+1

(c)
∞∑

n=1

(an)
2

(d)
∞∑

n=1

nan

(e)
∞∑

n=1

1

an

42. In this exercise, we explore an approximation method for series to which the Integral Test applies.

(a) Let a(x) be a function to which the Integral Test applies, and for which the series
∑∞

n=1 an converges.
Let Rn =

∑∞
n+1 an denote the remainder; that is, the difference between

∑∞
n=1 an and the nth partial

sum. (Note that Rn is the size of the error that results if we approximate the series by the nth partial
sum.) Explain why we must have the following inequality:∫ ∞

n

a(x) dx ≤ Rn ≤
∫ ∞

n+1

a(x) dx

(b) Estimate the error involved in using the first 12 terms to approximate the series
∑∞

n=1 1/n
4. What is the

approximate value of the series?
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(c) How many terms must we take to ensure that the nth partial sum approximation for
∑∞

n=1 1/n
4 is accu-

rate to 5 decimal places?
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9.4 Ratio and Root Tests

The nth-Term Test of Theorem 9.2.21 states that in order for a series
∞∑

n=1

an to

converge, lim
n→∞

an = 0. That is, the terms of {an} must get very small. Not
only must the terms approach 0, they must approach 0 “fast enough”: while

lim
n→∞

1/n = 0, the Harmonic Series
∞∑

n=1

1

n
diverges as the terms of {1/n} do

not approach 0 “fast enough.”
The comparison tests of the previous sectiondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This section introduces the Ratio and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

9.4.1 Ratio Test

Theorem 9.4.1 Ratio Test.

Let {an} be a positive sequence and consider lim
n→∞

an+1

an
.

1. If lim
n→∞

an+1

an
< 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

an+1

an
> 1 or lim

n→∞
an+1

an
= ∞, then

∞∑
n=1

an diverges.

3. If lim
n→∞

an+1

an
= 1, the Ratio Test is inconclusive.

Theorem 9.2.22 allows us to ap-
ply theRatioTest to serieswhere
{an} is positive for all but a fi-
nite number of terms.

The principle of the Ratio Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous termwhich is enough
to ensure convergence.

Example 9.4.2 Applying the Ratio Test.

Use the Ratio Test to determine the convergence of the following series:

1.
∞∑

n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1

n2 + 1

Solution.

1.
∞∑

n=1

2n

n!
:

lim
n→∞

an+1

an
= lim

n→∞

2n+1/(n+ 1)!

2n/n!

= lim
n→∞

2n+1n!

2n(n+ 1)!

= lim
n→∞

2

n+ 1

= 0.
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Since the limit is 0 < 1, by the Ratio Test
∞∑

n=1

2n

n!
converges. The

fact that lim
n→∞

an+1

an
= 0 can be interpreted to mean that in the

long run, the term an+1 is roughly 0 times as large as an. In other
words, not only is an decreasing to 0, it is decreasing very quickly.
That is, the terms of an decrease to 0 sufficiently fast enough to
guarantee the convergence of

∑∞
n=1 an.

2.
∞∑

n=1

3n

n3
:

lim
n→∞

an+1

an
= lim

n→∞

3n+1/(n+ 1)3

3n/n3

= lim
n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ratio Test
∞∑

n=1

3n

n3
diverges. The

fact that lim
n→∞

an+1

an
= 3 can be interpreted to mean that in the

long run, the term an+1 is roughly 3 times as large as an, so an
is increasing by roughly a factor of 3 in the long run. We could
also use Theorem 9.2.21 to determine that this series diverges.
The exponential will dominate the polynomial in the long run, so
lim

n→∞
3n/n3 = ∞.

3.
∑∞

n=1
1

n2+1 :

lim
n→∞

an+1

an
= lim

n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1

(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ratio Test is inconclusive. We can easily
show this series converges using the Integral Test. We can also
use Direct Comparison Test or Limit Comparison Test, with each

comparing to the series
∞∑

n=1

1

n2
.

The Ratio Test is not effective when the terms of a series only contain alge-
braic functions (e.g., polynomials). It is most effective when the terms contain
some factorials or exponentials. The previous example also reinforces our de-
veloping intuition: factorials dominate exponentials, which dominate algebraic
functions, which dominate logarithmic functions. In Part 1 of the example, the
factorial in the denominator dominated the exponential in the numerator, caus-
ing the series to converge. In Part 2, the exponential in the numerator domi-
nated the algebraic function in the denominator, causing the series to diverge.
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While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 9.4.3 Applying the Ratio Test.

Determine the convergence of
∞∑

n=1

n!n!

(2n)!
.

Solution. Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the latter is 2(4 · 3 · 2 · 1) = 48.
Applying the Ratio Test:

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!

= lim
n→∞

(n+ 1)!(n+ 1)!(2n)!

n!n!(2n+ 2)!

Noting that (n+1)! = (n+1)·n! and (2n+2)! = (2n+2)·(2n+1)·(2n)!,
we have

= lim
n→∞

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the Ratio Test we conclude
∞∑

n=1

n!n!

(2n)!
con-

verges.
To find the limit in the second to last line, recall that we just need to
examine the leading terms of the numerator and denominator, which
are n2 and 4n2 respectively.

9.4.2 Root Test
The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Theorem 9.4.4 Root Test.

Let {an} be a positive sequence, and consider lim
n→∞

(an)
1/n.

1. If lim
n→∞

(an)
1/n < 1, then

∞∑
n=1

an converges.

2. If lim
n→∞

(an)
1/n > 1 or lim

n→∞
(an)

1/n = ∞, then
∞∑

n=1

an diverges.

3. If lim
n→∞

(an)
1/n = 1, the Root Test is inconclusive.
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Example 9.4.5 Applying the Root Test.

Determine the convergence of the following series using the Root Test:

1.
∞∑

n=1

(
3n+ 1

5n− 2

)n

2.
∞∑

n=1

n4

(ln(n))n
3.

∞∑
n=1

2n

n2

Solution.

1.

lim
n→∞

(an)
1/n

= lim
n→∞

((
3n+ 1

5n− 2

)n)1/n

= lim
n→∞

3n+ 1

5n− 2
=

3

5
.

Since the limit is less than 1, we conclude the series converges.
Note: it is difficult to apply the Ratio Test to this series.

2.

lim
n→∞

(an)
1/n

= lim
n→∞

(
n4

(ln(n))n

)1/n

= lim
n→∞

(
n4/n

)
ln(n)

The limit of the numerator must be found using L’Hospital’s Rule
for indeterminate powers

lim
n→∞

(
n4/n

)
= lim

n→∞
eln(n

4/n)

= lim
n→∞

e4 ln(n)/n

Now apply L’Hospital’s to the expression in the exponent:

by LHR
= lim

n→∞
e4/n

= e0 = 1.

Since the numerator approaches 1 (by L’Hospital’s Rule) and the
denominator grows to infinity, we have

lim
n→∞

(
n4/n

)
ln(n)

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n
= lim

n→∞
2(

n2/n
) = 2. Since this is greater than 1,

we conclude the series diverges. (Note: The Ratio Test is easy to
apply to this series.)

(Also note: The limit in the denominator is found in a similar fash-
ion as was illustrated in Part 2. In general lim

n→∞
(n)b/n = 1 for any

real number b.)
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Each of the tests we have encountered so far has required that we analyze
series from positive sequences. Section 9.5 relaxes this restriction by consider-
ing alternating series, where the underlying sequence has terms that alternate
between being positive and negative.

Theorem 9.2.22 allows us to ap-
ply the Root Test to series where
{an} is positive for all but a fi-
nite number of terms.
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9.4.3 Exercises

Terms and Concepts

1. The Ratio Test is not effective when the terms of a sequence only contain functions.

2. The Ratio Test is most effective when the terms of a sequence contains and/or functions.

3. What three convergence tests do not work well with terms containing factorials?

4. The Root Test works particularly well on series where each term is to a .

Problems

Exercise Group. In the following exercises, determine the convergence of the given series using the Ratio Test. If the
Ratio Test is inconclusive, state so and determine convergence with another test.

5.
∞∑

n=0

2n

n!
6.

∞∑
n=0

5n − 3n

4n

7.
∞∑

n=0

n!10n

(2n)!
8.

∞∑
n=1

5n + n4

7n + n2

9.
∞∑

n=1

1

n
10.

∞∑
n=1

1

3n3 + 7

11.
∞∑

n=1

10 · 5n

7n − 3
12.

∞∑
n=1

n ·
(
3

5

)n

13.
∞∑

n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑

n=1

n!

5 · 10 · 15 · · · (5n)

Exercise Group. In the following exercises, determine the convergence of the given series using the Root Test. If the
Root Test is inconclusive, state so and determine convergence with another test.

15.
∞∑

n=1

(
2n+ 5

3n+ 11

)n

16.
∞∑

n=1

(
0.9n2 − n− 3

n2 + n+ 3

)n

17.
∞∑

n=1

2nn2

3n
18.

∞∑
n=1

1

nn

19.
∞∑

n=1

3n

n22n+1
20.

∞∑
n=1

4n+7

7n

21.
∞∑

n=1

(
n2 − n

n2 + n

)n

22.
∞∑

n=1

(
1

n
− 1

n2

)n

23.
∞∑

n=1

1(
ln(n)

)n 24.
∞∑

n=1

n2(
ln(n)

)n
Exercise Group. In the following exercises, determine the convergence of the given series. State the test used; more
than one test may be appropriate.

25.
∞∑

n=1

n2 + 4n− 2

n3 + 4n2 − 3n+ 7
26.

∞∑
n=1

n44n

n!

27.
∞∑

n=1

n2

3n + n
28.

∞∑
n=1

3n

nn
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29.
∞∑

n=1

n√
n2 + 4n+ 1

30.
∞∑

n=1

n!n!n!

(3n)!

31.
∞∑

n=2

1

ln(n)
32.

∞∑
n=1

(
n+ 2

n+ 1

)n

33.
∞∑

n=2

n3(
ln(n)

)n 34.
∞∑

n=1

(
1

n
− 1

n+ 2

)
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9.5 Alternating Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a positive sequence. (We can relax this with Theorem 9.2.22
and state that there must be anN > 0 such that an > 0 for all n > N ; that is,
{an} is positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 9.5.1 Alternating Series.

Let {an} be a positive sequence. An alternating series is a series of ei-
ther the form

∞∑
n=1

(−1)nan or
∞∑

n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternating series is the Alternating Harmonic Series:

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

Geometric Series can also be alternating series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1

2

)n

= 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
+ · · ·

Theorem 9.2.5 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑

n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1

2

)n

=
1

1− (−1/2)
=

1

3/2
=

2

3
.

A powerful convergence theoremexists for other alternating series thatmeet
a few conditions.

Theorem 9.5.2 Alternating Series Test.

Let {an} be a positive, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑

n=1

(−1)n+1an

converge.

The basic idea behind Theorem 9.5.2 is illustrated in Figure 9.5.3–9.5.4. A
positive, decreasing sequence {an} is shown along with the partial sums

Sn =

n∑
i=1

(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)n+1an.
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Because {an} is decreasing, the amount by which Sn bounces up/down
decreases. Moreover, the odd terms of Sn form a decreasing, bounded se-
quence, while the even terms of Sn form an increasing, bounded sequence.
Since bounded, monotonic sequences converge (see Theorem 9.1.27) and the
terms of {an} approach 0, one can show the odd and even terms ofSn converge
to the same common limit L, the sum of the series.

L

2 4 6 8 10

0.5

1

n

y

an Sn

Figure 9.5.3 Illustrating convergence
with the Alternating Series Test

a1

−a2

a3

−a4

a5

−a6

a7

S1S2 S3S4 S5S6 S7L

Figure 9.5.4 A visual representation of adding terms of an alternating series. The
arrows represent the length and direction of each term of the sequence.

Example 9.5.5 Applying the Alternating Series Test.

Determine if the Alternating Series Test applies to each of the following
series.

1.
∞∑

n=1

(−1)n+1 1

n
2.

∞∑
n=1

(−1)n
ln(n)
n

3.
∞∑

n=1

(−1)n+1 |sin(n)|
n2

Solution.

1. This is the Alternating Harmonic Series as seen previously. The un-
derlying sequence is {an} = {1/n}, which is positive, decreasing,
and approaches 0 as n → ∞. Therefore we can apply the Alter-
nating Series Test and conclude this series converges. While the
test does not state what the series converges to, we will see later

that
∞∑

n=1

(−1)n+1 1

n
= ln(2).

2. The underlying sequence is {an} = {ln(n)/n}. This is positive
and approaches 0 as n → ∞ (use L’Hospital’s Rule). However,
the sequence is not decreasing for all n. It is straightforward to
compute a1 = 0, a2 ≈ 0.347, a3 ≈ 0.366, and a4 ≈ 0.347:
the sequence is increasing for at least the first 3 terms. We do not
immediately conclude that we cannot apply the Alternating Series
Test. Rather, consider the long-term behavior of {an}. Treating
an = a(n) as a continuous function of n defined on [1,∞), we
can take its derivative:

a′(n) =
1− ln(n)

n2
.

The derivative is negative for all n ≥ 3 (actually, for all n > e),
meaning a(n) = an is decreasing on [3,∞). We can apply the
Alternating Series Test to the series when we start with n = 3 and

conclude that
∞∑

n=3

(−1)n
ln(n)
n

converges; adding the terms with

n = 1 and n = 2 do not change the convergence (i.e., we apply
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Theorem 9.2.22). The important lesson here is that as before, if
a series fails to meet the criteria of the Alternating Series Test on
only a finite number of terms, we can still apply the test.

3. The underlying sequence is {an} = |sin(n)| /n. This sequence is
positive and approaches 0 as n → ∞. However, it is not a de-
creasing sequence; the value of |sin(n)| oscillates between 0 and
1 as n → ∞. We cannot remove a finite number of terms tomake
{an} decreasing, thereforewe cannot apply the Alternating Series
Test. Keep inmind that this does not meanwe conclude the series
diverges; in fact, it does converge. We are just unable to conclude
this based on Theorem 9.5.2. We will be able to show that this
series converges shortly.

Key Idea 9.2.18 gives the sum of some important series. Two of these are

∞∑
n=1

1

n2
=

π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places after the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternating structure of an alternating series gives us a powerful tool when
approximating the sum of a convergent series.

Theorem 9.5.6 The Alternating Series Approximation Theorem.

Let {an} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let Sn and L be the nth partial sums and sum, respec-

tively, of either
∞∑

n=1

(−1)nan or
∞∑

n=1

(−1)n+1an. Then

1. En = |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 9.5.6 states that the nth partial sum of a convergent al-
ternating series will be within an+1 of its total sum. You can see this visually in
Figure 9.5.4. Look at the distance between S6 andL. Clearly this distance is less
than the length of the arrow corresponding to a7.

Also consider the alternating series we looked at before the statement of

the theorem,
∞∑

n=1

(−1)n+1

n2
. Since a14 = 1/142 ≈ 0.0051, we know that S13 is

within 0.0051 of the total sum.
Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈

0.8201, we know the sum L lies between 0.8201 and 0.8252. One use of this is
the knowledge that S14 is accurate to two places after the decimal.

Some alternating series converge slowly. In Example 9.5.5 we determined

the series
∞∑

n=1

(−1)n+1 ln(n)
n

converged. With n = 1001, we find ln(n)/n ≈

0.0069, meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places
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after the decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤
0.1633.

Example 9.5.7 Approximating the sum of convergent alternating se-
ries.

Approximate the sum of the following series, accurate to within 0.001.

1.
∞∑

n=1

(−1)n+1 1

n3
2.

∞∑
n=1

(−1)n+1 ln(n)
n

Solution.

1. Using Theorem 9.5.6, we want to find n where 1/n3 ≤ 0.001.
That is, we want to find the the first time a term in the sequence
an is smaller than the desired level of error:

1

n3
≤ 0.001 =

1

1000

n3 ≥ 1000

n ≥ 3
√
1000

n ≥ 10.

Let L be the sum of this series. By Part 1 of the theorem,
|S9 − L| < a10 = 1/1000. (We found a10 = an+1 < 0.0001,
so n = 9). We can compute S9 = 0.902116, which our theorem
states is within 0.001 of the total sum. We can use Part 2 of the
theorem to obtain an even more accurate result. As we know the
10th term of the series is (−1)n/103 = −1/1000, we can easily
compute S10 = 0.901116. Part 2 of the theorem states that L is
between S9 and S10, so 0.901116 < L < 0.902116.

2. We want to find n where ln(n)/n < 0.001. We start by solving
ln(n)/n = 0.001 for n. This cannot be solved algebraically, so we
will use Newton’s Method to approximate a solution. (Note: we
can also use a “Brute Force” technique. That is, we can guess and
check numerically until we find a solution.) Let f(x) = ln(x)/x−
0.001; we want to know where f(x) = 0. We make a guess that
x must be “large,” so our initial guess will be x1 = 1000. Recall
how Newton’s Method works: given an approximate solution xn,
our next approximation xn+1 is given by

xn+1 = xn − f(xn)

f ′(xn)
.

We find f ′(x) =
(
1− ln(x)

)
/x2. This gives

x2 = 1000− ln(1000)/1000− 0.001(
1− ln(1000)

)
/10002

= 2000.

Using a computer, we find that Newton’s Method seems to con-
verge to a solution x = 9118.01 after 8 iterations. Taking the
next integer higher, we have n = 9119, where ln(9119)/9119 =
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0.000999903 < 0.001. Again using a computer, we find S9118 =
−0.160369. Part 1 of the theorem states that this is within 0.001
of the actual sum L. Already knowing the 9,119th term, we can
compute S9119 = −0.159369, meaning −0.159369 < L <
−0.160369.

Notice how the first series converged quite quickly, where we needed
only 10 terms to reach the desired accuracy, whereas the second series
took over 9,000 terms.

One of the famous results ofmathematics is that the Harmonic Series,
∞∑

n=1

1

n

diverges, yet the Alternating Harmonic Series,
∞∑

n=1

(−1)n+1 1

n
, converges. The

notion that alternating the signs of the terms in a series can make a series con-
verge leads us to the following definitions.

Definition 9.5.8 Absolute and Conditional Convergence.

1. A series
∞∑

n=1

an converges absolutely if
∞∑

n=1

|an| converges.

2. A series
∞∑

n=1

an converges conditionally if
∞∑

n=1

an converges but

∞∑
n=1

|an| diverges.

In Definition 9.5.8,
∞∑

n=1

an is not

necessarily an alternating series;
it just may have some negative
terms.

Thus we say the Alternating Harmonic Series converges conditionally.

Example 9.5.9 Determining absolute and conditional convergence.

Determine if the following series converge absolutely, conditionally, or
diverge.

1.
∞∑

n=1

(−1)n
n+ 3

n2 + 2n+ 5

2.
∞∑

n=1

(−1)n
n2 + 2n+ 5

2n

3.
∞∑

n=3

(−1)n
3n− 3

5n− 10

Solution.
1. We can show the series

∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3

n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑

n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the Alternating

Series Test; we conclude it converges conditionally.
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2. We can show the series
∞∑

n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5

2n

converges using the Ratio Test. Therefore we conclude
∞∑

n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

3. The series
∞∑

n=3

∣∣∣∣(−1)n
3n− 3

5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3

5n− 10

diverges using the nth Term Test, so it does not converge ab-

solutely. The series
∞∑

n=3

(−1)n
3n− 3

5n− 10
fails the conditions of the

Alternating Series Test as (3n− 3)/(5n− 10) does not approach
0 as n → ∞. We can state further that this series diverges; as
n → ∞, the series effectively adds and subtracts 3/5 over and
over. This causes the sequence of partial sums to oscillate and

not converge. Therefore the series
∞∑

n=1

(−1)n
3n− 3

5n− 10
diverges.

Knowing that a series converges absolutely allows us tomake two important
statements, given in Theorem 9.5.10 below. The first is that absolute conver-
gence is “stronger” than regular convergence. That is, just because

∑∞
n=1 an

converges, we cannot conclude that
∑∞

n=1 |an| will converge, but knowing a
series converges absolutely tells us that

∑∞
n=1 an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecting
the sum.

Theorem 9.5.10 Absolute Convergence Theorem.

Let
∞∑

n=1

an be a series that converges absolutely.

1.
∞∑

n=1

an converges.
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2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =

∞∑
n=1

an.

Proof. Wewill provide a proof for Part 1 of Absolute Convergence Theorem. Sup-
pose that

∑∞
n=1 |an| converges. We start by noting that for any sequence an,

we have

− |an| ≤ an ≤ |an|

If we add |an| to all three sides:

0 ≤ an + |an| ≤ 2 |an| .

We are now in a position to apply the Direct Comparison Test to the series∑∞
n=1 (an + |an|). Since

∑∞
n=1 |an| converges by our supposition, so does∑∞

n=1 2 |an| (the scalar multiple of a convergent series also converges by Theo-
rem 9.2.17). Therefore

∑∞
n=1 (an + |an|) converges by the Direct Comparison

Test.
Now we turn our attention to

∑∞
n=1 an. We can say

∞∑
n=1

an =

∞∑
n=1

(an + |an| − |an|)

=

∞∑
n=1

(an + |an|)−
∞∑

n=1

|an| .

The last line is the difference between two convergent series, which is also con-
vergent by Theorem 9.2.17. Therefore

∑∞
n=1 an converges. ■

In Example 9.5.9, we determined the series in Part 2 converges absolutely.
Theorem 9.5.10 tells us the series converges (which we could also determine
using the Alternating Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the Alternating Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
· · · = ln(2),

(see Key Idea 9.2.18 or Example 9.5.5).
Consider the rearrangement where every positive term is followed by two

negative terms:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms
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and simplify:(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · · =

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · =

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
=

1

2
ln(2).

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alternating Harmonic Series does not actually
converge to ln(2), because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to L,
for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The end of this
text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, which we will consider in the next
section. We will use power series to create functions where the output is the
result of an infinite summation.
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9.5.1 Exercises

Terms and Concepts

1. Why is
∞∑

n=1

sin(n) not an alternating series?

2. A series
∞∑

n=1

(−1)nan converges when {an} is , and lim
n→∞

an = .

3. Give an example of a series where
∞∑

n=0

an converges but
∞∑

n=0

|an| does not.

4. The sum of a convergent series can be changed by rearranging the order of its terms.

Problems

Exercise Group. In the following exercises, an alternating series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑

n=0

|an| converges or diverges.

(c) If
∞∑

n=0

an converges, determine if the convergence is conditional or absolute.

5.
∞∑

n=1

(−1)n+1

n2
6.

∞∑
n=1

(−1)n+1

√
n!

7.
∞∑

n=0

(−1)n
n+ 5

3n− 5
8.

∞∑
n=1

(−1)n
2n

n2

9.
∞∑

n=0

(−1)n+1 3n+ 5

n2 − 3n+ 1
10.

∞∑
n=1

(−1)n

ln(n) + 1

11.
∞∑

n=2

(−1)n
n

ln(n)
12.

∞∑
n=1

(−1)n+1

1 + 3 + 5 + · · ·+ (2n− 1)

13.
∞∑

n=1

cos
(
πn
)

14.
∞∑

n=2

sin
(
(n+ 1/2)π

)
n ln(n)

15.
∞∑

n=0

(
−2

3

)n

16.
∞∑

n=0

(−e)−n

17.
∞∑

n=0

(−1)nn2

n!
18.

∞∑
n=0

(−1)n2−n2

19.
∞∑

n=1

(−1)n√
n

20.
∞∑

n=1

(−1000)n

n!

Exercise Group. Let Sn be the nth partial sum of a series. In the following exercises a convergent alternating series
is given and a value of n. Compute Sn and Sn+1 and use these values to find bounds on the sum of the series.
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21.
∞∑

n=1

(−1)n

ln(n+ 1)
, n = 5 22.

∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑

n=0

(−1)n

n!
, n = 6 24.

∞∑
n=0

(
−1

2

)n

, n = 9

Exercise Group. In the following exercises, a convergent alternating series is given along with its sum and a value of
ε. Use Theorem 9.5.6 to find n such that the nth partial sum of the series is within ε of the sum of the series.

25.
∞∑

n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001 26.

∞∑
n=0

(−1)n

n!
=

1

e
, ε = 0.0001

27.
∞∑

n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001 28.

∞∑
n=0

(−1)n

(2n)!
= cos(1), ε = 10−8
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9.6 Power Series

So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

Definition 9.6.1 Power Series.

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

2. The power series in x centered at c is the series

∞∑
n=0

an(x− c)n = a0+a1(x− c)+a2(x− c)2+a3(x− c)3+ . . .

Example 9.6.2 Examples of power series.

Write out the first five terms of the following power series:

1.
∞∑

n=0

xn

2.
∞∑

n=1

(−1)n+1 (x+ 1)n

n

3.
∞∑

n=0

(−1)n+1 (x− π)2n

(2n)!

Solution.

1. One of the conventions we adopt is that x0 = 1 regardless of the
value of x. Therefore

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + . . .

This is a geometric series in x with r = x.

2. This series is centered at c = −1. Note how this series starts with
n = 1. We could rewrite this series starting at n = 0 with the
understanding that a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n

= (x+ 1)− (x+ 1)2

2
+

(x+ 1)3

3
− (x+ 1)4

4
+

(x+ 1)5

5
. . .
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3. This series is centered at c = π. Recall that 0! = 1.
∞∑

n=0

(−1)n+1 (x− π)2n

(2n)!

= −1 +
(x− π)2

2
− (x− π)4

24
+

(x− π)6

6!
− (x− π)8

8!
. . .

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 9.6.2, we recognized the series
∞∑

n=0

xn as a geo-

metric series in x. Theorem 9.2.5 states that this series converges only when
|x| < 1.

This raises the question: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definition.

Theorem 9.6.3 Convergence of Power Series.

Let a power series
∞∑

n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in (c −
R, c+R) and diverges for all x < c−R and x > c+R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem 9.6.3
makes a statement about the interval (c−R, c+R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Definition 9.6.4 Radius and Interval of Convergence.

1. The numberR given in Theorem9.6.3 is the radius of convergence
of a given series. When a series converges for only x = c, we say
the radius of convergence is 0, i.e., R = 0. When a series con-
verges for all x, we say the series has an infinite radius of conver-
gence, i.e.,R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the interval of convergence, we start by using the ratio test to find
the radius of convergence R. If 0 < R < ∞, we know the series converges on
(c−R, c+R), and it remains to check for convergence at the endpoints.

Given
∑∞

n=0 an(x− c)n we apply the ratio test to
∑∞

n=0 |an(x− c)n| since
the ratio test requires positive terms. We find

lim
n→∞

∣∣an+1(x− c)n+1
∣∣

|an(x− c)n|
= L |x− c| ,

where L = limn→∞
|an+1|
|an| . It follows that the series converges absolutely (and
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therefore converges) for anyx such thatL |x− c| < 1; that is, forx in
(
c− 1

L , c+
1
L

)
.

On the other hand, suppose for some x that L |x− c| > 1. Then, for suffi-
ciently largen, |an+1| > |an|. Thismeans that the termsof

∑∞
n=0 an(x−c)n are

growing in absolute value, and therefore cannot converge to zero. This means
that the series diverges, by Theorem 9.2.21.

From the above observations, it follows that R = 1
L must be the radius of

convergence.

Key Idea 9.6.5 Determining the Radius and Interval of Convergence.

Given the power series
∞∑

n=0

an(x− c)n, apply the ratio test to the series

∞∑
n=0

|an(xc)
n|. The result will be L |x− c|, where L = lim

n→∞

|an+1|
|an|

.

1. If L = 0, then the power series converges for every x by the ratio
test, since L |x− c| = 0 < 1.

2. If L = ∞, then power series converges only when x = c.

3. If 0 < L < ∞, thenR = 1/L is the radius of convergence: by the
ratio test, the series converges when |x− c| < R.

To determine the interval of convergence, plug the endpoints (x =
c−R and x = c+R) into the power series, and test the resulting
series for convergence. If the series converges, we include the
endpoint. If it diverges, we exclude the endpoint.

Key Idea 9.6.5 allows us to find the radius of convergence R of a series by
applying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.

Example 9.6.6 Determining the radius and interval of convergence.

Find the radius and interval of convergence for each of the following
series:

1.
∞∑

n=0

xn

n!

2.
∞∑

n=1

(−1)n+1x
n

n

3.
∞∑

n=0

2n(x− 3)n

4.
∞∑

n=0

n!xn

Solution.

1. We apply the Ratio Test to the series
∞∑

n=1

∣∣∣∣xn

n!

∣∣∣∣:
lim

n→∞

∣∣xn+1/(n+ 1)!
∣∣

|xn/n!|
= lim

n→∞

∣∣∣∣xn+1

xn
· n!

(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣
= 0 for all x.
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The Ratio Test shows us that regardless of the choice of x, the
series converges. Therefore the radius of convergence is R = ∞,
and the interval of convergence is (−∞,∞).

2. We apply the Ratio Test to the series
∞∑

n=1

∣∣∣∣(−1)n+1x
n

n

∣∣∣∣ =

∞∑
n=1

∣∣∣∣xn

n

∣∣∣∣:
lim

n→∞

∣∣xn+1/(n+ 1)
∣∣

|xn/n|
= lim

n→∞

∣∣∣∣xn+1

xn
· n

n+ 1

∣∣∣∣
= lim

n→∞
(

n

n+ 1
) |x|

= |x| .

The Ratio Test states a series converges if the limit of |an+1/an| =
L < 1. We found the limit above to be |x|; therefore, the power
series converges when |x| < 1, or when x is in (−1, 1). Thus
the radius of convergence is R = 1. To determine the interval of
convergence, we need to check the endpoints of (−1, 1). When
x = −1, we have the opposite of the Harmonic Series:

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1

n

= −∞.

The series diverges when x = −1. When x = 1, we have the

series
∞∑

n=1

(−1)n+1 (1)
n

n
, which is the AlternatingHarmonic Series,

which converges. Therefore the interval of convergence is (−1, 1].

3. We apply the Ratio Test to the series
∞∑

n=0

|2n(x− 3)n|:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣

|2n(x− 3)n|
= lim

n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞
|2(x− 3)| .

According to the Ratio Test, the series converges when
|2(x− 3)| < 1 =⇒ |x− 3| < 1/2. The series is cen-
tered at 3, and x must be within 1/2 of 3 in order for the series
to converge. Therefore the radius of convergence is R = 1/2,
and we know that the series converges absolutely for all x in
(3− 1/2, 3 + 1/2) = (2.5, 3.5). We check for convergence at the
endpoints to find the interval of convergence. When x = 2.5, we
have:

∞∑
n=0

2n(2.5− 3)n =

∞∑
n=0

2n(−1/2)n

=

∞∑
n=0

(−1)n,
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which diverges. A similar process shows that the series also di-
verges at x = 3.5. Therefore the interval of convergence is
(2.5, 3.5).

4. We apply the Ratio Test to
∞∑

n=0

|n!xn|:

lim
n→∞

∣∣(n+ 1)!xn+1
∣∣

|n!xn|
= lim

n→∞
|(n+ 1)x|

= ∞ for all x, except x = 0.

The Ratio Test shows that the series diverges for all x exceptx = 0.
Therefore the radius of convergence isR = 0.

We can use a power series to define a function:

f(x) =

∞∑
n=0

anx
n

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Theorem 9.6.7 Derivatives and Indefinite Integrals of Power Series
Functions.

Let f(x) =
∞∑

n=0

an(x− c)n be a function defined by a power series, with

radius of convergenceR.

1. f(x) is continuous and differentiable on (c−R, c+R).

2. f ′(x) =

∞∑
n=1

an · n · (x− c)n−1, with radius of convergenceR.

3.
∫

f(x) dx = C+

∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence

R.

A few notes about Theorem 9.6.7:

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f ′(x) starts with n = 1. This is because
the constant term a0 of f(x) becomes 0 through differentiation.

3. Differentiation and integration are simply calculated term-by-term using
the Power Rules.
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Example 9.6.8 Derivatives and indefinite integrals of power series.

Let f(x) =
∞∑

n=0

xn. Find f ′(x) and F (x) =

∫
f(x) dx, along with their

respective intervals of convergence.
Solution. We find the derivative and indefinite integral of f(x), follow-
ing Theorem 9.6.7.

1.

f ′(x) =

∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · ·

=

∞∑
n=0

(n+ 1)xn.

In Example 9.6.2, we recognized that
∞∑

n=0

xn is a geometric series

in x. We know that such a geometric series converges when |x| <
1; that is, the interval of convergence is (−1, 1). To determine
the interval of convergence of f ′(x), we consider the endpoints
of (−1, 1):

f ′(−1) = 1− 2 + 3− 4 + · · · , which diverges.

f ′(1) = 1 + 2 + 3 + 4 + · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F (x) =

∫
f(x) dx = C +

∞∑
n=0

xn+1

n+ 1
= C + x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence ofF (x), we again consider the
endpoints of (−1, 1):

F (−1) = C − 1 + 1/2− 1/3 + 1/4 + · · ·

The value of C is irrelevant; notice that the rest of the series is an
Alternating Series that whose terms converge to 0. By the Alter-
nating Series Test, this series converges. (In fact, we can recognize
that the terms of the series after C are the opposite of the Alter-
natingHarmonic Series. We can thus say thatF (−1) = C−ln(2).)

F (1) = C + 1 + 1/2 + 1/3 + 1/4 + · · ·

Notice that this summation is C + the Harmonic Series, which di-
verges. Since F converges for x = −1 and diverges for x = 1, the
interval of convergence of F (x) is [−1, 1).

The previous example showed how to take the derivative and indefinite integral
of a power series without motivation for why we care about such operations.
We may care for the sheer mathematical enjoyment “that we can”, which is mo-
tivation enough for many. However, we would be remiss to not recognize that
we can learn a great deal from taking derivatives and indefinite integrals.
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Recall that f(x) =
∞∑

n=0

xn in Example 9.6.8 is a geometric series. According

to Theorem 9.2.5, this series converges to 1/(1−x)when |x| < 1. Thus we can
say

f(x) =

∞∑
n=0

xn =
1

1− x
, on (−1, 1).

Integrating the power series, (as done in Example 9.6.8,) we find

F (x) = C1 +

∞∑
n=0

xn+1

n+ 1
, (9.6.1)

while integrating the function f(x) = 1/(1− x) gives

F (x) = − ln |1− x|+ C2. (9.6.2)

Equating Equations (9.6.1) and (9.6.2), we have

F (x) = C1 +

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Letting x = 0, we have F (0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x| .

We established in Example 9.6.8 that the series on the left converges at x =
−1; substituting x = −1 on both sides of the above equality gives

−1 +
1

2
− 1

3
+

1

4
− 1

5
+ · · · = − ln(2).

On the left we have the opposite of the Alternating Harmonic Series; on the
right, we have− ln(2). We conclude that

1− 1

2
+

1

3
− 1

4
+ · · · = ln(2).

Important: We stated in Key Idea 9.2.18 (in Section 9.2) that the Alternat-
ing Harmonic Series converges to ln(2), and referred to this fact again in Exam-
ple 9.5.5 of Section 9.5. However, we never gave an argument for why this was
the case. The work above finally shows how we conclude that the Alternating
Harmonic Series converges to ln(2).

We use this type of analysis in the next example.

Example 9.6.9 Analyzing power series functions.

Let f(x) =
∞∑

n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze

the behavior of f(x).
Solution. We start by making two notes: first, in Example 9.6.6, we
found the interval of convergence of this power series is (−∞,∞). Sec-
ond, we will find it useful later to have a few terms of the series written
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out:
∞∑

n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+ · · · (9.6.3)

We now find the derivative:

f ′(x) =

∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1 + x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can
re-index the series starting with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivative of f(x) is f(x). The only functions for which
this is true are of the form y = cex for some constant c. As f(0) = 1
(see Equation (9.6.3)), cmust be 1. Therefore we conclude that

f(x) =

∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C +

∞∑
n=0

xn+1

n!(n+ 1)

= C +

∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C +

∞∑
n=0

xn+1

(n+ 1)!
= C + x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicating
that f(x) = ex.

Example 9.6.9 and the work following Example 9.6.8 established relation-
ships between a power series function and “regular” functions that we have
dealt with in the past. In general, given a power series function, it is difficult (if
not impossible) to express the function in terms of elementary functions. We
chose examples where things worked out nicely.

In this section’s last example, we show how to solve a simple differential
equation with a power series.
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Example 9.6.10 Solving a differential equation with a power series.

Give the first 4 terms of the power series solution to y′ = 2y, where
y(0) = 1.
Solution. The differential equation y′ = 2y describes a function y =
f(x) where the derivative of y is twice y and y(0) = 1. This is a rather
simple differential equation; with a bit of thought one should realize that
if y = Ce2x, then y′ = 2Ce2x, and hence y′ = 2y. By letting C = 1 we
satisfy the initial condition of y(0) = 1.
Let’s ignore the fact that we already know the solution and find a power
series function that satisfies the equation. The solutionwe seekwill have
the form

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 9.6.7:

f ′(x) =

∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x
2 + 4a4x

3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x
2 + 4a4x

3 · · · = 2
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= 2a0 + 2a1x+ 2a2x

2 + 2a3x
3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The initial condition y(0) = f(0) = 1 indicates that a0 = 1; with this,
we can find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;

a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;

a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series solution to the differential
equation y′ = 2y is

f(x) = 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + · · ·

In Section 9.8, as we study Taylor Series, we will learn how to recognize
this series as describing y = e2x.

Our last example illustrates that it can be difficult to recognize an elementary
function by its power series expansion. It is far easier to start with a known func-
tion, expressed in terms of elementary functions, and represent it as a power
series function. One may wonder why we would bother doing so, as the latter
function probably seems more complicated. In the next two sections, we show
both how to do this and why such a process can be beneficial.
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9.6.1 Exercises

Terms and Concepts

1. We adopt the convention that x0 = , regardless of the value of x.

2. What is the difference between the radius of convergence and the interval of convergence?

3. If the radius of convergence of
∞∑

n=0

anx
n is 5, what is the radius of convergence of

∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑

n=0

anx
n is 5, what is the radius of convergence of

∞∑
n=0

(−1)nanx
n?

Problems

Exercise Group. In the following exercises, write out the sum of the first 5 terms of the given power series.

5.
∞∑

n=0

2nxn 6.
∞∑

n=1

1

n2
xn

7.
∞∑

n=0

1

n!
xn 8.

∞∑
n=0

(−1)n

(2n)!
x2n

Exercise Group. In the following exercises, a power series is given.

(a) Find the radius of convergence.

(b) Find the interval of convergence.

9.
∞∑

n=0

(−1)n+1

n!
xn 10.

∞∑
n=0

nxn

11.
∞∑

n=1

(−1)n(x− 3)n

n
12.

∞∑
n=0

(x+ 4)n

n!

13.
∞∑

n=0

xn

2n
14.

∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑

n=0

5n(x− 1)n 16.
∞∑

n=0

(−2)nxn

17.
∞∑

n=0

√
nxn 18.

∞∑
n=0

n

3n
xn

19.
∞∑

n=0

3n

n!
(x− 5)n 20.

∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑

n=1

xn

n2
22.

∞∑
n=1

(x+ 2)n

n3

23.
∞∑

n=0

n!
( x

10

)n
24.

∞∑
n=0

n2

(
x+ 4

4

)n

Exercise Group. In the following exercises, a function f(x) =
∞∑

n=0

anx
n is given.
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(a) Give a power series for f ′(x) and its interval of convergence.

(b) Give a power series for
∫
f(x) dx and its interval of convergence.

25.
∞∑

n=0

nxn 26.
∞∑

n=1

xn

n

27.
∞∑

n=0

(x
2

)n
28.

∞∑
n=0

(−3x)n

29.
∞∑

n=0

(−1)nx2n

(2n)!
30.

∞∑
n=0

(−1)nxn

n!

Exercise Group. In the following exercises, give the first 5 terms of the series that is a solution to the given differential
equation.

31. y ′ = 3y,y(0) = 1 32. y ′ = 5y,y(0) = 5

33. y ′ = y2,y(0) = 1 34. y ′ = y + 1,y(0) = 1

35. y ′′ = −y,y(0) = 0, y ′(0) = 1 36. y ′′ = 2y,y(0) = 1, y ′(0) = 1
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9.7 Taylor Polynomials

Consider a function y = f(x) and a point
(
c, f(c)

)
. The derivative, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through
the point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent

line; that is, the line whose slope (rate of change) is f ′(c).
In Figure 9.7.1, we see a function y = f(x) graphed. The table in Figure 9.7.2

shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at x = 0 is
p1(x) = 1(x− 0)+ 2 = x+2. The tangent line is also given in the figure. Note
that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f well.

y = f(x)

y = p1(x)

−4 −2 2 4

−5

5

x

y

Figure 9.7.1 A graph of f(x) and its
tangent line at 0

f(0) = 2 f ′′′(0) = −1

f ′(0) = 1 f (4)(0) = −12

f ′′(0) = 2 f (5)(0) = −19

Figure 9.7.2 Derivatives of f evalu-
ated at 0

One shortcoming of this approximation is that the tangent line only matches
the slope of f ; it does not, for instance, match the concavity of f . We can find a
polynomial, p2(x), that doesmatch the concavity near 0withoutmuch difficulty,
though. The table in Figure 9.7.2 gives the following information:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properties.
That is, we need

p2(0) = 2 p′2(0) = 1 p′′2(0) = 2.

This is simply an initial-value problem. We can solve this using the tech-
niques first described in Section 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2(0) = 2, but that p′′2(x) = 2. That is, the second deriv-
ative of p2 is constant, meaning p2 is a quadratic function.

If p′′2(x) = 2, then p′2(x) = 2x + C for some constant C. Since we have
determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x+ 1. Finally,
we can compute p2(x) = x2+x+C. Using our initial values, we know p2(0) = 2
so C = 2. We conclude that p2(x) = x2 + x + 2. This function is plotted with
f in Figure 9.7.3.

We can repeat this approximation process by creating polynomials of higher
degree thatmatchmore of the derivatives of f atx = 0. In general, a polynomial
of degree n can be created to match the first n derivatives of f . Figure 9.7.3
shows p4(x) = −x4/2 − x3/6 + x2 + x + 2, whose first four derivatives at 0
match those of f . (Using the table in Figure 9.7.2, start with p(4)4 (x) = −12 and
solve the related initial-value problem.)

y = f(x)

y = p2(x)

y = p4(x)

−4 −2 2 4

−5

5

x

y

Figure 9.7.3 Plotting f , p2 and p4

As we use more and more derivatives, our polynomial approximation to f
gets better and better. In this example, the interval on which the approximation
is “good” gets bigger and bigger. Figure 9.7.4 shows p13(x); we can visually af-
firm that this polynomial approximates f very well on [−2, 3]. The polynomial
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p13(x) is not particularly “nice”. It is

p13(x) =
16901x13

6227020800
+

13x12

1209600
− 1321x11

39916800
− 779x10

1814400
− 359x9

362880

+
x8

240
+

139x7

5040
+

11x6

360
− 19x5

120
− x4

2
− x3

6
+ x2 + x+ 2.

y = f(x)

p13(x)

−4 −2 2 4

−5

5

x

y

Figure 9.7.4 Plotting f and p13

Thepolynomialswehave created are examples of Taylor polynomials, named
after the British mathematician Brook Taylor who made important discoveries
about such functions. While we created the above Taylor polynomials by solving
initial-value problems, it can be shown that Taylor polynomials follow a general
pattern that make their formation much more direct. This is described in the
following definition.

Definition 9.7.5 Taylor Polynomial, Maclaurin Polynomial.

Let f be a function whose first n derivatives exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2

+
f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n.

2. A special case of the Taylor polynomial is the Maclaurin polyno-
mial, where c = 0. That is, theMaclaurin polynomial of degree n
of f is

pn(x) = f(0)+f ′(0)x+
f ′′(0)

2!
x2+

f ′′′(0)

3!
x3+· · ·+ f (n)(0)

n!
xn.

We will practice creating Taylor and Maclaurin polynomials in the following
examples.

Example 9.7.6 Finding and using Maclaurin polynomials.

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

Solution.

1. We start with creating a table of the derivatives of ex evaluated at
x = 0. In this particular case, this is relatively simple, as shown in
Figure 9.7.7.

f(x) = ex f(0) = 1

f ′(x) = ex f ′(0) = 1

f ′′(x) = ex f ′′(0) = 1
...

...
f (n)(x) = ex f (n)(0) = 1

Figure 9.7.7 The derivatives of
f(x) = ex evaluated at x = 0

By the definition of the Maclaurin polynomial, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn

= 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + · · ·+ 1

n!
xn.

2. Using our answer from part 1, we have

ex ≈ p5(x) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5.
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To approximate the value of e, note that e = e1 = f(1) ≈ p5(1).
It is very straightforward to evaluate p5(1):

p5(1) = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
=

163

60
≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 9.7.8. To 5 deci-
mal places, the actual value of e is 2.71828. So this approximation
agrees to two decimal places.

y = f(x)
y = p5(x)

−3 −2 −1 1 2

5

10

x

y

Figure 9.7.8 A plot of f(x) = ex and
its 5th degree Maclaurin polynomial
p5(x)

Example 9.7.9 Finding and using Taylor polynomials.

1. Find the nth Taylor polynomial of y = ln(x) at x = 1.

2. Use p6(x) to approximate the value of ln(1.5).

3. Use p6(x) to approximate the value of ln(2).

Solution.

1. We begin by creating a table of derivatives of ln(x) evaluated at
x = 1. While this is not as straightforward as it was in the pre-
vious example, a pattern does emerge (for n ≥ 1), as shown in
Figure 9.7.10. Notice in the table below that each time we take a
derivative (starting at the second derivative), we apply the power
rule and “bring down” the exponent to multiply by the previous
coefficent. So the 6 in the 4th derivative is actually 1 · 2 · 3 = 3!.

f(x) = ln(x) f(1) = 0

f ′(x) = 1
x f ′(1) = 1

f ′′(x) = − 1
x2 f ′′(1) = −1

f ′′′(x) = 2
x3 f ′′′(1) = 2

f (4)(x) = − 6
x4 f (4)(1) = −6

...
...

f (n)(x) = f (n)(1) =
(−1)n+1(n−1)!

xn (−1)n+1(n− 1)!

Figure 9.7.10 Derivatives of ln(x)
evaluated at x = 1

Notice that the coefficients alternate in sign starting at n = 1.
Using Definition 9.7.5, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + . . .

. . .
f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n

= 0 +
0!

1!
(x− 1)− 1!

2!
(x− 1)2 + . . .

. . .
2!

3!
(x− 1)3 + · · ·+ (−1)n+1 · (n− 1)!

n!
(x− 1)n

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − . . .

. . .
1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x − 1) terms turn out to be
“nice.”

2. We can compute p6(x) using our work above:

p6(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3

− 1

4
(x− 1)4 +

1

5
(x− 1)5 − 1

6
(x− 1)6.
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Since p6(x) approximates ln(x) well near x = 1, we approximate
ln(1.5) ≈ p6(1.5):

p6(1.5) = (1.5− 1)− 1

2
(1.5− 1)2 +

1

3
(1.5− 1)3 + . . .

· · · − 1

4
(1.5− 1)4 +

1

5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259

640
≈ 0.404688.

This is a good approximation as a calculator shows that ln(1.5) ≈
0.4055. Figure 9.7.11 below plots y = ln(x) with y = p6(x). We
can see that ln(1.5) ≈ p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1

2
(2− 1)2 +

1

3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1

5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6

=
37

60
≈ 0.616667.

This approximation is not terribly impressive: a hand held calcu-
lator shows that ln(2) ≈ 0.693147. The graph in Figure 9.7.11
shows that p6(x) provides less accurate approximations of ln(x)
as x gets close to 0 or 2. Surprisingly enough, even the 20th de-
gree Taylor polynomial fails to approximate ln(x) for x > 2 very
well, as shown in Figure 9.7.12. We’ll soon discuss why this is.

y = ln(x)

y = p6(x)

−0.5 0.5 1 1.5 2 2.5 3

−4

−2

2

x

y

Figure 9.7.11 A plot of y = ln(x)
and its 6th degree Taylor polyno-
mial at x = 1

0.5 1 1.5 2 2.5 3

−6

−4

−2

2 y = ln(x)

y = p20(x)

x

y

Figure 9.7.12 A plot of y = ln(x)
and its 20th degree Taylor polyno-
mial at x = 1

As always in calculus, angles are
measured in radians, so the 2 in
cos(2) is an angle of 2 radians.

Taylor polynomials are used to approximate functions f(x) in mainly two
situations:

1. When f(x) is known, but perhaps “hard” to compute directly. For in-
stance, we can define the cosine of an angle as either the ratio of sides
of a right triangle (“adjacent over hypotenuse”) or using the definition in
terms of the unit circle. However, neither of these provides a convenient
way of computing cos(2). A Taylor polynomial of sufficiently high degree
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can provide a reasonable method of computing such values using only op-
erations usually hard-wired into a computer (+,−, × and÷).

2. When f(x) is not known, but information about its derivatives is known.
This occurs more often than one might think, especially in the study of
differential equations.

In both situations, a critical piece of information to have is “How good is my
approximation?” If we use a Taylor polynomial to compute cos(2), how do we
know how accurate the approximation is?

Even though Taylor polynomials
could be used in calculators and
computers to calculate values of
trigonometric functions, in prac-
tice they generally aren’t. Other
more efficient and accuratemeth-
ods have been developed, such
as the CORDIC algorithm. How-
ever, understanding how Taylor
polynomials could be used is im-
portant to developing an under-
standing of various approximat-
ing techniques.

Wehad the sameproblemwhen studyingNumerical Integration. Theorem5.5.24
provided bounds on the error when using, say, Simpson’s Rule to approximate
a definite integral. These bounds allowed us to determine that, for instance, us-
ing 10 subintervals provided an approximation within ±0.01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

Theorem 9.7.13 Taylor’s Theorem.

1. Let f be a functionwhose (n+1)th derivative exists on an interval
I and let c be in I . Then, for each x in I , there exists zx between
x and c such that

f(x) = f(c)+f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+· · ·+f (n)(c)

n!
(x−c)n+Rn(x),

whereRn(x) =
f (n+1)(zx)

(n+ 1)!
(x− c)(n+1).

2. |Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣, where z is in I .

The first part of Taylor’s Theorem states that f(x) = pn(x)+Rn(x), where
pn(x) is the nth order Taylor polynomial andRn(x) is the remainder, or error, in
the Taylor approximation. The second part gives bounds on how big that error
can be. If the (n + 1)th derivative is large on I , the error may be large; if x
is far from c, the error may also be large. However, the (n + 1)! term in the
denominator tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of
ln(1.5) and ln(2)made in Example 9.7.9.

Example 9.7.14 Finding error bounds of a Taylor polynomial.

Use Theorem 9.7.13 to find error bounds when approximating ln(1.5)
and ln(2) with p6(x), the Taylor polynomial of degree 6 of f(x) = ln(x)
at x = 1, as calculated in Example 9.7.9.
Solution.

1. We start with the approximation of ln(1.5) with p6(1.5). The
theorem references an open interval I that contains both x and
c. The smaller the interval we use the better; it will give us a
more accurate (and smaller!) approximation of the error. We let
I = (0.9, 1.6), as this interval contains both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situation, this is

asking “How big can the 7th derivative of y = ln(x) be on the
interval (0.9, 1.6)?” The seventh derivative is y = −6!/x7. The
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largest absolute value it attains on I is about 1506. (There are
no critical numbers of f (7) in the interval so we evaluate the end-
points: f (7)(0.9) ≈ 1506 and f (7)(1.6) ≈ 27.) In particular, we
are evaluating at x = 1.5, so we let x = 1.5. Thus we can bound
the error as:

|R6(1.5)| ≤
max

∣∣f (7)(z)
∣∣

7!

∣∣(1.5− 1)7
∣∣

≤ 1506

5040
· 1

27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find
ln(1.5) ≈ 0.405465, so the actual error is about 0.000778, which
is less than our bound of 0.0023. This affirms Taylor’s Theorem;
the theorem states that our approximationwould be within about
2 thousandths of the actual value, whereas the approximationwas
actually closer. Taylor’s Theoremonly gives an upper bound on the
error.

2. We again find an interval I that contains both c = 1 and x = 2;
we choose I = (0.9, 2.1). The maximum value of the seventh
derivative of f on this interval is again about 1506 (as the largest
values come near x = 0.9). Thus

|R6(2)| ≤
max

∣∣f (7)(z)
∣∣

7!

∣∣(2− 1)7
∣∣

≤ 1506

5040
· 17

≈ 0.30.

This bound is not as nearly as good as before. Using the degree
6 Taylor polynomial at x = 1 will bring us within 0.3 of the cor-
rect answer. As p6(2) ≈ 0.61667, our error estimate guarantees
that the actual value of ln(2) is somewhere between 0.31667 and
0.91667. These bounds are not particularly useful. In reality, our
approximation was only off by about 0.07. However, we are ap-
proximating ostensibly because we do not know the real answer.
In order to be assured that we have a good approximation, we
would have to resort to using a polynomial of higher degree.

We practice again. This time, we use Taylor’s theorem to find n that guaran-
tees our approximation is within a certain amount.

Example 9.7.15 Finding sufficiently accurate Taylor polynomials.

Find n such that the nth Taylor polynomial of f(x) = cos(x) at x =
0 approximates cos(2) to within 0.001 of the actual answer. What is
pn(2)?
Solution. Following Taylor’s theorem,weneedbounds on the size of the
derivatives of f(x) = cos(x). In the case of this trigonometric function,
this is easy. All derivatives of cosine are± sin(x) or± cos(x). In all cases,
these functions are never greater than 1 in absolute value. We want
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the error to be less than 0.001. To find the appropriate n, consider the
following inequalities:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣∣(2− 0)(n+1)
∣∣∣ ≤ 0.001

1

(n+ 1)!
· 2(n+1) ≤ 0.001.

We find an n that satisfies this last inequality with trial-and-error. When

n = 8, we have
28+1

(8 + 1)!
≈ 0.0014; when n = 9, we have

29+1

(9 + 1)!
≈

0.000282 < 0.001. Thus we want to approximate cos(2) with p9(2).
We now set out to compute p9(x). We again need a table of the deriv-
atives of f(x) = cos(x) evaluated at x = 0. A table of these values is
given in Figure 9.7.16.

f(x) = cos(x) f(0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0

f (8)(x) = cos(x) f (8)(0) = 1

f (9)(x) = − sin(x) f (9)(0) = 0

Figure 9.7.16 A table of the deriva-
tives of f(x) = cos(x) evaluated at
x = 0

Notice how the derivatives, evaluated at x = 0, follow a certain pattern.
All the odd powers of x in the Taylor polynomial will disappear as their
coefficient is 0. While our error bounds state that we need p9(x), our
work shows that this will be the same as p8(x).
Since we are forming our polynomial at x = 0, we are creating aMaclau-
rin polynomial, and:

p8(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (8)(0)

8!
x8

= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8.

We finally approximate cos(2):

cos(2) ≈ p8(2) = −131

315
≈ −0.41587.

Our error bound guarantee that this approximation is within 0.001 of the
correct answer. Technology shows us that our approximation is actually
within about 0.0003 of the correct answer.
Figure 9.7.17 shows a graph of y = p8(x) and y = cos(x). Note how
well the two functions agree on about (−π, π).

y = cos(x)

y = p8(x)

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

x

y

Figure 9.7.17 A graph of f(x) =
cos(x) and its degree 8 Maclaurin
polynomial

Example 9.7.18 Finding and using Taylor polynomials.

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at

x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximating
√
3 with p4(3).

Solution.

1. We begin by evaluating the derivatives of f at x = 4. This is done
in Figure 9.7.19.

f(x) =
√
x f(4) = 2

f ′(x) =
1

2
√
x

f ′(4) =
1

4

f ′′(x) =
−1

4x3/2
f ′′(4) =

−1

32

f ′′′(x) =
3

8x5/2
f ′′′(4) =

3

256

f (4)(x) =
−15

16x7/2
f (4)(4) =

−15

2048

Figure 9.7.19 A table of the deriva-
tives of f(x) =

√
x evaluated at x =

4

These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2 +
1

4
(x− 4) +

−1/32

2!
(x− 4)2 + . . .
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. . .
3/256

3!
(x− 4)3 +

−15/2048

4!
(x− 4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) =

1.73212.

3. To find a bound on the error, we need an open interval that con-
tains x = 3 and x = 4. We set I = (2.9, 4.1). The largest value
the fifth derivative of f(x) =

√
x takes on this interval is near

x = 2.9, at about 0.0273. (We often graph the (n + 1)th deriva-
tive to find its extrema. In this case is f (5)(x) = 105/(32x9/2) is
always decreasing, so the maximum occurs at 2.9.) Thus

|R4(3)| ≤
0.0273

5!

∣∣(3− 4)5
∣∣ ≈ 0.00023.

This shows our approximation is accurate to at least the first 2
places after the decimal. (It turns out that our approximation
is actually accurate to 4 places after the decimal.) A graph of
f(x) =

√
x and p4(x) is given in Figure 9.7.20. Note how the

two functions are nearly indistinguishable on (2, 7).

y =
√
x

y = p4(x)

2 4 6 8 10

1

2

3
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y

Figure 9.7.20 A graph of f(x) =
√
x

and its degree 4 Taylor polynomial at
x = 4

Our final example gives a brief introduction to using Taylor polynomials to
solve differential equations.

Example 9.7.21 Approximating an unknown function.

A function y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y′ = y2

(This second fact says that amazingly, the derivative of the function is
actually the function squared!)
Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).
Solution. One might initially think that not enough information is given
to find p3(x). However, note how the second fact above actually lets us
know what y′(0) is:

y′ = y2 ⇒ y′(0) = y2(0).

Since y(0) = 1, we conclude that y′(0) = 1.
Now we find information about y′′. Starting with y′ = y2, take deriva-
tives of both sides, with respect to x. That means we must use implicit
differentiation.

y′ = y2

d

dx

(
y′
)
=

d

dx

(
y2
)

y′′ = 2y · y′.

Now evaluate both sides at x = 0:

y′′(0) = 2y(0) · y′(0)
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y′′(0) = 2.

We repeat this once more to find y′′′(0). We again use implicit differen-
tiation; this time the Product Rule is also required.

d

dx

(
y′′
)
=

d

dx

(
2yy′

)
y′′′ = 2y′ · y′ + 2y · y′′.

Now evaluate both sides at x = 0:

y′′′(0) = 2y′(0)2 + 2y(0)y′′(0)

y′′′(0) = 2 + 4 = 6.

In summary, we have:

y(0) = 1 y′(0) = 1 y′′(0) = 2 y′′′(0) = 6.

We can now form p3(x):

p3(x) = 1 + x+
2

2!
x2 +

6

3!
x3

= 1 + x+ x2 + x3.

It turns out that the differential equation we started with, y′ = y2,
where y(0) = 1, can be solved without too much difficulty:

y =
1

1− x
.

Figure 9.7.22 shows this function plotted with p3(x). Note how similar
they are near x = 0.

−1 −0.5 0.5 1

1

2

3
y =

1

1− x y = p3(x)

x

y

Figure 9.7.22A graph of y = −1/(x−
1) and y = p3(x) from Exam-
ple 9.7.21

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solutions to differential equations. This topic is
often broached in introductory Differential Equations courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximation is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
section has taken a step back from this study, focusing instead on finite summa-
tion of terms. In the next section, we explore Taylor Series, where we represent
a function with an infinite series.
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9.7.1 Exercises

Terms and Concepts

1. What is the difference between a Taylor polynomial and a Maclaurin polynomial?
2. True or False? In general, pn(x) approximates f(x) better and better as n gets larger. (□ True □ False)

3. For some function f(x), the Maclaurin polynomial of degree 4 is p4(x) = 6 + 3x− 4x2 + 5x3 − 7x4. What is
p2(x)?

4. For some function f(x), the Maclaurin polynomial of degree 4 is p4(x) = 6 + 3x− 4x2 + 5x3 − 7x4. What is
f ′′′(0)?

Problems

Exercise Group. In the following exercises, find the Maclaurin polynomial of degree n for the given function.
5. Find the Maclaurin polynomial of degree n = 3

for f(x) = e−x.
6. Find the Maclaurin polynomial of degree n = 8

for f(x) = sin(x).
7. Find the Maclaurin polynomial of degree n = 5

for f(x) = x · ex.
8. Find the Maclaurin polynomial of degree n = 6

for f(x) = tan(x).
9. Find the Maclaurin polynomial of degree n = 4

for f(x) = e2x.
10. Find the Maclaurin polynomial of degree n = 4

for f(x) =
1

1− x
.

11. Find the Maclaurin polynomial of degree n = 4

for f(x) =
1

1 + x
.

12. Find the Maclaurin polynomial of degree n = 7

for f(x) =
1

1 + x
.

Exercise Group. In the following exercises, find the Taylor polynomial of degree n, at x = c, for the given function.
13. Find the Taylor polynomial for f(x) =

√
x of

degree n = 4, at c = 1.
14. Find the degree n = 4 Taylor polynomial for

f(x) = ln(x+ 1), at c = 1.
15. Find the degree n = 6 Taylor polynomial for

f(x) = cos(x), at c = π/4.
16. Find the degree n = 5 Taylor poplynomial for

f(x) = sin(x), at c = π/6.
17. Find the degree n = 5 Taylor poplynomial for

f(x) = 1
x , at c = 2.

18. Find the degree n = 8 Taylor poplynomial for

f(x) =
1

x2
, at c = 1.

19. Find the degree n = 3 Taylor poplynomial for

f(x) =
1

x2 + 1
, at c = −1.

20. Find the degree n = 2 Taylor polynomial for
f(x) = x2 cos(x), at c = π.

Exercise Group. In the following exercises, approximate the function value with the indicated Taylor polynomial and
give approximate bounds on the error.

21. Approximate sin(0.1) with the Maclaurin
polynomial of degree 3.

22. Approximate cos(1) with the Maclaurin
polynomial of degree 4.

23. Approximate
√
10 with the Taylor polynomial of

degree 2 centered at x = 9.
24. Approximate ln(1.5) with the Taylor polynomial

of degree 3 centered at x = 1.

Exercise Group. The following exercises ask for an n to be found such that pn(x) approximates f(x)within a certain
bound of accuracy.

25. Find n such that the Maclaurin polynomial of
degree n of f(x) = ex approximates e within
0.0001 of the actual value.

26. Find n such that the Taylor polynomial of
degree n of f(x) =

√
x, centered at x = 4,

approximates
√
3 within 0.0001 of the actual

value.
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27. Find n such that the Maclaurin polynomial of
degree n of f(x) = cos(x) approximates
cos(π/3) within 0.0001 of the actual value.

28. Find n such that the Maclaurin polynomial of
degree n of f(x) = sin(x) approximates cos(π)
within 0.0001 of the actual value.

Exercise Group. In the following exercises, find the nth term of the indicated Taylor polynomial.
29. Find a formula for the nth term of the

Maclaurin polynomial for f(x) = ex.
30. Find a formula for the nth term of the

Maclaurin polynomial for f(x) = cos(x).
31. Find a formula for the nth term of the

Maclaurin polynomial for f(x) = sinx.
32. Find a formula for the nth term of the

Maclaurin polynomial for f(x) =
1

1− x
.

33. Find a formula for the nth term of the
Maclaurin polynomial for f(x) =

1

1 + x
.

34. Find a formula for the nth term of the Taylor
polynomial for f(x) = ln(x) centered at x = 1.

Exercise Group. In the following exercises, approximate the solution to the given differential equation with a degree
4 Maclaurin polynomial.

35. y′ = y, y(0) = 1 36. y′ = 5y, y(0) = 3

37. y′ =
2

y
, y(0) = 1
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9.8 Taylor Series

In Section 9.6, we showed how certain functions can be represented by a power
series function. In Section 9.7, we showed how we can approximate functions
with polynomials, given that enough derivative information is available. In this
sectionwe combine these concepts: if a function f(x) is infinitely differentiable,
we show how to represent it with a power series function.

Definition 9.8.1 Taylor and Maclaurin Series.

Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)

n!
(x− c)n.

2. Setting c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)

n!
xn.

If pn(x) is the nth degree Taylor polynomial for f(x) centered at x = c, we
saw how f(x) is approximately equal to pn(x) near x = c. We also saw how
increasing the degree of the polynomial generally reduced the error.

We are now considering series, where we sum an infinite set of terms. Our
ultimate hope is to see the error vanish and claim a function is equal to its Taylor
series.

When creating the Taylor polynomial of degreen for a function f(x) atx = c,
we needed to evaluate f , and the first n derivatives of f , at x = c. When
creating the Taylor series of f , it helps to find a pattern that describes the nth
derivative of f at x = c. We demonstrate this in the next two examples.

Example 9.8.2 The Maclaurin series of f(x) = cos(x).

Find the Maclaurin series of f(x) = cos(x).
Solution. In Example 9.7.15 we found the 8th degreeMaclaurin polyno-
mial of cos(x). In doing so, we created the table shown in Figure 9.8.3.

f(x) = cos(x) f(0) = 1

f ′(x) = − sin(x) f ′(0) = 0

f ′′(x) = − cos(x) f ′′(0) = −1

f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0

f (8)(x) = cos(x) f (8)(0) = 1

f (9)(x) = − sin(x) f (9)(0) = 0

Figure 9.8.3 Derivatives of f(x) =
cos(x) evaluated at x = 0

Notice how f (n)(0) = 0 when n is odd, f (n)(0) = 1 when n is divisible
by 4, and f (n)(0) = −1 when n is even but not divisible by 4. Thus the
Maclaurin series of cos(x) is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

We can go further and write this as a summation. The coefficients al-
ternate between positive and negative. Since we only need the terms
where the power of x is even, we write the power series in terms of
x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

This Maclaurin series is a special type of power series. As such, we
should determine its interval of convergence. Applying the Ratio Test,
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we have

lim
n→∞

∣∣∣∣∣(−1)n+1 x2(n+1)(
2(n+ 1)

)
!

∣∣∣∣∣∣∣∣(−1)n x2n

(2n)!

∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ (2n)!

(2n+ 2)!

= lim
n→∞

|x|2

(2n+ 2)(2n+ 1)
.

For any fixed x, this limit is 0. Therefore this power series has an infinite
radius of convergence, converging for all x. It is important to note what
we have, and have not, determined: we have determined theMaclaurin
series for cos(x) along with its interval of convergence. We have not
shown that cos(x) is equal to this power series.

Example 9.8.2 found the Taylor Series representation of cos(x). We can eas-
ily find the Taylor Series representationof sin(x)by recognizing that

∫
cos(x) dx =

sin(x) and apply Theorem 9.6.7.

Example 9.8.4 The Taylor series of f(x) = ln(x) at x = 1.

Find the Taylor series of f(x) = ln(x) centered at x = 1.
Solution. Figure 9.8.5 shows the nth derivative of ln(x) evaluated at
x = 1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what distinguishes Taylor series from Taylor poly-
nomials; we are very interested in finding a pattern for the nth term, not
just finding a finite set of coefficients for a polynomial.

f(x) = ln(x) f(1) = 0

f ′(x) = 1/x f ′(1) = 1

f ′′(x) = −1/x2 f ′′(1) = −1

f ′′′(x) = 2/x3 f ′′′(1) = 2

f (4)(x) = −6/x4 f (4)(1) = −6

f (5)(x) = 24/x5 f (5)(1) = 24
...

...
f (n)(x) = f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 9.8.5 Derivatives of ln(x) eval-
uated at x = 1

Since f(1) = ln(1) = 0, we skip the first term and start the summation
with n = 1, giving the Taylor series for ln(x), centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1

n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

We now determine the interval of convergence, using the Ratio Test.

lim
n→∞

∣∣∣∣(−1)n+2 (x− 1)n+1

n+ 1

∣∣∣∣∣∣∣∣(−1)n+1
(x− 1)n

n

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 1)n+1

(x− 1)n

∣∣∣∣ n

n+ 1

= |x− 1| .

By the Ratio Test, we have convergence when |x− 1| < 1: the radius
of convergence is 1, and we have convergence on (0, 2). We now check
the endpoints.
At x = 0, the series is

∞∑
n=1

(−1)n+1 (−1)n

n
= −

∞∑
n=1

1

n
,

which diverges (it is the Harmonic Series times (−1).)
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At x = 2, the series is

∞∑
n=1

(−1)n+1 (1)
n

n
=

∞∑
n=1

(−1)n+1 1

n
,

the Alternating Harmonic Series, which converges.

It can be shown that ln(x) is
equal to this Taylor series on
(0, 2]. From the work in Ex-
ample 9.8.4, this justifies our
previous declaration that the Al-
ternating Harmonic Series con-
verges to ln(2).

We have found the Taylor series of lnx centered at x = 1, and have
determined the series converges on (0, 2]. We cannot (yet) say that lnx
is equal to this Taylor series on (0, 2].

It is important to note that Definition 9.8.1 defines a Taylor series given a
function f(x), but makes no claim about their equality. We will find that “most
of the time” they are equal, but we need to consider the conditions that allow
us to conclude this.

Theorem 9.7.13 states that the error between a function f(x) and its nth-
degree Taylor polynomial pn(x) isRn(x), where

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣∣(x− c)(n+1)
∣∣∣ .

If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we
conclude that the function is equal to its Taylor series expansion.

Theorem 9.8.6 Function and Taylor Series Equality.

Let f(x) have derivatives of all orders at x = c, let Rn(x) be as stated
in Theorem 9.7.13, and let I be an interval on which the Taylor series of
f(x) converges. If lim

n→∞
Rn(x) = 0 for all x in I , then

f(x) =

∞∑
n=0

f (n)(c)

n!
(x− c)n on I .

We demonstrate the use of this theorem in an example.

Example 9.8.7 Establishing equality of a function and its Taylor series.

Show that f(x) = cos(x) is equal to its Maclaurin series, as found in
Example 9.8.2, for all x.
Solution. Given a value x, the magnitude of the error term Rn(x) is
bounded by

|Rn(x)| ≤
max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣xn+1
∣∣ .

Since all derivatives of cos(x) are ± sin(x) or ± cos(x), whose magni-
tudes are bounded by 1, we can state

|Rn(x)| ≤
1

(n+ 1)!

∣∣xn+1
∣∣

which implies

−
∣∣xn+1

∣∣
(n+ 1)!

≤ Rn(x) ≤
∣∣xn+1

∣∣
(n+ 1)!

. (9.8.1)

For any x, lim
n→∞

xn+1

(n+1)! = 0. Applying the Squeeze Theorem to Equa-



CHAPTER 9. SEQUENCES AND SERIES 528

tion (9.8.1), we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
for all x .

It is natural to assume that a function is equal to its Taylor series on the series’
interval of convergence, but this is not always the case. In order to properly
establish equality, one must use Theorem 9.8.6. This is a bit disappointing, as
we developed beautiful techniques for determining the interval of convergence
of a power series, and proving that Rn(x) → 0 can be difficult. For instance, it
is not a simple task to show that ln x equals its Taylor series on (0, 2] as found
in Example 9.8.4; in the Exercises, the reader is only asked to show equality on
(1, 2), which is simpler.

There is good news. A function f(x) that is equal to its Taylor series, cen-
tered at any point the domain of f(x), is said to be an analytic function, and
most, if not all, functions that we encounter within this course are analytic func-
tions. Generally speaking, any function that one creates with elementary func-
tions (polynomials, exponentials, trigonometric functions, etc.) that is not piece-
wise defined is probably analytic. For most functions, we assume the function
is equal to its Taylor series on the series’ interval of convergence and only use
Theorem 9.8.6 when we suspect something may not work as expected.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 9.8.8 The Binomial Series.

Find the Maclaurin series of f(x) = (1 + x)k, k ̸= 0.
Solution. When k is a positive integer, theMaclaurin series is finite. For
instance, when k = 4, we have

f(x) = (1 + x)4 = 1 + 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a positive integer are known as the bino-
mial coefficients, giving the series we are developing its name.
When k = 1/2, we have f(x) =

√
1 + x. Knowing a series representa-

tion of this function would give a useful way of approximating
√
1.3, for

instance.
To develop the Maclaurin series for f(x) = (1 + x)k for any value of
k ̸= 0, we consider the derivatives of f evaluated at x = 0:

f(x) = (1 + x)k f(0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)

f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

...
...

For a general n,

f (n)(x) = k(k − 1) · · ·
(
k − (n− 1)

)
(1 + x)k−n,

giving f (n)(0) = k(k − 1) · · ·
(
k − (n− 1)

)
.
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Thus the Maclaurin series for f(x) = (1 + x)k is

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + . . .

· · ·+
k(k − 1) · · ·

(
k − (n− 1)

)
n!

(x− c)n + . . .

It is important to determine the interval of convergence of this series.
With

an =
k(k − 1) · · ·

(
k − (n− 1)

)
n!

xn,

we apply the Ratio Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k − 1) · · · (k − (n− 1))(k − n)

(n+ 1)!
xn+1

∣∣∣∣∣∣∣∣∣k(k − 1) · · ·
(
k − (n− 1)

)
n!

xn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣k − n

n+ 1
x

∣∣∣∣
= |x| .

The series converges absolutely when the limit of the Ratio Test is less
than 1; therefore, we have absolute convergence when |x| < 1.
While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1].
When −1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1,
the interval of convergence is (−1, 1).

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

Whilewe should not overlook themathematical beauty of Taylor series (which
is reason enough to study them), there are practical uses as well. They provide
a valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 9.8.9 (on the following page) we give a table of the Taylor series
of a number of common functions. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new functions. This allows us to find the Taylor series of functions like
f(x) = ex cos(x) by knowing the Taylor series of ex and cos(x).

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 9.8.9). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

π = 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)
Unfortunately, this particular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not particularly good.
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Key Idea 9.8.9 Important Taylor Series Expansions.

Function and Series First Few Terms Interval of
Convergence

ex =

∞∑
n=0

xn

n!
1 + x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1

1− x
=

∞∑
n=0

xn 1 + x+ x2 + x3 + · · · (−1, 1)

tan−1(x) =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

(1 + x)k =

∞∑
n=0

(
k

n

)
xn 1 + kx+

k(k − 1)

2!
x2 + · · · (−1, 1)

Note that for (1 + x)k, the interval of convergence may contain one or both endpoints, de-
pending on the value of k, and we are using the generalized binomial coefficients(

k

n

)
=

k(k − 1) · · · (k − (n− 1))

n!
.

Theorem 9.8.10 Algebra of Power Series.

Let f(x) =

∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n converge absolutely for

|x| < R, and let h(x) be a polynomial function.

1. f(x)± g(x) =

∞∑
n=0

(an ± bn)x
n for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(
a0bn + a1bn−1 +

. . . anb0
)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Note that we require h(x) to be
apolynomial function in Theorem9.8.10.
If we plug a function that is not
polynomial into a power series,
the resultwill no longer be apower
series. If one is very careful about
the centre and radius of conver-
gence, it is technically possible
to substitute the Taylor series for
a general function h(x) into the
Taylor series for f(x), and the re-
sult will be the Taylor series for
f(h(x)).

In practice, h(x) is typically
amonomial functionof the form
h(x) = axn. For anything more
complicated, rearranging thepower
series into a standard form be-
comes a nightmare.

Example 9.8.11 Combining Taylor series.

Write out the first 3 terms of the Taylor Series for f(x) = ex cos(x) using
Key Idea 9.8.9 and Theorem 9.8.10.
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Solution. Key Idea 9.8.9 informs us that

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · and cos(x) = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 9.8.10, we find that

ex cos(x) =
(
1 + x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the left:

ex cos(x) = 1

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

If we distribute again and collect like terms, we find

ex cos(x) = 1 + x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · · .

While this process is a bit tedious, it is much faster than evaluating all
the necessary derivatives of ex cos(x) and computing the Taylor series
directly.
Because the series for ex and cos(x) both converge on (−∞,∞), so
does the series expansion for ex cos(x).

Example 9.8.12 Creating new Taylor series.

Use Theorem 9.8.10 to create series for y = sin(x2) and y = x3/(3 +
x4).
Solution. Given that

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply substitute x2 for x in the series, giving

sin(x2) =

∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!

∞∑
n=0

(−1)n
(x4n+2

(2n+ 1)!

= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Since the Taylor series for sin(x) has an infinite radius of convergence,
so does the Taylor series for sin(x2).
For y = x3/(3 + x4), we begin with the geometric series expansion

1

1− x
=

∞∑
n=0

xn.
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Note that we can write

1

3 + x4
=

1

3
· 1

1 + x4/3
=

1

3
· 1

1− (−x4/3)
.

Substituting−x4/3 into the geometric series expansion, we get

1

3 + x4
=

∞∑
n=0

(−x4/3)n =

∞∑
n=0

(−1n)x4n

3n
.

Finally, we canmultiply both sides of the above equation by x3 to obtain

x3

3 + x4
= x3

∞∑
n=0

(−1n)x4n

3n
=

∞∑
n=0

(−1)nx4n+3

3n
.

Example 9.8.13 A (somewhat foolish) combination of Taylor series.

Discuss possible methods for obtaining a Taylor series expansion for
f(x) = ln(

√
x).

Solution. Since f(x) is a composition, our first instict might be to ap-
ply Theorem 9.8.10 to the problem. However,

√
x is not a polynomial

function, and neither ln(x) nor
√
x have Maclaurin series expansions.

You might already see a simple way to proceed, but let us first consider
the following:

√
x = (1 + (x − 1))1/2 can be expanded as a binomial

series centered at x = 1. We also know the Taylor series for ln(x) at
x = 1, and note that

√
1 = 1, so when x is near 1, so is

√
x.

What happens if we take the Taylor series

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·

and substitute in

√
x =

∞∑
n=0

(
1/2

n

)
(x− 1)n = 1 +

1

2
(x− 1)− 1

4
(x− 1)2 + · · · ,

where
(
1/2
n

)
= 1/2(1/2−1)···(1/2−(n−1))

n! denotes the binomial coeffi-
cient?
Short answer: a mess. We have to replace each occurence of x − 1 in
the power series for ln(x)with

√
x−1 = 1

2 (x−1)− 1
4 (x−1)2+ 1

16 (x−
1)3+ · · ·, and then expand, and collect terms. If we do this, keeping only
terms up to (x− 1)3, we find:

ln(
√
x) =

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)
− 1

2

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)2

+
1

3

(
1

2
(x− 1)− 1

4
(x− 1)2 +

1

16
(x− 1)3 + · · ·

)
+ · · ·

=
1

2
(x− 1)− 1

4
(x− 2)2 +

1

6
(x− 1)3 − · · · .
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But of course, there was a better way all along:

ln(
√
x) = ln(x1/2) =

1

2
ln(x)

using properties of the logarithm, and indeed, the result above is the
same as the one we would have obtained by simply multiplying the Tay-
lor series for ln(x) by 1

2 . Power series manipulation is a powerful tech-
nique, but one should not apply it blindly.

Example 9.8.14 Using Taylor series to approximate a composition.

Use Taylor series to determine a degree 5 Taylor polynomial approxima-
tion to f(x) = esin(x).
Solution. Here we want to apply Theorem 9.8.10, but h(x) = sin(x) is
not a polynomial. However, we are interested in approximation, so we
replace sin(x) by the Maclaurin polynomial

q(x) = x− x3

3!
+

x5

5!
.

The Maclaurin series for f(x) = ex is given by

ex =

∞∑
n=0

xn

n!
.

Next, we substitute q(x) into the series for ex. The algebra gets very
messy, but we can simplify things: since we want the degree 5 approx-
imation, there is no need to write down terms involving x6 or higher
powers.

esin(x) ≈ 1 + q(x) +
1

2!
q(x)2 +

1

3!
q(x)3 +

1

4!
q(x)4 +

1

5!
q(x)5

= 1 +

(
x− x3

6
+

x5

120

)
+

1

2

(
x− x3

6
+

x5

120

)
+

1

6

(
x− x3

6
+

x5

120

)3

+
1

24

(
x− x3

6
+

x5

120

)4

+
1

120

(
x− x3

6
+

x5

120

)5

= 1 + x− x3

6
+

x5

120
+

1

2

(
x2 − 1

3
x4 + · · ·

)
+

1

6

(
x3 − 1

2
x5 + · · ·

)
+

1

24

(
x4 + · · ·

)
+

1

120

(
x5 + · · ·

)
= 1 + x+

1

2
x2 − 1

8
x4 − 1

15
x5 + · · · .

While the algebra is a bit of a mess, it is often less work than computing
the Taylor polynomial directly, as the derivatives of a composite func-
tion quickly get complicated. The function f(x) = esin(x) and its approx-
imation are plotted in Figure 9.8.15 below. Note that our polynomial
approximation is very good on [−1, 1].

y = f(x)

y = p5(x)

−2 −1 1 2

1

2

3

x

y

Figure 9.8.15 A graph of f(x) and its
degree 5 Maclaurin polynomial

In the previous example, the reader might be left wondering why we would
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bother with all that algebra, when the computer could have given us the result
in seconds. One reason is simply that it lets us see how these different pieces fit
together. Computing a Taylor polynomial by combining existing results will give
the same polynomial as computing derivatives. Also we see that we can com-
pute an approximation by replacing both parts of a composition with approxi-
mations. In the last couple of examples in this chapter, we see another reason:
often we have to define functions in terms of power series derived through in-
tegration, or the solution of a differential equation, where there is no known
function we can simply plug into the computer.

Example 9.8.16 Using Taylor series to evaluate definite integrals.

Use the Taylor series of e−x2

to evaluate
∫ 1

0

e−x2

dx.

Solution. We learned, when studying Numerical Integration, that e−x2

does not have an antiderivative expressible in terms of elementary func-
tions. This means any definite integral of this function must have its
value approximated, and not computed exactly.
We can quickly write out the Taylor series for e−x2

using the Taylor series
of ex:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2

=

∞∑
n=0

(−x2)n

n!

=

∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · · .

We use Theorem 9.6.7 to integrate:∫
e−x2

dx = C+x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+· · ·+(−1)n

x2n+1

(2n+ 1)n!
+· · ·

This is the antiderivative of e−x2

; while we canwrite it out as a series, we
cannot write it out in terms of elementary functions. We can evaluate

the definite integral
∫ 1

0

e−x2

dx using this antiderivative; substituting 1

and 0 for x and subtracting gives∫ 1

0

e−x2

dx = 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximation of 0.74749.
Since this is an alternating series, we can use the Alternating Series Ap-
proximation Theorem, (Theorem 9.5.6), to determine how accurate this
approximation is. The next termof the series is 1/(11·5!) ≈ 0.00075758.
Thus we know our approximation is within 0.00075758 of the actual
value of the integral. This is arguably much less work than using Simp-
son’s Rule to approximate the value of the integral.
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Example 9.8.17 Using Taylor series to solve differential equations.

Solve the differential equation y′ = 2y in terms of a power series, and
use the theory of Taylor series to recognize the solution in terms of an
elementary function.
Solution. We found the first 5 terms of the power series solution to this
differential equation in Example 9.6.10 in Section 9.6. These are:

a0 = 1, a1 = 2, a2 =
4

2
= 2, a3 =

8

2 · 3
=

4

3
, a4 =

16

2 · 3 · 4
=

2

3
.

We include the “unsimplified” expressions for the coefficients found in
Example 9.6.10 as we are looking for a pattern. It can be shown that
an = 2n/n!. Thus the solution, written as a power series, is

y =

∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 9.8.9 and Theorem 9.8.10, we recognize f(x) = e2x:

ex =

∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 9.8.9, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we still recover the function y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4

3
, a4 =

2

3
.

Definition 9.8.1 states that each term of the Taylor expansion of a function
includes an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4

3
=

b3
3!
, and a4 =

2

3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the pattern we had previously
seen, allowing us to write

f(x) =

∞∑
n=0

anx
n =

∞∑
n=0

bn
n!

xn

= 1 + 2x+
4

2!
x2 +

8

3!
x3 +

16

4!
x4 + · · ·

Fromhere it is easier to recognize that the series is describing an exponential
function.

There are simpler, more direct ways of solving the differential equation y′ =
2y, as discussed in Chapter 8. We applied power series techniques to this equa-
tion to demonstrate its utility, and went on to show how sometimeswe are able
to recover the solution in terms of elementary functions using the theory of Tay-
lor series. Most differential equations faced in real scientific and engineering
situations are much more complicated than this one, but power series can offer
a valuable tool in finding, or at least approximating, the solution.
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This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
functions based on series. Such “series-defined functions” are a valuable tool in
solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using functions of the form y = f(x). Curves created by these new
methods can be beautiful, useful, and important.
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9.8.1 Exercises

Terms and Concepts

1. What is the difference between a Taylor polynomial and a Taylor series?
2. What theorem must we use to show that a function is equal to its Taylor series?

Problems

Exercise Group. Key Idea 9.8.9 gives thenth termof the Taylor series of common functions. In the following exercises,
verify the formula given in the Key Idea by finding the first few terms of the Taylor series of the given function and
identifying a pattern.

3. f(x) = ex;c = 0 4. f(x) = sin(x);c = 0

5. f(x) = 1/(1− x);c = 0 6. f(x) = tan−1(x);c = 0

Exercise Group. In the following exercises, find a formula for the nth term of the Taylor series of f(x), centered at
c, by finding the coefficients of the first few powers of x and looking for a pattern. (The formulas for several of these
are found in Key Idea 9.8.9; show work verifying these formula.)

7. f(x) = cos(x);c = π/2 8. f(x) = 1/x;c = 1

9. f(x) = e−x;c = 0 10. f(x) = ln(1 + x);c = 0

11. f(x) = x/(x+ 1);c = 1 12. f(x) = sin(x);c = π/4

Exercise Group. In the following exercises, show that the Taylor series for f(x), as given in Key Idea 9.8.9, is equal to
f(x) by applying Theorem 9.8.6; that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex 14. f(x) = sin(x)
15. f(x) = ln(x) (show equality only on (1, 2)) 16. f(x) = 1/(1− x) (show equality only on

(−1, 0))

Exercise Group. In the following exercises, use the Taylor series given in Key Idea 9.8.9 to verify the given identity.
17. cos(−x) = cos(x) 18. sin(−x) = − sin(x)
19. d

dx

(
sin(x)

)
= cos(x) 20. d

dx

(
cos(x)

)
= − sin(x)

Exercise Group. In the following exercises, write out the first 5 terms of the Binomial series with the given k-value.
21. k = 1/2 22. k = −1/2

23. k = 1/3 24. k = 4

Exercise Group. In the following exercises, use the Taylor series given in Key Idea 9.8.9 to create the Taylor series of
the given functions.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1

(
x/2
)

29. f(x) = ex sin(x)(only find the first 4 terms) 30. f(x) = (1 + x)1/2 cos(x)(only find the first 4
terms)

Exercise Group. In the following exercises, approximate the value of the given definite integral by using the first 4
nonzero terms of the integrand’s Taylor series.

31.
∫ √

π

0

sin
(
x2
)
dx 32.

∫ 3
√
π

0

cos
(
x3
)
dx



Chapter 10

Curves in the Plane

We have explored functions of the form y = f(x) closely throughout this text.
We have explored their limits, their derivatives and their antiderivatives; we
have learned to identify key features of their graphs, such as relative maxima
andminima, inflection points and asymptotes; we have found equations of their
tangent lines, the areas between portions of their graphs and the x-axis, and the
volumes of solids generated by revolving portions of their graphs about a hori-
zontal or vertical axis.

Despite all this, the graphs created by functions of the form y = f(x) are
limited. Since each x-value can correspond to only 1 y-value, common shapes
like circles cannot be fully described by a function in this form. Fittingly, the
“vertical line test” excludes vertical lines from being functions of x, even though
these lines are important in mathematics.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
still workwithin the framework of functions, as an inputwill still only correspond
to one output. However, our new techniques of drawing curves will render the
vertical line test pointless, and allow us to create important — and beautiful —
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, continuing to find equations of tangent lines and the areas of enclosed
regions.

10.1 Conic Sections

The ancient Greeks recognized that interesting shapes can be formed by inter-
secting a plane with a double napped cone (i.e., two identical cones placed tip-
to-tip as shown in the following figures). As these shapes are formed as sections
of conics, they have earned the official name “conic sections.”

The three “most interesting” conic sections are given in the top row of Fig-
ure 10.1.1. They are the parabola, the ellipse (which includes circles) and the
hyperbola. In each of these cases, the plane does not intersect the tips of the
cones (usually taken to be the origin).

538
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(a) Parabola (b) Ellipse (c) Circle (d) Hyperbola

(e) Point (f) Line (g) Crossed Lines

Figure 10.1.1 Conic Sections
When the plane does contain the origin, three degenerate cones can be

formed as shown the bottom row of Figure 10.1.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuitive, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a function. It can be shown that
all conics can be defined by the general second-degree equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

While this algebraic definition has its uses, most find another geometric per-
spective of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
satisfy a certain distance property. These distance properties can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
function.

10.1.1 Parabolas

Definition 10.1.2 Parabola.

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Directrix

Focus

Vertex

}
p}
p

(x, y)d

d

Ax
is
of

Sy
m
m
et
ry

Figure 10.1.3 Illustrating the defini-
tion of the parabola and establishing
an algebraic formula

Figure 10.1.3 illustrates this definition. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the portion of the parabola on one side of
this line is the mirror-image of the portion on the opposite side.

The definition leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d1 between F and P :

d1 =
√
(x− 0)2 + (y − p)2.
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The distance d2 from P to the directrix is more straightforward:

d2 = y − (−p) = y + p.

These two distances are equal. Setting d1 = d2, we can solve for y in terms
of x:

d1 = d2√
x2 + (y − p)2 = y + p

Now square both sides.

x2 + (y − p)2 = (y + p)2

x2 + y2 − 2yp+ p2 = y2 + 2yp+ p2

x2 = 4yp

y =
1

4p
x2.

The geometric definition of the parabola has led us to the familiar quadratic
functionwhose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

Key Idea 10.1.4 General Equation of a Parabola.

1. Vertical Axis of Symmetry: The equation of the parabola with ver-
tex at (h, k) and directrix y = k − p in standard form is

y =
1

4p
(x− h)2 + k.

The focus is at (h, k + p).

2. Horizontal Axis of Symmetry: The equation of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
1

4p
(y − k)2 + h.

The focus is at (h+ p, k).

Note: p is not necessarily a positive number.

Example 10.1.5 Finding the equation of a parabola.

Give the equation of the parabola with focus at (1, 2) and directrix at
y = 3.
Solution. The vertex is located halfway between the focus and directrix,
so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 10.1.4 we have
the equation of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

−2 2 4

−6

−4

−2

2

x

y

Figure 10.1.6 The parabola described
in Example 10.1.5

The parabola is sketched in Figure 10.1.6.
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Example 10.1.7 Finding the focus and directrix of a parabola.

Find the focus and directrix of the parabola x = 1
8y

2 − y+1. The point
(7, 12) lies on the graph of this parabola; verify that it is equidistant from
the focus and directrix.
Solution. We need to put the equation of the parabola in its general
form. This requires us to complete the square:

x =
1

8
y2 − y + 1

=
1

8

(
y2 − 8y + 8

)
=

1

8

(
y2 − 8y + 16− 16 + 8

)
=

1

8

(
(y − 4)2 − 8

)
=

1

8
(y − 4)2 − 1.

Hence the vertex is located at (−1, 4). We have 1
8 = 1

4p , so p = 2.
We conclude that the focus is located at (1, 4) and the directrix is x =
−3. The parabola is graphed in Figure 10.1.8, along with its focus and
directrix.

−10 −5 5 10

−5

5

10

10

10

x

y

Figure 10.1.8 The parabola described
in Example 10.1.7. The distances
from a point on the parabola to the
focus and directrix are given.

The point (7, 12) lies on the graph and is 7− (−3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:√

(7− 1)2 + (12− 4)2 =
√
100 = 10.

Indeed, the point on the parabola is equidistant from the focus and di-
rectrix.

Reflective Property. One of the fascinating things about the nondegenerate
conic sections is their reflective properties. Parabolas have the following reflec-
tive property:

Any ray emanating from the focus that intersects the parabola re-
flects off along a line perpendicular to the directrix.

This is illustrated in Figure 10.1.9. The following theorem states this more rigor-
ously.

Figure 10.1.9 Illustrating the
parabola’s reflective property

Theorem 10.1.10 Reflective Property of the Parabola.

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F , and

2. The line perpendicular to the directrix through P .

Because of this reflective property, paraboloids (the 3D analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effectively approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.
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10.1.2 Ellipses

Definition 10.1.11 Ellipse.

An ellipse is the locus of all pointswhose sumof distances from twofixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil tight against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 10.1.12.

d1
d2

d1 + d2 = constant

Figure 10.1.12 Illustrating the con-
struction of an ellipse with pins, pen-
cil and string

We can again find an algebraic equation for an ellipse using this geometric
definition. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled asF1 = (−c, 0) andF2 = (c, 0). LetP = (x, y) be a point
on the ellipse. The sum of distances from F1 to P (d1) and from F2 to P (d2) is
a constant d. That is, d1 + d2 = d. Using the Distance Formula, we have√

(x+ c)2 + y2 +
√
(x− c)2 + y2 = d.

Using a fair amount of algebra can produce the following equation of an
ellipse (note that the equation is an implicitly defined function; it has to be, as
an ellipse fails the Vertical Line Test):

x2(
d
2

)2 +
y2(

d
2

)2 − c2
= 1.

This is not particularly illuminating, but by making the substitution a = d/2
and b =

√
a2 − c2, we can rewrite the above equation as

x2

a2
+

y2

b2
= 1.

This choice of a and b is not without reason; as shown in Figure 10.1.13, the
values of a and b have geometric meaning in the graph of the ellipse.

Major axis Minor axis

Vertices Foci

︸ ︷︷ ︸
a

︸ ︷︷ ︸
c

b



Figure 10.1.13 Labeling the signifi-
cant features of an ellipse

In general, the two foci of an ellipse lie on the major axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shifting of the ellipse gives the following standard equations.

Key Idea 10.1.14 Standard Equation of the Ellipse.

The equation of an ellipse centered at (h, k) with major axis of length
2a and minor axis of length 2b in standard form is:

1. Horizontal major axis:
(x− h)2

a2
+

(y − k)2

b2
= 1.

2. Vertical major axis:
(x− h)2

b2
+

(y − k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.
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Example 10.1.15 Finding the equation of an ellipse.

Find the general equation of the ellipse graphed in Figure 10.1.16.

−6 −4 −2 2 4 6

−4

−2

2

4

6

x

y

Figure 10.1.16 The ellipse used in Ex-
ample 10.1.15

Solution. The center is located at (−3, 1). The distance from the center
to a vertex is 5 units, hence a = 5. The minor axis seems to have length
4, so b = 2. Thus the equation of the ellipse is

(x+ 3)2

4
+

(y − 1)2

25
= 1.

Example 10.1.17 Graphing an ellipse.

Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.
Solution. It is simple to graph an ellipse once it is in standard form. In
order to put the given equation in standard form, wemust complete the
square with both the x and y terms. We first rewrite the equation by
regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4

4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y + 4− 4) = −4

4
(
(x− 1)2 − 1

)
+ 9
(
(y − 2)2 − 4

)
= −4

4(x− 1)2 − 4 + 9(y − 2)2 − 36 = −4

4(x− 1)2 + 9(y − 2)2 = 36

(x− 1)2

9
+

(y − 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2;
the major axis is horizontal, so the vertices are located at (−2, 2) and
(4, 2). We find c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along

themajor axis, approximately 2.24 units from the center, at (1±2.24, 2).
This is all graphed in Figure 10.1.18

−2 −1 1 2 3 4

−1

1

2

3

4

x

y

Figure 10.1.18 Graphing the ellipse in
Example 10.1.17

Eccentricity. When a = b, we have a circle. The general equation becomes

(x− h)2

a2
+

(y − k)2

a2
= 1 ⇒ (x− h)2 + (y − k)2 = a2,

the familiar equation of the circle centered at (h, k) with radius a. Since a = b,
c =

√
a2 − b2 = 0. The circle has “two” foci, but they lie on the same point, the

center of the circle.
Consider Figure 10.1.19, where several ellipses are graphed with a = 1. In

Figure 10.1.19(a), we have c = 0 and the ellipse is a circle. As c grows, the
resulting ellipses look less and less circular. A measure of this “noncircularness”
is eccentricity.
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e = 0
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(a)

−1 1

−1

1

e = 0.3
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(b)

−1 1

−1

1

e = 0.8
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(c)

−1 1
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e = 0.99
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(d)

Figure 10.1.19 Understanding the eccentricity of an ellipse

Definition 10.1.20 Eccentricity of an Ellipse.

The eccentricity e of an ellipse is e =
c

a
.

The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 10.1.19(d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are elliptical. Earth has an eccentricity of 0.0167— it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very
circular.

Reflective Property. The ellipse also possesses an interesting reflective prop-
erty. Any ray emanating from one focus of an ellipse reflects off the ellipse along
a line through the other focus, as illustrated in Figure 10.1.21. This property is
given formally in the following theorem.

F2F1

Figure 10.1.21 Illustrating the reflec-
tive property of an ellipse

Theorem 10.1.22 Reflective Property of an Ellipse.

Let P be a point on a ellipse with foci F1 and F2. The tangent line to the
ellipse at P makes equal angles with the following two lines:

1. The line through F1 and P , and
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2. The line through F2 and P .

This reflective property is useful in optics and is the basis of the phenomena
experienced in whispering halls.

10.1.3 Hyperbolas
The definition of a hyperbola is very similar to the definition of an ellipse; we
essentially just change the word “sum” to “difference.”

Definition 10.1.23 Hyperbola.

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

We do not have a convenient way of visualizing the construction of a hyper-
bola as we did for the ellipse. The geometric definition does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of the
line segment joining the foci is the center of the hyperbola. The transverse axis
intersects the hyperbola at two points, each a vertex of the hyperbola. The line
through the center and perpendicular to the transverse axis is the conjugate axis.
This is illustrated in Figure 10.1.24. It is easy to show that the constant difference
of distances used in the definition of the hyperbola is the distance between the
vertices, i.e., 2a.

Transverse
axis

ax
is

Co
nj
ug
at
e

FociVertices

a︷︸︸︷ c︷ ︸︸ ︷

Figure 10.1.24 Labeling the signifi-
cant features of a hyperbola

Key Idea 10.1.25 Standard Equation of a Hyperbola.

The equation of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y − k)2

b2
= 1.

2. Vertical Transverse Axis:
(y − k)2

a2
− (x− h)2

b2
= 1.

The vertices are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas. Consider the hyperbola x2

9 − y2

1 = 1. Solving for y, we
find y = ±

√
x2/9− 1. As x grows large, the “−1” part of the equation for y

becomes less significant and y ≈ ±
√
x2/9 = ±x/3. That is, as x gets large, the

graph of the hyperbola looks very much like the lines y = ±x/3. These lines are
asymptotes of the hyperbola, as shown in Figure 10.1.26.

−8 −6 −4 −2 2 4 6 8

−2

2

x

y

Figure 10.1.26 Graphing the hyper-
bola x2

9 − y2

1 = 1 along with its as-
ymptotes, y = ±x/3

This is a valuable tool in sketching. Given the equation of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 10.1.27 for an example with a horizontal transverse axis.) The diagonals
of the rectangle lie on the asymptotes.

h− a h+ ah

k − b

k

k + b

x

y

Figure 10.1.27 Using the asymptotes
of a hyperbola as a graphing aid

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is vertical, their slopes are±a/b. This
gives equations:
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Horizontal Transverse Axis Vertical Transverse Axis

y = ± b

a
(x− h) + k y = ±a

b
(x− h) + k.

Example 10.1.28 Graphing a hyperbola.

Sketch the hyperbola given by
(y − 2)2

25
− (x− 1)2

4
= 1.

Solution. The hyperbola is centered at (1, 2); a = 5 and b = 2. In Fig-
ure 10.1.29 we draw the prescribed rectangle centered at (1, 2) along
with the asymptotes defined by its diagonals. The hyperbola has a verti-
cal transverse axis, so the vertices are located at (1, 7) and (1,−3). This
is enough to make a good sketch.

−4 −2 2 4 6

−5

5

10

x

y

Figure 10.1.29 Graphing the hyper-
bola in Example 10.1.28

We also find the location of the foci: as c2 = a2 + b2, we have c =√
29 ≈ 5.4. Thus the foci are located at (1, 2 ± 5.4) as shown in the

figure.

Example 10.1.30 Graphing a hyperbola.

Sketch the hyperbola given by 9x2 − y2 + 2y = 10.
Solution. Wemust complete the square to put the equation in general
form. (We recognize this as a hyperbola since it is a general quadratic
equation and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10

9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y + 1− 1) = 10

9x2 −
(
(y − 1)2 − 1

)
= 10

9x2 − (y − 1)2 = 9

x2 − (y − 1)2

9
= 1

−4 −2 2 4

−10

−5

5

10

x

y

Figure 10.1.31 Graphing the hyper-
bola in Example 10.1.30

We see the hyperbola is centered at (0, 1), with a horizontal transverse
axis, where a = 1 and b = 3. The appropriate rectangle is sketched in
Figure 10.1.31 along with the asymptotes of the hyperbola. The vertices
are located at (±1, 1). We have c =

√
10 ≈ 3.2, so the foci are located

at (±3.2, 1) as shown in the figure.

Eccentricity.
Definition 10.1.32 Eccentricity of a Hyperbola.

The eccentricity of a hyperbola is e =
c

a
.
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Figure 10.1.33 Understanding the eccentricity of a hyperbola
Note that this is the definition of eccentricity as used for the ellipse. When

c is close in value to a (i.e., e ≈ 1), the hyperbola is very narrow (looking almost
like crossed lines). Figure 10.1.33 shows hyperbolas centered at the origin with
a = 1. The graph in Figure 10.1.33(a) has c = 1.05, giving an eccentricity of
e = 1.05, which is close to 1. As c grows larger, the hyperbola widens and
begins to look like parallel lines, as shown in Figure 10.1.33(d).

ReflectiveProperty. Hyperbolas share a similar reflectivepropertywith ellipses.
However, in the case of a hyperbola, a ray emanating from a focus that inter-
sects the hyperbola reflects along a line containing the other focus, but moving
away from that focus. This is illustrated in Figure 10.1.35 (on the next page).
Hyperbolic mirrors are commonly used in telescopes because of this reflective
property. It is stated formally in the following theorem.

Theorem 10.1.34 Reflective Property of Hyperbolas.

Let P be a point on a hyperbola with foci F1 and F2. The tangent line to
the hyperbola at P makes equal angles with the following two lines:

1. The line through F1 and P , and

2. The line through F2 and P .

LocationDetermination. Determining the location of a known event hasmany
practical uses (locating the epicenter of an earthquake, an airplane crash site,
the position of the person speaking in a large room, etc.).

To determine the location of an earthquake’s epicenter, seismologists use
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trilateration (not to be confused with triangulation). A seismograph allows one
to determine how far away the epicenter was; using three separate readings,
the location of the epicenter can be approximated.

A key to this method is knowing distances. What if this information is not
available? Consider threemicrophones at positionsA,B andC which all record
a noise (a person’s voice, an explosion, etc.) created at unknown location D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the location be determined in such a situation? F2F1

Figure 10.1.35 Illustrating the reflec-
tive property of a hyperbola

If each location has a clock set to the same time, hyperbolas can be used
to determine the location. Suppose the microphone at position A records the
sound at exactly 12:00, location B records the time exactly 1 second later, and
location C records the noise exactly 2 seconds after that. We are interested
in the difference of times. Since the speed of sound is approximately 340 m/
s, we can conclude quickly that the sound was created 340 meters closer to
positionA than positionB. IfA andB are a known distance apart (as shown in
Figure 10.1.36(a)), then we can determine a hyperbola on whichD must lie.

The “difference of distances” is 340; this is also the distance between vertices
of the hyperbola. So we know 2a = 340. Positions A and B lie on the foci, so
2c = 1000. From this we can find b ≈ 470 and can sketch the hyperbola, given
in Figure 10.1.36(b). We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by positions B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get to C. We still have
2c = 1000, centering this hyperbola at (−500, 500). We find b ≈ 367. This
hyperbola is sketched in Figure 10.1.36(c). The intersection point of the two
graphs is the location of the sound, at approximately (188,−222.5).
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Figure 10.1.36
This chapter explores curves in the plane, in particular curves that cannot

be described by functions of the form y = f(x). In this section, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
sections, we will learn completely new ways of describing curves in the plane,
using parametric equations and polar coordinates, then study these curves using
calculus techniques.
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10.1.4 Exercises

Terms and Concepts

1. What is the difference between degenerate and nondegenerate conics?
2. Use your own words to explain what the eccentricity of an ellipse measures.
3. What has the largest eccentricity: an ellipse or a hyperbola?

4. Explain why the following is true: “If the coefficient of the x2 term in the equation of an ellipse in standard form
is smaller than the coefficient of the y2 term, then the ellipse has a horizontal major axis.”

5. Explain how one can quickly look at the equation of a hyperbola in standard form and determine whether the
transverse axis is horizontal or vertical.

6. Fill in the blank: It can be said that ellipses and hyperbolas share the same reflective property: “A ray emanating
from one focus will reflect off the conic along a that contains the other focus.”

Problems

Exercise Group. In the following exercises, find the equation of the parabola defined by the given information. Sketch
the parabola.

7. Focus: (3, 2); directrix: y = 1 8. Focus: (−1,−4); directrix: y = 2

9. Focus: (1, 5); directrix: x = 3 10. Focus: (1/4, 0); directrix: x = −1/4

11. Focus: (1, 1); vertex: (1, 2) 12. Focus: (−3, 0); vertex: (0, 0)
13. Vertex: (0, 0); directrix: y = −1/16 14. Vertex: (2, 3); directrix: x = 4

Exercise Group. In the following exercises, the equation of a parabola and a point on its graph are given. Find the
focus and directrix of the parabola, and verify that the given point is equidistant from the focus and directrix.

15. y = 1
4x

2, P = (2, 1) 16. x = 1
8 (y − 2)2 + 3, P = (11, 10)

Exercise Group. In the following exercises, sketch the ellipse defined by the given equation. Label the center, foci
and vertices.

17.
(x− 1)2

3
+

(y − 2)2

5
= 1 18.

1

25
x2 +

1

9
(y + 3)2 = 1

Exercise Group. In the following exercises, find the equation of the ellipse shown in the graph. Give the location of
the foci and the eccentricity of the ellipse.

19.

−4 −2 2

2

4

x

y
20.

−1 −0.5 0.5 1 1.5 2

−2

2

x

y

Exercise Group. In the following exercises, find the equation of the ellipse defined by the given information. Sketch
the elllipse.
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21. Foci: (±2, 0); vertices: (±3, 0) 22. Foci: (−1, 3) and (5, 3); vertices: (−3, 3) and
(7, 3)

23. Foci: (2,±2); vertices: (2,±7) 24. Focus: (−1, 5); vertex: (−1,−4); center:
(−1, 1)

Exercise Group. In the following exercises, write the equation of the given ellipse in standard form.
25. x2 − 2x+ 2y2 − 8y = −7 26. 5x2 + 3y2 = 15

27. 3x2 + 2y2 − 12y + 6 = 0 28. x2 + y2 − 4x− 4y + 4 = 0

Exercise Group. In the following exercises, find the equation of the hyperbola shown in the graph.
29.

−1 1 2−2

−2

2

x

y
30.

−8 −6 −4 −2 2 4 6 8

−6

−4

−2

2

4

6

x

y

31.

−4 −2 2 4 6

2

4

6

x

y
32.

−4 −2 2 4 6

2

4

6

x

y

Exercise Group. In the following exercises, sketch the hyperbola defined by the given equation. Label the center and
foci.

33.
(x− 1)2

16
− (y + 2)2

9
= 1 34. (y − 4)2 − (x+ 1)2

25
= 1

Exercise Group. In the following exercises, find the equation of the hyperbola defined by the given information.
Sketch the hyperbola.

35. Foci: (±3, 0); vertices: (±2, 0) 36. Foci: (0,±3); vertices: (0,±2)

37. Foci: (−2, 3) and (8, 3); vertices: (−1, 3) and
(7, 3)

38. Foci: (3,−2) and (3, 8); vertices: (3, 0) and
(3, 6)

Exercise Group. In the following exercises, write the equation of the hyperbola in standard form.
39. 3x2 − 4y2 = 12 40. 3x2 − y2 + 2y = 10
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41. x2 − 10y2 + 40y = 30 42. (4y − x)(4y + x) = 4

43. Consider the ellipse given by
(x− 1)2

4
+

(y − 3)2

12
= 1.

(a) Verify that the foci are located at (1, 3± 2
√
2).

(b) The points P1 = (2, 6) and P2 = (1 +
√
2, 3 +

√
6) ≈ (2.414, 5.449) lie on the ellipse. Verify that the

sum of distances from each point to the foci is the same.
44. Johannes Kepler discovered that the planets of our solar system have elliptical orbits with the Sun at one focus.

The Earth’s elliptical orbit is used as a standard unit of distance; the distance from the center of Earth’s elliptical
orbit to one vertex is 1 Astronomical Unit, or A.U.

The following table gives information about the orbits of three planets.

Planet Distance from
center to vertex

Orbit
eccentricity

Mercury 0.387 A.U. 0.2056

Earth 1 A.U. 0.0167

Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing c2 = a2−b2 and e = c/a allows us to find b in terms of a and e. Show b = a
√
1− e2.

(b) For each planet, find equations of their elliptical orbit of the form
x2

a2
+

y2

b2
= 1. (This places the center

at (0, 0), but the Sun is in a different location for each planet.)

(c) Shift the equations so that the Sun lies at the origin. Plot the three elliptical orbits.
45. A loud sound is recorded at three stations that lie on a line as shown in the figure below. Station A recorded

the sound 1 second after Station B, and Station C recorded the sound 3 seconds after B. Using the speed of
sound as 340m/s, determine the location of the sound’s origination.

A

1000m
B

2000m
C
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10.2 Parametric Equations

We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Choose x Use a function f to find y
(
y = f(x)

)
Plot point (x, y)

Figure 10.2.1 Plotting a graph y = f(x)

The rectangular equation y = f(x)workswell for some shapes like a parabola
with a vertical axis of symmetry, but in the previous section we encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “bottom” separately.)

In this section we introduce a new sketching procedure:

Choose t

Use a function f to find x
(
x = f(t)

)

Use a function g to find y
(
y = g(t)

)Plot point (x, y)

Figure 10.2.2 Plotting a curve
(x(t), y(t))

Here, x and y are found separately but then plotted together: for each value
of the input t, we plot the output - the point (x(t), y(t)).

10.2.1 Plotting parametric curves
The procedure outlined in Figure 10.2.2 leads us to a definition.

Definition 10.2.3 Parametric Equations and Curves.

Let f and g be continuous functions on an interval I . The set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I , is the

graph of the parametric equations x = f(t) and y = g(t), where t is
the parameter. A curve is a graph along with the parametric equations
that define it.

This is a formal definition of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is often referred to as a plane curve. Examples
will help us understand the concepts introduced in the definition.

Example 10.2.4 Plotting parametric functions.

Plot the graph of the parametric equations x = t2, y = t + 1 for t in
[−2, 2].
Solution. Weplot the graphs of parametric equations inmuch the same
manner as we plotted graphs of functions like y = f(x): we make a ta-
ble of values, plot points, then connect these points with a “reasonable”
looking curve. Figure 10.2.5(a) shows such a table of values; note how
we have 3 columns.
The points (x, y) from the table are plotted in Figure 10.2.5(b). The
points have been connected with a smooth curve. Each point has been
labeled with its corresponding t-value. These values, along with the two
arrows along the curve, are used to indicate the orientation of the graph.
This information helps us determine the direction in which the graph is
“moving.”
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t x y

−2 4 −1

−1 1 0

0 0 1

1 1 2

2 4 3

(a)

t = −2

t = −1

t = 0

t = 1

t = 2

1 2 3 4 5

−2

2

4

x

y

(b)

Figure 10.2.5 A table of values of the parametric equations in Exam-
ple 10.2.4 along with a sketch of their graph

We often use the letter t as the parameter as we often regard t as represent-
ing time. Certainly there are many contexts in which the parameter is not time,
but it can be helpful to think in terms of time as one makes sense of parametric
plots and their orientation (for instance, “At time t = 0 the position is (1, 2) and
at time t = 3 the position is (5, 1).”).

Example 10.2.6 Plotting parametric functions.

Sketch the graph of the parametric equationsx = cos2(t), y = cos(t)+1
for t in [0, π].
Solution. We again start by making a table of values in Figure 10.2.7(a),
then plot the points (x, y) on the Cartesian plane in Figure 10.2.7(b).

t x y

0 1 2

π/4 1/2 1 +
√
2/2

π/2 0 1

3π/4 1/2 1−
√
2/2

π 1 0

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2 t = 0

t = π/4

t = π/2

t = 3π/4

t = π x

y

(b)

Figure 10.2.7 A table of values of the parametric equations in Exam-
ple 10.2.6 along with a sketch of their graph
It is not difficult to show that the curves in Examples 10.2.4 and 10.2.6
are portions of the same parabola. While the parabola is the same, the
curves are different. In Example 10.2.4, if we let t vary over all real num-
bers, we’d obtain the entire parabola. In this example, letting t vary over
all real numbers would still produce the same graph; this portion of the
parabola would be traced, and re-traced, infinitely many times. The ori-
entation shown in Figure 10.2.7 shows the orientation on [0, π], but this
orientation is reversed on [π, 2π].
These examples begin to illustrate the powerful nature of parametric
equations. Their graphs are far more diverse than the graphs of func-
tions produced by “y = f(x)” functions.

Technology Note: Most graphing utilities can graph functions given in para-
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metric form. Often the word “parametric” is abbreviated as “PAR” or “PARAM”
in the options. The user usually needs to determine the graphing window (i.e,
the minimum andmaximum x- and y-values), along with the values of t that are
to be plotted. The user is often prompted to give a t minimum, a t maximum,
and a “t-step” or “∆t.” Graphing utilities effectively plot parametric functions
just as we’ve shown here: they plots lots of points. A smaller t-step plots more
points, making for a smoother graph (but may take longer). In Figure 10.2.5, the
t-step is 1; in Figure 10.2.7, the t-step is π/4.

One nice feature of parametric equations is that their graphs are easy to shift.
While this is not too difficult in the “y = f(x)” context, the resulting function
can look rather messy. (Plus, to shift to the right by two, we replace xwith x−2,
which is counter-intuitive.) The following example demonstrates this.

Example 10.2.8 Shifting the graph of parametric functions.

Sketch the graph of the parametric equations x = t2 + t, y = t2 − t.
Find new parametric equations that shift this graph to the right 3 places
and down 2.
Solution. The graph of the parametric equations is given in Fig-
ure 10.2.9(a). It is a parabola with a axis of symmetry along the line
y = x; the vertex is at (0, 0).
In order to shift the graph to the right 3 units, we need to increase the
x-value by 3 for every point. The straightforward way to accomplish this
is simply to add 3 to the function defining x: x = t2 + t + 3. To shift
the graph down by 2 units, we wish to decrease each y-value by 2, so
we subtract 2 from the function defining y: y = t2 − t − 2. Thus our
parametric equations for the shifted graph are x = t2 + t + 3, y =
t2 − t− 2. This is graphed in Figure 10.2.9(a). Notice how the vertex is
now at (3,−2).
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−2
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y

(a)

x = t2 + t+ 3
y = t2 − t− 2

2 4 6 8 10

−2

2

4

6

x

y

(b)

Figure 10.2.9 Illustrating how to shift graphs in Example 10.2.8

Because the x- and y-values of a graph are determined independently, the
graphs of parametric functions often possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example 10.2.10 Graphs that cross themselves.

Plot the parametric functions x = t3−5t2+3t+11 and y = t2−2t+3
and determine the t-values where the graph crosses itself.
Solution. Using the methods developed in this section, we again plot
points and graph the parametric equations as shown in Figure 10.2.11.
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It appears that the graph crosses itself at the point (2, 6), but we’ll need
to analytically determine this.

−5 5 10 15

5

10

15 x = t3 − 5t2 + 3t+ 11
y = t2 − 2t+ 3

x

y

Figure 10.2.11 A graph of the
parametric equations from Exam-
ple 10.2.10

We are looking for two different values, say, s and t, where x(s) = x(t)
and y(s) = y(t). That is, the x-values are the same precisely when
the y-values are the same. This gives us a system of 2 equations with 2
unknowns:

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11

s2 − 2s+ 3 = t2 − 2t+ 3

Solving this system is not trivial but involves only algebra. Using the qua-
dratic formula, one can solve for t in the second equation and find that
t = 1 ±

√
s2 − 2s+ 1. This can be substituted into the first equation,

revealing that the graph crosses itself at t = −1 and t = 3. We confirm
our result by computing x(−1) = x(3) = 2 and y(−1) = y(3) = 6.

10.2.2 Convertingbetween rectangular andparametric equations
It is sometimes useful to rewrite equations in rectangular form (i.e., y = f(x))
into parametric form, and vice-versa. Converting from rectangular to parametric
can be very simple: given y = f(x), the parametric equations x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equa-
tions x = t, y = t2 produce the familiar parabola. However, other parametriza-
tions can be used. The following example demonstrates one possible alterna-
tive.

Example 10.2.12 Converting from rectangular to parametric.

Consider y = x2. Find parametric equations x = f(t), y = g(t) for the
parabola where t = dy

dx . That is, t = a corresponds to the point on the
graph whose tangent line has slope a.
Solution. We start by computing dy

dx : y
′ = 2x. Thus we set t = 2x.

We can solve for x and find x = t/2. Knowing that y = x2, we have
y = t2/4. Thus parametric equations for the parabola y = x2 are

x = t/2y = t2/4.

To find the pointwhere the tangent line has a slope of−2, we set t = −2.
This gives the point (−1, 1). We can verify that the slope of the line
tangent to the curve at this point indeed has a slope of−2.

We sometimes choose the parameter to accurately model physical behavior.

Example 10.2.13 Converting from rectangular to parametric.

An object is fired from a height of 0 feet and lands 6 seconds later, 192
feet away. Assuming ideal projectile motion, the height, in feet, of the
object can be described byh(x) = −x2/64+3x, wherex is the distance
in feet from the initial location. (Thus h(0) = h(192) = 0 feet.) Find
parametric equations x = f(t), y = g(t) for the path of the projectile
where x is the horizontal distance the object has traveled at time t (in
seconds) and y is the height at time t.
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Solution. Physics tells us that the horizontal motion of the projectile is
linear; that is, the horizontal speedof the projectile is constant. Since the
object travels 192 ft in 6 s, we deduce that the object is moving horizon-
tally at a rate of 32 ft

s , giving the equation x = 32t. As y = −x2/64+3x,
we find y = −16t2 + 96t. We can quickly verify that y′′ = −32 ft

ft2 , the
acceleration due to gravity, and that the projectile reaches its maximum
at t = 3, halfway along its path.
These parametric equations make certain determinations about the ob-
ject’s location easy: 2 seconds into the flight the object is at the point(
x(2), y(2)

)
=
(
64, 128

)
. That is, it has traveled horizontally 64 ft and

is at a height of 128 ft, as shown in Figure 10.2.14.

50 100 150 200

50

100

150

t = 2

x = 32t
y = −16t2 + 96t

x

y

Figure 10.2.14 Graphing projectile
motion in Example 10.2.13

It is sometimes necessary to convert given parametric equations into rec-
tangular form. This can be decidedly more difficult, as some “simple” looking
parametric equations can have very “complicated” rectangular equations. This
conversion is often referred to as “eliminating the parameter,” as we are looking
for a relationship between x and y that does not involve the parameter t.

Example 10.2.15 Eliminating the parameter.

Find a rectangular equation for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

Solution. There is not a set way to eliminate a parameter. One method
is to solve for t in one equation and then substitute that value in the sec-
ond. We use that technique here, then show a second, simpler method.
Starting with x = 1/(t2 + 1), solve for t: t = ±

√
1/x− 1. Substitute

this value for t in the equation for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1 + 1

=
1/x− 1

1/x

=

(
1

x
− 1

)
· x

= 1− x.

−2 −1 1 2

−1

1

2

x =
1

t2 + 1

y =
t2

t2 + 1

y = 1− x

x

y

Figure 10.2.16 Graphing parametric
and rectangular equations for a graph
in Example 10.2.15

Thus y = 1 − x. One may have recognized this earlier by manipulating
the equation for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

This is a shortcut that is very specific to this problem; sometimes short-
cuts exist and are worth looking for.
We should be careful to limit the domain of the function y = 1 − x.
The parametric equations limit x to values in (0, 1], thus to produce the
same graph we should limit the domain of y = 1− x to the same.
The graphs of these functions is given in Figure 10.2.16. The portion of
the graph defined by the parametric equations is given in a thick line;
the graph defined by y = 1 − x with unrestricted domain is given in a
thin line.
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Example 10.2.17 Eliminating the parameter.

Eliminate the parameter in x = 4 cos(t) + 3, y = 2 sin(t) + 1

Solution. Weshould not try to solve for t in this situation as the resulting
algebra/trig would be messy. Rather, we solve for cos(t) and sin(t) in
each equation, respectively. This gives

cos(t) =
x− 3

4
and sin(t) =

y − 1

2
.

The Pythagorean Theorem gives cos2(t) + sin2(t) = 1, so:

cos2(t) + sin2(t) = 1(
x− 3

4

)2

+

(
y − 1

2

)2

= 1

(x− 3)2

16
+

(y − 1)2

4
= 1

2 4 6 8

−2

2

4

x

y

Figure 10.2.18 Graphing the paramet-
ric equations x = 4 cos(t) + 3, y =
2 sin(t) + 1 in Example 10.2.17

This final equation should look familiar — it is the equation of an ellipse!
Figure 10.2.18 plots the parametric equations, demonstrating that the
graph is indeed of an ellipse with a horizontal major axis and center at
(3, 1).

The Pythagorean Theorem can also be used to identify parametric equations
for hyperbolas. We give the parametric equations for ellipses and hyperbolas in
the following Key Idea.

Key Idea 10.2.19 Parametric Equations of Ellipses and Hyperbolas.

• The parametric equations

x = a cos(t) + h, y = b sin(t) + k

define an ellipse with horizontal axis of length 2a and vertical axis
of length 2b, centered at (h, k).

• The parametric equations

x = a tan(t) + h, y = ±b sec(t) + k

define a hyperbola with vertical transverse axis centered at (h, k),
and

x = ±a sec(t) + h, y = b tan(t) + k

defines a hyperbola with horizontal transverse axis. Each has as-
ymptotes at y = ±b/a(x− h) + k.

10.2.3 Special Curves
Figure 10.2.20 gives a small gallery of “interesting” and “famous” curves along
with parametric equations that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
functions are not differentiable at these points. This leads us to a definition.
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(a) Astroid where x = cos3(t) and
y = sin3(t)
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(b) Rose Curve where x =
cos(t) sin(4t) and y = sin(t) sin(4t)
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(c) Hypotrochoid where
x = 2 cos(t) + 5 cos(2t/3) and
y = 2 sin(t)− 5 sin(2t/3)
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(d) Epicycloid where x = 4 cos(t) −
cos(4t) and y = 4 sin(t)− sin(4t)

Figure 10.2.20 A gallery of interesting planar curves

Definition 10.2.21 Smooth.

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if
f ′ and g′ are continuous on I and not simultaneously 0 (except possibly
at the endpoints of I). A curve is piecewise smooth on I if I can be
partitioned into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cos3(t), y = sin3(t). Taking derivatives,
we have:

x′ = −3 cos2(t) sin(t) and y′ = 3 sin2(t) cos(t).
It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not

smooth at these points, corresponding to the cusps seen in the figure.
We demonstrate this once more.

Example 10.2.22 Determine where a curve is not smooth.

Let a curveC be defined by the parametric equations x = t3− 12t+17
and y = t2−4t+8. Determine the points, if any, where it is not smooth.
Solution. We begin by taking derivatives.

x′ = 3t2 − 12, y′ = 2t− 4.

We set each equal to 0:

x′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2
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y′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We see at t = 2 both x′ and y′ are 0; thus C is not smooth at t = 2,
corresponding to the point (1, 4). The curve is graphed in Figure 10.2.23,
illustrating the cusp at (1, 4).
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Figure 10.2.23 Graphing the curve
in Example 10.2.22; note it is not
smooth at (1, 4)

If a curve is not smooth at t = t0, it means that x′(t0) = y′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equations describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direction, whereas moving objects tend to change
direction in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6

produce the familiar y = x2 parabola. However, in this parametrization, the
curve is not smooth. A particle traveling along the parabola according to the
given parametric equations comes to rest at t = 0, though no sharp point is
created.

Our previous experience with cusps taught us that a function was not differ-
entiable at a cusp. This can lead us to wonder about derivatives in the context
of parametric equations and the application of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec-
tion.
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10.2.4 Exercises

Terms and Concepts

1. True or False? When sketching the graph of parametric equations, the x- and y-values are found separately,
then plotted together. (□ True □ False)

2. The direction in which a graph is “moving” is called the of the graph.

3. An equation written as y = f(x) is written in form.

4. Create parametric equations x = f(t), y = g(t) and sketch their graph. Explain any interesting features of your
graph based on the functions f and g.

Problems

Exercise Group. In the following exercises, sketch the graph of the given parametric equations by hand, making a
table of points to plot. Be sure to indicate the orientation of the graph.

5. x = t2 + t,y = 1− t2,−3 ≤ t ≤ 3 6. x = 1,y = 5 sin(t),−π/2 ≤ t ≤ π/2

7. x = t2,y = 2,−2 ≤ t ≤ 2 8. x = t3 − t+ 3,y = t2 + 1,−2 ≤ t ≤ 2

Exercise Group. In the following exercises, sketch the graph of the given parametric equations; using a graphing
utility is advisable. Be sure to indicate the orientation of the graph.

9. x = t3 − 2t2,y = t2,−2 ≤ t ≤ 3 10. x = 1/t,y = sin(t),0 < t ≤ 10

11. x = 3 cos(t),y = 5 sin(t),0 ≤ t ≤ 2π 12. x = 3 cos(t) + 2,y = 5 sin(t) + 3,0 ≤ t ≤ 2π

13. x = cos(t),y = cos(2t),0 ≤ t ≤ π 14. x = cos(t),y = sin(2t),0 ≤ t ≤ 2π

15. x = 2 sec(t),y = 3 tan(t),−π/2 < t < π/2 16. x = cosh(t),y = sinh(t),−2 ≤ t ≤ 2

17. x = cos(t) + 1
4 cos(8t),y =

sin(t) + 1
4 sin(8t),0 ≤ t ≤ 2π

18. x = cos(t) + 1
4 sin(8t),y =

sin(t) + 1
4 cos(8t),0 ≤ t ≤ 2π

Exercise Group. In the following exercises, four sets of parametric equations are given. Describe how their graphs
are similar and different. Be sure to discuss orientation and ranges.

19.

(a) x = t y = t2,−∞ < t < ∞

(b) x = sin(t) y = sin2(t),−∞ < t < ∞

(c) x = et y = e2t,−∞ < t < ∞

(d) x = −t y = t2,−∞ < t < ∞

20.

(a) x = cos(t) y = sin(t), 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos(t)) y = sin(cos(t)),
0 ≤ t ≤ 2π

Exercise Group. Eliminate the parameter in the given parametric equations.
21. x = 2t+ 5, y = −3t+ 1 22. x = sec(t), y = tan(t)
23. x = 4 sin(t) + 1, y = 3 cos(t)− 2 24. x = t2, y = t3

25. x = 1
t+1 , y = 3t+5

t+1 26. x = et, y = e3t − 3

27. x = ln(t), y = t2 − 1 28. x = cot(t), y = csc(t)

29. x = cosh(t), y = sinh(t) 30. x = cos(2t), y = sin(t)

Exercise Group. In the following exercises, eliminate the parameter in the given parametric equations. Describe the
curve defined by the parametric equations based on its rectangular form.

31. x = at+ x0, y = bt+ y0 32. x = r cos(t), y = r sin(t)
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33. x = a cos(t) + h, y = b sin(t) + k 34. x = a sec(t) + h, y = b tan(t) + k

Exercise Group. In the following exercises, find parametric equations for the given rectangular equation using the

parameter t =
dy

dx
. Verify that at t = 1, the point on the graph has a tangent line with slope of 1.

35. y = 3x2 − 11x+ 2 36. y = ex

37. y = sin(x) 38. y =
√
x on [0,∞)

Exercise Group. In the following exercises, find the values of t where the graph of the parametric equations crosses
itself.

39. x = t3 − t+ 3, y = t2 − 3 40. x = t3 − 4t2 + t+ 7,y = t2 − t

41. x = cos(t),y = sin(2t) on [0, 2π] 42. x = cos(t) cos(3t),y = sin(t) cos(3t) on [0, π]

Exercise Group. In the following exercises, find the value(s) of twhere the curve defined by the parametric equations
is not smooth.

43. x = t3 + t2 − t,y = t2 + 2t+ 3 44. x = t2 − 4t, y = t3 − 2t2 − 4t

45. x = cos(t),y = 2 cos(t) 46. x = 2 cos(t)− cos(2t), y = 2 sin(t)− sin(2t)

Exercise Group. Find parametric equations that describe the given situation.
47. A projectile is fired from a height of 0 ft, landing

16 ft away in 4 s.
48. A projectile is fired from a height of 0 ft, landing

200 ft away in 4 s.
49. A projectile is fired from a height of 0 ft, landing

200 ft away in 20 s.
50. Find parametric equations that describe a circle

of radius 2, centered at the origin, that is traced
clockwise once at constant speed on [0, 2π].

51. Find parametric equations that describe a circle
of radius 3, centered at (1, 1), that is traced
once counter-clockwise at constant speed on
[0, 1].

52. Find parametric equations that describe an
ellipse centered at (1, 3), with vertical major
axis of length 6 and minor axis of length 2.

53. An ellipse with foci at (±1, 0) and vertices at
(±5, 0).

54. A hyperbola with foci at (5,−3) and (−1,−3),
and with vertices at (1,−3) and (3,−3).

55. A hyperbola with vertices at (0,±6) and
asymptotes y = ±3x.
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10.3 Calculus and Parametric Equations

The previous section defined curves based on parametric equations. In this sec-
tion we’ll employ the techniques of calculus to study these curves.

We are still interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximations, and they indicate instantaneous direction of travel.

The slope of the tangent line is still dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equations. If x = f(t) and y = g(t), the
Chain Rule states that

dy

dt
=

dy

dx
· dx
dt
.

Solving for dy
dx , we get

dy

dx
=

dy

dt

/
dx

dt
=

g′(t)

f ′(t)
,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

Key Idea 10.3.1 Finding dy
dx with Parametric Equations.

Let x = f(t) and y = g(t), where f and g are differentiable on some
open interval I and f ′(t) ̸= 0 on I . Then

dy

dx
=

g′(t)

f ′(t)
.

We use this to define the tangent line.

Definition 10.3.2 Tangent and Normal Lines.

Let a curve C be parametrized by x = f(t) and y = g(t), where f and
g are differentiable functions on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through

(
f(t0), g(t0)

)
with slope

m = g′(t0)/f
′(t0), provided f ′(t0) ̸= 0.

The normal line to C at t = t0 is the line through
(
f(t0), g(t0)

)
with

slopem = −f ′(t0)/g
′(t0), provided g′(t0) ̸= 0.

The definition leaves two special cases to consider. When the tangent line
is horizontal, the normal line is undefined by the above definition as g′(t0) = 0.
Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definition.

1. If the tangent line at t = t0 has a slope of 0, the normal line toC at t = t0
is the line x = f(t0).

2. If the normal line at t = t0 has a slope of 0, the tangent line toC at t = t0
is the line x = f(t0).

Example 10.3.3 Tangent and Normal Lines to Curves.

Let x = 5t2−6t+4 and y = t2+6t−1, and letC be the curve defined
by these equations.

1. Find the equations of the tangent and normal lines to C at t = 3.
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2. Find where C has vertical and horizontal tangent lines.

Solution.

1. We start by computing f ′(t) = 10t− 6 and g′(t) = 2t+ 6. Thus

dy

dx
=

2t+ 6

10t− 6
.

Make note of something thatmight seemunusual: dy
dx is a function

of t, not x. Just as points on the curve are found in terms of t, so
are the slopes of the tangent lines. The point on C at t = 3 is
(31, 26). The slope of the tangent line ism = 1/2 and the slope
of the normal line ism = −2. Thus,

• the equation of the tangent line is y =
1

2
(x− 31) + 26, and

• the equation of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 10.3.4.
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40
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Figure 10.3.4 Graphing tangent and
normal lines in Example 10.3.3

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and

solve for t. In this case, this amounts to setting g′(t) = 0 and
solving for t (and making sure that f ′(t) ̸= 0).

g′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point onC corresponding to t = −3 is (67,−10); the tangent
line at that point is horizontal (hence with equation y = −10).
To find where C has a vertical tangent line, we find where it has
a horizontal normal line, and set − f ′(t)

g′(t) = 0. This amounts to
setting f ′(t) = 0 and solving for t (and making sure that g′(t) ̸=
0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tan-
gent line at that point is x = 2.2. The points where the tangent
lines are vertical and horizontal are indicated on the graph in Fig-
ure 10.3.4.

Example 10.3.5 Tangent and Normal Lines to a Circle.

1. Find where the unit circle, defined by x = cos(t) and y = sin(t)
on [0, 2π], has vertical and horizontal tangent lines.

2. Find the equation of the normal line at t = t0.

Solution.

1. We compute the derivative following Key Idea 10.3.1:

dy

dx
=

g′(t)

f ′(t)
= −cos(t)

sin(t)
.

The derivative is 0 when cos(t) = 0; that is, when t = π/2, 3π/2.
These are the points (0, 1) and (0,−1) on the circle. The normal
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line is horizontal (and hence, the tangent line is vertical) when
sin(t) = 0; that is, when t = 0, π, 2π, corresponding to the
points (−1, 0) and (0, 1) on the circle. These results should make
intuitive sense.

2. The slope of the normal line at t = t0 ism =
sin(t0)
cos(t0)

= tan(t0).

This normal line goes through the point (cos(t0), sin(t0)), giving
the line

y =
sin(t0)
cos(t0)

(x− cos(t0)) + sin(t0)

= (tan(t0))x,

as long as cos(t0) ̸= 0. It is an important fact to recognize that
the normal lines to a circle pass through its center, as illustrated in
Figure 10.3.6. Stated in another way, any line that passes through
the center of a circle intersects the circle at right angles.

−1 −0.5 0.5 1

−1

1

x

y

Figure 10.3.6 Illustrating how a cir-
cle’s normal lines pass through its cen-
ter

Example 10.3.7 Tangent lines when dy
dx is not defined.

Find the equation of the tangent line to the astroid x = cos3(t), y =
sin3(t) at t = 0, shown in Figure 10.3.8.

−1 1

−1

1

x

y

Figure 10.3.8 A graph of an astroid

Solution. We start by finding x′(t) and y′(t):

x′(t) = −3 sin(t) cos2(t), y′(t) = 3 cos(t) sin2(t).

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0
forming a cusp on the graph. Evaluating dy

dx at this point returns the
indeterminate form of “0/0”.
We can, however, examine the slopes of tangent lines near t = 0, and
take the limit as t → 0.

lim
t→0

y′(t)

x′(t)
= lim

t→0

3 cos(t) sin2(t)
−3 sin(t) cos2(t)

(We can cancel as t ̸= 0.)

= lim
t→0

− sin(t)
cos(t)

= 0.

We have accomplished something significant. When the derivative dy
dx

returns an indeterminate form at t = t0, we can define its value by set-
ting it to be lim

t→t0

dy
dx , if that limit exists. This allows us to find slopes of

tangent lines at cusps, which can be very beneficial.
We found the slope of the tangent line at t = 0 to be 0; therefore the
tangent line is y = 0, the x-axis.

10.3.1 Concavity
We continue to analyze curves in the plane by considering their concavity; that
is, we are interested in d2y

dx2 , “the second derivative of y with respect to x.” To
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find this, we need to find the derivative of dy
dx with respect to x; that is,

d2y

dx2
=

d

dx

[
dy

dx

]
,

but recall that dy
dx is a function of t, not x, making this computation not straight-

forward.
To make the upcoming notation a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh

dt
=

dh

dx
· dx
dt

⇒ dh

dx
=

dh

dt

/
dx

dt
.

In words, to find d2y
dx2 , we first take the derivative of dy

dx with respect to t, then
divide by x′(t). We restate this as a Key Idea.

Key Idea 10.3.9 Finding d2y
dx2 with Parametric Equations.

Let x = f(t) and y = g(t) be twice differentiable functions on an open
interval I , where f ′(t) ̸= 0 on I . Then

d2y

dx2
=

d

dt

[
dy

dx

]/
dx

dt
=

d

dt

[
dy

dx

]/
f ′(t).

Examples will help us understand this Key Idea.

Example 10.3.10 Concavity of Plane Curves.

Let x = 5t2−6t+4 and y = t2+6t−1 as in Example 10.3.3. Determine
the t-intervals on which the graph is concave up/down.
Solution. Concavity is determined by the second derivative of y with
respect to x, d2y

dx2 , so we compute that here following Key Idea 10.3.9.

In Example 10.3.3, we found
dy

dx
=

2t+ 6

10t− 6
and f ′(t) = 10t− 6. So:

d2y

dx2
=

d

dt

[
2t+ 6

10t− 6

]/
(10t− 6)

= − 72

(10t− 6)2

/
(10t− 6)

= − 72

(10t− 6)3

= − 9

(5t− 3)3
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Figure 10.3.11 Graphing the paramet-
ric equations in Example 10.3.10 to
demonstrate concavity

The graph of the parametric functions is concave up when d2y
dx2 > 0 and

concave down when d2y
dx2 < 0. We determine the intervals when the

second derivative is greater/less than 0 by first finding when it is 0 or
undefined.
As the numerator of − 9

(5t− 3)3
is never 0, d2y

dx2 ̸= 0 for all t. It is un-

defined when 5t − 3 = 0; that is, when t = 3/5. Following the work
established in Section 3.4, we look at values of t greater/less than 3/5
on a number line:
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d2y
dx2 > 0

concave up
d2y
dx2 < 0

concave down

3/5

Reviewing Example 10.3.3, we see that when t = 3/5 = 0.6, the graph
of the parametric equations has a vertical tangent line. This point is also
a point of inflection for the graph, illustrated in Figure 10.3.11.

Example 10.3.12 Concavity of Plane Curves.

Find the points of inflection of the graph of the parametric equations
x =

√
t, y = sin(t), for 0 ≤ t ≤ 16.

Solution. We need to compute dy
dx and

d2y
dx2 .

dy

dx
=

y′(t)

x′(t)
=

cos(t)
1/(2

√
t)

= 2
√
t cos(t).

d2y

dx2
=

d
dt

[
dy
dx

]
x′(t)

=
cos(t)/

√
t− 2

√
t sin(t)

1/(2
√
t)

= 2 cos(t)− 4t sin(t).

The points of inflection are found by setting d2y
dx2 = 0. This is not trivial,

as equations thatmix polynomials and trigonometric functions generally
do not have “nice” solutions.
In Figure 10.3.13(a) we see a plot of the second derivative. It shows that
it has zeros at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These
approximations are not very good, made only by looking at the graph.
Newton’s Method provides more accurate approximations. Accurate to
2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been plotted on the graph of the para-
metric equations in Figure 10.3.13(b). Note how most occur near the
x-axis, but not exactly on the axis.
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Figure 10.3.13 In (a), a graph of d2y
dx2 , showing where it is approximately

0. In (b), graph of the parametric equations in Example 10.3.12 along
with the points of inflection
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10.3.2 Arc Length
We continue our study of the features of the graphs of parametric equations by
computing their arc length.

Recall in Section 7.4 we found the arc length of the graph of a function, from
x = a to x = b, to be

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

We can use this equation and convert it to the parametric equation context.
Letting x = f(t) and y = g(t), we know that dy

dx = g′(t)/f ′(t). It will also be
useful to calculate the differential of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

Starting with the arc length formula above, consider:

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx

=

∫ b

a

√
1 +

g′(t)2

f ′(t)2
dx.

Factor out the f ′(t)2:

=

∫ b

a

√
f ′(t)2 + g′(t)2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

=

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are
found by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is
important, so we restate it as a theorem.

Theorem 10.3.14 Arc Length of Parametric Curves.

Let x = f(t) and y = g(t) be parametric equations with f ′ and g′

continuous on [t1, t2], on which the graph traces itself only once. The
arc length of the graph, from t = t1 to t = t2, is

L =

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note: Theorem 10.3.14 makes
use of differentiability on closed
intervals, just aswas done in Sec-
tion 7.4.

As before, these integrals are often not easy to compute. We start with a
simple example, then give another where we approximate the solution.

Example 10.3.15 Arc Length of a Circle.

Find the arc length of the circle parametrized by x = 3 cos(t), y =
3 sin(t) on [0, 3π/2].
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Solution. By direct application of Theorem 10.3.14, we have

L =

∫ 3π/2

0

√
(−3 sin(t))2 + (3 cos(t))2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0

3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This shouldmake sense; we know fromgeometry that the circumference
of a circle with radius 3 is 6π; since we are finding the arc length of 3/4
of a circle, the arc length is 3/4 · 6π = 9π/2.

Example 10.3.16 Arc Length of a Parametric Curve.

The graphof the parametric equationsx = t(t2−1), y = t2−1 crosses it-
self as shown in Figure 10.3.17, forming a “teardrop.” Find the arc length
of the teardrop.

1−1

−1

1

x

y

Figure 10.3.17 A graph of the para-
metric equations in Example 10.3.16,
where the arc length of the teardrop
is calculated

Solution. We can see by the parametrizations of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to
t = 1. Applying Theorem 10.3.14, we have

L =

∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an antiderivative expressible
by elementary functions. We turn to numerical integration to approxi-
mate its value. Using 4 subintervals, Simpson’s Rule approximates the
value of the integral as 2.65051. Using a computer, more subintervals
are easy to employ, and n = 20 gives a value of 2.71559. Increasing n
shows that this value is stable and a good approximation of the actual
value.

10.3.3 Surface Area of a Solid of Revolution
Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Theorem 7.4.11 from Section 7.4 in a
similar way as done to produce the formula for arc length done before.

Theorem 10.3.18 Surface Area of a Solid of Revolution.

Consider the graph of the parametric equations x = f(t) and y = g(t),
where f ′ and g′ are continuous on an open interval I containing t1 and
t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
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the x-axis is (where g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π

∫ t2

t1

g(t)
√

f ′(t)2 + g′(t)2 dt.

2. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π

∫ t2

t1

f(t)
√

f ′(t)2 + g′(t)2 dt.

Example 10.3.19 Surface Area of a Solid of Revolution.

Consider the teardrop shape formed by the parametric equations x =
t(t2 − 1), y = t2 − 1 as seen in Example 10.3.16. Find the surface area
if this shape is rotated about the x-axis, as shown in Figure 10.3.20.

Figure 10.3.20 Rotating a teardrop
shape about the x-axis in Exam-
ple 10.3.19

Solution. The teardrop shape is formed between t = −1 and t = 1.
Using Theorem 10.3.18, we seewe need for g(t) ≥ 0 on [−1, 1], and this
is not the case. To fix this, we simplify replace g(t) with −g(t), which
flips the whole graph about the x-axis (and does not change the surface
area of the resulting solid). The surface area is:

Area S = 2π

∫ 1

−1

(1− t2)
√
(3t2 − 1)2 + (2t)2 dt

= 2π

∫ 1

−1

(1− t2)
√
9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of
elementary functions. Using Simpson’s Rule with n = 20, we find the
area to be S = 9.44. Using larger values of n shows this is accurate to 2
places after the decimal.

After defining a new way of creating curves in the plane, in this section
we have applied calculus techniques to the parametric equation defining these
curves to study their properties. In the next section, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that identifies points in the plane in a manner different than
from measuring distances from the y- and x- axes.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parcalc8.html
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10.3.4 Exercises

Terms and Concepts

1. True or False? Given parametric equations x = f(t) and y = g(t), dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

(□ True □ False)

2. Given parametric equations x = f(t) and y = g(t), the derivative dy
dx as given in Key Idea 10.3.1 is a function

of ?

3. True or False? Given parametric equations x = f(t) and y = g(t), to find d2y
dx2 , one simply computes d

dt

(
dy
dx

)
.

(□ True □ False)

4. True or False? If dy
dx = 0 at t = t0, then the normal line to the curve at t = t0 is a vertical line. (□ True

□ False)

Problems

Exercise Group. In the following exercises, parametric equations for a curve are given.

(a) Find
dy

dx
.

(b) Find the equations of the tangent and normal line(s) at the point(s) given.

(c) Sketch the graph of the parametric functions along with the found tangent and normal lines.

5. x = t, y = t2;t = 1 6. x =
√
t, y = 5t+ 2;t = 4

7. x = t2 − t, y = t2 + t;t = 1 8. x = t2 − 1, y = t3 − t;t = 0 and t = 1

9. x = sec(t), y = tan(t) on (−π/2, π/2);t = π/4 10. x = cos(t), y = sin(2t) on [0, 2π];t = π/4

11. x = cos(t) sin(2t), y = sin(t) sin(2t) on [0, 2π];
t = 3π/4

12. x = et/10 cos(t), y = et/10 sin(t); t = π/2

Exercise Group. Find the t-valueswhere the curve defined by the given parametric equations has a horizontal tangent
line. Note: these are the same equations as in Exercises 5–12.

13. x = t, y = t2 14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t 16. x = t2 − 1, y = t3 − t

17. x = sec(t), y = tan(t) on (−π/2, π/2) 18. x = cos(t), y = sin(2t), on [0, 2π)
19. x = cos(t) sin(2t), y = sin(t) sin(2t) on [0, 2π] 20. x = et/10 cos(t), y = et/10 sin(t)

Exercise Group. Find the point t = t0 where the graph of the given parametric equations is not smooth, then find
lim
t→t0

dy
dx .

21. x = 1
t2+1 , y = t3 22. x = −t3+7t2− 16t+13, y = t3− 5t2+8t− 2

23. x = t3 − 3t2 + 3t− 1,y = t2 − 2t+ 1 24. x = cos2(t),y = 1− sin2(t)

Exercise Group. For the given parametric equations for a curve, find d2y
dx2 , then determine the intervals on which the

graph of the curve is concave up/down. Note: these are the same equations as in Exercises 5–12.
25. x = t,y = t2 26. x =

√
t,y = 5t+ 2

27. x = t2 − t, y = t2 + t 28. x = t2 − 1,y = t3 − t

29. x = sec(t),y = tan(t) on (−π/2, π/2) 30. x = cos(t), y = sin(2t), on [0, 2π)
31. x = cos(t) sin(2t),y = sin(t) sin(2t) on

[−π/2, π/2]
32. x = et/10 cos(t),y = et/10 sin(t)
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Exercise Group. Find the arc length of the graph of the parametric equations on the given interval(s).
33. x = −3 sin(2t), y = 3 cos(2t) on [0, π] 34. x = et/10 cos(t), y = et/10 sin(t) on [0, 2π] and

[2π, 4π].
35. x = 5t+ 2, y = 1− 3t on [−1, 1] 36. x = 2t3/2,y = 3t on [0, 1]

Exercise Group. In the following exercises, numerically approximate the given arc length.
37. Approximate the arc length of one petal of the

rose curve x = cos(t) cos(2t),y = sin(t) cos(2t)
using Simpson’s Rule and n = 4.

38. Approximate the arc length of the “bow tie
curve” x = cos(t),y = sin(2t) using Simpson’s
Rule and n = 6.

39. Approximate the arc length of the parabola
x = t2 − t,y = t2 + t on [−1, 1] using
Simpson’s Rule and n = 4.

40. A common approximate of the circumference of
an ellipse given by x = a cos(t),y = b sin(t) is

C ≈ 2π

√
a2 + b2

2
. Use this formula to

approximate the circumference of x = 5 cos(t),
y = 3 sin(t) and compare this to the
approximation given by Simpson’s Rule and
n = 6.

Exercise Group. In the following exercises, a solid of revolution is described. Find or approximate its surface area as
specified.

41. Find the surface area of the sphere formed by
rotating the circle x = 2 cos(t),y = 2 sin(t)
about:

(a) The x-axis.

(b) The y-axis.

42. Find the surface area of the torus (or “donut”)
formed by rotating the circle
x = cos(t) + 2,y = sin(t) about the y-axis.

43. Approximate the surface area of the solid
formed by rotating the “upper right half” of the
bow tie curve x = cos(t),y = sin(2t) on
[0, π/2] about the x-axis, using Simpson’s Rule
and n = 4.

44. Approximate the surface area of the solid
formed by rotating the one petal of the rose
curve x = cos(t) cos(2t),y = sin(t) cos(2t) on
[0, π/4] about the x-axis, using Simpson’s Rule
and n = 4.
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10.4 Introduction to Polar Coordinates

We are generally introduced to the idea of graphing curves by relating x-values
to y-values through a function f . That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good notion of how the curve looks. This method is useful
but has limitations, not least of which is that curves that “fail the vertical line
test” cannot be graphed without using multiple functions.

The previous two sections introduced and studied a new way of plotting
points in the x, y-plane. Using parametric equations, x and y values are com-
puted independently and then plotted together. This method allows us to graph
an extraordinary range of curves. This section introduces yet anotherway to plot
points in the plane: using polar coordinates.

10.4.1 Polar Coordinates
Start with a pointO in the plane called the pole (wewill always identify this point
with the origin). From the pole, draw a ray, called the initial ray (we will always
draw this ray horizontally, identifying it with the positive x-axis). A pointP in the
plane is determined by the distance r that P is fromO, and the angle θ formed
between the initial ray and the segmentOP (measured counter-clockwise). We
record the distance and angle as an ordered pair (r, θ). To avoid confusion with
rectangular coordinates, we will denote polar coordinates with the letter P , as
in P (r, θ). This is illustrated in Figure 10.4.1

O initial ray

r

P = P (r, θ)

θ

Figure 10.4.1 Illustrating polar coordi-
nates

Practice will make this process more clear.

Example 10.4.2 Plotting Polar Coordinates.

Plot the following polar coordinates:

A = P (1, π/4)B = P (1.5, π)C = P (2,−π/3)D = P (−1, π/4)

Solution. To aid in the drawing, a polar grid is provided below. To place
the point A, go out 1 unit along the initial ray (putting you on the inner
circle shown on the grid), then rotate counter-clockwise π/4 radians (or
45◦). Alternately, one can consider the rotation first: think about the ray
from O that forms an angle of π/4 with the initial ray, then move out 1
unit along this ray (again placing you on the inner circle of the grid).

O 1 2 3

To plot B, go out 1.5 units along the initial ray and rotate π radians
(180◦).
To plot C, go out 2 units along the initial ray then rotate clockwise π/3
radians, as the angle given is negative.

O 1 2 3

A

B

C

D

Figure 10.4.3 Plotting polar points in
Example 10.4.2

To plotD, move along the initial ray “−1” units — in other words, “back
up” 1 unit, then rotate counter-clockwise by π/4. The results are given
in Figure 10.4.3.
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Consider the following two points: A = P (1, π) and B = P (−1, 0). To
locate A, go out 1 unit on the initial ray then rotate π radians; to locate B, go
out −1 units on the initial ray and don’t rotate. One should see that A and B
are located at the same point in the plane. We can also consider C = P (1, 3π),
orD = P (1,−π); all four of these points share the same location.

This ability to identify a point in the plane with multiple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beautiful functions that intersect themselves (much like we sawwith parametric
functions). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this section.

10.4.2 Polar to Rectangular Conversion
It is useful to recognize both the rectangular (or, Cartesian) coordinates of a point
in the plane and its polar coordinates. Figure 10.4.4 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P (r, θ). Using
trigonometry, we can make the identities given in the following Key Idea.

x

yr

θ

O

P

Figure 10.4.4 Converting between
rectangular and polar coordinates

Key Idea 10.4.5 Converting Between Rectangular and Polar Coordi-
nates.

Given the polar point P (r, θ), the rectangular coordinates are deter-
mined by

x = r cos(θ) y = r sin(θ).

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan(θ) =
y

x
.

Example 10.4.6 Converting Between Polar and Rectangular Coordi-
nates.

1. Convert the polar coordinates P (2, 2π/3) and P (−1, 5π/4) to
rectangular coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar co-
ordinates.

Solution.

1. (a) We start with P (2, 2π/3). Using Key Idea 10.4.5, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point P (−1, 5π/4) is converted to rectangular
with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈

(0.707, 0.707).
These points are plotted in Figure 10.4.7(a). The rectangular coor-
dinate system is drawn lightly under the polar coordinate system
so that the relationship between the two can be seen.
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O

P (2, 2π
3 )

P (−1, 5π
4 )

(a)

(0, 0)

(1, 2)

(−1, 1)

3π
4
3π
4

−π
4

1.11

(b)

Figure 10.4.7 Plotting rectangular and polar points in Exam-
ple 10.4.6

2. (a) To convert the rectangular point (1, 2) to polar coordinates,
we use the Key Idea to form the following two equations:

12 + 22 = r2 tan(θ) =
2

1
.

The first equation tells us that r =
√
5. Using the inverse

tangent function, we find

tan(θ) = 2 ⇒ θ = tan−1(2) ≈ 1.11 ≈ 63.43◦.

Thus polar coordinates of (1, 2) are P (
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equa-
tions

(−1)2 + 12 = r2 tan(θ) =
1

−1
.

Thus r =
√
2. We need to be careful in computing θ: using

the inverse tangent function, we have

tan(θ) = −1 ⇒ θ = tan−1(−1) = −π/4 = −45◦.

This is not the angle we desire. The range of tan−1(x) is
(−π/2, π/2); that is, it returns angles that lie in the 1st and
4th quadrants. To find locations in the 2nd and 3rd quad-
rants, add π to the result of tan−1(x). So π + (−π/4) puts
the angle at 3π/4. Thus the polar point is P (

√
2, 3π/4). An

alternate method is to use the angle θ given by arctangent,
but change the sign of r. Thus we could also refer to (−1, 1)
as P (−

√
2,−π/4).

These points are plotted in Figure 10.4.7(b). The polar system is
drawn lightly under the rectangular grid with rays to demonstrate
the angles used.

10.4.3 Polar Functions and Polar Graphs
Defining a new coordinate system allows us to create a new kind of function, a
polar function. Rectangular coordinates lent themselves well to creating func-
tions that related x and y, such as y = x2. Polar coordinates allow us to create
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functions that relate r and θ. Normally these functions look like r = f(θ), al-
though we can create functions of the form θ = f(r). The following examples
introduce us to this concept.

Example 10.4.8 Introduction to Graphing Polar Functions.

Describe the graphs of the following polar functions.

1. r = 1.5

2. θ = π/4

Solution.

1. The equation r = 1.5 describes all points that are 1.5 units from
the pole; as the angle is not specified, any θ is allowable. All points
1.5 units from the pole describes a circle of radius 1.5. We can
consider the rectangular equivalent of this equation; using r2 =
x2 + y2, we see that 1.52 = x2 + y2, which we recognize as
the equation of a circle centered at (0, 0) with radius 1.5. This is
sketched in Figure 10.4.9.

2. The equation θ = π/4 describes all points such that the line
through them and the pole make an angle of π/4 with the initial
ray. As the radius r is not specified, it can be any value (even neg-
ative). Thus θ = π/4 describes the line through the pole that
makes an angle of π/4 = 45◦ with the initial ray. We can again
consider the rectangular equivalent of this equation. Combine
tan(θ) = y/x and θ = π/4:

tan(π)/4 = y/x ⇒ x tan(π)/4 = y ⇒ y = x.

This graph is also plotted in Figure 10.4.9.

O 1 2

r = 1.5
θ = π

4

Figure 10.4.9 Plotting standard polar
plots

The basic rectangular equations of the form x = h and y = k create vertical
and horizontal lines, respectively; the basic polar equations r = h and θ = α
create circles and lines through the pole, respectively. With this as a foundation,
we can createmore complicated polar functions of the form r = f(θ). The input
is an angle; the output is a length, how far in the direction of the angle to go out.

We sketch these functions much like we sketch rectangular and parametric
functions: we plot lots of points and “connect the dots” with curves. We demon-
strate this in the following example.

Example 10.4.10 Sketching Polar Functions.

Sketch the polar function r = 1 + cos(θ) on [0, 2π] by plotting points.
Solution. A common question when sketching curves by plotting points
is “Which points should I plot?” With rectangular equations, we often
choose “easy” values — integers, then add more if needed. When plot-
ting polar equations, start with the “common” angles—multiples of π/6
and π/4. Figure 10.4.11 gives a table of just a few values of θ in [0, π].
Consider the point P (2, 0) determined by the first line of the table. The
angle is 0 radians — we do not rotate from the initial ray — then we go
out 2 units from the pole. When θ = π/6, r = 1.866 (actually, it is
1 +

√
3/2); so rotate by π/6 radians and go out 1.866 units.
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The graph shown uses more points, connected with straight lines. (The
points on the graph that correspond to points in the table are signified
with larger dots.) Such a sketch is likely good enough to give one an idea
of what the graph looks like.

θ r = 1 + cos(θ)
0 2

π/6 1.86603

π/2 1

4π/3 0.5

7π/4 1.70711

(a)

O 1 2

(b)

Figure 10.4.11 Graphing a polar function in Example 10.4.10 by plotting
points

Technology Note: Plotting functions in this way can be tedious, just as it was
with rectangular functions. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar functions; in the menu, set the
plottingmode to something like polar or POL, depending on one’s calculator. As
with plotting parametric functions, the viewing “window” no longer determines
the x-values that are plotted, so additional information needs to be provided.
Often with the “window” settings are the settings for the beginning and ending
θ values (often called θmin and θmax ) as well as the θ step — that is, how far
apart the θ values are spaced. The smaller the θ step value, the more accurate
the graph (which also increases plotting time). Using technology, we graphed
the polar function r = 1 + cos(θ) from Example 10.4.10 in Figure 10.4.12.

O 1 2

Figure 10.4.12 Using technology to
graph a polar function

Example 10.4.13 Sketching Polar Functions.

Sketch the polar function r = cos(2θ) on [0, 2π] by plotting points.
Solution. We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 10.4.14. These points are then plotted in
Figure 10.4.15(a). This particular graph “moves” around quite a bit and
one can easily forget which points should be connected to each other.
To help us with this, we numbered each point in the table and on the
graph.

Pt. θ cos(2θ)
1 0 1

2 π/6 0.5

3 π/4 0

4 π/3 −0.5

5 π/2 −1

6 2π/3 −0.5

7 3π/4 0

8 5π/6 0.5

9 π 1

10 7π/6 0.5

11 5π/4 0

12 4π/3 −0.5

13 3π/2 −1

14 5π/3 −0.5

15 7π/4 0

16 11π/6 0.5

17 2π 1

Figure 10.4.14 Table of points for plot-
ting a polar curve in Example 10.4.13

Using more points (and the aid of technology) a smoother plot can be
made as shown in Figure 10.4.15(b). This plot is an example of a rose
curve.



CHAPTER 10. CURVES IN THE PLANE 577

1
2

3

4

5

6

7

8
9

10
11

12

13

14

15 16 17

(a)

O 1

(b)

Figure 10.4.15 Polar plots from Example 10.4.13

It is sometimes desirable to refer to a graph via a polar equation, and other
times by a rectangular equation. Therefore it is necessary to be able to convert
between polar and rectangular functions, which we practice in the following
example. We will make frequent use of the identities found in Key Idea 10.4.5.

Example 10.4.16 Converting between rectangular and polar equations.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

1. r =
2

sin(θ)− cos(θ)

2. r = 2 cos(θ)

Solution.

1. Replace y with r sin(θ) and replace x with r cos(θ), giving:

y = x2

r sin(θ) = r2 cos2(θ)
sin(θ)
cos2(θ)

= r

We have found that r = sin(θ)/ cos2(θ) = tan(θ) sec(θ). The
domain of this polar function is (−π/2, π/2); plot a few points to
see how the familiar parabola is traced out by the polar equation.

2. We again replace x and y using the standard identities and work
to solve for r:

xy = 1

r cos(θ) · r sin(θ) = 1

r2 =
1

cos(θ) sin(θ)

r =
1√

cos(θ) sin(θ)

This function is valid only when the product of cos(θ) sin(θ) is pos-
itive. This occurs in the first and third quadrants, meaning the do-
main of this polar function is (0, π/2)∪(π, 3π/2). We can rewrite
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the original rectangular equation xy = 1 as y = 1/x. This is
graphed in Figure 10.4.17; note how it only exists in the first and
third quadrants.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 10.4.17 Graphing xy = 1 from
Example 10.4.16

3. There is no set way to convert from polar to rectangular; in gen-
eral, we look to form the products r cos(θ) and r sin(θ), and then
replace these with x and y, respectively. We start in this problem
by multiplying both sides by sin(θ)− cos(θ):

r =
2

sin(θ)− cos(θ)
r(sin(θ)− cos(θ)) = 2

r sin(θ)− r cos(θ) = 2. Now replace with y and x:
y − x = 2

y = x+ 2.

The original polar equation, r = 2/(sin(θ)−cos(θ)) does not eas-
ily reveal that its graph is simply a line. However, our conversion
shows that it is. The upcoming gallery of polar curves gives the
general equations of lines in polar form.

4. By multiplying both sides by r, we obtain both an r2 term and an
r cos(θ) term, which we replace with x2 + y2 and x, respectively.

r = 2 cos(θ)

r2 = 2r cos(θ)

x2 + y2 = 2x.

We recognize this as a circle; by completing the squarewe can find
its radius and center.

x2 − 2x+ y2 = 0

(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming
gallery of polar curves gives the equations of some circles in po-
lar form; circles with arbitrary centers have a complicated polar
equation that we do not consider here.

Some curves have very simple polar equations but rather complicated rec-
tangular ones. For instance, the equation r = 1 + cos(θ) describes a cardioid
(a shape important the sensitivity of microphones, among other things; one is
graphed in the gallery in the Limaçon section). It’s rectangular form is not nearly
as simple; it is the implicit equation x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0.
The conversion is not “hard,” but takes several steps, and is left as a problem in
the Exercise section.

Gallery of Polar Curves
There are a number of basic and “classic” polar curves, famous for their

beauty and/or applicability to the sciences. This section endswith a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to investigate with technology other types of polar func-
tions.
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α

(a) Through the origin:
θ = α

a
{

(b) Horizontal line: r =
a csc(θ)

︷︸︸︷a

(c) Vertical line: r =
a sec(θ)

slo
pe
=
m

}
b

(d) Not through origin:

r =
b

sin(θ)−m cos(θ)

Figure 10.4.18 Lines in polar coordinates

︷ ︸︸ ︷a

(a) Centered on x-axis:
r = a cos(θ)

a



(b) Centered on y-axis:
r = a sin(θ)

︷ ︸︸ ︷a

(c) Centered on origin:
r = a

(d) Archimedean spiral:
r = θ

Figure 10.4.19 Circles and Spirals

(a) With inner loop:
a

b
<

1
(b) Cardioid:

a

b
= 1 (c) Dimpled: 1 <

a

b
< 2 (d) Convex:

a

b
> 2

Figure 10.4.20 Limaçons
Symmetric about x-axis: r = a± b cos(θ)
Symmetric about y-axis: r = a± b sin(θ); a, b > 0
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(a) r = a cos(2θ) (b) r = a sin(2θ) (c) r = a cos(3θ) (d) r = a sin(3θ)

Figure 10.4.21 Rose curves
Symmetric about x-axis: r = a cos(nθ)
Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.

(a) Rose curve: r =
a sin(θ/5)

(b) Rose curve: r =
a sin(2θ/5)

(c) Lemniscate: r2 =
a2 cos(2θ)

(d) Eight Curve: r2 =
a2 sec4(θ) cos(2θ)

Figure 10.4.22 Special Curves
Earlier we discussed how each point in the plane does not have a unique

representation in polar form. This can be a “good” thing, as it allows for the
beautiful and interesting curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example 10.4.23 Finding points of intersection with polar curves.

Determine where the graphs of the polar equations r = 1 + 3 cos(θ)
and r = cos(θ) intersect.
Solution. As technology is generally readily available, it is usually
a good idea to start with a graph. We have graphed the two func-
tions in Figure 10.4.24(a); to better discern the intersection points, Fig-
ure 10.4.24(b) zooms in around the origin.
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Figure 10.4.24Graphs to help determine the points of intersection of the
polar functions given in Example 10.4.23
We start by setting the two functions equal to each other and solving for
θ:

1 + 3 cos(θ) = cos(θ)
2 cos(θ) = −1

cos(θ) = −1

2

θ =
2π

3
,
4π

3
.

(There are, of course, infinite solutions to the equation cos(θ) = −1/2;
as the limaçon is traced out once on [0, 2π], we restrict our solutions to
this interval.)
We need to analyze this solution. When θ = 2π/3 we obtain the point
of intersection that lies in the 4th quadrant. When θ = 4π/3, we get
the point of intersection that lies in the second quadrant. There is more
to say about this second intersection point, however. The circle defined
by r = cos(θ) is traced out once on [0, π], meaning that this point of
intersection occurs while tracing out the circle a second time. It seems
strange to pass by the point once and then recognize it as a point of
intersection only when arriving there a “second time.” The first time the
circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos(π/3), π/3) and (cos(4π/3), 4π/3).
To summarize what we have done so far, we have found two points of
intersection: when θ = 2π/3 and when θ = 4π/3. When referencing
the circle r = cos(θ), the latter point is better referenced as when θ =
π/3.
There is yet another point of intersection: the pole (or, the origin). We
did not recognize this intersection point using our work above as each
graph arrives at the pole at a different θ value.
A graph intersects the pole when r = 0. Considering the circle r =
cos(θ), r = 0 when θ = π/2 (and odd multiples thereof, as the circle is
repeatedly traced). The limaçon intersects the pole when 1+3 cos(θ) =
0; this occurs when cos(θ) = −1/3, or for θ = cos−1(−1/3). This is a
nonstandard angle, approximately θ = 1.9106 = 109.47◦. The limaçon
intersects the pole twice in [0, 2π]; the other angle at which the limaçon
is at the pole is the reflection of the first angle across the x-axis. That is,
θ = 4.3726 = 250.53◦.
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If all one is concerned with is the (x, y) coordinates at which the graphs in-
tersect, much of the abovework is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3 can
give us the needed rectangular coordinates. However, in the next section we ap-
ply calculus concepts to polar functions. When computing the area of a region
bounded by polar curves, understanding the nuances of the points of intersec-
tion becomes important.
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10.4.4 Exercises

Terms and Concepts

1. In your own words, describe how to plot the polar point P (r, θ).

2. True or False? When plotting a point with polar coordinate P (r, θ), r must be positive. (□ True □ False)

3. True or False? Every point in the Cartesian plane can be represented by a polar coordinate. (□ True □ False)
4. True or False? Every point in the Cartesian plane can be represented uniquely by a polar coordinate. (□ True

□ False)

Problems

5. Plot the points with the given polar coordinates.

(a) A = P (2, 0)

(b) B = P (1, π)

(c) C = P (−2, π/2)

(d) D = P (1, π/4)

6. Plot the points with the given polar coordinates.

(a) A = P (2, 3π)

(b) B = P (1,−π)

(c) C = P (1, 2)

(d) D = P (1/2, 5π/6)

7. For each of the given points give two sets of polar coordinates that identify it, where 0 ≤ θ ≤ 2π.

O 1 2 3

A

B

C

D

8. For each of the given points give two sets of polar coordinates that identify it, where−π < θ ≤ π.
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O 1 2 3

A

B

C

D

9. Convert each of the following polar coordinates to rectangular, and each of the following rectangular coordinates
to polar.

a. A = P (2, π/4)

(x, y) =

b. B = P (2,−π/4)

(x, y) =

c. C = (2,−1)

P (r, θ) = P

d. D = (−2, 1)

P (r, θ) = P

10. Convert each of the following polar coordinates to rectangular, and each of the followingrectangular coordinates
to polar.

a. A = P (3, π)

(x, y) =

b. B = P (1, 2π/3)

(x, y) =

c. C = (0, 4)

P (r, θ) = P

d. D = (1,−
√
3)

P (r, θ) = P

Exercise Group. In the following exercises, graph the polar function on the given interval.
11. r = 2,0 ≤ θ ≤ π/2 12. θ = π/6,−1 ≤ r ≤ 2

13. r = 1− cos(θ),[0, 2π] 14. r = 2 + sin(θ),[0, 2π]
15. r = 2− sin(θ),[0, 2π] 16. r = 1− 2 sin(θ),[0, 2π]
17. r = 1 + 2 sin(θ),[0, 2π] 18. r = cos(2θ),[0, 2π]
19. r = sin(3θ),[0, π] 20. r = cos(θ/3),[0, 3π]
21. r = cos(2θ/3),[0, 6π] 22. r = θ/2,[0, 4π]
23. r = 3 sin(θ),[0, π] 24. r = 2 cos(θ),[0, π/2]
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25. r = cos(θ) sin(θ),[0, 2π] 26. r = θ2 − (π/2)2,[−π, π]

27. r =
3

5 sin(θ)− cos(θ)
,[0, 2π] 28. r =

−2

3 cos(θ)− 2 sin(θ)
,[0, 2π]

29. r = 3 sec(θ),(−π/2, π/2) 30. r = 3 csc(θ),(0, π)

Exercise Group. In the following exercises, convert the polar equation to a rectangular equation.
31. Convert the polar equation to a rectangular

equation.
r = 6 cos(θ)

32. Convert the polar equation to a rectangular
equation.

r = −4 sin(θ)
33. Convert the polar equation to a rectangular

equation.
r = cos(θ) + sin(θ)

34. Convert the polar equation to a rectangular
equation.

r =
7

5 sin(θ)− 2 cos(θ)
35. Convert the polar equation to a rectangular

equation.
r =

3

cos(θ)

36. Convert the polar equation to a rectangular
equation.

r =
4

sin(θ)
37. r = tan(θ) 38. r = cot θ
39. Convert the polar equation to a rectangular

equation.
r = 2

40. Convert the polar equation to a rectangular
equation.

θ = π/6

Exercise Group. In the following exercises, convert the rectangular equation to a polar equation.
41. Convert the rectangular equation to a polar

equation. Type ‘theta’ for θ.
y = x

42. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

y = 4x+ 7

43. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x = 5

44. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

y = 5

45. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x = y2

46. x2y = 1

47. Convert the rectangular equation to a polar
equation. Type ‘theta’ for θ.

x2 + y2 = 7

48. (x+ 1)2 + y2 = 1

Exercise Group. In the following exercises, find the points of intersection of the polar graphs.
49. Find the points where r = sin(2θ) intersects

r = cos(θ) on [0, π], expressed in polar
coordinates with notation P (r, θ).

50. r = cos(2θ) and r = cos(θ) on [0, π]

51. Find the points where r = 2 cos(θ) intersects
r = 2 sin(θ) on [0, π], expressed in polar
coordinates with notation P (r, θ).

52. r = sin(θ) and r =
√
3 + 3 sin(θ) on [0, 2π]

53. r = sin(3θ) and r = cos(3θ) on [0, π] 54. Find the points where r = 3 cos(θ) intersects
r = 1 + cos(θ) on [−π, π], expressed in polar
coordinates with notation P (r, θ).

55. r = 1 and r = 2 sin(2θ) on [0, 2π] 56. r = 1− cos(θ) and r = 1 + sin(θ) on [0, 2π]

57. Pick a integer value for n, where n ̸= 2, 3, and use technology to plot r = sin
(m
n
θ
)
for three different integer

values ofm. Sketch these and determine a minimal interval on which the entire graph is shown.
58. Create your own polar function, r = f(θ) and sketch it. Describe why the graph looks as it does.
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10.5 Calculus and Polar Functions

The previous section defined polar coordinates, leading to polar functions. We
investigated plotting these functions and solving a fundamental question about
their graphs, namely, where do two polar graphs intersect?

We now turn our attention to answering other questions, whose solutions
require the use of calculus. A basis for much of what is done in this section is
the ability to turn a polar function r = f(θ) into a set of parametric equations.
Using the identities x = r cos(θ) and y = r sin(θ), we can create the para-
metric equations x = f(θ) cos(θ), y = f(θ) sin(θ) and apply the concepts of
Section 10.3.

10.5.1 Polar Functions and dy/dx
We are interested in the lines tangent to a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equations. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concernedwith r ′ = f ′(θ); that describes how fast r changeswith
respect to θ. Instead, we will use x = f(θ) cos(θ), y = f(θ) sin(θ) to compute
dy
dx .

Using Key Idea 10.3.1 we have

dy

dx
=

dy

dθ

/dx

dθ
.

Each of the two derivatives on the right hand side of the equality requires
the use of the Product Rule. We state the important result as a Key Idea.

Key Idea 10.5.1 Finding dy
dx with Polar Functions.

Let r = f(θ) be a polar function. With x = f(θ) cos(θ) and y =
f(θ) sin(θ),

dy

dx
=

f ′(θ) sin(θ) + f(θ) cos(θ)
f ′(θ) cos(θ)− f(θ) sin(θ)

.

Example 10.5.2 Finding dy
dx with polar functions.

Consider the limaçon r = 1 + 2 sin(θ) on [0, 2π].

1. Find the equations of the tangent and normal lines to the graph
at θ = π/4.

2. Find where the graph has vertical and horizontal tangent lines.

Solution.

1. We start by computing dy
dx . With f

′(θ) = 2 cos(θ), we have

dy

dx
=

2 cos(θ) sin(θ) + cos(θ)(1 + 2 sin(θ))
2 cos2(θ)− sin(θ)(1 + 2 sin(θ))

=
cos(θ)(4 sin(θ) + 1)

2(cos2(θ)− sin2(θ))− sin(θ)
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simpli-

fication). In rectangular coordinates, the point on the graph at
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θ = π/4 is (1+
√
2/2, 1+

√
2/2). Thus the rectangular equation

of the line tangent to the limaçon at θ = π/4 is

y = (−2
√
2−1)

(
x− (1+

√
2/2)

)
+1+

√
2/2 ≈ −3.83x+8.24.

The limaçon and the tangent line are graphed in Figure 10.5.3. The
normal line has the opposite-reciprocal slope as the tangent line,
so its equation is

y ≈ 1

3.83
x+ 1.26.

−2 −1 1 2

1

2

3

x

y

0

π/2

Figure 10.5.3 The limaçon in Exam-
ple 10.5.2 with its tangent line at θ =
π/4 and points of vertical and hori-
zontal tangency

2. To find the horizontal lines of tangency, we find where dy
dx = 0;

thus we find where the numerator of our equation for dy
dx is 0.

cos(θ)(4 sin(θ) + 1) = 0 ⇒ cos(θ) = 0 or 4 sin(θ) + 1 = 0.

On [0, 2π], cos(θ) = 0 when θ = π/2, 3π/2. Setting 4 sin(θ) +
1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦. We want
the results in [0, 2π]; we also recognize there are two solutions,
one in the third quadrant and one in the fourth. Using reference
angles, we have our two solutions as θ = 3.39 and 6.03 radians.
The four points we obtained where the limaçon has a horizontal
tangent line are given in Figure 10.5.3 with black-filled dots. To
find the vertical lines of tangency, we set the denominator of dydx =
0.

2(cos2(θ)− sin2(θ))− sin(θ) = 0.

Convert the cos2(θ) term to 1− sin2(θ):

2(1− sin2(θ)− sin2(θ))− sin(θ) = 0

4 sin2(θ) + sin(θ)− 2 = 0.

Recognize this as a quadratic in the variable sin(θ). Using the qua-
dratic formula, we have

sin(θ) =
−1±

√
33

8
.

We solve sin(θ) = −1+
√
33

8 and sin(θ) = −1−
√
33

8 :

sin(θ) =
−1 +

√
33

8
sin(θ) =

−1−
√
33

8

θ = sin−1

(
−1 +

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ = 0.6349 θ = −1.0030

In each of the solutions above, we only get one of the possible
two solutions as sin−1(x) only returns solutions in [−π/2, π/2],
the 4th and 1st quadrants. Again using reference angles, we have:

sin θ =
−1 +

√
33

8
⇒ θ = 0.6349, 2.5067 radians

and

sin(θ) =
−1−

√
33

8
⇒ θ = 4.1446, 5.2802 radians.

These points are also shown in Figure 10.5.3 with white-filled dots.
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When the graph of the polar function r = f(θ) intersects the pole, it means
that f(α) = 0 for some angle α. Thus the formula for dy

dx in such instances is
very simple, reducing simply to

dy

dx
= tanα.

This equation makes an interesting point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Exam-
ple 10.4.8) shows us that the line through the pole with slope tanα has polar
equation θ = α. Thus when a polar graph touches the pole at θ = α, the
equation of the tangent line at the pole is θ = α.

Example 10.5.4 Finding tangent lines at the pole.

Let r = 1 + 2 sin(θ), a limaçon. Find the equations of the lines tangent
to the graph at the pole.
Solution. We need to know when r = 0.

1 + 2 sin(θ) = 0

sin(θ) = −1/2

θ =
7π

6
,
11π

6
.

Thus the equations of the tangent lines, in polar, are θ = 7π/6 and
θ = 11π/6. In rectangular form, the tangent lines are y = tan(7π/6)x
and y = tan(11π/6)x. The full limaçon can be seen in Figure 10.5.3; we
zoom in on the tangent lines in Figure 10.5.5.

−1 −0.5 0.5 1

−0.5

0.5

1

x

y

0

π/2

Figure 10.5.5 Graphing the tangent
lines at the pole in Example 10.5.4

10.5.2 Area
When using rectangular coordinates, the equations x = h and y = k defined
vertical and horizontal lines, respectively, and combinations of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equations θ = α and r = c form lines
through the origin and circles centered at the origin, respectively, and combi-
nations of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar functions by first approximating
with sectors of circles.

Consider Figure 10.5.6(a) where a region defined by r = f(θ) on [α, β] is
given. (Note how the “sides” of the region are the lines θ = α and θ = β,
whereas in rectangular coordinates the “sides” of regionswere often the vertical
lines x = a and x = b.)

Recall that the area of a sector
of a circlewith radius r subtended
by an angle θ is A = 1

2θr
2.

r

θ

Partition the interval [α, β] into n equally spaced subintervals as α = θ0 <
θ1 < · · · < θn = β. The length of each subinterval is ∆θ = (β − α)/n,
representing a small change in angle. The area of the region defined by the ith
subinterval [θi−1, θi] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi−1, θi]. The area of this sector is 1

2f(ci)
2∆θ. This is

shown in Figure 10.5.6(b), where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ≈
n∑

i=1

1

2
f(ci)

2∆θ.
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This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the
exact area of the region in the form of a definite integral.
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Figure 10.5.6 Computing the area of a polar region

Theorem 10.5.7 Area of a Polar Region.

Let f be continuous and non-negative on [α, β], where 0 ≤ β −α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1

2

∫ β

α

f(θ)2 dθ =
1

2

∫ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example 10.5.8 Area of a polar region.

Find the area of the circle defined by r = cos(θ). (Recall this circle has
radius 1/2.)
Solution. This is a direct application of Theorem 10.5.7. The circle is
traced out on [0, π], leading to the integral

Area =
1

2

∫ π

0

cos2(θ) dθ

=
1

2

∫ π

0

1 + cos(2θ)
2

dθ

=
1

4

(
θ +

1

2
sin(2θ)

)∣∣∣∣∣
π

0

=
1

4
π.

Of course, we already knew the area of a circle with radius 1/2. We did
this example to demonstrate that the area formula is correct.

Example 10.5.8 requires the use

of the integral
∫
cos2(θ) dθ. This

is handledwell by using the power
reducing formula as found in Sub-
section B.3.2 of the Quick Refer-
ence Appendix. Due to the na-
ture of the area formula, integrat-
ing cos2(θ) and sin2(θ) is required
often. We offer here these in-
definite integrals as a time-saving
measure.∫

cos2 θ dθ =

1

2
θ +

1

4
sin(2θ) + C∫

sin2 θ dθ =

1

2
θ − 1

4
sin(2θ) + C
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Example 10.5.9 Area of a polar region.

Find the area of the cardioid r = 1 + cos(θ) bound between θ = π/6
and θ = π/3, as shown in Figure 10.5.10.

−0.5 0.5 1 1.5 2

1

θ =
π/
6

θ
=
π
/3

x

y

0

π/2

Figure 10.5.10 Finding the area of the
shaded region of a cardioid in Exam-
ple 10.5.9

Solution. This is again a direct application of Theorem 10.5.7.

Area =
1

2

∫ π/3

π/6

(1 + cos(θ))2 dθ

=
1

2

∫ π/3

π/6

(1 + 2 cos(θ) + cos2(θ)) dθ

=
1

2

(
θ + 2 sin(θ) +

1

2
θ +

1

4
sin(2θ)

) ∣∣∣∣∣
π/3

π/6

=
1

8

(
π + 4

√
3− 4

)
≈ 0.7587.

Area Between Curves. Our study of area in the context of rectangular func-
tions led naturally to finding area bounded between curves. We consider the
same in the context of polar functions.

Consider the shaded region shown in Figure 10.5.11. We can find the area
of this region by computing the area bounded by r2 = f2(θ) and subtracting
the area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1

2

∫ β

α

r 2
2 dθ − 1

2

∫ β

α

r 2
1 dθ =

1

2

∫ β

α

(
r 2
2 − r 2

1

)
dθ.
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Figure 10.5.11 Illustrating area bound
between two polar curves

Key Idea 10.5.12 Area Between Polar Curves.

The areaA of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where f1(θ) ≤ f2(θ) on [α, β], is

A =
1

2

∫ β

α

(
r 2
2 − r 2

1

)
dθ.

Example 10.5.13 Area between polar curves.

Find the area bounded between the curves r = 1 + cos(θ) and r =
3 cos(θ), as shown in Figure 10.5.14.

1 2 3

−1

1

x

y

0

π/2

Figure 10.5.14 Finding the area
between polar curves in Exam-
ple 10.5.13

Solution. Weneed to find the points of intersection between these two
functions. Setting them equal to each other, we find:

1 + cos(θ) = 3 cos(θ)
cos(θ) = 1/2

θ = ±π/3

Thus we integrate 1
2

(
(3 cos(θ))2 − (1 + cos(θ))2

)
on [−π/3, π/3].

Area =
1

2

∫ π/3

−π/3

(
(3 cos(θ))2 − (1 + cos(θ))2

)
dθ

=
1

2

∫ π/3

−π/3

(
8 cos2(θ)− 2 cos(θ)− 1

)
dθ
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=
1

2

(
2 sin(2θ)− 2 sin(θ) + 3θ

)∣∣∣∣∣
π/3

−π/3

= π.

Amazingly enough, the area between these curves has a “nice” value.

Example 10.5.15 Area defined by polar curves.

Find the area bounded between the polar curves r = 1 and r =
2 cos(2θ), as shown in Figure 10.5.16.
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0
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Figure 10.5.16 The region bounded
by the functions in Example 10.5.15

Solution. We need to find the point of intersection between the two
curves. Setting the two functions equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1

2
⇒ 2θ = π/3 ⇒ θ = π/6.
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Figure 10.5.17 Breaking the region
bounded by the functions in Exam-
ple 10.5.15 into its component parts

In Figure 10.5.17, we zoom in on the region and note that it is not re-
ally bounded between two polar curves, but rather by two polar curves,
along with θ = 0. The dashed line breaks the region into its component
parts. Below the dashed line, the region is defined by r = 1, θ = 0
and θ = π/6. (Note: the dashed line lies on the line θ = π/6.) Above
the dashed line the region is bounded by r = 2 cos(2θ) and θ = π/6.
Since we have two separate regions, we find the area using two separate
integrals.
Call the area below the dashed line A1 and the area above the dashed
line A2. They are determined by the following integrals:

A1 =
1

2

∫ π/6

0

(1)2 dθ A2 =
1

2

∫ π/4

π/6

(
2 cos(2θ)

)2
dθ.

(The upper bound of the integral computing A2 is π/4 as r = 2 cos(2θ)
is at the pole when θ = π/4.)
We omit the integration details and let the reader verify thatA1 = π/12
and A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8.

10.5.3 Arc Length
As we have already considered the arc length of curves defined by rectangular
and parametric equations, we now consider it in the context of polar equations.
Recall that the arc length L of the graph defined by the parametric equations
x = f(t), y = g(t) on [a, b] is

L =

∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt. (10.5.1)

Now consider the polar function r = f(θ). We again use the identities x =
f(θ) cos(θ) and y = f(θ) sin(θ) to create parametric equations based on the
polar function. We compute x′(θ) and y′(θ) as done before when computing
dy
dx , then apply Equation (10.5.1).

The expression x′(θ)2 + y′(θ)2 can be simplified a great deal; we leave this
as an exercise and state that

x′(θ)2 + y′(θ)2 = f ′(θ)2 + f(θ)2.
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This leads us to the arc length formula.

Theorem 10.5.18 Arc Length of Polar Curves.

Let r = f(θ) be a polar function with f ′ continuous on [α, β], on which
the graph traces itself only once. The arc length L of the graph on [α, β]
is

L =

∫ β

α

√
f ′(θ)2 + f(θ)2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

Example 10.5.19 Arc length of a limaçon.

Find the arc length of the limaçon r = 1 + 2 sin(θ).
Solution. With r = 1+2 sin(θ), we have r ′ = 2 cos(θ). The limaçon is
traced out once on [0, 2π], giving us our bounds of integration. Applying
Theorem 10.5.18, we have

L =

∫ 2π

0

√
(2 cos θ)2 + (1 + 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

−2 −1 1 2

1

2

3

x

y

0

π/2

Figure 10.5.20 The limaçon in Exam-
ple 10.5.19 whose arc length is mea-
sured

The final integral cannot be solved in terms of elementary functions, so
we resorted to a numerical approximation. (Simpson’s Rule, with n = 4,
approximates the value with 13.0608. Using n = 22 gives the value
above, which is accurate to 4 places after the decimal.)

10.5.4 Surface Area
The formula for arc length leads us to a formula for surface area. The following
Theorem is based on Theorem 10.3.18.

Theorem 10.5.21 Surface Area of a Solid of Revolution.

Consider the graph of the polar equation r = f(θ), where f ′ is continu-
ous on [α, β], on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about
the initial ray (θ = 0) is:

Surface Area = 2π

∫ β

α

f(θ) sin(θ)
√
f ′(θ)2 + f(θ)2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π

∫ β

α

f(θ) cos(θ)
√
f ′(θ)2 + f(θ)2 dθ.
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Example 10.5.22 Surface area determined by a polar curve.

Find the surface area formed by revolving one petal of the rose curve
r = cos(2θ) about its central axis, as shown in Figure 10.5.23.

−1 1

−1

1

x

y

0

π/2

(a) (b)

Figure 10.5.23 Finding the surface area of a rose-curve petal that is re-
volved around its central axis

Solution. We choose, as implied by the figure, to revolve the por-
tion of the curve that lies on [0, π/4] about the initial ray. Using The-
orem 10.5.21 and the fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π

∫ π/4

0

cos(2θ) sin(θ)
√(

− 2 sin(2θ)
)2

+
(
cos(2θ)

)2
dθ

≈ 1.36707.

The integral is another that cannot be evaluated in terms of elemen-
tary functions. Simpson’s Rule, with n = 4, approximates the value at
1.36751.

This chapter has been about curves in the plane. While there is great math-
ematics to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathematics in 3D —
that is, in space. The next chapter begins our exploration into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathematical
objects.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_polcalc8a_3D.html
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10.5.5 Exercises

Terms and Concepts

1. Given polar equation r = f(θ), how can one create parametric equations of the same curve?

2. With rectangular coordinates, it is natural to approximate area with ; with polar coordinates, it is
natural to approximate area with .

Problems

Exercise Group. Find dy
dx (in terms of θ). Then find the equations of the tangent and normal lines to the curve at the

indicated θ-value.
3. r = 1, θ = π/4 4. r = cos(θ), θ = π/4

5. r = 1 + sin(θ), θ = π/6 6. r = 1− 3 cos(θ), θ = 3π/4

7. r = θ, θ = π/2 8. r = cos(3θ), θ = π/6

9. r = sin(4θ), θ = π/3 10. r =
1

sin(θ)− cos(θ)
;θ = π

Exercise Group. Find the values of θ in the given interval where the graph of the polar function has horizontal and
vertical tangent lines.

11. r = 3; [0, 2π] 12. r = 2 sin(θ); [0, π]
13. r = cos(2θ); [0, 2π] 14. r = 1 + cos(θ); [0, 2π)

Exercise Group. Find the equation of the lines tangent to the graph at the pole.
15. r = sin(θ);[0, π] 16. r = sin(3θ);[0, π]

Exercise Group. Find the area of the described region.
17. Enclosed by the circle: r = 4 sin(θ) 18. Enclosed by the circle r = 5

19. Find the area enclosed by one petal of
r = sin(3θ).

20. Enclosed by one petal of the rose curve
r = cos(n θ), where n is a positive integer.

21. Find the area enclosed by the cardioid
r = 1− sin(θ).

22. Enclosed by the inner loop of the limaçon
r = 1 + 2 cos(θ)

23. Find the area enclosed by the outer loop of the
limaçon r = 1 + 2 cos(θ) (including area
enclosed by the inner loop).

24. Find the area enclosed between the inner and
outer loop of the limaçon r = 1 + 2 cos(θ).
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25. Find the area enclosed by r = 2 cos(θ),
r = 2 sin(θ), and the x-axis, as shown:

−1 1 2

−1

1

2

x

y

The area is .

26. Find the area enclosed by r = cos(θ) and
r = sin(2θ), as shown:

1

1

x

y

The area is .

27. Enclosed by r = cos(3θ) and r = sin(3θ), as
shown:

1

0.5

x

y

28. Enclosed by r = cos(θ) and r = 1− cos(θ), as
shown:

−2 −1.5 −1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

Exercise Group. In the following exercises, answer the questions involving arc length.
29. Use the arc length formula to compute the arc

length of the circle r = 2.
30. Use the arc length formula to compute the arc

length of the circle r = 4 sin(θ).
31. Use the arc length formula to compute the arc

length of r = cos θ + sin θ.
32. Use the arc length formula to compute the arc

length of the cardioid r = 1 + cos θ. (Hint:
apply the formula, simplify, then use a
Power-Reducing Formula to convert 1 + cos θ
into a square.)

33. Approximate the arc length of one petal of the
rose curve r = sin(3θ) with Simpson’s Rule and
n = 4.

34. Let x(θ) = f(θ) cos(θ) and y(θ) = f(θ) sin(θ).
Show, as suggested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

Exercise Group. In the following exercises, answer the questions involving surface area.
35. Use Theorem 10.5.21 to find the surface area of

the sphere formed by revolving the circle r = 2
about the initial ray.

36. Use Theorem 10.5.21 to find the surface area of
the sphere formed by revolving the circle
r = 2 cos(θ) about the initial ray.

37. Find the surface area of the solid formed by
revolving the cardioid r = 1 + cos(θ) about the
initial ray.

38. Find the surface area of the solid formed by
revolving the circle r = 2 cos(θ) about the line
θ = π/2.
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39. Find the surface area of the solid formed by
revolving the line r = 3 sec(θ),
−π/4 ≤ θ ≤ π/4, about the line θ = π/2.

40. Find the surface area of the solid formed by
revolving the line r = 3 sec θ, 0 ≤ θ ≤ π/4,
about the initial ray.



Chapter 11

Vectors

This chapter begins with moving our mathematics out of the plane and into
“space.” That is, we begin to think mathematically not only in two dimensions,
but in three. With this foundation, we can explore vectors both in the plane and
in space.

11.1 Introduction to Cartesian Coordinates in Space

Up to this point in this text we have considered mathematics in a 2-dimensional
world. We have plotted graphs on the xy-plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properties of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotating it out of the plane.

While there is wonderful mathematics to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathematics involving this third di-
mension. In this section we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundation for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple,P = (a, b, c),
where a, b and c represent the relative position of P along the x-, y- and z-axes,
respectively. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problematic, as we are trying
to represent a 3-dimensional concept on a 2-dimensional medium. We cannot
draw three lines representing the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard conventions exist for plotting
shapes in space that we will discuss that are more than adequate.

One convention is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
tion of the positive x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the positive y-axis, then the extended thumb
will point in the direction of the positive z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “left hand rule.”)

As long as the coordinate axes are positioned so that they follow this rule,
it does not matter how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

Figure 11.1.1 Plotting the point P =
(2, 1, 3) in space

In Figure 11.1.1 we see the point P = (2, 1, 3) plotted on a set of axes. The
basic convention here is that the xy-plane is drawn in its standard way, with
the z-axis down to the left. The perspective is that the paper represents the xy-
plane and the positive z axis is coming up, off the page. This method is preferred

597
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by many engineers. Because it can be hard to tell where a single point lies in
relation to all the axes, dashed lines have been added to let one see how far
along each axis the point lies.

One can also consider the xy-plane as being a horizontal plane in, say, a
room, where the positive z-axis is pointing up. When one steps back and looks
at this room, one might draw the axes as shown in Figure 11.1.2. The same
point P is drawn, again with dashed lines. This point of view is preferred by
most mathematicians, and is the convention adopted by this text.

Just as the x- and y-axes divide the plane into four quadrants, the x-, y-, and
z-coordinate planes divide space into eight octants. The octant in which x, y,
and z are positive is called the first octant. We do not name the other seven
octants in this text.

Figure 11.1.2 Plotting the point P =
(2, 1, 3) in space with a perspective
used in this text

11.1.1 Measuring Distances
It is of critical importance to know how to measure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

Definition 11.1.3 Distance In Space.

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The dis-
tanceD between P andQ is

D =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P andQ in space as PQ,
and refer to the length of this segment as

∥∥PQ
∥∥. The above distance formula

allows us to compute the length of this segment.

Example 11.1.4 Length of a line segment.

Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ
and find its length.
Solution. The points P and Q are plotted in Figure 11.1.5; no special
consideration need be made to draw the line segment connecting these
two points; simply connect them with a straight line. One cannot actu-
ally measure this line on the page and deduce anything meaningful; its
true length must be measured analytically. Applying Definition 11.1.3,
we have∥∥PQ

∥∥ =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

Figure 11.1.5 Plotting points P andQ
in Example 11.1.4

11.1.2 Spheres
Just as a circle is the set of all points in the plane equidistant from a given point
(its center), a sphere is the set of all points in space that are equidistant from a
given point. Definition 11.1.3 allows us to write an equation of the sphere.

We start with a pointC = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C;
that is, ∥∥PC

∥∥ =
√
(x− a)2 + (y − b)2 + (z − c)2 = r.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_cartcoord2.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space1.html
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Squaring both sides, we get the standard equation of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea 11.1.6 Standard Equation of a Sphere in Space.

The standard equation of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y − b)2 + (z − c)2 = r2.

Example 11.1.7 Equation of a sphere.

Find the center and radius of the sphere defined by x2+2x+ y2− 4y+
z2 − 6z = 2.
Solution. To determine the center and radius, wemust put the equation
in standard form. This requires us to complete the square (three times).

x2 + 2x+ y2 − 4y + z2 − 6z = 2

(x2 + 2x+ 1) + (y2 − 4y + 4) + (z2 − 6z + 9)− 14 = 2

(x+ 1)2 + (y − 2)2 + (z − 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4.

The equation of a sphere is an example of an implicit function defining a
surface in space. In the case of a sphere, the variables x, y and z are all used.
We now consider situations where surfaces are defined where one or two of
these variables are absent.

11.1.3 Introduction to Planes in Space
The coordinate axes naturally define three planes (shown in Figure 11.1.8), the
coordinate planes: the xy-plane, the yz-plane and the xz-plane. The xy-plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equation that describes this plane: z = 0. Likewise, the
xz-plane is all points where the y-value is 0, characterized by y = 0.

(a) (b) (c)

Figure 11.1.8 The xy-plane in (a), the yz-plane in (b) and the xz-plane in (c)
The equation x = 2 describes all points in space where the x-value is 2. This

is a plane, parallel to the yz-coordinate plane, shown in Figure 11.1.9.

Figure 11.1.9 The plane x = 2

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_spacexy_3D.html
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https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_spacexz_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space2.html
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Example 11.1.10 Regions defined by planes.

Sketch the region defined by the inequalities−1 ≤ y ≤ 2.
Solution. The region is all points between the planes y = −1 and y = 2.
These planes are sketched in Figure 11.1.11, which are parallel to the xz-
plane. Thus the region extends infinitely in the x and z directions, and
is bounded by planes in the y direction.

Figure 11.1.11 Sketching the bound-
aries of a region in Example 11.1.10

11.1.4 Cylinders
The equation x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equation x2 + y2 = 1 in space. In the plane, this equation describes a circle of
radius 1, centered at the origin. In space, the z coordinate is not specified, mean-
ing it can take on any value. In Figure 11.1.12(a), we show part of the graph of
the equation x2 + y2 = 1 by sketching 3 circles: the bottom one has a con-
stant z-value of −1.5, the middle one has a z-value of 0 and the top circle has
a z-value of 1. By plotting all possible z-values, we get the surface shown in Fig-
ure 11.1.12(b). This surface looks like a “tube,” or a “cylinder”; mathematicians
call this surface a cylinder for an entirely different reason.

(a) (b)

Figure 11.1.12 Sketching x2 + y2 = 1

Definition 11.1.13 Cylinder.

LetC be a curve in a plane and letL be a line not parallel toC. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is
the directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equations involving 2
variables, and the rulings will be parallel to the axis of the third variable.

In the example preceding the definition, the curve x2 + y2 = 1 in the xy-
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 11.1.12 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in Figure 11.1.12(b). More
examples will help us understand this definition.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space3.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_spacecylinder1a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_spacecylinder1b_3D.html
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Example 11.1.14 Graphing cylinders.

Graph the following cylinders.

1. z = y2 2. x = sin(z)

Solution.

1. We can view the equation z = y2 as a parabola in the yz-plane,
as illustrated in Figure 11.1.15(a). As x does not appear in the
equation, the rulings are lines through this parabola parallel to the
x-axis, shown in Figure 11.1.15(b). These rulings give a general
idea as to what the surface looks like, drawn in Figure 11.1.15(c).

(a) (b) (c)

Figure 11.1.15 Sketching the cylinder defined by z = y2

2. We can view the equation x = sin(z) as a sine curve that exists in
the xz-plane, as shown in Figure 11.1.16(a). The rules are parallel
to the y axis as the variable y does not appear in the equation
x = sin(z); some of these are shown in Figure 11.1.16(b). The
surface is shown in Figure 11.1.16(c).

(a) (b) (c)

Figure 11.1.16 Sketching the cylinder defined by x = sin(z)

11.1.5 Surfaces of Revolution
One of the applications of integration we learned previously was to find the vol-
ume of solids of revolution — solids formed by revolving a curve about a hori-
zontal or vertical axis. We now consider how to find the equation of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross-

sections of this surface parallel to the yz-plane are circles, as shown in Figure 11.1.17(a).
Each circle has equation of the form y2 + z2 = r2 for some radius r. The radius
is a function of x; in fact, it is r(x) =

√
x. Thus the equation of the surface

shown in Figure 11.1.17(b) is y2 + z2 = (
√
x)2.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space4a1_3D.html
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(a) (b)

Figure 11.1.17 Introducing surfaces of revolution
We generalize the above principles to give the equations of surfaces formed

by revolving curves about the coordinate axes.

Key Idea 11.1.18 Surfaces of Revolution, Part 1.

Let r be a radius function.

1. The equation of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equation of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equation of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

Example 11.1.19 Finding equation of a surface of revolution.

Let y = sin(z) on [0, π]. Find the equation of the surface of revolution
formed by revolving y = sin(z) about the z-axis.
Solution. Using Key Idea 11.1.18, we find the surface has equation
x2 + y2 = sin2(z). The curve is sketched in Figure 11.1.20(a) and the
surface is drawn in Figure 11.1.20(b).
Note how the surface (and hence the resulting equation) is the same
if we began with the curve x = sin(z), which is also drawn in Fig-
ure 11.1.20(a).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surf_rev_introa_3D.html
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(a) (b)

Figure 11.1.20 Revolving y = sin(z) about the z-axis in Example 11.1.19

This particular method of creating surfaces of revolution is limited. For in-
stance, in Example 7.3.10 of Section 7.3we found the volumeof the solid formed
by revolving y = sin(x) about the y-axis. Our current method of forming sur-
faces can only rotate y = sin(x) about the x-axis. Trying to rewrite y = sin(x)
as a function of y is not trivial, as simply writing x = sin−1(y) only gives part of
the region we desire.

What we desire is a way of writing the surface of revolution formed by rotat-
ing y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural
way of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance
r, we plot a z-height of f(r). When rotating f(x) about the z-axis, we want
all points a distance of r from the z-axis in the xy-plane to have a z-height of
f(r). All such points satisfy the equation r2 = x2 + y2; hence r =

√
x2 + y2.

Replacing rwith
√
x2 + y2 in f(r) gives z = f(

√
x2 + y2). This is the equation

of the surface.

Key Idea 11.1.21 Surfaces of Revolution, Part 2.

Let z = f(x), x ≥ 0, be a curve in the xz-plane. The surface formed by
revolving this curve about the z-axis has equation z = f

(√
x2 + y2

)
.

Example 11.1.22 Finding equation of surface of revolution.

Find the equation of the surface found by revolving z = sin(x) about
the z-axis.
Solution. Using Key Idea 11.1.21, the surface has equation z =
sin
(√

x2 + y2
)
. The curve and surface are graphed in Figure 11.1.23.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfrev1a_3D.html
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(a) (b)

Figure 11.1.23 Revolving z = sin(x) about the z-axis in Example 11.1.22

11.1.6 Quadric Surfaces
Spheres, planes and cylinders are important surfaces to understand. We now
consider one last type of surface, a quadric surface. The definition may look
intimidating, but we will show how to analyze these surfaces in an illuminating
way.

Definition 11.1.24 Quadric Surface.

A quadric surface is the graph of the general second-degree equation in
three variables:

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0.

When the coefficientsD,E orF are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these
coefficients are 0; we will not consider rotations. There are six basic quadric sur-
faces: the elliptic paraboloid, elliptic cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

Figure 11.1.25 The elliptic paraboloid
z = x2/4 + y2

We study each shape by considering traces, that is, intersections of each
surface with a plane parallel to a coordinate plane. For instance, consider the
elliptic paraboloid z = x2/4 + y2, shown in Figure 11.1.25. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equation:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse — so cross sections parallel to the xy-coordinate
plane are ellipses. This ellipse is drawn in the figure.

Now consider cross sections parallel to the xz-plane. For instance, letting
y = 0 gives the equation z = x2/4, clearly a parabola. Intersecting with the
plane x = 0 gives a cross section defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the elliptic paraboloid gets its name: some cross sections
are ellipses, and others are parabolas.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfrev2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfrev2b_3D.html
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Such an analysis can be made with each of the quadric surfaces. We give a
sample equation of each, provide a sketch with representative traces, and de-
scribe these traces.

Elliptic Paraboloid
z =

x2

a2
+

y2

b2

Plane Trace

x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equation of the elliptic paraboloid will be raised to the
first power; above, this is the z variable. The paraboloid will “open” in the di-
rection of this variable’s axis. Thus x = y2/a2 + z2/b2 is an elliptic paraboloid
that opens along the x-axis. Multiplying the right hand side by (−1) defines an
elliptic paraboloid that “opens” in the opposite direction.

Elliptic Cone
z2 =

x2

a2
+

y2

b2

Plane Trace

x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_par_3D.html
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One can rewrite the equation as z2 − x2/a2 − y2/b2 = 0. The one variable
with a positive coefficient corresponds to the axis that the cones “open” along.

Ellipsoid x2

a2
+

y2

b2
+

z2

c2
= 1

Plane Trace

x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key
Idea 11.1.6.

Hyperboloid of One
Sheet

x2

a2
+

y2

b2
− z2

c2
= 1

Plane Trace

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negative coefficient corresponds to the axis that the
hyperboloid “opens” along.

Hyperboloid of Two
Sheets

z2

c2
− x2

a2
− y2

b2
= 1

Plane Trace

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a positive coefficient corresponds to the axis that the
hyperboloid “opens” along. In the case illustrated, when |d| < |c|, there is no

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_ellipsoid_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_ellipsoidb_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_one_sheet_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_one_sheetb_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_two_sheet_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_two_sheetb_3D.html
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trace.

Hyperbolic
Paraboloid z =

x2

a2
− y2

b2

Plane Trace

x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised
to the first power.

Example 11.1.26 Sketching quadric surfaces.

Sketch the quadric surface defined by the given equation.

1. y =
x2

4
+

z2

16

2. x2 +
y2

9
+

z2

4
= 1

3. z = y2 − x2

Solution.

1. y =
x2

4
+

z2

16
: We first identify the quadric by pattern-matching

with the equations given previously. Only two surfaces have equa-
tions where one variable is raised to the first power, the ellip-
tic paraboloid and the hyperbolic paraboloid. In the latter case,
the other variables have different signs, so we conclude that this
describes a hyperbolic paraboloid. As the variable with the first

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_par_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_parb_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_quadric_hyp_parc_3D.html
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power is y, we note the paraboloid opens along the y-axis. To
make a decent sketch by hand, we need only draw a few traces. In
this case, the traces x = 0 and z = 0 form parabolas that outline
the shape.

x = 0: The trace is the parabola y = z2/16

z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respective plane creates a sketch as
shown in Figure 11.1.27(a). This is enough to give an idea of
what the paraboloid looks like. The surface is filled in in Fig-
ure 11.1.27(b).

(a) (b)

Figure 11.1.27 Sketching an elliptic paraboloid

2. x2 +
y2

9
+

z2

4
= 1 : This is an ellipsoid. We can get a good idea

of its shape by drawing the traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is

along the y-axis with length 6 (as b = 3, the length of the axis is
6); the minor axis is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is

along the z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along

the y-axis.

Graphing each trace in the respective plane creates a sketch
as shown in Figure 11.1.28(a). Filling in the surface gives Fig-
ure 11.1.28(b).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space5a1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space5a2_3D.html
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(a) (b)

Figure 11.1.28 Sketching an ellipsoid

3. z = y2 − x2: This defines a hyperbolic paraboloid, very similar
to the one shown in the gallery of quadric sections. Consider the
traces in the y − z and x− z planes:

x = 0: The trace is z = y2, a parabola opening up in the y − z
plane.

y = 0: The trace is z = −x2, a parabola opening down in the
x− z plane.

Sketching these two parabolas gives a sketch like that in Fig-
ure 11.1.29(a), and filling in the surface gives a sketch like Fig-
ure 11.1.29(b).

(a) (b)

Figure 11.1.29 Sketching a hyperbolic paraboloid

Example 11.1.30 Identifying quadric surfaces.

Consider the quadric surface shown in Figure 11.1.31. Which of the fol-
lowing equations best fits this surface?

(a) x2 − y2 − z2

9
= 0

(b) x2 − y2 − z2 = 1

(c) z2 − x2 − y2 = 1

(d) 4x2 − y2 − z2

9
= 1

Figure 11.1.31 A possible equation of
this quadric surface is found in Exam-
ple 11.1.30

Solution. The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equationwill have a form similar to z2

c2 −
x2

a2 −

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space5b1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space5b2_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space5c1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space5c2_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space6.html
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y2

b2 = 1.
We can immediately eliminate option (a), as the constant in that equa-
tion is not 1.
The hyperboloid “opens” along the x-axis, meaning x must be the only
variable with a positive coefficient, eliminating (c).
The hyperboloid is wider in the z-direction than in the y-direction, so we
need an equation where c > b. This eliminates (b), leaving us with (d).
We should verify that the equation given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equationdescribes a hyperboloid of two
sheets that opens in the x-direction and is wider in the z-direction than
in the y. Now note the coefficient of the x-term. Rewriting 4x2 in stan-

dard form, we have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x

must be 1/2; i.e., each hyperboloid “starts” at x = 1/2. This matches
our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph.

This section has introduced points in space and shown how equations can
describe surfaces. The next sections explore vectors, an importantmathematical
object that we’ll use to explore curves in space.
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11.1.7 Exercises

Terms and Concepts

1. Axes drawn in space must conform to the rule.

2. In the plane, the equation x = 2 defines a ; in space, x = 2 defines a .

3. In the plane, the equation y = x2 defines a ; in space, y = x2 defines a .

4. Which quadric surface looks like a Pringles(TM) chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this hyperbola is rotated about the x-axis, what quadric
surface is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this hyperbola is rotated about the y-axis, what quadric
surface is formed?

Problems

7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1) form a triangle in space. Find the distances between
each pair of points and determine if the triangle is a right triangle.

8. The pointsA = (1, 1, 3),B = (3, 2, 7), C = (2, 0, 8) andD = (0,−1, 4) form a quadrilateralABCD in space.
Is this a parallelogram?

9. Find the center and radius of the sphere defined by

x2 − 8x+ y2 + 2y + z2 + 8 = 0 :

10. Find the center and radius of the sphere defined by

x2 + y2 + z2 + 4x− 2y − 4z + 4 = 0 :

Exercise Group. In the following exercises, describe the region in space defined by the inequalities.
11. x2 + y2 + z2 < 1 12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0 14. y ≥ 3

Exercise Group. In the following exercises, sketch the cylinder in space.
15. z = x3 16. y = cos(z)

17.
x2

4
+

y2

9
= 1 18. y =

1

x

Exercise Group. In the following exercises, give the equation of the surface of revolution described.
19. Give the equation of the surface formed by

revolving z = 1
1+y2 in the yz-plane about the

y-axis.

20. Give the equation of the surface formed by
revolving y = x2 in the xy-plane about the
x-axis.

21. Give the equation of the surface formed by
revolving z = x2 in the xz-plane about the
z-axis.

22. Give the equation of the surface formed by
revolving z = 1/x in the xz-plane about the
z-axis.

Exercise Group. In the following exercises, a quadric surface is sketched. Determine which of the given equations
best fits the graph.
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23.

(a) x = y2 +
z2

9
(b) x = y2 +

z2

3

24.

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

(a) x2 +
y2

3
+

z2

2
= 1 (b) x2 +

y2

9
+

z2

4
= 1

26.

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

Exercise Group. In the following exercises, sketch the quadric surface.
27. z − y2 + x2 = 0 28. z2 = x2 +

y2

4

29. x = −y2 − z2 30. 16x2 − 16y2 − 16z2 = 1

31.
x2

9
− y2 +

z2

25
= 1

32. 4x2 + 2y2 + z2 = 4

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_10_01_ex_19_3D.html
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11.2 An Introduction to Vectors

Many quantities we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster often describes wind with its speed and its direction (“. . .
with winds from the southeast gusting up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direction of that force. In
both of these examples, direction is important. Because of this, we study vectors,
mathematical objects that convey both magnitude and direction information.

One “bare-bones” definition of a vector is based on what we wrote above:
“a vector is a mathematical object with magnitude and direction parameters.”
This definition leaves much to be desired, as it gives no indication as to how
such an object is to be used. Several other definitions exist; we choose here a
definition rooted in a geometric visualization of vectors. It is very simplistic but
readily permits further investigation.

Definition 11.2.1 Vector.

A vector is a directed line segment.
Given points P and Q (either in the plane or in space), we denote with−−→
PQ the vector from P to Q. The point P is said to be the initial point
of the vector, and the pointQ is the terminal point.
Themagnitude, length or norm of

−−→
PQ is the length of the line segment

PQ:
∥∥∥−−→PQ

∥∥∥ =
∥∥PQ

∥∥.
Two vectors are equal if they have the same magnitude and direction.

Figure 11.2.2 shows multiple instances of the same vector. Each directed
line segment has the same direction and length (magnitude), hence each is the
same vector.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 11.2.2 Drawing the same vec-
tor with different initial points

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

P

QR

S

−4 −2 2 4

−4

−2

2

4

x

y

Figure 11.2.3 Illustrating how equal
vectors have the same displacement

Consider the vectors
−−→
PQ and

−→
RS as shown in Figure 11.2.3. The vectors look

to be equal; that is, they seem to have the same length and direction. Indeed,
they are. Both vectors move 2 units to the right and 1 unit up from the initial
point to reach the terminal point. One can analyze this movement to measure
the magnitude of the vector, and the movement itself gives direction informa-
tion (one could also measure the slope of the line passing through P and Q or
R and S). Since they have the same length and direction, these two vectors are
equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z directions the terminal point is from the initial
point. Both the vectors

−−→
PQ and

−→
RS in Figure 11.2.3 have an x-displacement of

2 and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the initial point is the origin, (0, 0). This
leads us to a definition of a standard and concise way of referring to vectors.

Definition 11.2.4 Component Form of a Vector.

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its initial point is (0, 0), is ⟨a, b⟩.

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its initial point is (0, 0, 0), is ⟨a, b, c⟩.
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The numbers a, b (and c, respectively) are the components of v⃗.

It follows from the definition that the component form of the vector
−−→
PQ,

where P = (x1, y1) andQ = (x2, y2) is
−−→
PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) andQ = (x2, y2, z2), the component form of
−−→
PQ is −−→

PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .
We practice using this notation in the following example.

Example 11.2.5 Using component form notation for vectors.

1. Sketch the vector v⃗ = ⟨2,−1⟩ starting at P = (3, 2) and find its
magnitude.

2. Find the component form of the vector w⃗ whose initial point is
R = (−3,−2) and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starting at the pointQ = (1, 1, 1)
and find its magnitude.

Solution.

1. Using P as the initial point, we move 2 units in the positive x-
direction and −1 units in the positive y-direction to arrive at the
terminal pointP ′ = (5, 1), as drawn in Figure 11.2.6(a). Themag-
nitude of v⃗ is determined directly from the component form:

∥v⃗∥ =
√

22 + (−1)2 =
√
5.

P

P ′

R

S

−4 −2 2 4

−4

−2

2

4

x

y

(a) (b)

Figure 11.2.6 Graphing vectors in Example 11.2.5

2. Using the note following Definition 11.2.4, we have
−→
RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 11.2.6(a) that the x- and y-
displacement of

−→
RS is 2 and 4, respectively, as the component

form suggests.

3. Using Q as the initial point, we move 2 units in the positive x-
direction, −1 unit in the positive y-direction, and 3 units in the

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vect1b_3D.html
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positive z-direction to arrive at the terminal point Q′ = (3, 0, 4),
illustrated in Figure 11.2.6(b). The magnitude of u⃗ is:

∥u⃗∥ =
√
22 + (−1)2 + 32 =

√
14.

Now thatwehave defined vectors, and have created a nice notationbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Definition 11.2.7 Vector Algebra.

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The multiplication of a scalar c and a vector v⃗ is the vector

cv⃗ = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors inR3, and let
c be a scalar.

(a) The addition, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The multiplication of a scalar c and a vector v⃗ is the vector

cv⃗ = c ⟨v1, v2, v3⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addition and scalarmultiplication are computed “component-
wise.”

Example 11.2.8 Adding vectors.

Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with initial point
at the origin.
Solution. We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

u⃗

v⃗

u⃗
+
v⃗

1 2 3 4

1

2

3

4

x

y

Figure 11.2.9 Graphing the sum of
vectors in Example 11.2.8

These are all sketched in Figure 11.2.9.

As vectors convey magnitude and direction information, the sum of vectors
also convey length and magnitude information. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

“Starting at an initial point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure 11.2.10, where the initial point of v⃗ is the terminal
point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addition is very important. For instance, if the vectors u⃗ and v⃗ represent forces
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acting on a body, the sum u⃗ + v⃗ gives the resulting force. Because of various
physical applications of vector addition, the sum u⃗+ v⃗ is often referred to as the
resultant vector, or just the “resultant.” u⃗

v⃗

v⃗

u⃗

u⃗
+
v⃗

1 2 3 4

1

2

3

4

x

y

Figure 11.2.10 Illustrating how to add
vectors using the Head to Tail Rule
and Parallelogram Law

Analytically, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 11.2.10 also gives
a graphical representation of this, using gray vectors. Note that the vectors u⃗
and v⃗, when arranged as in the figure, form a parallelogram. Because of this,
the Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗+ v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the initial
point of u⃗ + v⃗ is the common initial point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properties of the real numbers and Definition 11.2.7 that

u⃗− v⃗ = u⃗+ (−1)v⃗.

The Parallelogram Law gives us a good way to visualize this subtraction. We
demonstrate this in the following example.

Example 11.2.11 Vector Subtraction.

Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩. Compute and sketch u⃗− v⃗.
Solution. The computation of u⃗− v⃗ is straightforward, and we show all
steps below. Usually the formal step of multiplying by (−1) is omitted
and we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)v⃗

= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

u⃗

v⃗

u⃗− v⃗ −v⃗

u⃗− v⃗

1 2 3 4

−1

1

2

3

x

y

Figure 11.2.12 Illustrating how to sub-
tract vectors graphically

Figure 11.2.12 illustrates, using the Head to Tail Rule, how the subtrac-
tion can be viewed as the sum u⃗+ (−v⃗). The figure also illustrates how
u⃗− v⃗ can be obtained by looking only at the terminal points of u⃗ and v⃗
(when their initial points are the same).

Example 11.2.13 Scaling vectors.

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2v⃗ with initial point at the origin.

2. Compute the magnitudes of v⃗ and 2v⃗.

Solution.

1. We compute 2v⃗:

2v⃗ = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

2v⃗

v⃗

1 2 3 4

1

2

3

x

y

Figure 11.2.14 Graphing vectors v⃗
and 2v⃗ in Example 11.2.13

Both v⃗ and 2v⃗ are sketched in Figure 11.2.14. Make note that 2v⃗
does not start at the terminal point of v⃗; rather, its initial point is
also the origin.

2. The figure suggests that 2v⃗ is twice as long as v⃗. We compute their
magnitudes to confirm this.

∥v⃗∥ =
√
22 + 12
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=
√
5.

∥2v⃗∥ =
√
42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2v⃗ is twice as long as v⃗.

The zero vector is the vector whose initial point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to multiply vectors by a scalar. The following the-
orem states formally the properties of these operations.

Theorem 11.2.15 Properties of Vector Operations.

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗ + u⃗ Commutative Property

2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) Associative Property

3. v⃗ + 0⃗ = v⃗ Additive Identity

4. (cd)v⃗ = c(dv⃗)

5. c(u⃗+ v⃗) = cu⃗+ cv⃗ Distributive Property

6. (c+ d)v⃗ = cv⃗ + dv⃗ Distributive Property

7. 0v⃗ = 0⃗

8. ∥cv⃗∥ = |c| · ∥v⃗∥

9. ∥u⃗∥ = 0 if, and only if, u⃗ = 0⃗.

As stated before, each nonzero vector v⃗ conveys magnitude and direction
information. We have a method of extracting the magnitude, which we write as
∥v⃗∥. Unit vectors are a way of extracting just the direction information from a
vector.

Definition 11.2.16 Unit Vector.

A unit vector is a vector v⃗ with a magnitude of 1; that is,

∥v⃗∥ = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a
vector of length 10 in the direction of v⃗. How does one do that? If we knew that
u⃗ was the unit vector in the direction of v⃗, the answer would be easy: 10u⃗. So
how do we find u⃗?

Property 8 of Theorem 11.2.15 holds the key. If we divide v⃗ by its magnitude,
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it becomes a vector of length 1. Consider:∣∣∣∣∣∣∣∣ 1

∥v⃗∥
v⃗

∣∣∣∣∣∣∣∣ = 1

∥v⃗∥
∥v⃗∥ (we can pull out

1

∥v⃗∥
as it is a positive scalar)

= 1.

So the vector of length 10 in the direction of v⃗ is 10
1

∥v⃗∥
v⃗. An example will

make this more clear.

Example 11.2.17 Using Unit Vectors.

Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direction of v⃗.

2. Find the unit vector in the direction of w⃗.

3. Find the vector in the direction of v⃗ with magnitude 5.

Solution.

1. We find ∥v⃗∥ =
√
10. So the unit vector u⃗ in the direction of v⃗ is

u⃗ =
1√
10

v⃗ =

〈
3√
10

,
1√
10

〉
.

2. We find ∥w⃗∥ = 3, so the unit vector z⃗ in the direction of w⃗ is

u⃗ =
1

3
w⃗ =

〈
1

3
,
2

3
,
2

3

〉
.

3. To create a vector with magnitude 5 in the direction of v⃗, we mul-
tiply the unit vector u⃗ by 5. Thus 5u⃗ =

〈
15/

√
10, 5/

√
10
〉
is the

vector we seek. This is sketched in Figure 11.2.18.

5u⃗

v⃗

u⃗

1 2 3 4 5

1

2

3

x

y

Figure 11.2.18 Graphing vectors in Ex-
ample 11.2.17. All vectors shown
have their initial point at the origin

The basic formation of the unit vector u⃗ in the direction of a vector v⃗ leads
to a interesting equation. It is:

v⃗ = ∥v⃗∥ 1

∥v⃗∥
v⃗.

We rewrite the equation with parentheses to make a point:

v⃗ = ∥v⃗∥︸︷︷︸
magnitude

·
(

1

∥v⃗∥
v⃗

)
︸ ︷︷ ︸
direction

.

This equation illustrates the fact that a nonzero vector has both magnitude
and direction, where we view a unit vector as supplying only direction informa-
tion. Identifying unit vectors with direction allows us to define parallel vectors.



CHAPTER 11. VECTORS 619

Definition 11.2.19 Parallel Vectors.

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respective unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = cv⃗2 (see marginal note).

Direction and the zero vector. 0⃗
is directionless; because

∥∥∥0⃗∥∥∥ =

0, there is no unit vector in the
“direction” of 0⃗.

Some texts define twovectors
as being parallel if one is a scalar
multiple of the other. By this de-
finition, 0⃗ is parallel to all vectors
as 0⃗ = 0v⃗ for all v⃗.

We define what it means for
two vectors to be perpendicular
inDefinition11.3.11, which iswrit-
ten to exclude 0⃗. It could bewrit-
ten to include 0⃗; by such a defi-
nition, 0⃗ is perpendicular to all
vectors. While counter-intuitive,
it is mathematically sound to al-
low 0⃗ to be both parallel and per-
pendicular to all vectors.

Weprefer the givendefinition
of parallel as it is grounded in the
fact that unit vectors provide di-
rection information. Onemay adopt
the convention that 0⃗ is parallel
to all vectors if they desire. (See
also the aside in Section 11.4.)

If one graphed all unit vectors in R2 with the initial point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos(θ), sin(θ)⟩ for some angle θ.
A similar construction inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a particular component form, but its derivation
is not as straightforward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea 11.2.20 Unit Vectors.

1. The unit vector in the direction of a nonzero vector v⃗ is

u⃗ =
1

∥v⃗∥
v⃗.

2. A vector u⃗ inR2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ inR3 is a unit vector if, and only if, its component form
is ⟨sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situations, especially the
formula for unit vectors in the plane.

Example 11.2.21 Finding Component Forces.

Consider a weight of 50lb hanging from two chains, as shown in Fig-
ure 11.2.22. One chain makes an angle of 30◦ with the vertical, and the
other an angle of 45◦. Find the force applied to each chain.

50lb

45◦
30◦

Figure 11.2.22 A diagram of a
weight hanging from 2 chains in
Example 11.2.21

Solution. Knowing that gravity is pulling the 50lb weight straight down,
we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” the weight up, preventing it from
falling. We can represent the force from each chain with a vector. Let
F⃗1 represent the force from the chain making an angle of 30◦ with the
vertical, and let F⃗2 represent the force form the other chain. Convert all
angles to be measured from the horizontal (as shown in Figure 11.2.23),
and apply Key Idea 11.2.20. As we do not yet know the magnitudes of
these vectors, (that is the problem at hand), we usem1 andm2 to rep-
resent them.

F⃗1 = m1 ⟨cos(120◦), sin(120◦)⟩

F⃗2 = m2 ⟨cos(45◦), sin(45◦)⟩
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As the weight is not moving, we know the sum of the forces is 0⃗. This
gives:

F⃗ + F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos(120◦), sin(120◦)⟩+m2 ⟨cos(45◦), sin(45◦)⟩ = 0⃗

F⃗1 F⃗2

F⃗

120◦ 45◦

Figure 11.2.23 A diagram of the force
vectors from Example 11.2.21

The sum of the entries in the first component is 0, and the sum of the
entries in the second component is also 0. This leads us to the following
two equations:

m1 cos(120◦) +m2 cos(45◦) = 0

m1 sin(120◦) +m2 sin(45◦) = 50

This is a simple 2-equation, 2-unknown system of linear equations. We
leave it to the reader to verify that the solution is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1 +
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is
more than 50lb. We leave it to a physics class to discuss the full de-
tails, but offer this short explanation. Our equations were established so
that the vertical components of each force sums to 50lb, thus support-
ing the weight. Since the chains are at an angle, they also pull against
each other, creating an “additional” horizontal force while holding the
weight in place.

Unit vectorswere very important in the previous calculation; they allowed us
to define a vector in the proper direction but with an unknown magnitude. Our
computationswere then computed component-wise. Because such calculations
are often necessary, the standard unit vectors can be useful.

Definition 11.2.24 Standard Unit Vectors.

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

Example 11.2.25 Using standard unit vectors.

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j + 2k⃗ in component form.

Solution.
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1.

v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2.
w⃗ = 4⃗i− 5⃗j + 2k⃗

= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These two examples demonstrate that converting between component
formand the standard unit vectors is rather straightforward. Manymath-
ematicians prefer component form, and it is the preferred notation in
this text. Many engineers prefer using the standard unit vectors, and
many engineering text use that notation.

Example 11.2.26 Finding Component Force.

A weight of 25lb is suspended from a chain of length 2ft while a wind
pushes the weight to the right with constant force of 5lb as shown in
Figure 11.2.27. What angle will the chain make with the vertical as a
result of the wind’s pushing? How much higher will the weight be?

2ft


25lb

φ

θ

F⃗w

Figure 11.2.27 A figure of a weight
being pushed by the wind in Exam-
ple 11.2.26

Solution. The force of the wind is represented by the vector F⃗w =
5⃗i. The force of gravity on the weight is represented by F⃗g = −25⃗j.
The direction andmagnitude of the vector representing the force on the
chain are both unknown. We represent this force with

F⃗c = m ⟨cos(φ), sin(φ)⟩ = m cos(φ) i⃗+m sin(φ) j⃗

for some magnitudem and some angle with the horizontal φ. (Note: θ
is the angle the chain makes with the vertical; φ is the angle with the
horizontal.)
As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cos(φ) i⃗+m sin(φ) j⃗ + 5⃗i− 25⃗j = 0⃗

Thus the sumof the i⃗ and j⃗ components are 0, leading us to the following
system of equations:

5 +m cosφ = 0

−25 +m sinφ = 0
(11.2.1)

This is enough to determine F⃗c already, as we know m cos(φ) = −5
and m sin(φ) = 25. Thus Fc = ⟨−5, 25⟩. We can use this to find the
magnitudem:

m =
√
(−5)2 + 252 = 5

√
26 ≈ 25.5 lb .

We can then use either equality from Equation (11.2.1) to solve for φ.
We choose the first equality as using arccosine will return an angle in
the 2nd quadrant:

5 + 5
√
26 cos(φ) = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.
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Subtracting 90◦ from this angle gives us an angle of 11.31◦ with the ver-
tical.
We can now use trigonometry to find out how high the weight is lifted.
The diagram shows that a right triangle is formed with the 2ft chain as
the hypotenuse with an interior angle of 11.31◦. The length of the ad-
jacent side (in the diagram, the dashed vertical line) is 2 cos(11.31◦) ≈
1.96ft. Thus the weight is lifted by about 0.04ft, almost 1/2in.

The algebra we have applied to vectors is already demonstrating itself to be
very useful. There are two more fundamental operations we can perform with
vectors, the dot product and the cross product. The next two sections explore
each in turn.
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11.2.1 Exercises

Terms and Concepts

1. Name two different things that cannot be described with just one number, but rather need 2 or more numbers
to fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?
3. What is a unit vector?
4. Unit vectors can be thought of as conveying what type of information?
5. What does it mean for two vectors to be parallel?
6. What effect does multiplying a vector by−2 have?

Problems

Exercise Group. In the following exercises, points P and Q are given. Write the vector
−−→
PQ in component form and

using the standard unit vectors.
7. If P = (2,−1) andQ = (3, 5), write the vector

−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

8. If P = (3, 2) andQ = (7,−2), write the vector
−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.
9. If P = (0, 3,−1) andQ = (6, 2, 5), write the

vector
−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

10. If P = (2, 1, 2) andQ = (4, 3, 2), write the
vector

−−→
PQ:

(a) in component form.

(b) using the standard unit vectors.

11. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, 2u⃗− 3v⃗.

(b) Sketch the above vectors on the same axes, along with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2v⃗ − x⃗.
12. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−
√
2v⃗.

(b) Sketch the above vectors on the same axes, along with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗ + 2x⃗.

Exercise Group. In the following exercises, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same axes.
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13.

u⃗

v⃗

x

y
14.

u⃗

v⃗

x

y

15.

u⃗

v⃗

x y

z

16.

u⃗

v⃗x y

z

Exercise Group. In the following exercises, find ∥u⃗∥, ∥v⃗∥, ∥u⃗+ v⃗∥ and ∥u⃗− v⃗∥.
17. u⃗ = ⟨2, 1⟩ , v⃗ = ⟨3,−2⟩ . 18. u⃗ = ⟨−3, 2, 2⟩ , v⃗ = ⟨1,−1, 1⟩ .
19. u⃗ = ⟨1, 2⟩ , v⃗ = ⟨−3,−6⟩ . 20. u⃗ = ⟨2,−3, 6⟩ , v⃗ = ⟨10,−15, 30⟩ .

21. Under what conditions is ∥u⃗∥+ ∥v⃗∥ = ∥u⃗+ v⃗∥?

Exercise Group. In the following exercises, find the unit vector u⃗ in the direction of v⃗.
22. Find the unit vector u⃗ in the direction of

v⃗ = ⟨3, 7⟩ .
23. Find the unit vector u⃗ in the direction of

v⃗ = ⟨6, 8⟩ .
24. Find the unit vector u⃗ in the direction of

v⃗ = ⟨1,−2, 2⟩ .
25. Find the unit vector u⃗ in the direction of

v⃗ = ⟨2,−2, 2⟩ .

26. Find the unit vector in the first quadrant of R2 that makes a 50◦ angle with the x-axis.

27. Find the unit vector in the second quadrant of R2 that makes a 30◦ angle with the y-axis.
28. Verify, from Key Idea 11.2.20, that

u⃗ = ⟨sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)⟩

is a unit vector for all angles θ and φ.

Exercise Group. Aweight of 100lb is suspended from two chains, making angles with the vertical of θ andφ as shown
in the figure below.
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100lb

θ
φ

In the following exercises, the angles θ and φ are given. Find the magnitude of the force applied to each chain.
29. θ = 30◦,φ = 30◦ 30. θ = 60◦,φ = 60◦

31. θ = 20◦,φ = 15◦ 32. θ = 0◦,φ = 0◦

Exercise Group. Aweight of plb is suspended from a chain of length ℓwhile a constant force of F⃗w pushes the weight
to the right, making an angle of θ with the vertical, as shown in the figure below.

ℓ ft


p lb

θ

F⃗w

In the following exercises, a force F⃗w and length ℓ are given. Find the angle θ and the height the weight is lifted
as it moves to the right.

33. F⃗w = 1lb, ℓ = 1ft, p = 1lb 34. F⃗w = 1lb, ℓ = 1ft, p = 10lb

35. F⃗w = 1lb, ℓ = 10ft, p = 1lb 36. F⃗w = 10lb, ℓ = 10ft, p = 1lb
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11.3 The Dot Product

The previous section introduced vectors and described how to add them to-
gether and how to multiply them by scalars. This section introduces a multi-
plication on vectors called the dot product.

Definition 11.3.1 Dot Product.

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ inR2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product
of u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
practice evaluating a dot product in the following example, then we will discuss
why this product is useful.

Example 11.3.2 Evaluating dot products.

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

Solution.

1. Using Definition 11.3.1, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definition, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definition gives no hint as to why
we would care about this operation, there is an amazing connection between
the dot product and angles formed by the vectors. Before stating this connec-
tion, we give a theorem stating some of the properties of the dot product.

Theorem 11.3.3 Properties of the Dot Product.

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ {Commutative Property}

2. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ {Distributive Property}

3. c(u⃗ · v⃗) = (cu⃗) · v⃗ = u⃗ · (cv⃗)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = ∥v⃗∥2
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The last statement of the theorem makes a handy connection between the
magnitude of a vector and the dot product with itself. Our definition and theo-
rem give properties of the dot product, but we are still likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecting the dot product
to magnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is
clearly formed when u⃗ and v⃗ are drawn with the same initial point as illustrated
in Figure 11.3.4(a). (We always take θ to be the angle in [0, π] as two angles are
actually created.)

u⃗

v⃗

θ

(a) (b)

Figure 11.3.4 Illustrating the angle formed by two vectors with the same initial
point

The same is also true of 2 vectors in space: given u⃗ and v⃗ in R3 with the
same initial point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗
are co-linear, there are infinitely many planes that contain both vectors.) In that
plane, we can again find an angle θ between them (and again, 0 ≤ θ ≤ π). This
is illustrated in Figure 11.3.4(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Theorem 11.3.5 The Dot Product and Angles.

Let u⃗ and v⃗ be nonzero vectors in R2 or R3. Then

u⃗ · v⃗ = ∥u⃗∥ ∥v⃗∥ cos(θ),

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Using Theorem 11.3.3, we can rewrite this theorem as

u⃗

∥u⃗∥
· v⃗

∥v⃗∥
= cos(θ).

Note how on the left hand side of the equation, we are computing the dot
product of two unit vectors. Recalling that unit vectors essentially only provide
direction information, we can informally restate Theorem 11.3.5 as saying “The
dot product of two directions gives the cosine of the angle between them.”

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos(θ) is positive; when
θ = π/2, cos(θ) = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos(θ) is
negative. Thus the sign of the dot product gives a general indication of the angle
between the vectors, illustrated in Figure 11.3.6.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_dotpangleb_3D.html
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u⃗ · v⃗ > 0
u⃗

v⃗

θ

u⃗ · v⃗ = 0
u⃗

v⃗

θ = π/2

u⃗ · v⃗ < 0
u⃗

v⃗

θ

Figure 11.3.6 Illustrating the relationship between the angle between vectors
and the sign of their dot product

We can use Theorem 11.3.5 to compute the dot product, but generally this
theorem is used to find the angle between known vectors (since the dot product
is generally easy to compute). To this end, we rewrite the theorem’s equation
as

cos(θ) =
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥
⇔ θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
.

We practice using this theorem in the following example.

Example 11.3.7 Using the dot product to find angles.

Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 11.3.8.
Find the angles α, β and θ.

u⃗

v⃗

w⃗

αβ

θ

−4 −2 2 4

2

4

6

x

y

Figure 11.3.8 Vectors used in Exam-
ple 11.3.7

Solution. We start by computing the magnitude of each vector.

∥u⃗∥ =
√
10; ∥v⃗∥ = 2

√
10; ∥w⃗∥ = 5.

We now apply Theorem 11.3.5 to find the angles.

α = cos−1

(
u⃗ · v⃗

(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1

(
v⃗ · w⃗

(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1

(
u⃗ · w⃗

(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

We see from our computation that α+ β = θ, as indicated by Figure 11.3.8.
While we knew this should be the case, it is nice to see that this non-intuitive
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example 11.3.9 Using the dot product to find angles.

Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in
Figure 11.3.10. Find the angle between each pair of vectors.
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Figure 11.3.10 Vectors used in Exam-
ple 11.3.9

Solution.

1. Between u⃗ and v⃗:

θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
= cos−1

(
0√
3
√
14

)
=

π

2
.

2. Between u⃗ and w⃗:

θ = cos−1

(
u⃗ · w⃗

∥u⃗∥ ∥w⃗∥

)
= cos−1

(
0√
3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1

(
v⃗ · w⃗

∥v⃗∥ ∥w⃗∥

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these
angles looks to be a right angle in Figure 11.3.10. Such is the case when
drawing three-dimensional objects on the page.

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. Notice the common
feature in each calculation (and also the calculation of α in Example 11.3.7): the
dot products of each pair of angles was 0. We use this as a basis for a definition
of the term orthogonal, which is essentially synonymous to perpendicular.

Definition 11.3.11 Orthogonal.

Nonzero vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

The termperpendicular originally
referred to lines. As mathemat-
ics progressed, the concept of “be-
ing at right angles to”was applied
to other objects, such as vectors
andplanes, and the termorthog-
onal was introduced. It is espe-
cially used when discussing ob-
jects that are hard, or impossi-
ble, to visualize: two vectors in
5-dimensional space are orthog-
onal if their dot product is 0. It
is not wrong to say they are per-
pendicular, but commonconven-
tion gives preference to theword
orthogonal.

Example 11.3.12 Finding orthogonal vectors.

Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non-parallel vectors in R3 that are orthogonal to v⃗.

Solution.

1. Recall that a line perpendicular to a line with slope m has slope

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_dotp3.html
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−1/m, the “opposite reciprocal slope.” We can think of the slope
of u⃗ as 5/3, its “rise over run.” A vector orthogonal to u⃗ will have
slope−3/5. There are many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinitely many directions in space orthogonal to any
given direction, so there are an infinite number of non-parallel
vectors orthogonal to v⃗. Since there are so many, we have great
leeway in finding some. Oneway is to arbitrarily pick values for the
first two components, leaving the third unknown. For instance, let
v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal to v⃗, then v⃗1 · v⃗ = 0, so

2 + 14 + 3z = 0 ⇒ z =
−16

3
.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a simi-
lar technique by leaving the first or second component unknown.
Another method of finding a vector orthogonal to v⃗ mirrors what
we did in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first
two components of v⃗, changing the sign of one of them (similar to
the “opposite reciprocal” concept before). Letting the third com-
ponent be 0 effectively ignores the third component of v⃗, and it is
easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel.

An important construction is illustrated in Figure 11.3.13, where vectors u⃗
and v⃗ are sketched. In Figure 11.3.13(a), a dotted line is drawn from the tip
of u⃗ to the line containing v⃗, where the dotted line is orthogonal to v⃗. In Fig-
ure 11.3.13(b), the dotted line is replaced with the vector z⃗ and w⃗ is formed,
parallel to v⃗. It is clear by the diagram that u⃗ = w⃗ + z⃗. What is important
about this construction is this: u⃗ is decomposed as the sum of two vectors, one
of which is parallel to v⃗ and one that is perpendicular to v⃗. It is hard to overstate
the importance of this construction (as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 11.3.13(b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

∥w⃗∥ = ∥u⃗∥ cos(θ). (11.3.1)

v⃗

u⃗

θ

(a)

v⃗

u⃗

w⃗

z⃗

θ

(b)

Figure 11.3.13 Developing the construction of the orthogonal projection
We also know that w⃗ is parallel to to v⃗; that is, the direction of w⃗ is the
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direction of v⃗, described by the unit vector v⃗/ ∥v⃗∥. The vector w⃗ is the vector in
the direction v⃗/ ∥v⃗∥ with magnitude ∥u⃗∥ cos(θ):

w⃗ =
(
∥u⃗∥ cos(θ)

) 1

∥v⃗∥
v⃗

=

(
∥u⃗∥ u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
1

∥v⃗∥
v⃗ (Replacing cos(θ) using Theorem 11.3.5)

=
u⃗ · v⃗
∥v⃗∥2

v⃗

=
u⃗ · v⃗
v⃗ · v⃗

v⃗ (Applying Theorem 11.3.3).

Since this construction is so important, it is given a special name.

Definition 11.3.14 Orthogonal Projection.

Let nonzero vectors u⃗ and v⃗ be given. The orthogonal projection of u⃗
onto v⃗, denoted proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Example 11.3.15 Computing the orthogonal projection.

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three
vectors with initial points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all
three vectors with initial points at the origin.

Solution.

1. Applying Definition 11.3.14, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5

10
⟨3, 1⟩

=

〈
−3

2
,−1

2

〉
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 11.3.16. Note
how the projection is parallel to v⃗; that is, it lies on the same line
through the origin as v⃗, although it points in the opposite direc-
tion. That is because the angle between u⃗ and v⃗ is obtuse (i.e.,
greater than 90◦).

u⃗ v⃗

proj v⃗ u⃗
−2 −1 1 2 3

1

2

−1

−2

x

y

Figure 11.3.16 Sketching the three
vectors in Part 1 of Example 11.3.15

2. Apply the definition:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6

3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 11.3.17(a), and again in Fig-
ure 11.3.17(b) from a different perspective. Because of the nature
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of graphing these vectors, the sketch in Figure 11.3.17(a) makes it
difficult to recognize that the drawn projection has the geometric
properties it should. The graph shown in Figure 11.3.17(b) illus-
trates these properties better.

(a) (b)

Figure 11.3.17 Sketching the three vectors in Part 2 of Exam-
ple 11.3.15

We can use the properties of the dot product found in Theorem 11.3.3 to
rearrange the formula found in Definition 11.3.14:

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
u⃗ · v⃗
∥v⃗∥2

v⃗

=

(
u⃗ · v⃗

∥v⃗∥

)
v⃗

∥v⃗∥
.

The above formula shows that the orthogonal projection of u⃗ onto v⃗ is only
concerned with the direction of v⃗, as both instances of v⃗ in the formula come in
the form v⃗/ ∥v⃗∥, the unit vector in the direction of v⃗.

A special case of orthogonal projection occurs when v⃗ is a unit vector. In this
situation, the formula for the orthogonal projection of a vector u⃗ onto v⃗ reduces
to just proj v⃗ u⃗ = (u⃗ · v⃗)v⃗, as v⃗ · v⃗ = 1.

This gives us a newunderstanding of the dot product. When v⃗ is a unit vector,
essentially providing only direction information, the dot product of u⃗ and v⃗ gives
“how much of u⃗ is in the direction of v⃗.” This use of the dot product will be very
useful in future sections. v⃗

u⃗

proj v⃗ u⃗

z⃗

Figure 11.3.18 Illustrating the orthog-
onal projection

Nowconsider Figure 11.3.18where the concept of the orthogonal projection
is again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (11.3.2)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite Equation (11.3.2) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (u⃗− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (Notation
note: the expression “∥ y⃗” means “is parallel to y⃗.” We can use this notation to
state “x⃗ ∥ y⃗” which means “x⃗ is parallel to y⃗.” The expression “⊥ y⃗” means “is
orthogonal to y⃗,” and is used similarly.)

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_dotp4b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_dotp4c_3D.html
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Key Idea 11.3.19 Orthogonal Decomposition of Vectors.

Let nonzero vectors u⃗ and v⃗ be given. Then u⃗ canbewritten as the sumof
two vectors, one of which is parallel to v⃗, and one of which is orthogonal
to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (u⃗− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example 11.3.20 Orthogonal decomposition of vectors.

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 11.3.15. Decompose
u⃗ as the sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 11.3.15. Decom-
pose w⃗ as the sumof a vector parallel to x⃗ and a vector orthogonal
to x⃗.

Solution.

1. In Example 11.3.15, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗? (i.e., is z⃗ ⊥ v⃗ ?) We check for orthogonality
with the dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (u⃗− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 11.3.15 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying
the Key Idea, we have:

z⃗ = w⃗ − proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogo-
nal. We now write w⃗ as the sum of two vectors, one parallel and
one orthogonal to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗ − proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗

We give an example of where this decomposition is useful.
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Example 11.3.21 Orthogonally decomposing a force vector.

Consider Figure 11.3.22(a), showing a box weighing 50lb on a ramp that
rises 5ft over a span of 20ft. Find the components of force, and their
magnitudes, acting on the box (as sketched in Figure 11.3.22(b)):

5

20

r⃗

g⃗

(a)

5

20

r⃗

g⃗

z⃗

proj r⃗ g⃗

(b)

Figure 11.3.22 Sketching the ramp and box in Example 11.3.21. Note:
The vectors are not drawn to scale.

1. in the direction of the ramp, and

2. orthogonal to the ramp.

Solution. As the ramp rises 5ft over a horizontal distance of 20ft, we can
represent the direction of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity
pulls down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direction of the ramp, we com-
pute proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250

425
⟨20, 5⟩

=

〈
−200

17
,−50

17

〉
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is ∥proj r⃗ g⃗∥ = 50/
√
17 ≈ 12.13 lb .

Though the box weighs 50lb, a force of about 12lb is enough to
keep the box from sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use
Key Idea 11.3.19.

z⃗ = g⃗ − proj r⃗ g⃗

=

〈
200

17
,−800

17

〉
≈ ⟨11.76,−47.06⟩ .

The magnitude of this force is ∥z⃗∥ ≈ 48.51lb. In physics and engi-
neering, knowing this force is important when computing things
like static frictional force. (For instance, we could easily compute
if the static frictional force alonewas enough to keep the box from
sliding down the ramp.)



CHAPTER 11. VECTORS 635

11.3.1 Application to Work
In physics, the application of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in
the direction of travel). The orthogonal projection allows us to compute work
when the force is not in the direction of travel.

d⃗

F⃗

proj d⃗ F⃗

Figure 11.3.23 Findingworkwhen the
force and direction of travel are given
as vectors

Consider Figure 11.3.23, where a force F⃗ is being applied to an object mov-
ing in the direction of d⃗. (The distance the object travels is the magnitude of d⃗.)
The work done is the amount of force in the direction of d⃗,

∥∥∥proj d⃗ F⃗∥∥∥, times∥∥∥d⃗∥∥∥:
∥∥∥proj d⃗ F⃗∥∥∥ · ∥∥∥d⃗∥∥∥ =

∥∥∥∥∥ F⃗ · d⃗
d⃗ · d⃗

d⃗

∥∥∥∥∥ · ∥∥∥d⃗∥∥∥
=

∣∣∣∣∣∣∣
F⃗ · d⃗∥∥∥d⃗∥∥∥2

∣∣∣∣∣∣∣ ·
∥∥∥d⃗∥∥∥ · ∥∥∥d⃗∥∥∥

=

∣∣∣F⃗ · d⃗
∣∣∣∥∥∥d⃗∥∥∥2
∥∥∥d⃗∥∥∥2

=
∣∣∣F⃗ · d⃗

∣∣∣ .
The expression F⃗ · d⃗ will be positive if the angle between F⃗ and d⃗ is acute;

when the angle is obtuse (hence F⃗ · d⃗ is negative), the force is causing motion
in the opposite direction of d⃗, resulting in “negative work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

Definition 11.3.24 Work.

Let F⃗ be a constant force that moves an object in a straight line from
point P to point Q. Let d⃗ =

−−→
PQ. The work W done by F⃗ along d⃗ is

W = F⃗ · d⃗.

Example 11.3.25 Computing work.

A man slides a box along a ramp that rises 3ft over a distance of 15ft by
applying 50lb of force as shown in Figure 11.3.26. Compute the work
done.

15

3

F⃗

30◦

Figure 11.3.26 Computingworkwhen
sliding a box up a ramp in Exam-
ple 11.3.25

Solution. The figure indicates that the force applied makes a 30◦ angle
with the horizontal, so F⃗ = 50 ⟨cos(30◦), sin(30◦)⟩ ≈ ⟨43.3, 25⟩. The
ramp is represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos(30◦), sin(30◦)⟩ · ⟨15, 3⟩ ≈ 724.5 ft–lb .

Note how we did not actually compute the distance the object traveled,
nor the magnitude of the force in the direction of travel; this is all inher-
ently computed by the dot product!

The dot product is a powerful way of evaluating computations that depend
onangleswithout actually using angles. Thenext sectionexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.



CHAPTER 11. VECTORS 636

11.3.2 Exercises

Terms and Concepts

1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector magnitude related?
3. How can one quickly tell if the angle between two vectors is acute or obtuse?
4. Give a synonym for “orthogonal.”

Problems

Exercise Group. In the following exercises, find the dot product of the given vectors.
5. u⃗ = ⟨2,−4⟩ , v⃗ = ⟨3, 7⟩ 6. u⃗ = ⟨5, 3⟩ , v⃗ = ⟨6, 1⟩
7. u⃗ = ⟨1,−1, 2⟩ , v⃗ = ⟨2, 5, 3⟩ 8. u⃗ = ⟨3, 5,−1⟩ , v⃗ = ⟨4,−1, 7⟩
9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩ 10. u⃗ = ⟨1, 2, 3⟩ , v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ in R3 and scalar c and show that c(u⃗ · v⃗) = u⃗ · (cv⃗).

Exercise Group. In the following exercises, find the measure of the angle between the two vectors in radians.
13. u⃗ = ⟨1, 1⟩ and v⃗ = ⟨1, 2⟩ . 14. u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 5⟩ .
15. u⃗ = ⟨8, 1,−4⟩ and v⃗ = ⟨2, 2, 0⟩ . 16. u⃗ = ⟨1, 7, 2⟩ and v⃗ = ⟨4,−2, 5⟩ .

Exercise Group. In the following exercises, a vector v⃗ is given. Give two vectors that are orthogonal to v⃗.
17. Find two nonzero vectors orthogonal to

v⃗ = ⟨4, 7⟩ .
18. Find two nonzero vectors orthogonal to

v⃗ = ⟨−3, 5⟩ .
19. Find two nonzero vectors orthogonal to

v⃗ = ⟨1, 1, 1⟩ .
20. Find two nonzero vectors orthogonal to

v⃗ = ⟨1,−2, 3⟩ .

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗, the orthogonal projection of u⃗
onto v⃗, and sketch all three vectors with the same initial point.

21. u⃗ = ⟨1, 2⟩ and v⃗ = ⟨−1, 3⟩ . 22. u⃗ = ⟨5, 5⟩ and v⃗ = ⟨1, 3⟩ .
23. u⃗ = ⟨−3, 2⟩ and v⃗ = ⟨1, 1⟩ 24. u⃗ = ⟨−3, 2⟩ and v⃗ = ⟨2, 3⟩ .
25. u⃗ = ⟨1, 5, 1⟩ and v⃗ = ⟨1, 2, 3⟩ . 26. u⃗ = ⟨3,−1, 2⟩ and v⃗ = ⟨2, 2, 1⟩ .

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Write u⃗ as the sum of two vectors, one of which
is parallel to v⃗ (or is zero) and one of which is orthogonal to v⃗. Note: these are the same pairs of vectors as found in
Exercises 21–26.

27. Write u⃗ = ⟨1, 2⟩ as the sum of two vectors, one
parallel to v⃗ = ⟨−1, 3⟩ (or zero) and the other
perpendicular.

u⃗ = +

28. Write u⃗ = ⟨5, 5⟩ as the sum of two vectors, one
parallel to v⃗ = ⟨1, 3⟩ (or zero) and the other
perpendicular.

u⃗ = +

29. Write u⃗ = ⟨−3, 2⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨1, 1⟩ (or zero) and the
other perpendicular.

u⃗ = +

30. Write u⃗ = ⟨−3, 2⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨2, 3⟩ (or zero) and the
other perpendicular.

u⃗ = +

31. Write u⃗ = ⟨1, 5, 1⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨1, 2, 3⟩ (or zero) and the
other perpendicular.

u⃗ = +

32. Write u⃗ = ⟨3,−1, 2⟩ as the sum of two vectors,
one parallel to v⃗ = ⟨2, 2, 1⟩ (or zero) and the
other perpendicular.

u⃗ = +
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33. A 10lb box sits on a ramp that rises 4ft over a distance of 20ft. Howmuch force is required to keep the box from
sliding down the ramp?

34. A 10lb box sits on a 15ft ramp that makes a 30◦ angle with the horizontal. How much force is required to keep
the box from sliding down the ramp?

35. How much work is performed in moving a box horizontally 10ft with a force of 20lb applied at an angle of 45◦
to the horizontal?

36. How much work is performed in moving a box horizontally 10ft with a force of 20lb applied at an angle of 10◦
to the horizontal?

37. Howmuch work is performed in moving a box up the length of a ramp that rises 2ft over a distance of 10ft, with
a force of 50lb applied horizontally?

38. Howmuch work is performed in moving a box up the length of a ramp that rises 2ft over a distance of 10ft, with
a force of 50lb applied at an angle of 45◦ to the horizontal?

39. How much work is performed in moving a box up the length of a 10ft ramp that makes a 5◦ angle with the
horizontal, with 50lb of force applied in the direction of the ramp?
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11.4 The Cross Product

“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two non-parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is an operation,
called the cross product, that creates such a vector. This section defines the cross
product, then explores its properties and applications.

Definition 11.4.1 Cross Product.

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definition can be a bit cumbersome to remember. After an example we
will give a convenient method for computing the cross product. For now, careful
examination of the products and differences given in the definition should reveal
a pattern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s practice using this definition by computing a cross product.

Example 11.4.2 Computing a cross product.

Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is
orthogonal to both u⃗ and v⃗.
Solution. Using Definition 11.4.1, we have

u⃗×v⃗ =
〈
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

〉
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then
verify their result.)
We test whether or not u⃗ × v⃗ is orthogonal to u⃗ and v⃗ using the dot
product: (

u⃗× v⃗
)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(

u⃗× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Since both dot products are zero, u⃗ × v⃗ is indeed orthogonal to both u⃗
and v⃗.

A convenient method of computing the cross product starts with forming a
particular 3×3matrix, or rectangular array. The first row comprises the standard
unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respectively. Using u⃗ and v⃗ from Example 11.4.2, we begin with:

i⃗ j⃗ k⃗

2 −1 4

3 2 5
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Now repeat the first two columns after the original three:

i⃗ j⃗ k⃗ i⃗ j⃗

2 −1 4 2 −1

3 2 5 3 2

This gives three full “upper left to lower right” diagonals, and three full “upper
right to lower left” diagonals, as shown. Compute the products along each di-
agonal, then add the products on the right and subtract the products on the
left:

i⃗ j⃗ k⃗ i⃗ j⃗

2 −1 4 2 −1

3 2 5 3 2

−5⃗i 12⃗j 4k⃗−3k⃗ 8⃗i 10⃗j

u⃗×v⃗ =
(
−5⃗i+12⃗j+4k⃗

)
−
(
−3k⃗+8⃗i+10⃗j

)
= −13⃗i+2⃗j+7k⃗ = ⟨−13, 2, 7⟩ .

We practice using this method.

Example 11.4.3 Computing a cross product.

Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗ × u⃗.
Solution. To compute u⃗ × v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗

1 3 6 1 3

−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the
result:

u⃗× v⃗ =
(
3⃗i− 6⃗j + 2k⃗

)
−
(
− 3k⃗ + 12⃗i+ j⃗

)
= ⟨−9,−7, 5⟩ .

To compute v⃗ × u⃗, we switch the second and third rows of the above
matrix, then multiply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗

−1 2 1 −1 2

1 3 6 1 3

Note how with the rows being switched, the products that once ap-
peared on the right now appear on the left, and vice-versa. Thus the
result is:

v⃗ × u⃗ =
(
12⃗i+ j⃗ − 3k⃗

)
−
(
2k⃗ + 3⃗i− 6⃗j

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that
each of these vectors is orthogonal to u⃗ and v⃗.
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11.4.1 Properties of the Cross Product
It is not coincidence that v⃗ × u⃗ = −(u⃗ × v⃗) in the preceding example; one
can show using Definition 11.4.1 that this will always be the case. The following
theorem states several useful properties of the cross product, each of which can
be verified by referring to the definition.

Theorem 11.4.4 Properties of the Cross Product.

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following iden-
tities hold:

1. u⃗× v⃗ = −(v⃗ × u⃗) Anticommutative Property

2. (a) (u⃗+ v⃗)× w⃗ = u⃗× w⃗ + v⃗ × w⃗ Distributive Properties

(b) u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗

3. c(u⃗× v⃗) = (cu⃗)× v⃗ = u⃗× (cv⃗)

4. (a) (u⃗× v⃗) · u⃗ = 0 Orthogonality Properties

(b) (u⃗× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗ Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construction given in
Definition 11.4.1 satisfies this property. Theorem 11.4.4 asserts this property
holds; we leave it as a problem in the Exercise section to verify this.

Property 5 from the theorem is also left to the reader to prove in the Exercise
section, but it reveals something more interesting than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = cu⃗. Consider their cross product:

u⃗× v⃗ = u⃗× (cu⃗)

= c(u⃗× u⃗) (by Property 3 of Theorem 11.4.4)

= 0⃗ (by Property 5 of Theorem 11.4.4).

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 11.3.5 related the angle between two vectors
and their dot product; there is a similar relationship relating the cross product
of two vectors and the angle between them, given by the following theorem.

Theorem 11.4.5 The Cross Product and Angles.

Let u⃗ and v⃗ be nonzero vectors in R3. Then

∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin(θ),

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Parallel vectors and the cross prod-
uct. Wecould rewriteDefinition11.3.11
and Theorem 11.4.5 to include
0⃗, then define that u⃗ and v⃗ are
parallel if u⃗ × v⃗ = 0⃗. Since 0⃗ ·
v⃗ = 0 and 0⃗× v⃗ = 0⃗, this would
mean that 0⃗ is both parallel and
orthogonal to all vectors. Appar-
ent paradoxes such as this are not
uncommon in mathematics and
can be very useful. (See also the
aside in Section 11.2.)

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of
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0 is 0⃗ (see Property 9 of Theorem 11.2.15), hence the cross product of parallel
vectors is 0⃗.

We demonstrate the truth of this theorem in the following example.

Example 11.4.6 The cross product and angles.

Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 11.4.3. Verify Theo-
rem 11.4.5 by finding θ, the angle between u⃗ and v⃗, and the magnitude
of u⃗× v⃗.
Solution. We use Theorem 11.3.5 to find the angle between u⃗ and v⃗.

θ = cos−1

(
u⃗ · v⃗

∥u⃗∥ ∥v⃗∥

)
= cos−1

(
11√
46
√
6

)
≈ 0.8471 = 48.54◦.

Our work in Example 11.4.3 showed that u⃗ × v⃗ = ⟨−9,−7, 5⟩, hence
∥u⃗× v⃗∥ =

√
155. Is ∥u⃗× v⃗∥ = ∥u⃗∥ ∥v⃗∥ sin(θ)? Using numerical ap-

proximations, we find:

∥u⃗× v⃗∥ =
√
155 ∥u⃗∥ ∥v⃗∥ sin(θ) =

√
46
√
6 sin(0.8471)

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46
√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly.

Right Hand Rule. The anticommutative property of the cross product demon-
strates that u⃗× v⃗ and v⃗× u⃗ differ only by a sign — these vectors have the same
magnitude but point in the opposite direction. When seeking a vector perpen-
dicular to u⃗ and v⃗, we essentially have two directions to choose from, one in the
direction of u⃗ × v⃗ and one in the direction of v⃗ × u⃗. Does it matter which we
choose? How can we tell which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same initial point, point
the index finger of your right hand in the direction of u⃗ and let yourmiddle finger
point in the direction of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direction of u⃗× v⃗. One can “practice” this using Figure 11.4.7. If you switch,
and point the index finder in the direction of v⃗ and the middle finger in the di-
rection of u⃗, your thumb will now point in the opposite direction, allowing you
to “visualize” the anticommutative property of the cross product.

Figure 11.4.7 Illustrating the Right
Hand Rule of the cross product

11.4.2 Applications of the Cross Product
There are a number of ways in which the cross product is useful in mathematics,
physics and other areas of science beyond “just” finding a vector perpendicular
to two others. We highlight a few here.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_crossp_rhr.html
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Area of a Parallelogram. It is a standard geometry fact that the area of a par-
allelogram is A = bh, where b is the length of the base and h is the height of
the parallelogram, as illustrated in Figure 11.4.8(a). As shown when defining
the Parallelogram Law of vector addition, two vectors u⃗ and v⃗ define a parallel-
ogram when drawn from the same initial point, as illustrated in Figure 11.4.8(b).
Trigonometry tells us that h = ∥u⃗∥ sin(θ), hence the area of the parallelogram
is

A = ∥u⃗∥ ∥v⃗∥ sin(θ) = ∥u⃗× v⃗∥ , (11.4.1)

where the second equality comes from Theorem 11.4.5.

b

h

(a)

v⃗
θ

u⃗

h

(b)

Figure 11.4.8 Using the cross product to find the area of a parallelogram
We illustrate using Equation (11.4.1) in the following example.

Example 11.4.9 Finding the area of a parallelogram.

1. Find the area of the parallelogram defined by the vectors u⃗ =
⟨2, 1⟩ and v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3)
and D = (3, 3, 2) are the vertices of a parallelogram. Find the
area of the parallelogram.

Solution.

1. Figure 11.4.10(a) sketches the parallelogram defined by the vec-
tors u⃗ and v⃗. We have a slight problem in that our vectors ex-
ist in R2, not R3, and the cross product is only defined on vec-
tors in R3. We skirt this issue by viewing u⃗ and v⃗ as vectors in
the x − y plane of R3, and rewrite them as u⃗ = ⟨2, 1, 0⟩ and
v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is easy
to show that u⃗ × v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallel-
ogram is A = ∥u⃗× v⃗∥ = 5.
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u⃗

v⃗

1 2 3 4

1

2

3

4

5

x

y

(a) (b)

Figure 11.4.10 Sketching the parallelograms in Example 11.4.9

2. To show that the quadrilateral ABCD is a parallelogram (shown
in Figure 11.4.10(b)), we need to show that the opposite sides are
parallel. We can quickly show that

−−→
AB =

−−→
DC = ⟨1, 2, 1⟩ and

−−→
BC =

−−→
AD = ⟨2, 2, 1⟩. We find the area by computing the mag-

nitude of the cross product of
−−→
AB and

−−→
BC:

−−→
AB ×

−−→
BC = ⟨0, 1,−2⟩ ⇒

∥∥∥−−→AB ×
−−→
BC

∥∥∥ =
√
5 ≈ 2.236.

This application is perhaps more useful in finding the area of a triangle (in
short, triangles are used more often than parallelograms). We illustrate this in
the following example.

Example 11.4.11 Area of a triangle.

Find the area of the triangle with vertices A = (1, 2), B = (2, 3) and
C = (3, 1), as pictured in Figure 11.4.12.

A

B

C

1 2 3

1

2

3

x

y

Figure 11.4.12 Finding the area of a
triangle in Example 11.4.11

Solution. We found the area of this triangle in Example 7.1.10 to be
1.5 using integration. There we discussed the fact that finding the area
of a triangle can be inconvenient using the “ 12bh” formula as one has to
compute the height, which generally involves finding angles, etc. Using
a cross product is much more direct.
We can choose any two sides of the triangle to use to form vectors; we
choose

−−→
AB = ⟨1, 1⟩ and

−→
AC = ⟨2,−1⟩. As in the previous example,

we will rewrite these vectors with a third component of 0 so that we can
apply the cross product. The area of the triangle is

1

2

∥∥∥−−→AB ×
−→
AC
∥∥∥ =

1

2
∥⟨1, 1, 0⟩ × ⟨2,−1, 0⟩∥ =

1

2
∥⟨0, 0,−3⟩∥ =

3

2
.

We arrive at the same answer as before with less work.

Volume of a Parallelepiped. The three dimensional analogue to the parallel-
ogram is the parallelepiped. Each face is parallel to the opposite face, as illus-
trated in Figure 11.4.13. By crossing v⃗ and w⃗, one gets a vectorwhosemagnitude
is the area of the base. Dotting this vector with u⃗ computes the volume of the
parallelepiped! (Up to a sign; take the absolute value.)

Theword “parallelepiped” is pro-
nounced “parallel-eh-pipe-ed.”

Figure 11.4.13 A parallelepiped is the
three dimensional analogue to the
parallelogram

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |u⃗ · (v⃗ × w⃗)| . (11.4.2)

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_crossp4b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_crossp_parallelepiped.html
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Note how this is the Triple Scalar Product, first seen in Theorem 11.4.4. Ap-
plying the identities given in the theorem shows that we can apply the Triple
Scalar Product in any “order” we choose to find the volume. That is,

V = |u⃗ · (v⃗ × w⃗)| = |u⃗ · (w⃗ × v⃗)| = |(u⃗× v⃗) · w⃗| , etc.

Example 11.4.14 Finding the volume of parallelepiped.

Find the volume of the parallelepiped defined by the vectors u⃗ =
⟨1, 1, 0⟩, v⃗ = ⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.
Solution. We apply Equation (11.4.2). We first find v⃗ × w⃗ = ⟨1, 1,−1⟩.
Then

|u⃗ · (v⃗ × w⃗)| = |⟨1, 1, 0⟩ · ⟨1, 1,−1⟩| = 2.

So the volume of the parallelepiped is 2 cubic units.

Figure 11.4.15 A parallelepiped in Ex-
ample 11.4.14

While this application of the Triple Scalar Product is interesting, it is not used
all that often: parallelepipeds are not a common shape in physics and engineer-
ing. The last application of the cross product is very applicable in engineering.

Torque. Torque is a measure of the turning force applied to an object. A classic
scenario involving torque is the application of awrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in
a direction orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek
letter τ , or tau, and has units of N·m, a Newton–meter, or ft·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulting torque is

τ⃗ = ℓ⃗× F⃗ . (11.4.3)

Example 11.4.16 Computing torque.

A lever of length 2ft makes an angle with the horizontal of 45◦. Find the
resulting torque when a force of 10lb is applied to the end of the level
where:

ℓ⃗

90◦

F⃗

ℓ⃗

60◦

F⃗

Figure 11.4.17 Showing a force being
applied to a lever in Example 11.4.16

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Fig-
ure 11.4.17.

Solution.

1. We start by determining vectors for the force and lever arm. Since
the lever armmakes a 45◦ angle with the horizontal and is 2ft long,
we can state that ℓ⃗ = 2 ⟨cos(45◦), sin(45◦)⟩ =

〈√
2,
√
2
〉
. Since

the force vector is perpendicular to the lever arm (as seen in the
left hand side of Figure 11.4.17), we can conclude it is making an
angle of −45◦ with the horizontal. As it has a magnitude of 10lb,
we can state F⃗ = 10 ⟨cos(−45◦), sin(−45◦)⟩ =

〈
5
√
2,−5

√
2
〉
.

Using Equation (11.4.3) to find the torque requires a cross product.
We again let the third component of each vector be 0 and compute
the cross product:

τ⃗ = ℓ⃗× F⃗

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_crossp6.html
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=
〈√

2,
√
2, 0
〉
×
〈
5
√
2,−5

√
2, 0
〉

= ⟨0, 0,−20⟩

This clearly has a magnitude of 20 ft-lb. We can view the force
and lever arm vectors as lying “on the page”; our computation of τ⃗
shows that the torque goes “into the page.” This follows the Right
Hand Rule of the cross product, and it also matches well with the
example of the wrench turning the bolt. Turning a bolt clockwise
moves it in.

2. Our lever arm can still be represented by ℓ⃗ =
〈√

2,
√
2
〉
. As our

force vector makes a 60◦ angle with ℓ⃗, we can see (referencing the
right hand side of the figure) that F⃗ makes a−15◦ angle with the
horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =

〈
5(1 +

√
3)√

2
,
5(−1 +

√
3)√

2

〉
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product
to find the torque:

τ⃗ = ℓ⃗× F⃗

=
〈√

2,
√
2, 0
〉
×

〈
5(1 +

√
3)√

2
,
5(−1 +

√
3)√

2
, 0

〉
=
〈
0, 0,−10

√
3
〉

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are or-
thogonal, themagnitude of force is greater than when the vectors
are not orthogonal.

While the cross product has a variety of applications (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equations of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
matics. We study lines and planes in the next two sections.
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11.4.3 Exercises

Terms and Concepts

1. The cross product of two vectors is a , not a scalar.

2. One can visualize the direction of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”
4. True or False? A fundamental principle of the cross product is that u⃗ × v⃗ is orthogonal to u⃗ and v⃗. (□ True

□ False)

5. is a measure of the turning force applied to an object.

6. T/F: If u⃗ and v⃗ are parallel, then u⃗× v⃗ = 0⃗.

Problems

Exercise Group. In the following exercises, vectors u⃗ and v⃗ are given. Compute u⃗ × v⃗ and check that this vector is
orthogonal to both u⃗ and v⃗.

7. Let u⃗ = ⟨3, 2,−2⟩ , v⃗ = ⟨0, 1, 5⟩ . 8. Let u⃗ = ⟨5,−4, 3⟩ , v⃗ = ⟨2,−5, 1⟩ .
9. Let u⃗ = ⟨4,−5,−5⟩ , v⃗ = ⟨3, 3, 4⟩ . 10. Let u⃗ = ⟨−4, 7,−10⟩ , v⃗ = ⟨4, 4, 1⟩ .
11. Let u⃗ = ⟨1, 0, 1⟩ , v⃗ = ⟨5, 0, 7⟩ . 12. Let u⃗ = ⟨1, 5,−4⟩ , v⃗ = ⟨−2,−10, 8⟩ .
13. u⃗ = ⟨a, b, 0⟩, v⃗ = ⟨c, d, 0⟩ 14. u⃗ = ı̂, v⃗ = ȷ̂.

Check this is orthogonal to both u⃗ and v⃗.

15. u⃗ = ı̂, v⃗ = k̂. 16. u⃗ = ȷ̂, v⃗ = k̂.
u⃗× v⃗ =

17. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗.

18. Pick any vectors u⃗, v⃗ and w⃗ in R3 and show that u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗.

Exercise Group. In the following exercises, the magnitudes of vectors u⃗ and v⃗ in R3 are given, along with the angle
θ between them. Use this information to find the magnitude of u⃗× v⃗.

19. If ∥u⃗∥ = 2, ∥v⃗∥ = 5, and θ = 30◦ is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

20. If ∥u⃗∥ = 3, ∥v⃗∥ = 7, and θ = π/2 is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

21. If ∥u⃗∥ = 3, ∥v⃗∥ = 4, and θ = π is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

22. If ∥u⃗∥ = 2, ∥v⃗∥ = 5, and θ = 5π/6 is the angle
between u⃗ and v⃗, then ∥u⃗× v⃗∥ =

Exercise Group. In the following exercises, find the area of the parallelogram defined by the given vectors.
23. Find the area of the parallelogram defined by

u⃗ = ⟨1, 1, 2⟩ , and v⃗ = ⟨2, 0, 3⟩ .
24. Find the area of the parallelogram defined by

u⃗ = ⟨−2, 1, 5⟩ , and v⃗ = ⟨−1, 3, 1⟩ .
25. Find the area of the parallelogram defined by

u⃗ = ⟨1, 2⟩ , and v⃗ = ⟨2, 1⟩ .
26. Find the area of the parallelogram defined by

u⃗ = ⟨2, 0⟩ , and v⃗ = ⟨0, 3⟩ .

Exercise Group. In the following exercises, find the area of the triangle with the given vertices.
27. Find the area of the triangle with vertices

(0, 0, 0), (1, 3,−1) and (2, 1, 1).
28. Find the area of the triangle with vertices

(5, 2,−1), (3, 6, 2) and (1, 0, 4).
29. Find the area of the triangle with vertices (1, 1),

(1, 3) and (2, 2).
30. Find the area of the triangle with vertices (3, 1),

(1, 2) and (4, 3).

Exercise Group. In the following exercises, find the area of the quadrilateral with the given vertices. (Hint: break the
quadrilateral into two triangles.)
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31. Find the area of the quadrilateral with vertices
(0, 0), (1, 2), (3, 0), and (4, 3).

32. Find the area of the quadrilateral with vertices
(0, 0, 0), (2, 1, 1), (−1, 2,−8), and (1,−1, 5).

Exercise Group. In the following exercises, find the volume of the parallelepiped defined by the given vectors.
33. Find the volume of the parallelepiped defined

by u⃗ = ⟨1, 1, 1⟩ , v⃗ = ⟨1, 2, 3⟩ , and
w⃗ = ⟨1, 0, 1⟩ .

34. Find the volume of the parallelepiped defined
by u⃗ = ⟨−1, 2, 1⟩ , v⃗ = ⟨2, 2, 1⟩ , and
w⃗ = ⟨3, 1, 3⟩ .

Exercise Group. In the following exercises, find a unit vector orthogonal to both u⃗ and v⃗.
35. Find a unit vector orthogonal to both u⃗ = ⟨1, 1, 1⟩ , and v⃗ = ⟨2, 0, 1⟩ .
36. Find a unit vector orthogonal to both u⃗ = ⟨1,−2, 1⟩ , and v⃗ = ⟨3, 2, 1⟩ .
37. Find a unit vector orthogonal to both u⃗ = ⟨5, 0, 2⟩ , and v⃗ = ⟨−3, 0, 7⟩ .
38. Find a unit vector orthogonal to both u⃗ = ⟨1,−2, 1⟩ , and v⃗ = ⟨−2, 4,−2⟩ .

39. A bicycle rider applies 150lb of force, straight down, onto a pedal that extends 7in horizontally from the crank-
shaft. Find the magnitude of the torque applied to the crankshaft.

40. A bicycle rider applies 150lb of force, straight down, onto a pedal that extends 7in from the crankshaft, making
a 30◦ angle with the horizontal. Find the magnitude of the torque applied to the crankshaft.

41. To turn a stubborn bolt, 80lb of force is applied to a 10in wrench. What is the maximum amount of torque that
can be applied to the bolt?

42. To turn a stubborn bolt, 80lb of force is applied to a 10in wrench in a confined space, where the direction of
applied force makes a 10◦ angle with the wrench. How much torque is subsequently applied to the wrench?

43. Show, using the definition of the Cross Product, that u⃗ · (u⃗ × v⃗) = 0; that is, that u⃗ is orthogonal to the cross
product of u⃗ and v⃗.

44. Show, using the definition of the Cross Product, that u⃗× u⃗ = 0⃗.
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11.5 Lines

To find the equation of a line in the xy-plane, we need two pieces of information:
a point and the slope. The slope conveys direction information. As vertical lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direction of the line.
This holds true for lines in space.

11.5.1 Lines in space
Let P be a point in space, let p⃗ be the vector with initial point at the origin and
terminal point at P (i.e., p⃗ “points” to P ), and let d⃗ be a vector. Consider the
points on the line through P in the direction of d⃗.

Clearly one point on the line is P ; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direction parallel to d⃗. For instance, starting at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 11.5.1 where certain
points along the line are indicated.

Figure 11.5.1 Defining a line in space

The figure illustrates how every point on the line can be obtained by starting
with p⃗ and moving a certain distance in the direction of d⃗. That is, we can define
the line as a function of t:

ℓ⃗(t) = p⃗+ t d⃗. (11.5.1)

In many ways, this is not a new concept. Compare Equation (11.5.1) to the
familiar “y = mx+ b” equation of a line:

y = b + mx ℓ⃗(t) = p⃗ + td⃗

Starting Point Direction

How Far To Go In That Direction

Figure 11.5.2 Understanding the vec-
tor equation of a line

The equations exhibit the same structure: they give a starting point, define
a direction, and state how far in that direction to travel.

Equation (11.5.1) is an example of a vector-valued function; the input of the
function is a real number and the output is a vector. Wewill cover vector-valued
functions extensively in the next chapter.

There are otherways to represent a line. LetP = (x0, y0, z0), p⃗ = ⟨x0, y0, z0⟩,
and let d⃗ = ⟨a, b, c⟩. Then the equation of the line through P in the direction of
d⃗ is:

ℓ⃗(t) = p⃗+ td⃗

= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩ .

The last line states that the x values of the line are given by x = x0+at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equations, taken together, are the parametric equations of the line
through p⃗ in the direction of d⃗.

Finally, each of the equations for x, y and z above contain the variable t. We
can solve for t in each equation:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y − y0

b
,

z = z0 + ct ⇒ t =
z − z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equations of the line through
p⃗ in the direction of d⃗:

x− x0

a
=

y − y0
b

=
z − z0

c
.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_lines_intro.html
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Each representation has its own advantages, depending on the context. We
summarize these three forms in the following definition, then give examples of
their use.

Definition 11.5.3 Equations of Lines in Space.

Let P = (x0, y0, z0) and let p⃗ = ⟨x0, y0, z0⟩. Consider the line in space
that passes through P in the direction of d⃗ = ⟨a, b, c⟩.

1. The vector equation of the line is

ℓ⃗(t) = p⃗+ td⃗.

2. The parametric equations of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equations of the line are

x− x0

a
=

y − y0
b

=
z − z0

c
.

Example 11.5.4 Finding the equation of a line.

Give all three equations, as given in Definition 11.5.3, of the line through
P = (2, 3, 1) in the direction of d⃗ = ⟨−1, 1, 2⟩. Does the point Q =
(−1, 6, 6) lie on this line?
Solution. We identify the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definition, we have

• the vector equation of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equations of the line are

x = 2− t, y = 3 + t, z = 1 + 2t; and

• the symmetric equations of the line are
x− 2

−1
=

y − 3

1
=

z − 1

2
.

Figure 11.5.5 Graphing a line in Exam-
ple 11.5.4

The first two equations of the line are useful when a t value is given:
one can immediately find the corresponding point on the line. These
forms are good when calculating with a computer; most software pro-
grams easily handle equations in these formats. (For instance, the
graphics program that made Figure 11.5.5 can be given the input
“(2-t,3+t,1+2*t)” for−1 ≤ t ≤ 3.).
Does the pointQ = (−1, 6, 6) lie on the line? The graph in Figure 11.5.5
makes it clear that it does not. We can answer this question without the
graphusing any of the three equation forms. Of the three, the symmetric
equations are probably best suited for this task. Simply plug in the values
of x, y and z and see if equality is maintained:

−1− 2

−1

?
=

6− 3

1

?
=

6− 1

2
⇒ 3 = 3 ̸= 2.5.

We see thatQ does not lie on the line as it did not satisfy the symmetric
equations.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_lines1.html
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Example 11.5.6 Finding the equation of a line through two points.

Find the parametric equations of the line through the points P =
(2,−1, 2) andQ = (1, 3,−1).
Solution. Recall the statementmade at the beginning of this section: to
find the equation of a line, we need a point and a direction. We have two
points; either one will suffice. The direction of the line can be found by
the vector with initial point P and terminal pointQ:

−−→
PQ = ⟨−1, 4,−3⟩.

The parametric equations of the line ℓ through P in the direction of
−−→
PQ

are:
ℓ : x = 2− ty = −1 + 4tz = 2− 3t.

Figure 11.5.7 A graph of the line in Ex-
ample 11.5.6

A graph of the points and line are given in Figure 11.5.7. Note how in the
given parametrization of the line, t = 0 corresponds to the point P , and
t = 1 corresponds to the point Q. This relates to the understanding of
the vector equation of a line described in Figure 11.5.2. The parametric
equations “start” at the point P , and t determines how far in the direc-
tion of

−−→
PQ to travel. When t = 0, we travel 0 lengths of

−−→
PQ; when

t = 1, we travel one length of
−−→
PQ, resulting in the pointQ.

11.5.2 Parallel, Intersecting and Skew Lines
In the plane, two distinct lines can either be parallel or they will intersect at
exactly one point. In space, given equations of two lines, it can sometimes be
difficult to tell whether the lines are distinct or not (i.e., the same line can be
represented in differentways). Given lines ℓ⃗1(t) = p⃗1+td⃗1 and ℓ⃗2(t) = p⃗2+td⃗2,
we have four possibilities: ℓ⃗1 and ℓ⃗2 are

the same line they share all points
intersecting lines they share only 1 point;

parallel lines d⃗1 ∥ d⃗2, no points in common;

skew lines d⃗1 ∦ d⃗2, no points in common.

The next two examples investigate these possibilities.

Example 11.5.8 Comparing lines.

Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :

x = 1 + 3t

y = 2− t

z = t

ℓ2 :

x = −2 + 4s

y = 3 + s

z = 5 + 2s

.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel,
or skew.
Solution. We start by looking at the directions of each line. Line ℓ1 has
the direction given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direction given
by d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence
ℓ1 and ℓ2 are not the same line, nor are they parallel. Figure 11.5.9 veri-
fies this fact (where the points and directions indicated by the equations
of each line are identified).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_lines6.html


CHAPTER 11. VECTORS 651

Figure 11.5.9 Sketching the lines from
Example 11.5.8

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respec-
tive x, y and z values are the same. That is, we want s and t such that:

1 + 3t = −2 + 4s

2− t = 3 + s

t = 5 + 2s

.

This is a relatively simple system of linear equations. Since the last equa-
tion is already solved for t, substitute that value of t into the equation
above it:

2− (5 + 2s) = 3 + s ⇒ s = −2, t = 1.

A key to remember is that we have three equations; we need to check if
s = −2, t = 1 satisfies the first equation as well:

1 + 3(1) ̸= −2 + 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew.

Example 11.5.10 Comparing lines.

Consider lines ℓ1 and ℓ2, given in parametric equation form:

ℓ1 :

x = −0.7 + 1.6t

y = 4.2 + 2.72t

z = 2.3− 3.36t

ℓ2 :

x = 2.8− 2.9s

y = 10.15− 4.93s

z = −5.05 + 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel,
or skew.
Solution. It is obviously very difficult to simply look at these equations
and discern anything. This is done intentionally. In the “real world,”
most equations that are used do not have nice, integer coefficients.
Rather, there are lots of digits after the decimal and the equations can
look “messy.”
We again start by deciding whether or not each line has the same direc-
tion. The direction of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the
direction of ℓ2 is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not
clear through observation whether two vectors are parallel or not, the
standard way of determining this is by comparing their respective unit
vectors. Using a calculator, we find:

u⃗1 =
d⃗1∥∥∥d⃗1∥∥∥ = ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2∥∥∥d⃗2∥∥∥ = ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal
to 4 decimal places). In most situations, it would suffice to conclude that
the lines are at least parallel, if not the same. One way to be sure is to
rewrite d⃗1 and d⃗2 in terms of fractions, not decimals. We have

d⃗1 =

〈
16

10
,
272

100
,−336

100

〉
d⃗2 =

〈
−29

10
,−493

100
,
609

100

〉
.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_lines2.html
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One can then find the magnitudes of each vector in terms of fractions,
then compute the unit vectors likewise. After a lot of manual arithmetic
(or after briefly using a computer algebra system), one finds that

u⃗1 =

〈√
10

83
,

17√
830

,− 21√
830

〉
u⃗2 =

〈
−
√

10

83
,− 17√

830
,

21√
830

〉
.

We can now say without equivocation that these lines are parallel.
Are they the same line? The parametric equations for a line describe
one point that lies on the line, so we know that the point P1 =
(−0.7, 4.2, 2.3) lies on ℓ1. To determine if this point also lies on ℓ2, plug
in the x, y and z values of P1 into the symmetric equations for ℓ2:

(−0.7)− 2.8

−2.9

?
=

(4.2)− 10.15

−4.93

?
=

(2.3)− (−5.05)

6.09

1.2069 = 1.2069 = 1.2069.

Figure 11.5.11 Graphing the lines in
Example 11.5.10

The point P1 lies on both lines, so we conclude they are the same line,
just parametrized differently. Figure 11.5.11 graphs this line along with
the points and vectors described by the parametric equations. Note how
d⃗1 and d⃗2 are parallel, though point in opposite directions (as indicated
by their unit vectors above).

11.5.3 Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + td⃗ in space, it is often useful to know
the distance from the point to the line. (Here we use the standard definition
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) Identifying p⃗ with the point P , Figure 11.5.12 will help establish a general
method of computing this distance h.

d⃗

Q

P

h−−→
PQ

θ

Figure 11.5.12 Establishing the dis-
tance from a point to a line

From trigonometry, we know h =
∥∥∥−−→PQ

∥∥∥ sin(θ). We have a similar identity
involving the cross product:

∥∥∥−−→PQ× d⃗
∥∥∥ =

∥∥∥−−→PQ
∥∥∥ ∥∥∥d⃗∥∥∥ sin(θ). Divide both sides

of this latter equation by
∥∥∥d⃗∥∥∥ to obtain h:

h =

∥∥∥−−→PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥ . (11.5.2)

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1+ td⃗1 and ℓ⃗2(t) = p⃗2+ td⃗2 be given, as shown in Figure 11.5.13.
To find the direction orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projection of

−−−→
P1P2 onto c⃗ is the

distance h we seek:

h =
∥∥∥proj⃗c −−−→P1P2

∥∥∥
=

∥∥∥∥∥
−−−→
P1P2 · c⃗
c⃗ · c⃗

c⃗

∥∥∥∥∥

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_lines3.html
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=

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥2
∥c⃗∥

=

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥
.

Figure 11.5.13 Establishing the dis-
tance between lines

A problem in the Exercise section is to show that this distance is 0 when the
lines intersect. Note the use of the Triple Scalar Product:

−−−→
P1P2 · c⃗ =

−−−→
P1P2 ·(d⃗1×

d⃗2).
The following Key Idea restates these two distance formulas.

Key Idea 11.5.14 Distances to Lines.

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h
from a pointQ to the line ℓ is:

h =

∥∥∥−−→PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥ .

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥
.

Example 11.5.15 Finding the distance from a point to a line.

Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) =
⟨1,−1, 1⟩+ t ⟨2, 3, 1⟩.
Solution. The equation of the line gives us the point P = (1,−1, 1)

that lies on the line, hence
−−→
PQ = ⟨0, 2, 2⟩. The equation also gives

d⃗ = ⟨2, 3, 1⟩. Following Key Idea 11.5.14, we have the distance as

h =

∥∥∥−−→PQ× d⃗
∥∥∥∥∥∥d⃗∥∥∥

=
∥⟨−4, 4,−4⟩∥√

14

=
4
√
3√

14
≈ 1.852.

The pointQ is approximately 1.852 units from the line ℓ⃗(t).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_lines_dist2.html
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Example 11.5.16 Finding the distance between lines.

Find the distance between the lines

ℓ1 :

x = 1 + 3t

y = 2− t

z = t

ℓ2 :

x = −2 + 4s

y = 3 + s

z = 5 + 2s.

Solution. These are the sames lines as given in Example 11.5.8, where
we showed them to be skew. The equations allow us to identify the
following points and vectors:

P1 = (1, 2, 0)P2 = (−2, 3, 5) ⇒
−−−→
P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 11.5.14 we have the distance h between the two lines is

h =

∣∣∣−−−→P1P2 · c⃗
∣∣∣

∥c⃗∥

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart.

One of the key points to understand from this section is this: to describe a
line, we need a point and a direction. Whenever a problem is posed concern-
ing a line, one needs to take whatever information is offered and glean point
and direction information. Many questions can be asked (and are asked in the
Exercise section) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next section. Many
complex three dimensional objects are studied by approximating their surfaces
with lines and planes.
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11.5.4 Exercises

Terms and Concepts

1. To find an equation of a line, what two pieces of information are needed?

2. Two distinct lines in the plane can intersect or be .

3. Two distinct lines in space can intersect, be or be .

4. Use your own words to describe what it means for two lines in space to be skew.

Problems

Exercise Group. Write the vector, parametric and symmetric equations of the lines described.
5. Passes through P = (2,−4, 1), parallel to

d⃗ = ⟨9, 2, 5⟩.
6. ℓ is a line that passes through P = (6, 1, 7),

parallel to d⃗ = ⟨−3, 2, 5⟩ .
7. Passes through P = (2, 1, 5) and

Q = (7,−2, 4).
8. ℓ is a line that passes through P = (1,−2, 3)

andQ = (5, 5, 5).
9. Passes through P = (0, 1, 2) and orthogonal to

both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. ℓ is a line that passes through P = (5, 1, 9) and
is orthogonal to both d⃗1 = ⟨1, 0, 1⟩ and
d⃗2 = ⟨2, 0, 3⟩ .

11. ℓ is a line that passes through the intersection
of ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ⃗2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩ , and is
orthogonal to both lines.

12. ℓ is a line that passes through the intersection

of ℓ⃗1(t) =


x = t

y = −2 + 2t

z = 1 + t

and

ℓ⃗2(t) =


x = 2 + t

y = 2− t

z = 3 + 2t

, and is orthogonal to

both lines.
13. Passes through P = (1, 1), parallel to

d⃗ = ⟨2, 3⟩.
14. ℓ is a line that passes through P = (−2, 5),

parallel to d⃗ = ⟨0, 1⟩ .

Exercise Group. Determine if the described lines are the same line, parallel lines, intersecting or skew lines. If
intersecting, give the point of intersection.

15. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩ and
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩ .

16. ℓ⃗1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩ and
ℓ⃗2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩ .

17. ℓ⃗1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ⃗2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩ and
ℓ⃗2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩ .

19. ℓ⃗1(t) =


x = 1 + 2t

y = 3− 2t

z = t

and

ℓ⃗2(t) =


x = 3− t

y = 3 + 5t

z = 2 + 7t

.

20. ℓ⃗1(t) =


x = 1.1 + 0.6t

y = 3.77 + 0.9t

z = −2.3 + 1.5t

and

ℓ⃗2(t) =


x = 3.11 + 3.4t

y = 2 + 5.1t

z = 2.5 + 8.5t

.
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21. ℓ1 =


x = 0.2 + 0.6t

y = 1.33− 0.45t

z = −4.2 + 1.05t

and

ℓ2 =


x = 0.86 + 9.2t

y = 0.835− 6.9t

z = −3.045 + 16.1t

22. ℓ⃗1(t) =


x = 0.1 + 1.1t

y = 2.9− 1.5t

z = 3.2 + 1.6t

and

ℓ⃗2(t) =


x = 4− 2.1t

y = 1.8 + 7.2t

z = 3.1 + 1.1t

.

Exercise Group. Find the distance from the point to the line.

23. Q = (1, 1, 1), ℓ⃗(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩ 24. Find the distance from the pointQ = (2, 5, 6)

to the line ℓ⃗(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩ .

25. Q = (0, 3), ℓ⃗(t) = ⟨2, 0⟩+ t ⟨1, 1⟩ 26. Find the distance from the pointQ = (1, 1) to
the line ℓ⃗(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩ .

Exercise Group. Find the distance between the two lines.

27. ℓ⃗1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ⃗2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. Find the distance between the line
ℓ⃗1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩ and the line
ℓ⃗2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩ .

Exercise Group. The following exercises explore special cases of the distance formulas found in Key Idea 11.5.14.

29. LetQ be a point on the line ℓ⃗(t). Show why the
distance formula correctly gives the distance
from the point to the line as 0.

30. Let lines ℓ⃗1(t) and ℓ⃗2(t) be intersecting lines.
Show why the distance formula correctly gives
the distance between these lines as 0.

31. Let lines ℓ⃗1(t) and ℓ⃗2(t) be parallel.

(a) Show why the distance formula for
distance between lines cannot be used as
stated to find the distance between the
lines.

(b) Show why letting c⃗ = (
−−−→
P1P2 × d⃗2)× d⃗2

allows one to the use the formula.

(c) Show how one can use the formula for
the distance between a point and a line to
find the distance between parallel lines.
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11.6 Planes

Any flat surface, such as a wall, table top or stiff piece of cardboard can be
thought of as representing part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and stick it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 11.6.1.

Figure 11.6.1 Illustrating defining a
plane with a sheet of cardboard and
a nail

This nail provides a “handle” for the cardboard. Moving the cardboard around
movesP to different locations in space. Tilting the nail (but keepingP fixed) tilts
the cardboard. Both moving and tilting the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the location of P in space, and 2)
the direction of the nail.

The previous section showed that one can define a line given a point on the
line and the direction of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direction the plane “faces” (using the description above, the
direction of the nail). Once again, the direction information will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane” mean? Choose any two points
P andQ in the plane, and consider the vector

−−→
PQ. We say a vector n⃗ is orthog-

onal to the plane if n⃗ is perpendicular to
−−→
PQ for all choices of P andQ; that is,

if n⃗ ·
−−→
PQ = 0 for all P andQ.
This gives us way of writing an equation describing the plane. Let P =

(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A pointQ = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if,
−−→
PQ is orthogonal to n⃗. Knowing

−−→
PQ = ⟨x− x0, y − y0, z − z0⟩, consider:

−−→
PQ · n⃗ = 0

⟨x− x0, y − y0, z − z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0. (11.6.1)

Equation (11.6.1) defines an implicit functiondescribing the plane. More algebra
produces:

ax+ by + cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by + cz = d. (11.6.2)

As long as c ̸= 0, we can solve for z:

z =
1

c
(d− ax− by). (11.6.3)

Equation (11.6.3) is especially useful as many computer programs can graph
functions in this form. Equations (11.6.1) and (11.6.2) have specific names, given
next.

Definition 11.6.2 Equations of a Plane in Standard and General Forms.

The plane passing through the pointP = (x0, y0, z0)with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equation with standard form

a(x− x0) + b(y − y0) + c(z − z0) = 0;

the equation’s general form is

ax+ by + cz = d.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_planes_intro.html
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A key to remember throughout this section is this: to find the equation of a
plane, we need a point and a normal vector. We will give several examples of
finding the equation of a plane, and in each one different types of information
are given. In each case, we need to use the given information to find a point on
the plane and a normal vector.

Example 11.6.3 Finding the equation of a plane.

Write the equation of the plane that passes through the points P =
(1, 1, 0),Q = (1, 2,−1) andR = (0, 1, 2) in standard form.
Solution. We need a vector n⃗ that is orthogonal to the plane. Since P ,
Q and R are in the plane, so are the vectors

−−→
PQ and

−→
PR;

−−→
PQ×

−→
PR is

orthogonal to
−−→
PQ and

−→
PR and hence the plane itself.

It is straightforward to compute n⃗ =
−−→
PQ ×

−→
PR = ⟨2, 1, 1⟩. We can

use any point we wish in the plane (any of P , Q or R will do) and we
arbitrarily choose P . Following Definition 11.6.2, the equation of the
plane in standard form is

2(x− 1) + (y − 1) + z = 0.

The plane is sketched in Figure 11.6.4.

Figure 11.6.4 Sketching the plane in
Example 11.6.3

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example 11.6.5 Finding the equation of a plane.

Verify that lines ℓ1 and ℓ2, whose parametric equations are given below,
intersect, then give the equation of the plane that contains these two
lines in general form.

ℓ1 :

x = −5 + 2s

y = 1 + s

z = −4 + 2s

ℓ2 :

x = 2 + 3t

y = 1− 2t

z = 1 + t

Solution. The lines clearly are not parallel. If they do not intersect, they
are skew, meaning there is not a plane that contains them both. If they
do intersect, there is such a plane.
To find their point of intersection, we set the x, y and z equations equal
to each other and solve for s and t:

−5 + 2s = 2 + 3t

1 + s = 1− 2t

−4 + 2s = 1 + t

⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the directions of lines ℓ1 and
ℓ2, respectively. A normal vector to the plane containing these the two
lines will also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector
n⃗ by computing n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.
We can pick any point in the plane with which to write our equation;
each line gives us infinite choices of points. We choose P , the point of

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_planes1.html
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intersection. We follow Definition 11.6.2 to write the plane’s equation
in general form:

5(x+ 1) + 4(y − 3)− 7z = 0

5x+ 5 + 4y − 12− 7z = 0

5x+ 4y − 7z = 7.

The plane’s equation in general form is 5x+ 4y − 7z = 7; it is sketched
in Figure 11.6.6.

Figure 11.6.6 Sketching the plane in
Example 11.6.5

Example 11.6.7 Finding the equation of a plane.

Give the equation, in standard form, of the plane that passes through the
point P = (−1, 0, 1) and is orthogonal to the line with vector equation
ℓ⃗(t) = ⟨−1, 0, 1⟩+ t ⟨1, 2, 2⟩.
Solution. As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direction of the line given by d⃗ = ⟨1, 2, 2⟩. We use
this as our normal vector. Thus the plane’s equation, in standard form,
is

(x+ 1) + 2y + 2(z − 1) = 0.

The line and plane are sketched in Figure 11.6.8.

Figure 11.6.8 The line and plane in Ex-
ample 11.6.7

Example 11.6.9 Finding the intersection of two planes.

Give the parametric equations of the line that is the intersection of the
planes p1 and p2, where:

p1 : x− (y − 2) + (z − 1) = 0

p2 : −2(x− 2) + (y + 1) + (z − 3) = 0

Solution. To find an equation of a line, we need a point on the line and
the direction of the line.
We can find a point on the line by solving each equation of the planes
for z:

p1 : z = −x+ y − 1

p2 : z = 2x− y − 2

We can now set these two equations equal to each other (i.e., we are
finding values of x and y where the planes have the same z value):

−x+ y − 1 = 2x− y − 2

2y = 3x− 1

y =
1

2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that
y = 1. We can now use the equations of either plane to find z: when
x = 1 and y = 1, z = −1 on both planes. We have found a point P on
the line: P = (1, 1,−1).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_planes2.html
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We now need the direction of the line. Since the line lies in each plane,
its direction is orthogonal to a normal vector for each plane. Consid-
ering the equations for p1 and p2, we can quickly determine their nor-
mal vectors. For p1, n⃗1 = ⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩. A
direction orthogonal to both of these directions is their cross product:
d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩.
The parametric equations of the line through P = (1, 1,−1) in the di-
rection of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1y = −3t+ 1z = −t− 1.

The planes and line are graphed in Figure 11.6.10.

Figure 11.6.10 Graphing the planes
and their line of intersection in Exam-
ple 11.6.9

Example 11.6.11 Finding the intersection of a plane and a line.

Find the point of intersection, if any, of the line ℓ(t) = ⟨3,−3,−1⟩ +
t ⟨−1, 2, 1⟩ and the plane with equation in general form 2x+ y+ z = 4.
Solution. The equation of the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equation of the line shows that
the linemoves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal,
we know there is a point of intersection. (If there were orthogonal, it
would mean that the plane and line were parallel to each other, either
never intersecting or the line was in the plane itself.)
To find the point of intersection, we need to find a t value such that ℓ(t)
satisfies the equation of the plane. Rewriting the equation of the line
with parametric equations will help:

ℓ(t) =


x = 3− t

y = −3 + 2t

z = −1 + t

.

Replacing x, y and z in the equation of the plane with the expressions
containing t found in the equation of the line allows us to determine a t
value that indicates the point of intersection:

2x+ y + z = 4

2(3− t) + (−3 + 2t) + (−1 + t) = 4

t = 2.

When t = 2, the point on the line satisfies the equation of the plane;
that point is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of
intersection between the plane and the line, illustrated in Figure 11.6.12.

Figure 11.6.12 Illustrating the inter-
section of a line and a plane in Exam-
ple 11.6.11

11.6.1 Distances
Just as it was useful to find distances between points and lines in the previous
section, it is also often necessary to find the distance from a point to a plane.

Consider Figure 11.6.13, where a plane with normal vector n⃗ is sketched
containing a point P and a pointQ, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projection of

−−→
PQ

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_planes4.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_planes5.html
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onto n⃗. That is, we want:

∣∣∣∣∣∣ proj n⃗ −−→PQ
∣∣∣∣∣∣ = ∣∣∣∣∣

∣∣∣∣∣ n⃗ ·
−−→
PQ

∥n⃗∥2
n⃗

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥
(11.6.4)

Equation (11.6.4) is important as it does more than just give the distance
between a point and a plane. We will see how it allows us to find several other
distances as well: the distance between parallel planes and the distance from a
line and a plane. Because Equation (11.6.4) is important, we restate it as a Key
Idea.

Figure 11.6.13 Illustrating finding the
distance from a point to a plane

Key Idea 11.6.14 Distance from a Point to a Plane.

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h fromQ to the plane is

h =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥
,

where P is any point in the plane.

Example 11.6.15 Distance between a point and a plane.

Find the distance between the point Q = (2, 1, 4) and the plane with
equation 2x− 5y + 6z = 9.
Solution. Using the equation of the plane, we find the normal vec-
tor n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y
be anything we choose, then let z be whatever satisfies the equation.
Letting x and y be 0 seems simple; this makes z = 1.5. Thus we let
P = ⟨0, 0, 1.5⟩, and

−−→
PQ = ⟨2, 1, 2.5⟩.

The distance h fromQ to the plane is given by Key Idea 11.6.14:

h =

∣∣∣n⃗ ·
−−→
PQ
∣∣∣

∥n⃗∥

=
|⟨2,−5, 6⟩ · ⟨2, 1, 2.5⟩|

∥⟨2,−5, 6⟩∥

=
|14|√
65

≈ 1.74.

We can use Key Idea 11.6.14 to find other distances. Given two parallel
planes, we can find the distance between these planes by letting P be a point
on one plane and Q a point on the other. If ℓ is a line parallel to a plane, we
can use the Key Idea to find the distance between them as well: again, let P be
a point in the plane and let Q be any point on the line. (One can also use Key
Idea 11.5.14.) The Exercise section contains problems of these types.

These past two sections have not explored lines and planes in space as an ex-
ercise of mathematical curiosity. However, there are many, many applications
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraft may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air friction. Many

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_planes_dist.html
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equations that help determine air flow and heat dissipation are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximating a surface
withmillions of small planes one canmore readilymodel the needed behavior.
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11.6.2 Exercises

Terms and Concepts

1. In order to find the equation of a plane, what two pieces of information must one have?
2. What is the relationship between a plane and one of its normal vectors?

Problems

Exercise Group. In the following exercises, give any two points in the given plane.
3. 2x− 4y + 7z = 2 4. List any two points in the plane with equation

3(x+ 2) + 5(y − 9)− 4z = 0.
5. x = 2 6. List any two points in the plane with equation

4(y + 2)− (z − 6) = 0.

Exercise Group. In the following exercises, give the equation of the described plane in standard and general forms.
7. Passes through (2, 3, 4) and has normal vector

n⃗ = ⟨3,−1, 7⟩.
8. A plane passes through (1, 3, 5) and has normal

vector n⃗ = ⟨0, 2, 4⟩ .
9. Passes through the points (1, 2, 3), (3,−1, 4)

and (1, 0, 1).
10. A plane passes through the points (5, 3, 8),

(6, 4, 9) and (3, 3, 3).
11. Contains the intersecting lines

ℓ⃗1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. A plane contains the intersecting lines
ℓ⃗1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ⃗2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩ .

13. Contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ⃗2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. A plane contains the parallel lines
ℓ⃗1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ⃗2(t) = ⟨2, 2, 2⟩+ t ⟨4, 1, 3⟩ .

15. Contains the point (2,−6, 1) and the line

ℓ⃗(t) =


x = 2 + 5t

y = 2 + 2t

z = −1 + 2t

16. A plane contains the point (5, 7, 3) and the line

ℓ⃗(t) =


x = t

y = t

z = t

.

17. A plane contains the point (5, 7, 3) and is
orthogonal to the line
ℓ⃗(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩ .

18. A plane contains the point (4, 1, 1) and is

orthogonal to the line


x = 4 + 4t

y = 1 + t

z = 1 + t

.

19. A plane contains the point (−4, 7, 2) and is
parallel to the plane
3(x− 2) + 8(y + 1)− 10z = 0.

20. A plane contains the point (1, 2, 3) and is
parallel to the plane x = 5.

Exercise Group. In the following exercises, give the equation of the line that is the intersection of the given planes.
21. p1 : 3(x− 2) + (y − 1) + 4z = 0, and

p2 : 2(x− 1)− 2(y + 3) + 6(z − 1) = 0.
22. Give the equation of the line (in vector form)

that is the intersection of the planes
5(x− 5) + 2(y + 2) + 4(z − 1) = 0, and
3x− 4(y − 1) + 2(z − 1) = 0.

Exercise Group. Find the point of intersection between the line and the plane.
23.

line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩

plane: 5x− y − z = −3

24.

• line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩

• plane: 3x+ y − 2z = 8
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25.

line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩

plane: 3x− 2y − z = 4

26.

• line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩

• plane: 3x− 2y − z = −4

Exercise Group. Find the indicated distance.
27. The distance from the point (1, 2, 3) to the

plane
3(x− 1) + (y − 2) + 5(z − 2) = 0.

28. Find the distance from the point (2, 6, 2) to the
plane 2(x− 1)− y + 4(z + 1) = 0.

29. The distance between the parallel planes
x+ y + z = 0 and
(x− 2) + (y − 3) + (z + 4) = 0

30. Find the distance between the parallel planes
2(x− 1) + 2(y + 1) + (z − 2) = 0 and
2(x− 3) + 2(y − 1) + (z − 3) = 0.

31. Show why if the pointQ lies in a plane, then the distance formula correctly gives the distance from the point to
the plane as 0.

32. How is Exercise 11.5.30 in Section 11.5 easier to answer once we have an understanding of planes?



Chapter 12

Vector Valued Functions

In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathematics. In this chapter, we’ll build on this foun-
dation to define functions whose input is a real number and whose output is a
vector. We’ll see how to graph these functions and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beautiful applications to the study of moving objects.

12.1 Vector-Valued Functions

We are very familiar with real valued functions, that is, functions whose output
is a real number. This section introduces vector-valued functions — functions
whose output is a vector.

Definition 12.1.1 Vector-Valued Functions.

A vector-valued function is a function of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f , g and h are real valued functions.
The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

12.1.1 Evaluating and Graphing Vector-Valued Functions
Evaluating a vector-valued function at a specific value of t is straightforward;
simply evaluate each component function at that value of t. For instance, if
r⃗(t) =

〈
t2, t2 + t− 1

〉
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 12.1.2(a). Plotting lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector-valued function is the set of all terminal points of r⃗(t), where the
initial point of each vector is always the origin. In Figure 12.1.2(b) we sketch the
graph of r⃗; we can indicate individual points on the graph with their respective
vector, as shown.

665
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Figure 12.1.2 Sketching the graph of a vector-valued function
Vector-valued functions are closely related to parametric equations of graphs.

While in both methods we plot points
(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to pro-

duce a graph, in the context of vector-valued functions each such point repre-
sents a vector. The implications of this will be more fully realized in the next
section as we apply calculus ideas to these functions.

Example 12.1.3 Graphing vector-valued functions.

Graph r⃗(t) =

〈
t3 − t,

1

t2 + 1

〉
, for −2 ≤ t ≤ 2. Sketch r⃗(−1) and

r⃗(2).
Solution. We start by making a table of t, x and y values as shown in
Figure 12.1.4(a). Plotting these points gives an indication of what the
graph looks like. In Figure 12.1.4(b), we indicate these points and sketch
the full graph. We also highlight r⃗(−1) and r⃗(2) on the graph.

t t3 − t
1

t2 + 1

−2 −6 1/5
−1 0 1/2
0 0 1

1 0 1/2
2 6 1/5

(a)

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

r⃗(
−
1)

r⃗(2)

x

y

(b)

Figure 12.1.4 Sketching the vector-valued function of Example 12.1.3

Example 12.1.5 Graphing vector-valued functions.

Graph r⃗(t) = ⟨cos(t), sin(t), t⟩ for 0 ≤ t ≤ 4π.
Solution. We can again plot points, but careful consideration of this
function is very revealing. Momentarily ignoring the third component,
we see the x and y components trace out a circle of radius 1 centered
at the origin. Noticing that the z component is t, we see that as the
graph winds around the z-axis, it is also increasing at a constant rate in
the positive z direction, forming a spiral. This is graphed in Figure 12.1.6.
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In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498) is highlighted to help us
understand the graph.

Figure 12.1.6 The graph of r⃗(t) in Ex-
ample 12.1.5

12.1.2 Algebra of Vector-Valued Functions

Definition 12.1.7 Operations on Vector-Valued Functions.

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector-valued
functions in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. cr⃗1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definition holds for vector-valued functions in R3.

This definition states that we add, subtract and scale vector-valued functions
component-wise. Combining vector-valued functions in this way can be very
useful (as well as create interesting graphs).

Example 12.1.8 Adding and scaling vector-valued functions.

Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos(t), sin(t) ⟩ and r⃗(t) = r⃗1(t) +
r⃗2(t). Graph r⃗1(t), r⃗2(t), r⃗(t) and 5r⃗(t) on−10 ≤ t ≤ 10.
Solution. We can graph r⃗1 and r⃗2 easily by plotting points (or just using
technology). Let’s think about each for a moment to better understand
how vector-valued functions work.
We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is,
the function r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector
produces a line in the direction of ⟨0.2, 0.3⟩.
We are familiar with r⃗2(t) = ⟨ cos(t), sin(t) ⟩; it traces out a circle, cen-
tered at the origin, of radius 1. Figure 12.1.9(a) graphs r⃗1(t) and r⃗2(t).
Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos(t) + 0.2t, sin(t) + 0.3t ⟩,
graphed in Figure 12.1.9(b). The linear movement of the line combines
with the circle to create loops that move in the direction of ⟨0.2, 0.3⟩.
(We encourage the reader to experiment by changing r⃗1(t) to ⟨2t, 3t⟩,
etc., and observe the effects on the loops.)
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Figure 12.1.9 Graphing the functions in Example 12.1.8
Multiplying r⃗(t) by 5 scales the function by 5, producing 5r⃗(t) =
⟨5 cos(t) + t, 5 sin(t) + 1.5t⟩, which is graphed in Figure 12.1.9(c) along
with r⃗(t). The new function is “5 times bigger” than r⃗(t). Note how
the graph of 5r⃗(t) in Figure 12.1.9(c) looks identical to the graph of r⃗(t)
in Figure 12.1.9(b). This is due to the fact that the x and y bounds of

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vvf2.html
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the plot in Figure 12.1.9(c) are exactly 5 times larger than the bounds in
Figure 12.1.9(b).

Example 12.1.10 Adding and scaling vector-valued functions.

A cycloid is a graph traced by a point p on a rolling circle, as shown in
Figure 12.1.11. Find an equation describing the cycloid, where the circle
has radius 1.

p

Figure 12.1.11 Tracing a cycloid
Solution. This problem is not very difficult if we approach it in a clever
way. We start by letting p⃗(t) describe the position of the point p on the
circle, where the circle is centered at the origin and only rotates clock-
wise (i.e., it does not roll). This is relatively simple given our previous
experiences with parametric equations; p⃗(t) = ⟨cos(t),− sin(t)⟩.
We now want the circle to roll. We represent this by letting c⃗(t) repre-
sent the location of the center of the circle. It should be clear that the y
component of c⃗(t) should be 1; the center of the circle is always going
to be 1 if it rolls on a horizontal surface.
The x component of c⃗(t) is a linear function of t: f(t) = mt for some
scalarm. When t = 0, f(t) = 0 (the circle starts centered on the y-axis).
When t = 2π, the circle has made one complete revolution, traveling a
distance equal to its circumference, which is also 2π. This gives us a point
on our line f(t) = mt, the point (2π, 2π). It should be clear thatm = 1
and f(t) = t. So c⃗(t) = ⟨t, 1⟩.
We now combine p⃗ and c⃗ together to form the equation of the cycloid:
r⃗(t) = p⃗(t) + c⃗(t) = ⟨cos(t) + t,− sin(t) + 1⟩, which is graphed in
Figure 12.1.12.

2 4 6 8 10 12 14 16

5

10

x

y

Figure 12.1.12 The cycloid in Exam-
ple 12.1.10

12.1.3 Displacement
A vector-valued function r⃗(t) is often used to describe the position of a moving
object at time t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locations r⃗(t0) and r⃗(t1) give no indication of the path taken
between them, but often we only care about the difference of the locations,
r⃗(t1)− r⃗(t0), the displacement.

Definition 12.1.13 Displacement.

Let r⃗(t) be a vector-valued function and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

When the displacement vector is drawn with initial point at r⃗(t0), its ter-
minal point is r⃗(t1). We think of it as the vector which points from a starting
position to an ending position.

Example 12.1.14 Finding and graphing displacement vectors.

Let r⃗(t) =
〈
cos(π2 t), sin(

π
2 t)
〉
. Graph r⃗(t) on −1 ≤ t ≤ 1, and find the

displacement of r⃗(t) on this interval.
Solution. The function r⃗(t) traces out the unit circle, though at a differ-
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ent rate than the “usual” ⟨cos(t), sin(t)⟩ parametrization. At t0 = −1,
we have r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The dis-
placement of r⃗(t) on [−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩.

−1 −0.5 0.5 1

−1

1

d⃗

x

y

Figure 12.1.15 Graphing the displace-
ment of a position function in Exam-
ple 12.1.14

A graph of r⃗(t) on [−1, 1] is given in Figure 12.1.15, along with the dis-
placement vector d⃗ on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi-circular path the object in Example 12.1.14 took,
we can quickly verify that the object ended up a distance of 2 units from its initial
location. That is, we can compute

∥∥∥d⃗∥∥∥ = 2. However, measuring distance from
the starting point is different from measuring distance traveled. Being a semi-
circle, we can measure the distance traveled by this object as π ≈ 3.14 units.
Knowing distance from the starting point allows us to compute average rate of
change.

Definition 12.1.16 Average Rate of Change.

Let r⃗(t) be a vector-valued function, where each of its component func-
tions is continuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

Example 12.1.17 Average rate of change.

Let r⃗(t) =
〈
cos(π2 t), sin(

π
2 t)
〉
as in Example 12.1.14. Find the average

rate of change of r⃗(t) on [−1, 1] and on [−1, 5].
Solution. We computed in Example 12.1.14 that the displacement of
r⃗(t) on [−1, 1] was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t)
on [−1, 1] is:

r⃗(1)− r⃗(−1)

1− (−1)
=

⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi-circular path,
meaning it moved towards the right then moved back to the left, while
climbing slowly, then quickly, then slowly again. On average, however,
it progressed straight up at a constant rate of ⟨0, 1⟩ per unit of time.
We can quickly see that the displacement on [−1, 5] is the same as on
[−1, 1], so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)

5− (−1)
=

⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 times as long” to arrive at the same place, this average rate
of change on [−1, 5] is 1/3 the average rate of change on [−1, 1].

We considered average rates of change in Sections 1.1 and 2.1 as we studied
limits and derivatives. The same is true here; in the following section we apply
calculus concepts to vector-valued functions as we find limits, derivatives, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivative; displacement gives us one application of integration.
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12.1.4 Exercises

Terms and Concepts

1. Vector-valued functions are closely related to of graphs.

2. When sketching vector-valued functions, technically one isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points from a starting position to an ending position.

4. In the context of vector-valued functions, average rate of change is divided by time.

Problems

Exercise Group. In the following exercises, sketch the vector-valued function on the given interval.
5. r⃗(t) =

〈
t2, t2 − 1

〉
, for−2 ≤ t ≤ 2. 6. r⃗(t) =

〈
t2, t3

〉
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
〈
1/t, 1/t2

〉
, for−2 ≤ t ≤ 2. 8. r⃗(t) =

〈
1
10 t

2, sin(t)
〉
, for−2π ≤ t ≤ 2π.

9. r⃗(t) =
〈

1
10 t

2, sin(t)
〉
, for−2π ≤ t ≤ 2π. 10. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

11. r⃗(t) = ⟨3 cos(t), 2 sin(2t)⟩, on [0, 2π]. 12. r⃗(t) = ⟨2 sec(t), tan(t)⟩, on [−π, π].

Exercise Group. In the following exercises, sketch the vector-valued function on the given interval inR3. Technology
may be useful in creating the sketch.

13. r⃗(t) = ⟨2 cos(t), t, 2 sin(t)⟩, on [0, 2π]. 14. r⃗(t) = ⟨3 cos(t), sin(t), t/π⟩ on [0, 2π].
15. r⃗(t) = ⟨cos(t), sin(t), sin(t)⟩ on [0, 2π]. 16. r⃗(t) = ⟨cos(t), sin(t), sin(2t)⟩ on [0, 2π].

Exercise Group. In the following exercises, find ∥r⃗(t)∥.
17. If r⃗(t) =

〈
t, t2

〉
, then

∥r⃗(t)∥ = .
18. r⃗(t) = ⟨5 cos(t), 3 sin(t)⟩.

19. If r⃗(t) = ⟨2 cos(t), 2 sin(t), t⟩ , then
∥r⃗(t)∥ = .

20. r⃗(t) =
〈
cos(t), t, t2

〉
.

Exercise Group. Create a vector-valued function whose graph matches the given description.
21. A circle of radius 2, centered at (1, 2), traced

counter-clockwise once at constant speed on
[0, 2π).

22. A circle of radius 3, centered at (5, 5), traced
clockwise once on [0, 2π].

23. An ellipse, centered at (0, 0) with vertical major
axis of length 10 and minor axis of length 3,
traced once counter-clockwise on [0, 2π].

24. An ellipse, centered at (3,−2) with horizontal
major axis of length 6 and minor axis of length
4, traced once clockwise on [0, 2π].

25. A line through (2, 3) with a slope of 5. 26. A line through (1, 5) with a slope of−1/2.
27. The line through points (1, 2, 3) and (4, 5, 6),

where
r⃗(0) = ⟨1, 2, 3⟩ and r⃗(1) = ⟨4, 5, 6⟩.

28. The line through points (1, 2) and (4, 4), where
r⃗(0) = ⟨1, 2⟩ and r⃗(1) = ⟨4, 4⟩.

29. A vertically oriented helix with radius of 2 that
starts at (2, 0, 0) and ends at (2, 0, 4π) after one
revolution on [0, 2π].

30. A vertically oriented helix with radius of 3 that
starts at (3, 0, 0) and ends at (3, 0, 3) after 2
revolutions on [0, 1].

Exercise Group. Find the average rate of change of r⃗(t) on the given interval.

31. r⃗(t) =
〈
t, t2

〉
on [−2, 2]. 32. r⃗(t) = ⟨t, t+ sin(t)⟩ on [0, 2π].

33. r⃗(t) = ⟨3 cos(t), 2 sin(t), t⟩ on [0, 2π]. 34. r⃗(t) =
〈
t, t2, t3

〉
on [−1, 3].
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12.2 Calculus and Vector-Valued Functions

The previous section introduced us to a new mathematical object, the vector-
valued function. We now apply calculus concepts to these functions. We start
with the limit, then work our way through derivatives to integrals.

12.2.1 Limits of Vector-Valued Functions
The initial definition of the limit of a vector-valued function is a bit intimidating,
as was the definition of the limit in Definition 1.2.1. The theorem following the
definition shows that in practice, taking limits of vector-valued functions is no
more difficult than taking limits of real-valued functions. We can define one-sided limits

in a manner very similar to Defi-
nition 12.2.1.Definition 12.2.1 Limits of Vector-Valued Functions.

Let I be an open interval containing c, and let r⃗(t) be a vector-valued
function defined on I , except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that for all t ̸= c,
if |t− c| < δ, we have

∥∥∥r⃗(t)− L⃗
∥∥∥ < ε.

Note how the measurement of distance between real numbers is the ab-
solute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem12.2.2 states thatwe can compute limits of vector-valued functions
component-wise.

Theorem 12.2.2 Limits of Vector-Valued Functions.

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector-valued function in R2 defined
on an open interval I containing c, except possibly at c. Then

lim
t→c

r⃗(t) =
〈
lim
t→c

f(t) , lim
t→c

g(t)
〉
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector-valued function in R3

defined on an open interval I containing c, except possibly at c.
Then

lim
t→c

r⃗(t) =
〈
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
〉

Example 12.2.3 Finding limits of vector-valued functions.

Let r⃗(t) =
〈
sin(t)
t

, t2 − 3t+ 3, cos(t)
〉
. Find lim

t→0
r⃗(t).

Solution. We apply the theorem and compute limits component-wise.

lim
t→0

r⃗(t) =

〈
lim
t→0

sin(t)
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos(t)
〉

= ⟨1, 3, 1⟩ .
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12.2.2 Continuity

Definition 12.2.4 Continuity of Vector-Valued Functions.

Let r⃗(t) be a vector-valued function defined on an open interval I con-
taining c.

1. r⃗(t) is continuous at c if lim
t→c

r⃗(t) = r(c).

2. If r⃗(t) is continuous at all c in I , then r⃗(t) is continuous on I .

Using one-sided limits, we can
also define continuity on closed
intervals as done before.

We again have a theorem that lets us evaluate continuity component-wise.

Theorem 12.2.5 Continuity of Vector-Valued Functions.

Let r⃗(t) be a vector-valued functiondefined onanopen interval I contain-
ing c. Then r⃗(t) is continuous at c if, and only if, each of its component
functions is continuous at c.

Example 12.2.6 Evaluating continuity of vector-valued functions.

Let r⃗(t) =
〈
sin(t)
t

, t2 − 3t+ 3, cos(t)
〉
. Determine whether r⃗ is con-

tinuous at t = 0 and t = 1.
Solution. While the second and third components of r⃗(t) are defined at
t = 0, the first component, (sin(t))/t, is not. Since the first component
is not even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is
not continuous at t = 0.
At t = 1 each of the component functions is continuous. Therefore r⃗(t)
is continuous at t = 1.

12.2.3 Derivatives
Consider a vector-valued function r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Fig-
ure 12.2.7(a). Recall that dividing the displacement vector by t1 − t0 gives the
average rate of change on [t0, t1], as shown in Figure 12.2.7(b).

r⃗(t0) r⃗(t1)

r⃗(t1)− r⃗(t0)

(a)

r⃗(t0) r⃗(t1)

r⃗(t1)− r⃗(t0)

t1 − t0
r⃗ ′(t0)

(b)

Figure 12.2.7 Illustrating displacement, leading to an understanding of the de-
rivative of vector-valued functions

The derivative of a vector-valued function is a measure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)

h
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for any value of h ̸= 0. We take the limit ash → 0 tomeasure the instantaneous
rate of change; this is the derivative of r⃗.

Definition 12.2.8 Derivative of a Vector-Valued Function.

Let r⃗(t) be continuous on an open interval I containing c.

1. The derivative of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)

h
.

2. The derivative of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)

h
.

Alternate notations for the de-
rivative of r⃗ include:

r⃗ ′(t) =
d

dt

(
r⃗(t)

)
=

dr⃗

dt
.

If a vector-valued function has a derivative for all c in an open interval I , we
say that r⃗(t) is differentiable on I .

Once again we might view this definition as intimidating, but recall that we
can evaluate limits component-wise. The following theorem verifies that this
means we can compute derivatives component-wise as well, making the task
not too difficult. Again, using one-sided limits, we

candefinedifferentiability on closed
intervals. We’ll make use of this
a few times in this chapter.

Theorem 12.2.9 Derivatives of Vector-Valued Functions.

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t), h′(t) ⟩ .

Example 12.2.10 Derivatives of vector-valued functions.

Let r⃗(t) =
〈
t2, t

〉
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its initial point at the
origin and at r⃗(1).

Solution.

1. Theorem 12.2.9 allows us to compute derivatives component-
wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 12.2.11(a). Note how
plotting the two of these together, in this way, is not very illuminat-
ing. When dealing with real-valued functions, plotting f(x) with
f ′(x) gave us useful information as we were able to compare f
and f ′ at the same x-values. When dealing with vector-valued
functions, it is hard to tell which points on the graph of r⃗ ′ corre-
spond to which points on the graph of r⃗.
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2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Fig-
ure 12.2.11 with its initial point at the origin, as well as at r⃗(1) =
⟨1, 1⟩. These are sketched in Figure 12.2.11(b).

−4 −2 2 4

−2

−1

1

2
r⃗(t)

r⃗ ′(t)

x

y

(a)

−4 −2 2 4

−2

−1

1

2

r⃗ ′(1)

r⃗ ′(1)

x

y

(b)

Figure 12.2.11Graphing the derivative of a vector-valued function
in Example 12.2.10

Example 12.2.12 Derivatives of vector-valued functions.

Let r⃗(t) = ⟨cos(t), sin(t), t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch
r⃗ ′(π/2) with its initial point at the origin and at r⃗(π/2).
Solution. We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin(t), cos(t), 1⟩. At t = π/2,
we have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 12.2.13 shows a graph of r⃗(t),
with r⃗ ′(π/2) plotted with its initial point at the origin and at r⃗(π/2). Figure 12.2.13 Viewing a vector-

valued function and its derivative at
one pointIn Examples 12.2.10 and 12.2.12, sketching a particular derivative with its

initial point at the origin did not seem to reveal anything significant. However,
when we sketched the vector with its initial point on the corresponding point on
the graph, we did see something significant: the vector appeared to be tangent
to the graph. We have not yet defined what “tangent” means in terms of curves
in space; in fact, we use the derivative to define this term.

Definition 12.2.14 Tangent Vector, Tangent Line.

Let r⃗(t) be a differentiable vector-valued function on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direction parallel to r⃗ ′(c). An equation of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

Example 12.2.15 Finding tangent lines to curves in space.

Let r⃗(t) =
〈
t, t2, t3

〉
on [−1.5, 1.5]. Find the vector equation of the line

tangent to the graph of r⃗ at t = −1.
Solution. To find the equation of a line, we need a point on the line and
the line’s direction. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vvflimit4.html


CHAPTER 12. VECTOR VALUED FUNCTIONS 675

clear, ⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed
to” by this vector.)
The direction comes from r⃗ ′(−1). We compute, component-wise,
r⃗ ′(t) =

〈
1, 2t, 3t2

〉
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

Figure 12.2.16 Graphing a curve in
space with its tangent line

The vector equation of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This
line and r⃗(t) are sketched in Figure 12.2.16.

Example 12.2.17 Finding tangent lines to curves.

Find the equations of the lines tangent to r⃗(t) =
〈
t3, t2

〉
at t = −1 and

t = 0.
Solution. We find that r⃗ ′(t) =

〈
3t2, 2t

〉
. At t = −1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(−1) = ⟨3,−2⟩ ,

so the equation of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 12.2.18.

−3 −2 −1 1 2 3

−2

−1

1

2 r⃗(t)

ℓ⃗(t)

x

y

Figure 12.2.18 Graphing r⃗(t) and its
tangent line in Example 12.2.17

At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line
“has no direction.” We cannot apply Definition 12.2.14, hence cannot
find the equation of the tangent line.

We were unable to compute the equation of the tangent line to r⃗(t) =〈
t3, t2

〉
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 12.2.18 shows that

there is a cusp at this point. This leads us to another definition of smooth, pre-
viously defined by Definition 10.2.21 in Section 10.2.

Definition 12.2.19 Smooth Vector-Valued Functions.

Let r⃗(t) be a differentiable vector-valued function on an open interval I
where r⃗ ′(t) is continuous on I . r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I .

Having established derivatives of vector-valued functions, we now explore
the relationships between the derivative and other vector operations. The fol-
lowing theorem states how the derivative interacts with vector addition and the
various vector products.

Theorem 12.2.20 Properties of Derivatives of Vector-Valued Functions.

Let r⃗ and s⃗ be differentiable vector-valued functions, let f be a differen-
tiable real-valued function, and let c be a real number.

1.
d

dt

(
r⃗(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d

dt

(
cr⃗(t)

)
= cr⃗ ′(t)

3.
d

dt

(
f(t)r⃗(t)

)
= f ′(t)r⃗(t) + f(t)r⃗ ′(t) Product Rule

4.
d

dt

(
r⃗(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vvfderiv1.html
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5.
d

dt

(
r⃗(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6.
d

dt

(
r⃗
(
f(t)

))
= r⃗ ′

(
f(t)

)
f ′(t) Chain Rule

Example 12.2.21 Using derivative properties of vector-valued func-
tions.

Let r⃗(t) =
〈
t, t2 − 1

〉
and let u⃗(t) be the unit vector that points in the

direction of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each
with initial point the corresponding point on the graph of u⃗.

Solution.

1. To form the unit vector that points in the direction of r⃗, we need
to divide r⃗(t) by its magnitude.

∥r⃗(t)∥ =
√
t2 + (t2 − 1)2 ⇒ u⃗(t) =

1√
t2 + (t2 − 1)2

〈
t, t2 − 1

〉
.

r⃗(t) and u⃗(t) are graphed in Figure 12.2.22. Note how the graph
of u⃗(t) forms part of a circle; this must be the case, as the length
of u⃗(t) is 1 for all t.

−2 −1 1 2

−1

1

2

3

r⃗(t)

u⃗(t)

x

y

Figure 12.2.22 Graphing r⃗(t) and u⃗(t)
in Example 12.2.21

2. To compute u⃗ ′(t), we use Theorem 12.2.20, writing

u⃗(t) = f(t)r⃗(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2.

(We could write

u⃗(t) =

〈
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

〉

and then take the derivative. It is amatter of preference; this latter
method requires two applications of the Quotient Rule where our
method uses the Product and Chain Rules.) We find f ′(t) using
the Chain Rule:

f ′(t) = −1

2

(
t2 + (t2 − 1)2

)−3/2(
2t+ 2(t2 − 1)(2t)

)
= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 12.2.20:

u⃗ ′(t) = f ′(t)u⃗(t) + f(t)u⃗ ′(t)

= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3 〈t, t2 − 1

〉
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .
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This is admittedly very “messy;” such is usually the case when
we deal with unit vectors. We can use this formula to compute
u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0):

u⃗ ′(−2) =

〈
− 15

13
√
13

,− 10

13
√
13

〉
≈ ⟨−0.320,−0.213⟩

u⃗ ′(−1) = ⟨0,−2⟩
u⃗ ′(0) = ⟨1, 0⟩

−1 1

−2

−1

1

u⃗(t)

x

y

Figure 12.2.23 Graphing some of the
derivatives of u⃗(t) in Example 12.2.21

Each of these is sketched in Figure 12.2.23. Note how the length
of the vector gives an indication of how quickly the circle is being
traced at that point. When t = −2, the circle is being drawn rel-
atively slow; when t = −1, the circle is being traced much more
quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P . This is
illustrated in Figure 12.2.23; each tangent vector is perpendicular to the line
that passes through its initial point and the center of the circle. Since the center
of the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to
u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector-valued function that has a constant length, that is,
that traces out part of a circle. It has important implications later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem 12.2.24 Vector-Valued Functions of Constant Length.

Let r⃗(t) be a vector-valued function of constant length that is differen-
tiable on an open interval I . That is, ∥r⃗(t)∥ = c for all t in I; equivalently,
r⃗(t) · r⃗(t) = c2 for all t in I . Then r⃗(t) · r⃗ ′(t) = 0 for all t in I .

12.2.4 Integration
Before formally defining integrals of vector-valued functions, consider the fol-
lowing equation that our calculus experience tells us should be true:∫ b

a

r⃗ ′(t) dt = r⃗(b)− r⃗(a).

That is, the integral of a rate of change function should give total change. In
the context of vector-valued functions, this total change is displacement. The
above equation is true; we now develop the theory to show why.

We can define antiderivatives and the indefinite integral of vector-valued
functions in the same manner we defined indefinite integrals in Definition 5.1.1.
However, we cannot define the definite integral of a vector-valued function as
we did in Definition 5.2.5. That definitionwas based on the signed area between
a function y = f(x) and thex-axis. An area-based definitionwill not be useful in
the context of vector-valued functions. Instead, wedefine the definite integral of
a vector-valued function in a manner similar to that of Theorem 5.3.21, utilizing
Riemann sums.
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Definition 12.2.25 Antiderivatives, Indefinite and Definite Integrals of
Vector-Valued Functions.

Let r⃗(t) be a continuous vector-valued function on [a, b]. An antideriva-
tive of r⃗(t) is a function R⃗(t) such that R⃗′(t) = r⃗(t).
The set of all antiderivatives of r⃗(t) is the indefinite integral of r⃗(t), de-
noted by ∫

r⃗(t) dt.

The definite integral of r⃗(t) on [a, b] is∫ b

a

r⃗(t) dt = lim
∥∆t∥→0

n∑
i=1

r⃗(ci)∆ti,

where∆ti is the length of the ith subinterval of a partition of [a, b], ∥∆t∥
is the length of the largest subinterval in the partition, and ci is any value
in the ith subinterval of the partition.

It is probably difficult to infer meaning from the definition of the definite
integral. The important thing to realize from the definition is that it is built upon
limits, which we can evaluate component-wise.

The following theorem simplifies the computation of definite integrals; the
rest of this section and the following section will give meaning and application
to these integrals.

Theorem 12.2.26 Indefinite and Definite Integrals of Vector-Valued
Functions.

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector-valued function in R2 that is continu-
ous on [a, b].

1.
∫

r⃗(t) dt =

〈∫
f(t) dt,

∫
g(t) dt

〉

2.
∫ b

a

r⃗(t) dt =

〈∫ b

a

f(t) dt,

∫ b

a

g(t) dt

〉

A similar statement holds for vector-valued functions in R3.

Example 12.2.27 Evaluating a definite integral of a vector-valued func-
tion.

Let r⃗(t) =
〈
e2t, sin(t)

〉
. Evaluate

∫ 1

0

r⃗(t) dt.

Solution. We follow Theorem 12.2.26.∫ 1

0

r⃗(t) dt =

∫ 1

0

〈
e2t, sin(t)

〉
dt

=

〈∫ 1

0

e2t dt ,

∫ 1

0

sin(t) dt
〉

=

〈
1

2
e2t
∣∣∣1
0
,− cos(t)

∣∣∣1
0

〉
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=

〈
1

2
(e2 − 1) ,− cos(1) + 1

〉
≈ ⟨3.19, 0.460⟩ .

Example 12.2.28 Solving an initial value problem.

Let r⃗ ′′(t) = ⟨2, cos(t), 12t⟩. Find r⃗(t) where:

• r⃗(0) = ⟨−7,−1, 2⟩ and

• r⃗ ′(0) = ⟨5, 3, 0⟩.

Solution. Knowing r⃗ ′′(t) = ⟨2, cos(t), 12t⟩, we find r⃗ ′(t) by evaluating
the indefinite integral.∫

r⃗ ′′(t) dt =

〈∫
2 dt ,

∫
cos(t) dt ,

∫
12t dt

〉
=
〈
2t+ C1, sin(t) + C2, 6t

2 + C3

〉
=
〈
2t, sin(t), 6t2

〉
+ ⟨C1, C2, C3⟩

=
〈
2t, sin(t), 6t2

〉
+ C⃗.

Note how each indefinite integral creates its own constant which we col-
lect as one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to
solve for C⃗:

r⃗ ′(t) =
〈
2t, sin(t), 6t2

〉
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗.

So r⃗ ′(t) =
〈
2t, sin(t), 6t2

〉
+ ⟨5, 3, 0⟩ =

〈
2t+ 5, sin(t) + 3, 6t2

〉
. To

find r⃗(t), we integrate once more.∫
r⃗ ′(t) dt =

〈∫
2t+ 5 dt,

∫
sin(t) + 3 dt,

∫
6t2 dt

〉
=
〈
t2 + 5t,− cos(t) + 3t, 2t3

〉
+ C⃗.

With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
〈
t2 + 5t,− cos(t) + 3t, 2t3

〉
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So

r⃗(t) =
〈
t2 + 5t,− cos(t) + 3t, 2t3

〉
+ ⟨−7, 0, 2⟩

=
〈
t2 + 5t− 7,− cos(t) + 3t, 2t3 + 2

〉
.

What does the integration of a vector-valued function mean? There are
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many applications, but none as direct as “the area under the curve” that we
used in understanding the integral of a real-valued function.

A key understanding for us comes from considering the integral of a deriva-
tive: ∫ b

a

r⃗ ′(t) dt = r⃗(t)
∣∣∣b
a
= r⃗(b)− r⃗(a).

Integrating a rate of change function gives displacement.
Noting that vector-valued functions are closely related to parametric equa-

tions, we can describe the arc length of the graph of a vector-valued function as
an integral. Given parametric equations x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g′(t)2 dt,

as stated in Theorem 10.3.14 in Section 10.3. If r⃗(t) = ⟨f(t), g(t)⟩, note that√
f ′(t)2 + g′(t)2 = ∥r⃗ ′(t)∥. Therefore we can express the arc length of the

graph of a vector-valued function as an integral of the magnitude of its deriva-
tive.

Theorem 12.2.29 Arc Length of a Vector-Valued Function.

Let r⃗(t) be a vector-valued function where r⃗ ′(t) is continuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =

∫ b

a

∥r⃗ ′(t)∥ dt.

Note that we are actually integrating a scalar-function here, not a vector-
valued function.

The next section takes what we have established thus far and applies it to
objects in motion. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the information provided by r⃗ ′(t) and r⃗ ′′(t).
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12.2.5 Exercises

Terms and Concepts

1. Limits, derivatives and integrals of vector-valued functions are all evaluated -wise.

2. The definite integral of a rate of change function gives .

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t) on the same axes?

4. Theorem 12.2.20 contains three product rules. What are the three different types of products used in these
rules?

Problems

Exercise Group. Evaluate the given limit.
5. lim

t→5

〈
2t+ 1, 3t2 − 1, sin(t)

〉
6. lim

t→3

〈
et, t2−9

t+3

〉
7. lim

t→0

〈
t

sin(t) , (1 + t)
1
t

〉
8. lim

h→0

r⃗(t+h)−r⃗(t)
h , where r⃗(t) =

〈
t2, t, 1

〉
.

Exercise Group. Identify the interval or union of intervals on which r⃗(t) is continuous.

9. r⃗(t) =
〈
t2, 1/t

〉
10. r⃗(t) = ⟨cos(t), et, ln(t)⟩

Exercise Group. Find the derivative of the given function.
11. r⃗(t) = ⟨cos(t), et, ln(t)⟩

12. r⃗(t) =

〈
1

t
,
2t− 1

3t+ 1
, tan(t)

〉
13. r⃗(t) = (t2) ⟨sin(t), 2t+ 5⟩ 14. r⃗(t) =

〈
t2 + 1, t− 1

〉
· ⟨sin(t), 2t+ 5⟩

15. r⃗(t) =
〈
t2 + 1, t− 1, 1

〉
× ⟨sin(t), 2t+ 5, 1⟩ 16. r⃗(t) = ⟨cosh t, sinh t⟩

Exercise Group. First, find r⃗ ′(t). Then sketch r⃗(t) and r⃗ ′(1), with the initial point of r⃗ ′(1) at r⃗(1).

17. r⃗(t) =
〈
t2 + t, t2 − t

〉
18. r⃗(t) =

〈
t2 − 2t+ 2, t3 − 3t2 + 2t

〉
19. r⃗(t) =

〈
t2 + 1, t3 − t

〉
20. r⃗(t) =

〈
t2 − 4t+ 5, t3 − 6t2 + 11t− 6

〉
Exercise Group. Give the equation of the line tangent to the graph of r⃗(t) at the given t value.

21. r⃗(t) =
〈
t2 + t, t2 − t

〉
, at t = 1 22. r⃗(t) = ⟨3 cos(t), sin(t)⟩ , at t = π/4

23. r⃗(t) = ⟨3 cos(t), 3 sin(t), t⟩ at t = π. 24. r⃗(t) = ⟨et, tan(t), t⟩ , at t = 0.

Exercise Group. Find the value(s) of t for which r⃗(t) is not smooth.
25. r⃗(t) = ⟨cos(t), sin(t)− t⟩ 26. r⃗(t) =

〈
t2 − 2t+ 1, t3 + t2 − 5t+ 3

〉
27. r⃗(t) =

⟨cos(t)− sin(t), sin(t)− cos(t), cos(4t)⟩
28. r⃗(t) =

〈
t3 − 3t+ 2,− cos(πt), sin2(πt)

〉

Exercise Group. The following exercises ask you to verify parts of Theorem 12.2.20. In each let f(t) = t3, r⃗(t) =〈
t2, t− 1, 1

〉
and s⃗(t) = ⟨sin(t), et, t⟩. Compute the various derivatives as indicated.

29. Simplify f(t)r⃗(t), then find its derivative; show
this is the same as f ′(t)r⃗(t) + f(t)r⃗ ′(t).

30. Simplify r⃗(t) · s⃗(t), then find its derivative; show
this is the same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

31. Simplify r⃗(t)× s⃗(t), then find its derivative;
show this is the same as
r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

32. Simplify r⃗
(
f(t)

)
, then find its derivative; show

this is the same as r⃗ ′
(
f(t)

)
f ′(t).



CHAPTER 12. VECTOR VALUED FUNCTIONS 682

Exercise Group. In the following exercises, evaluate the given definite or indefinite integral.

33.
∫ 〈

t3, cos(t), tet
〉
dt 34.

∫ 〈
1

1 + t2
, sec2(t)

〉
dt

35.
∫ π

0

⟨− sin(t), cos(t)⟩ dt = .36.
∫ 2

−2

⟨2t+ 1, 2t− 1⟩ dt

Exercise Group. Solve the given initial value problems.
37. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin(t)⟩ and

r⃗(0) = ⟨2, 2⟩ .
r⃗(t) =

38. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan(t)⟩
and

r⃗(0) = ⟨1, 2⟩.

39. Find r⃗(t), given that r⃗ ′′(t) =
〈
t2, t, 1

〉
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩ .
r⃗(t) =

40. Find r⃗(t), given that r⃗ ′′(t) = ⟨cos(t), sin(t), et⟩,
r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

Exercise Group. Find the arc length of r⃗(t) on the indicated interval.
41. r⃗(t) = ⟨2 cos(t), 2 sin(t), 3t⟩ on [0, 2π]. 42. r⃗(t) = ⟨5 cos(t), 3 sin(t), 4 sin(t)⟩ on [0, 2π].
43. r⃗(t) =

〈
t3, t2, t3

〉
on [0, 1]. 44. r⃗(t) = ⟨e−t cos(t), e−t sin(t)⟩ on [0, 1].

45. Prove Theorem 12.2.24; that is, show if r⃗(t) has constant length and is differentiable, then r⃗(t) · r⃗ ′(t) = 0. (Hint:
use the Product Rule to compute d

dt

(
r⃗(t) · r⃗(t)

)
.)
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12.3 The Calculus of Motion

A common use of vector-valued functions is to describe the motion of an object
in the plane or in space. A position function r⃗(t) gives the position of an object
at time t. More formally, letO = 0⃗ (either in the plane or in space) and suppose
an object is at point Pc at time t = tc. Then r⃗

(
tc
)
=

−−→
OPc; that is, the vector

r⃗
(
tc
)
“points” to the location of the object at a given time. This section explores

how derivatives and integrals are used to study the motion described by such a
function.

Definition 12.3.1 Velocity, Speed and Acceleration.

Let r⃗(t) be a position function in R2 or R3.

Velocity The instantaneous rate of position change, denoted v⃗(t);
that is, v⃗(t) = r⃗ ′(t).

Speed The magnitude of velocity: ∥v⃗(t)∥.
Acceleration The instantaneous rate of velocity change, denoted a⃗(t);

that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Example 12.3.2 Finding velocity and acceleration.

An object is moving with position function r⃗(t) =
〈
t2 − t, t2 + t

〉
,−3 ≤

t ≤ 3, where distances are measured in feet and time is measured in
seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their
initial point at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

Solution.

1. Taking derivatives, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleration is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are plotted with r⃗(t) in Figure 12.3.3(a). We can think of
acceleration as “pulling” the velocity vector in a certain direction.
At t = −1, the velocity vector points down and to the left; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direction
and is now pointing up and to the right. In Figure 12.3.3(b) we plot
more velocity/acceleration vectors, making more clear the effect
acceleration has on velocity.
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Figure 12.3.3 Graphing the position, velocity and acceleration of
an object in Example 12.3.2
Since a⃗(t) is constant in this example, as t grows large v⃗(t) be-
comes almost parallel to a⃗(t). For instance, when t = 10, v⃗(10) =
⟨19, 21⟩, which is nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

∥v⃗(t)∥ =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques
(such as set the derivative equal to 0 and solve for t, etc.) but
we can find it by inspection. Inside the square root we have a
quadratic which is minimized when t = 0. Thus the speed is
minimized at t = 0, with a speed of

√
2 ft

s . The graph in Fig-
ure 12.3.3(b) also implies speed is minimized here. The filled dots
on the graph are located at integer values of t between−3 and 3.
Dots that are far apart imply the object traveled a far distance in 1
second, indicating high speed; dots that are close together imply
the object did not travel far in 1 second, indicating a low speed.
The dots are closest together near t = 0, implying the speed is
minimized near that value.

Example 12.3.4 Analyzing Motion.

Two objects follow an identical path at different rates on [−1, 1]. The
position function for Object 1 is r⃗1(t) =

〈
t, t2

〉
; the position function

for Object 2 is r⃗2(t) =
〈
t3, t6

〉
, where distances are measured in feet

and time is measured in seconds. Compare the velocity, speed and ac-
celeration of the two objects on the path.
Solution. Webegin by computing the velocity and acceleration function
for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
〈
3t2, 6t5

〉
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

〈
6t, 30t4

〉
We immediately see that Object 1 has constant acceleration, whereas
Object 2 does not.
At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the
velocity of Object 2 is three times that of Object 1 and so it follows that
the speed of Object 2 is three times that of Object 1 (3

√
5 ft/s compared

to
√
5 ft/s.)



CHAPTER 12. VECTOR VALUED FUNCTIONS 685

−2 −1 1 2

−1

1

2

3

x

y

Figure 12.3.5 Plotting velocity and ac-
celeration vectors for Object 1 in Ex-
ample 12.3.4

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of
Object 2 is 0⃗! This tells us that Object 2 comes to a complete stop at
t = 0.
In Figure 12.3.5, we see the velocity and acceleration vectors for Object
1 plotted for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the
constant acceleration vector seems to “pull” the velocity vector from
pointing down, right to up, right. We could plot the analogous picture
for Object 2, but the velocity and acceleration vectors are rather large
(⃗a2(−1) = ⟨−6, 30⟩!)
Instead, we simply plot the locations of Object 1 and 2 on intervals
of 1/10 th of a second, shown in Figure 12.3.6(a) and Figure 12.3.6(b).
Note how the x-values of Object 1 increase at a steady rate. This is be-
cause the x-component of a⃗(t) is 0; there is no acceleration in the x-
component. The dots are not evenly spaced; the object is moving faster
near t = −1 and t = 1 than near t = 0.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

r⃗1(t)

x

y

(a)

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

r⃗2(t)

x

y

(b)

Figure 12.3.6 Comparing the positions of Objects 1 and 2 in Exam-
ple 12.3.4
In Figure 12.3.6(b), we see the points plotted for Object 2. Note the large
change in position from t = −1 to t = −0.8; the object starts moving
very quickly. However, it slows considerably at it approaches the origin,
and comes to a complete stop at t = 0. While it looks like there are 3
points near the origin, there are in reality 5 points there.
Since the objects begin and end at the same location, they have the same
displacement. Since they begin and end at the same time, with the same
displacement, they have the same average rate of change (i.e., they have
the same average velocity). Since they follow the same path, they have
the same distance traveled. Even though these threemeasurements are
the same, the objects obviously travel the path in very different ways.

Example 12.3.7 Analyzing the motion of a whirling ball on a string.

A young boy whirls a ball, attached to a string, above his head in a
counter-clockwise circle. The ball follows a circular path and makes 2
revolutions per second. The string has length 2 ft.

1. Find the position function r⃗(t) that describes this situation.

2. Find the acceleration of the ball and give a physical interpretation
of it.

3. A tree stands 10 ft in front of the boy. At what t-values should the
boy release the string so that the ball hits the tree?
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Solution.

1. The ball whirls in a circle. Since the string is 2ft long, the radius
of the circle is 2. The position function r⃗(t) = ⟨2 cos(t), 2 sin(t)⟩
describes a circle with radius 2, centered at the origin, but makes
a full revolution every 2π seconds, not two revolutions per second.
We modify the period of the trigonometric functions to be 1/2 by
multiplying t by 4π. The final position function is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revolution is made in
1/2 a second.)

2. To find a⃗(t), we take the derivative of r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

〈
−32π2 cos(4πt),−32π2 sin(4πt)

〉
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude
and points in the opposite direction. Why is this?

Recall the classic physics equation, “Force = mass × accelera-
tion.” A force acting on a mass induces acceleration (i.e., the
mass moves); a mass that is accelerating is being acted upon by
a force. Thus force and acceleration are closely related. A moving
ball “wants” to travel in a straight line. Why does the ball in our
example move in a circle? It is attached to the boy’s hand by a
string. The string applies a force to the ball, affecting its motion:
the string accelerates the ball. This is not acceleration in the sense
of “it travels faster;” rather, this acceleration is changing the ve-
locity of the ball. In what direction is this force/acceleration being
applied? In the direction of the string, towards the boy’s hand.

Themagnitude of the acceleration is related to the speed at which
the ball is traveling. A ball whirling quickly is rapidly changing direc-
tion/velocity. When velocity is changing rapidly, the acceleration
must be “large.”

3. When the boy releases the string, the string no longer applies a
force to the ball, meaning acceleration is 0⃗ and the ball can now
move in a straight line in the direction of v⃗(t).

Let t = t0 be the time when the boy lets go of the string. The ball
will be at r⃗(t0), traveling in the direction of v⃗(t0). We want to find
t0 so that this line contains the point (0, 10) (since the tree is 10 ft
directly in front of the boy).

2 ft

⟨0, 10⟩ −
r⃗(t

0 )

Figure 12.3.8Modeling the flight of a
ball in Example 12.3.7

There are many ways to find this time value. We choose one that
is relatively simple computationally. As shown in Figure 12.3.8,
the vector from the release point to the tree is ⟨0, 10⟩ − r⃗(t0).
This line segment is tangent to the circle, which means it is also
perpendicular to r⃗(t0) itself, so their dot product is 0.

r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0



CHAPTER 12. VECTOR VALUED FUNCTIONS 687

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0

− 4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0

20 sin(4πt0)− 4 = 0

sin(4πt0) = 1/5

4πt0 = sin−1(1/5)

4πt0 ≈ 0.2 + 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016 + n/2

This is a wonderful formula. Every 1/2 second after t = 0.016 s
the boy can release the string (since the ball makes 2 revolutions
per second, he has two chances each second to release the ball).

Example 12.3.9 Analyzing motion in space.

An object moves in a helix with position function r⃗(t) =
⟨cos(t), sin(t), t⟩, where distances are measured in meters and
time is in minutes. Describe the object’s speed and acceleration at time
t.
Solution. With r⃗(t) = ⟨cos(t), sin(t), t⟩, we have:

v⃗(t) = ⟨− sin(t), cos(t), 1⟩ and
a⃗(t) = ⟨− cos(t),− sin(t), 0⟩ .

The speed of the object is ∥v⃗(t)∥ =
√

(− sin(t))2 + cos2(t) + 1 =
√
2

m
min ; it moves at a constant speed. Note that the object does not accel-
erate in the z-direction, but rather moves up at a constant rate of 1 m

min .

The objects in Examples 12.3.7 and 12.3.9 traveled at a constant speed. That
is, ∥v⃗(t)∥ = c for some constant c. Recall Theorem 12.2.24, which states that
if a vector-valued function r⃗(t) has constant length, then r⃗(t) is perpendicular
to its derivative: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity function has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleration: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuitive understanding of this. If acceleration is parallel to veloc-
ity, then it is only affecting the object’s speed; it does not change the direction
of travel. (For example, consider a dropped stone. Acceleration and velocity are
parallel — straight down— and the direction of velocity never changes, though
speed does increase.) If acceleration is not perpendicular to velocity, then there
is some acceleration in the direction of travel, influencing the speed. If speed
is constant, then acceleration must be orthogonal to velocity, as it then only
affects direction, and not speed.

Key Idea 12.3.10 Objects With Constant Speed.

If an object moves with constant speed, then its velocity and accelera-
tion vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.
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12.3.1 Projectile Motion
An important application of vector-valued position functions is projectilemotion:
the motion of objects under only the influence of gravity. We will measure time
in seconds, and distances will either be in meters or feet. We will show that we
can completely describe the path of such an object knowing its initial position
and initial velocity (i.e., where it is and where it is going.)

Suppose an object has initial position r⃗(0) = ⟨x0, y0⟩ and initial velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direction u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be written
as ⟨cos(θ), sin(θ)⟩, where θ is an angle measure counter-clockwise from the x-
axis. (We refer to θ as the angle of elevation.) Thus v⃗(0) = v0 ⟨cos(θ), sin(θ)⟩.

Since the acceleration of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitational constant, we can find r⃗(t) knowing our two initial condi-
tions. We first find v⃗(t): This text takes g to be 32 ft

s2 when
using Imperial units, and 9.8 m

s2
when using SI units.

v⃗(t) =

∫
a⃗(t) dt

v⃗(t) =

∫
⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos(θ), sin(θ)⟩, we have C⃗ = v0 ⟨cos(t), sin(t)⟩ and so

v⃗(t) = ⟨v0 cos(θ),−gt+ v0 sin(θ)⟩ .

We integrate once more to find r⃗(t):

r⃗(t) =

∫
v⃗(t) dt

r⃗(t) =

∫
⟨v0 cos(θ),−gt+ v0 sin(θ)⟩ dt

r⃗(t) =

〈(
v0 cos(θ)

)
t,−1

2
gt2 +

(
v0 sin(θ)

)
t

〉
+ C⃗.

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =

〈(
v0 cos(θ)

)
t+ x0 ,−

1

2
gt2 +

(
v0 sin(θ)

)
t+ y0

〉
.

Key Idea 12.3.11 Projectile Motion.

The position function of a projectile propelled from an initial position
of r⃗0 = ⟨x0, y0⟩, with initial speed v0, with angle of elevation θ and
neglecting all accelerations but gravity is

r⃗(t) =

〈(
v0 cos(θ)

)
t+ x0 ,−

1

2
gt2 +

(
v0 sin(θ)

)
t+ y0

〉
.

Letting v⃗0 = v0 ⟨cos(θ), sin(θ)⟩, r⃗(t) can be written as

r⃗(t) =

〈
0,−1

2
gt2
〉
+ v⃗0t+ r⃗0.

We demonstrate how to use this position function in the next two examples.
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Example 12.3.12 Projectile Motion.

Sydney shoots her Red Ryder® bb gun across level ground from an el-
evation of 4 ft, where the barrel of the gun makes a 5◦ angle with the
horizontal. Find how far the bb travels before landing, assuming the bb
is fired at the advertised rate of 350 ft

s and ignoring air resistance.
Solution. A direct application of Key Idea 12.3.11 gives

r⃗(t) =
〈
(350 cos(5◦))t,−16t2 + (350 sin(5◦))t+ 4

〉
≈
〈
346.67t,−16t2 + 30.50t+ 4

〉
,

where we set her initial position to be ⟨0, 4⟩. We need to find when the
bb lands, then we can find where. We accomplish this by setting the
y-component equal to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)

−32

t ≈ 2.03 s.

(We discarded a negative solution that resulted from our quadratic equa-
tion.)
Wehave found that the bb lands 2.03 s after firing; with t = 2.03, we find
the x-component of our position function is 346.67(2.03) = 703.74ft.
The bb lands about 704 feet away.

Example 12.3.13 Projectile Motion.

Alex holds his sister’s bb gun at a height of 3 ft and wants to shoot a
target that is 6 ft above the ground, 25 ft away. At what angle should he
hold the gun to hit his target? (We still assume the muzzle velocity is
350 ft

s .)
Solution. The position function for the path of Alex’s bb is

r⃗(t) =
〈
(350 cos(θ))t,−16t2 + (350 sin(θ))t+ 3

〉
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we
want to find θ and t such that

(350 cos(θ))t = 25 and − 16t2 + (350 sin(θ))t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equation
for cos(θ) and sin(θ), respectively.

cos(θ) =
25

350t
and sin(θ) =

3 + 16t2

350t
.

Using the Pythagorean Identity cos2(θ) + sin2(θ) = 1, we have(
25

350t

)2

+

(
3 + 16t2

350t

)2

= 1

Multiply both sides by (350t)2:

252 + (3 + 16t2)2 = 3502t2
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256t4 − 122, 404t2 + 634 = 0.

This is a quadratic in t2. That is, we can apply the quadratic formula to
find t2, then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512

t2 = 0.0052, 478.135

t = ±0.072, ±21.866

Clearly the negative t values do not fit our context, so we have t = 0.072
and t = 21.866. Using cos(θ) = 25/(350t), we can solve for θ:

θ = cos−1

(
25

350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about
7◦ with the horizontal and hit his target 0.07 s after firing, or he can hold
his rifle almost straight up, with an angle of 89.8◦, where he’ll hit his
target about 22 s later. The first option is clearly the option he should
choose.

12.3.2 Distance Traveled
Consider a driverwho sets her cruise-control to 60mph, and travels at this speed
for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starting position is the driver?

The first is easy to answer: she traveled 60miles. The second is impossible to
answer with the given information. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly-winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by ∥v⃗(t)∥.

Theorem 12.3.14 Distance Traveled.

Let v⃗(t) be a velocity function for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a

∥v⃗(t)∥ dt.

Note that this is just a restatement of Theorem 12.2.29: arc length is the
same as distance traveled, just viewed in a different context.

Example 12.3.15 Distance Traveled, Displacement, and Average Speed.

A particle moves in space with position function r⃗(t) =
〈
t, t2, sin(πt)

〉
on [−2, 2], where t is measured in seconds and distances are in meters.
Find:
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1. The distance traveled by the particle on [−2, 2].

2. The displacement of the particle on [−2, 2].

3. The particle’s average speed.

Solution.

1. We use Theorem 12.3.14 to establish the integral:

distance traveled =

∫ 2

−2

∥v⃗(t)∥ dt

=

∫ 2

−2

√
1 + (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary functions so we turn
to numerical integration, finding the distance to be 12.88m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the particle ends with an x-value increased by 4 and with
y- and z-values the same (see Figure 12.3.16).

3. We found above that the particle traveled 12.88mover 4 seconds.
We can compute average speed by dividing: 12.88/4 = 3.22m/s.

Figure 12.3.16 The path of the parti-
cle in Example 12.3.15

We should also consider Definition 5.4.26 of Section 5.4, which
says that the average value of a function f on [a, b] is
1

b−a

∫ b

a
f(x) dx. In our context, the average value of the speed

is

average speed =
1

2− (−2)

∫ 2

−2

∥v⃗(t)∥ dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a particle traveling givesmeaning
to a more abstract concept learned earlier.

In Definition 5.4.26 of Chapter 5 we defined the average value of a function
f(x) on [a, b] to be

1

b− a

∫ b

a

f(x) dx.

Note how in Example 12.3.15 we computed the average speed as

distance traveled
travel time

=
1

2− (−2)

∫ 2

−2

∥v⃗(t)∥ dt;

that is, we just found the average value of ∥v⃗(t)∥ on [−2, 2].
Likewise, given position function r⃗(t), the average velocity on [a, b] is

displacement
travel time

=
1

b− a

∫ b

a

r⃗ ′(t) dt =
r⃗(b)− r⃗(a)

b− a
;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_motion6.html
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Key Idea 12.3.17 Average Speed, Average Velocity.

Let r⃗(t) be a differentiable position function on [a, b].
The average speed is:

distance traveled
travel time

=

∫ b

a
∥r⃗ ′(t)∥ dt

b− a
=

1

b− a

∫ b

a

∥v⃗(t)∥ dt.

The average velocity is:

displacement
travel time

=

∫ b

a
r⃗ ′(t) dt

b− a
=

1

b− a

∫ b

a

r⃗ ′(t) dt.

The next two sections investigate more properties of the graphs of vector-
valued functions and we’ll apply these new ideas to what we just learned about
motion.
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12.3.3 Exercises

Terms and Concepts

1. How is velocity different from speed?
2. What is the difference between displacement and distance traveled?
3. What is the difference between average velocity and average speed?

4. Distance traveled is the same as , just viewed in a different context.

5. Describe a scenariowhere an object’s average speed is a large number, but themagnitude of the average velocity
is not a large number.

6. Explain why it is not possible to have an average velocity with a large magnitude but a small average speed.

Problems

Exercise Group. In the following exercises, a position function r⃗(t) is given. Find v⃗(t) and a⃗(t).
7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩ 8. r⃗(t) =

〈
3t2 − 2t+ 1,−t2 + t+ 14

〉
9. r⃗(t) = ⟨cos(t), sin(t)⟩ 10. r⃗(t) = ⟨t/10,− cos(t), sin(t)⟩

Exercise Group. In the following exercises, a position function r⃗(t) is given. Sketch r⃗(t) on the indicated interval.
Find v⃗(t) and a⃗(t), then add v⃗(t0) and a⃗(t0) to your sketch, with their initial points at r⃗(t0), for the given value of t0.

11. r⃗(t) = ⟨t, sin(t)⟩ on [0, π/2]; t0 = π/4 12. r⃗(t) =
〈
t2, sin(t2)

〉
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
〈
t2 + t,−t2 + 2t

〉
on [−2, 2]; t0 = 1 14. r⃗(t) =

〈
2t+ 3

t2 + 1
, t2
〉
on [−1, 1]; t0 = 0

Exercise Group. In the following exercises, a position function r⃗(t) of an object is given. Find the speed of the object
in terms of t, and find where the speed is minimized/maximized on the indicated interval.

15. r⃗(t) =
〈
t2, t

〉
on [−1, 1] 16. r⃗(t) =

〈
t2, t2 − t3

〉
on [−1, 1]

17. r⃗(t) = ⟨5 cos(t), 5 sin(t)⟩ on [0, 2π] 18. r⃗(t) = ⟨2 cos(t), 5 sin(t)⟩ on [0, 2π]
19. r⃗(t) = ⟨sec(t), tan(t)⟩ on [0, π/4]. 20. r⃗(t) = ⟨t+ cos(t), 1− sin(t)⟩ on [0, 2π]
21. r⃗(t) = ⟨12t, 5 cos(t), 5 sin(t)⟩ on [0, 4π] 22. r⃗(t) =

〈
t2 − t, t2 + t, t

〉
on [0, 1].

23. r⃗(t) =
〈
t, t2,

√
1− t2

〉
on [−1, 1] 24. Projectile Motion:

r⃗(t) =

〈
(v0 cos(θ))t,−

1

2
gt2 + (v0 sin(θ))t

〉
on
[
0,

2v0 sin(θ)
g

]

Exercise Group. In the following exercises, position functions r⃗1(t) and r⃗2(s) for two objects are given that follow
the same path on the respective intervals.

(a) Show that the positions are the same at the indicated t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleration of the two objects at t0 and s0, respectively.

25. r⃗1(t) =
〈
t, t2

〉
on [0, 1]; t0 = 1

r⃗2(s) =
〈
s2, s4

〉
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos(t), 3 sin(t)⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2];

s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6s− 6, 4s− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
〈
t,
√
t
〉
on [0, 1]; t0 = 1

r⃗2(s) =
〈
sin(s),

√
sin(s)

〉
on [0, π/2];

s0 = π/2
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Exercise Group. In the following exercises, find the position function of an object given its acceleration and initial
velocity and position.

29. a⃗(t) = ⟨2, 3⟩;v⃗(0) = ⟨1, 2⟩,r⃗(0) = ⟨5,−2⟩ 30. Given a⃗(t) = ⟨2, 3⟩ , v⃗(1) = ⟨1, 2⟩ , and
r⃗(1) = ⟨5,−2⟩ , find the position function r⃗(t).

31. a⃗(t) = ⟨cos(t),− sin(t)⟩;v⃗(0) = ⟨0, 1⟩,r⃗(0) =
⟨0, 0⟩

32. Given a⃗(t) = ⟨0,−32⟩ , v⃗(0) = ⟨10, 50⟩ , and
r⃗(0) = ⟨0, 0⟩ , find the position function r⃗(t).

Exercise Group. In the following exercises, find the displacement, distance traveled, average velocity and average
speed of the described object on the given interval.

33. An object with position function
r⃗(t) = ⟨2 cos(t), 2 sin(t), 3t⟩, where distances
are measured in feet and time is in seconds, on
[0, 2π].

34. An object has position function
r⃗(t) = ⟨5 cos(t),−5 sin(t)⟩ , where distances
are measured in feet and time is in seconds.
Over [0, π].

35. An object with velocity function
v⃗(t) = ⟨cos(t), sin(t)⟩, where distances are
measured in feet and time is in seconds, on
[0, 2π].

36. An object has velocity function
v⃗(t) = ⟨1, 2,−1⟩ , where distances are
measured in feet and time is in seconds. Over
[0, 10].

Exercise Group. The following exercises ask you to solve a variety of problems based on the principles of projectile
motion.

37. A boy whirls a ball, attached to a 3 ft string,
above his head in a counter-clockwise circle.
The ball makes 2 revolutions per second.

At what t-values should the boy release the
string so that the ball heads directly for a tree
standing 10 ft in front of him?

38. David faces Goliath with only a stone in a 3 ft
sling, which he whirls above his head at 4
revolutions per second. They stand 20 ft apart.

(a) At what t-values must David release the
stone in his sling in order to hit Goliath?

(b) What is the speed at which the stone is
traveling when released?

(c) Assume David releases the stone from a
height of 6ft and Goliath’s forehead is 9 ft
above the ground. What angle of
elevation must David apply to the stone
to hit Goliath’s head?

39. A hunter aims at a deer which is 40 yards away.
Her crossbow is at a height of 5 ft, and she aims
for a spot on the deer 4 ft above the ground.
The crossbow fires her arrows at 300 ft/s.

(a) At what angle of elevation should she
hold the crossbow to hit her target?

(b) If the deer is moving perpendicularly to
her line of sight at a rate of 20mph, by
approximately how much should she lead
the deer in order to hit it in the desired
location? (How far ahead of the deer
should she aim?)

40. A baseball player hits a ball at 100 mph, with an
initial height of 3 ft and an angle of elevation of
20◦, at Boston’s Fenway Park. The ball flies
towards the famed “Green Monster,” a wall 37
ft high located 310 ft from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevation is 21◦,
the ball clears the Green Monster.
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41. A Cessna flies at 1000 ft at 150 mph and drops a
box of supplies to the professor (and his wife)
on an island. Ignoring wind resistance, how far
horizontally will the supplies travel before they
land?

42. A football quarterback throws a pass from a
height of 6 ft, intending to hit his receiver 20
yds away at a height of 5 ft.

(a) If the ball is thrown at a rate of 50mph,
what angle of elevation is needed to hit
his intended target?

(b) If the ball is thrown at with an angle of
elevation of 8◦, what initial ball speed is
needed to hit his target?
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12.4 Unit Tangent and Normal Vectors

12.4.1 Unit Tangent Vector
Given a smooth vector-valued function r⃗(t), we defined in Definition 12.2.14
that any vector parallel to r⃗ ′(t0) is tangent to the graph of r⃗(t) at t = t0. It is
often useful to consider just the direction of r⃗ ′(t) and not its magnitude. There-
fore we are interested in the unit vector in the direction of r⃗ ′(t). This leads to a
definition.

Definition 12.4.1 Unit Tangent Vector.

Let r⃗(t) be a smooth function on an open interval I . The unit tangent
vector T⃗ (t) is

T⃗ (t) =
1

∥r⃗ ′(t)∥
r⃗ ′(t).

Example 12.4.2 Computing the unit tangent vector.

Let r⃗(t) = ⟨3 cos(t), 3 sin(t), 4t⟩. Find T⃗ (t) and compute T⃗ (0) and
T⃗ (1).

Solution. We apply Definition 12.4.1 to find T⃗ (t).

T⃗ (t) =
1

∥r⃗ ′(t)∥
r⃗ ′(t)

=
1√(

− 3 sin(t)
)2

+
(
3 cos(t)

)2
+ 42

⟨−3 sin(t), 3 cos(t), 4⟩

=

〈
−3

5
sin(t),

3

5
cos(t),

4

5

〉
.

We can now easily compute T⃗ (0) and T⃗ (1):

T⃗ (0) =

〈
0,

3

5
,
4

5

〉
; T⃗ (1) =

〈
−3

5
sin(1),

3

5
cos(1),

4

5

〉
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are plotted in Figure 12.4.3 with their initial points at r⃗(0) and
r⃗(1), respectively. (They look rather “short” since they are only length
1.)

Figure 12.4.3 Plotting unit tangent
vectors in Example 12.4.2

The unit tangent vector T⃗ (t) always has a magnitude of 1, though it is
sometimes easy to doubt that is true. We can help solidify this thought
in our minds by computing

∥∥∥T⃗ (1)∥∥∥:∥∥∥T⃗ (1)∥∥∥ ≈
√
(−0.505)2 + 0.3242 + 0.82 = 1.000001.

We have rounded in our computation of T⃗ (1), so we don’t get 1 exactly.
We leave it to the reader to use the exact representation of T⃗ (1) to verify
it has length 1.

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leaving
us with a formula that is not as clean.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tannorm1.html
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Example 12.4.4 Computing the unit tangent vector.

Let r⃗(t) =
〈
t2 − t, t2 + t

〉
. Find T⃗ (t) and compute T⃗ (0) and T⃗ (1).

Solution. We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

∥r⃗ ′(t)∥ =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

Therefore

T⃗ (t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

〈
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

〉
.

When t = 0, we have T⃗ (0) =
〈
−1/

√
2, 1/

√
2
〉
; when t = 1, we have

T⃗ (1) =
〈
1/
√
10, 3/

√
10
〉
. We leave it to the reader to verify each of

these is a unit vector. They are plotted in Figure 12.4.5

−2 2 4 6

2

4

6

x

y

Figure 12.4.5 Plotting unit tangent
vectors in Example 12.4.4

12.4.2 Unit Normal Vector
Just as knowing the direction tangent to a path is important, knowing a direction
orthogonal to a path is important. When dealing with real-valued functions, we
defined the normal line at a point to the be the line through the point that was
perpendicular to the tangent line at that point. We can do a similar thing with
vector-valued functions. Given r⃗(t) in R2, we have 2 directions perpendicular
to the tangent vector, as shown in Figure 12.4.6. It is good to wonder “Is one of
these two directions preferable over the other?”

0.5 1 1.5 2

x

y

Figure 12.4.6 Given a direction in the
plane, there are always two direc-
tions orthogonal to it

Given r⃗(t) inR3, there are infinitely many vectors orthogonal to the tangent
vector at a given point. Again, we might wonder “Is one out of this infinite num-
ber of choices preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 12.2.24, which states
that if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗ (t), the unit tangent vector, has constant length. Therefore T⃗ (t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direction, we define this newly found vector to be a unit vector.

T⃗ (t) is a unit vector, by defin-
ition. This does not imply that
T⃗ ′(t) is also a unit vector.

Definition 12.4.7 Unit Normal Vector.

Let r⃗(t) be a vector-valued function where the unit tangent vector, T⃗ (t),
is smooth on an open interval I . The unit normal vector N⃗(t) is

N⃗(t) =
1∥∥∥T⃗ ′(t)
∥∥∥ T⃗ ′(t).

Example 12.4.8 Computing the unit normal vector.

Let r⃗(t) = ⟨3 cos(t), 3 sin(t), 4t⟩ as in Example 12.4.2. Sketch both
T⃗ (π/2) and N⃗(π/2) with initial points at r⃗(π/2).
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Solution. In Example 12.4.2, we found

T⃗ (t) = ⟨(−3/5) sin(t), (3/5) cos(t), 4/5⟩ .

Therefore

T⃗ ′(t) =

〈
−3

5
cos(t),−3

5
sin(t), 0

〉
and

∥∥∥T⃗ ′(t)
∥∥∥ =

3

5
.

Thus

N⃗(t) =
T⃗ ′(t)

3/5
= ⟨− cos(t),− sin(t), 0⟩ .

We compute T⃗ (π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩.
These are sketched in Figure 12.4.9.

Figure 12.4.9 Plotting unit tangent
and normal vectors in Figure 12.4.9

There is one flaw in our defini-
tion of N⃗(t): it is possible that
we could have T⃗ ′(t) = 0! In-
deed, this is the case for any line
of the form ℓ⃗(t) = r⃗0 + tv⃗. For
straight lines in the plane, it is
most common to orient the nor-
mal vector90◦ counterclockwise
from the tangent vector, but for
lines in three dimensions, there
is no preferred choice of normal
vector.

The previous example was once again “too nice.” In general, the expression
for T⃗ (t) contains fractions of square roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example 12.4.10 Computing the unit normal vector.

Let r⃗(t) =
〈
t2 − t, t2 + t

〉
as in Example 12.4.4. Find N⃗(t) and sketch

r⃗(t) with the unit tangent and normal vectors at t = −1, 0 and 1.
Solution. In Example 12.4.4, we found

T⃗ (t) =

〈
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

〉
.

Finding T⃗ ′(t) requires two applications of the Quotient Rule:

T ′(t) =

〈√
8t2 + 2(2)− (2t− 1)

(
1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

(
1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

〉

=

〈
4(2t+ 1)

(8t2 + 2)
3/2

,
4(1− 2t)

(8t2 + 2)
3/2

〉

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by its
magnitude. ∥∥∥T⃗ ′(t)

∥∥∥ =

√
16(2t+ 1)2

(8t2 + 2)3
+

16(1− 2t)2

(8t2 + 2)3

=

√
16(8t2 + 2)

(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

〈
4(2t+ 1)

(8t2 + 2)
3/2

,
4(1− 2t)

(8t2 + 2)
3/2

〉

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tannorm3.html
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=

〈
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

〉
.

Using this formula for N⃗(t), we compute the unit tangent and normal
vectors for t = −1, 0 and 1 and sketch them in Figure 12.4.11.

−2 2 4 6
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y

Figure 12.4.11 Plotting unit tan-
gent and normal vectors in Exam-
ple 12.4.10

The final result for N⃗(t) in Example 12.4.10 is suspiciously similar to T⃗ (t).
There is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the
only unit vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗ (t), we
can quickly determine N⃗(t) if we know which term to multiply by (−1).

Consider again Figure 12.4.11, wherewe have plotted some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direction that r⃗(t) “turns” allows us to quickly find N⃗(t).

Theorem 12.4.12 Unit Normal Vectors in R2.

Let r⃗(t) be a vector-valued function in R2 where T⃗ ′(t) is smooth on an
open interval I . Let t0 be in I and T⃗ (t0) = ⟨t1, t2⟩ Then N⃗(t0) is either

N⃗(t0) = ⟨−t2, t1⟩ or N⃗(t0) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

12.4.3 Application to Acceleration
Let r⃗(t) be a position function. It is a fact (stated later in Theorem 12.4.13) that
acceleration, a⃗(t), lies in the plane defined by T⃗ and N⃗ . That is, there are scalar
functions aT(t) and aN(t) such that

a⃗(t) = aT(t)T⃗ (t) + aN(t)N⃗(t).

We generally drop the “of t” part of the notation and just write aT and aN.
The scalar aT measures “howmuch” acceleration is in the direction of travel,

that is, it measures the component of acceleration that affects the speed. The
scalar aN measures “how much” acceleration is perpendicular to the direction
of travel, that is, it measures the component of acceleration that affects the
direction of travel.

We can find aT using the orthogonal projection of a⃗(t) onto T⃗ (t) (review
Definition 11.3.14 in Section 11.3 if needed). Recalling that since T⃗ (t) is a unit
vector, T⃗ (t) · T⃗ (t) = 1, so we have

proj T⃗ (t) a⃗(t) =
a⃗(t) · T⃗ (t)
T⃗ (t) · T⃗ (t)

T⃗ (t) =
(
a⃗(t) · T⃗ (t)

)︸ ︷︷ ︸
aT

T⃗ (t).

Thus the amount of a⃗(t) in the direction of T⃗ (t) is aT = a⃗(t) · T⃗ (t). The
same logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of computing aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Keep in mind that both aT and
aN are functions of t; that is, the
scalar changes depending on t.
It is convention to drop the “(t)”
notation from aT(t) and simply
write aT.
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Theorem 12.4.13 Acceleration in the Plane Defined by T⃗ and N⃗ .

Let r⃗(t) be a position function with acceleration a⃗(t) and unit tangent
and normal vectors T⃗ (t) and N⃗(t). Then a⃗(t) lies in the plane defined
by T⃗ (t) and N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗ (t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗ (t) = d

dt

(
∥v⃗(t)∥

)
aN = a⃗(t) · N⃗(t) =

√
∥a⃗(t)∥2 − a2T =

∥a⃗(t)× v⃗(t)∥
∥v⃗(t)∥

= ∥v⃗(t)∥
∥∥∥T⃗ ′(t)

∥∥∥
Note the second formula for aT:

d

dt

(
∥v⃗(t)∥

)
. This measures the rate of

change of speed, which again is the amount of acceleration in the direction of
travel.

Example 12.4.14 Computing aT and aN .

Let r⃗(t) = ⟨3 cos(t), 3 sin(t), 4t⟩ as in Examples 12.4.2 and 12.4.8. Find
aT and aN.
Solution. The previous examples give a⃗(t) = ⟨−3 cos(t),−3 sin(t), 0⟩
and

T⃗ (t) =

〈
−3

5
sin(t),

3

5
cos(t),

4

5

〉
and N⃗(t) = ⟨− cos(t),− sin(t), 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗ (t) = 9

5
cos(t) sin(t)− 9

5
cos(t) sin(t) + 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2(t) + 3 sin2(t) + 0 = 3.

Thus a⃗(t) = 0T⃗ (t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the practical interpretationof these numbers? aT = 0means the
object is moving at a constant speed, and hence all acceleration comes
in the form of direction change.

Example 12.4.15 Computing aT and aN .

Let r⃗(t) =
〈
t2 − t, t2 + t

〉
as in Examples 12.4.4 and 12.4.10. Find aT

and aN.
Solution. The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗ (t) =

〈
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

〉
and N⃗(t) =

〈
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

〉
.

While we can compute aN using N⃗(t), we instead demonstrate using
another formula from Theorem 12.4.13.

aT = a⃗(t) · T⃗ (t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.
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aN =

√
∥a⃗(t)∥2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret

this to mean that at t = 2, the particle is accelerating mostly by increas-
ing speed, not by changing direction. As the path near t = 2 is relatively
straight, this should make intuitive sense. Figure 12.4.16 gives a graph
of the path for reference.

−2 2 4 6

2

4

6
t = 2

t = 0

r⃗(t)

x

y

Figure 12.4.16 Graphing r⃗(t) in Exam-
ple 12.4.15

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here

the particle’s speed is not changing and all acceleration is in the form of
direction change.

Example 12.4.17 Analyzing projectile motion.

A ball is thrown from a height of 240 ft with an initial speed of 64 ft
s and

an angle of elevation of 30◦. Find the position function r⃗(t) of the ball
and analyze aT and aN.
Solution. Using Key Idea 12.3.11 of Section 12.3 we form the position
function of the ball:

r⃗(t) =
〈(
64 cos(30◦)

)
t,−16t2 +

(
64 sin(30◦)

)
t+ 240

〉
,

which we plot in Figure 12.4.18.
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Figure 12.4.18 Plotting the position
of a thrown ball, with 1s increments
shown

From this we find v⃗(t) = ⟨64 cos(30◦),−32t+ 64 sin(30◦)⟩ and a⃗(t) =
⟨0,−32⟩. Computing T⃗ (t) is not difficult, and with some simplification
we find

T⃗ (t) =

〈 √
3√

t2 − 2t+ 4
,

1− t√
t2 − 2t+ 4

〉
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗ (t) = 32t− 32√
t2 − 2t+ 4

.

We choose to not find N⃗(t) and find aN through the formula aN =√
∥a⃗(t)∥2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32
√
3√

t2 − 2t+ 4
.

Figure 12.4.19 gives a table of values of aT and aN. When t = 0, we
see the ball’s speed is decreasing; when t = 1 the speed of the ball is
unchanged. This corresponds to the fact that at t = 1 the ball reaches
its highest point.
After t = 1 we see that aN is decreasing in value. This is because as the
ball falls, its path becomes straighter and most of the acceleration is in
the form of speeding up the ball, and not in changing its direction.

t aT aN

0 −16 27.7

1 0 32

2 16 27.7

3 24.2 20.9

4 27.7 16

5 29.4 12.7

Figure 12.4.19 A table of values of aT
and aN in Example 12.4.17

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of motion. The work in Example 12.4.17 gave quantitative analysis
of what we intuitively knew.
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The next section provides two more important steps towards this analysis.
We currently describe position only in terms of time. In everyday life, though,
we often describe position in terms of distance (“The gas station is about 2miles
ahead, on the left.”). The arc length parameter allows us to reference position
in terms of distance traveled.

We also intuitively know that some paths are straighter than others — and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quantitative
measurement of how curvy a curve is.
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12.4.4 Exercises

Terms and Concepts

1. If T⃗ (t) is a unit tangent vector, what is
∥∥∥T⃗ (t)∥∥∥ ?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?
3. The acceleration vector a⃗(t) lies in the plane defined by what two vectors?

4. aT measures how much the acceleration is affecting the of an object.

Problems

Exercise Group. Given r⃗(t), find T⃗ (t) and evaluate it at the indicated value of t.

5. r⃗(t) =
〈
2t2, t2 − t

〉
,t = 1 6. r⃗(t) = ⟨t, cos(t)⟩ , t = π/4.

7. r⃗(t) =
〈
cos3(t), sin3(t)

〉
,t = π/4 8. r⃗(t) = ⟨cos(t), sin(t)⟩ , t = π.

Exercise Group. Find the equation of the line tangent to the curve at the indicated t-value using the unit tangent
vector. Note: these are the same problems as in Exercises 5–8.

9. Find the vector equation of the line tangent to
r⃗(t) =

〈
2t2, t2 − t

〉
at t = 1 using the unit

tangent vector.

10. Find the vector equation of the line tangent to
r⃗(t) = ⟨t, cos(t)⟩ at t = π/4 using the unit
tangent vector.

11. r⃗(t) =
〈
cos3(t), sin3(t)

〉
,t = π/4 12. Find the vector equation of the line tangent to

r⃗(t) = ⟨cos(t), sin(t)⟩ at t = π using the unit
tangent vector.

ExerciseGroup. In the following exercises, find N⃗(t)usingDefinition12.4.7. Confirm the result using Theorem12.4.12.
13. r⃗(t) = ⟨3 cos(t), 3 sin(t)⟩ 14. r⃗(t) =

〈
t, t2

〉
15. r⃗(t) = ⟨cos(t), 2 sin(t)⟩ 16. r⃗(t) = ⟨et, e−t⟩

Exercise Group. In the following exercises, a position function r⃗(t) is given along with its unit tangent vector T⃗ (t)
evaluated at t = a, for some value of a.

(a) Confirm that T⃗ (a) is as stated.

(b) Using a graph of r⃗(t) and Theorem 12.4.12, find N⃗(a).

17. r⃗(t) = ⟨3 cos(t), 5 sin(t)⟩;T⃗ (π/4) =〈
− 3√

34
,

5√
34

〉
.

18. r⃗(t) =

〈
t,

1

t2 + 1

〉
;T⃗ (1) =

〈
2√
5
,− 1√

5

〉
.

19. r⃗(t) = (1 + 2 sin(t)) ⟨cos(t), sin(t)⟩;T⃗ (0) =〈
2√
5
,
1√
5

〉
.

20. r⃗(t) =
〈
cos3(t), sin3(t)

〉
;T⃗ (π/4) =〈

− 1√
2
,
1√
2

〉
.

Exercise Group. In the following exercises, find N⃗(t).
21. r⃗(t) = ⟨4t, 2 sin(t), 2 cos(t)⟩ 22. If r⃗(t) = ⟨5 cos(t), 3 sin(t), 4 sin(t)⟩ , find N⃗(t).
23. r⃗(t) = ⟨a cos(t), a sin(t), bt⟩; a > 0 24. If r⃗(t) = ⟨cos(at), sin(at), t⟩ , find N⃗(t).

Exercise Group. In the following exercises, find aT and aN given r⃗(t). Be sure you can sketch r⃗(t) on the indicated
interval, and comment on the relative sizes of aT and aN at the indicated t values.
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25. r⃗(t) =
〈
t, t2

〉
on [−1, 1]; consider t = 0 and

t = 1.
26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and

t = 2.
27. r⃗(t) = ⟨2 cos(t), 2 sin(t)⟩ on [0, 2π]; consider

t = 0 and t = π/2.
28. r⃗(t) =

〈
cos(t2), sin(t2)

〉
on (0, 2π]; consider

t = π/2 and t = π.
29. r⃗(t) = ⟨a cos(t), a sin(t), bt⟩ on [0, 2π], where

a, b > 0; consider t = 0 and t = π/2.
30. r⃗(t) = ⟨5 cos(t), 4 sin(t), 3 sin(t)⟩ on [0, 2π];

consider t = 0 and t = π/2.
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12.5 The Arc Length Parameter and Curvature

12.5.1 The Arc Length Parametrization
In normal conversation we describe position in terms of both time and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you are,
youmight answer “I am 20minutes from your house,” or youmight say “I am 10
miles from your house.” Both answers provide your friend with a general idea
of where you are.

Currently, our vector-valued functions have defined points with a parame-
ter t, which we often take to represent time. Consider Figure 12.5.1(a), where
r⃗(t) =

〈
t2 − t, t2 + t

〉
is graphed and the points corresponding to t = 0, 1 and

2 are shown. Note how the arc length between t = 0 and t = 1 is smaller than
the arc length between t = 1 and t = 2; if the parameter t is time and r⃗ is
position, we can say that the particle traveled faster on [1, 2] than on [0, 1].
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r⃗(t)
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(a)
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(b)

Figure 12.5.1 Introducing the arc length parameter
Now consider Figure 12.5.1(b), where the same graph is parametrized by a

different variable s. Points corresponding to s = 0 through s = 6 are plotted.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an initial location (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrization of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0

∥r⃗ ′(u)∥ du.

We can turn this into a function: as t varies, we find the arc length s from 0
to t. This function is

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du. (12.5.1)

This establishes a relationship between s and t. Knowing this relationship
explicitly, we can rewrite r⃗(t) as a function of s: r⃗(s). We demonstrate this in
an example.

Example 12.5.2 Finding the arc length parameter.

Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗with the arc length parameter
s.
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Solution. Using Equation (12.5.1), we write

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du.

We can integrate this, explicitly finding a relationship between s and t:

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du

=

∫ t

0

√
32 + 42 du

=

∫ t

0

5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
〈
3

5
s− 1,

4

5
s+ 2

〉
.

Clearly, as shown in Figure 12.5.3, the graph of r⃗ is a line, where t = 0
corresponds to the point (−1, 2). What point on the line is 2 units away
from this initial point? We find it with r⃗(2) = ⟨1/5, 18/5⟩.

1 2−1−2

2

4

6

t = 0

t = 1

s = 1

s = 2

s = 3

s = 4

s = 5

s = 0

x

y

Figure 12.5.3 Graphing r⃗ in Exam-
ple 12.5.2 with parameters t and s

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the
Distance Formula to check:

d =

√(
1

5
− (−1)

)2

+

(
18

5
− 2

)2

=

√
36

25
+

64

25
=

√
4 = 2.

Yes, r⃗(2) is indeed 2 units away, in the direction of travel, from the initial
point.

Things worked out very nicely in Example 12.5.2; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in termsof t, a result of integrating a square root. There are a number of
things that we can learn about the arc length parameter from Equation (12.5.1),
though, that are incredibly useful.

First, take the derivative of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 5.4.6) states that

ds

dt
= s ′(t) = ∥r⃗ ′(t)∥ . (12.5.2)

Letting t represent time and r⃗(t) represent position, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuition.

The Chain Rule states that

dr⃗

dt
=

dr⃗

ds
· ds
dt

r⃗ ′(t) = r⃗ ′(s) · ∥r⃗ ′(t)∥ .

Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

∥r⃗ ′(t)∥
= T⃗ (t), (12.5.3)
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where T⃗ (t) is the unit tangent vector. Equation (12.5.3) is often misinterpreted,
as one is tempted to think it states r⃗ ′(t) = T⃗ (t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem 12.5.4 Arc Length Parameter.

Let r⃗(s) be a vector-valued function. The parameter s is the arc length
parameter if, and only if, ∥r⃗ ′(s)∥ = 1.

12.5.2 Curvature
Consider points A and B on the curve graphed in Figure 12.5.5(a). One can
readily argue that the curve curves more sharply at A than at B. It is useful
to use a number to describe how sharply the curve bends; that number is the
curvature of the curve.
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1

2

A
B

x

y

(a)
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x

y

(b)

Figure 12.5.5 Establishing the concept of curvature
Wederive this number in the followingway. Consider Figure 12.5.5(b), where

unit tangent vectors are graphed around pointsA andB. Notice how the direc-
tion of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

Definition 12.5.6 Curvature.

Let r⃗(s) be a vector-valued function where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣∣∣∣∣
∣∣∣∣∣ dT⃗ds

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣∣∣∣ T⃗ ′(s)

∣∣∣∣∣∣ .
If r⃗(s) is parametrized by the arc length parameter, then

T⃗ (s) =
r⃗ ′(s)

∥r⃗ ′(s)∥
and N⃗(s) =

T⃗ ′(s)∥∥∥T⃗ ′(s)
∥∥∥ .

Having defined
∥∥∥T⃗ ′(s)

∥∥∥ = κ, we can rewrite the second equation as

T⃗ ′(s) = κN⃗(s). (12.5.4)
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We already knew that T⃗ ′(s) is in the same direction as N⃗(s); that is, we can
think of T⃗ (s) as being “pulled” in the direction of N⃗(s). How “hard” is it being
pulled? By a factor of κ. When the curvature is large, T⃗ (s) is being “pulled
hard” and the direction of T⃗ (s) changes rapidly. When κ is small, T (s) is not
being pulled hard and hence its direction is not changing rapidly.

We use Definition 12.5.6 to find the curvature of the line in Example 12.5.2.

Example 12.5.7 Finding the curvature of a line.

Use Definition 12.5.6 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.
Solution. In Example 12.5.2, we found that the arc length parameter
was defined by s = 5t, so r⃗(s) = ⟨3s/5− 1, 4s/5 + 2⟩ parametrized r⃗
with the arc length parameter. To find κ, we need to find T⃗ ′(s).

T⃗ (s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∣∣∣∣∣∣ T⃗ ′(s)

∣∣∣∣∣∣ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How
“curvy” is a line? It is not curvy at all.)

While the definition of curvature is a beautiful mathematical concept, it is
nearly impossible to use most of the time; writing r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of calcu-
lating this value that are much easier. There is a tradeoff: the definition is “easy”
to understand though hard to compute, whereas these other formulas are easy
to compute though it may be hard to understand why they work.

Theorem 12.5.8 Formulas for Curvature.

Let C be a smooth curve in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1 +
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector-valued function in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x′y′′ − x′′y′|(

(x′)2 + (y′)2
)3/2 .

3. If C is defined in space by a vector-valued function r⃗(t), then

κ =

∥∥∥T⃗ ′(t)
∥∥∥

∥r⃗ ′(t)∥
=

∥r⃗ ′(t)× r⃗ ′′(t)∥
∥r⃗ ′(t)∥3

=
a⃗(t) · N⃗(t)

∥v⃗(t)∥2
.
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We practice using these formulas.

Example 12.5.9 Finding the curvature of a circle.

Find the curvature of a circle with radius r, defined by c⃗(t) =
⟨r cos(t), r sin(t)⟩.
Solution. Before we start, we should expect the curvature of a circle to
be constant, and not dependent on t. (Why?)
We compute κ using the second part of Theorem 12.5.8.

κ =
|(−r sin(t))(−r sin(t))− (−r cos(t))(r cos(t))|(

(−r sin(t))2 + (r cos(t))2
)3/2

=
r2(sin2(t) + cos2(t))(

r2(sin2(t) + cos2(t))
)3/2

=
r2

r3
=

1

r
.

We have found that a circle with radius r has curvature κ = 1/r.

Example 12.5.9 gives a great result. Before this example, if we were told
“The curve has a curvature of 5 at point A,” we would have no idea what this
really meant. Is 5 “big” — does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of
the curve at P . A circle that:

• passes through P ,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the osculating circle, or circle of curvature, to C at P , and r is the radius
of curvature. Figure 12.5.10 shows the graph of the curve seen earlier in Fig-
ure 12.5.5 and its osculating circles at A and B. A sharp turn corresponds to
a circle with a small radius; a gradual turn corresponds to a circle with a large
radius. Being able to think of curvature in terms of the radius of a circle is very
useful.
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Figure 12.5.10 Illustrating the osculat-
ing circles for the curve seen in Fig-
ure 12.5.5

(The word “osculating” comes from a Latin word related to kissing; an os-
culating circle “kisses” the graph at a particular point. Many beautiful ideas in
mathematics have come from studying the osculating circles to a curve.)

Example 12.5.11 Finding curvature.

Find the curvature of the parabola defined by y = x2 at the vertex and
at x = 1.
Solution. We use the first formula found in Theorem 12.5.8.

κ(x) =
|2|(

1 + (2x)2
)3/2
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=
2(

1 + 4x2
)3/2 .
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y

Figure 12.5.12 Examining the curva-
ture of y = x2

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature is
κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of a
circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 12.5.12. At x = 3, the
curvature is 0.009; the graph is nearly straight as the curvature is very
close to 0.

Example 12.5.13 Finding curvature.

Find where the curvature of r⃗(t) =
〈
t, t2, 2t3

〉
is maximized.

Solution. We use the third formula in Theorem 12.5.8 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
〈
1, 2t, 6t2

〉
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×r⃗ ′′(t) =

〈
12t2,−12t, 2

〉
.

−2 −1 1 2

0.5

1

1.5

2

2.5

x

y

(a)

(b)

Figure 12.5.14 Understanding the curvature of a curve in space
Thus

κ(t) =
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3

=

∥∥〈12t2,−12t, 2
〉∥∥

∥⟨1, 2t, 6t2⟩∥3

=

√
144t4 + 144t2 + 4(√
1 + 4t2 + 36t4

)3
While this is not a particularly “nice” formula, it does explicitly tell us
what the curvature is at a given t value. To maximize κ(t), we should
solve κ′(t) = 0 for t. This is doable, but very time consuming. Instead,
consider the graph of κ(t) as given in Figure 12.5.14(a). We see that
κ is maximized at two t values; using a numerical solver, we find these
values are t ≈ ±0.189. In Figure 12.5.14(b) we graph r⃗(t) and indicate
the points where curvature is maximized.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_curvature4b_3D.html
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12.5.3 Curvature and Motion
Let r⃗(t) be a position function of an object, with velocity v⃗(t) = r⃗ ′(t) and ac-
celeration a⃗(t) = r⃗ ′′(t). In Section 12.4 we established that acceleration is in
the plane formed by T⃗ (t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗ (t) + aNN⃗(t).

Theorem 12.4.13 gives formulas for aT and aN:

aT =
d

dt

(
∥v⃗(t)∥

)
and aN =

∥v⃗(t)× a⃗(t)∥
∥v⃗(t)∥

.

We understood that the amount of acceleration in the direction of T⃗ relates
only to how the speed of the object is changing, and that the amount of acceler-
ation in the direction of N⃗ relates to how the direction of travel of the object is
changing. (That is, if the object travels at constant speed, aT = 0; if the object
travels in a constant direction, aN = 0.)

In Equation (12.5.2) at the beginning of this section, we found s ′(t) = ∥v⃗(t)∥.
We can combine this fact with the above formula for aT to write

aT =
d

dt

(
∥v⃗(t)∥

)
=

d

dt

(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect
to time. We see once more that the component of acceleration in the direction
of travel relates only to speed, not to a change in direction.

Now compare the formula for aN above to the formula for curvature in The-
orem 12.5.8:

aN =
∥v⃗(t)× a⃗(t)∥

∥v⃗(t)∥
and κ =

∥r⃗ ′(t)× r⃗ ′′(t)∥
∥r⃗ ′(t)∥3

=
∥v⃗(t)× a⃗(t)∥

∥v⃗(t)∥3
.

Thus

aN = κ ∥v⃗(t)∥2

= κ
(
s ′(t)

)2
This last equation shows that the component of acceleration that changes

the object’s direction is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but tighten the
turn (i.e., increase κ), once again the door will push harder against you.

Putting our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)T⃗ (t) + κ ∥v⃗(t)∥2 N⃗(t).

This is not a particularly practicalway of finding aT andaN, but it reveals some
great concepts about how acceleration interacts with speed and the shape of a
curve.
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Example 12.5.15 Curvature and road design.

The minimum radius of the curve in a highway cloverleaf is determined
by the operating speed, as given in the table in Table 12.5.16. For each
curve and speed, compute aN.
Solution.

Table 12.5.16 Operating speed and minimum radius in highway clover-
leaf design

Operating
Speed (mph)

Minimum
Radius (ft)

35 310
40 430
45 540

Using Equation (12.5.4), we can compute the acceleration normal to the
curve in each case. We start by converting each speed from “miles per
hour” to “feet per second” by multiplying by 5280/3600.

35 mph, 310 ft⇒ 51.33ft/s, κ = 1/310

aN = κ ∥v⃗(t)∥2

=
1

310

(
51.33

)2
= 8.50ft/s2.

40 mph, 430 ft⇒ 58.67ft/s, κ = 1/430

aN =
1

430

(
58.67

)2
= 8.00ft/s2.

45 mph, 540 ft⇒ 66ft/s, κ = 1/540

aN =
1

540

(
66
)2

= 8.07ft/s2.

Note that each acceleration is similar; this is by design. Considering the
classic “Force=mass × acceleration” formula, this acceleration must be
kept small in order for the tires of a vehicle to keep a “grip” on the road. If
one travels on a turn of radius 310 ft at a rate of 50mph, the acceleration
is double, at 17.35 ft

s2 . If the acceleration is too high, the frictional force
created by the tiresmay not be enough to keep the car from sliding. Civil
engineers routinely compute a “safe” design speed, then subtract 5-10
mph to create the posted speed limit for additional safety.

We end this chapter with a reflection on what we’ve covered. We started
with vector-valued functions, which may have seemed at the time to be just an-
other way of writing parametric equations. However, we have seen that the
vector perspective has given us great insight into the behavior of functions and
the study of motion. Vector-valued position functions convey displacement, dis-
tance traveled, speed, velocity, acceleration and curvature information, each of
which has great importance in science and engineering.
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12.5.4 Exercises

Terms and Concepts

1. It is common to describe position in terms of both and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.
4. Describe in your own words what an “osculating circle” is.

5. Complete the identity: T⃗ ′(s) = N⃗(s).

6. Given a position function r⃗(t), how are aT and aN affected by the curvature?

Problems

Exercise Group. In the following exercises, a position function r⃗(t) is given, where t = 0 corresponds to the initial
position. Find the arc length parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩ 8. r⃗(t) = ⟨7 cos(t), 7 sin(t)⟩ .
9. r⃗(t) = ⟨3 cos(t), 3 sin(t), 2t⟩ 10. r⃗(t) = r⃗(t) = ⟨5 cos(t), 13 sin(t), 12 cos(t)⟩ .

Exercise Group. In the following exercises, a curve C is described along with 2 points on C.

(a) Using a sketch, determine at which of these points the curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the 2 given points.

11. C is defined by y = x3 − x; points given at
x = 0 and x = 1/2.

12. C is defined by y = 1
x2+1 ; points given at x = 0

and x = 2.
The curvature at x = 0 is (□ greater than

□ equal to □ less than) the curvature at
x = 2.

κ(0) =

13. C is defined by y = cos(x); points given at
x = 0 and x = π/2.

14. C is defined by y =
√

1− x2 on (−1, 1); points
given at x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos(t), sin(2t)⟩ ; points
given at t = 0 and t = π/4.

The curvature at t = 0 is (□ greater than
□ equal to □ less than) the curvature at
t = π/4.

κ(0) =

16. C is defined by r⃗(t) =
〈
cos2(t), sin(t) cos(t)

〉
;

points given at t = 0 and t = π/3.

17. C is defined by r⃗(t) =
〈
t2 − 1, t3 − t

〉
; points

given at t = 0 and t = 5.
18. C is defined by r⃗(t) = ⟨tan(t), sec(t)⟩ ; points

given at t = 0 and t = π/6.
The curvature at t = 0 is (□ greater than

□ equal to □ less than) the curvature at
t = π/6.

κ(0) =

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩;
points given at t = 0 and t = 1.

20. C is defined by r⃗(t) =
〈
t3 − t, t3 − 4, t2 − 1

〉
;

points given at t = 0 and t = 1.
The curvature at t = 0 is (□ greater than

□ equal to □ less than) the curvature at
t = 1.

κ(0) =
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21. C is defined by r⃗(t) = ⟨3 cos(t), 3 sin(t), 2t⟩;
points given at t = 0 and t = π/2.

22. C is defined by
r⃗(t) = ⟨5 cos(t), 13 sin(t), 12 cos(t)⟩ . Points
given at t = 0 and t = π/2.

The curvature at t = 0 is (□ greater than
□ equal to □ less than) the curvature at
t = π/2.

κ(0) =

Exercise Group. Find the value of x or t where curvature is maximized.
23. y = 1

6x
3 24. y = sin(x)

25. r⃗(t) =
〈
t2 + 2t, 3t− t2

〉
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

Exercise Group. Find the radius of curvature at the indicated value.
27. y = tan(x), at x = π/4 28. y = x2 + x− 3 at x = 1

29. r⃗(t) = ⟨cos(t), sin(3t)⟩, at t = 0 30. r⃗(t) = ⟨5 cos(3t), t⟩ at t = 0

Exercise Group. Find the equation of the osculating circle to the curve at the indicated t-value.
31. r⃗(t) =

〈
t, t2

〉
, at t = 0 32. r⃗(t) = ⟨3 cos(t), sin(t)⟩ at t = 0

33. r⃗(t) = ⟨3 cos(t), sin(t)⟩, at t = π/2 34. r⃗(t) =
〈
t2 − t, t2 + t

〉
at t = 0



Chapter 13

Functions of Several Variables

A function of the form y = f(x) is a function of a single variable; given a value
of x, we can find a value y. Even the vector-valued functions of Chapter 12 are
single-variable functions; the input is a single variable though the output is a
vector.

There are many situations where a desired quantity is a function of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s batting average, one
needs to know the number of hits and the number of at-bats.

This chapter studies multivariable functions, that is, functions with more
than one input.

13.1 Introduction to Multivariable Functions

Definition 13.1.1 Function of Two Variables.

Let D be a subset of R2. A function f of two variables is a rule that
assigns each pair (x, y) inD a value z = f(x, y) in R. D is the domain
of f ; the set of all outputs of f is the range.

Example 13.1.2 Understanding a function of two variables.

Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find
the domain and range of f .
Solution. Using the definition f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1

f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2

for which f is defined. In this example, f is defined for all pairs (x, y),
so the domainD of f is R2.
The output of f can be made as large or small as possible; any real num-
ber r can be the output. (In fact, given any real number r, f(0,−r) = r.)
So the rangeR of f is R.

715
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Example 13.1.3 Understanding a function of two variables.

Let f(x, y) =
√
1− x2

9 − y2

4 . Find the domain and range of f .

Solution. The domain is all pairs (x, y) allowable as input in f . Because
of the square root, we need (x, y) such that 0 ≤ 1− x2

9 − y2

4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equation describes an ellipse and its interior as shown in Fig-
ure 13.1.4. We can represent the domainD graphically with the figure;
in set notation, we can writeD = {(x, y)| x2

9 + y2

4 ≤ 1}.
x2

9
+

y2

4
= 1

−4 −2 2 4

−4

−2

2

4

x

y

Figure 13.1.4 Illustrating the domain
of f(x, y) in Example 13.1.3

The range is the set of all possible output values. The square root en-
sures that all output is ≥ 0. Since the x and y terms are squared, then
subtracted, inside the square root, the largest output value comes at
x = 0, y = 0: f(0, 0) = 1. Thus the rangeR is the interval [0, 1].

13.1.1 Graphing Functions of Two Variables

The graph of a function f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f . This creates a surface in space.

(a) (b)

Figure 13.1.5 Graphing a function of two variables
One can begin sketching a graph by plotting points, but this has limitations.

Consider Figure 13.1.5(a)where 25points havebeenplottedof f(x, y) = 1
x2+y2+1 .

More points have been plotted than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the function looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 13.1.5(b) which does a far better job of illustrating
the behavior of f .

While technology is readily available to help us graph functions of two vari-
ables, there is still a paper-and-pencil approach that is useful to understand and
master as it, combined with high-quality graphics, gives one great insight into
the behavior of a function. This technique is known as sketching level curves.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multigraph_introa_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multigraph_introb_3D.html
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13.1.2 Level Curves
It may be surprising to find that the problemof representing a three dimensional
surface on paper is familiar to most people (they just don’t realize it). Topo-
graphical maps, like the one shown in Figure 13.1.6, represent the surface of
Earth by indicating points with the same elevation with contour lines. The ele-
vations marked are equally spaced; in this example, each thin line indicates an
elevation change in 50ft increments and each thick line indicates a change of
200ft. When lines are drawn close together, elevation changes rapidly (as one
does not have to travel far to rise 50ft). When lines are far apart, such as near
“Aspen Campground,” elevation changes more gradually as one has to walk far-
ther to rise 50ft.

Figure 13.1.6 A topographical map displays elevation by drawing contour lines,
along with the elevation is constant. USGS 1:24000-scale Quadrangle for
Chrome Mountain, MT 1987.

Given a function f(x, y), we can draw a “topographical map” of the graph
z = f(x, y) by drawing level curves (or, contour lines). A level curve at z = c is
a curve in the xy-plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevation” is changing. Ex-
amples will help one understand this concept.

Example 13.1.7 Drawing Level Curves.

Let f(x, y) =
√

1− x2

9 − y2

4 . Find the level curves of f for c = 0, 0.2,
0.4, 0.6, 0.8 and 1.
Solution. Consider first c = 0. The level curve for c = 0 is the set of all
points (x, y) such that 0 =

√
1− x2

9 − y2

4 . Squaring both sides gives us

x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0) with horizontal major axis of length 6 and
minor axis of length 4. Thus for any point (x, y) on this curve, f(x, y) =
0.
Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4



CHAPTER 13. FUNCTIONS OF SEVERAL VARIABLES 718

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =

√
1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when
c = 1; there the ellipse is just the point (0, 0).
The level curves are shown in Figure 13.1.8(a). Note how the level curves
for c = 0 and c = 0.2 are very, very close together: this indicates that f
is growing rapidly along those curves.

−1 1 2−2 3−3

−1

1

−2

2

c = 1

c = 0.6

x

y

(a) (b)

Figure 13.1.8 Graphing the level curves in Example 13.1.7
In Figure 13.1.8(b), the curves are drawn on a graph of f in space. Note
how the elevations are evenly spaced. Near the level curves of c = 0
and c = 0.2 we can see that f indeed is growing quickly.

Example 13.1.9 Analyzing Level Curves.

Let f(x, y) = x+y
x2+y2+1 . Find the level curves for z = c.

Solution. We begin by setting f(x, y) = c for an arbitrary c and seeing
if algebraic manipulation of the equation reveals anything significant.

x+ y

x2 + y2 + 1
= c

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_levelcurve1b_3D.html
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x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet
clear. By completing the square, we can obtain:(

x− 1

2c

)2

+

(
y − 1

2c

)2

=
1

2c2
− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where

|c| < 1/
√
2. The level curves for c = ±0.2, ±0.4 and±0.6 are sketched

in Figure 13.1.10(a). To help illustrate “elevation,” we use thicker lines
for c values near 0, and dashed lines indicate where c < 0.
There is one special level curve, when c = 0. The level curve in this
situation is x+ y = 0, the line y = −x.
In Figure 13.1.10(b) we see a graph of the surface. Note how the y-axis is
pointing away from the viewer to more closely resemble the orientation
of the level curves in Figure 13.1.10(a).

c = 0

c = 0.2

c = 0.4

−6 −4 −2 2 4 6

−4

−2

2

4

x

y

(a)

(b)

Figure 13.1.10 Graphing the level curves in Example 13.1.9
Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x
without elevation change, though the level curve does.

13.1.3 Functions of Three Variables
We extend our study of multivariable functions to functions of three variables.
(One can make a function of as many variables as one likes; we limit our study
to three variables.)

Definition 13.1.11 Function of Three Variables.

Let D be a subset of R3. A function f of three variables is a rule that
assigns each triple (x, y, z) in D a value w = f(x, y, z) in R. D is the
domain of f ; the set of all outputs of f is the range.

Note how this definition closely resembles that of Definition 13.1.1.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_levelcurve2b_3D.html
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Example 13.1.12 Understanding a function of three variables.

Let f(x, y, z) = x2+z+3 sin(y)
x+2y−z . Evaluate f at the point (3, 0, 2) and find

the domain and range of f .
Solution. To evaluate the function we simply set x = 3, y = 0, and
z = 3 in the definition of f :

f(3, 0, 2) =
32 + 2 + 3 sin(0)
3 + 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples
(x, y, z) for which f(x, y, z) is defined. As we cannot divide by 0, we
find the domainD is

D = {(x, y, z) |x+ 2y − z ̸= 0}.

We recognize that the set of all points inR3 thatare not inD formaplane
in space that passes through the origin (with normal vector ⟨1, 2,−1⟩).
We determine the range R is R; that is, all real numbers are possible
outputs of f . There is no set way of establishing this. Rather, to get
numbers near 0 we can let y = 0 and choose z ≈ −x2. To get numbers
of arbitrarily large magnitude, we can let z ≈ x+ 2y.

13.1.4 Level Surfaces
It is very difficult to produce a meaningful graph of a function of three variables.
A function of one variable is a curve drawn in 2 dimensions; a function of two
variables is a surface drawn in 3 dimensions; a function of three variables is a
hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface atw = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example 13.1.13 Finding level surfaces.

If a point source S is radiating energy, the intensity I at a given point P
in space is inversely proportional to the square of the distance between
S and P . That is, when S = (0, 0, 0), I(x, y, z) = k

x2+y2+z2 for some
constant k.
Let k = 1; find the level surfaces of I .
Solution. We can (mostly) answer this question using “common sense.”
If energy (say, in the form of light) is emanating from the origin, its inten-
sity will be the same at all points equidistant from the origin. That is, at
any point on the surface of a sphere centered at the origin, the intensity
should be the same. Therefore, the level surfaces are spheres.
We now find this mathematically. The level surface at I = c is defined
by

c =
1

x2 + y2 + z2
.
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A small amount of algebra reveals

x2 + y2 + z2 =
1

c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c,

centered at the origin.

c r

16 0.25
8 0.35
4 0.5
2 0.71
1 1
0.5 1.41
0.25 2
0.125 2.83
0.0625 4

Figure 13.1.14 A table of c values
and the corresponding radius r of the
spheres of constant value in Exam-
ple 13.1.13

Figure 13.1.14 gives a table of the radii of the spheres for given c values.
Normally one would use equally spaced c values, but these values have
been chosen purposefully. At a distance of 0.25 from the point source,
the intensity is 16; to move to a point of half that intensity, one just
moves out 0.1 to 0.35 — not much at all. To again halve the intensity,
one moves 0.15, a little more than before.
Note how each time the intensity if halved, the distance required to
move away grows. We conclude that the closer one is to the source,
the more rapidly the intensity changes.

In the next section we apply the concepts of limits to functions of two or
more variables.
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13.1.5 Exercises

Terms and Concepts

1. Give two examples (other than those given in the text) of “real world” functions that require more than one
input.

2. The graph of a function of two variables is a .

3. Most people are familiar with the concept of level curves in the context of maps.

4. T/F: Along a level curve, the output of a function does not change.

5. The analogue of a level curve for functions of three variables is a level .

6. What does it mean when level curves are close together? Far apart?

Problems

Exercise Group. In the following exercises, give the domain and range of the multivariable function.
7. f(x, y) = x2 + y2 + 2 8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y 10. f(x, y) =
1

x+ 2y

11. f(x, y) =
1

x2 + y2 + 1

12. f(x, y) = sin(x) cos(y)

13. f(x, y) =
√
9− x2 − y2 14. f(x, y) =

1√
x2 + y2 − 9

Exercise Group. In the following exercises, describe in words and sketch the level curves for the function and given
c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2 16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2 18. f(x, y) =
1− x2 − y2

2y − 2x
; c = −2, 0, 2

19. f(x, y) =
2x− 2y

x2 + y2 + 1
; c = −1, 0, 1 20. f(x, y) =

y − x3 − 1

x
; c = −3,−1, 0, 1, 3

21. f(x, y) =
√
x2 + 4y2; c = 1, 2, 3, 4 22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

Exercise Group. In the following exercises, give the domain and range of the functions of three variables.

23. f(x, y, z) =
x

x+ 2y − 4z 24. f(x, y, z) =
1

1− x2 − y2 − z2

25. f(x, y, z) =
√
z − x2 + y2 26. f(x, y, z) = z2 sin(x) cos(y)

Exercise Group. In the following exercises, describe the level surfaces of the given functions of three variables.
27. f(x, y, z) = x2 + y2 + z2 28. f(x, y, z) = z − x2 + y2

29. f(x, y, z) =
x2 + y2

z
30. f(x, y, z) =

z

x− y

31. Compare the level curves of Exercises 21 and 22.
How are they similar, and how are they
different? Each surface is a quadric surface;
describe how the level curves are consistent
with what we know about each surface.
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13.2 Limits and Continuity of Multivariable Functions

We continue with the pattern we have established in this text: after defining a
new kind of function, we apply calculus ideas to it. The previous section defined
functions of two and three variables; this section investigates what it means for
these functions to be “continuous.”

We begin with a series of definitions. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definitions for open and closed sets in the xy-plane.

13.2.1 Open and Closed Subsets in Higher Dimensions

Definition 13.2.1 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets.

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y − y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in
S.
A point P in S is an interior point of S if there is an open disk centered
at P that contains only points in S.
A set S is open if every point in S is an interior point.
A set S is closed if it contains all of its boundary points.
A setS isbounded if there is anM > 0 such that the open disk, centered
at the origin with radius M , contains S. A set that is not bounded is
unbounded.

Figure 13.2.2 shows several sets in the xy-plane. In each set, point P1 lies
on the boundary of the set as all open disks centered there contain both points
in, and not in, the set. In contrast, point P2 is an interior point for there is an
open disk centered there that lies entirely within the set.

P1

P2

x

y

(a)

P1

P2

x

y

(b)

P1

P2

x

y

(c)

Figure 13.2.2 Illustrating open and closed sets in the xy-plane
The set depicted in Figure 13.2.2(a) is a closed set as it contains all of its

boundary points. The set in Figure 13.2.2(b) is open, for all of its points are
interior points (or, equivalently, it does not contain any of its boundary points).
The set in Figure 13.2.2(c) is neither open nor closed as it contains some of its
boundary points.

Example 13.2.3 Determining open/closed, bounded/unbounded.

Determine if the domain of the function f(x, y) =
√
1− x2/9− y2/4

is open, closed, or neither, and if it is bounded.
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Solution. This domain of this function was found in Example 13.1.3
to be D = {(x, y) | x2

9 + y2

4 ≤ 1}, the region bounded by the ellipse
x2

9 + y2

4 = 1. Since the region includes the boundary (indicated by
the use of “≤”), the set contains all of its boundary points and hence
is closed. The region is bounded as a disk of radius 4, centered at the
origin, containsD.

Example 13.2.4 Determining open/closed, bounded/unbounded.

Determine if the domain of f(x, y) = 1
x−y is open, closed, or neither.

Solution. As we cannot divide by 0, we find the domain to be D =
{(x, y) |x − y ̸= 0}. In other words, the domain is the set of all points
(x, y) not on the line y = x.

x

y

Figure 13.2.5 Sketching the domain of
the function in Example 13.2.4

The domain is sketched in Figure 13.2.5. Note howwe can draw an open
disk around any point in the domain that lies entirely inside the domain,
and also note how the only boundary points of the domain are the points
on the line y = x. We conclude the domain is an open set. The set is
unbounded.

13.2.2 Limits
Recall a pseudo-definition of the limit of a function of one variable:

“ lim
x→c

f(x) = L”
means that if x is “really close” to c, then f(x) is “really close” toL. A similar

pseudo-definition holds for functions of two variables. We’ll say that
“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is
really close to L.” The formal definition is given below.

While our first limit definition
was defined over an open inter-
val, we now define limits over a
setS in the plane (whereS does
not have to be open). As planar
sets canbe farmore complicated
than intervals, our definition adds
the restriction “. . . where every
opendisk centered atP contains
points inS other thanP .” In this
text, all sets we’ll consider will
satisfy this condition andwewon’t
bother to check; it is included in
the definition for completeness.

Definition 13.2.6 Limit of a Function of Two Variables.

Let S be a set containing P = (x0, y0) where every open disk centered
at P contains points in S other than P , let f be a function of two vari-
ables defined on S, except possibly at P , and let L be a real number.
The limit of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

means that given any ε > 0, there exists δ > 0 such that for all (x, y)
in S, where (x, y) ̸= (x0, y0), if (x, y) is in the open disk centered at
(x0, y0) with radius δ, then |f(x, y)− L| < ε.

The concept behind Definition 13.2.6 is sketched in Figure 13.2.7. Given ε >
0, find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0)
in the xy-plane with radius δ, then f(x, y) should be within ε of L.

Computing limits using this definition is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Figure 13.2.7 Illustrating the defini-
tion of a limit. The open disk in the
xy-plane has radius δ. Let (x, y) be
any point in this disk; f(x, y) is within
ε of L.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multilimitdef.html
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Theorem 13.2.8 Basic Limit Properties of Functions of Two Variables.

Let b, x0, y0, L and K be real numbers, let n be a positive integer, and
let f and g be functions with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. Identity lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L±K

4. Scalar Multiples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. Quotients: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combinedwith Theorems1.3.3 and 1.3.5 of Section1.3, allows
us to evaluate many limits.

Example 13.2.9 Evaluating a limit.

Evaluate the following limits:

1. lim
(x,y)→(1,π)

(y
x
+ cos(xy)

)
2. lim

(x,y)→(0,0)

3xy

x2 + y2

Solution.

1. The aforementioned theorems allow us to simply evaluate y/x +
cos(xy) when x = 1 and y = π. If an indeterminate form is
returned, we must do more work to evaluate the limit; otherwise,
the result is the limit. Therefore

lim
(x,y)→(1,π)

y

x
+ cos(xy) =

π

1
+ cos(π)

= π − 1.

2. We attempt to evaluate the limit by substituting 0 in for x and y,
but the result is the indeterminate form “0/0.” To evaluate this
limit, we must “do more work,” but we have not yet learned what
“kind” of work to do. Therefore we cannot yet evaluate this limit.

When dealing with functions of a single variable we also considered one-
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sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c
from either direction, the left or the right.

In the plane, there are infinitely many directions from which (x, y) might
approach (x0, y0). In fact, we do not have to restrict ourselves to approaching
(x0, y0) from a particular direction, but rather we can approach that point along
a path that is not a straight line. It is possible to arrive at different limiting val-
ues by approaching (x0, y0) along different paths. If this happens, we say that

lim
(x,y)→(x0,y0)

f(x, y) does not exist (this is analogous to the left and right hand

limits of single variable functions not being equal).
Our theorems tell us that we can evaluate most limits quite simply, without

worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiting value is obtained regardless of the path chosen. The case where
the limit does not exist is often easier to deal with, for we can often pick two
paths along which the limit is different.

Example 13.2.10 Showing limits do not exist.

1. Show lim
(x,y)→(0,0)

3xy
x2+y2 does not exist by finding the limits along

the lines y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+y does not exist by finding the limit along

the path y = − sin(x).

Solution.

1. Evaluating lim
(x,y)→(0,0)

3xy
x2+y2 along the lines y = mx means re-

place all y’s withmx and evaluating the resulting limit:

lim
(x,mx)→(0,0)

3x(mx)

x2 + (mx)2
= lim

x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m

m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit
for each choice ofm. That is, along different lines we get differing
limiting values, meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does

not exist by finding the limit along the path y = − sin(x). First,
however, consider the limits found along the lines y = mx as
done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)

x(m+ 1)

= lim
x→0

sin(mx2)

x
· 1

m+ 1
.
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By applying L’Hospital’s Rule, we can show this limit is 0 except
whenm = −1, that is, along the line y = −x. This line is not in
the domain of f , so we have found the following fact: along every
line y = mx in the domain of f , lim

(x,y)→(0,0)
f(x, y) = 0. Now

consider the limit along the path y = − sin(x):

lim
(x,− sin(x))→(0,0)

sin
(
− x sin(x)

)
x− sin(x)

= lim
x→0

sin
(
− x sin(x)

)
x− sin(x)

Now apply L’Hospital’s Rule twice:

= lim
x→0

cos
(
− x sin(x)

)
(− sin(x)− x cos(x))

1− cos(x)
(0/0)

= lim
x→0

− sin
(
− x sin(x)

)
(− sin(x)− x cos(x))2 + cos

(
− x sin(x)

)
(−2 cos(x) + x sin(x))

sin(x)
.

This last limit is of the form “2/0”, which suggests that the limit
does not exist. Step back and consider what we have just dis-
covered. Along any line y = mx in the domain of the f(x, y),
the limit is 0. However, along the path y = − sin(x), which lies
in the domain of f(x, y) for all x ̸= 0, the limit does not exist.
Since the limit is not the same along every path to (0, 0), we say

lim
(x,y)→(0,0)

sin(xy)
x+y does not exist.

Example 13.2.11 Finding a limit.

Let f(x, y) = 5x2y2

x2+y2 . Find lim
(x,y)→(0,0)

f(x, y).

Solution. It is relatively easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demon-
strated in the previous example, but it tells us that if the limit does exist
then it must be 0.
To prove the limit is 0, we apply Definition 13.2.6. Let ε > 0 be given.
We want to find δ > 0 such that if

√
(x− 0)2 + (y − 0)2 < δ, then

|f(x, y)− 0| < ε.
Set δ <

√
ε/5. Note that

∣∣∣ 5y2

x2+y2

∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.

Let
√
(x− 0)2 + (y − 0)2 =

√
x2 + y2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2

x2 + y2
− 0

∣∣∣∣
=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√

(x− 0)2 + (y − 0)2 < δ then |f(x, y)− 0| < ε, which is what
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we wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2+y2 = 0.

13.2.3 Continuity
Definition 1.5.1 defines what it means for a function of one variable to be contin-
uous. In brief, it meant that the graph of the function did not have breaks, holes,
jumps, etc. We define continuity for functions of two variables in a similar way
as we did for functions of one variable.

Definition 13.2.12 Continuous.

Let a function f(x, y) be defined on a setS containing the point (x0, y0).

1. f is continuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is continuous on S if f is continuous at all points in S. If f is
continuous at all points in R2, we say that f is continuous every-
where.

Example 13.2.13 Continuity of a function of two variables.

Let f(x, y) =

{
cos(y) sin(x)

x x ̸= 0

cos(y) x = 0
. Is f continuous at (0, 0)? Is f

continuous everywhere?
Solution. To determine if f is continuous at (0, 0), we need to compare

lim
(x,y)→(0,0)

f(x, y) to f(0, 0).

Applying the definition of f , we see that f(0, 0) = cos(0) = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). Substituting 0 for x and y

in (cos(y) sin(x))/x returns the indeterminate form “0/0”, so we need
to do more work to evaluate this limit.
Consider two related limits: lim

(x,y)→(0,0)
cos(y) and lim

(x,y)→(0,0)

sin(x)
x . The

first limit does not contain x, and since cos(y) is continuous,

lim
(x,y)→(0,0)

cos(y) = lim
y→0

cos(y) = cos(0) = 1.

The second limit does not contain y. By Theorem 1.3.12 we can say

lim
(x,y)→(0,0)

sin(x)
x

= lim
x→0

sin(x)
x

= 1.

Finally, Theorem 13.2.8 of this section states that we can combine these
two limits as follows:

lim
(x,y)→(0,0)

cos(y) sin(x)
x

= lim
(x,y)→(0,0)

(cos(y))
(
sin(x)
x

)
=

(
lim

(x,y)→(0,0)
cos(y)

)(
lim

(x,y)→(0,0)

sin(x)
x

)
= (1)(1)

= 1.
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We have found that lim
(x,y)→(0,0)

cos(y) sin(x)
x = f(0, 0), so f is continuous

at (0, 0).
A similar analysis shows that f is continuous at all points in R2. As long
as x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analy-
sis shows that the limit is cos(y). Thus we can say that f is continuous
everywhere. A graph of f is given in Figure 13.2.14. Notice how it has
no breaks, jumps, etc.

Figure 13.2.14 A graph of f(x, y) in
Example 13.2.13

The following theorem is very similar to Theorem 1.5.8, giving us ways to
combine continuous functions to create other continuous functions.

Theorem 13.2.15 Properties of Continuous Functions.

Let f and g be continuous on a set S, let c be a real number, and let n be
a positive integer. The following functions are continuous on S.

1. Sums/Differences: f ± g

2. Constant Multiples: c · f

3. Products: f · g

4. Quotients: f/g { (as longs as g ̸= 0 on S)}

5. Powers: fn

6. Roots: n
√
f (if n is even then f ≥ 0 on S; if n is odd, then true for

all values of f on S.)

7. Compositions:Adjust the definitions of f and g to: Let f be continu-
ous on S, where the range of f on S is J , and let g be a single vari-
able function that is continuous on J . Then g ◦ f , i.e., g(f(x, y)),
is continuous on S.

Example 13.2.16 Establishing continuity of a function.

Let f(x, y) = sin(x2 cos(y)). Show f is continuous everywhere.
Solution. We will apply both Theorems 1.5.8 and 13.2.15. Let
f1(x, y) = x2. Since y is not actually used in the function, and polyno-
mials are continuous (by Theorem 1.5.8), we conclude f1 is continuous
everywhere. A similar statement can be made about f2(x, y) = cos(y).
Part 3 of Theorem 13.2.15 states that f3 = f1 · f2 is continuous every-
where, and Part 7 of the theorem states the composition of sine with
f3 is continuous: that is, sin(f3) = sin(x2 cos(y)) is continuous every-
where.

13.2.4 Functions of Three Variables
The definitions and theorems given in this section can be extended in a natural
way to definitions and theorems about functions of three (or more) variables.
We cover the key concepts here; some terms fromDefinitions 13.2.1 and 13.2.12
are not redefined but their analogous meanings should be clear to the reader.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multicont1.html
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Definition 13.2.17 Open Balls, Limit, Continuous.

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set
of all points (x, y, z) such that√

(x− x0)2 + (y − y0)2 + (z − z0)2 = r.

2. Let D be a set in R3 containing (x0, y0, z0) where every open
ball centered at (x0, y0, z0) contains points of D other than
(x0, y0, z0), and let f(x, y, z) be a function of three variables de-
fined on D, except possibly at (x0, y0, z0). The limit of f(x, y, z)
as (x, y, z) approaches (x0, y0, z0) is L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

means that given any ε > 0, there is a δ > 0 such that for all
(x, y, z) inD, (x, y, z) ̸= (x0, y0, z0), if (x, y, z) is in the open ball
centered at (x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on a set D containing (x0, y0, z0). We
say f is continuous at (x0, y0, z0) if

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = f(x0, y0, z0).

If f is continuous at all points inD, we say f is continuous onD.

These definitions can also be extended naturally to apply to functions of four
or more variables. Theorem 13.2.15 also applies to function of three or more
variables, allowing us to say that the function

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3

sin(xyz) + 5

is continuous everywhere.
When considering single variable functions, we studied limits, then continu-

ity, then the derivative. In our current study of multivariable functions, we have
studied limits and continuity. In the next section we study derivation, which
takes on a slight twist as we are in a multivariable context.
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13.2.5 Exercises

Terms and Concepts

1. Describe in your own words the difference between the boundary and interior points of a set.
2. Use your own words to describe (informally) what lim

(x,y)→(1,2)
f(x, y) = 17means.

3. Give an example of a closed, bounded set.
4. Give an example of a closed, unbounded set.
5. Give an example of a open, bounded set.
6. Give an example of a open, unbounded set.

Problems

Exercise Group. A set S is given.

(a) Give one boundary point and one interior point, when possible, of S.

(b) State whether S is open, closed, or neither.

(c) State whether S is bounded or unbounded.

7. S =

{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y − 3)2

9
≤ 1

}
8. S =

{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) |x2 + y2 = 1

}
10. S = {(x, y) | y > sin(x)}.

Exercise Group. In the following exercises:

(a) Find the domainD of the given function.

(b) State whetherD is an open or closed set.

(c) State whetherD is bounded or unbounded.

11. f(x, y) =
√
9− x2 − y2 12. f(x, y) =

√
y − x2

13. f(x, y) =
1√

y − x2
14. f(x, y) =

x2 − y2

x2 + y2

Exercise Group. In the following exercises, a limit is given. Evaluate the limit along the paths given, then state why
these results show the given limit does not exist.

15. lim
(x,y)→(0,0)

x2−y2

x2+y2

(a) Along the path y = 0.

(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+y
x−y

Along the path y = mx.

17. lim
(x,y)→(0,0)

xy−y2

y2+x

(a) Along the path y = mx.

(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.

(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+y−3
x2−1

(a) Along the path y = 2.

(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin(x)
cos(y)

(a) Along the path x = π.

(b) Along the path y = x− π/2.
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13.3 Partial Derivatives

Let y be a function of x. We have studied in great detail the derivative of y
with respect to x, that is, dy

dx , which measures the rate at which y changes with
respect to x. Consider now z = f(x, y). It makes sense to want to know how
z changes with respect to x and/or y. This section begins our investigation into
these rates of change.

13.3.1 First-order partial derivatives

Consider the function f(x, y) = x2 + 2y2, as graphed in Figure 13.3.1(a). By
fixing y = 2, we focus our attention to all points on the surface where the y-
value is 2, shown in both Figure 13.3.1(a) and Figure 13.3.1(b). These points
form a curve in the plane y = 2: z = f(x, 2) = x2 + 8 which defines z as a
function of just one variable. We can take the derivative of z with respect to x
along this curve and find equations of tangent lines, etc.

(a) (b)

Figure 13.3.1 By fixing y = 2, the surface z = f(x, y) = x2 + 2y2 is a curve in
space

The key notion to extract from this example is: by treating y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of partial derivatives. We state the formal,
limit-based definition first, then show how to compute these partial derivatives
without directly taking limits.

Alternate notations for fx(x, y)
include:

∂

∂x
f(x, y),

∂f

∂x
,
∂z

∂x
, and zx,

with similar notations for fy(x, y).
For ease of notation, fx(x, y) is
often abbreviated fx.

Definition 13.3.2 Partial Derivative.

Let z = f(x, y) be a continuous function on a set S in R2.

1. The partial derivative of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
.

2. The partial derivative of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partialintroa_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partialintrob_3D.html
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Example 13.3.3 Computing partial derivatives with the limit definition.

Let f(x, y) = x2y + 2x+ y3. Find fx(x, y) using the limit definition.
Solution. Using Definition 13.3.2, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2y + 2(x+ h) + y3 − (x2y + 2x+ y3)

h

= lim
h→0

x2y + 2xhy + h2y + 2x+ 2h+ y3 − (x2y + 2x+ y3)

h

= lim
h→0

2xhy + h2y + 2h

h

= lim
h→0

2xy + hy + 2

= 2xy + 2.

We have found fx(x, y) = 2xy + 2.

Example 13.3.3 found a partial derivative using the formal, limit-based de-
finition. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivatives to compute partial derivatives easily. When comput-
ing fx(x, y), we hold y fixed — it does not vary. Therefore we can compute the
derivative with respect to x by treating y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treating

y as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treating y as a

constant. More examples will help make this clear.

Example 13.3.4 Finding partial derivatives.

Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin(x)

3. f(x, y) = ex
2y3
√
x2 + 1

Solution.

1. We have f(x, y) = x3y2+5y2−x+7. Begin with fx(x, y). Keep
y fixed, treating it as a constant or coefficient, as appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero. To compute fy(x, y),
we hold x fixed:

fy(x, y) = 2x3y + 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin(x). Begin with fx(x, y). We
need to apply the Chain Rule with the cosine term; y2 is the coef-
ficient of the x-term inside the cosine function.

fx(x, y) = − sin(xy2)(y2) + cos(x) = −y2 sin(xy2) + cos(x).
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To find fy(x, y), note that x is the coefficient of the y2 term inside
of the cosine term; also note that since x is fixed, sin(x) is also
fixed, and we treat it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3√

x2 + 1. Beginning with fx(x, y), note
how we need to apply the Product Rule.

fx(x, y) = ex
2y3

(2xy3)
√

x2 + 1 + ex
2y3 1

2

(
x2 + 1

)−1/2
(2x)

= 2xy3ex
2y3
√

x2 + 1 +
xex

2y3

√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Prod-
uct Rule; since

√
x2 + 1 does not contain y, we treat it as fixed

and hence becomes a coefficient of the ex
2y3

term.

fy(x, y) = ex
2y3

(3x2y2)
√
x2 + 1 = 3x2y2ex

2y3
√
x2 + 1.

We have shown how to compute a partial derivative, but it may still not be
clear what a partial derivativemeans. Given z = f(x, y), fx(x, y)measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your location, you might walk up, sharply down, or perhaps not
change elevation at all. This is similar tomeasuring zx: you aremoving only east
(in the “x”-direction) and not north/south at all. Going back to your original lo-
cation, imagine now walking due north (in the “y”-direction). Perhaps walking
due north does not change your elevation at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

The following example helps us visualize this more.

Example 13.3.5 Evaluating partial derivatives.

Let z = f(x, y) = −x2− 1
2y

2+xy+10. Find fx(2, 1) and fy(2, 1) and
interpret their meaning.
Solution. We begin by computing fx(x, y) = −2x+ y and fy(x, y) =
−y + x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these
numbers mean?
Consider fx(2, 1) = −3, along with Figure 13.3.6(a). If one “stands”
on the surface at the point (2, 1, 7.5) and moves parallel to the x-axis
(i.e., only the x-value changes, not the y-value), then the instantaneous
rate of change is −3. Increasing the x-value will decrease the z-value;
decreasing the x-value will increase the z-value.
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(a) (b)

Figure 13.3.6 Illustrating the meaning of partial derivatives
Now consider fy(2, 1) = 1, illustrated in Figure 13.3.6(b). Moving along
the curve drawn on the surface, i.e., parallel to the y-axis and not chang-
ing the x-values, increases the z-value instantaneously at a rate of 1.
Increasing the y-value by 1 would increase the z-value by approximately
1.
Since the magnitude of fx is greater than the magnitude of fy at (2, 1),
it is “steeper” in the x-direction than in the y-direction.

13.3.2 Tangent Planes
Anotherway to interpret partial derivatives is in terms of the tangent plane. Con-
sider the graph of a function f(x, y), such as the one in Figure 13.3.1. Setting
x = a, y = b defines a point (a, b, f(a, b)) on the graph. Through the point
(a, b), we have the lines x = a+ s, y = b, and x = a, y = b+ t, parallel to the
x and y axes, respectively (where s, t are parameters).

Using the function f(x, y) we define two vector-valued functions:

r⃗1(s) = ⟨a+ s, b, f(a+ s, b)⟩
r⃗2(t) = ⟨a, b+ t, f(a, b+ t)⟩ .

Both vector-valued functions define space curves that lie on the surface z =
f(x, y), and these curves intersect at the point (a, b, f(a, b)), when s = t = 0.

Now consider computing r⃗′1(s). The first two components of this derivative
are found in a straightforwardmanner: they are 1 and 0, respectively. To find the
third component of the derivative, notice that in r⃗1(s)we vary thex-component
of f while holding the y-component constant. Using the Chain Rule and Defin-
ition 13.3.2, we find that the third component is fx(a + s, b). Altogether, we
have

r⃗′1(s) = ⟨1, 0, fx(a+ s, b)⟩ .
Evaluating this at s = 0 gives

v⃗ = r⃗′1(0) = ⟨1, 0, fx(a, b)⟩ .

We can perform a similar process with r⃗2(t), ultimately leading to

w⃗ = r⃗′2(0) = ⟨0, 1, fy(a, b)⟩ .

From Section 12.2, we know that r⃗′1(0) defines a tangent vector to the curve
r⃗1(s) when s = 0, and similarly, r⃗′2(0) defines a tangent vector to the curve
r⃗2(t) when t = 0.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partial3a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partial3b_3D.html
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It seems reasonable that any vector that is tangent to these curves, which lie
on our surface, should also be considered tangent to that surface. The vectors v⃗
and w⃗ are therefore tangent to z = f(x, y) at (a, b, f(a, b)), and they are defi-
nitely not parallel. From Section 11.6 we know that any two non-parallel vectors
at a point define a plane through that point. We also know that taking the cross
product of these two vectors gives us a normal vector: the cross product gives
us

n⃗ = v⃗ × w⃗ = ⟨−fx(a, b),−fy(a, b), 1⟩ .

The equation of the plane through (a, b, f(a, b)) with normal vector n⃗ =
⟨−fx(a, b),−fy(a, b), 1⟩ is

−fx(a, b)(x− a)− fy(a, b)(y − b) + (z − f(a, b)) = 0.

It is customary to solve for z in this equation and make the following definition.

Definition 13.3.7

Let f(x, y) be a function whose first-order partial derivatives exist at
(a, b). The tangent plane to the surface z = f(x, y) at the point
(a, b, f(a, b)) is the plane defined by the equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Example 13.3.8 Finding a tangent plane equation.

Find the equation of tangent plane to the surface z = x2 + 3y2 at
(x, y) = (1,−1).
Solution. Our function is f(x, y) = x2 + 3y2, and we have f(1,−1) =
4, so the point on the surface is (1,−1, 4). The partial derivatives are
fx(x, y) = 2x and fy(x, y) = 6y, so fx(1,−1) = 2, fy(1,−1) = −6.
Using Definition 13.3.7, our plane is given by

z = 4 + 2(x− 1)− 6(y + 1).

Notice the similarity between the tangent plane equation inDefinition13.3.7
and the single variable tangent line equation y = f(c) + f ′(c)(x− c). As with
functions of one variable, this suggests a connection between derivatives and
linear approximation. We explore this connection in Section 13.4, where we’ll
see that Definition 13.3.7 should be strengthed to require that the partial deriv-
atives of f be continuous.

13.3.3 Second-order partial derivatives
Let z = f(x, y). We have learned to find the partial derivatives fx(x, y) and
fy(x, y), which are each functions of x and y. Therefore we can take partial
derivatives of them, each with respect to x and y. We define these “second
partials” along with the notation, give examples, then discuss their meaning.

Definition 13.3.9 Second Partial Derivative, Mixed Partial Derivative.

Let z = f(x, y) be continuous on a set S.
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1. The second partial derivative of f with respect to x then x is

∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
=
(
fx
)
x
= fxx

2. The second partial derivative of f with respect to x then y is

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=
(
fx
)
y
= fxy

Similar definitions hold for ∂2f
∂y2 = fyy and ∂2f

∂x∂y = fyx.
The second partial derivatives fxy and fyx aremixed partial derivatives.

The notation of second partial derivatives gives some insight into the nota-
tion of the second derivative of a function of a single variable. If y = f(x), then
f ′′(x) = d2y

dx2 . The “d2y” portion means “take the derivative of y twice,” while
“dx2”means “with respect to x both times.” Whenwe only know of functions of
a single variable, this latter phrase seems silly: there is only one variable to take
the derivative with respect to. Now that we understand functions of multiple
variables, we see the importance of specifying which variables we are referring
to. The terms in Definition 13.3.9

all depend on limits, so each def-
inition comeswith the caveat “where
the limit exists.”

Example 13.3.10 Second partial derivatives.

For each of the following, find all six first and second partial derivatives.
That is, find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos(x)

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

Solution. In each, we give fx and fy immediately and then spend time
deriving the second partial derivatives.

1.

f(x, y) = x3y2 + 2xy3 + cos(x)

fx(x, y) = 3x2y2 + 2y3 − sin(x)

fy(x, y) = 2x3y + 6xy2

fxx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
3x2y2 + 2y3 − sin(x)

)
= 6xy2 − cos(x)

fyy(x, y) =
∂

∂y

(
fy
)
=

∂

∂y

(
2x3y + 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y

(
fx
)
=

∂

∂y

(
3x2y2 + 2y3 − sin(x)

)
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= 6x2y + 6y2

fyx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
2x3y + 6xy2

)
= 6x2y + 6y2

2.

f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(3x2

y2
)

=
6x

y2

fyy(x, y) =
∂

∂y

(
fy
)
=

∂

∂y

(
− 2x3

y3
)

=
6x3

y4

fxy(x, y) =
∂

∂y

(
fx
)
=

∂

∂y

(3x2

y2
)

= −6x2

y3

fyx(x, y) =
∂

∂x

(
fx
)
=

∂

∂x

(
− 2x3

y3
)

= −6x2

y3

3. f(x, y) = ex sin(x2y) Because the following partial derivatives
get rather long, we omit the extra notation and just give the re-
sults. In several cases, multiple applications of the Product and
Chain Rules will be necessary, followed by some basic combina-
tion of like terms.

fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)

fy(x, y) = x2ex cos(x2y)

fxx(x, y) = ex sin(x2y) + 4xyex cos(x2y) + 2yex cos(x2y)− 4x2y2ex sin(x2y)

fyy(x, y) = −x4ex sin(x2y)

fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)

Notice how in each of the three functions in Example 13.3.10, fxy = fyx.
Due to the complexity of the examples, this likely is not a coincidence. The fol-
lowing theorem states that it is not.
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Theorem 13.3.11 Mixed Partial Derivatives.

Let f be defined such that fxy and fyx are continuous on a set S. Then
for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

13.3.4 Understanding Second Partial Derivatives
Now that we know how to find second partials, we investigatewhat they tell us.

Again we refer back to a function y = f(x) of a single variable. The second
derivative of f is “the derivative of the derivative,” or “the rate of change of the
rate of change.” The second derivative measures how much the derivative is
changing. If f ′′(x) < 0, then the derivative is getting smaller (so the graph of
f is concave down); if f ′′(x) > 0, then the derivative is growing, making the
graph of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and
fyy as could be made about f ′′(x) above. When taking derivatives with respect
tox twice, wemeasure howmuch fx changeswith respect tox. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direction. Using the analogy of standing in the rolling meadow
used earlier in this section, fxx measures whether one’s path is concave up/
down when walking due east.

Similarly, fyy measures the concavity in the y-direction. If fyy(x, y) > 0,
then fy is increasing with respect to y and the graph of f will be concave up in
the y-direction. Appealing to the rolling meadow analogy again, fyy measures
whether one’s path is concave up/down when walking due north.

We now consider the mixed partials fxy and fyx. The mixed partial fxy
measures how much fx changes with respect to y. Once again using the rolling
meadow analogy, fx measures the slope if one walks due east. Looking east, be-
gin walking north (side-stepping). Is the path towards the east getting steeper?
If so, fxy > 0. Is the path towards the east not changing in steepness? If so,
then fxy = 0. A similar thing can be said about fyx: consider the steepness of
paths heading north while side-stepping to the east.

The following example examines these ideas with concrete numbers and
graphs.

Example 13.3.12 Understanding second partial derivatives.

Let z = x2− y2+xy. Evaluate the 6 first and second partial derivatives
at (−1/2, 1/2) and interpret what each of these numbers mean.
Solution. We find that:
fx(x, y) = 2x + y,fy(x, y) = −2y + x,fxx(x, y) = 2, fyy(x, y) = −2
and fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direction of x
is−1/2: if onemoves from that point parallel to the x-axis, the instanta-
neous rate of change will be−1/2. The slope of the tangent line at this
point in the direction of y is −3/2: if one moves from this point paral-
lel to the y-axis, the instantaneous rate of change will be −3/2. These
tangents lines are graphed in Figure 13.3.13(a) and Figure 13.3.13(b), re-
spectively, where the tangent lines are drawn in a solid line.
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(a) (b)

Figure 13.3.13 Understanding the second partial derivatives in Exam-
ple 13.3.12
Now consider only Figure 13.3.13(a). Three directed tangent lines are
drawn (two are dashed), each in the direction of x; that is, each has a
slope determined by fx. Note how as y increases, the slope of these
lines get closer to 0. Since the slopes are all negative, getting closer to 0
means the slopes are increasing. The slopes given by fx are increasing
as y increases, meaning fxy must be positive.
Since fxy = fyx, we also expect fy to increase as x increases. Consider
Figure 13.3.13(b) where again three directed tangent lines are drawn,
this time each in the direction of y with slopes determined by fy. As x
increases, the slopes become less steep (closer to 0). Since these are
negative slopes, this means the slopes are increasing.
Thus far we have a visual understanding of fx, fy , and fxy = fyx. We
now interpret fxx and fyy . In Figure 13.3.13(a), we see a curve drawn
where x is held constant at x = −1/2: only y varies. This curve is
clearly concave down, corresponding to the fact that fyy < 0. In part
Figure 13.3.13(b) of the figure, we see a similar curve where y is con-
stant and only x varies. This curve is concave up, corresponding to the
fact that fxx > 0.

13.3.5 Partial Derivatives and Functions of Three Variables
The concepts underlying partial derivatives can be easily extend to more than
two variables. We give some definitions and examples in the case of three
variables and trust the reader can extend these definitions to more variables
if needed.

Definition 13.3.14 Partial Derivatives with Three Variables.

Let w = f(x, y, z) be a continuous function on a setD in R3.
The partial derivative of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)

h
.

Similar definitions hold for fy(x, y, z) and fz(x, y, z).

By taking partial derivatives of partial derivatives, we can find second partial

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partial7a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partial7b_3D.html
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derivatives of f with respect to z then y, for instance, just as before.

Example 13.3.15 Partial derivatives of functions of three variables.

For each of the following, find fx, fy , fz , fxz , fyz , and fzz .

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

Solution.

1.

fx(x, y, z) = 2xy3z4 + 2xy2 + 3x2z3

fy(x, y, z) = 3x2y2z4 + 2x2y + 4y3z4

fz(x, y, z) = 4x2y3z3 + 3x3z2 + 4y4z3

fxz(x, y, z) = 8xy3z3 + 9x2z2

fyz(x, y, z) = 12x2y2z3 + 16y3z3

fzz(x, y, z) = 12x2y3z2 + 6x3z + 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz), and

fxz(x, y, z) = y cos(yz)
fyz(x, y, z) = x cos(yz)− xyz sin(yz)

fzz(x, y, z) = −xy2 sin(yz)

13.3.6 Higher Order Partial Derivatives
We can continue taking partial derivatives of partial derivatives of partial deriva-
tives of …; we do not have to stop with second partial derivatives. These higher
order partial derivatives do not have a tidy graphical interpretation; neverthe-
less they are not hard to compute and worthy of some practice.

We do not formally define each higher order derivative, but rather give just
a few examples of the notation.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f

∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f

∂x

))
.

Example 13.3.16 Higher order partial derivatives.

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz .

Solution.

1. To find fxxy , we first find fx, then fxx, then fxxy:

fx(x, y) = 2xy2 + y cos(xy)

fxx(x, y) = 2y2 − y2 sin(xy)
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fxxy(x, y) = 4y − 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy , then fyx, then fyxx:

fy(x, y) = 2x2y + x cos(xy)
fyx(x, y) = 4xy + cos(xy)− xy sin(xy)

fyxx(x, y) = 4y − y sin(xy)−
(
y sin(xy) + xy2 cos(xy)

)
= 4y − 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz , we find fx, then fxy , then fxyz :

fx(x, y, z) = 3x2exy + x3yexy

fxy(x, y, z) = 3x3exy + x3exy + x4yexy

= 4x3exy + x4yexy

fxyz(x, y, z) = 0.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each partial derivative
is continuous, it does not matter the order in which the partial derivatives are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at times. Had we known this, the second part of Exam-
ple 13.3.16 would have been much simpler to compute. Instead of computing
fxyz in the x, y then z orders, we could have applied the z, then x then y order
(as fxyz = fzxy). It is easy to see that fz = − sin(z); then fzx and fzxy are
clearly 0 as fz does not contain an x or y.

A brief review of this section: partial derivatives measure the instantaneous
rate of change of a multivariable function with respect to one variable. With
z = f(x, y), the partial derivatives fx and fy measure the instantaneous rate
of change of z when moving parallel to the x- and y-axes, respectively. How do
we measure the rate of change at a point when we do not move parallel to one
of these axes? What if we move in the direction given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of Section 13.6. First, we need to define what it means for a function
of two variables to be differentiable.
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13.3.7 Exercises

Terms and Concepts

1. What is the difference between a constant and a coefficient?
2. Given a function f(x, y), explain in your own words how to compute fx.

3. In the mixed partial fraction fxy , which is computed first, fx or fy?

• fx

• fy

4. In the mixed partial fraction ∂2f
∂x∂y , which is computed first, fx or fy?

• fx

• fy

Problems

Exercise Group. In the following exercises, evaluate fx(x, y) and fy(x, y) at the indicated point.

5. f(x, y) = x2y − x+ 2y + 3 at (1, 2) 6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3).
7. f(x, y) = sin(y) cos(x) at (π/3, π/3) 8. f(x, y) = ln(xy) at (−2,−3) Find:

Exercise Group. In the following exercises, find fx, fy , fxx, fyy , fxy and fyx.

9. f(x, y) = x2y + 3x2 + 4y − 5 10. f(x, y) = y3 + 3xy2 + 3x2y + x3

11. f(x, y) =
x

y
12. f(x, y) = 4

xy

13. f(x, y) = ex
2+y2 14. f(x, y) = ex+2y

15. f(x, y) = sin(x) cos(y) 16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3) 18. f(x, y) = sin
(
5x2 + 2y3

)
19. f(x, y) =

√
4xy2 + 1 20. f(x, y) = (2x+ 5y)

√
y

21. f(x, y) =
1

x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1 24. f(x, y) = ln(x2 + y)

25. f(x, y) =
ln(x)
4y

26. f(x, y) = 5ex sin(y) + 9

Exercise Group. In the following exercises, form a function f(x, y) such that fx and fy match those given.
27. fx = sin(y) + 1,fy = x cos(y) 28. fx = x+ y and fy = x+ y

29. fx = 6xy − 4y2,fy = 3x2 − 8xy + 2 30. fx = 2x
x2+y2 and fy = 2y

x2+y2

Exercise Group. In the following exercises, find fx, fy , fz , fyz and fzy .

31. f(x, y, z) = x2e2y−3z 32. f(x, y, z) = x3y2 + x3z + y2z

33. f(x, y, z) =
3x

7y2z

34. f(x, y, z) = ln(xyz)
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13.4 Differentiability and the Total Differential

We studied differentials in Section 4.4, where Definition 4.4.3 states that if y =
f(x) and f is differentiable, then dy = f ′(x)dx. One important use of this dif-
ferential is in Integration by Substitution. Another important application is ap-
proximation. Let∆x = dx represent a change in x. When dx is small, dy ≈ ∆y,
the change in y resulting from the change in x. Fundamental in this understand-
ing is this: as dx gets small, the difference between ∆y and dy goes to 0. An-
other way of stating this: as dx goes to 0, the error in approximating ∆y with
dy goes to 0.

We extend this idea to functions of two variables. Let z = f(x, y), and
let ∆x = dx and ∆y = dy represent changes in x and y, respectively. Let
∆z = f(x+ dx, y + dy)− f(x, y) be the change in z over the change in x and
y. Recalling that fx and fy give the instantaneous rates of z-change in the x-
and y-directions, respectively, we can approximate∆z with dz = fxdx+ fydy;
in words, the total change in z is approximately the change caused by changing
x plus the change caused by changing y. In a moment we give an indication of
whether or not this approximation is any good. First we give a name to dz.

13.4.1 The Total Differential

Definition 13.4.1 Total Differential.

Let z = f(x, y) be continuous on a set S. Let dx and dy represent
changes in x and y, respectively. Where the partial derivatives fx and
fy exist, the total differential of z is

dz = fx(x, y) dx+ fy(x, y) dy.

From Definition 13.4.1, we can
write

dz = ⟨ fx, fy⟩ · ⟨dx, dy⟩.

While not explored in this sec-
tion, the vector ⟨fx, fy⟩ is seen
again in the next section and fully
defined in Section 13.6.

Example 13.4.2 Finding the total differential.

Let z = x4e3y. Find dz.
Solution. We compute the partial derivatives: fx = 4x3e3y and fy =
3x4e3y. Following Definition 13.4.1, we have

dz = 4x3e3ydx+ 3x4e3ydy.

We can approximate ∆z with dz, but as with all approximations, there is
error involved. A good approximation is one in which the error is small. At a
given point (x0, y0), letEx andEy be functions of dx and dy such thatExdx+
Eydy describes this error. Then

∆z = dz + Exdx+ Eydy

= fx(x0, y0)dx+ fy(x0, y0)dy + Exdx+ Eydy.

If the approximation of ∆z by dz is good, then as dx and dy get small, so
doesExdx+Eydy. The approximation of∆z by dz is even better if, as dx and
dy go to 0, so do Ex and Ey. This leads us to our definition of differentiability.

Definition 13.4.3 Multivariable Differentiability.

Let z = f(x, y) be defined on a set S containing (x0, y0) where
fx(x0, y0) and fy(x0, y0) exist. Let dz be the total differential of z at
(x0, y0), let∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey
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be functions of dx and dy such that

∆z = dz + Exdx+ Eydy.

1. We say f is differentiable at (x0, y0) if, given ε > 0, there is a
δ > 0 such that if ∥⟨dx, dy⟩∥ < δ, then ∥⟨Ex, Ey⟩∥ < ε. That is,
as dx and dy go to 0, so do Ex and Ey.

2. We say f is differentiable on S if f is differentiable at every point
in S. If f is differentiable on R2, we say that f is differentiable
everywhere.

Example 13.4.4 Showing a function is differentiable.

Show f(x, y) = xy + 3y2 is differentiable using Definition 13.4.3.
Solution. We begin by finding f(x+ dx, y + dy),∆z, fx and fy.

f(x+ dx, y + dy) = (x+ dx)(y + dy) + 3(y + dy)2

= xy + xdy + ydx+ dxdy + 3y2 + 6ydy + 3dy2.

∆z = f(x+ dx, y + dy)− f(x, y), so

∆z = xdy + ydx+ dxdy + 6ydy + 3dy2.

It is straightforward to compute fx = y and fy = x+6y. Consider once
more∆z:

∆z = xdy + ydx+ dxdy + 6ydy + 3dy2 (now reorder)

= ydx+ xdy + 6ydy + dxdy + 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy + (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy + Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0,
Ex and Ey also go to 0. Since this did not depend on a specific point
(x0, y0), we can say that f(x, y) is differentiable for all pairs (x, y) inR2,
or, equivalently, that f is differentiable everywhere.

Our intuitive understanding of differentiability of functions y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuitive understanding
of functions z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differentiable functions are continuous, followedby another theorem
that provides a more tangible way of determining whether a great number of
functions are differentiable or not.

Theorem 13.4.5 Continuity and Differentiability of Multivariable Func-
tions.

Let z = f(x, y) be defined on a set S containing (x0, y0). If f is differ-
entiable at (x0, y0), then f is continuous at (x0, y0).
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Theorem 13.4.6 Differentiability of Multivariable Functions.

Let z = f(x, y) be defined on a set S. If fx and fy are both continuous
on S, then f is differentiable on S.

The above theorems assure us that essentially all functions that we see in
the course of our studies here are differentiable (and hence continuous) on
their natural domains. There is a difference between Definition 13.4.3 and The-
orem 13.4.6, though: it is possible for a function f to be differentiable yet fx
and/or fy is not continuous. Such strange behavior of functions is a source of
delight for many mathematicians, but in practical situations we want to avoid it,
leading to the following definition.

Definition 13.4.7 Continouously Differentiable Function.

Let U be an open subset ofmathbbR2. We say that a function f is con-
tinuously differentiable on U if fx and fy are defined and continuous
at each point in U .
A similar statement applies for functions of three variables inmathbbR3.

When fx and fy exist at a point but are not continuous at that point, we
need to use other methods to determine whether or not f is differentiable at
that point.

For instance, consider the function

f(x, y) =

{
xy

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

We can find fx(0, 0) and fy(0, 0) using Definition 13.3.2:

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h

= lim
h→0

0

h2
= 0;

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h

= lim
h→0

0

h2
= 0.

Both fx and fy exist at (0, 0), but they are not continuous at (0, 0), as

fx(x, y) =
y(y2 − x2)

(x2 + y2)2
and fy(x, y) =

x(x2 − y2)

(x2 + y2)2

are not continuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at
every point in the xy-plane, they are not continuous. Therefore it is possible, by
Theorem 13.4.6, for f to not be differentiable.

Indeed, it is not. One can show that f is not continuous at (0, 0) (see Ex-
ample 13.2.10), and by Theorem 13.4.5, this means f is not differentiable at
(0, 0).

13.4.2 Approximating with the Total Differential
By the definition, when f is differentiable dz is a good approximation for ∆z
when dx and dy are small. We give some simple examples of how this is used
here.
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Example 13.4.8 Approximating with the total differential.

Let z =
√
x sin(y). Approximate f(4.1, 0.8).

Solution. Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approxi-
mate f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =√
4 sin(π/4) = 2

(√
2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the

best approximation we could reasonably come up with. The total differ-
ential gives us a way of adjusting this initial approximation to hopefully
get a more accurate answer.
We let∆z = f(4.1, 0.8)− f(4, π/4). The total differential dz is approx-
imately equal to∆z, so

f(4.1, 0.8)−f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+f(4, π/4). (13.4.1)

To find dz, we need fx and fy.

fx(x, y) =
sin(y)
2
√
x

⇒ fx(4, π/4) =
sin(π)/4
2
√
4

=

√
2/2

4
=

√
2/8.

fy(x, y) =
√
x cos(y) ⇒ fy(4, π/4) =

√
4

√
2

2

=
√
2.

Approximating 4.1 with 4 gives dx = 0.1; approximating 0.8 with π/4
gives dy ≈ 0.015. Thus

dz = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2

8
(0.1) +

√
2(0.015)

≈ 0.039.

Returning to Equation (13.4.1), we have

f(4.1, 0.8) ≈ 0.039 + 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8) with a calcu-
lator; the actual value, accurate to 5 places after the decimal, is 1.45254.
Obviously our approximation is quite good.

The point of the previous example was not to develop an approximation
method for known functions. After all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximation works, and to reinforce the following concept:

“New position = old position+ amount of change,” so
“New position≈ old position + approximate amount of change.”
In the previous example, we could easily compute f(4, π/4) and could ap-

proximate the amount of z-change when computing f(4.1, 0.8), letting us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of
f , fx and fy at a particular point without actually knowing the function f . The
total differential gives a good method of approximating f at nearby points.
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Example 13.4.9 Approximating an unknown function.

Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, ap-
proximate f(2.1,−3.03).
Solution. The total differential approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy =
−0.03, we have

dz = fx(2,−3)dx+ fy(2,−3)dy

= 1.3(0.1) + (−0.6)(−0.03)

= 0.148.

The change in z is approximately 0.148, so we approximate
f(2.1,−3.03) ≈ 6.148.

13.4.3 Tangent Plane Approximation
Recall from Chapter 2 that in one variable, the essence of differentiability is the
tangent line approximation. This idea is emphasized in Section 4.4, where we
first introduced the differential.

In Subsection 13.3.2 we saw that the partial derivatives of a function f(x, y)
can be used to define the tangent plane to a graph z = f(x, y). Wewill now see
that this plane plays the same role for functions of two variables as the tangent
line to a graph y = f(x) for a function of one variable.

Recall from Definition 4.4.2 that for a function f(x), when x is near c we
have the linear approximation f(x) ≈ ℓ(x), where

ℓ(x) = f(c) + f ′(c)(x− c)

is the linearization of f at c. If we set dx = ∆x = x − c, and evaluate the
differential dy = f ′(x) dx at c, then we have

∆y = f(x)− f(c)

dy = ℓ(x)− f(c).

Given the graph y = f(x), we know that y = ℓ(x) gives the tangent line
to the graph at c. For the graph z = f(x, y) of a function of two variables, we
similarly have the tangent plane

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

defined in Definition 13.3.7, suggesting that we define the two variable lineariza-
tion

ℓ(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Consider the total differential dz at (a, b):

dz = fx(a, b) dx+ fy(a, b) dy.

If we assume that (x, y) is “close” to (a, b), and set dx = x − a, dy = y − b,
then we have

dz = fx(a, b) dx+ fy(a, b) dy = fx(a, b)(x− a) + fy(a, b)(y − b).

Since ℓ(a, b) = f(a, b), we have ℓ(x, y) − ℓ(a, b) = dz, which agrees with
the one-variable situation, and reinforces the concept of the differential as the
“linear change” in a function.
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If we recast Definition 13.4.3 in the language of tangent planes, we canmore
easily see the analogy with functions of a single variable. We can now say that
f(x, y) is differentiable at (a, b) if it has a valid tangent plane approximation at
(a, b). Note that f(x, y)− ℓ(x, y) is equal to the error term Ex dx+ Ey dy.

By Theorem 13.4.5, we know that the tangent plane at (a, b, f(a, b)) exists,
and gives a good approximation to the graph z = f(x, y), as long as the partial
derivatives of f exist and are continuous at (a, b).

13.4.4 Error/Sensitivity Analysis
The total differential gives an approximationof the change in z given small changes
in x and y. We can use this to approximate error propagation; that is, if the input
is a little off fromwhat it should be, how far from correct will the output be? We
demonstrate this in an example.

Example 13.4.10 Sensitivity analysis.

A cylindrical steel storage tank is to be built that is 10ft tall and 4ft across
in diameter. It is known that the steel will expand/contract with tem-
perature changes; is the overall volume of the tank more sensitive to
changes in the diameter or in the height of the tank?
Solution. A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a function of two variables, r and h. We can
compute partial derivatives of V :

∂V

∂r
= Vr(r, h) = 2πrh and

∂V

∂h
= Vh(r, h) = πr2.

The total differential is dV = (2πrh)dr + (πr2)dh. When h = 10 and
r = 2, we have dV = 40πdr + 4πdh. Note that the coefficient of dr
is 40π ≈ 125.7; the coefficient of dh is a tenth of that, approximately
12.57. A small change in radius will be multiplied by 125.7, whereas a
small change in height will be multiplied by 12.57. Thus the volume of
the tank is more sensitive to changes in radius than in height.

The previous example showed that the volume of a particular tankwasmore
sensitive to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1ft and radius of
5ft would be more sensitive to changes in height than in radius.

One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differential.

13.4.5 Differentiability of Functions of Three Variables
The definition of differentiability for functions of three variables is very similar
to that of functions of two variables. We again start with the total differential.

Definition 13.4.11 Total Differential.

Letw = f(x, y, z)be continuous on a setD. Letdx, dy and dz represent
changes in x, y and z, respectively. Where the partial derivatives fx, fy
and fz exist, the total differential of w is

dw = fx(x, y, z) dx+ fy(x, y, z) dy + fz(x, y, z) dz.
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This differential can be a good approximation of the change in w when w =
f(x, y, z) is differentiable.

Definition 13.4.12 Multivariable Differentiability.

Let w = f(x, y, z) be defined on a set D containing (x0, y0, z0) where
fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the total
differential ofw at (x0, y0, z0), let∆w = f(x0+dx, y0+dy, z0+dz)−
f(x0, y0, z0), and letEx,Ey andEz be functions of dx, dy and dz such
that

∆w = dw + Exdx+ Eydy + Ezdz.

1. We say f is differentiable at (x0, y0, z0) if, given ε > 0, there is a
δ > 0 such that if ∥⟨dx, dy, dz⟩∥ < δ, then ∥⟨Ex, Ey, Ez⟩∥ < ε.

2. We say f is differentiable onB if f is differentiable at every point
in B. If f is differentiable on R3, we say that f is differentiable
everywhere.

Just as before, this definition gives a rigorous statement about what it means
to be differentiable that is not very intuitive. We follow it with a theorem similar
to Theorem 13.4.6.

Theorem 13.4.13 Continuity and Differentiability of Functions of Three
Variables.

Let w = f(x, y, z) be defined on a setD containing (x0, y0, z0).

1. If f is differentiable at (x0, y0, z0), then f is continuous at
(x0, y0, z0).

2. If fx, fy and fz are continuous onD, then f is differentiable onD.
Using the languageofDefinition13.4.7,
we can restate Theorem 13.4.13
as saying that if f is continuously
differentiable onD, then f is dif-
ferentiable onD.

This set of definition and theoremextends to functions of any number of vari-
ables. The theorem again gives us a simple way of verifying that most functions
that we encounter are differentiable on their natural domains.

This section has given us a formal definition of what it means for a functions
to be “differentiable,” along with a theorem that gives a more accessible under-
standing. The following sections return to notions prompted by our study of
partial derivatives that make use of the fact that most functions we encounter
are differentiable.
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13.4.6 Exercises

Terms and Concepts

1. T/F: If f(x, y) is differentiable on S, the f is continuous on S.

2. T/F: If fx and fy are continuous on S, then f is differentiable on S.

3. T/F: If z = f(x, y) is differentiable, then the change in z over small changes dx and dy inx and y is approximately
dz.

4. Finish the sentence: “The new z-value is approximately the old z-value plus the approximate .”

Problems

Exercise Group. In the following exercises, find the total differential dz.
5. z = x sin(y) + x2 6. z = (2x2 + 3y)2

7. z = 5x− 7y 8. z = xex+y

Exercise Group. In the following exercises, a function f(x, y) is given. Give the indicated approximation using the
total differential.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1)

knowing f(3, 7) = 4.
10. f(x, y) = sin(x) cos(y). Approximate

f(0.1,−0.1) knowing f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate
f(2.04, 3.06) knowing f(2, 3) = −6.

12. f(x, y) = ln(x− y). Approximate f(5.1, 3.98)
knowing f(5, 4) = 0.

Exercise Group. The following exercises ask a variety of questions dealing with approximating error and sensitivity
analysis.

13. A cylindrical storage tank is to be 2ft tall with a
radius of 1ft. Is the volume of the tank more
sensitive to changes in the radius or the height?

14. Projectile Motion: The x-value of an object
moving under the principles of projectile
motion is x(θ, v0, t) = (v0 cos(θ))t. A particular
projectile is fired with an initial velocity of
v0 = 250ft/s and an angle of elevation of
θ = 60◦. It travels a distance of 375ft in 3
seconds.

Is the projectile more sensitive to errors in
initial speed or angle of elevation?

15. The length ℓ of a long wall is to be approximated.
The angle θ, as shown in the diagram (not to
scale), is measured to be 85◦, and the distance
x is measured to be 30’. Assume that the
triangle formed is a right triangle.

Is the measurement of the length of ℓmore
sensitive to errors in the measurement of x or
in θ?

ℓ =?

θ
x

16. It is “common sense” that it is far better to
measure a long distance with a long measuring
tape rather than a short one. A measured
distanceD can be viewed as the product of the
length ℓ of a measuring tape times the number
n of times it was used. For instance, using a 3’
tape 10 times gives a length of 30’. To measure
the same distance with a 12’ tape, we would
use the tape 2.5 times. (i.e., 30 = 12× 2.5.)
ThusD = nℓ.

Suppose each time a measurement is taken
with the tape, the recorded distance is within
1/16’’ of the actual distance. (i.e.,
dℓ = 1/16′′ ≈ 0.005ft). Using differentials,
show why common sense proves correct in that
it is better to use a long tape to measure long
distances.
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Exercise Group. In the following exercises, find the total differential dw.
17. w = x2yz3 18. w = ex sin(y) ln(z)

Exercise Group. In the following exercises, use the information provided and the total differential to make the given
approximation.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2.
Approximate f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6,
fy(−4, 2) = 5.1. Approximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) =
−3, fz(2, 4, 5) = 3.7. Approximate
f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) =
0, fz(3, 3, 3) = −2. Approximate
f(3.1, 3.1, 3.1).
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13.5 The Multivariable Chain Rule

Consider driving an off-road vehicle along a dirt road. As you drive, your eleva-
tion likely changes. What factors determine howquickly your elevation rises and
falls? After some thought, generally one recognizes that one’s velocity (speed
and direction) and the terrain influence your rise and fall.

One can represent the terrain as the surface defined by a multivariable func-
tion f(x, y); one can represent the path of the off-road vehicle, as seen from
above, with a vector-valued function r⃗(t) = ⟨x(t), y(t)⟩; the velocity of the ve-
hicle is thus r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

Consider Figure 13.5.1 in which a surface z = f(x, y) is drawn, along with a
dashed curve in the xy-plane. Restricting f to just the points on this circle gives
the curve shown on the surface (i.e., “the path of the off-road vehicle.”) The
derivative df

dt gives the instantaneous rate of change of f with respect to t. If
we consider an object traveling along this path, dfdt = dz

dt gives the rate at which
the object rises/falls (i.e., “the rate of elevation change” of the vehicle.) Concep-
tually, the Multivariable Chain Rule combines terrain and velocity information
properly to compute this rate of elevation change.

Figure 13.5.1 Understanding the ap-
plication of the Multivariable Chain
Rule

Abstractly, let z be a function of x and y; that is, z = f(x, y) for some
function f , and let x and y each be functions of t. By choosing a t-value, x- and
y-values are determined, which in turn determine z: this defines z as a function
of t. The Multivariable Chain Rule gives a method of computing dz

dt .

13.5.1 Multivariable Chain Rule, Part I

Theorem 13.5.2 Multivariable Chain Rule, Part I.

Let z = f(x, y), x = g(t) and y = h(t), where f , g and h are differ-
entiable functions. Then z = f(x, y) = f

(
g(t), h(t)

)
is a function of t,

and

dz

dt
=

df

dt
= fx(x, y)

dx

dt
+ fy(x, y)

dy

dt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= ⟨ fx, fy⟩ · ⟨x′, y′⟩.

The Chain Rule of Section 2.5 states that
d

dx

(
f
(
g(x)

))
= f ′(g(x))g′(x).

If t = g(x), we can express the Chain Rule as

df

dx
=

df

dt

dt

dx
;

recall that the derivative notation is deliberately chosen to reflect their fraction-
like properties. A similar effect is seen in Theorem 13.5.2. In the second line
of equations, one can think of the dx and ∂x as “sort of” canceling out, and
likewise with dy and ∂y.

Notice, too, the third line of equations in Theorem13.5.2. The vector ⟨ fx, fy⟩
contains information about the surface (terrain); the vector ⟨x′, y′⟩ can repre-
sent velocity. In the context measuring the rate of elevation change of the off-
road vehicle, the Multivariable Chain Rule states it can be found through a prod-
uct of terrain and velocity information.

We now practice applying the Multivariable Chain Rule.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_mchain_intro.html
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Example 13.5.3 Using the Multivariable Chain Rule.

Let z = x2y+x, where x = sin(t) and y = e5t. Find dz
dt using the Chain

Rule.
Solution. Following Theorem 13.5.2, we find

fx(x, y) = 2xy+1, fy(x, y) = x2,
dx

dt
= cos(t),

dy

dt
= 5e5t.

Applying the theorem, we have

dz

dt
= (2xy + 1) cos(t) + 5x2e5t.

This may look odd, as it seems that dz
dt is a function of x, y and t. Since

x and y are functions of t, dz
dt is really just a function of t, and we can

replace x with sin(t) and y with e5t:

dz

dt
= (2xy+1) cos(t)+5x2e5t = (2 sin(t)e5t+1) cos(t)+5e5t sin2(t).

The previous example can make us wonder: if we substituted for x and y at
the end to show that dz

dt is really just a function of t, why not substitute before
differentiating, showing clearly that z is a function of t?

That is, z = x2y+x = (sin(t))2e5t+sin(t). Applying the Chain and Product
Rules, we have

dz

dt
= 2 sin(t) cos(t) e5t + 5 sin2(t) e5t + cos(t),

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivative, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerfulwhenwedo not knowwhat f , g and/orh are. Itmay be hard
to believe, but often in “the real world” we know rate-of-change information
(i.e., information about derivatives) without explicitly knowing the underlying
functions. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoretic use, giving us insight
into the behavior of certain constructions (as we’ll see in the next section).

We demonstrate this in the next example.

Example 13.5.4 Applying the Multivariable Chain Rule.

An object travels along a path on a surface. The exact path and surface
are not known, but at time t = t0 it is known that :

∂z

∂x
= 5,

∂z

∂y
= −2,

dx

dt
= 3 and

dy

dt
= 7.

Find dz
dt at time t0.

Solution. The Multivariable Chain Rule states that

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= 5(3) + (−2)(7)
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= 1.

By knowing certain rates-of-change information about the surface and
about the path of the particle in the xy-plane, we can determine how
quickly the object is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example 13.5.5 Applying the Multivariable Chain Rule.

Consider the surface z = x2+y2−xy, a paraboloid, on which a particle
moves with x and y coordinates given by x = cos(t) and y = sin(t).
Find dz

dt when t = 0, and find where the particle reaches its maximum/
minimum z-values.
Solution. It is straightforward to compute

fx(x, y) = 2x− y fy(x, y) = 2y − x

dx

dt
= − sin(t) dy

dt
= cos(t).

Combining these according to the Chain Rule gives:

dz

dt
= −(2x− y) sin(t) + (2y − x) cos(t).

Figure 13.5.6 Plotting the path of
a particle on a surface in Exam-
ple 13.5.5

When t = 0, x = 1 and y = 0. Thus
dz

dt
= −(2)(0) + (−1)(1) = −1.

When t = 0, the particle is moving down, as shown in Figure 13.5.6.
To find where z-value is maximized/minimized on the particle’s path, we
set dz

dt = 0 and solve for t:

dz

dt
= 0 = −(2x− y) sin(t) + (2y − x) cos(t)

0 = −(2 cos(t)− sin(t)) sin(t) + (2 sin(t)− cos(t)) cos(t)

0 = sin2(t)− cos2(t)

cos2(t) = sin2(t)

t = n
π

4
(for odd n)

We can use the First Derivative Test to find that on [0, 2π], z has reaches
its absolute minimum at t = π/4 and 5π/4; it reaches its absolute max-
imum at t = 3π/4 and 7π/4, as shown in Figure 13.5.6.

We can extend the Chain Rule to include the situation where z is a function
of more than one variable, and each of these variables is also a function of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
functions of two variables, say s and t.

Theorem 13.5.7 Multivariable Chain Rule, Part II.

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f , g and h are
differentiable functions. Then z is a function of s and t, and

•
∂z

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_mchain2.html
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•
∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

2. Let z = f(x1, x2, . . . , xm) be a differentiable function ofm vari-
ables, where each of the xi is a differentiable function of the vari-
ables t1, t2, . . . , tn. Then z is a function of the ti, and

∂z

∂ti
=

∂f

∂x1

∂x1

∂ti
+

∂f

∂x2

∂x2

∂ti
+ · · ·+ ∂f

∂xm

∂xm

∂ti
.

Example 13.5.8 Using the Multivariable Chain Rule, Part II.

Let z = x2y + x, x = s2 + 3t and y = 2s − t. Find ∂z
∂s and

∂z
∂t , and

evaluate each when s = 1 and t = 2.
Solution. Following Theorem 13.5.7, we compute the following partial
derivatives:

∂f

∂x
= 2xy + 1

∂f

∂y
= x2,

∂x

∂s
= 2s

∂x

∂t
= 3

∂y

∂s
= 2

∂y

∂t
= −1.

Thus

∂z

∂s
= (2xy + 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z

∂t
= (2xy + 1)(3) + (x2)(−1) = 6xy − x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z

∂s
= 100 and

∂z

∂t
= −46.

Example 13.5.9 Using the Multivariable Chain Rule, Part II.

Let w = xy + z2, where x = t2es, y = t cos(s), and z = s sin(t). Find
∂w
∂t when s = 0 and t = π.
Solution. Following Theorem 13.5.7, we compute the following partial
derivatives:

∂f

∂x
= y

∂f

∂y
= x

∂f

∂z
= 2z

∂x

∂t
= 2tes

∂y

∂t
= cos(s)

∂z

∂t
= s cos(t).

Thus
∂w

∂t
= y(2tes) + x(cos(s)) + 2z(s cos(t)).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w

∂t
= π(2π) + π2 = 3π2.
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13.5.2 Implicit Differentiation

We studied finding dy
dx when y is given as an implicit function of x in detail in Sec-

tion 2.6. We find here that the Multivariable Chain Rule gives a simpler method
of finding dy

dx .
For instance, consider the implicit function x2y − xy3 = 3. We learned to

use the following steps to find dy
dx :

d

dx

(
x2y − xy3

)
=

d

dx

(
3
)

2xy + x2 dy

dx
− y3 − 3xy2

dy

dx
= 0

dy

dx
= − 2xy − y3

x2 − 3xy2
.

Instead of using this method, consider z = x2y−xy3. The implicit function
above describes the level curve z = 3. Considering x and y as functions of x,
the Multivariable Chain Rule states that

dz

dx
=

∂z

∂x

dx

dx
+

∂z

∂y

dy

dx
. (13.5.1)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
Equation (13.5.1) becomes

0 =
∂z

∂x
(1) +

∂z

∂y

dy

dx
⇒

dy

dx
= −∂z

∂x

/∂z

∂y

= − fx
fy
. (13.5.2)

Note howour solution for dy
dx in Equation (13.5.2) is just the partial derivative

of z with respect to x, divided by the partial derivative of z with respect to y, all
multiplied by (−1).

We state the above as a theorem.

Theorem 13.5.10 Implicit Differentiation.

Let f be a differentiable function of x and y, where f(x, y) = c defines
y as an implicit function of x, for some constant c. Then

dy

dx
= −fx(x, y)

fy(x, y)
.

We practice using Theorem 13.5.10 by applying it to a problem from Sec-
tion 2.6.

Example 13.5.11 Implicit Differentiation.

Given the implicitly defined function sin(x2y2) + y3 = x + y, find y′.
Note: this is the same problem as given in Example 2.6.7 of Section 2.6,
where the solution took about a full page to find.
Solution. Let f(x, y) = sin(x2y2) + y3 − x− y; the implicitly defined
function above is equivalent to f(x, y) = 0. We find dy

dx by applying
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Theorem 13.5.10. We find

fx(x, y) = 2xy2 cos(x2y2)− 1

fy(x, y) = 2x2y cos(x2y2) + 3y2 − 1,

so
dy

dx
= − 2xy2 cos(x2y2)− 1

2x2y cos(x2y2) + 3y2 − 1
,

which matches our solution from Example 2.6.7.

We can also do implicit differentiation for functions of three variables. In
the same way that a level curve f(x, y) = c is used to implicitly define y as a
function of x, a level surface f(x, y, z) = c can be viewed as implicitly defining
z as a function of x and y.

Suppose the equation f(x, y, z) = c, where c is a constant, defines the
function z = g(x, y). Thenwe can use the chain rule to compute the derivatives
of f(x, y, z) with respect to x and y, where we set x = x, y = y, and z =
g(x, y). Since f(x, y, z) is constant, we have

0 =
∂

∂x
f(x, y, z)

= fx(x, y, z)
∂x

∂x
+ fy(x, y, z)

∂y

∂x
+ fz(x, y, z)

∂z

∂x

= fx(x, y, z)(1) + fy(x, y, z)(0) + fz(x, y, z)
∂z

∂x
.

Solving for ∂z
∂x gives us

∂z

∂x
= −fx(x, y, z)

fz(x, y, z)
,

and similarly,
∂z

∂y
= −fy(x, y, z)

fz(x, y, z)
.

There is a subtlety in this calcu-
lation that can be quite confus-
ing. It appears to be chain rule,
but shouldn’t the derivative of
f(x, y, z) with respect to x be
simply fx(x, y, z)? The catchhere
is thatweare considering the vari-
ablesx, y, z (viewedas coordinates
in R3) as functions of x and y,
viewed as coordinates in R2.

In other words, the x and y
in g(x, y) are not the sameas the
ones in f(x, y, z)! If this is still
confusing, try settingx = s, y =
t, and z = g(s, t), and then ap-
plying the chain rule as usual, for
derivatives of f(x, y, z) with re-
spect to s and t. At the end, we
can relabel s and t as x and y.

In Subsection 13.3.2 we saw that we can use partial derivatives to determine
the equation of the tangent plane to a graph z = f(x, y). Using implicit differ-
entiation, we can do the same for a level surface f(x, y, z) = c.

Example 13.5.12 Implicit Differentiation with three variables.

Given that the equation

x2yz3 − sin(x− 3z) + 4xy2 − 3yz = 0 (13.5.3)

defines z implicitly as a function of x and y, compute ∂z
∂x and

∂z
∂y using

implicit differentiation. Then, determine the equation of the tangent
plane to the surface at the point (3, 0, 1).
Solution. There are two ways to proceed. One is to use implicit differ-
entiation as before, but using partial derivatives. Whenever we differen-
tiate a function of z, we multiply by the appropriate partial derivative of
z. The other option is to use the formula derived above. We will use the
first method for the x derivative, and the second for y.
We first take the partial derivative of both sides of Equation (13.5.3) with
respect to x:

∂

∂x
(x2yz3 − sin(x− 3z) + 4xy2 − 3yz) = 0
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2xyz3 + x2y(3z2)
∂z

∂x
− cos(x− 3z)

(
1− 3

∂z

∂x

)
+ 4y2 − 3y

∂z

∂x
= 0.

Note that we treated y as a constant, since the derivative is with respect
to x. Next, we collect terms:

∂z

∂x

(
3x2yz2 + 3 cos(x− 3z)− 3y

)
= −2xyz3 + cos(x− 3z)− 4y2.

Lastly, we solve for ∂z
∂x :

∂z

∂x
=

−2xyz3 + cos(x− 3z)− 4y2

3x2yz2 + 3 cos(x− 3z)− 3y
.

For the y derivative, we will use the result given above. Setting
f(x, y, z) = x2yz3−sin(x−3z)+4xy2−3yz, we have ∂z

∂y = − fy(x,y,z)
fz(x,y,z)

.
Therefore,

∂z

∂y
= − x2z3 + 8xy − 3z

3x2yz2 + 3 cos(x− 3z)− 3y
.

The second method certainly seems simpler! The reader is invited to try
each part with the other method, and compare answers.
Finally, we consider the problem of the tangent plane. First, we check
that the point (3, 0, 1) is indeed on the surface: f(3, 0, 1) = 0, as re-
quired. Next we note that z = 1 is given to us from this point. So if
f(x, y, z) = c implicitly defines the graph z = g(x, y), then we must
have g(3, 0) = 1. Next, we have

gx(3, 0) =
∂z

∂x

∣∣∣∣
(3,0)

=
0 + 1− 0

0 + 3− 0
=

1

3

gy(3, 0) =
∂z

∂y

∣∣∣∣
(3,0)

= −9 + 0− 3

0 + 3− 0
= −2.

The equation of the tangent plane is therefore

z = g(3, 0) + gx(3, 0)(x− 3) + gy(3, 0)(y − 0) = 1 +
1

3
(x− 3)− 2y.

In Section 13.3we learned howpartial derivatives give certain instantaneous
rate of change information about a function f(x, y). In that section, we mea-
sured the rate of change of f by holding one variable constant and letting the
other vary (such as, holding y constant and letting x vary gives fx). We can visu-
alize this change by considering the surface defined by f at a point and moving
parallel to the x-axis.

What if we want to move in a direction that is not parallel to a coordinate
axis? Can we still measure instantaneous rates of change? Yes; we find out how
in Section 13.6. In doing so, we’ll see how the Multivariable Chain Rule informs
our understanding of these directional derivatives.
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13.5.3 Exercises

Terms and Concepts

1. Let a level curve of z = f(x, y) be described by x = g(t), y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d

dx

(
f
(
g(x)

))
= f ′(g(x))· .

3. Fill in the blank: The Multivariable Chain Rule states
df

dt
=

∂f

∂x
· + ·dydt .

4. If z = f(x, y), where x = g(t) and y = h(t), we can substitute and write z as an explicit function of t.
T/F: Using the Multivariable Chain Rule to find dz

dt is sometimes easier than first substituting and then taking
the derivative.

5. T/F: The Multivariable Chain Rule is only useful when all the related functions are known explicitly.

6. TheMultivariable Chain Rule allows us to compute implicit derivatives easily by just computing two
derivatives.

Problems

Exercise Group. Given the functions z = f(x, y), x = g(t) and y = h(t):

(a) Use the Multivariable Chain Rule to compute dz
dt .

(b) Evaluate dz
dt at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1 8. z = x2 − y2, x = t, and y = t2 − 1; t = 1

9. z = 5x+ 2y, x = 2 cos(t) + 1, y = sin(t)− 3;
t = π/4

10. z = x
y2+1 , x = cos(t), and y = sin(t); t = π/2

11. z = x2 + 2y2, x = sin(t), y = 3 sin(t); t = π/4 12. z = cos(x) sin(y), x = πt, and y = 2πt+ π/2;
t = 3

Exercise Group. In the following exercises, functions z = f(x, y), x = g(t) and y = h(t) are given. Find the values
of t where dz

dt = 0. Note: these are the same surfaces/curves as found in Exercises 7–12.

13. z = 3x+ 4y, x = t2, y = 2t 14. Given z = x2 − y2, x = t, and y = t2 − 1, at
what values of t does dz

dt = 0?

15. z = 5x+ 2y, x = 2 cos(t) + 1, y = sin(t)− 3 16. Given z = x
y2+1 , x = cos(t), and y = sin(t), at

what values of t in [0, 2π) does dz
dt = 0?

17. z = x2 + 2y2, x = sin(t), y = 3 sin(t) 18. Given z = cos(x) sin(y), x = πt, and
y = 2πt+ π/2, at what values of t in [0, 2) does
dz
dt = 0?

Exercise Group. Given the functions z = f(x, y), x = g(s, t) and y = h(s, t):

(a) Use the Multivariable Chain Rule to compute ∂z
∂s and

∂z
∂t .

(b) Evaluate ∂z
∂s and

∂z
∂t at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0 20. z = cos
(
πx+ π

2 y
)
, x = st2, and y = s2t;

s = 1, t = 0

21. z = x2 + y2, x = s cos(t), and y = s sin(t);
s = 2, t = π/4

22. z = e−(x2+y2), x = t, and y = st2, s = 1, t = 1
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Exercise Group. The given equation defines y implicitly as a function of x. Find dy
dx using Implicit Differentiation and

Theorem 13.5.10.
23. x2 tan(y) = 50 24.

(
3x2 + 2y3

)4
= 2

25.
x2 + y

x+ y2
= 17

26. ln
(
x2 + xy + y2

)
= 1

Exercise Group. Find dz
dt , or

∂z
∂s and

∂z
∂t , using the supplied information.

27.
∂z

∂x
= 2,

∂z

∂y
= 1,

dx

dt
= 4,

dy

dt
= −5 28. ∂z

∂x = 1, ∂z∂y = −3, dxdt = 6, and dy
dt = 2.

29.
∂z

∂x
= −4,

∂z

∂y
= 9,

∂x

∂s
= 5,

∂x

∂t
= 7,

∂y

∂s
= −2,

∂y

∂t
= 6

30. ∂z
∂x = 2, ∂z∂y = 1, ∂x∂s = −2, ∂x∂t = 3, ∂y∂s = 2 and
∂y
∂t = −1



CHAPTER 13. FUNCTIONS OF SEVERAL VARIABLES 762

13.6 Directional Derivatives

Partial derivatives give us an understanding of how a surface changes when we
move in the x and y directions. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is compara-
ble to fx. Likewise, the rise/fall in moving due north is comparable to fy. The
steeper the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Partial derivatives
alone cannotmeasure this. This section investigatesdirectional derivatives, which
do measure this rate of change.

13.6.1 Functions of Two Variables
We begin with a definition.

Definition 13.6.1 Directional Derivatives.

Let z = f(x, y) be continuous on a set S and let u⃗ = ⟨u1, u2⟩ be a unit
vector. For all points (x, y), the directional derivative of f at (x, y) in
the direction of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y + hu2)− f(x, y)

h
.

The partial derivatives fx and fy are definedwith similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a particular unit vector u⃗. This may look a bit intimidating but in reality it is
not too difficult to deal with; it often just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem 13.6.2 Directional Derivatives.

Let z = f(x, y) be differentiable on a set S containing (x0, y0), and let
u⃗ = ⟨u1, u2⟩ be a unit vector. The directional derivative of f at (x0, y0)
in the direction of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

Example 13.6.3 Computing directional derivatives.

Let z = 14− x2 − y2 and let P = (1, 2). Find the directional derivative
of f , at P , in the following directions:

1. toward the pointQ = (3, 4),

2. in the direction of ⟨2,−1⟩, and

3. toward the origin.

Solution. The surface is plotted in Figure 13.6.4, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies
on the surface of f . We find that fx(x, y) = −2x and fx(1, 2) = −2;
fy(x, y) = −2y and fy(1, 2) = −4. Figure 13.6.4 Understanding the di-

rectional derivative in Example 13.6.3
1. Let u⃗1 be the unit vector that points from the point (1, 2) to the
pointQ = (3, 4), as shown in the figure. The vector

−−→
PQ = ⟨2, 2⟩;

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_direct1.html
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the unit vector in this direction is u⃗1 =
〈
1/
√
2, 1/

√
2
〉
. Thus the

directional derivative of f at (1, 2) in the direction of u⃗1 is

Du⃗1
f(1, 2) = −2(1/

√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point
(1, 2, 9) on the surface in the direction of u⃗1 (which points toward
the point Q) is about −4.24. Moving in this direction moves one
steeply downward.

2. We seek the directional derivative in the direction of ⟨2,−1⟩. The
unit vector in this direction is u⃗2 =

〈
2/
√
5,−1/

√
5
〉
. Thus the

directional derivative of f at (1, 2) in the direction of u⃗2 is

Du⃗2
f(1, 2) = −2(2/

√
5) + (−4)(−1/

√
5) = 0.

Starting on the surface of f at (1, 2) and moving in the direction
of ⟨2,−1⟩ (or u⃗2) results in no instantaneous change in z-value.
This is analogous to standing on the side of a hill and choosing a
direction to walk that does not change the elevation. One neither
walks up nor down, rather just “along the side” of the hill. Finding
these directions of “no elevation change” is important.

3. At P = (1, 2), the direction towards the origin is given by
the vector ⟨−1,−2⟩; the unit vector in this direction is u⃗3 =〈
−1/

√
5,−2/

√
5
〉
. The directional derivative of f at P in the di-

rection of the origin is

Du⃗3
f(1, 2) = −2(−1/

√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply,
with an initial slope of about 4.47.

As we study directional derivatives, it will help tomake an important connec-
tion between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direction and the
partial derivatives fx and fy. We start with a definition and follow this with a
Key Idea.

Definition 13.6.5 Gradient.

Let z = f(x, y) be differentiable on a set S that contains the point
(x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is ∇f(x0, y0) =
⟨fx(x0, y0), fy(x0, y0)⟩. The symbol “∇” is named “nabla,”

derived from the Greek name of
a Jewish harp. Oddly enough, in
mathematics the expression∇f
is pronounced “del f .”

To simplify notation, we often express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute directional derivatives in terms of a dot product.

Key Idea 13.6.6 The Gradient and Directional Derivatives.

The directional derivative of z = f(x, y) in the direction of u⃗ is

Du⃗ f = ∇f · u⃗.
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The properties of the dot product previously studied allow us to investigate
the properties of the directional derivative. Given that the directional derivative
gives the instantaneous rate of change of z when moving in the direction of u⃗,
three questions naturally arise:

1. In what direction(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direction(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direction(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = ∥∇f∥ ∥u⃗∥ cos(θ) = ∥∇f∥ cos(θ), (13.6.1)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, ∥u⃗∥ =
1.) This equation allows us to answer the three questions stated previously.

1. Equation (13.6.1) is maximized when cos(θ) = 1, i.e., when the gradient
and u⃗ have the same direction. We conclude the gradient points in the
direction of greatest z change.

2. Equation (13.6.1) is minimized when cos(θ) = −1, i.e., when the gradient
and u⃗ have opposite directions. We conclude the gradient points in the
opposite direction of the least z change.

3. Equation (13.6.1) is 0 when cos(θ) = 0, i.e., when the gradient and u⃗
are orthogonal to each other. We conclude the gradient is orthogonal to
directions of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direction that leads you steepest uphill. Then the direction that
leads steepest downhill is directly behind you, and side-stepping either left or
right (i.e., moving perpendicularly to the direction you face) does not change
your elevation at all.

Recall that a level curve is defined as a curve in the xy-plane along which the
z-values of a functiondonot change. Let a surface z = f(x, y)be given, and let’s
represent one such level curve as a vector-valued function, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t,

for some constant c.
Since f is constant for all t, dfdt = 0. By the Multivariable Chain Rule, we also

know

df

dt
= fx(x, y)x

′(t) + fy(x, y)y
′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x′(t), y′(t)⟩
= ∇f · r⃗ ′(t)
= 0.

This last equality states ∇f · r⃗ ′(t) = 0: the gradient is orthogonal to the
derivative of r⃗, meaning the gradient is orthogonal to the graph of r⃗. Our con-
clusion: at any point on a surface, the gradient at that point is orthogonal to the
level curve that passes through that point.

We restate these ideas in a theorem, then use them in an example.
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Theorem 13.6.7 The Gradient and Directional Derivatives.

Let z = f(x, y) be differentiable on a set S with gradient ∇f , let P =
(x0, y0) be a point in S and let u⃗ be a unit vector.

1. The maximum value of Du⃗ f(x0, y0) is ∥∇f(x0, y0)∥; the direc-
tion of maximal z increase is∇f(x0, y0).

2. The minimum value ofDu⃗ f(x0, y0) is −∥∇f(x0, y0)∥; the direc-
tion of minimal z increase is−∇f(x0, y0).

3. At P ,∇f(x0, y0) is orthogonal to the level curve passing through(
x0, y0

)
.

Example 13.6.8 Finding directions of maximal and minimal increase.

Let f(x, y) = sin(x) cos(y) and let P = (π/3, π/3). Find the directions
of maximal/minimal increase, and find a direction where the instanta-
neous rate of z change is 0.
Solution. We begin by finding the gradient. fx = cos(x) cos(y) and
fy = − sin(x) sin(y), thus

∇f = ⟨cos(x) cos(y),− sin(x) sin(y)⟩ and, at P ,∇f
(π
3
,
π

3

)
=

〈
1

4
,−3

4

〉
.

Thus the direction of maximal increase is ⟨1/4,−3/4⟩. In this direction,
the instantaneous rate of z change is ∥⟨1/4,−3/4⟩∥ =

√
10/4 ≈ 0.79.

Figure 13.6.9 shows the surface plotted from two different perspectives.
In each, the gradient is drawn at P with a dashed line (because of the
nature of this surface, the gradient points “into” the surface). Let u⃗ =
⟨u1, u2⟩ be the unit vector in the direction of∇f atP . Each graph of the
figure also contains the vector ⟨u1, u2, ∥∇f ∥⟩. This vector has a “run” of
1 (because in the xy-plane it moves 1 unit) and a “rise” of ∥∇f∥, hence
we can think of it as a vector with slope of ∥∇f∥ in the direction of∇f ,
helping us visualize how “steep” the surface is in its steepest direction.

(a) (b)

Figure 13.6.9 Graphing the surface and important directions in Exam-
ple 13.6.8
The direction of minimal increase is ⟨−1/4, 3/4⟩; in this direction the
instantaneous rate of z change is−

√
10/4 ≈ −0.79.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_direct2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_direct2b_3D.html
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Any direction orthogonal to ∇f is a direction of no z change. We have
two choices: the direction of ⟨3, 1⟩ and the direction of ⟨−3,−1⟩. The
unit vector in the direction of ⟨3, 1⟩ is shown in each graph of the figure
as well. The level curve at z =

√
3/4 is drawn: recall that along this

curve the z-values do not change. Since ⟨3, 1⟩ is a direction of no z-
change, this vector is tangent to the level curve at P .

Example 13.6.10 Understanding when∇f = 0⃗.

Let f(x, y) = −x2 + 2x − y2 + 2y + 1. Find the directional derivative
of f in any direction at P = (1, 1).
Solution. We find ∇f = ⟨−2x+ 2,−2y + 2⟩. At P , we have
∇f(1, 1) = ⟨0, 0⟩. According to Theorem 13.6.7, this is the direction
of maximal increase. However, ⟨0, 0⟩ is directionless; it has no displace-
ment. And regardless of the unit vector u⃗ chosen,Du⃗ f = 0.
Figure 13.6.11 helps us understand what this means. We can see that P
lies at the top of a paraboloid. In all directions, the instantaneous rate
of change is 0.
So what is the direction of maximal increase? It is fine to give an answer
of 0⃗ = ⟨0, 0⟩, as this indicates that all directional derivatives are 0.

Figure 13.6.11 At the top of a parabo-
loid, all directional derivatives are 0

The fact that the gradient of a surface always points in the direction of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example 13.6.12 The flow of water downhill.

Consider the surface given by the graph of f(x, y) = 20 − x2 − 2y2.
Water is poured on the surface at (1, 1/4). What path does it take as it
flows downhill?
Solution. Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector-valued function de-
scribing the path of the water in the xy-plane; we seek x(t) and y(t).
We know that water will always flow downhill in the steepest direction;
therefore, at any point on its path, it will be moving in the direction
of −∇f . (We ignore the physical effects of momentum on the water.)
Thus r⃗ ′(t) will be parallel to∇f , and there is some constant c such that
c∇f = r⃗ ′(t) = ⟨x′(t), y′(t)⟩.
We find∇f = ⟨−2x,−4y⟩ and write x′(t) as dx

dt and y
′(t) as dy

dt . Then

c∇f = ⟨x′(t), y′(t)⟩

⟨−2cx,−4cy⟩ =
〈
dx

dt
,
dy

dt

〉
.

This implies

−2cx =
dx

dt
and − 4cy =

dy

dt
, i.e.,

c = − 1

2x

dx

dt
and c = − 1

4y

dy

dt
.

As c equals both expressions, we have

1

2x

dx

dt
=

1

4y

dy

dt
.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_direct9.html
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To find an explicit relationship between x and y, we can integrate both
sides with respect to t. Recall from our study of differentials that dx

dt dt =
dx. Thus:∫

1

2x

dx

dt
dt =

∫
1

4y

dy

dt
dt∫

1

2x
dx =

∫
1

4y
dy

1

2
ln |x| = 1

4
ln |y|+ C1

2 ln |x| = ln |y|+ C1

ln
∣∣x2
∣∣ = ln |y|+ C1

Now raise both sides as a power of e:

x2 = eln|y|+C1

x2 = eln|y|eC1 (Note that eC1 is just a constant.)

x2 = yC2

1

C2
x2 = y (Note that 1/C2 is just a constant.)

Cx2 = y.

As the water started at the point (1, 1/4), we can solve for C:

C(1)2 =
1

4
⇒ C =

1

4
.

(a)

−4 −2 2 4

−2

2

x

y

(b)

Figure 13.6.13 A sketch of the surface described in Example 13.6.12
along with the path in the xy-plane with the level curves

Thus the water follows the curve y = x2/4 in the xy-plane. The sur-
face and the path of the water is graphed in Figure 13.6.13(a). In Fig-
ure 13.6.13(b), the level curves of the surface are plotted in thexy-plane,
along with the curve y = x2/4. Notice how the path intersects the level
curves at right angles. As the path follows the gradient downhill, this
reinforces the fact that the gradient is orthogonal to level curves.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_direct3a_3D.html
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13.6.2 Functions of Three Variables
The concepts of directional derivatives and the gradient are easily extended to
three (andmore) variables. We combine the concepts behind Definitions 13.6.1
and 13.6.5 and Theorem 13.6.2 into one set of definitions.

Definition 13.6.14 Directional Derivatives and Gradient with Three
Variables.

Letw = F (x, y, z) be differentiable on a setD and let u⃗ be a unit vector
in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The directional derivative of F in the direction of u⃗ is

Du⃗F = ∇F · u⃗.

The same properties of the gradient given in Theorem 13.6.7, when f is a
function of two variables, hold for F , a function of three variables.

Theorem 13.6.15 The Gradient and Directional Derivatives with Three
Variables.

Let w = F (x, y, z) be differentiable on a setD, let∇F be the gradient
of F , and let u⃗ be a unit vector.

1. The maximum value of Du⃗F is ∥∇F∥, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direction of maximal increase is
∇F .

2. The minimum value ofDu⃗F is−∥∇F∥, obtained when the angle
between ∇F and u⃗ is π, i.e., the direction of minimal increase is
−∇F .

3. Du⃗F = 0 when∇F and u⃗ are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three-variable analogue to level curves.

Example 13.6.16 Finding directional derivativeswith functions of three
variables.

If a point source S is radiating energy, the intensity I at a given point P
in space is inversely proportional to the square of the distance between
S and P . That is, when S = (0, 0, 0), I(x, y, z) = k

x2+y2+z2 for some
constant k.
Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the directional derivative of I at P in
the direction of u⃗, and find the direction of greatest intensity increase at
P .
Solution. We need the gradient ∇I , meaning we need Ix, Iy and Iz .
Each partial derivative requires a simple application of theQuotient Rule,
giving

∇I =

〈
−2x

(x2 + y2 + z2)2
,

−2y

(x2 + y2 + z2)2
,

−2z

(x2 + y2 + z2)2

〉
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∇I(2, 5, 3) =

〈
−4

1444
,
−10

1444
,
−6

1444

〉
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17

2166
≈ −0.0078.

The directional derivative tells us that moving in the direction of u⃗ from
P results in a decrease in intensity of about−0.008 units per inch. (The
intensity is decreasing as u⃗moves one farther from the origin than P .)
The gradient gives the direction of greatest intensity increase. Notice
that

∇I(2, 5, 3) =

〈
−4

1444
,
−10

1444
,
−6

1444

〉
=

2

1444
⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is pointing in the direction of
⟨−2,−5,−3⟩, that is, towards the origin. That should make intuitive
sense: the greatest increase in intensity is found by moving towards to
source of the energy.

Thedirectional derivative allowsus to find the instantaneous rate of z change
in any direction at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next section.
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13.6.3 Exercises

Terms and Concepts

1. What is the difference between a directional derivative and a partial derivative?
2. For f(x, y), for what u⃗ isDu⃗ f = fx?

3. For f(x, y), for what u⃗ isDu⃗ f = fy?

4. The gradient is to level curves.

5. The gradient points in the direction of increase.

6. It is generally more informative to view the directional derivative not as the result of a limit, but rather as the
result of a product.

Problems

Exercise Group. In the following exercises, a function f(x, y) is given. Find∇f .

7. f(x, y) = −x2y + xy2 + xy 8. Find∇f , where f(x, y) = sin(x) cos(y).

9. f(x, y) =
1

x2 + y2 + 1

10. Find∇f , where f(x, y) = −4x+ 3y.

11. f(x, y) = x2 + 2y2 − xy − 7x 12. Find∇f , where f(x, y) = x2y3 − 2x.

Exercise Group. In the following exercises, a function f(x, y) and a point P are given. Find the directional derivative
of f in the indicated directions. Note: these are the same functions as in Exercises 13.6.7–13.6.12.

13. f(x, y) = −x2y + xy2 + xy, P = (2, 1)

(a) In the direction of v⃗ = ⟨3, 4⟩

(b) In the direction toward the point
Q = (1,−1).

14. Consider f(x, y) = sin(x) cos(y), at
P =

(
π
4 ,

π
3

)
.

(a) In the direction of v⃗ = ⟨1, 1⟩ .

(b) In the direction toward the point
Q = (0, 0).

15. f(x, y) =
1

x2 + y2 + 1
, P = (1, 1).

(a) In the direction of v⃗ = ⟨1,−1⟩.

(b) In the direction toward the point
Q = (−2,−2).

16. Consider f(x, y) = −4x+ 3y, at P = (5, 2).

(a) In the direction of v⃗ = ⟨3, 1⟩ .

(b) In the direction toward the point
Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy − 7x, P = (4, 1)

(a) In the direction of v⃗ = ⟨−2, 5⟩

(b) In the direction toward the point
Q = (4, 0).

18. Consider f(x, y) = x2y3 − 2x, at P = (1, 1).

(a) Find the directional derivative in the
direction of v⃗ = ⟨3, 3⟩ .

(b) Find the directional derivative in the
direction toward the pointQ = (1, 2).

Exercise Group. In the following exercises, a function f(x, y) and a point P are given. Investigate the directions of
maximal increase and decrease, as indicated.

Note: these are the same functions and points as in Exercises 13–18.
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19. f(x, y) = −x2y + xy2 + xy, P = (2, 1)

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

20. f(x, y) = sin(x) cos(y), P =
(
π
4 ,

π
3

)
:

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

21. f(x, y) =
1

x2 + y2 + 1
, P = (1, 1).

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

22. f(x, y) = −4x+ 3y, P = (5, 4)

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

23. f(x, y) = x2 + 2y2 − xy − 7x, P = (4, 1)

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

24. Given f(x, y) = x2y3 − 2x, P = (1, 1):

(a) Find the direction of maximal increase of
f at P .

(b) What is the maximal value ofDu⃗ f at P ?

(c) Find the direction of maximal decrease in
f at P .

(d) Give a direction u⃗ such thatDu⃗ f = 0 at
P .

Exercise Group. In the following exercises, a function F (x, y, z), a vector v⃗ and a point P are given.
Compute the gradient of F , and the derivative of F in the direction of v⃗ at P .
25. F (x, y, z) = 3x2z3 + 4xy − 3z2, v⃗ = ⟨1, 1, 1⟩,

P = (3, 2, 1)

(a) Compute the gradient of F .

(b) Find the derivative of F at P in the
direction of v⃗.

26. F (x, y, z) = sin(x) cos(y)ez , v⃗ = ⟨2, 2, 1⟩ ,
P = (0, 0, 0).

(a) Find∇F (x, y, z).

(b) FindDu⃗ F at P .

27. F (x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩,
P = (1, 0,−1)

(a) Compute the gradient of F .

(b) Find the derivative of F at P in the
direction of v⃗.

28. Given F (x, y, z) = 2
x2+y2+z2 , v⃗ = ⟨1, 1,−2⟩ ,

P = (1, 1, 1):

(a) Find∇F (x, y, z).

(b) FindDu⃗ F at P .
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13.7 Tangent Lines, Normal Lines, and Tangent Planes

13.7.1 Tangent Lines
Derivatives and tangent lines go hand-in-hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0);

that is, the slope of the tangent line is the instantaneous rate of change of f at
x0.

When dealing with functions of two variables, the graph is no longer a curve
but a surface. At a given point on the surface, it seems there are many lines that
fit our intuition of being “tangent” to the surface.

In Subsection 13.3.2 we introduced the concept of the tangent plane, which
could be thought of as consisting of all possible lines tangent to the surface at a
given point. In this section, we explore this idea in more detail.

Figure 13.7.1 Showing various lines
tangent to a surface

In Figure 13.7.1 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definition formally defines what it means to be “tangent
to a surface.”

Definition 13.7.2 Directional Tangent Line.

Let z = f(x, y) be differentiable on a set S containing (x0, y0) and let
u⃗ = ⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is

the tangent line to f in the direction of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is

the tangent line to f in the direction of y at (x0, y0).

3. The line ℓu⃗ through
(
x0, y0, f(x0, y0)

)
parallel to

⟨u1, u2, Du⃗ f(x0, y0)⟩ is the tangent line to f in the direction
of u⃗ at (x0, y0).

It is instructive to consider each of three directions given in the definition in
terms of “slope.” The direction of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direction and the “rise” is fx(x0, y0) units in the z-direction. Note
how the slope is just the partial derivative with respect to x. A similar statement
can bemade for ℓy. The direction of ℓu⃗ is ⟨u1, u2, Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direction (where u⃗ is a unit vector) and the “rise” is the directional
derivative of z in that direction.

Definition 13.7.2 leads to the following parametric equations of directional
tangent lines:

ℓx(t) =


x = x0 + t

y = y0
z = z0 + fx(x0, y0)t

ℓy(t) =


x = x0

y = y0 + t

z = z0 + fy(x0, y0)t

ℓu⃗(t) =


x = x0 + u1t

y = y0 + u2t

z = z0 +Du⃗ f(x0, y0)t

.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_space_tangent_intro.html


CHAPTER 13. FUNCTIONS OF SEVERAL VARIABLES 773

Example 13.7.3 Finding directional tangent lines.

Find the lines tangent to the surface z = sin(x) cos(y) at (π/2, π/2) in
the x and y directions and also in the direction of v⃗ = ⟨−1, 1⟩.
Solution. The partial derivatives with respect to x and y are:

fx(x, y) = cos(x) cos(y) ⇒ fx(π/2, π/2) = 0

fy(x, y) = − sin(x) sin(y) ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equations of the line tangent to f at (π/2, π/2) in
the directions of x and y are:

ℓx(t) =


x = π/2 + t

y = π/2

z = 0

and ℓy(t) =


x = π/2

y = π/2 + t

z = −t

.

The two lines are shown with the surface in Figure 13.7.4(a).

(a) (b)

Figure 13.7.4 A surface and directional tangent lines in Example 13.7.3
To find the equation of the tangent line in the direction of v⃗, we first
find the unit vector in the direction of v⃗: u⃗ =

〈
−1/

√
2, 1/

√
2
〉
. The

directional derivative at (π/2, π, 2) in the direction of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
〈
−1/

√
2, 1/

√
2
〉
= −1/

√
2.

Thus the directional tangent line is

ℓu⃗(t) =


x = π/2− t/

√
2

y = π/2 + t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direction of v⃗ is shown in Fig-
ure 13.7.4(b) along with ℓu⃗(t).

Example 13.7.5 Finding directional tangent lines.

Let f(x, y) = 4xy−x4−y4. Find the equations of all directional tangent
lines to f at (1, 1).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partial4a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_partial4b_3D.html
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Solution. First note that f(1, 1) = 2. We need to compute directional
derivatives, so we need∇f . We begin by computing partial derivatives.

fx = 4y − 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direc-
tional derivative of f at (1, 1) will beDu⃗ f(1, 1) = ⟨0, 0⟩ · ⟨u1, u2⟩ = 0.
It does not matter what direction we choose; the directional derivative
is always 0. Therefore

ℓu⃗(t) =


x = 1 + u1t

y = 1 + u2t

z = 2

.

Figure 13.7.6 shows a graph of f and the point (1, 1, 2). Note that
this point comes at the top of a “hill,” and therefore every tangent line
through this point will have a “slope” of 0.

Figure 13.7.6 Graphing f in Exam-
ple 13.7.5

That is, consider any curve on the surface that goes through this point.
Each curve will have a relative maximum at this point, hence its tangent
line will have a slope of 0. The following section investigates the points
on surfaces where all tangent lines have a slope of 0.

13.7.2 Normal Lines
When dealing with a function y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) andwas normal
(or, perpendicular, orthogonal) to f if it had a slope of−1/f ′(c). We extend the
concept of normal, or orthogonal, to functions of two variables.

Let z = f(x, y) be a differentiable function of two variables. By Defini-
tion13.7.2, at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩
and ℓy(t) is a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direc-
tions through

(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this

point and orthogonal to these directions would be orthogonal, or normal, to the
surface. We can use this direction to create a normal line.

The direction of the normal line is orthogonal to d⃗x and d⃗y , hence the direc-
tion is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .
It is often more convenient to refer to the opposite of this direction, namely

⟨fx, fy,−1⟩. This leads to a definition.

Definition 13.7.7 Normal Line.

Let z = f(x, y) be differentiable on a set S containing (x0, y0) where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through P with direction parallel to n⃗ is the normal
line to f at P .

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tpl2.html
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Thus the parametric equations of the normal line to a surface z = f(x, y) at(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =


x = x0 + at

y = y0 + bt

z = f(x0, y0)− t

.

Example 13.7.8 Finding a normal line.

Find the equation of the normal line to z = −x2 − y2 + 2 at (0, 1).
Solution. We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direction of the normal line,
following Definition 13.7.7, to be n⃗ = ⟨0,−2,−1⟩. The line with this
direction going through the point (0, 1, 1) is

ℓn(t) =


x = 0

y = −2t+ 1

z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

Figure 13.7.9 Graphing a surface with
a normal line from Example 13.7.8

The surface z = −x2 − y2 + 2, along with the found normal line, is
graphed in Figure 13.7.9.

The direction of the normal line has many uses, one of which is the defini-
tion of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is a general
geometric concept to define the distance from Q to the surface as being the
length of the shortest line segment PQ over all points P on the surface. This, in
turn, implies that

−−→
PQ will be orthogonal to the surface at P . Therefore we can

measure the distance fromQ to the surface z = f(x, y) by finding a point P on
the surface such that

−−→
PQ is parallel to the normal line to f at P .

Example 13.7.10 Finding the distance from a point to a surface.

Let f(x, y) = 2− x2 − y2 and letQ = (2, 2, 2). Find the distance from
Q to the surface defined by f .
Solution. This surface is used in Example 13.7.5, so we know that at
(x, y), the direction of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩.
A point P on the surface will have coordinates (x, y, 2 − x2 − y2), so
−−→
PQ =

〈
2− x, 2− y, x2 + y2

〉
. To find where

−−→
PQ is parallel to d⃗n, we

need to find x, y and c such that c
−−→
PQ = d⃗n.

c
−−→
PQ = d⃗n

c
〈
2− x, 2− y, x2 + y2

〉
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x

c(2− y) = −2y

c(x2 + y2) = −1

In each equation, we can solve for c:

c =
−2x

2− x
=

−2y

2− y
=

−1

x2 + y2
.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tpl3.html
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The first two fractions imply x = y, and so the last fraction can be rewrit-
ten as c = −1/(2x2). Then

−2x

2− x
=

−1

2x2

−2x(2x2) = −1(2− x)

4x3 = 2− x

4x3 + x− 2 = 0.

This last equation is a cubic, which is not difficult to solve with a numeric
solver. We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We
find the distance fromQ to the graph of f is∥∥∥−−→PQ

∥∥∥ =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a particular distance from a surface at a given point P on the
surface.

Example 13.7.11 Finding a point a set distance from a surface.

Let f(x, y) = x−y2+3. LetP =
(
2, 1, f(2, 1)

)
= (2, 1, 4). Find points

Q in space that are 4 units from the graph of f at P . That is, findQ such
that

∥∥∥−−→PQ
∥∥∥ = 4 and

−−→
PQ is orthogonal to f at P .

Solution. We begin by finding partial derivatives:

fx(x, y) = 1 ⇒ fx(2, 1) = 1

fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f atP . For reasons that will
becomemore clear in a moment, we find the unit vector in the direction
of n⃗:

u⃗ =
n⃗

∥n⃗∥
=
〈
1/
√
6,−2/

√
6,−1/

√
6
〉
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be written as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrization of the line is that letting t = t0
gives a point on the line that is |t0| units from P . (This is because the
direction of the line is given in terms of a unit vector.) There are thus
two points in space 4 units from P :

Q1 = ℓn(4) Q2 = ℓn(−4)

≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

Figure 13.7.12 Graphing the surface
in Example 13.7.11 along with points
4 units from the surface

The surface is graphed along with points P ,Q1,Q2 and a portion of the
normal line to f at P .

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tpl5.html
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13.7.3 Tangent Planes
Wecanuse thedirectionof the normal line to define aplane. Witha = fx(x0, y0),
b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩ is orthog-

onal to f at P . (See Definition 13.3.7.) The plane through P with normal vector
n⃗ is therefore tangent to f at P .

Whenwe introduced the tangent
plane in Section 13.3, we com-
puted the normal vector to be
n⃗ = ⟨−fx(x0, y0),−fy(x0, y0), 1⟩.
Here, for convenience, we take
the negative of this vector, and
use n⃗ = ⟨fx(x0, y0), fy(x0, y0),−1⟩.

Definition 13.7.13 Tangent Plane.

Let z = f(x, y) be differentiable on a set S containing (x0, y0),
where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and P =(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at
P . The standard form of this plane is

a(x− x0) + b(y − y0)−
(
z − f(x0, y0)

)
= 0.

Example 13.7.14 Finding tangent planes.

Find the equation of the tangent plane to z = −x2 − y2 + 2 at (0, 1).
Solution. Note that this is the same surface and point used in Exam-
ple 13.7.8. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). There-
fore the equation of the tangent plane is

−2(y − 1)− (z − 1) = 0.

Figure 13.7.15 Graphing a surface
with tangent plane from Exam-
ple 13.7.14

The surface z = −x2 − y2 + 2 and tangent plane are graphed in Fig-
ure 13.7.15.

Example 13.7.16 Using the tangent plane to approximate function val-
ues.

The point (3,−1, 4) lies on the graph of an unknown differentiable func-
tion f where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equation
of the tangent plane to f at P , and use this to approximate the value of
f(2.9,−0.8).
Solution. Knowing the partial derivatives at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the
equation of the tangent line to f at P is:

2(x− 3)− 1/2(y+1)− (z− 4) = 0 ⇒ z = 2(x− 3)− 1/2(y+1)+4.
(13.7.1)

Just as tangent lines provide excellent approximations of curves near
their point of intersection, tangent planes provide excellent approxima-
tions of surfaces near their point of intersection. So f(2.9,−0.8) ≈
z(2.9,−0.8) = 3.7.
This is not a new method of approximation. Compare the right hand
expression for z in Equation (13.7.1) to the total differential:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y + 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.

Thus the “new z-value” is the sum of the change in z (i.e., dz) and the

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tpl6.html
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old z-value (4). As mentioned when studying the total differential, it is
not uncommon to know partial derivative information about a unknown
function, and tangent planes are used to give accurate approximations
of the function.

13.7.4 The Gradient and Normal Lines, Tangent Planes
The methods developed in this section so far give a straightforward method of
finding equations of normal lines and tangent planes for surfaces with explicit
equations of the form z = f(x, y). However, they do not handle implicit equa-
tions well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

Definition 13.7.17 Gradient.

Let w = F (x, y, z) be differentiable on a set D that contains the point
(x0, y0, z0).

1. The gradient of F is ∇F (x, y, z) =
⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F (x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

Recall that when z = f(x, y), the gradient ∇f = ⟨fx, fy⟩ is orthogonal
to level curves of f . An analogous statement can be made about the gradient
∇F , where w = F (x, y, z). Given a point (x0, y0, z0), let c = F (x0, y0, z0).
Then F (x, y, z) = c is a level surface that contains the point (x0, y0, z0). The
following theorem states that∇F (x0, y0, z0) is orthogonal to this level surface.

Theorem 13.7.18 The Gradient and Level Surfaces.

Let w = F (x, y, z) be differentiable on a set D containing (x0, y0, z0)
with gradient∇F , where F (x0, y0, z0) = c.
The vector∇F (x0, y0, z0) is orthogonal to the level surfaceF (x, y, z) =
c at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direction can be used to find tangent planes and normal lines.

Example 13.7.19 Using the gradient to find a tangent plane.

Find the equation of the plane tangent to the ellipsoid x2

12 +
y2

6 + z2

4 = 1
at P = (1, 2, 1).
Solution. We consider the equation of the ellipsoid as a level surface of
a function F of three variables, where F (x, y, z) = x2

12 + y2

6 + z2

4 . The
gradient is:

∇F (x, y, z) = ⟨Fx, Fy, Fz⟩

=
〈x
6
,
y

3
,
z

2

〉
.

At P , the gradient is∇F (1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equation
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of the plane tangent to the ellipsoid at P is

1

6
(x− 1) +

2

3
(y − 2) +

1

2
(z − 1) = 0.

Figure 13.7.20An ellipsoid and its tan-
gent plane at a point

The ellipsoid and tangent plane are graphed in Figure 13.7.20.

To understand why Theorem 13.7.18 is true, recall the method of implicit
differentiation given in Subsection 13.5.2. A level surface f(x, y, z) = 0 can be
viewed as defining z = g(x, y) implicitly. We found that the partial derivatives
of z with respect to x and y are then given by

∂z

∂x
= gx(x, y) = −fx(x, y, z)

fz(x, y, z)

∂z

∂y
= gy(x, y) = −fy(x, y, z)

fz(x, y, z)
.

If we plug these values into the tangent plane equation

z = g(a, b) + gx(a, b)(x− a) + gy(a, b)(y − b)

we get, with c = g(a, b),

z = c− fx(a, b, c)

fz(a, b, c)
(x− a)− fy(a, b, c)

fz(a, b, c)
(y − b).

If wemove everything to the left-hand side of the equation andmultiply through
by fz(a, b, c), we get

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0,

which is the equation of a plane with normal vector∇f(a, b, c).

Example 13.7.21 Finding the tangent plane of a level surface.

Determine the equation of the tangent plane to the level surface
x2yz3 − sin(x − 3z) + 4xy2 − 3yz = 0 at the point (3, 0, 1). (Note
that this is the same problem as Example 13.5.12.)
Solution. With f(x, y, z) = x2yz3− sin(x−3z)+4xy2−3yz we have

fx(x, y, z) = 2xyz3 − cos(x− 3z) + 4y2 fx(3, 0, 1) = −1

fy(x, y, z) = x2z3 + 8xy − 3z fy(3, 0, 1) = 6

fz(x, y, z) = 3x2yz2 + 3 cos(x− 3z)− 3y fz(3, 0, 1) = 3.

The equation of the tangent plane is therefore

−1(x− 3) + 6y + 3(z − 1) = 0.

Note that solving for z gives z = 1 + 1
3 (x− 3)− 2y, which is the same

result as Example 13.5.12.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximations. Normal lines also
have many uses. In this section we focused on using them to measure distances
from a surface. Another interesting application is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next section investigates another use of partial derivatives: determining
relative extrema. When dealing with functions of the form y = f(x), we found
relative extrema by finding x where f ′(x) = 0. We can start finding relative
extrema of z = f(x, y) by setting fx and fy to 0, but it turns out that there is
more to consider.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tpl8.html
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13.7.5 Exercises

Terms and Concepts

1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as having a “slope” of 3.
2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought of as having a “slope” of−2.

3. True or False? Let z = f(x, y) be differentiable at P . If n⃗ is a normal vector to the tangent plane of f at P , then
n⃗ is orthogonal to ℓx and ℓy at P . (□ True □ False)

4. Explain in your ownwordswhywe do not refer to the tangent line to a surface at a point, but rather to directional
tangent lines to a surface at a point.

Problems

Exercise Group. A function f(x, y), a vector v⃗ and a pointP are given. Give the parametric equations of the following
directional tangent lines to z = f(x, y) at P :

(a) ℓx(t)

(b) ℓy(t)

(c) ℓu⃗ (t), where u⃗ is the unit vector in the direction of v⃗.

5. f(x, y) = 2x2y − 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3). 6. f(x, y) = 3 cos(x) sin(y), v⃗ = ⟨1, 2⟩ ,
P = (π/3, π/6)

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2). 8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩ ,
P = (1, 2)

Exercise Group. A function f(x, y) and a point P are given. Find the equation of the normal line to z = f(x, y) at
P . Note: these are the same functions as in Exercises 5–8.

9. f(x, y) = 2x2y − 4xy2, P = (2, 3). 10. f(x, y) = 3 cos(x) sin(y) and P = (π/3, π/6)

11. f(x, y) = 3x− 5y, P = (4, 2). 12. f(x, y) = x2 − 2x− y2 + 4y and P = (1, 2)

Exercise Group. A function f(x, y) and a point P are given. Find the two points that are 2 units from the surface
z = f(x, y) at P . Note: these are the same functions as in Exercises 5–8.

13. f(x, y) = 2x2y − 4xy2, P = (2, 3). 14. f(x, y) = 3 cos(x) sin(y), P = (π/3, π/6).
15. f(x, y) = 3x− 5y, P = (4, 2). 16. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2).

Exercise Group. A function f(x, y) and a point P are given. Find an equation of the tangent plane to z = f(x, y) at
P . Note: these are the same functions as in Exercises 5–8.

17. f(x, y) = 2x2y − 4xy2, P = (2, 3). 18. f(x, y) = 3 cos(x) sin(y), P = (π/3, π/6).
19. f(x, y) = 3x− 5y, P = (4, 2). 20. f(x, y) = x2 − 2x− y2 + 4y, P = (1, 2)

Exercise Group. An implicitly defined function of x, y and z is given, along with a point P that lies on the surface.
Use the gradient∇F to:

(a) find the equation of the normal line to the surface at P , and

(b) find the equation of the plane tangent to the surface at P .

21.
x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6) 22. z2 − x2

4 − y2

9 = 0, at P = (4,−3,
√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1) 24. sin(xy) + cos(yz) = 1, at P = (2, π/12, 4)
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13.8 Extreme Values

13.8.1 Critical Points of Functions of Two Variables
Given a function f(x, y), we are often interested in points where z = f(x, y)
takes on the largest or smallest values. For instance, if f represents a cost func-
tion, we would likely want to know what (x, y) values minimize the cost. If f
represents the ratio of a volume to surface area, we would likely want to know
where f is greatest. This leads to the following definition.

Definition 13.8.1 Relative and Absolute Extrema.

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute
maximum at P If f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f
has an absolute minimum at P .

2. If there is an open disk D containing P such that f(x0, y0) ≥
f(x, y) for all points (x, y) that are in bothD and S, then f has a
relative maximum at P . If there is an open disk D containing P
such that f(x0, y0) ≤ f(x, y) for all points (x, y) that are in both
D and S, then f has a relative minimum at P .

3. If f has an absolutemaximum orminimum atP , then f has an ab-
solute extremum at P . If f has a relative maximum or minimum
at P , then f has a relative extremum at P .

If f has a relative or absolute maximum at (x0, y0), it means every curve on
the graph of f through (x0, y0, f(x0, y0)) will also have a relative or absolute
maximum at P . Recalling what we learned in Section 3.1, the slopes of the tan-
gent lines to these curves at P must be 0 or undefined. Since directional deriv-
atives are computed using fx and fy , we are led to the following definition and
theorem.

Definition 13.8.2 Critical Point.

Let z = f(x, y) be continuous on a set S. A critical point P = (x0, y0)
of f is a point in S such that, at P ,

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Theorem 13.8.3 Critical Points and Relative Extrema.

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If
f has a relative extrema at P , then P is a critical point of f .

Therefore, to find relative extrema, we find the critical points of f and de-
termine which correspond to relative maxima, relative minima, or neither. The
following examples demonstrate this process.
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Example 13.8.4 Finding critical points and relative extrema.

Let f(x, y) = x2 + y2 − xy − x− 2. Find the relative extrema of f .
Solution. We start by computing the partial derivatives of f :

fx(x, y) = 2x− y − 1 and fy(x, y) = 2y − x.

Each is never undefined. A critical point occurswhen fx and fy are simul-
taneously 0, leading us to solve the following system of linear equations:

2x− y − 1 = 0 and − x+ 2y = 0.

This solution to this system is x = 2/3, y = 1/3. (Check that at
(2/3, 1/3), both fx and fy are 0.)

Figure 13.8.5 The surface in Exam-
ple 13.8.4 with its absolute minimum
indicated

The graph in Figure 13.8.5 shows f alongwith this critical point. It is clear
from the graph that this is a relative minimum; further consideration of
the function shows that this is actually the absolute minimum.

Example 13.8.6 Finding critical points and relative extrema.

Let f(x, y) = −
√
x2 + y2 + 2. Find the relative extrema of f .

Solution. We start by computing the partial derivatives of f :

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0when x = 0& y ̸= 0, and that fy = 0when y = 0
& x ̸= 0. At (0, 0), both fx and fy are not 0, but rather undefined. The
point (0, 0) is still a critical point, though, because the partial derivatives
are undefined. This is the only critical point of f .

Figure 13.8.7 The surface in Exam-
ple 13.8.6 with its absolute maximum
indicated

The graph of f is plotted in Figure 13.8.7 along with the point (0, 0, 2).
The graph shows that this point is the absolute maximum of f .

In each of the previous two examples, we found a critical point of f and then
determinedwhether or not it was a relative (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a critical point
corresponded to a max or a min without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example 13.8.8 Finding critical points and relative extrema.

Let f(x, y) = x3 − 3x− y2 + 4y. Find the relative extrema of f .
Solution. Once again we start by finding the partial derivatives of f :

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y + 4.

Each is always defined. Setting each equal to 0 and solving for x and y,
we find

fx(x, y) = 0 ⇒ x = ±1

fy(x, y) = 0 ⇒ y = 2.

We have two critical points: (−1, 2) and (1, 2). To determine if they

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multi_extreme1.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multi_extreme2.html
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correspond to a relative maximum or minimum, we consider the graph
of f in Figure 13.8.9.

Figure 13.8.9 The surface in Exam-
ple 13.8.8 with both critical points
marked

The critical point (−1, 2) clearly corresponds to a relative maximum.
However, the critical point at (1, 2) is neither a maximum nor a mini-
mum, displaying a different, interesting characteristic.
If one walks parallel to the y-axis towards this critical point, then this
point becomes a relative maximum along this path. But if one walks
towards this point parallel to the x-axis, this point becomes a relative
minimum along this path. A point that seems to act as both a max and
a min is a saddle point. A formal definition follows.

Definition 13.8.10 Saddle Point.

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at
P . We say P is a saddle point of f if, for every open diskD containing
P , there are points (x1, y1) and (x2, y2) in D such that f(x0, y0) >
f(x1, y1) and f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all directions is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Before Example 13.8.8 we mentioned the need for a test to differentiate be-
tween relative maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second partial derivatives
of f .

Recall that with single variable functions, such as y = f(x), if f ′′(c) > 0,
then f is concave up at c, and if f ′(c) = 0, then f has a relative minimum at
x = c. (We called this the Second Derivative Test.) Note that at a saddle point, it
seems the graph is “both” concave up and concave down, depending on which
direction you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relative minimum
fxx and fyy < 0 ⇒ relative maximum
fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. Functions f exist where fxx and fyy are both
positive but a saddle point still exists. In such a case, while the concavity in
the x-direction is up (i.e., fxx > 0) and the concavity in the y-direction is also
up (i.e., fyy > 0), the concavity switches somewhere in between the x- and
y-directions.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are
equal when continuous (refer back to Theorem 13.3.11), we can rewrite this as
D = fxxfyy − f 2

xy . D can be used to test whether the concavity at a point
changes depending on direction. If D > 0, the concavity does not switch (i.e.,
at that point, the graph is concave up or down in all directions). If D < 0, the
concavity does switch. If D = 0, our test fails to determine whether concavity
switches or not. We state the use ofD in the following theorem.

Theorem 13.8.11 Second Derivative Test.

Let R be an open set on which a function z = f(x, y) and all its first
and second partial derivatives are defined, let P = (x0, y0) be a critical

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multi_extreme3.html
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point of f inR, and let

D = fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then f has a relative minimum at
P .

2. IfD > 0 and fxx(x0, y0) < 0, then f has a relative maximum at
P .

3. IfD < 0, then f has a saddle point at P .

4. IfD = 0, the test is inconclusive.

We first practice using this test with the function in the previous example,
where we visually determined we had a relative maximum and a saddle point.

Example 13.8.12 Using the Second Derivative Test.

Let f(x, y) = x3−3x−y2+4y as in Example 13.8.8. Determinewhether
the function has a relative minimum, maximum, or saddle point at each
critical point.
Solution. We determined previously that the critical points of f are
(−1, 2) and (1, 2). To use the Second Derivative Test, we must find the
second partial derivatives of f :

fxx = 6x; fyy = −2; fxy = 0.

ThusD(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second
Derivative Test, f has a relative maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second Derivative Test states that f
has a saddle point at (1, 2).
The Second Derivative Test confirmed what we determined visually.

Example 13.8.13 Using the Second Derivative Test.

Find the relative extrema of f(x, y) = x2y + y2 + xy.
Solution. We start by finding the first and second partial derivatives of
f :

fx = 2xy + y fy = x2 + 2y + x

fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.

We find the critical points by finding where fx and fy are simultaneously
0 (they are both never undefined). Setting fx = 0, we have:

fx = 0 ⇒ 2xy + y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0
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x2 + 2y + x = 0, and since y = 0, we have

x2 + x = 0

x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two critical points:
(−1, 0) and (0, 0).
Going back to fx, now assume 2x + 1 = 0, i.e., that x = −1/2, then
consider fy = 0:

fy = 0

x2 + 2y + x = 0, and since x = −1/2, we have
1/4 + 2y − 1/2 = 0

y = 1/8.

Thus if x = −1/2, y = 1/8 giving the critical point (−1/2, 1/8).
WithD = 4y − (2x+ 1)2, we apply the Second Derivative Test to each
critical point.
At (−1, 0),D < 0, so (−1, 0) is a saddle point.
At (0, 0),D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relative mini-
mum. Figure 13.8.14Graphing f fromExam-

ple 13.8.13 and its relative extremaFigure 13.8.14 shows a graph of f and the three critical points. Note
how this function does not vary much near the critical points — that is,
visually it is difficult to determine whether a point is a saddle point or
relative minimum (or even a critical point at all!). This is one reason why
the Second Derivative Test is so important to have.

13.8.2 Constrained Optimization
When optimizing functions of one variable such as y = f(x), we made use of
Theorem 3.1.3, the Extreme Value Theorem, that said that over a closed interval
I = [a, b], a continuous function has both a maximum and minimum value. To
find these maximum and minimum values, we evaluated f at all critical points
in the interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to functions of two variables. A
continuous function over a closed set also attains a maximum and minimum
value (see the following theorem). We can find these values by evaluating the
function at the critical values in the set and over the boundary of the set. After
formally stating this extreme value theorem, we give examples.

Theorem 13.8.15 Extreme Value Theorem.

Let z = f(x, y) be a continuous function on a closed, bounded set S.
Then f has a maximum and minimum value on S.

Example 13.8.16 Finding extrema on a closed set.

Let f(x, y) = x2−y2+5 and letS be the trianglewith vertices (−1,−2),
(0, 1) and (2,−2). Find the maximum and minimum values of f on S.
Solution. It can help to see a graph of f along with the set S. In

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_multi_extreme5.html
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Figure 13.8.17(a) the triangle defining S is shown in the xy-plane in a
dashed line. Above it is the graph of f ; we are only concerned with the
portion of the surface z = f(x, y) enclosed by the “triangle”.

(a)

−2 2

−2

−1

1

−1 1

y
=
3x

+
1

y
=
−
3/2x

+
1

y = −2

x

y

(b)

Figure 13.8.17 Plotting the graph of f along with the restricted domain
S in Example 13.8.16
We begin by finding the critical points of f . With fx = 2x and fy = −2y,
we find only one critical point, at (0, 0).
We now find the maximum and minimum values that f attains along
the boundary of S, that is, along the edges of the triangle. In Fig-
ure 13.8.17(b) we see the triangle sketched in the plane with the equa-
tions of the lines forming its edges labeled.
Start with the bottom edge, along the line y = −2. If y is −2, then
on the surface, we are considering points f(x,−2); that is, our function
reduces to f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to
maximize/minimize f1(x) = x2+1 on the interval [−1, 2]. To do so, we
evaluate f1(x) at its critical points and at the endpoints.
The critical points of f1 are found by setting its derivative equal to 0:

f ′
1(x) = 0 ⇒ x = 0.

Evaluating f1 at this critical point, and at the endpoints of [−1, 2] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2

f1(0) = 1 ⇒ f(0,−2) = 1

f1(2) = 5 ⇒ f(2,−2) = 5.

Notice how evaluating f1 at a point is the same as evaluating f at its
corresponding point.
We need to do this process twice more, for the other two edges of the
triangle.
Along the left edge, along the line y = 3x + 1, we substitute 3x + 1 in
for y in f(x, y):

f(x, y) = f(x, 3x+1) = x2−(3x+1)2+5 = −8x2−6x+4 = f2(x).

Wewant themaximumandminimumvalues of f2 on the interval [−1, 0],
so we evaluate f2 at its critical points and the endpoints of the interval.
We find the critical points:

f ′
2(x) = −16x− 6 = 0 ⇒ x = −3/8.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_conopt1a_3D.html
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Evaluate f2 at its critical point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2

f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 4 ⇒ f(0, 1) = 4.

Finally, we evaluate f along the right edge of the triangle, where y =
−3/2x+ 1.

f(x, y) = f(x,−3/2x+1) = x2−(−3/2x+1)2+5 = −5

4
x2+3x+4 = f3(x).

The critical points of f3(x) are:

f ′
3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this critical point and at the endpoints of the interval
[0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4

f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the critical point of f , (0, 0). We find f(0, 0) = 5.

Figure 13.8.18 The graph of f along
with important points along the
boundary of S and the interior in
Example 13.8.16

We have evaluated f at a total of 7 different places, all shown in Fig-
ure 13.8.17(b). We checked each vertex of the triangle twice, as each
showed up as the endpoint of an interval twice. Of all the z-values found,
the maximum is 5.8, found at (1.2,−0.8); the minimum is 1, found at
(0,−2).

This portion of the text is entitled “Constrained Optimization” because we
want to optimize a function (i.e., find its maximum and/or minimum values) sub-
ject to a constraint — some limit to what values the function can attain. In
the previous example, we constrained ourselves by considering a function only
within the boundary of a triangle. This was largely arbitrary; the function and
the boundary were chosen just as an example, with no real “meaning” behind
the function or the chosen constraint.

However, solving constrainedoptimizationproblems is a very important topic
in appliedmathematics. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example 13.8.19 Constrained Optimization.

TheU.S. Postal Service states that the girth+length of Standard Post Pack-
age must not exceed 130’’. Given a rectangular box, the “length” is the
longest side, and the “girth” is twice the width+height.
Given a rectangular box where the width and height are equal, what are
the dimensions of the box that give the maximum volume subject to the
constraint of the size of a Standard Post Package?
Solution. Letw, h and ℓ denote thewidth, height and length of a rectan-
gular box; we assume here thatw = h. The girth is then 2(w+h) = 4w.
The volume of the box is V (w, ℓ) = whℓ = w2ℓ. We wish to maximize

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_conopt1bX.html
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this volume subject to the constraint 4w + ℓ ≤ 130, or ℓ ≤ 130 − 4w.
(Common sense also indicates that ℓ > 0, w > 0.)
We begin by finding the critical values of V . We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 at points of the form (0, ℓ). These
give a volume of 0, so we can ignore these critical points.
We now consider the volume along the constraint ℓ = 130− 4w. Along
this line, we have:

V (w, ℓ) = V (w, 130−4w) = w2(130−4w) = 130w2−4w3 = V1(w).

The constraint is applicable on thew-interval [0, 32.5] as indicated in the
figure. Thus we want to maximize V1 on [0, 32.5].
Finding the critical values of V1, we take the derivative and set it equal
to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260

12
≈ 21.67.

We found two critical values: when w = 0 and when w = 21.67. We
again ignore the w = 0 solution; the maximum volume, subject to the
constraint, comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This
gives a volume of V (21.67, 43.33) ≈ 20, 343in3.

Figure 13.8.20 Graphing the volume
of a box with girth 4w and length ℓ,
subject to a size constraint

The volume function V (w, ℓ) is shown in Figure 13.8.20 along with the
constraint ℓ = 130 − 4w. As done previously, the constraint is drawn
dashed in the xy-plane and also along the graph of the function. The
point where the volume is maximized is indicated.

It is hard to overemphasize the importance of optimization. In “the real
world,” we routinely seek to make something better. By expressing the some-
thing as a mathematical function, “making something better” means “optimize
some function.”

The techniques shownhere are only the beginning of an incredibly important
field. Many functions that we seek to optimize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_conopt2.html
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13.8.3 Exercises

Terms and Concepts

1. True or False? Theorem 13.8.4 states that if f has a critical point at P , then f has a relative extrema at P .
(□ True □ False)

2. True or False? A point P is a critical point of f if fx and fy are both 0 at P . (□ True □ False)

3. True or False? A point P is a critical point of f if fx or fy are undefined at P . (□ True □ False)

4. Explain what it means to “solve a constrained optimization” problem.

Problems

Exercise Group. Find the critical points of the given function. Use the Second Derivative Test to determine if each
critical point corresponds to a relative maximum, minimum, or saddle point.

5. f(x, y) = 1
2x

2 + 2y2 − 8y + 4x 6. f(x, y) = x2 + 4x+ y2 − 9y + 3xy

7. f(x, y) = x2 + 3y2 − 6y + 4xy 8. f(x, y) = 1
x2+y2+1

9. f(x, y) = x2 + y3 − 3y + 1 10. f(x, y) = 1
3x

3 − x+ 1
3y

3 − 4y

11. f(x, y) = x2y2 12. f(x, y) = x4 − 2x2 + y3 − 27y − 15

13. f(x, y) =
√
16− (x− 3)2 − y2 14. f(x, y) =

√
x2 + y2

Exercise Group. Find the absolute maximum and minimum of the function subject to the given constraint.
15. Let f(x, y) = x2 + y2 + y + 1, constrained to

the triangle with vertices (0, 1), (−1,−1) and
(1,−1).

.

.

16. Let f(x, y) = 5x− 7y, constrained to the
region bounded by y = x2 and y = 1.

.

.

17. f(x, y) = x2 + 2x+ y2 + 2y, constrained to
the region bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region
bounded by the parabola y = x2 + x− 1 and
the line y = x.



Chapter 14

Multiple Integration

Chapter 13 introduced multivariable functions and we applied concepts of dif-
ferential calculus to these functions. We learned how we can view a function of
two variables as a surface in space, and learned how partial derivatives convey
information about how the surface is changing in any direction.

In this chapter we apply techniques of integral calculus tomultivariable func-
tions. In Chapter 5 we learned how the definite integral of a single variable func-
tion gave us “area under the curve.” In this chapter we will see that integration
applied to a multivariable function gives us “volume under a surface.” And just
as we learned applications of integration beyond finding areas, we will find ap-
plications of integration in this chapter beyond finding volume.

14.1 Iterated Integrals and Area

In Section 13.3 we found that it was useful to differentiate functions of several
variables with respect to one variable, while treating all the other variables as
constants or coefficients. We can integrate functions of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =

∫
fx(x, y) dx

=

∫
2xy dx

= x2y + C.

Make a careful note about the constant of integration, C. This “constant” is
something with a derivative of 0with respect to x, so it could be any expression
that contains only constants and functions of y. For instance, if f(x, y) = x2y+
sin(y) + y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a function
of y, we write:

f(x, y) =

∫
fx(x, y) dx = x2y + C(y).

Using this process we can even evaluate definite integrals.

790
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14.1.1 Iterated integrals

Example 14.1.1 Integrating functions of more than one variable.

Evaluate the integral
∫ 2y

1

2xy dx.

Solution. We find the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:∫ 2y

1

2xy dx = x2y
∣∣∣2y
1

= (2y)2y − (1)2y

= 4y3 − y.

We can also integrate with respect to y. In general,∫ h2(y)

h1(y)

fx(x, y) dx = f(x, y)
∣∣∣h2(y)

h1(y)
= f

(
h2(y), y

)
− f

(
h1(y), y

)
,

and ∫ g2(x)

g1(x)

fy(x, y) dy = f(x, y)
∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f

(
x, g1(x)

)
.

Note that when integrating with respect to x, the bounds are functions of y
(of the form x = h1(y) and x = h2(y)) and the final result is also a function
of y. When integrating with respect to y, the bounds are functions of x (of the
form y = g1(x) and y = g2(x)) and the final result is a function of x. Another
example will help us understand this.

Example 14.1.2 Integrating functions of more than one variable.

Evaluate
∫ x

1

(
5x3y−3 + 6y2

)
dy.

Solution. We consider x as staying constant and integrate with respect
to y:∫ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5

2
x3x−2 + 2x3

)
−
(
−5

2
x3 + 2

)
=

9

2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that
the final answer is a function of x.

In the previous example, we integrated a function with respect to y and
ended up with a function of x. We can integrate this as well. This process is
known as iterated integration, ormultiple integration.



CHAPTER 14. MULTIPLE INTEGRATION 792

Example 14.1.3 Evaluating an integral.

Evaluate
∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy

)
dx.

Solution. We follow a standard “order of operations” and perform the
operations inside parentheses first (which is the integral evaluated in
Example 14.1.2.)∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy

)
dx =

∫ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

∫ 2

1

(
9

2
x3 − 5

2
x− 2

)
dx

=

(
9

8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89

8
.

Note how the bounds of x were x = 1 to x = 2 and the final result was
a number.

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we investigate
these questions, we offer some definitions.

Definition 14.1.4 Iterated Integration.

Iterated integration is the process of repeatedly integrating the results
of previous integrations. Evaulating one integral is denoted as follows.
Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
functions of x and y, respectively. Then:

1.
∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy =

∫ d

c

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy.

2.
∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy,x varies fromh1(y) toh2(y), whereas y varies

from c to d. That is, the bounds of x are curves, the curves x = h1(y) and
x = h2(y), whereas the bounds of y are constants, y = c and y = d. It is useful
to remember that when setting up and evaluating such iterated integrals, we
integrate “from curve to curve, then from point to point.”

We now begin to investigate why we are interested in iterated integrals and
what they mean.
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14.1.2 Area of a plane region
Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 14.1.5. We learned in Section 7.1 that the area ofR is given by∫ b

a

(
g2(x)− g1(x)

)
dx.

y = g2(x)

y = g1(x)

R

a b

x

y

Figure 14.1.5 Calculating the area of
a plane region R with an iterated in-
tegral

We can view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

∫ g2(x)

g1(x)

1 dy =

∫ g2(x)

g1(x)

dy,

meaning we can express the area ofR as an iterated integral:

area ofR =

∫ b

a

(
g2(x)−g1(x)

)
dx =

∫ b

a

(∫ g2(x)

g1(x)

dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)

dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), as
shown in Figure 14.1.6. Using a process similar to that above, we have

the area ofR =

∫ d

c

∫ h2(y)

h1(y)

dx dy.

x = h1(y) x = h2(y)

R

c

d

x

y

Figure 14.1.6 Calculating the area of
a plane region R with an iterated in-
tegral

We state this formally in a theorem.

Theorem 14.1.7 Area of a plane region.

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are continuous functions on [a, b]. The area
A ofR is

A =

∫ b

a

∫ g2(x)

g1(x)

dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are continuous functions on [c, d]. The
area A ofR is

A =

∫ d

c

∫ h2(y)

h1(y)

dx dy.

The following examples should help us understand this theorem.

Example 14.1.8 Area of a rectangle.

Find the area A of the rectangle with corners (−1, 1) and (3, 3), as
shown in Figure 14.1.9.

R

−1 1 2 3

1

2

3

x

y

Figure 14.1.9 Calculating the area of a
rectangle with an iterated integral in
Example 14.1.8

Solution. Multiple integration is obviously overkill in this situation, but
we proceed to establish its use.
The regionR is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing
to integrate with respect to y first, we have

A =

∫ 3

−1

∫ 3

1

1 dy dx =

∫ 3

−1

(
y
∣∣∣3
1

)
dx =

∫ 3

−1

2 dx = 2x
∣∣∣3
−1

= 8.
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We could also integrate with respect to x first, giving:

A =

∫ 3

1

∫ 3

−1

1 dx dy =

∫ 3

1

(
x
∣∣∣3
−1

)
dy =

∫ 3

1

4 dy = 4y
∣∣∣3
1
= 8.

Clearly there are simpler ways to find this area, but it is interesting to
note that this method works.

Example 14.1.10 Area of a triangle.

Find the area A of the triangle with vertices at (1, 1), (3, 1) and (5, 5),
as shown in Figure 14.1.11.

y = 1

y
=
x

y
=
2x

−
5

R

4 51 2 3

1

2

3

4

5

x

y

Figure 14.1.11 Calculating the area of
a triangle with iterated integrals in Ex-
ample 14.1.10

Solution. The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by
x = y to x = y+5

2 , while y is bounded by y = 1 to y = 5. (Recall that
since x-values increase from left to right, the leftmost curve, x = y, is
the lower bound and the rightmost curve, x = (y + 5)/2, is the upper
bound.) The area is

A =

∫ 5

1

∫ y+5
2

y

dx dy

=

∫ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

∫ 5

1

(
−1

2
y +

5

2

)
dy

=

(
−1

4
y2 +

5

2
y

) ∣∣∣5
1

= 4.

We can also find the area by integrating with respect to y first. In this
situation, though, we have two functions that act as the lower bound
for the region R, y = 1 and y = 2x − 5. This requires us to use two
iterated integrals. Note how the x-bounds are different for each integral:

A =

∫ 3

1

∫ x

1

1 dy dx +

∫ 5

3

∫ x

2x−5

1 dy dx

=

∫ 3

1

(
y
)∣∣∣x

1
dx +

∫ 5

3

(
y
)∣∣∣x

2x−5
dx

=

∫ 3

1

(
x− 1

)
dx +

∫ 5

3

(
− x+ 5

)
dx

= 2 + 2

= 4.

As expected, we get the same answer both ways.

Example 14.1.12 Area of a plane region.

Find the area of the region enclosed by y = 2x and y = x2, as shown in
Figure 14.1.13.
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y
=
2x

y
=
x
2

R

1 2

1

2

3

4

x

y

Figure 14.1.13 Calculating the area of
a plane region with iterated integrals
in Example 14.1.12

Solution. Once again we’ll find the area of the region using both orders
of integration.
Using dy dx:∫ 2

0

∫ 2x

x2

1 dy dx =

∫ 2

0

(2x− x2) dx =
(
x2 − 1

3
x3
)∣∣∣2

0
=

4

3
.

Using dx dy:∫ 4

0

∫ √
y

y/2

1 dx dy =

∫ 4

0

(
√
y − y/2) dy =

(
2

3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4

3
.

14.1.3 Changing Order of Integration
In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integration. We
integrated using both orders of integration to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
gration from a different perspective. Instead of starting with a region and cre-
ating iterated integrals, we will start with an iterated integral and rewrite it in
the other integration order. To do so, we’ll need to understand the region over
which we are integrating.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 14.1.8), and so:∫ b

a

∫ d

c

1 dy dx =

∫ d

c

∫ b

a

1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integrating over looks
like. From the sketch we can then rewrite the integral with the other order of
integration.

Examples will help us develop this skill.

Example 14.1.14 Changing the order of integration.

Rewrite the iterated integral
∫ 6

0

∫ x/3

0

1 dy dxwith the order of integra-

tion dx dy.
Solution. We need to use the bounds of integration to determine the
region we are integrating over.
The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0
and 6. We plot these four curves: y = 0, y = x/3, x = 0 and x = 6
to find the region described by the bounds. Figure 14.1.15 shows these
curves, indicating thatR is a triangle.

y =
x/
3

R

1 2 3 4 5 6

1

2

x

y

Figure 14.1.15 Sketching the regionR
described by the iterated integral in
Example 14.1.14

To change the order of integration, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the
upper bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite

the integral as
∫ 2

0

∫ 6

3y

1 dx dy.
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Example 14.1.16 Changing the order of integration.

Change the order of integration of
∫ 4

0

∫ (y+4)/2

y2/4

1 dx dy.

Solution. We sketch the region described by the bounds to help us
change the integration order. x is bounded below and above (i.e., to the
left and right) by x = y2/4 and x = (y + 4)/2 respectively, and y is
bounded between 0 and 4. Graphing the previous curves, we find the
regionR to be that shown in Figure 14.1.17.

x
=
y
2 /4

x
=
(y
+
4)
/2

R

1 2 3 4

1

2

3

4

x

y

Figure 14.1.17 Drawing the region de-
termined by the bounds of integra-
tion in Example 14.1.16

To change the order of integration, we need to establish curves that
bound y. The figure makes it clear that there are two lower bounds for
y: y = 0 on 0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need
two double integrals. The upper bound for each is y = 2

√
x. Thus we

have∫ 4

0

∫ (y+4)/2

y2/4

1 dx dy =

∫ 2

0

∫ 2
√
x

0

1 dy dx+

∫ 4

2

∫ 2
√
x

2x−4

1 dy dx.

This section has introduced a new concept, the iterated integral. We devel-
oped one application for iterated integration: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next section we apply iterated integration to solve problems we cur-
rently do not know how to handle. The “real” goal of this section was not to
learn a new way of computing area. Rather, our goal was to learn how to define
a region in the plane using the bounds of an iterated integral. That skill is very
important in the following sections.
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14.1.4 Exercises

Terms and Concepts

1. When integrating fx(x, y)with respect to x, the constant of integrationC is really which: C(x) orC(y)? What
does this mean?

2. Evaluating a double integral in steps is called .

3. When evaluating an iterated integral, we integrate from to , then from to
.

4. One understanding of an iterated integral is that
∫ b

a

∫ g2(x)

g1(x)

dy dx gives the of a plane region.

Problems

Exercise Group. In the following exercises, evaluate the integral and subsequent iterated integral.
5.

(a)
∫ 5

2

(
6x2 + 4xy − 3y2

)
dy

(b)
∫ −2

−3

∫ 5

2

(
6x2 + 4xy − 3y2

)
dy dx

6.

(a)
∫ π

0

(2x cos(y) + sin(x)) dx

(b)
∫ π/2

0

∫ π

0

(2x cos(y) + sin(x)) dx dy

7.

(a)
∫ x

1

(
x2y − y + 2

)
dy

(b)
∫ 2

0

∫ x

1

(
x2y − y + 2

)
dy dx

8.

(a)
∫ y2

y

(x− y) dx

(b)
∫ 1

−1

∫ y2

y

(x− y) dx dy

9.

(a)
∫ y

0

(
cos(x) sin(y)

)
dx

(b)
∫ π

0

∫ y

0

(
cos(x) sin(y)

)
dx dy

10.

(a)
∫ x

0

(
1

1 + x2

)
dy

(b)
∫ 2

1

∫ x

0

(
1

1 + x2

)
dy dx

Exercise Group. In the following exercises, a graph of a planar region R is given. Give the iterated integrals, with
both orders of integration dy dx and dx dy, that give the area of R. Evaluate one of the iterated integrals to find the
area.
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11.

R

1 2 3 4

−2

−1

1

x

y
12.

R

1 2 3 4

1

2

3

x

y

13.

R

1 2 3 4

1

2

3

4

5

x

y
14.

R

x = y
2 /3

2 4 6 8 10 12

−2

−4

−6

6

4

2

x

y

15.

y =
√ x

y
=
x
4R

−0.4 −0.2 0.2 0.4 0.6 0.8 1

−0.5

0.5

1

x

y
16.

y
=
x
3

y
=
4x

R

−0.5 0.5 1 1.5 2 2.5

2

4

6

8

x

y

Exercise Group. In the following exercises, iterated integrals are given that compute the area of a region R in the
xy-plane. Sketch the region R, and give the iterated integral(s) that give the area of R with the opposite order of
integration.

17.
∫ 2

−2

∫ 4−x2

0

dy dx 18.
∫ 1

0

∫ 5−5x2

5−5x

dy dx

19.
∫ 2

−2

∫ 2
√

4−y2

0

dx dy 20.
∫ 3

−3

∫ √
9−x2

−
√
9−x2

dy dx

21.
∫ 1

0

∫ √
y

−√
y

dx dy +

∫ 4

1

∫ √
y

y−2

dx dy 22.
∫ 1

−1

∫ (1−x)/2

(x−1)/2

dy dx
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14.2 Double Integration and Volume

The definite integral of f over [a, b],
∫ b

a
f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdi-
viding [a, b] into n subintervals, where the ith subinterval has length ∆xi, and
letting ci be any value in the ith subinterval. We formed rectangles that approx-
imated part of the region under the curve with width ∆xi, height f(ci), and
hence with area f(ci)∆xi. Summing all the rectangle’s areas gave an approxi-
mation of the definite integral, and Theorem 5.3.21 stated that∫ b

a

f(x) dx = lim
∥∆x∥→0

∑
f(ci)∆xi,

connecting the area under the curve with sums of the areas of rectangles.
We use a similar approach in this section to find volume under a surface.
Let R be a closed, bounded region in the xy-plane and let z = f(x, y) be

a continuous function defined on R. We wish to find the signed volume under
the graph of f overR. (We use the term “signed volume” to denote that space
above the xy-plane, under f , will have a positive volume; space above f and
under thexy-planewill have a “negative” volume, similar to the notion of signed
area used before.)

We start by partitioning R into n rectangular subregions as shown in Fig-
ure 14.2.1(a). For simplicity’s sake, we let all widths be ∆x and all heights be
∆y. Note that the sum of the areas of the rectangles is not equal to the area
of R, but rather is a close approximation. Arbitrarily number the rectangles 1
through n, and pick a point (xi, yi) in the ith subregion.

0.5 1 1.5 2

−0.5

0.5

x

y

(a) (b)

Figure 14.2.1 Developing a method for finding signed volume under a surface
The volume of the rectangular solid whose base is the ith subregion and

whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Fig-
ure 14.2.1(b). Note how this rectangular solid only approximates the true vol-
ume under the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done be-
fore, to get a better approximation we can use more rectangles to approximate
the regionR.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_double_introb_3D.html
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In general, each rectangle could have a different width∆xj and height∆yk,
giving the ith rectangle an area ∆Ai = ∆xj∆yk and the ith rectangular solid
a volume of f(xi, yi)∆Ai. Let ∥∆A∥ denote the length of the longest diagonal
of all rectangles in the subdivision of R; ∥∆A∥ → 0 means each rectangle’s
width and height are both approaching 0. If f is a continuous function, as ∥∆A∥

shrinks (and hence n → ∞) the summation
n∑

i=1

f(xi, yi)∆Ai approximates the

signed volume better and better. This leads to a definition.

Double integrals as limits of dou-
ble sums. Recall that the inte-
gration symbol “

∫
” is an “elon-

gated S,” representing the word
“sum.” We interpreted

∫ b

a
f(x) dx

as “take the sum of the areas of
rectangles over the interval [a, b].”
The double integral uses two in-
tegration symbols to represent a
“double sum.” When adding up
the volumesof rectangular solids
over a partition of a regionR, as
done in Figure 14.2.1, one could
first add up the volumes across
each row (one typeof sum), then
add these totals together (another
sum), as in

n∑
j=1

m∑
i=1

f(xi, yj)∆xi∆yj .

One can rewrite this as

n∑
j=1

(
m∑
i=1

f(xi, yj)∆xi

)
∆yj .

The summation inside the paren-
thesis indicates the sumof heights
×widths, which gives an area;mul-
tiplying these areas by the thick-
ness∆yj gives a volume. The il-
lustration in Figure 14.2.4 relates
to this understanding.

Definition 14.2.2 Double Integral, Signed Volume.

Let z = f(x, y) be a continuous function definedover a closed, bounded
region R in the xy-plane. The signed volume V under f over R is de-
noted by the double integral

V =

∫∫
R

f(x, y) dA.

Alternate notations for the double integral are∫∫
R

f(x, y) dA =

∫∫
R

f(x, y) dx dy =

∫∫
R

f(x, y) dy dx.

Definition 14.2.2 does not state how to find the signed volume, though the
notation offers a hint. We need the next two theorems to evaluate double inte-
grals to find volume.

Theorem 14.2.3 Double Integrals and Signed Volume.

Let z = f(x, y) be a continuous function defined over a closed , bounded
regionR in the xy-plane. Then the signed volume V under f overR is

V =

∫∫
R

f(x, y) dA = lim
∥∆A∥→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit of
sums. The partition of the region R is not specified, so any partitioning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very satisfying way of computing volume, though. Our
experience has shown that evaluating the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 7.2.2 in Section 7.2. This stated that if A(x) gives the cross-
sectional area of a solid at x, then

∫ b

a
A(x) dx gave the volume of that solid over

[a, b].
Consider Figure 14.2.4, where a surface z = f(x, y) is drawn over a region

R. Fixing a particular x value, we can consider the area under f over R where
x has that fixed value. That area can be found with a definite integral, namely

A(x) =

∫ g2(x)

g1(x)

f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integration are functions of x: the bounds depend
on the value of x.

Figure 14.2.4 Finding volume under
a surface by sweeping out a cross-
sectional area
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AsA(x) is a cross-sectional area function, we can find the signed volume V
under f by integrating it:

V =

∫ b

a

A(x) dx =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedure where we started with y fixed, resulting in an iter-
ated integral with the order of integration dx dy. The following theorem states
that bothmethods give the same result, which is the value of the double integral.
It is such an important theorem it has a name associated with it.

Theorem 14.2.5 Fubini’s Theorem.

Let R be a closed, bounded region in the xy-plane and let z = f(x, y)
be a continuous function on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are continuous functions on [a, b], then∫∫

R

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1

and h2 are continuous functions on [c, d], then∫∫
R

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy.

Note that once again the bounds of integration follow the “curve to curve,
point to point” pattern discussed in the previous section. In fact, one of the
main points of the previous section is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quantities, not just signed volume under
a surface.

Example 14.2.6 Evaluating a double integral.

Let f(x, y) = xy + ey. Find the signed volume under f on the region
R, which is the rectangle with corners (3, 1) and (4, 2) pictured in Fig-
ure 14.2.7, using Fubini’s Theorem and both orders of integration.

Figure 14.2.7 Finding the signed
volume under a surface in Exam-
ple 14.2.6

Solution. We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.
Using the order dy dx:∫∫

R

(
xy + ey

)
dA =

∫ 4

3

∫ 2

1

(
xy + ey

)
dy dx

=

∫ 4

3

([
1

2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

∫ 4

3

(
3

2
x+ e2 − e

)
dx
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=

(
3

4
x2 +

(
e2 − e

)
x

)∣∣∣∣4
3

=
21

4
+ e2 − e ≈ 9.92.

Now we check the validity of Fubini’s Theorem by using the order dx dy:∫∫
R

(
xy + ey

)
dA =

∫ 2

1

∫ 4

3

(
xy + ey

)
dx dy

=

∫ 2

1

([
1

2
x2y + xey

]∣∣∣∣4
3

)
dy

=

∫ 2

1

(
7

2
y + ey

)
dy

=

(
7

4
y2 + ey

)∣∣∣∣2
1

=
21

4
+ e2 − e ≈ 9.92.

Both orders of integration return the same result, as expected.

Example 14.2.8 Evaluating a double integral.

Evaluate
∫∫

R

(
3xy− x2 − y2 +6

)
dA, whereR is the triangle bounded

by x = 0, y = 0 and x/2 + y = 1, as shown in Figure 14.2.9.

Figure 14.2.9 Finding the signed vol-
ume under the surface in Exam-
ple 14.2.8

Solution. While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the
point that it does not matter which order we use.
Using the order dy dx: The bounds on y go from “curve to curve,” i.e.,
0 ≤ y ≤ 1 − x/2, and the bounds on x go from “point to point,” i.e.,
0 ≤ x ≤ 2.∫∫

R

(
3xy − x2 − y2 + 6

)
dA =

∫ 2

0

∫ − x
2+1

0

(
3xy − x2 − y2 + 6

)
dy dx

=

∫ 2

0

(
3

2
xy2 − x2y − 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0

dx

=

∫ 2

0

(
11

12
x3 − 11

4
x2 − x+

17

3

)
dx

=

(
11

48
x4 − 11

12
x3 − 1

2
x2 +

17

3
x

)∣∣∣∣2
0

=
17

3
= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,”
0 ≤ x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:∫∫

R

(
3xy − x2 − y2 + 6

)
dA =

∫ 1

0

∫ 2−2y

0

(
3xy − x2 − y2 + 6

)
dx dy

=

∫ 1

0

(
3

2
x2y − 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0

dy

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_double2.html


CHAPTER 14. MULTIPLE INTEGRATION 803

=

∫ 1

0

(
32

3
y3 − 22y2 + 2y +

28

3

)
dy

=

(
8

3
y4 − 22

3
y3 + y2 +

28

3
y

)∣∣∣∣1
0

=
17

3
= 5.6.

We obtained the same result using both orders of integration.

Note how in these examples that the bounds of integration depend only on
R; the bounds of integration have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Key Idea 14.2.10 Double Integration Bounds.

When evaluating
∫∫

R
f(x, y) dA using an iterated integral, the bounds

of integration depend only onR. The function f does not determine the
bounds of integration.

Before doing another example, we give some properties of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

Theorem 14.2.11 Properties of Double Integrals.

Let f and g be continuous functions over a closed, bounded plane region
R, and let c be a constant.

1.
∫∫

R

c f(x, y) dA = c

∫∫
R

f(x, y) dA.

2.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫
R

f(x, y) dA±
∫∫

R

g(x, y) dA

3. If f(x, y) ≥ 0 onR, then
∫∫

R

f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R

f(x, y) dA ≥∫∫
R

g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1

⋃
R2

(see Figure 14.2.12). Then∫∫
R

f(x, y) dA =

∫∫
R1

f(x, y) dA+

∫∫
R2

f(x, y) dA.

R1

R2

R

Figure 14.2.12 R is the union of two
nonoverlapping regions, R1 andR2

Example 14.2.13 Evaluating a double integral.

Let f(x, y) = sin(x) cos(y) and R be the triangle with vertices (−1, 0),
(1, 0) and (0, 1) (see Figure 14.2.14). Evaluate the double integral∫∫

R
f(x, y) dA.

Figure 14.2.14 Finding the signed
volume under a surface in Exam-
ple 14.2.13

Solution. If we attempt to integrate using an iterated integral with the
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order dy dx, note how there are two upper bounds onRmeaning we’ll
need to use two iterated integrals. We would need to split the triangle
into two regions along the y-axis, then use Theorem 14.2.11, Part 5.
Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤
x ≤ 1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:∫∫

R

f(x, y) dA =

∫ 1

0

∫ 1−y

y−1

sin(x) cos(y) dx dy

=

∫ 1

0

(
− cos(x) cos(y)

)∣∣∣1−y

y−1
dy

=

∫ 1

0

cos(y)
(
− cos(1− y) + cos(y − 1)

)
dy.

Recall that the cosine function is an even function; that is, cos(x) =
cos(−x). Therefore, from the last integral above, we have cos(y− 1) =
cos(1− y). Thus the integrand simplifies to 0, and we have∫∫

R

f(x, y) dA =

∫ 1

0

0 dy

= 0.

It turns out that overR, there is just asmuch volume above thexy-plane
as below (look again at Figure 14.2.14), giving a final signed volume of 0.

Example 14.2.15 Evaluating a double integral.

Evaluate
∫∫

R
(4−y) dA, whereR is the region bounded by the parabolas

y2 = 4x and x2 = 4y, graphed in Figure 14.2.16.

Figure 14.2.16 Finding the volume un-
der the surface in Example 14.2.15

Solution. Graphing each curve can help us find their points of intersec-
tion. Solving analytically, the second equation tells us that y = x2/4.
Substituting this value in for y in the first equation gives us x4/16 = 4x.
Solving for x:

x4

16
= 4x

x4 − 64x = 0

x(x3 − 64) = 0

x = 0, 4.

Thus we’ve found analytically what was easy to approximate graphically:
the regions intersect at (0, 0) and (4, 4), as shown in Figure 14.2.16.
We now choose an order of integration: dy dx or dx dy? Either order
works; since the integrand does not contain x, choosing dx dy might be
simpler — at least, the first integral is very simple.
Thus we have the following “curve to curve, point to point” bounds:

y2/4 ≤ x ≤ 2
√
y, and 0 ≤ y ≤ 4.

Therefore,∫∫
R

(4− y) dA =

∫ 4

0

∫ 2
√
y

y2/4

(4− y) dx dy
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=

∫ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

∫ 4

0

((
2
√
y − y2

4

)(
4− y

))
dy

=

∫ 4

0

(y3
4

− y2 − 2y3/2 + 8y1/2
)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176

15
= 11.73.

The signed volume under the surface z = f(x, y) is about 11.7 cubic
units.

In the previous section we practiced changing the order of integration of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integrating in one order is really hard, if not impossible,
whereas integrating with the other order is feasible.

Example 14.2.17 Changing the order of integration.

Rewrite the iterated integral
∫ 3

0

∫ 3

y

e−x2

dx dy with the order dy dx.

Comment on the feasibility to evaluate each integral.
Solution. Once again wemake a sketch of the region over which we are
integrating to facilitate changing the order. The bounds on x are from
x = y to x = 3; the bounds on y are from y = 0 to y = 3. These curves
are sketched in Figure 14.2.18, enclosing the regionR.

y
=
x

R

1 2 3

1

2

3

x

y

Figure 14.2.18 Determining the re-
gion R determined by the bounds of
integration in Example 14.2.17

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integration are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated

integral
∫ 3

0

∫ x

0

e−x2

dy dx.

How easy is it to evaluate each iterated integral? Consider the order of
integrating dx dy, as given in the original problem. The first indefinite
integral we need to evaluate is

∫
e−x2

dx; we have stated before (see
Section 5.5) that this integral cannot be evaluated in terms of elementary
functions. We are stuck.
Changing the order of integration makes a big difference here. In the
second iterated integral, we are faced with

∫
e−x2

dy; integrating with
respect to y gives us ye−x2

+C, and the first definite integral evaluates
to ∫ x

0

e−x2

dy = xe−x2

.

Thus ∫ 3

0

∫ x

0

e−x2

dy dx =

∫ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with substitution, giving a final an-
swer of 1

2 (1− e−9) ≈ 0.5. Figure 14.2.19 shows the surface overR.

Figure 14.2.19 Showing the surface
z = f(x, y) defined in Exam-
ple 14.2.17 over its regionR
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In short, evaluating one iterated integral is impossible; the other iterated
integral is relatively simple.

Definition 5.4.26 defines the average value of a single-variable function f(x)
on the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

∫ b

a

f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a regionR is the volume under f overR divided by the area ofR.

Definition 14.2.20 The Average Value of f onR.

Let z = f(x, y) be a continuous function definedover a closed, bounded
regionR in the xy-plane. The average value of f onR is

average value of f onR =

∫∫
R

f(x, y) dA∫∫
R

dA

.

Example 14.2.21 Finding average value of a function over a regionR.

Find the average value of f(x, y) = 4 − y over the region R, which is
bounded by the parabolas y2 = 4x and x2 = 4y. Note: this is the same
function and region as used in Example 14.2.15.
Solution. In Example 14.2.15 we found∫∫

R

f(x, y) dA =

∫ 4

0

∫ 2
√
y

y2/4

(4− y) dx dy =
176

15
.

We find the area ofR by computing
∫∫

R
dA:∫∫

R

dA =

∫ 4

0

∫ 2
√
y

y2/4

dx dy =
16

3
.

Dividing the volume under the surface by the area gives the average
value:

average value of f onR =
176/15

16/3
=

11

5
= 2.2.

While the surface, as shown in Figure 14.2.22, covers z-values from z =
0 to z = 4, the “average” z-value onR is 2.2.

Figure 14.2.22 Finding the average
value of f in Example 14.2.21

The previous section introduced the iterated integral in the context of find-
ing the area of plane regions. This section has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
tion. Given a region R in the plane, we computed

∫∫
R
1 dA; again, our under-

standing at the time was that we were finding the area of R. However, we can
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now view the graph z = 1 as a surface, a flat surface with constant z-value of 1.
The double integral

∫∫
R
1 dA finds the volume, under z = 1, over R, as shown

in Figure 14.2.23. Basic geometry tells us that if the base of a general right cylin-
der has areaA, its volume isA·h, whereh is the height. In our case, the height is
1. We were “actually” computing the volume of a solid, though we interpreted
the number as an area.

Figure 14.2.23 Showing how an iter-
ated integral used to find area also
finds a certain volume

The next section extends our abilities to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integrating over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converting
everything into polar coordinates.
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14.2.1 Exercises

Terms and Concepts

1. An integral can be interpreted as giving the signed area over an interval; a double integral can be interpreted as
giving the signed over a region.

2. Explain why the following statement is false: Fubini’s Theorem states that∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx =

∫ b

a

∫ g2(y)

g1(y)

f(x, y) dx dy.

3. Explain why if f(x, y) > 0 over a regionR, then∫∫
R
f(x, y) dA > 0.

4. If
∫∫

R
f(x, y) dA =

∫∫
R
g(x, y) dA, does this imply f(x, y) = g(x, y)?

Problems

Exercise Group. For the given integral,

(a) Evaluate the given iterated integral, and

(b) rewrite the integral using the other order of integration.

5.
∫ 2

1

∫ 1

−1

(
x

y
+ 3

)
dx dy 6.

∫ π/2

−π/2

∫ π

0

(sin(x) cos(y)) dx dy

7.
∫ 4

0

∫ −x/2+2

0

(
3x2 − y + 2

)
dy dx 8.

∫ 3

1

∫ 3

y

(
x2y − xy2

)
dx dy

9.
∫ 1

0

∫ √
1−y

−
√
1−y

(x+ y + 2) dx dy 10.
∫ 9

0

∫ √
y

y/3

(
xy2
)
dx dy

Exercise Group. In the following exercises:

(a) Sketch the regionR given by the problem.

(b) Set up the iterated integrals, in both orders, that evaluate the given double integral for the described regionR.

(c) Evaluate one of the iterated integrals to find the signed volume under the surface z = f(x, y) over the region
R.

11.
∫∫

R

x2y dA, whereR is bounded by y =
√
x

and y = x2.

12.
∫∫

R

x2y dA, whereR is bounded by y = 3
√
x

and y = x3.

13.
∫∫

R

x2 − y2 dA, whereR is the rectangle with

corners (−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
∫∫

R

yex dA, whereR is bounded by x = 0,

x = y2 and y = 1.

15.
∫∫

R

(
6− 3x− 2y

)
dA, whereR is bounded by

x = 0, y = 0 and 3x+ 2y = 6.

16.
∫∫

R

ey dA, whereR is bounded by y = ln(x)

and
y =

1

e− 1
(x− 1).

17.
∫∫

R

(
x3y − x

)
dA, whereR is the half of the

circle x2 + y2 = 9 in the first and second
quadrants.

18.
∫∫

R

(
4− 3y

)
dA, whereR is bounded by

y = 0, y = x/e and y = ln(x).
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Exercise Group. In the following exercises, state why it is difficult/impossible to integrate the iterated integral in the
given order of integration. Change the order of integration and evaluate the new iterated integral.

19.
∫ 4

0

∫ 2

y/2

ex
2

dx dy 20.
∫ √

π/2

0

∫ √
π/2

x

cos
(
y2
)
dy dx

21.
∫ 1

0

∫ 1

y

2y

x2 + y2
dx dy 22.

∫ 1

−1

∫ 2

1

x tan2(y)
1 + ln(y)

dy dx

Exercise Group. In the following exercises, find the average value of f over the regionR. Notice how these functions
and regions are related to the iterated integrals given in Exercises 5–8.

23. f(x, y) =
x

y
+ 3;R is the rectangle with

opposite corners (−1, 1) and (1, 2).

24. f(x, y) = sin(x) cos(y);R is bounded by x = 0,
x = π, y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2;R is bounded by the
lines y = 0, y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2;R is bounded by y = x,
y = 1 and x = 3.
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14.3 Double Integration with Polar Coordinates

We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the xy-plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the regionR.

Some regions R are easy to describe using rectangular coordinates — that
is, with equations of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equations of the
form r = f(θ), θ = α, etc.

The basic form of the double integral is
∫∫

R
f(x, y) dA. We interpret this

integral as follows: over the regionR, sum up lots of products of heights (given
by f(xi, yi)) and areas (given by ∆Ai). That is, dA represents “a little bit of
area.” In rectangular coordinates, we can describe a small rectangle as having
area dx dy or dy dx— the area of a rectangle is simply length×width — a small
change in x times a small change in y. Thus we replace dA in the double integral
with dx dy or dy dx.

−0.2 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

x

y

0

π/2

(a)

︸
︷︷

︸
r1

r2

︷
︸︸

︷
∆θ

(b)

Figure 14.3.1 Approximating a regionR with portions of sectors of circles
Now consider representing a regionR with polar coordinates. Consider Fig-

ure 14.3.1(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
portions of sectors of circles. In the figure, one such region is shaded, shown
again in Figure 14.3.1(b).

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = 1

2r
2θ, we can find the area of the shaded region. The whole sector has

area 1
2r

2
2∆θ, whereas the smaller, unshaded sector has area 1

2r
2
1∆θ. The area

of the shaded region is the difference of these areas:

∆Ai =
1

2
r22∆θ − 1

2
r21∆θ =

1

2

(
r22 − r21

)(
∆θ
)
=

r2 + r1
2

(
r2 − r1

)
∆θ.

Note that (r2 + r1)/2 is just the average of the two radii.
To approximate the regionR, we usemany such subregions; doing so shrinks

the difference r2−r1 between radii to 0 and shrinks the change in angle∆θ also
to 0. We represent these infinitesimal changes in radius and angle as dr and dθ,
respectively. Finally, as dr is small, r2 ≈ r1, and so (r2 + r1)/2 ≈ r1. Thus,
when dr and dθ are small,

∆Ai ≈ ri dr dθ.

Taking a limit, where the number of subregions goes to infinity and both
r2 − r1 and∆θ go to 0, we get

dA = r dr dθ.
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So to evaluate
∫∫

R
f(x, y) dA, replace dAwith r dr dθ. Convert the function

f(x, y) to a function with polar coordinates with the substitutions x = r cos(θ),
y = r sin(θ). Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that
describeR. This is the key principle of this section, so we restate it here as a Key
Idea.

Key Idea 14.3.2 Evaluating Double Integrals with Polar Coordinates.

Let z = f(x, y) be a continuous function definedover a closed, bounded
region R in the xy-plane, where R is bounded by the polar equations
α ≤ θ ≤ β and g1(θ) ≤ r ≤ g2(θ). Then∫∫

R

f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)

f
(
r cos(θ), r sin(θ)

)
r dr dθ.

Examples will help us understand this Key Idea.

Example 14.3.3 Evaluating a double integral with polar coordinates.

Find the signed volume under the plane z = 4 − x − 2y over the disk
bounded by the circle with equation x2 + y2 = 1.
Solution. The bounds of the integral are determined solely by the re-
gionR over which we are integrating. In this case, it is a disk with bound-
ary x2 + y2 = 1. We need to find polar bounds for this region. It may
help to review Section 10.4; bounds for this disk are 0 ≤ r ≤ 1 and
0 ≤ θ ≤ 2π.
We replace f(x, y) with f(r cos(θ), r sin(θ)). That means we make the
following substitutions:

4− x− 2y ⇒ 4− r cos(θ)− 2r sin(θ).

Finally, we replace dA in the double integral with r dr dθ. This gives the
final iterated integral, which we evaluate:∫∫

R

f(x, y) dA =

∫ 2π

0

∫ 1

0

(
4− r cos(θ)− 2r sin(θ)

)
r dr dθ

=

∫ 2π

0

∫ 1

0

(
4r − r2(cos(θ)− 2 sin(θ))

)
dr dθ

=

∫ 2π

0

(
2r2 − 1

3
r3(cos(θ)− 2 sin(θ))

)∣∣∣∣1
0

dθ

=

∫ 2π

0

(
2− 1

3

(
cos(θ)− 2 sin(θ)

))
dθ

=

(
2θ − 1

3

(
sin(θ) + 2 cos(θ)

))∣∣∣∣2π
0

= 4π ≈ 12.566.

Figure 14.3.4 Evaluating a double in-
tegral with polar coordinates in Exam-
ple 14.3.3

The surface and regionR are shown in Figure 14.3.4.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_doublepol1.html
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Example 14.3.5 Evaluating a double integral with polar coordinates.

Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the
region bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.
Solution. At first glance, this seems like a very hard volume to compute
as the regionR (shown in Figure 14.3.6(a)) has a hole in it, cutting out a
strange portion of the surface, as shown in Figure 14.3.6(b). However, by
describingR in terms of polar equations, the volume is not very difficult
to compute.

21 3 4

−2

−1

1

2

x

y

(a)
(b)

Figure 14.3.6 Showing the region R
and surface used in Example 14.3.5

It is straightforward to show that the circle (x− 1)2 + y2 = 1 has polar
equation r = 2 cos(θ), and that the circle (x − 2)2 + y2 = 4 has polar
equation r = 4 cos(θ). Each of these circles is traced out on the interval
0 ≤ θ ≤ π. The bounds on r are 2 cos(θ) ≤ r ≤ 4 cos(θ).
Replacing x with r cos(θ) in the integrand, along with replacing y with
r sin(θ), prepares us to evaluate the double integral

∫∫
R
f(x, y) dA:∫∫

R

f(x, y) dA =

∫ π

0

∫ 4 cos(θ)

2 cos(θ)

(
4−

(
r cos(θ)− 2

)2 − (r sin(θ))2)r dr dθ
=

∫ π

0

∫ 4 cos(θ)

2 cos(θ)

(
− r3 + 4r2 cos(θ)

)
dr dθ

=

∫ π

0

(
−1

4
r4 +

4

3
r3 cos(θ)

)∣∣∣∣4 cos(θ)
2 cos(θ)

dθ

=

∫ π

0

([
−1

4
(256 cos4(θ)) +

4

3
(64 cos4(θ))

]
−[

−1

4
(16 cos4(θ)) +

4

3
(8 cos4(θ))

])
dθ

=

∫ π

0

44

3
cos4(θ) dθ

To integrate cos4(θ), rewrite it as cos2(θ) cos2(θ) and employ the power-
reducing formula twice:

cos4(θ) = cos2(θ) cos2(θ)

=
1

2

(
1 + cos(2θ)

)1
2

(
1 + cos(2θ)

)
=

1

4

(
1 + 2 cos(2θ) + cos2(2θ)

)
=

1

4

(
1 + 2 cos(2θ) +

1

2

(
1 + cos(4θ)

))
=

3

8
+

1

2
cos(2θ) +

1

8
cos(4θ).

Picking up from where we left off above, we have∫∫
R

f(x, y) dA =

∫ π

0

44

3
cos4(θ) dθ

=

∫ π

0

44

3

(
3

8
+

1

2
cos(2θ) +

1

8
cos(4θ)

)
dθ

=
44

3

(
3

8
θ +

1

4
sin(2θ) +

1

32
sin(4θ)

)∣∣∣∣π
0

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_doublepol2b_3D.html
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=
11

2
π ≈ 17.279.

While this example was not trivial, the double integral would have been
much harder to evaluate had we used rectangular coordinates.

Example 14.3.7 Evaluating a double integral with polar coordinates.

Find the volume under the surface given by the graph of f(x, y) =
1

x2 + y2 + 1
over the sector of the circle with radius a centered at the

origin in the first quadrant, as shown in Figure 14.3.8.

Figure 14.3.8 The surface and regionR used in Example 14.3.7

Solution. The region R we are integrating over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are
0 ≤ r ≤ a, 0 ≤ θ ≤ π/2. The integrand is rewritten in polar as

1

x2 + y2 + 1
⇒ 1

r2 cos2(θ) + r2 sin2(θ) + 1
=

1

r2 + 1
.

We find the volume as follows:∫∫
R

f(x, y) dA =

∫ π/2

0

∫ a

0

r

r2 + 1
dr dθ

=

∫ π/2

0

1

2

(
ln
∣∣r2 + 1

∣∣ )∣∣∣a
0
dθ

=

∫ π/2

0

1

2
ln(a2 + 1) dθ

=

(
1

2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Previous work has shown that
there is finite area under 1

x2+1
over the entire x-axis. How-
ever, Example 14.3.7 shows that
there is infinite volume under

1
x2+y2+1 over the entire xy-
plane.

Figure 14.3.8 shows that f shrinks to near 0 very quickly. Regardless, as
a grows, so does the volume, without bound.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_doublepol5.html
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Example 14.3.9 Finding the volume of a sphere.

Find the volume of a sphere with radius a.
Solution. The sphere of radius a, centered at the origin, has equation
x2 + y2 + z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This

gives the upper half of a sphere. We wish to find the volume under this
top half, then double it to find the total volume.
The region we need to integrate over is the disk of radius a, centered at
the origin. Polar bounds for this equation are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.
All together, the volume of a sphere with radius a is:

2

∫∫
R

√
a2 − x2 − y2 dA = 2

∫ 2π

0

∫ a

0

√
a2 − (r cos(θ))2 − (r sin(θ))2r dr dθ

= 2

∫ 2π

0

∫ a

0

r
√
a2 − r2 dr dθ.

We can evaluate this inner integral with substitution. With u = a2 − r2,
du = −2r dr. The newbounds of integration areu(0) = a2 tou(a) = 0.
Thus we have:

=

∫ 2π

0

∫ 0

a2

(
− u1/2

)
du dθ

=

∫ 2π

0

(
−2

3
u3/2

)∣∣∣∣0
a2

dθ

=

∫ 2π

0

(
2

3
a3
)

dθ

=

(
2

3
a3θ

)∣∣∣∣2π
0

=
4

3
πa3.

Generally, the formula for the volume of a sphere with radius r is given
as 4/3πr3; we have justified this formula with our calculation.

Example 14.3.10 Finding the volume of a solid.

A sculptor wants to make a solid bronze cast of the solid shown in Fig-
ure 14.3.11, where the base of the solid has boundary, in polar coordi-
nates, r = cos(3θ), and the top is defined by the plane z = 1−x+0.1y.
Find the volume of the solid.

Figure 14.3.11 Visualizing the solid
used in Example 14.3.10

Solution. From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to
compute the integrals. The iterated integral to come is not “hard” to
evaluate, though it is long, requiring lots of algebra. Once the proper
iterated integral is determined, one can use readily available technology
to help compute the final answer.
The region R that we are integrating over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval
[0, π], not [0, 2π]). This gives us our bounds of integration. The integrand

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_doublepol4.html
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is z = 1− x+ 0.1y; converting to polar, we have that the volume V is:

V =

∫∫
R

f(x, y) dA =

∫ π

0

∫ cos(3θ)

0

(
1−r cos(θ)+0.1r sin(θ)

)
r dr dθ.

Distributing the r, the inner integral is easy to evaluate, leading to∫ π

0

(
1

2
cos2(3θ)− 1

3
cos3(3θ) cos(θ) +

0.1

3
cos3(3θ) sin(θ)

)
dθ.

This integral takes time to compute by hand; it is rather long and cum-
bersome. The powers of cosine need to be reduced, and products like
cos(3θ) cos(θ) need to be turned to sums using the Product To Sum for-
mulas in the back cover of this text.
We rewrite 1

2 cos
2(3θ) as 1

4 (1 + cos(6θ)). We can also rewrite
1
3 cos

3(3θ) cos(θ) as:

1

3
cos3(3θ) cos(θ) =

1

3
cos2(3θ) cos(3θ) cos(θ)

=
1

3

1 + cos(6θ)
2

(
cos(4θ) + cos(2θ)

)
.

This last expression still needs simplification, but eventually all terms can
be reduced to the form a cos(mθ) or a sin(mθ) for various values of a
andm.
We forgo the algebra and recommend the reader employ technology,
such as WolframAlpha®, to compute the numeric answer. Such technol-
ogy gives:∫ π

0

∫ cos(3θ)

0

(
1− r cos(θ) + 0.1r sin(θ)

)
r dr dθ =

π

4
≈ 0.785u3.

Since the units were not specified, we leave the result as almost 0.8 cu-
bic units (meters, feet, etc.) Should the artist want to scale the piece
uniformly, so that each rose petal had a length other than 1, she should
keep in mind that scaling by a factor of k scales the volume by a factor
of k3.

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two sections show two, among many,
applications of iterated integrals.
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14.3.1 Exercises

Terms and Concepts

1. When evaluating
∫∫

R
f(x, y) dA using polar coordinates, f(x, y) is replacedwith and dA is replaced

with .

2. Why would one be interested in evaluating a double integral with polar coordinates?

Problems

Exercise Group. A function f(x, y) is given and a region R of the xy-plane is described. Set up and evaluate∫∫
R
f(x, y) dA using polar coordinates.

3. f(x, y) = 3x− y + 4 andR is the region
enclosed by the circle x2 + y2 = 1.

4. f(x, y) = 4x+ 4y;R is the region enclosed by
the circle x2 + y2 = 4.

5. f(x, y) = 8− y andR is the region enclosed by
the circles with polar equations r = cos(θ) and
r = 3 cos(θ).

6. f(x, y) = 4;R is the region enclosed by the
petal of the rose curve r = sin(2θ) in the first
quadrant.

7. f(x, y) = ln(x2 + y2);R is the annulus
enclosed by the circles x2 + y2 = 1 and
x2 + y2 = 4.

8. f(x, y) = 1− x2 − y2 andR is the region
enclosed by the circle x2 + y2 = 1.

9. f(x, y) = x2 − y2;R is the region enclosed by
the circle x2 + y2 = 36 in the first and fourth
quadrants.

10. f(x, y) = (x− y)/(x+ y);R is the region
enclosed by the lines y = x, y = 0 and the
circle x2 + y2 = 1 in the first quadrant.

Exercise Group. An iterated integral in rectangular coordinates is given. Rewrite the integral using polar coordinates
and evaluate the new double integral.

11.
∫ 5

0

∫ √
25−x2

−
√
25−x2

√
x2 + y2 dy dx

12.
∫ 4

−4

∫ 0

−
√

16−y2

(
2y − x

)
dx dy

13.
∫ 2

0

∫ √
8−y2

y

(
x+ y

)
dx dy

14.
∫ −1

−2

∫ √
4−x2

0

(
x+ 5

)
dy dx+

∫ 1

−1

∫ √
4−x2

√
1−x2

(
x+ 5

)
dy dx+

∫ 2

1

∫ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see how they all connect.

Exercise Group. In the following exercises, special double integrals are presented that are especially well suited for
evaluation in polar coordinates.
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15. Consider
∫∫

R

e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in
rectangular coordinates, regardless of the
regionR?

(b) LetR be the region bounded by the circle
of radius a centered at the origin.
Evaluate the double integral using polar
coordinates.

(c) Take the limit of your answer from (b), as
a → ∞. What does this imply about the
volume under the surface z = e−(x2+y2)

over the entire xy-plane?

16. The surface of a right circular cone with height
h and base radius a can be described by the

equation f(x, y) = h− h

√
x2

a2
+

y2

a2
, where

the tip of the cone lies at (0, 0, h) and the
circular base lies in the xy-plane, centered at
the origin.

Confirm that the volume of a right circular
cone with height h and base radius a is

V =
1

3
πa2h by evaluating

∫∫
R

f(x, y) dA in

polar coordinates.
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14.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this section as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R
dA.

That is, summing up the areas of lots of little subregions of R gave us the total
area. Informally, we think of

∫∫
R
dA asmeaning “sum up lots of little areas over

R.”
To find the signed volume under a surface, we evaluated the double inte-

gral
∫∫

R
f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end

of an integral; rather, it is multiplied by f(x, y). We regard f(x, y) as giving a
height, and dA still giving an area: f(x, y) dA gives a volume. Thus, informally,∫∫

R
f(x, y) dAmeans “sum up lots of little volumes over R.”
We now extend these ideas to other contexts.

14.4.1 Mass and Weight
Consider a thin sheet of material with constant thickness and finite area. Mathe-
maticians (and physicists and engineers) call such a sheet a lamina. So consider
a lamina, as shown in Figure 14.4.1(a), with the shape of some planar regionR,
as shown in Figure 14.4.1(b).

(a)

y = f2(x)

y =
f1(

x)

R

0.5 1 1.5 2 2.5 3 3.5

1

2

3

x

y

(b)

Figure 14.4.1 Illustrating the concept of a lamina
We canwrite a simple double integral that represents themass of the lamina:∫∫

R
dm, where “dm” means “a little mass.” That is, the double integral states

the total mass of the lamina can be found by “summing up lots of little masses
overR.”

To evaluate this double integral, partition R into n subregions as we have
done in the past. The ith subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this ith subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by multiplying a small amount of area by the density.

If density is variable, with density function δ = δ(x, y), then we can approxi-
mate the mass of the ith subregion ofR by multiplying∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

Mass and weight are different
measures. Since they are scalar
multiples of each other, it is of-
ten easy to treat themas the same
measure. In this section we ef-
fectively treat them as the same,
as our technique for findingmass
is the same as for finding weight.
The density functions used will
simply have different units.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1

∆mi =

n∑
i=1

δ(xi, yi)∆Ai.
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Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integrating δ(x, y) overR gives the mass of the lamina.

Definition 14.4.2 Mass of a Lamina with Variable Density.

Let δ(x, y) be a continuous density function of a lamina corresponding
to a closed, bounded plane region R. The massM of the lamina is

massM =

∫∫
R

dm =

∫∫
R

δ(x, y) dA.

Example 14.4.3 Finding the mass of a lamina with constant density.

Find the mass of a square lamina, with side length 1, with a density of
δ = 3 g/cm2.
Solution. We represent the lamina with a square region in the plane
as shown in Figure 14.4.4. As the density is constant, it does not matter
where we place the square.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 14.4.4A regionR representing
a lamina in Example 14.4.3

Following Definition 14.4.2, the massM of the lamina is

M =

∫∫
R

3 dA =

∫ 1

0

∫ 1

0

3 dx dy = 3

∫ 1

0

∫ 1

0

dx dy = 3 g.

This is all very straightforward; note that all we really did was find the
area of the lamina and multiply it by the constant density of 3 g

cm2 .

Example 14.4.5 Finding the mass of a lamina with variable density.

Find the mass of a square lamina, represented by the unit square with
lower lefthand corner at the origin (see Figure 14.4.4), with variable den-
sity δ(x, y) = (x+ y + 2) g/cm2.

Figure 14.4.6 Graphing the density
functions in Example 14.4.3 and Ex-
ample 14.4.5

Solution. The variable density δ, in this example, is very uniform, giving
a density of 3 in the center of the square and changing linearly. A graph
of δ(x, y) can be seen in Figure 14.4.6; notice how “same amount” of
density is above z = 3 as below. We’ll comment on the significance of
this momentarily.
The massM is found by integrating δ(x, y) overR. The order of integra-
tion is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫
R

(x+ y + 2) dA =

∫ 1

0

∫ 1

0

(x+ y + 2) dx dy

=

∫ 1

0

(
1

2
x2 + x(y + 2)

)∣∣∣∣1
0

dy

=

∫ 1

0

(
5

2
+ y

)
dy

=

(
5

2
y +

1

2
y2
)∣∣∣∣1

0

= 3 g.

It turns out that since the density of the lamina is so uniformly distrib-
uted “above and below” z = 3 that themass of the lamina is the same as
if it had a constant density of 3. The density functions in Example 14.4.3

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_mass2.html
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and Example 14.4.5 are graphed in Figure 14.4.6, which illustrates this
concept.

Example 14.4.7 Finding the weight of a lamina with variable density.

Find the weight of the lamina represented by the disk with radius 2 ft,
centered at the origin, with density function δ(x, y) = (x2 + y2 +
1) lb/ft2. Compare this to the weight of the lamina with the same shape
and density δ(x, y) = (2

√
x2 + y2 + 1) lb/ft2.

Solution. A direct application of Definition 14.4.2 states that the weight
of the lamina is

∫∫
R
δ(x, y) dA. Since our lamina is in the shape of a

circle, it makes sense to approach the double integral using polar coor-
dinates.
The density function δ(x, y) = x2 + y2 + 1 becomes

δ(r, θ) = (r cos(θ))2 + (r sin(θ))2 + 1 = r2 + 1.

The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. Thus the weight
W is:

W =

∫ 2π

0

∫ 2

0

(r2 + 1)r dr dθ

=

∫ 2π

0

(
1

4
r4 +

1

2
r2
)∣∣∣∣2

0

dθ

=

∫ 2π

0

(6) dθ

= 12π ≈ 37.70 lb .

Now compare this with the density function δ(x, y) = 2
√
x2 + y2 + 1.

Converting this to polar coordinates gives

δ(r, θ) = 2
√

(r cos(θ))2 + (r sin(θ))2 + 1 = 2r + 1.

Thus the weightW is:

W =

∫ 2π

0

∫ 2

0

(2r + 1)r dr dθ

=

∫ 2π

0

(
2

3
r3 +

1

2
r2)
∣∣∣2
0
dθ

=

∫ 2π

0

(
22

3

)
dθ

=
44

3
π ≈ 46.08 lb .

Onewould expect different density functions to return different weights,
as we have here. The density functions were chosen, though, to be simi-
lar: each gives a density of 1 at the origin and a density of 5 at the outside
edge of the circle, as seen in Figure 14.4.8.
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(a) (b)

Figure 14.4.8 Graphing the density functions in Example 14.4.7. In (a)
is the density function δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) =

2
√
x2 + y2 + 1

Notice how x2 + y2 + 1 ≤ 2
√

x2 + y2 + 1 over the circle; this results
in less weight.

Plotting the density functions can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫
R
f(x, y) dA as giving the volume under f overR; we can understand∫∫

R
δ(x, y) dA in the same way. The “volume” under δ overR is actually mass;

by compressing the “volume” under δ onto the xy-plane, we get “more mass”
in some areas than others — i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.

14.4.2 Center of Mass
Consider a disk of radius 1 with uniform density. It is common knowledge that
the disk will balance on a point if the point is placed at the center of the disk.
What if the disk does not have a uniform density? Through trial-and-error, we
should still be able to find a spot on the disk at which the disk will balance on a
point. This balance point is referred to as the center of mass, or center of gravity.
It is though all the mass is “centered” there. In fact, if the disk has a mass of 3 kg,
the disk will behave physically as though it were a point-mass of 3 kg located at
its center of mass. For instance, the disk will naturally spin with an axis through
its center of mass (which is why it is important to “balance” the tires of your car:
if they are “out of balance”, their center of mass will be outside of the axle and
it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_mass3a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_mass3b_3D.html
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final grade is not the average of these three grades: that is, it is not:

0.9 + 0.73 + 0.85

3
≈ 0.837 = 83.7

That is, you are probably not pulling a B in the course. Rather, your grades
are weighted. Let’s say the homework is worth 10% of the grade, tests are 60%
and the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3

Each grade is multiplied by a weight.
In general, given valuesx1, x2, . . . , xn andweightsw1, w2, . . . , wn, theweighted

average of the n values is

n∑
i=1

wixi

/
n∑

i=1

wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Theorem 14.4.9 Center of Mass of Discrete Linear System.

Let point masses m1,m2, . . . ,mn be distributed along the x-axis at lo-
cations x1, x2, . . . , xn, respectively. The center of mass x of the system
is located at

x =

n∑
i=1

mixi

/
n∑

i=1

mi.

Example 14.4.10 Finding the center of mass of a discrete linear system.

1. Point masses of 2 g are located at x = −1, x = 2 and x = 3 are
connected by a thin rod of negligible weight. Find the center of
mass of the system.

2. Point masses of 10 g, 2 g and 1 g are located at x = −1, x = 2
and x = 3, respectively, are connected by a thin rod of negligible
weight. Find the center of mass of the system.

Solution.

1. Following Theorem 14.4.9, we compute the center of mass as:

x =
2(−1) + 2(2) + 2(3)

2 + 2 + 2
=

4

3
= 1.3.

So the system would balance on a point placed at x = 4/3, as
illustrated in Figure 14.4.11(a).
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x

−1 0 1 2 3

x

(a)

x

−1 0 1 2 3

x

(b)

Figure 14.4.11 Illustrating point masses along a thin rod and the
center of mass

2. Again following Theorem 14.4.9, we find:

x =
10(−1) + 2(2) + 1(3)

10 + 2 + 1
=

−3

13
≈ −0.23.

Placing a large weight at the left hand side of the system moves
the center of mass left, as shown in Figure 14.4.11(b).

In a discrete system (i.e., mass is located at individual points, not along a
continuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
ticular point or line. In the case described by Theorem 14.4.9, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented byMy. LettingM be the total mass of the
system, we have x = My/M .

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

Definition 14.4.12 Moments about the x and y Axes.

Let point massesm1,m2, . . . ,mn be located at points

(x1, y1), (x2, y2), . . . , (xn, yn),

respectively, in the xy-plane.

1. Themoment about the y-axis,My , isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =

n∑
i=1

miyi.

One can think that these definitions are “backwards” as My sums up “x”
distances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.



CHAPTER 14. MULTIPLE INTEGRATION 824

Theorem 14.4.13 Center of Mass of Discrete Planar System.

Let point massesm1,m2, . . . ,mn be located at points

(x1, y1), (x2, y2), . . . , (xn, yn),

respectively, in the xy-plane, and letM =

n∑
i=1

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

Example 14.4.14 Finding the center ofmass of a discrete planar system.

Let point masses of 1 kg, 2 kg and 5 kg be located at points (2, 0), (1, 1)
and (3, 1), respectively, and are connected by thin rods of negligible
weight. Find the center of mass of the system.
Solution. We follow Theorem 14.4.13 and Definition 14.4.12 to findM ,
Mx andMy:
M = 1 + 2 + 5 = 8 kg.

Mx =

n∑
i=1

miyi

= 1(0) + 2(1) + 5(1)

= 7.

My =

n∑
i=1

mixi

= 1(2) + 2(1) + 5(3)

= 19.

(x, y)

1 2 3

1

x

y

Figure 14.4.15 Illustrating the center
of mass of a discrete planar system in
Example 14.4.14

Thus the center of mass is (x, y) =

(
My

M
,
Mx

M

)
=

(
19

8
,
7

8

)
=

(2.375, 0.875), illustrated in Figure 14.4.15.

We finally arrive at our true goal of this section: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interesting, it does not directly answermore realistic situationswhereweneed
to find the center of mass of a contiguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximation to an exact value.

We begin by representing a planar lamina with a region R in the xy-plane
with density function δ(x, y). Partition R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the ith subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the ith subregion. We can approx-
imate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai —
that is, by multiplying the approximate mass of the region by its approximate
distance from the y-axis. Similarly, we can approximate the moment about the
x-axis with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1

δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1

yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1

xiδ(xi, yi)∆Ai
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By taking limits, where size of each subregion shrinks to 0 in both the x and
y directions, we arrive at the double integrals given in the following theorem.

Theorem 14.4.16 Center of Mass of a Planar Lamina, Moments.

Let a planar lamina be represented by a closed, bounded regionR in the
xy-plane with density function δ(x, y).

1. mass: M =

∫∫
R

δ(x, y) dA

2. moment about the x-axis: Mx =

∫∫
R

yδ(x, y) dA

3. moment about the y-axis: My =

∫∫
R

xδ(x, y) dA

4. The center of mass of the lamina is

(x, y) =

(
My

M
,
Mx

M

)
.

We start our practice of finding centers of mass by revisiting some of the
lamina used previously in this section when finding mass. We will just set up
the integrals needed to computeM , Mx andMy and leave the details of the
integration to the reader.

Example 14.4.17 Finding the center of mass of a lamina.

Find the center mass of a square lamina, with side length 1, with a den-
sity of δ = 3 g/cm2. (Note: this is the lamina from Example 14.4.3.)
Solution. We represent the lamina with a square region in the plane as
shown in Figure 14.4.18 as done previously.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

Figure 14.4.18 A region R represent-
ing a lamina in Example 14.4.3

Following Theorem 14.4.16, we findM ,Mx andMy:

M =

∫∫
R

3 dA =

∫ 1

0

∫ 1

0

3 dx dy = 3 g

Mx =

∫∫
R

3y dA =

∫ 1

0

∫ 1

0

3y dx dy = 3/2 = 1.5

My =

∫∫
R

3x dA =

∫ 1

0

∫ 1

0

3x dx dy = 3/2 = 1.5.

Thus the center of mass is (x, y) =

(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) =

(0.5, 0.5). This is what we should have expected: the center of mass of
a square with constant density is the center of the square.

Example 14.4.19 Finding the center of mass of a lamina.

Find the center of mass of a square lamina, represented by the unit
squarewith lower lefthand corner at the origin (see Figure 14.4.18), with
variable density δ(x, y) = (x + y + 2) g/cm2. (Note: this is the lamina
from Example 14.4.5.)
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Solution. We follow Theorem 14.4.16, to findM ,Mx andMy:

M =

∫∫
R

(x+ y + 2) dA =

∫ 1

0

∫ 1

0

(x+ y + 2) dx dy = 3 g

Mx =

∫∫
R

y(x+ y + 2) dA =

∫ 1

0

∫ 1

0

y(x+ y + 2) dx dy =
19

12

My =

∫∫
R

x(x+ y + 2) dA =

∫ 1

0

∫ 1

0

x(x+ y + 2) dx dy =
19

12
.

Thus the center of mass is

(x, y) =

(
My

M
,
Mx

M

)
=

(
19

36
,
19

36

)
≈ (0.528, 0.528).

While the mass of this lamina is the same as the lamina in the previous
example, the greater density found with greater x and y values pulls
the center of mass from the center slightly towards the upper righthand
corner.

Example 14.4.20 Finding the center of mass of a lamina.

Find the center of mass of the lamina represented by the circle with ra-
dius 2 ft, centered at the origin, with density function δ(x, y) = (x2 +
y2 + 1) lb/ft2. (Note: this is one of the lamina used in Example 14.4.7.)
Solution. As done in Example 14.4.7, it is best to describe R using
polar coordinates. Thus when we compute My , we will integrate not
xδ(x, y) = x(x2 + y2 +1), but rather

(
r cos(θ)

)
δ(r cos(θ), r sin(θ)) =(

r cos(θ)
)(
r2 + 1

)
. We computeM ,Mx andMy:

M =

∫ 2π

0

∫ 2

0

(r2 + 1)r dr dθ = 12π ≈ 37.7 lb

Mx =

∫ 2π

0

∫ 2

0

(r sin(θ))(r2 + 1)r dr dθ = 0

My =

∫ 2π

0

∫ 2

0

(r cos(θ))(r2 + 1)r dr dθ = 0.

SinceR and the density ofR are both symmetric about the x and y axes,
it should come as no big surprise that the moments about each axis is 0.
Thus the center of mass is (x, y) = (0, 0).

Example 14.4.21 Finding the center of mass of a lamina.

Find the center ofmass of the lamina represented by the regionR shown
in Figure 14.4.22, half an annulus with outer radius 6 ft and inner radius
5 ft, with constant density 2 lb

ft2 . (x, y)

−6 −4 −2 2 4 6

−2

2

4

6

8

x

y

Figure 14.4.22 Illustrating the region
R in Example 14.4.21

Solution. Once again it will be useful to represent R in polar coordi-
nates. Using the description of R and/or the illustration, we see that R
is bounded by 5 ≤ r ≤ 6 and 0 ≤ θ ≤ π. As the lamina is symmetric
about the y-axis, we should expectMy = 0. We computeM ,Mx and
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My:

M =

∫ π

0

∫ 6

5

(2)r dr dθ = 11π lb

Mx =

∫ π

0

∫ 6

5

(r sin(θ))(2)r dr dθ =
364

3
≈ 121.33

My =

∫ π

0

∫ 6

5

(r cos(θ))(2)r dr dθ = 0.

Thus the center of mass is (x, y) =
(
0, 364

33π

)
≈ (0, 3.51). The center of

mass is indicated in Figure 14.4.22; note how it lies outside of R!

This section has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more application in the following section: computing sur-
face area.
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14.4.3 Exercises

Terms and Concepts

1. Why is it easy to use “mass” and “weight” interchangeably, even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance from the -axis.

3. We can think of
∫∫

R
dm as meaning “sum up lots of ”

4. What is a “discrete planar system?”

5. Why doesMx use
∫∫

R
yδ(x, y) dA instead of

∫∫
R
xδ(x, y) dA; that is, why do we use “y” and not “x”?

6. Describe a situation where the center of mass of a lamina does not lie within the region of the lamina itself.

Problems

Exercise Group. In the following exercises, point masses are given along a line or in the plane. Find the center of
mass x or (x, y), as appropriate. (All masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1;m2 = 3 at x = 3;m3 = 5 at
x = 10

8. m1 = 2 at x = −3;m2 = 2 at x = −1;
m3 = 3 at x = 0;m4 = 3 at x = 7

9. m1 = 2 at (−2,−2);m2 = 2 at (2,−2);
m3 = 20 at (0, 4)

10. m1 = 1 at (−1,−1);m2 = 2 at (−1, 1);
m3 = 2 at (1, 1);m4 = 1 at (1,−1)

Exercise Group. In the following exercises, find themass/weight of the lamina described by the regionR in the plane
and its density function δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2),
(7, 2) and (7,−3); δ(x, y) = 5 g/cm2

12. R is the rectangle with corners (1,−3), (1, 2),
(7, 2) and (7,−3); δ(x, y) = (x+ y2) g/cm2

13. R is the triangle with corners (−1, 0), (1, 0),
and (0, 1); δ(x, y) = 2 lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and
(0, 1); δ(x, y) = (x2 + y2 + 1) lb/in2

15. R is the disk centered at the origin with radius
2; δ(x, y) = (x+ y + 4) kg/m2

16. R is the circle sector bounded by x2 + y2 = 25
in the first quadrant;
δ(x, y) = (

√
x2 + y2 + 1) kg/m2

17. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) = 4 lb/ft2

18. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) =

√
x2 + y2 lb/ft2

Exercise Group. In the following exercises, find the center of mass of the lamina described by the region R in the
plane and its density function δ(x, y).

Note: these are the same lamina as in Exercise 14.4.11 — Exercise 14.4.18.
19. R is the rectangle with corners (1,−3), (1, 2),

(7, 2) and (7,−3); δ(x, y) = 5 g/cm2
20. R is the rectangle with corners (1,−3), (1, 2),

(7, 2) and (7,−3); δ(x, y) = (x+ y2) g/cm2

21. R is the triangle with corners (−1, 0), (1, 0),
and (0, 1); δ(x, y) = 2 lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and
(0, 1); δ(x, y) = (x2 + y2 + 1) lb/in2

23. R is the disk centered at the origin with radius
2; δ(x, y) = (x+ y + 4) kg/m2

24. R is the circle sector bounded by x2 + y2 = 25
in the first quadrant;
δ(x, y) = (

√
x2 + y2 + 1) kg/m2

25. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) = 4 lb/ft2

26. R is the annulus in the first and second
quadrants bounded by x2 + y2 = 9 and
x2 + y2 = 36; δ(x, y) =

√
x2 + y2 lb/ft2

Exercise Group. The moment of inertia I is a measure of the tendency of a lamina to resist rotating about an axis or
continue to rotate about an axis. Ix is the moment of inertia about the x-axis, Iy is the moment of inertia about the
y-axis, and IO is the moment of inertia about the origin. These are computed as follows:
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• Ix =

∫∫
R

y2 dm

• Iy =

∫∫
R

x2 dm

• IO =

∫∫
R

(
x2 + y2

)
dm

In the following exercises, a lamina corresponding to a planar region R is given with a mass of 16 units. For each,
compute Ix, Iy and IO.

27. R is the 4× 4 square with corners at (−2,−2)
and (2, 2) with density δ(x, y) = 1.

28. R is the 8× 2 rectangle with corners at
(−4,−1) and (4, 1) with density δ(x, y) = 1.

29. R is the 4× 2 rectangle with corners at
(−2,−1) and (2, 1) with density δ(x, y) = 2.

30. R is the disk with radius 2 centered at the origin
with density δ(x, y) = 4/π.
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14.5 Surface Area

In Section 7.4 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equations.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the xy-plane, shown
in Figure 14.5.1(a). Because of the domed shape of the surface, the surface
area will be greater than that of the area of the region R. We can find this
area using the same basic technique we have used over and over: we’ll make
an approximation, then using limits, we’ll refine the approximation to the exact
value.

(a) (b)

Figure 14.5.1 Developing a method of computing surface area
As done to find the volume under a surface or the mass of a lamina, we

subdivideR inton subregions. Herewe subdivideR into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part Figure 14.5.1(b) of the figure, we zoom in on this portion of the sur-
face. When ∆xi and ∆yi are small, the function is approximated well by the
tangent plane at any point (xi, yi) in this subregion, which is graphed in part
Figure 14.5.1(b). In fact, the tangent plane approximates the function so well
that in this figure, it is virtually indistinguishable from the surface itself! There-
fore we can approximate the surface area Si of this region of the surface with
the area Ti of the corresponding portion of the tangent plane.

This portion of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applications of the cross product from Section 11.4 is
that the area of this parallelogram is ∥u⃗× v⃗∥. Once we can determine u⃗ and v⃗,
we can determine the area.

The vector u⃗ is tangent to the surface in the direction of x, therefore, from
Section 13.7, u⃗ is parallel to ⟨1, 0, fx(xi, yi)⟩. Thex-displacement of u⃗ is∆xi, so
we know that u⃗ = ∆xi ⟨1, 0, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨0, 1, fy(xi, yi)⟩.
Thus:

surface area Si ≈ area of Ti

= ∥u⃗× v⃗∥
= ∥∆xi ⟨1, 0, fx(xi, yi)⟩ ×∆yi ⟨0, 1, fy(xi, yi)⟩∥

=
√
1 + fx(xi, yi)2 + fy(xi, yi)2∆xi∆yi.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sa_intro1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sa_intro2_3D.html
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Note that∆xi∆yi = ∆Ai, the area of the ith subregion.
Summing up all n of the approximations to the surface area gives

surface area overR ≈
n∑

i=1

√
1 + fx(xi, yi)2 + fy(xi, yi)2∆Ai.

Once again take a limit as all of the∆xi and∆yi shrink to 0; this leads to a
double integral.

Definition 14.5.2 Surface Area.

Let z = f(x, y)where fx and fy are continuous over a closed, bounded
regionR. The surface area S overR is

S =

∫∫
R

dS

=

∫∫
R

√
1 + fx(x, y)2 + fy(x, y)2 dA.

As donebefore, we think of “
∫∫

R
dS”

as meaning “sum up lots of little
surface areas overR.”

The concept of surface area
is defined here, for while we al-
ready have a notion of the area
of a region in the plane, we did
not yet have a solid graspofwhat
“the area of a surface in space”
means.We test this definition by using it to compute surface areas of known sur-

faces. We start with a triangle.

Example 14.5.3 Finding the surface area of a plane over a triangle.

Let f(x, y) = 4− x− 2y, and letR be the region in the plane bounded
by x = 0, y = 0 and y = 2 − x/2, as shown in Figure 14.5.4. Find the
surface area of f overR.

Figure 14.5.4 Finding the area of a tri-
angle in space in Example 14.5.3

Solution. We follow Definition 14.5.2. We start by noting that
fx(x, y) = −1 and fy(x, y) = −2. To define R, we use bounds
0 ≤ y ≤ 2− x/2 and 0 ≤ x ≤ 4. Therefore

S =

∫∫
R

dS

=

∫ 4

0

∫ 2−x/2

0

√
1 + (−1)2 + (−2)2 dy dx

=

∫ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Because the surface is a triangle, we can figure out the area using geom-
etry. Considering the base of the triangle to be the side in the xy-plane,
we find the length of the base to be

√
20. We can find the height using

our knowledge of vectors: let u⃗ be the side in the xz-plane and let v⃗ be
the side in the xy-plane. The height is then ∥u⃗− proj v⃗ u⃗∥ = 4

√
6/5.

Geometry states that the area is thus

1

2
· 4
√
6/5 ·

√
20 = 4

√
6.

We affirm the validity of our formula.

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfacearea1.html
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Example 14.5.5 The surface area of a sphere.

Find the surface area of the sphere with radius a centered at the origin,
whose top hemisphere has equation f(x, y) =

√
a2 − x2 − y2.

Solution. We start by computing partial derivatives and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our function f only defines the top upper hemisphere of the sphere,
we double our surface area result to get the total area:

S = 2

∫∫
R

√
1 + fx(x, y)2 + fy(x, y)2 dA

= 2

∫∫
R

√
1 +

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integrating over is bounded by the circle, cen-
tered at the origin, with radius a: x2 + y2 = a2. Because of this region,
we are likely to have greater success with our integration by converting
to polar coordinates. Using the substitutions x = r cos(θ), y = r sin(θ),
dA = r dr dθ and bounds 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a, we have:

S = 2

∫ 2π

0

∫ a

0

√
1 +

r2 cos2(θ) + r2 sin2(θ)
a2 − r2 cos2(θ)− r2 sin2(θ)

r dr dθ

= 2

∫ 2π

0

∫ a

0

r

√
1 +

r2

a2 − r2
dr dθ

= 2

∫ 2π

0

∫ a

0

r

√
a2

a2 − r2
dr dθ. (14.5.1)

Apply substitution u = a2 − r2 and integrate the inner integral, giving

= 2

∫ 2π

0

a2 dθ

= 4πa2.

Our work confirms our previous formula.

The inner integral in Equation (14.5.1)
is an improper integral, as the in-
tegrandof

∫ a

0
r
√

a2

a2−r2 dr is not
defined at r = a. To properly
evaluate this integral, one must
use the techniques of Section6.8.

The reason this need arises
is that the function

f(x, y) =
√

a2 − x2 − y2

fails the requirements of Defini-
tion 14.5.2, as fx and fy are not
continuous on the boundary of
the circle x2 + y2 = a2.

The computation of the sur-
face area is still valid. The defini-
tionmakes stronger requirements
than necessary in part to avoid
the use of improper integration,
aswhen fx and/or fy are not con-
tinuous, the resulting improper
integralmaynot converge. Since
the improper integral does con-
verge in this example, the surface
area is accurately computed.

Example 14.5.6 Finding the surface area of a cone.

The general formula for a right cone with height h and base radius a is

f(x, y) = h− h

a

√
x2 + y2,

shown in Figure 14.5.7. Find the surface area of this cone.

Figure 14.5.7 Finding the surface area
of a cone in Example 14.5.6

Solution. We begin by computing partial derivatives.

fx(x, y) = − xh

a
√

x2 + y2
and fy(x, y) = − yh

a
√

x2 + y2
.

Sincewe are integrating over the disk boundedbyx2+y2 = a2, we again
use polar coordinates. Using the standard substitutions, our integrand

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfacearea3.html
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becomes √
1 +

(
hr cos(θ)
a
√
r2

)2

+

(
hr sin(θ)
a
√
r2

)2

.

This may look intimidating at first, but there are lots of simple simplifica-
tions to be done. It amazingly reduces to just√

1 +
h2

a2
=

1

a

√
a2 + h2.

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

S =

∫ 2π

0

∫ a

0

r
1

a

√
a2 + h2 dr dθ

=

∫ 2π

0

(
1

2
r2

1

a

√
a2 + h2

)∣∣∣∣a
0

dθ

=

∫ 2π

0

1

2
a
√
a2 + h2 dθ

= πa
√
a2 + h2.

This matches the formula found in the back of this text.

Note that once again fx and
fy are not continuous on the
domain of f , as both are unde-
fined at (0, 0). (A similar prob-
lem occurred in the previous ex-
ample.) Once again the result-
ing improper integral converges
and the computation of the sur-
face area is valid.

Example 14.5.8 Finding surface area over a region.

Find the area of the surface f(x, y) = x2 − 3y + 3 over the region R
bounded by−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 14.5.9.

Figure 14.5.9 Graphing the surface in
Example 14.5.8

Solution. It is straightforward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral∫∫

R

√
1 + (2x)2 + (−3)2 dA =

∫∫
R

√
10 + 4x2 dA.

As with integrals describing arc length, double integrals describing sur-
face area are in general hard to evaluate directly because of the square-
root. This particular integral can be easily evaluated, though, with judi-
cious choice of our order of integration.
Integrating with order dx dy requires us to evaluate

∫ √
10 + 4x2 dx.

This can be done, though it involves Integration By Parts and sinh−1(x).
Integrating with order dy dx has as its first integral

∫ √
10 + 4x2 dy,

which is easy to evaluate: it is simply y
√
10 + 4x2 + C. So we proceed

with the order dy dx; the bounds are already given in the statement of
the problem.∫∫

R

√
10 + 4x2 dA =

∫ 4

0

∫ x

−x

√
10 + 4x2 dy dx

=

∫ 4

0

(
y
√

10 + 4x2
)∣∣∣x

−x
dx

=

∫ 4

0

(
2x
√

10 + 4x2
)
dx.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfacearea4.html
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Apply substitution with u = 10 + 4x2:

=

(
1

6

(
10 + 4x2

)3/2)∣∣∣∣4
0

=
1

3

(
37
√
74− 5

√
10
)
≈ 100.825 units2.

So while the regionR over which we integrate has an area of 16 square
units, the surface has amuch greater area as its z-values change dramat-
ically overR.

In practice, technology helps greatly in the evaluation of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least time consuming, by hand, and can at the least produce very accurate
approximations with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the regionR in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

We have learned how to integrate integrals; that is, we have learned to eval-
uate double integrals. In the next section, we learn how to integrate double in-
tegrals — that is, we learn to evaluate triple integrals, along with learning some
uses for this operation.
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14.5.1 Exercises

Terms and Concepts

1. “Surface area” is analogous to what previously studied concept?

2. To approximate the area of a small portion of a surface, we computed the area of its plane.

3. We interpret
∫∫

R

dS as “sum up lots of little .”

4. Why is it important to know how to set up a double integral to compute surface area, even if the resulting
integral is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some real number h, have the same surface area over
a regionR?

6. Let f(x, y) be a function defined over a region R and let g(x, y) = 2f(x, y). Why is the surface area of z =
g(x, y) overR not twice the surface area of z = f(x, y) overR?

Problems

Exercise Group. In the following exercises, set up the iterated integral that computes the surface area of the graph
of the given function over the regionR.

7. f(x, y) = sin(x) cos(y);R is the rectangle with
bounds 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π. 8. f(x, y) =

1

x2 + y2 + 1
;R is bounded by the

circle x2 + y2 = 9.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_05_ex_05_3D.html
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9. f(x, y) = x2 − y2;R is the rectangle with
opposite corners (−1,−1) and (1, 1).

10. f(x, y) =
1

ex2 + 1
;R is the rectangle bounded

by
−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.

Exercise Group. In the following exercises, find the area of the given surface over the regionR.
11. z = 3x− 7y + 2;R is the rectangle with

opposite corners (−1, 0) and (1, 3).
12. z = 2x+ 2y + 2;R is the triangle with corners

(0, 0), (1, 0) and (0, 1).
13. z = x2 + y2 + 10;R is bounded by the circle

x2 + y2 = 16.
14. z = −2x+ 4y2 + 7 overR, the triangle

bounded by y = −x, y = x, 0 ≤ y ≤ 1.
15. z = x2 + y overR, the triangle bounded by

y = 2x, y = 0 and x = 2.
16. z = 2

3x
3/2 + 2y3/2 overR, the rectangle with

opposite corners (0, 0) and (1, 1).

17. z = 10− 2
√
x2 + y2 over the regionR

bounded by the circle x2 + y2 = 25. (This is the
cone with height 10 and base radius 5; be sure
to compare your result with the known
formula.)

18. Find the surface area of the sphere with radius
5 by doubling the surface area of
f(x, y) =

√
25− x2 − y2 over the regionR

bounded by the circle x2 + y2 = 25. (Be sure to
compare your result with the known formula.)

19. Find the surface area of the ellipse formed by
restricting the plane f(x, y) = cx+ dy + h to
the regionR bounded by the circle x2 + y2 = 1,
where c, d and h are some constants. Your
answer should be given in terms of c and d; why
does the value of h not matter?

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_05_ex_07_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_05_ex_08_3D.html
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14.6 Volume Between Surfaces and Triple Integration

14.6.1 Volume between surfaces
We learned in Section14.2 how to compute the signed volumeV under a surface
z = f(x, y) over a region R: V =

∫∫
R
f(x, y) dA. It follows naturally that if

f(x, y) ≥ g(x, y) onR, then the volume between f(x, y) and g(x, y) onR is

V =

∫∫
R

f(x, y) dA−
∫∫

R

g(x, y) dA =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Theorem 14.6.1 Volume Between Surfaces.

Let f and g be continuous functions on a closed, bounded region R,
where f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f
and g overR is

V =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

Example 14.6.2 Finding volume between surfaces.

Find the volume of the space region bounded by the planes z = 3x +
y− 4, z = 8− 3x− 2y, x = 0 and y = 0. In Figure 14.6.3(a) the planes
are drawn; in Figure 14.6.3(b), only the defined region is given.

(a) (b)

Figure 14.6.3 Finding the volume between the planes given in Exam-
ple 14.6.2

Solution. We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They
have common z-values when 3x+y−4 = 8−3x−2y. Applying a little
algebra, we have:

3x+ y − 4 = 8− 3x− 2y

6x+ 3y = 12

2x+ y = 4

The planes intersect along the line 2x+ y = 4. Therefore the region R
is bounded by x = 0, y = 0, and y = 4 − 2x; we can convert these
bounds to integration bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

∫∫
R

(
8− 3x− 2y − (3x+ y − 4)

)
dA

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip1a_3D.html
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=

∫ 2

0

∫ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16 units3.

The volume between the surfaces is 16 cubic units.

In the preceding example, we found the volume by evaluating the integral∫ 2

0

∫ 4−2x

0

(
8− 3x− 2y − (3x+ y − 4)

)
dy dx.

Note how we can rewrite the integrand as an integral, much as we did in
Section 14.1:

8− 3x− 2y − (3x+ y − 4) =

∫ 8−3x−2y

3x+y−4

dz.

Thus we can rewrite the double integral that finds volume as∫ 2

0

∫ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

∫ 2

0

∫ 4−2x

0

(∫ 8−3x−2y

3x+y−4

dz

)
dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introduction to double integrals was in the context of finding the
area of a plane region, our introduction into triple integrals will be in the context
of finding the volume of a space region.

(a) (b)

Figure 14.6.4 Approximating the volume of a regionD in space
To formally find the volume of a closed, bounded region D in space, such

as the one shown in Figure 14.6.4(a), we start with an approximation. BreakD
into n rectangular solids; the solids near the boundary of D may possibly not
include portions ofD and/or include extra space. In Figure 14.6.4(b), we zoom
in on a portion of the boundary of D to show a rectangular solid that contains
space not inD; as this is an approximation of the volume, this is acceptable and
this error will be reduced as we shrink the size of our solids.

The volume∆Vi of the ith solidDi is∆Vi = ∆xi∆yi∆zi, where∆xi,∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z directions,
respectively. By summing up the volumes of all n solids, we get an approxima-
tion of the volume V ofD:

V ≈
n∑

i=1

∆Vi =

n∑
i=1

∆xi∆yi∆zi.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_tripintroa_3D.html
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Let ∥∆D∥ represent the length of the longest diagonal of rectangular solids
in the subdivision ofD. As ∥∆D∥ → 0, the volume of each solid goes to 0, as do
each of∆xi,∆yi and∆zi, for all i. Our calculus experience tells us that taking
a limit as ∥∆D∥ → 0 turns our approximation of V into an exact calculation of
V . Before we state this result in a theorem, we use a definition to define some
terms.

Definition 14.6.5 Triple Integrals, Iterated Integration (Part I).

LetD be a closed, bounded region in space. Let a and b be real numbers,
let g1(x) and g2(x) be continuous functions of x, and let f1(x, y) and
f2(x, y) be continuous functions of x and y.

1. The volume V ofD is denoted by a triple integral,

V =

∫∫∫
D

dV .

2. The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)

dz

)
dy dx.

Evaluating the above iterated integral is triple integration.

Our informal understanding of the notation
∫∫∫

D
dV is “sum up lots of little

volumes overD,” analogous to our understanding of
∫∫

R
dA and

∫∫
R
dm.

We now state the major theorem of this section.

Theorem 14.6.6 Triple Integration (Part I).

Let D be a closed, bounded region in space and let ∆D be any subdi-
vision of D into n rectangular solids, where the ith subregion Di has
dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V ofD is

V =

∫∫∫
D

dV = lim
∥∆D∥→0

n∑
i=1

∆Vi = lim
∥∆D∥→0

n∑
i=1

∆xi∆yi∆zi.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) onD, then∫∫∫

D

dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx.

3. V can be determined using iterated integration with other orders
of integration (there are 6 total), as long as D is defined by the
region enclosed by a pair of planes, a pair of cylinders, and a pair
of surfaces.

Weevaluated the area of a plane regionR by iterated integration, where the
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bounds were “from curve to curve, then from point to point.” Theorem 14.6.6
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the xy-
plane over which the regionD exists in space. However, these bounds are also
defining surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The
combination of these 6 surfaces enclose, and define,D.

Example 14.6.7 uses the term
“first octant.” Recall how the x-
, y- and z-axes divide space into
eightoctants; the octant inwhich
x, y and z are all positive is called
the first octant.

Examples will help us understand triple integration, including integrating
with various orders of integration.

Example 14.6.7 Finding the volume of a space region with triple inte-
gration.

Find the volume of the space region in the first octant bounded by the
plane z = 2 − y/3 − 2x/3, shown in Figure 14.6.8, using the order of
integration dz dy dx. Set up the triple integrals that give the volume in
the other 5 orders of integration.

Figure 14.6.8 The regionD used in Ex-
ample 14.6.7

Solution. Starting with the order of integration dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane
z = 0 (because we are restricted to the first octant) and above by z =
2− y/3− 2x/3; 0 ≤ z ≤ 2− y/3− 2x/3.
To find the bounds on y and x, we “collapse” the region onto the xy-
plane, giving the triangle shown in Figure 14.6.9. (We know the equation
of the line y = 6 − 2x in two ways. First, by setting z = 0, we have
0 = 2− y/3− 2x/3 ⇒ y = 6− 2x. Secondly, we know this is going to
be a straight line between the points (3, 0) and (0, 6) in the xy-plane.)

Figure 14.6.9 The region found by col-
lapsingD onto the xy-plane

We define that regionR, in the integration order of dy dx, with bounds
0 ≤ y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the regionD is:

V =

∫∫∫
D

dV

=

∫ 3

0

∫ 6−2x

0

∫ 2− 1
3y−

2
3x

0

dz dy dx

=

∫ 3

0

∫ 6−2x

0

(∫ 2− 1
3y−

2
3x

0

dz

)
dy dx

=

∫ 3

0

∫ 6−2x

0

z
∣∣∣2− 1

3y−
2
3x

0
dy dx

=

∫ 3

0

∫ 6−2x

0

(
2− 1

3
y − 2

3
x

)
dy dx.

From this step on, we are evaluating a double integral as done many
times before. We skip these steps and give the final volume, V = 6.
The order dz dx dy:
Now consider the volume using the order of integration dz dx dy. The
bounds on z are the same as before, 0 ≤ z ≤ 2 − y/3 − 2x/3. Col-
lapsing the space region on the xy-plane as shown in Figure 14.6.9, we
now describe this triangle with the order of integration dx dy. This gives
bounds 0 ≤ x ≤ 3 − y/2 and 0 ≤ y ≤ 6. Thus the volume is given by

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip2a1_3D.html
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the triple integral

V =

∫ 6

0

∫ 3− 1
2y

0

∫ 2− 1
3y−

2
3x

0

dz dx dy.

The order dx dy dz:
Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region
“from behind,” in the direction of increasing x. The first surface we hit
as we enter the region is the yz-plane, defined by x = 0. We come out
of the region at the plane z = 2 − y/3 − 2x/3; solving for x, we have
x = 3−y/2−3z/2. Thus the bounds on x are: 0 ≤ x ≤ 3−y/2−3z/2.
Now collapse the space region onto the yz-plane, as shown in Fig-
ure 14.6.10(a). (Again, we find the equation of the line z = 2 − y/3
by setting x = 0 in the equation x = 3− y/2− 3z/2.) We need to find
bounds on this region with the order dy dz. The curves that bound y are
y = 0 and y = 6 − 3z; the points that bound z are 0 and 2. Thus the
triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2

0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2

⇒ ∫ 2

0

∫ 6−3z

0

∫ 3−y/2−3z/2

0

dx dy dz.

The order dx dz dy:

(a) (b)

Figure 14.6.10 The regionD in Example 14.6.7 is collapsed onto the yz-
plane in (a); in (b), the region is collapsed onto the xz-plane
The x-bounds are the same as the order above. We now consider the
triangle in Figure 14.6.10(a) and describe it with the order dz dy: 0 ≤
z ≤ 2− y/3 and 0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2

0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6

⇒ ∫ 6

0

∫ 2−y/3

0

∫ 3−y/2−3z/2

0

dx dz dy.

The order dy dz dx:
We now need to determine the y-surfaces that determine our region.
Approaching the space region from “behind” andmoving in the direction

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip2b1_3D.html
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of increasing y, we first enter the region at y = 0, and exit along the
plane z = 2 − y/3 − 2x/3. Solving for y, this plane has equation y =
6− 2x− 3z. Thus y has bounds 0 ≤ y ≤ 6− 2x− 3z.
Now collapse the region onto the xz-plane, as shown in Fig-
ure 14.6.10(b). The curves bounding this triangle are z = 0 and z =
2 − 2x/3; x is bounded by the points x = 0 to x = 3. Thus the triple
integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z

0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3

⇒ ∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3z

0

dy dz dx.

The order dy dx dz:
The y-bounds are the same as in the order above. We now determine
the bounds of the triangle in Figure 14.6.10(b) using the order dy dx dz.
x is bounded by x = 0 and x = 3− 3z/2; z is bounded between z = 0
and z = 2. This leads to the triple integral:

0 ≤ y ≤ 6− 2x− 3z

0 ≤ x ≤ 3− 3z/2

0 ≤ z ≤ 2

⇒ ∫ 2

0

∫ 3−3z/2

0

∫ 6−2x−3z

0

dy dx dz.

This problem was long, but hopefully useful, demonstrating how to de-
termine bounds with every order of integration to describe the region
D. In practice, we only need 1, but being able to do them all gives us
flexibility to choose the order that suits us best.

In the previous example, we collapsed the surface into the x-y, x-z, and
yz-planes as we determined the “curve to curve, point to point” bounds of in-
tegration. Since the surface was a triangular portion of a plane, this collapsing,
or projecting, was simple: the projection of a straight line in space onto a coor-
dinate plane is a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

Example 14.6.11 Finding the projection of a curve in space onto the
coordinate planes.

Consider the surfaces z = 3 − x2 − y2 and z = 2y, as shown in Fig-
ure 14.6.12(a). The curve of their intersection is shown, along with the
projection of this curve into the coordinate planes, shown dashed. Find
the equations of the projections into the coordinate planes.
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(a) (b)

Figure 14.6.12 Finding the projections of the curve of intersection in Ex-
ample 14.6.11

Solution. The two surfaces are z = 3 − x2 − y2 and z = 2y. To
find where they intersect, it is natural to set them equal to each other:
3 − x2 − y2 = 2y. This is an implicit function of x and y that gives all
points (x, y) in the xy-plane where the z values of the two surfaces are
equal.
We can rewrite this implicit function by completing the square:

3− x2 − y2 = 2y ⇒ y2 + 2y + x2 = 3 ⇒ (y + 1)2 + x2 = 4.

Thus in the xy-plane the projection of the intersection is a circle with
radius 2, centered at (0,−1).
To project onto the xz-plane, we do a similar procedure: find the x and
z values where the y values on the surface are the same. We start by
solving the equation of each surface for y. In this particular case, it works
well to actually solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.
Thus we have (after again completing the square):

3− x2 − z = z2/4 ⇒ (z + 2)2

16
+

x2

4
= 1,

and ellipse centered at (0,−2) in thexz-planewith amajor axis of length
8 and a minor axis of length 4.
Finally, to project the curve of intersection into the yz-plane, we solve
equation for x. Since z = 2y is a cylinder that lacks the variable x, it
becomes our equation of the projection in the yz-plane.
All three projections are shown in Figure 14.6.12(b).

Example 14.6.13 Finding the volume of a space region with triple inte-
gration.

Set up the triple integrals that find the volume of the space region D
bounded by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in
Figure 14.6.14(a), with the orders of integration dz dy dx, dy dx dz and
dx dz dy.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip2bb1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip2bb2_3D.html
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(a) (b)

Figure 14.6.14 The regionD in Example 14.6.13 is shown in (a); in (b), it
is collapsed onto the xy-plane

Solution. The order dz dy dx:
The region D is bounded below by the plane z = 0 and above by the
plane z = −y. The cylinderx2+y2 = 1 does not offer any bounds in the
z-direction, as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.
Collapsing the region into the xy-plane, we get part of the circle with
equation x2 + y2 = 1 as shown in Figure 14.6.14(b). As a function of x,
this half circle has equation y = −

√
1− x2. Thus y is bounded below by

−
√
1− x2 and above by y = 0: −

√
1− x2 ≤ y ≤ 0. The x bounds of

the half circle are −1 ≤ x ≤ 1. All together, the bounds of integration
and triple integral are as follows:

0 ≤ z ≤ −y

−
√
1− x2 ≤y ≤ 0

−1 ≤ x ≤ 1

⇒
∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

dz dy dx.

We evaluate this triple integral:∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

dz dy dx =

∫ 1

−1

∫ 0

−
√
1−x2

(
− y
)
dy dx

=

∫ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

∫ 1

−1

1

2

(
1− x2

)
dx

=

(
1

2

(
x− 1

3
x3

))∣∣∣∣1
−1

=
2

3
units 3.

With the order dy dx dz:
The region is bounded “below” in the y-direction by the surface x2 +
y2 = 1 ⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus

the y bounds are−
√
1− x2 ≤ y ≤ −z.

Collapsing the region onto the xz-plane gives the region shown in Fig-
ure 14.6.15(a); this half disk is bounded by z = 0 and x2 + z2 = 1. (We
find this curve by solving each surface for y2, then setting them equal

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip3a1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip3a2_3D.html
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to each other. We have y2 = 1 − x2 and y = −z ⇒ y2 = z2. Thus
x2 + z2 = 1.) It is bounded below by x = −

√
1− z2 and above by

x =
√
1− z2, where z is bounded by 0 ≤ z ≤ 1. All together, we have:

−
√
1− x2 ≤ y ≤ −z

−
√

1− z2 ≤ x ≤
√
1− z2

0 ≤ z ≤ 1

⇒ ∫ 1

0

∫ √
1−z2

−
√
1−z2

∫ −z

−
√
1−x2

dy dx dz.

(a) (b)

Figure 14.6.15 The regionD in Example 14.6.13 is shown collapsed onto
the xz-plane in (a); in (b), it is collapsed onto the yz-plane

With the order dx dz dy:
D is bounded below by the surface x = −

√
1− y2 and above by√

1− y2. We then collapse the region onto the yz-plane and get the
triangle shown in Figure 14.6.15(b). (The hypotenuse is the line z = −y,
just as the plane.) Thus z is bounded by 0 ≤ z ≤ −y and y is bounded
by−1 ≤ y ≤ 0. This gives:

−
√
1− y2 ≤ x ≤

√
1− y2

0 ≤ z ≤ −y

−1 ≤ y ≤ 0

⇒ ∫ 0

−1

∫ −y

0

∫ √
1−y2

−
√

1−y2

dx dz dy.

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a regionD should always
return a positive number; we are computing volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Theorem 14.6.16 Properties of Triple Integrals.

LetD be a closed, bounded region in space, and letD1 andD2 be non-
overlapping regions such thatD = D1

⋃
D2.

1.
∫∫∫

D

dV ≥ 0

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip3b1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip3b2_3D.html
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2.
∫∫∫

D

dV =

∫∫∫
D1

dV +

∫∫∫
D2

dV .

We use this latter property in the next example.

Example 14.6.17 Finding the volume of a space region with triple inte-
gration.

Find the volume of the space region D bounded by the coordinate
planes, z = 1 − x/2 and z = 1 − y/4, as shown in Figure 14.6.18(a).
Set up the triple integrals that find the volume of D in all 6 orders of
integration.

(a) (b)

Figure 14.6.18 The regionD in Example 14.6.17 is shown in (a); in (b), it
is collapsed onto the xy-plane

Solution. Following the bounds-determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most
difficult orders of integration are the two in which we integrate with re-
spect to z first, for there are two “upper” surfaces that boundD in the
z-direction. So we start by noting that we have

0 ≤ z ≤ 1− 1

2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the xy-axis, as shown in Fig-
ure 14.6.18(b). The boundary of D, the line from (0, 0, 1) to (2, 4, 0),
is shown in Figure 14.6.18(b) as a dashed line; it has equation y = 2x.
(We can recognize this in two ways: one, in collapsing the line from
(0, 0, 1) to (2, 4, 0) onto the xy-plane, we simply ignore the z-values,
meaning the line now goes from (0, 0) to (2, 4). Secondly, the two
surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4: thus
1− x/2 = 1− y/4 ⇒ y = 2x.)
We use the second property of Theorem 14.6.16 to state that∫∫∫

D

dV =

∫∫∫
D1

dV +

∫∫∫
D2

dV ,

whereD1 andD2 are the space regions above the plane regionsR1 and
R2, respectively. Thus we can say∫∫∫

D

dV =

∫∫
R1

(∫ 1−x/2

0

dz

)
dA+

∫∫
R2

(∫ 1−y/4

0

dz

)
dA.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip4a1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip4a2_3D.html
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All that is left is to determine bounds of R1 and R2, depending on
whether we are integrating with order dx dy or dy dx. We give the fi-
nal integrals here, leaving it to the reader to confirm these results.
dz dy dx:

0 ≤ z ≤ 1− x/2 0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 2x 2x ≤ y ≤ 4

0 ≤ x ≤ 2 0 ≤ x ≤ 2

∫∫∫
D

dV =

∫ 2

0

∫ 2x

0

∫ 1−x/2

0

dz dy dx +

∫ 2

0

∫ 4

2x

∫ 1−y/4

0

dz dy dx

dz dx dy:

0 ≤ z ≤ 1− x/2 0 ≤ z ≤ 1− y/4

y/2 ≤ x ≤ 2 0 ≤ x ≤ y/2

0 ≤ y ≤ 4 0 ≤ y ≤ 4

∫∫∫
D

dV =

∫ 4

0

∫ 2

y/2

∫ 1−x/2

0

dz dx dy +

∫ 4

0

∫ y/2

0

∫ 1−y/4

0

dz dx dy

The remaining four orders of integration do not require a sum of triple
integrals. In Figure 14.6.19 we show D collapsed onto the other two
coordinate planes. Using these graphs, we give the final orders of inte-
gration here, again leaving it to the reader to confirm these results.

(a) (b)

Figure 14.6.19 The regionD in Example 14.6.17 is shown collapsed onto
the xz-plane in (a); in (b), it is collapsed onto the yz-plane

dy dx dz:

0 ≤ y ≤ 4− 4z

0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1

⇒ ∫ 1

0

∫ 2−2z

0

∫ 4−4z

0

dy dx dz.

dy dz dx:

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip4b1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip4b2_3D.html
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0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2

⇒ ∫ 2

0

∫ 1−x/2

0

∫ 4−4z

0

dy dx dz.

dx dy dz:

0 ≤ x ≤ 2− 2z

0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1

⇒ ∫ 1

0

∫ 4−4z

0

∫ 2−2z

0

dx dy dz.

dx dz dy:

0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4

⇒ ∫ 4

0

∫ 1−y/4

0

∫ 2−2z

0

dx dz dy.

We give one more example of finding the volume of a space region.

Example 14.6.20 Finding the volume of a space region.

Set up a triple integral that gives the volume of the space region D
bounded by z = 2x2+2 and z = 6− 2x2− y2. These surfaces are plot-
ted in Figure 14.6.21(a) and Figure 14.6.21(b), respectively; the region
D is shown in Figure 14.6.21(c).

(a) (b) (c)

Figure 14.6.21 The regionD is bounded by the surfaces shown in (a) and
(b);D is shown in (c)

Solution. The main point of this example is this: integrating with re-
spect to z first is rather straightforward; integrating with respect to x
first is not.
The order dz dy dx:
The bounds on z are clearly 2x2 + 2 ≤ z ≤ 6 − 2x2 − y2. Collapsing
D onto the xy-plane gives the ellipse shown in Figure 14.6.21(c). The
equation of this ellipse is found by setting the two surfaces equal to each
other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√
4− 4x2 ≤ y ≤

√
4− 4x2 and − 1 ≤ x ≤ 1.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip5a1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip5a2_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip5a3_3D.html
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Thus we find volume as

2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1

⇒ ∫ 1

−1

∫ √
4−4x2

−
√
4−4x2

∫ 6−2x2−y2

2x2+2

dz dy dx.

The order dy dz dx:
Integrating with respect to y is not too difficult. Since the surface z =
2x2 + 2 is a cylinder whose directrix is the y-axis, it does not create a
border for y. The paraboloid z = 6 − 2x2 − y2 does; solving for y, we
get the bounds

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z.

Collapsing D onto the xz-plane gives the region shown in Fig-
ure 14.6.22(a); the lower curve is from the cylinder, with equation z =
2x2 + 2. The upper curve is from the paraboloid; with y = 0, the curve
is z = 6 − 2x2. Thus bounds on z are 2x2 + 2 ≤ z ≤ 6 − 2x2; the
bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1

⇒ ∫ 1

−1

∫ 6−2x2

2x2+2

∫ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

(a) (b)

Figure 14.6.22 The region D in Example 14.6.20 is collapsed onto the
xz-plane in (a); in (b), it is collapsed onto the yz-plane

The order dx dz dy:
This order takes more effort asDmust be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the
cylinder creates bounds

−
√
z/2− 1 ≤ x ≤

√
z/2− 1

for regionD1 and the paraboloid creates bounds

−
√
3− y2/2− z2/2 ≤ x ≤

√
3− y2/2− z2/2

for regionD2.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip5b1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip5b2_3D.html
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Collapsing D onto the yz-axes gives the regions shown in Fig-
ure 14.6.22(b). We find the equation of the curve z = 4−y2/2 by noting
that the equation of the ellipse seen in Figure 14.6.21(c) has equation

x2 + y2/4 = 1 ⇒ x =
√
1− y2/4.

Substitute this expression for x in either surface equation, z = 6−2x2−
y2 or z = 2x2 + 2. In both cases, we find

z = 4− 1

2
y2.

RegionR1, corresponding toD1, has bounds

2 ≤ z ≤ 4− y2/2,−2 ≤ y ≤ 2

and regionR2, corresponding toD2, has bounds

4− y2/2 ≤ z ≤ 6− y2,−2 ≤ y ≤ 2.

Thus the volume ofD is given by:∫ 2

−2

∫ 4−y2/2

2

∫ √
z/2−1

−
√

z/2−1

dx dz dy+

∫ 2

−2

∫ 6−y2

4−y2/2

∫ √
3−y2/2−z2/2

−
√

3−y2/2−z2/2

dx dz dy.

If all one wanted to do in Example 14.6.20 was find the volume of the re-
gion D, one would have likely stopped at the first integration setup (with or-
der dz dy dx) and computed the volume from there. However, we included the
other two methods 1) to show that it could be done, “messy” or not, and 2) be-
cause sometimes we “have” to use a less desirable order of integration in order
to actually integrate.

14.6.2 Triple Integration and Functions of Three Variables
There are uses for triple integration beyondmerely finding volume, just as there
are uses for integration beyond “area under the curve.” These uses start with
understanding how to integrate functions of three variables, which is effectively
no different than integrating functions of two variables. This leads us to a defin-
ition, followed by an example.

Definition 14.6.23 Iterated Integration, (Part II).

Let D be a closed, bounded region in space, over which g1(x), g2(x), f1(x, y), f2(x, y)
and h(x, y, z) are all continuous, and let a and b be real numbers.

The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

h(x, y, z) dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

h(x, y, z) dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)

h(x, y, z) dz

)
dy dx.
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Example 14.6.24 Evaluating a triple integral of a function of three vari-
ables.

Evaluate
∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy + 2xz

)
dz dy dx.

Solution. We evaluate this integral according to Definition 14.6.23.

∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy + 2xz

)
dz dy dx

=

∫ 1

0

∫ x

x2

(∫ 2x+3y

x2−y

(
xy + 2xz

)
dz

)
dy dx

=

∫ 1

0

∫ x

x2

((
xyz + xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

∫ 1

0

∫ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

∫ 1

0

∫ x

x2

(
− x5 + x3y + 4x3 + 14x2y + 12xy2

)
dy dx.

We continue as we have in the past, showing fewer steps.

=

∫ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281

336
≈ 0.836.

We now know how to evaluate a triple integral of a function of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integration and double inte-
gration.

Let h(x, y, z) be a continuous function of three variables, defined over some
space region D. We can partition D into n rectangular-solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the ith
subregion, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product
of a function value (that’s the h(xi, yi, zi) part) and a small volume∆Vi (that’s
the∆xi∆yi∆zi part). One of the simplest understanding of this type of product
is when h describes the density of an object, for then h× volume = mass .

We can sum up all n products over D. Again letting ∥∆D∥ represent the
length of the longest diagonal of the n rectangular solids in the partition, we
can take the limit of the sums of products as ∥∆D∥ → 0. That is, we can find

S = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretations depending on the function h, in
the case where h describes density, S is the total mass of the object described
by the regionD.

We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteration, followed by the application of triple
integrals to find the centers of mass of solid objects.
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Definition 14.6.25 Triple Integral.

Let w = h(x, y, z) be a continuous function over a closed, bounded
regionD in space, and let∆D be any partition ofD into n rectangular
solids with volume∆Vi. The triple integral of h overD is∫∫∫

D

h(x, y, z) dV = lim
∥∆D∥→0

n∑
i=1

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for continuous
functions h and gives us a method of evaluating the limit.

Theorem 14.6.26 Triple Integration (Part II).

Let w = h(x, y, z) be a continuous function over a closed, bounded re-
gion D in space, and let ∆D be any partition of D into n rectangular
solids with volume Vi.

1. The limit lim
∥∆D∥→0

∑n
i=1 h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) onD, then∫∫∫

D

h(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)

h(x, y, z) dz dy dx.

Note: In an aside in Section 14.2, we showed how the summation of rectan-
gles over a region R in the plane could be viewed as a double sum, leading to
the double integral. Likewise, we can view the sum

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi

as a triple sum,
p∑

k=1

n∑
j=1

m∑
i=1

h(xi, yj , zk)∆xi∆yj∆zk,

which we evaluate as
p∑

k=1

 n∑
j=1

(
m∑
i=1

h(xi, yj , zk)∆xi

)
∆yj

∆zk.

Herewe fix a k value, which establishes the z-height of the rectangular solids
on one “level” of all the rectangular solids in the space region D. The inner
double summation adds up all the volumes of the rectangular solids on this level,
while the outer summation adds up the volumes of each level.

This triple summation understanding leads to the
∫∫∫

D
notation of the triple

integral, as well as the method of evaluation shown in Theorem 14.6.26.
We nowapply triple integration to find the centers ofmass of solid objects.

14.6.3 Mass and Center of Mass
One may wish to review Section 14.4 for a reminder of the relevant terms and
concepts.
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Definition 14.6.27 Mass, Center of Mass of Solids.

Let a solid be represented by a closed, bounded regionD in space with
variable density function δ(x, y, z).

1. Themass of the object isM =

∫∫∫
D

dm =

∫∫∫
D

δ(x, y, z) dV .

2. Themoment about the yz-plane isMyz =

∫∫∫
D

xδ(x, y, z) dV .

3. Themoment about the xz-plane isMxz =

∫∫∫
D

yδ(x, y, z) dV .

4. Themoment about the xy-plane isMxy =

∫∫∫
D

zδ(x, y, z) dV .

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 14.6.28 Finding the center of mass of a solid.

Find the mass and center of mass of the solid represented by the space
region boundedby the coordinate planes and z = 2−y/3−2x/3, shown
in Figure 14.6.29, with constant density δ(x, y, z) = 3 g/cm3. (Note:
this space region was used in Example 14.6.7.)

Figure 14.6.29 Finding the center of
mass of the solid in Example 14.6.28

Solution. We apply Definition 14.6.27. In Example 14.6.7, we found
bounds for the order of integration dz dy dx to be 0 ≤ z ≤ 2 − y/3 −
2x/3, 0 ≤ y ≤ 6− 2x and 0 ≤ x ≤ 3. We find the mass of the object:

M =

∫∫∫
D

δ(x, y, z) dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

dz dy dx

= 3(6) = 18 g.

The evaluation of the triple integral is done in Example 14.6.7, so we
skipped those steps above. Note how the mass of an object with con-
stant density is simply “density×volume.”
We now find the moments about the planes.

Mxy =

∫∫∫
D

3z dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

∫ 3

0

∫ 6−2x

0

3

2

(
2− y/3− 2x/3

)2
dy dx

=

∫ 3

0

−4

9

(
x− 3

)3
dx

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip7_3D.html
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= 9.

We omit the steps of integrating to find the other moments.

Myz =

∫∫∫
D

3x dV

=
27

2
.

Mxz =

∫∫∫
D

3y dV

= 27.

The center of mass is(
x, y, z

)
=

(
27/2

18
,
27

18
,
9

18

)
=
(
0.75, 1.5, 0.5

)
.

Example 14.6.30 Finding the center of mass of a solid.

Find the center of mass of the solid represented by the region bounded
by the planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown
in Figure 14.6.31, with density function δ(x, y, z) = 10 + x2 + 5y − 5z.
(Note: this space region was used in Example 14.6.13.)

Figure 14.6.31 Finding the center of
mass of the solid in Example 14.6.30

Solution. As we start, consider the density function. It is symmet-
ric about the yz-plane, and the farther one moves from this plane, the
denser the object is. The symmetry indicates that x should be 0.
As one moves away from the origin in the y or z directions, the object
becomes less dense, though there is more volume in these regions.
Though none of the integrals needed to compute the center of mass are
particularly hard, they do require a number of steps. We emphasize here
the importance of knowing how to set up the proper integrals; in com-
plex situations we can appeal to technology for a good approximation,
if not the exact answer. We use the order of integration dz dy dx, using
the bounds found in Example 14.6.13. (As these are the same for all four
triple integrals, we explicitly show the bounds only forM .)

M =

∫∫∫
D

(
10 + x2 + 5y − 5z

)
dV

=

∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

(
10 + x2 + 5y − 5z

)
dV

=
64

5
− 15π

16
≈ 3.855.

Myz =

∫∫∫
D

x
(
10 + x2 + 5y − 5z

)
dV

= 0.

Mxz =

∫∫∫
D

y
(
10 + x2 + 5y − 5z

)
dV

= 2− 61π

48
≈ −1.99.

Mxy =

∫∫∫
D

z
(
10 + x2 + 5y − 5z

)
dV

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_trip8_3D.html
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=
61π

96
− 10

9
≈ 0.885.

Note howMyz = 0, as expected. The center of mass is

(
x, y, z

)
=

(
0,

−1.99

3.855
,
0.885

3.855

)
≈
(
0,−0.516, 0.230

)
.

As stated before, there are many uses for triple integration beyond finding
volume. When h(x, y, z) describes a rate of change function over some space

regionD, then
∫∫∫

D

h(x, y, z) dV gives the total change overD. Our one spe-

cific example of this was computing mass; a density function is simply a “rate of
mass change per volume” function. Integrating density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quantity; modern technology is very useful in evaluating these
formulas quickly and accurately.

In Section 14.7, we learn about two new coordinate systems (each related to
polar coordinates) that allow us to integrate over closed regions in space more
easily than when using rectangular coordinates.
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14.6.4 Exercises

Terms and Concepts

1. The strategy for establishing bounds for triple integrals is to , to
and to .

2. Give an informal interpretation of what “
∫∫∫

D

dV ” means.

3. Give two uses of triple integration.
4. If an object has a constant density δ and a volume V , what is its mass?

Problems

Exercise Group. Two functions f1(x, y) and f2(x, y) and a regionR in the x, y plane are given. Set up and evaluate
the double integral that finds the volume between the surfaces given by the graphs of these two functions over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and

(1, 1).

6. z = f1(x, y) = x2 + y2 and
z = f2(x, y) = −x2 − y2;

R is the square with corners (0, 0) and
(2, 3).

7. f1(x, y) = sin(x) cos(y),
f2(x, y) = cos(x) sin(y) + 2;

R is the triangle with corners (0, 0), (π, 0)
and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3 and
f2(x, y) = 6− x2 − y2;

R is the disc x2 + y2 ≤ 1.

Exercise Group. In the following exercises, a domainD is described by its bounding surfaces, along with a graph. Set
up the triple integrals that give the volume ofD in all 6 orders of integration, and find the volume ofD by evaluating
the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.
Evaluate the triple integral with order

dz dy dx.

10. D is bounded by the planes y = 0, y = 2,
x = 1, z = 0 and

z = (3− x)/2.
Evaluate the triple integral with order

dx dy dz.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_07_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_08_3D.html
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11. D is bounded by the planes x = 0, x = 2,
z = −y and by

z = y2/2.
Evaluate the triple integral with the order

dy dz dx.

12. D is bounded by the planes z = 0, y = 9, x = 0
and by

z =
√

y2 − 9x2.
Do not evaluate any triple integral.

13. D is bounded by the planes x = 2, y = 1, z = 0
and

z = 2x+ 4y − 4.
Evaluate the triple integral with the order

dx dy dz.

14. D is bounded by the plane z = 2y and by
y = 4− x2.

Evaluate the triple integral with the order
dz dy dx.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_09_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_10_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_11_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_12_3D.html
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15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.
Do not evaluate any triple integral. Which

order is easier to evaluate: dz dy dx or
dy dz dx? Explain why.

16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.
Evaluate the triple integral with order

dx dy dz.

Exercise Group. In the following exercises, evaluate the triple integral.

17.
∫ π/2

−π/2

∫ π

0

∫ π

0

(
cos(x) sin(y) sin(z)

)
dz dy dx 18. Evaluate

∫ 1

0

∫ x

0

∫ x+y

0

(x+ y + z) dz dy dx.

19.
∫ π

0

∫ 1

0

∫ z

0

(
sin(yz)

)
dx dy dz

20. Evaluate∫ π2

π

∫ x3

x

∫ y2

−y2

(
z
x2y + y2x

ex2+y2

)
dz dy dx.

Exercise Group. In the following exercises, find the center of mass of the solid represented by the indicated space
regionD with density function δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10 g/cm3.
(Note: this is the same region as used in

Exercise 14.6.9.)

22. D is bounded by the planes y = 0, y = 2,
x = 1, z = 0 and

z = (3− x)/2; δ(x, y, z) = 2 g/cm3.
(Note: this is the same region as used in

Exercise 14.6.10.)
23. D is bounded by the planes x = 2, y = 1, z = 0

and
z = 2x+ 4y − 4;δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in

Exercise 14.6.13.)

24. D is bounded by the plane z = 2y and by
y = 4− x2.

δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in

Exercise 14.6.14.)

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_13_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_06_ex_14_3D.html
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14.7 Triple Integration with Cylindrical and Spherical
Coordinates

Just as polar coordinates gave us a new way of describing curves in the plane,
in this section we will see how cylindrical and spherical coordinates give us new
ways of desribing surfaces and regions in space.

Both coordinate systemsprovide
ways of extending polar coordi-
nates in the plane to threedimen-
sions. The reader is warned that
while conventions are fairly stan-
dard for cylindrical coordinates,
there aremanydifferent conven-
tions for spherical coordinates. Math-
ematics, physics, and engineer-
ing all use slightly different ver-
sions. The definition presented
in this text also differs from the
usualmathematical definition. Why
add yet another competing stan-
dard? The definition we present
is slightly easier toworkwith, and
should also bemore familiar, since
it corresponds to the coordinate
system of latitude and longitude
used to describe locations on the
Earth.

14.7.1 Cylindrical Coordinates
In short, cylindrical coordinates can be thought of as a combination of the polar
and rectangular coordinate systems. One can identify a point (x0, y0, z0), given
in rectangular coordinates, with the point (r0, θ0, z0), given in cylindrical coordi-
nates, where the z-value in both systems is the same, and the point (x0, y0) in
the xy-plane is identified with the polar point P (r0, θ0); see Figure 14.7.1. So
that each point in space that does not lie on the z-axis is defined uniquely, we
will restrict r ≥ 0 and 0 ≤ θ ≤ 2π.

Figure 14.7.1 Illustrating the principles behind cylindrical coordinates
We use the identity z = z along with the identities found in Key Idea 10.4.5

to convert between the rectangular coordinate (x, y, z) and the cylindrical co-
ordinate (r, θ, z), namely:

From rectangular to cylindrical: r =
√
x2 + y2, tan(θ) = y/x and z = z;

From cylindrical to rectangular: x = r cos(θ), y = r sin(θ) and z = z.

Our rectangular to polar conver-
sion formulas used r2 = x2 +
y2, allowing for negative r val-
ues. Since we now restrict r ≥
0, we can use r =

√
x2 + y2.

These identities, alongwith conversions related to spherical coordinates, are
given later in Key Idea 14.7.12.

Example 14.7.2 Converting between rectangular and cylindrical coor-
dinates.

Convert the rectangular point (2,−2, 1) to cylindrical coordinates, and
convert the cylindrical point (4, 3π/4, 5) to rectangular.
Solution. Following the identities given above (and, later in Key
Idea 14.7.12), we have r =

√
22 + (−2)2 = 2

√
2. Using tan(θ) = y/x,

we find θ = tan−1(−2/2) = −π/4. As we restrict θ to being between
0 and 2π, we set θ = 7π/4. Finally, z = 1, giving the cylindrical point
(2
√
2, 7π/4, 1).

In converting the cylindrical point (4, 3π/4, 5) to rectangular, we have
x = 4 cos

(
3π/4

)
= −2

√
2, y = 4 sin

(
3π/4

)
= 2

√
2 and z = 5, giving

the rectangular point (−2
√
2, 2

√
2, 5).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_cylindricalintro_3D.html
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Setting each of r, θ and z equal to a constant defines a surface in space, as
illustrated in the following example.

Example 14.7.3 Canonical surfaces in cylindrical coordinates.

Describe the surfaces r = 1, θ = π/3 and z = 2, given in cylindrical
coordinates.
Solution. The equation r = 1 describes all points in space that are 1
unit away from the z-axis. This surface is a “tube” or “cylinder” of radius
1, centered on the z-axis, as graphed in Figure 11.1.12 (which describes
the cylinder x2 + y2 = 1 in space).
The equation θ = π/3 describes the plane formed by extending the line
θ = π/3, as given by polar coordinates in the xy-plane, parallel to the
z-axis.
The equation z = 2 describes the plane of all points in space that are 2
units above the xy-plane. This plane is the same as the plane described
by z = 2 in rectangular coordinates.

Figure 14.7.4 Graphing the canoni-
cal surfaces in cylindrical coordinates
from Example 14.7.3

All three surfaces are graphed in Figure 14.7.4. Note how their intersec-
tion uniquely defines the point P = (1, π/3, 2).

Cylindrical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates.

Theorem 14.6.26 shows how to evaluate
∫∫∫

D
h(x, y, z) dV using rectan-

gular coordinates. In that evaluation, we use dV = dz dy dx (or one of the
other five orders of integration). Recall how, in this order of integration, the
bounds on y are “curve to curve” and the bounds on x are “point to point”:
these bounds describe a region R in the xy-plane. We could describe R using
polar coordinates as done in Section 14.3. In that section, we saw how we used
dA = r dr dθ instead of dA = dy dx.

Considering the above thoughts, we have dV = dz
(
r dr dθ

)
= r dz dr dθ.

We set bounds on z as “surface to surface” as done in the previous section, and
then use “curve to curve” and “point to point” bounds on r and θ, respectively.
Finally, using the identities given above, we change the integrand h(x, y, z) to
h(r, θ, z).

This process should sound plausible; the following theorem states it is truly
a way of evaluating a triple integral.

Theorem 14.7.5 Triple Integration in Cylindrical Coordinates.

Letw = h(r, θ, z) be a continuous function on a closed, bounded region
D in space, bounded in cylindrical coordinates by α ≤ θ ≤ β, g1(θ) ≤
r ≤ g2(θ) and f1(r, θ) ≤ z ≤ f2(r, θ). Then∫∫∫

D

h(r, θ, z) dV =

∫ β

α

∫ g2(θ)

g1(θ)

∫ f2(r,θ)

f1(r,θ)

h(r, θ, z)r dz dr dθ.

Example 14.7.6 Evaluating a triple integral with cylindrical coordinates.

Find themass of the solid represented by the region in space bounded by
z = 0, z =

√
4− x2 − y2 + 3 and the cylinder x2 + y2 = 4 (as shown

in Figure 14.7.7), with density function δ(x, y, z) = x2 + y2 + z + 1,
using a triple integral in cylindrical coordinates. Distances are measured

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_cylindrical1_3D.html
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in centimeters and density is measured in grams per cubic centimeter.

Figure 14.7.7 Visualizing the solid
used in Example 14.7.6

Solution. We begin by describing this region of space with cylindrical
coordinates. The plane z = 0 is left unchanged; with the identity r =√
x2 + y2, we convert the hemisphere of radius 2 to the equation z =√
4− r2; the cylinder x2 + y2 = 4 is converted to r2 = 4, or, more

simply, r = 2. We also convert the density function: δ(r, θ, z) = r2 +
z + 1.
To describe this solid with the bounds of a triple integral, we bound z
with 0 ≤ z ≤

√
4− r2 + 3; we bound r with 0 ≤ r ≤ 2; we bound θ

with 0 ≤ θ ≤ 2π.
Using Definition 14.6.27 and Theorem 14.7.5, we have the mass of the
solid is

M =

∫∫∫
D

δ(x, y, z) dV =

∫ 2π

0

∫ 2

0

∫ √
4−r2+3

0

(
r2 + z + 1

)
r dz dr dθ

=

∫ 2π

0

∫ 2

0

(
(r3 + 4r)

√
4− r2 +

5

2
r3 +

19

2
r
)
dr dθ

=
1318π

15
≈ 276.04 g,

where we leave the details of the remaining double integral to the
reader.

Example 14.7.8 Finding the center of mass using cylindrical coordi-
nates.

Find the center of mass of the solid with constant density whose base
can be described by the polar curve r = cos(3θ) and whose top is de-
fined by the plane z = 1 − x + 0.1y, where distances are measured
in feet, as seen in Figure 14.7.9. (The volume of this solid was found in
Example 14.3.10.)

Figure 14.7.9 Visualizing the solid
used in Example 14.7.8

Solution. We convert the equation of the plane to use cylindrical co-
ordinates: z = 1 − r cos(θ) + 0.1r sin(θ). Thus the region is space is
bounded by 0 ≤ z ≤ 1 − r cos(θ) + 0.1r sin(θ), 0 ≤ r ≤ cos(3θ),
0 ≤ θ ≤ π (recall that the rose curve r = cos(3θ) is traced out once on
[0, π].
Since density is constant, we set δ = 1 and finding the mass is equiva-
lent to finding the volume of the solid. We set up the triple integral to
compute this but do not evaluate it; we leave it to the reader to confirm
it evaluates to the same result found in Example 14.3.10.

M =

∫∫∫
D

δ dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

r dz dr dθ =
π

4
.

From Definition 14.6.27 we set up the triple integrals to compute the
moments about the three coordinate planes. The computation of each
is left to the reader (using technology is recommended):

Myz =

∫∫∫
D

x dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

(r cos(θ))r dz dr dθ

=
−3π

64
≈ −0.147.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_cylindrical2_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_doublepol4_3D.html
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Mxz =

∫∫∫
D

y dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

(r sin(θ))r dz dr dθ

=
3π

640
≈ 0.015.

Mxy =

∫∫∫
D

z dV =

∫ π

0

∫ cos(3θ)

0

∫ 1−r cos(θ)+0.1r sin(θ)

0

(z)r dz dr dθ

=
1903π

12800
≈ 0.467.

The center of mass in rectangular coordinates, found by dividing
the respective moments by the mass, is approximately located at
(−0.188, 0.019, 0.595), which lies outside the bounds of the solid.

14.7.2 Spherical Coordinates
In short, spherical coordinates can be thought of as a “double application” of
the polar coordinate system. In spherical coordinates, a point P is identified
with (ρ, θ, φ), where ρ is the distance from the origin to P , θ is the same angle
as would be used to describeP in the cylindrical coordinate system, andφ is the
angle between the xy-plane and the ray from the origin toP ; see Figure 14.7.11.
So that each point in space that does not lie on the z-axis is defined uniquely, we
will restrict ρ ≥ 0, 0 ≤ θ ≤ 2π and−π/2 ≤ φ ≤ π/2.

The symbol ρ is the Greek letter
“rho.” Traditionally it is used in
the spherical coordinate system,
while r is used in the polar and
cylindrical coordinate systems.

Convention 14.7.10 Note that most mathematics textbooks define φ to be mea-
sured from the positive z-axis, with values in [0, π], rather than from the xy-
plane.

We have chosen our convention with a number of considerations in mind:

• The coordinates (ρ, θ, φ) form a right-handed coordinate system: one
in which the orientation matches that of our usual (x, y, z) coordinates,
where the “right-hand rule” applies. If φ is measured from the z-axis, the
order (ρ, φ, θ) is needed to get a right-handed system.

• Points of the form (a, α, 0) are the same in both cylindrical and spherical
coordinates.

• Some integration problems become slightly easier: we will see soon that
the volume element in spherical coordinates involves cos(φ), which inte-
grates to sin(φ). In the usual convention, the volume element involves
sin(φ), which integrates to− cos(φ) – a source of many common sign er-
rors.

Students of Physics will encounter yet another convention. In Physics, the
variable r is preferred as the radial coordinate, and spherical coordinates are
given as (r, θ, φ); however, in Physics, φ becomes the angle in the xy-plane,
while θ is the angle measured from the positive z-axis.

Note that the angle in the xy-plane (θ, in our case) is known as the azimuthal
angle. Our angle φ is known as the elevation angle. The angle used in other
conventions that is measured from the positive z-axis (often identified with the
north pole) is known as the polar angle. For further discussion, the Wikipedia
article¹ is quite useful.

Figure 14.7.11 Illustrating the princi-
ples behind spherical coordinates

¹en.wikipedia.org/wiki/Spherical_coordinate_system

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sphericalintro_3D.html
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The following Key Idea gives conversions to/from our three spatial coordi-
nate systems.

Key Idea 14.7.12 Converting Between Rectangular, Cylindrical and Spherical Co-
ordinates.

• Rectangular and Cylindrical.

r2 = x2 + y2, tan(θ) = y/x, z = z

x = r cos(θ), y = r sin(θ), z = z

• Rectangular and Spherical.

ρ =
√
x2 + y2 + z2, tan(θ) = y/x, sin(φ) = z/

√
x2 + y2 + z2

x = ρ cos(φ) cos(θ), y = ρ cos(φ) sin(θ), z = ρ sin(φ)

• Cylindrical and Spherical.

ρ =
√
r2 + z2, θ = θ, tan(φ) = z/r

r = ρ cos(φ), θ = θ, z = ρ sin(φ)

Example 14.7.13 Converting between rectangular and spherical coor-
dinates.

Convert the rectangular point (2,−2, 1) to spherical coordinates, and
convert the spherical point (6, π/3, 0) to rectangular and cylindrical co-
ordinates.
Solution. This rectangular point is the same as used in Example 14.7.2.
Using Key Idea 14.7.12, we find ρ =

√
22 + (−1)2 + 12 = 3. Using the

same logic as in Example 14.7.2, wefind θ = 7π/4. Finally, sin(φ) = 1/3,
giving φ = sin−1(1/3) ≈ 0.34, or about 19.47◦. Thus the spherical
coordinates are approximately (3, 7π/4, 0.34).
Converting the spherical point (6, π/3, 0) to rectangular, we have x =
6 cos(0) cos(π/3) = 3, y = 6 cos(0) sin(π/3) = 3

√
3 and z =

6 sin(0) = 0. Thus the rectangular coordinates are (3, 3
√
3, 0).

To convert this spherical point to cylindrical, we have r = 6 cos(0) = 6,
θ = π/3 and z = 6 sin(0) = 0, giving the cylindrical point (6, π/3, 0).

Example 14.7.14 Canonical surfaces in spherical coordinates.

Describe the surfaces ρ = 1, θ = π/3 and φ = π/3, given in spherical
coordinates.
Solution. The equation ρ = 1 describes all points in space that are 1
unit away from the origin: this is the sphere of radius 1, centered at the
origin.
The equation θ = π/3 describes the same surface in spherical coor-
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dinates as it does in cylindrical coordinates: beginning with the line
θ = π/3 in the xy-plane as given by polar coordinates, extend the line
parallel to the z-axis, forming a plane.
The equationφ = π/3describes all pointsP in spacewhere the ray from
the origin to P makes an angle of π/3with the xy-plane. This describes
a cone, with the positive z-axis its axis of symmetry, with point at the
origin.

Figure 14.7.15 Graphing the canoni-
cal surfaces in spherical coordinates
from Example 14.7.14

All three surfaces are graphed in Figure 14.7.15. Note how their inter-
section uniquely defines the point P = (1, π/3, π/6).

Spherical coordinates are useful when describing certain domains in space,
allowing us to evaluate triple integrals over these domains more easily than if
we used rectangular coordinates or cylindrical coordinates. The crux of setting
up a triple integral in spherical coordinates is appropriately describing the “small
amount of volume,” dV , used in the integral.

Considering Figure 14.7.16, we can make a small “spherical wedge” by vary-
ing ρ, θ andφ each a small amount,∆ρ,∆θ and∆φ, respectively. This wedge is
approximately a rectangular solid when the change in each coordinate is small,
giving a volume of about

∆V ≈ ∆ρ × ρ∆φ × ρ cos(φ)∆θ.

Figure 14.7.16 Approximating the vol-
ume of a standard region in space us-
ing spherical coordinates

Given a regionD in space, we can approximate the volume ofD with many
such wedges. As the size of each of ∆ρ, ∆θ and ∆φ goes to zero, the number
of wedges increases to infinity and the volume ofD is more accurately approxi-
mated, giving

dV = dρ × ρ dφ × ρ cos(φ)dθ = ρ2 cos(φ) dρ dθ dφ.

Again, this development of dV should sound reasonable, and the following
theorem states it is the appropriate manner by which triple integrals are to be
evaluated in spherical coordinates.

It is generally most intuitive to
evaluate the triple integral in The-
orem14.7.17 by integratingwith
respect to ρ first; it often does
not matter whether we next in-
tegratewith respect to θ orφ. Dif-
ferent texts present different stan-
dard orders, somepreferringdφdθ
instead of dθ dφ. As the bounds
for these variables are usually con-
stants in practice, it generally is
a matter of preference.

Theorem 14.7.17 Triple Integration in Spherical Coordinates.

Letw = h(ρ, θ, φ) be a continuous function on a closed, bounded region
D in space, bounded in spherical coordinates by α1 ≤ φ ≤ α2, β1 ≤
θ ≤ β2 and f1(θ, φ) ≤ ρ ≤ f2(θ, φ). Then∫∫∫

D

h(ρ, θ, φ) dV =

∫ α2

α1

∫ β2

β1

∫ f2(θ,φ)

f1(θ,φ)

h(ρ, θ, φ)ρ2 cos(φ) dρ dθ dφ.

Example 14.7.18 Establishing the volume of a sphere.

Let D be the region in space bounded by the sphere, centered at the
origin, of radius r. Use a triple integral in spherical coordinates to find
the volume V ofD.
Solution. The sphere of radius r, centered at the origin, has equation
ρ = r. To obtain the full sphere, the bounds on θ and φ are 0 ≤ θ ≤ 2π
and−π/2 ≤ φ ≤ π/2. This leads us to:

V =

∫∫∫
D

dV

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_spherical1_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_sphericalwedge_3D.html
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=

∫ π/2

−π/2

∫ 2π

0

∫ r

0

(
ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/2

−π/2

∫ 2π

0

(
1

3
ρ3 cos(φ)

∣∣∣r
0

)
dθ dφ

=

∫ π/2

−π/2

∫ 2π

0

(
1

3
r3 cos(φ)

)
dθ dφ

=

∫ π/2

−π/2

(
2π

3
r3 cos(φ)

)
dφ

=

(
2π

3
r3 sin(φ)

)∣∣∣∣π/2
−π/2

=
4π

3
r3,

the familiar formula for the volume of a sphere. Note how the integra-
tion steps were easy, not using square roots nor integration steps such
as Substitution.

Example 14.7.19 Finding the center of mass using spherical coordi-
nates.

Find the center ofmass of the solidwith constant density enclosed above
by ρ = 4 and below by φ = π/3, as illustrated in Figure 14.7.20.

Figure 14.7.20 Graphing the solid,
and its center of mass, from Exam-
ple 14.7.19

Solution. We will set up the four triple integrals needed to find the
center of mass (i.e., to computeM ,Myz ,Mxz andMxy) and leave it to
the reader to evaluate each integral. Because of symmetry, we expect
the x- and y- coordinates of the center of mass to be 0.
While the surfaces describing the solid are given in the statement of the
problem, to describe the full solidD, we use the following bounds: 0 ≤
ρ ≤ 4, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/3. Since density δ is constant, we
assume δ = 1.
The mass of the solid:

M =

∫∫∫
D

dm =

∫∫∫
D

dV

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ2 cos(φ)

)
dρ dθ dφ

=
64

3

(
2−

√
3
)
π ≈ 17.958.

To compute Myz , the integrand is x; using Key Idea 14.7.12, we have
x = ρ cos(φ) cos(θ). This gives:

Myz =

∫∫∫
D

x dm

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
(ρ cos(φ) cos(θ))ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ3 cos2(φ) cos(θ)

)
dρ dθ dφ

= 0,

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_spherical3_3D.html
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which we expected as we expect x = 0.
To compute Mxz , the integrand is y; using Key Idea 14.7.12, we have
y = ρ cos(φ) sin(θ). This gives:

Mxz =

∫∫∫
D

y dm

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
(ρ cos(φ) sin(θ))ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ3 cos2(φ) sin(θ)

)
dρ dθ dφ

= 0,

which we also expected as we expect y = 0.
To compute Mxy , the integrand is z; using Key Idea 14.7.12, we have
z = ρ sin(φ). This gives:

Mxy =

∫∫∫
D

z dm

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
(ρ sin(φ))ρ2 cos(φ)

)
dρ dθ dφ

=

∫ π/3

0

∫ 2π

0

∫ 4

0

(
ρ3 sin(φ) cos(φ)

)
dρ dθ dφ

= 16π ≈ 50.266.

Thus the center of mass is (0, 0,Mxy/M) ≈ (0, 0, 2.799), as indicated
in Figure 14.7.20.

This section has provided a brief introduction into two new coordinate sys-
tems useful for identifying points in space. Each can be used to define a variety
of surfaces in space beyond the canonical surfaces graphed as each system was
introduced.

However, the usefulness of these coordinate systems does not lie in the vari-
ety of surfaces that they candescribe nor the regions in space these surfacesmay
enclose. Rather, cylindrical coordinates are mostly used to describe cylinders
and spherical coordinates are mostly used to describe spheres. These shapes
are of special interest in the sciences, especially in physics, and computations
on/inside these shapes is difficult using rectangular coordinates. For instance,
in the study of electricity and magnetism, one often studies the effects of an
electrical current passing through a wire; that wire is essentially a cylinder, de-
scribed well by cylindrical coordinates.

This chapter investigated the natural follow-on to partial derivatives: iter-
ated integration. We learned how to use the bounds of a double integral to de-
scribe a region in the plane using both rectangular and polar coordinates, then
later expanded to use the bounds of a triple integral to describe a region in space.
We used double integrals to find volumes under surfaces, surface area, and the
center of mass of lamina; we used triple integrals as an alternatemethod of find-
ing volumes of space regions and also to find the center of mass of a region in
space.

Integration does not stop here. We could continue to iterate our integrals,
next investigating “quadruple integrals” whose bounds describe a region in 4-
dimensional space (which are very hard to visualize). We can also look back to
“regular” integration where we found the area under a curve in the plane. A
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natural analogue to this is finding the “area under a curve,” where the curve is
in space, not in a plane. These are just two of many avenues to explore under
the heading of “integration.”
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14.7.3 Exercises

Terms and Concepts

1. Explain the difference between the roles r, in cylindrical coordinates, and ρ, in spherical coordinates, play in
determining the location of a point.

2. Why are points on the z-axis not determined uniquely when using cylindrical and spherical coordinates?
3. What surfaces are naturally defined using cylindrical coordinates?
4. What surfaces are naturally defined using spherical coordinates?

Problems

Exercise Group. In the following exercises, points are given in either the rectangular, cylindrical or spherical coordi-
nate systems. Find the coordinates of the points in the other systems.

5.

(a) Points in rectangular coordinates: (2, 2, 1)
and (−

√
3, 1, 0)

(b) Points in cylindrical coordinates:
(2, π/4, 2) and (3, 3π/2,−4)

(c) Points in spherical coordinates:
(2, π/4, π/4) and (1, 0, 0)

6.

(a) Points in rectangular coordinates: (0, 1, 1)
and (−1, 0, 1)

(b) Points in cylindrical coordinates: (0, π, 1)
and (2, 4π/3, 0)

(c) Points in spherical coordinates:
(2, π/6, 0) and (3, π,−π/2)

Exercise Group. In the following exercises, describe the curve, surface or region in space determined by the given
bounds in cylindrical coordinates.

7.

(a) r = 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1

(b) 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 0 ≤ z ≤ 1

8.

(a) 1 ≤ r ≤ 2, θ = π/2, 0 ≤ z ≤ 1

(b) r = 2, 0 ≤ θ ≤ 2π, z = 5

Exercise Group. In the following exercises, describe the curve, surface or region in space determined by the given
bounds in spherical coordinates.

9.

(a) ρ = 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2

(b) 2 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π,
−π/2 ≤ φ ≤ π/2

10.

(a) 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ π, φ = π/4

(b) ρ = 2, 0 ≤ θ ≤ 2π, φ = π/3

(c) This is a curve, a circle of radius 1
centered at (0, 0,

√
3), lying parallel to

the xy-plane.

Exercise Group. In the following exercises, standard regions in space, as defined by cylindrical and spherical coordi-
nates, are shown. Set up the triple integral that integrates the given function over the graphed region.
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11. Cylindrical coordinates, integrating h(r, θ, z): 12. Spherical coordinates, integrating h(ρ, θ, φ):

Exercise Group. In the following exercises, a triple integral in cylindrical coordinates is given. Describe the region in
space defined by the bounds of the integral.

13.
∫ π/2

0

∫ 2

0

∫ 2

0

r dz dr dθ 14.
∫ 2π

0

∫ 4

3

∫ 5

0

r dz dr dθ

15.
∫ 2π

0

∫ 1

0

∫ 1−r

0

r dz dr dθ 16.
∫ π

0

∫ 1

0

∫ 2−r

0

r dz dr dθ

17.
∫ π

0

∫ 3

0

∫ √
9−r2

0

r dz dr dθ 18.
∫ 2π

0

∫ a

0

∫ √
a2−r2+b

0

r dz dr dθ

Exercise Group. In the following exercises, a triple integral in spherical coordinates is given. Describe the region in
space defined by the bounds of the integral.

19.
∫ π/2

0

∫ π/2

0

∫ 1

0

ρ2 cos(φ) dρ dθ dφ 20.
∫ π/2

−π/2

∫ π

0

∫ 1.1

1

ρ2 cos(φ) dρ dθ dφ

21.
∫ π/2

π/4

∫ 2π

0

∫ 2

0

ρ2 cos(φ) dρ dθ dφ 22.
∫ π/3

π/4

∫ 2π

0

∫ 2

0

ρ2 cos(φ) dρ dθ dφ

23.
∫ π/2

π/3

∫ 2π

0

∫ csc(φ)

0

ρ2 cos(φ) dρ dθ dφ 24.
∫ π/2

π/3

∫ 2π

0

∫ a csc(φ)

0

ρ2 cos(φ) dρ dθ dφ

Exercise Group. In the following exercises, a solid is described along with its density function. Find the mass of the
solid using cylindrical coordinates.

25. Bounded by the cylinder x2 + y2 = 4 and the
planes z = 0 and z = 4 with density function
δ(x, y, z) =

√
x2 + y2 + 1.

26. Bounded by the cylinders x2 + y2 = 4 and
x2 + y2 = 9, between the planes z = 0 and
z = 10 with density function δ(x, y, z) = z.

27. Bounded by y ≥ 0, the cylinder x2 + y2 = 1,
and between the planes z = 0 and z = 4− y
with density function δ(x, y, z) = 1.

28. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

Exercise Group. In the following exercises, a solid is described along with its density function. Find the center of
mass of the solid using cylindrical coordinates. (Note: these are the same solids and density functions as found in
Exercises 25–28.)

29. Bounded by the cylinder x2 + y2 = 4 and the
planes z = 0 and z = 4 with density function
δ(x, y, z) =

√
x2 + y2 + 1.

30. Bounded by the cylinders x2 + y2 = 4 and
x2 + y2 = 9, between the planes z = 0 and
z = 10 with density function δ(x, y, z) = z.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_07_ex_09_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_13_07_ex_10_3D.html
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31. Bounded by y ≥ 0, the cylinder x2 + y2 = 1,
and between the planes z = 0 and z = 4− y
with density function δ(x, y, z) = 1.

32. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

Exercise Group. In the following exercises, a solid is described along with its density function. Find the mass of the
solid using spherical coordinates.

33. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

34. The spherical shell bounded between
x2 + y2 + z2 = 16 and x2 + y2 + z2 = 25 with
density function δ(x, y, z) =

√
x2 + y2 + z2.

35. The conical region bounded below by
z =

√
x2 + y2 and above by the sphere

x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

36. The cone that lies above the cone
z =

√
x2 + y2 and below the plane z = 1 with

density function δ(x, y, z) = z.

Exercise Group. In the following exercises, a solid is described along with its density function. Find the center of
mass of the solid using spherical coordinates. (Note: these are the same solids and density functions as found in
Exercises 33–36.)

37. The upper half of the unit ball, bounded
between z = 0 and z =

√
1− x2 − y2, with

density function δ(x, y, z) = 1.

38. The spherical shell bounded between
x2 + y2 + z2 = 16 and x2 + y2 + z2 = 25 with
density function δ(x, y, z) =

√
x2 + y2 + z2.

39. The conical region bounded above
z =

√
x2 + y2 and below the sphere

x2 + y2 + z2 = 1 with density function
δ(x, y, z) = z.

40. The cone bounded above z =
√
x2 + y2 and

below the plane z = 1 with density function
δ(x, y, z) = z.

Exercise Group. In the following exercises, a region is space is described. Set up the triple integrals that find the
volume of this region using rectangular, cylindrical and spherical coordinates, then comment on which of the three
appears easiest to evaluate.

41. The region enclosed by the unit sphere,
x2 + y2 + z2 = 1.

42. The region enclosed by the cylinder x2 + y2 = 1
and planes z = 0 and z = 1.

43. The region enclosed by the cone z =
√

x2 + y2

and plane z = 1.
44. The cube enclosed by the planes x = 0, x = 1,

y = 0, y = 1, z = 0 and z = 1. (Hint: in
spherical, use order of integration dρ dφ dθ.)



Chapter 15

Vector Analysis

This chapter explores completely different relationships between vectors and
integration. These relationships will enable us to compute the work done by a
magnetic field in moving an object along a path and find how much air moves
through an oddly-shaped screen in space, among other things.

Our upcoming work with integration will benefit from a review. We are
not concerned here with techniques of integration, but rather what an integral
“does” and how that relates to the notation we use to describe it.

Integration review.

Recall from Section 14.1 that when R is a region in the xy-plane,∫∫
R
dA gives the area of the region R. The integral symbols are “elon-

gated esses” meaning “sum” and dA represents “a small amount of
area.” Taken together,

∫∫
R
dA means “sum up, over R, small amounts

of area.” This sum then gives the total area of R. We use two integral
symbols sinceR is a two-dimensional region.

Now let z = f(x, y) represent a surface. The integral∫∫
R
f(x, y) dAmeans “sum up, over R, function values (heights) given

by f times small amounts of area.” Since “height × area = volume,” we
are summing small amounts of volume over R, giving the total signed
volume under the surface z = f(x, y) and above the xy-plane.

This notation does not directly inform us how to evaluate the double
integrals to find an area or a volume. With additional work, we recognize
that a small amount of area dA can be measured as the area of a small
rectangle, with one side length a small change in x and the other side
length a small change in y. That is, dA = dx dy or dA = dy dx. We
could also compute a small amount of area by thinking in terms of polar
coordinates, where dA = r dr dθ. These understandings lead us to the
iterated integrals we used in Chapter 14.

Let us back our review up farther. Note that
∫ 3

1
dx = x

∣∣3
1
= 3−1 =

2. We have simply measured the length of the interval [1, 3]. We could
rewrite the above integral using syntax similar to the double integral syn-
tax above: ∫ 3

1

dx =

∫
I

dx, where I = [1, 3] .

We interpret “
∫
I
dx” as meaning “sum up, over the interval I , small

changes inx.” A change inx is a length along thex-axis, sowe are adding
up along I small lengths, giving the total length of I .

We could also write
∫ 3

1
f(x) dx as

∫
I
f(x) dx, interpreted as “sum

up, over I , heights given by y = f(x) times small changes in x.” Since

871
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“height×length = area,” we are summing up areas and finding the total
signed area between y = f(x) and the x-axis.

This method of referring to the process of integration can be very
powerful. It is the core of our notion of the Riemann Sum. When faced
with a quantity to compute, if one can think of a way to approximate
its value through a sum, the one is well on their way to constructing an
integral (or, double or triple integral) that computes the desired quantity.
We will demonstrate this process throughout this chapter, starting with
the next section.

15.1 Introduction to Line Integrals

We first used integration to find “area under a curve.” In this section, we learn
to do this (again), but in a different context.

15.1.1 Line Integrals of Functions
Consider the surface and curve shown in Figure 15.1.1(a). The surface is given
by f(x, y) = 1− cos(x) sin(y). The dashed curve lies in the xy-plane and is the
familiar y = x2 parabola from −1 ≤ x ≤ 1; we’ll call this curve C. The curve
drawn with a solid line in the graph is the curve in space that lies on our surface
with x and y values that lie on C.

The question we want to answer is this: what is the area that lies below
the curve drawn with the solid line? In other words, what is the area of the
region above C and under the the surface z = f(x, y)? This region is shown in
Figure 15.1.1(b).

We suspect the answer can be found using an integral, but before trying to
figure out what that integral is, let us first try to approximate its value.

(a) (b) (c)

Figure 15.1.1 Finding area under a curve in space
In Figure 15.1.1(c), four rectangles have been drawn over the curve C. The

bottom corners of each rectangle lie onC, and each rectangle has a height given
by the function f(x, y) for some (x, y) pair along C between the rectangle’s
bottom corners.

As we know how to find the area of each rectangle, we are able to approxi-
mate the area above C and under f . Clearly, our approximation will be an ap-
proximation. The heights of the rectangles do notmatch exactlywith the surface
f , nor does the base of each rectangle follow perfectly the path of C.

In typical calculus fashion, our approximation can be improvedby usingmore
rectangles. The sum of the areas of these rectangles gives an approximate value

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_line_integral_intro1a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_line_integral_intro1b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_line_integral_intro1c_3D.html
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of the true area above C and under f . As the area of each rectangle is “height
× width”, we assert that the

area above C ≈
∑

( heights × widths ).

When first learning of the integral, and approximating areas with “heights ×
widths”, the width was a small change in x: dx. That will not suffice in this con-
text. Rather, each width of a rectangle is actually approximating the arc length
of a small portion of C. In Section 12.5, we used s to represent the arc-length
parameter of a curve. A small amount of arc length will thus be represented by
ds.

The height of each rectangle will be determined in some way by the surface
f . If we parametrizeC by s, an s-value corresponds to an (x, y) pair that lies on
the parabola C. Since f is a function of x and y, and x and y are functions of s,
we can say that f is a function of s. Given a value s, we can compute f(s) and
find a height. Thus

area under f and above C ≈
∑

( heights × widths );

area under f and above C = lim
∥∆s∥→0

∑
f(ci)∆si

=

∫
C

f(s) ds. (15.1.1)

Here we have introduce a new notation, the integral symbol with a subscript
of C. It is reminiscent of our usage of

∫∫
R
. Using the train of thought found

in the Integration Review preceding this section, we interpret “
∫
C
f(s) ds” as

meaning “sum up, along a curve C, function values f(s)×small arc lengths.” It
is understood here that s represents the arc-length parameter.

All this leads us to a definition. The integral found in Equation (15.1.1) is
called a line integral. We formally define it below, but note that the definition is
very abstract. On one hand, one is apt to say “the definitionmakes sense,” while
on the other, one is equally apt to say “but I don’t know what I’m supposed to
do with this definition.” We’ll address that after the definition, and actually find
an answer to the area problem we posed at the beginning of this section.

Definition 15.1.2 Line Integral Over A Scalar Field.

Let C be a smooth curve parametrized by s, the arc-length parameter,
and let f be a continuous function of s. A line integral is an integral of
the form ∫

C

f(s) ds = lim
∥∆s∥→0

n∑
i=1

f(ci)∆si,

where s0 < s1 < . . . < sn is any partition of the s-interval over which
C is defined, ci is any value in the ith subinterval, ∆si is the width of
the ith subinterval, and ∥∆s∥ is the length of the longest subinterval in
the partition.

Note: Definition 15.1.2 uses the
term scalar field which has not
yet been defined. Its meaning is
discussed in the paragraph pre-
ceding Definition 15.3.1 when it
is compared to a vector field.

When C is a closed curve, i.e., a curve that ends at the same point at which
it starts, we use ∮

C

f(s) ds instead of
∫
C

f(s) ds.

The definition of the line integral does not specify whether C is a curve in
the plane or space (or hyperspace), as the definition holds regardless. For now,
we’ll assume C lies in the xy-plane.
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This definition of the line integral doesn’t really say anything new. If C is a
curve and s is the arc-length parameter of C on a ≤ s ≤ b, then∫

C

f(s) ds =

∫ b

a

f(s) ds.

The real differencewith this integral from the standard “
∫ b

a
f(x) dx”weused

in the past is that of context. Our previous integrals naturally summed up values
over an interval on the x-axis, whereas now we are summing up values over a
curve. If we can parametrize the curve with the arc-length parameter, we can
evaluate the line integral just as before. Unfortunately, parametrizing a curve in
terms of the arc-length parameter is usually very difficult, so we must develop a
method of evaluating line integrals using a different parametrization.

Given a curve C, find any parametrization of C: x = g(t) and y = h(t),
for continuous functions g and h, where a ≤ t ≤ b. We can represent this
parametrization with a vector-valued function, r⃗(t) = ⟨g(t), h(t)⟩.

In Section 12.5, we defined the arc-length parameter in Equation (12.5.1) as

s(t) =

∫ t

0

∥r⃗ ′(u)∥ du.

By the Fundamental Theorem of Calculus, ds = ∥r⃗ ′(t)∥ dt. We can substi-
tute the right hand side of this equation for ds in the line integral definition.

We can view f as being a function of x and y since it is a function of s. Thus
f(s) = f(x, y) = f

(
g(t), h(t)

)
. This gives us a concrete way to evaluate a line

integral: ∫
C

f(s) ds =

∫ b

a

f
(
g(t), h(t)

)
∥r⃗ ′(t)∥ dt.

We restate this as a theorem, along with its three-dimensional analogue,
followed by an example where we finally evaluate an integral and find an area.

Theorem 15.1.3 Evaluating a Line Integral Over A Scalar Field.

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t)⟩, a ≤ t ≤ b,
where g and h are continuously differentiable, and let z = f(x, y),
where f is continuous over C. Then∫

C

f(s) ds =

∫ b

a

f
(
g(t), h(t)

)
∥r⃗ ′(t)∥ dt.

• Let C be a curve parametrized by r⃗(t) = ⟨g(t), h(t), k(t)⟩, a ≤
t ≤ b, where g, h and k are continuously differentiable, and let
w = f(x, y, z), where f is continuous over C. Then∫

C

f(s) ds =

∫ b

a

f
(
g(t), h(t), k(t)

)
∥r⃗ ′(t)∥ dt.

To be clear, the first point of Theorem 15.1.3 can be used to find the area
under a surface z = f(x, y) and above a curve C. We will later give an under-
standing of the line integral when C is a curve in space.

Let’s do an example where we actually compute an area.
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Example 15.1.4 Evaluating a line integral: area under a surface over a
curve.

Find the area under the surface f(x, y) = cos(x) + sin(y) + 2 over the
curve C, which is the segment of the line y = 2x + 1 on −1 ≤ x ≤ 1,
as shown in Figure 15.1.5.

(a) (b)

Figure 15.1.5 Finding area under a curve in Example 15.1.4

Solution. Our first step is to represent C with a vector-valued function.
Since C is a simple line, and we have a explicit relationship between y
and x (namely, that y is 2x+1), we can let x = t, y = 2t+1, and write
r⃗(t) = ⟨t, 2t+ 1⟩ for−1 ≤ t ≤ 1.
We find the values of f over C as f(x, y) = f(t, 2t + 1) = cos(t) +
sin(2t + 1) + 2. We also need ∥r⃗ ′(t)∥; with r⃗ ′(t) = ⟨1, 2⟩, we have
∥r⃗ ′(t)∥ =

√
5. Thus ds =

√
5 dt.

The area we seek is∫
C

f(s) ds =

∫ 1

−1

(
cos(t) + sin(2t+ 1) + 2

)√
5 dt

=
√
5
(
sin(t)− 1

2
cos(2t+ 1) + 2t

)∣∣∣∣1
−1

≈ 14.418 units 2.

We will practice setting up and evaluating a line integral in another example,
then find the area described at the beginning of this section.

Example 15.1.6 Evaluating a line integral: area under a surface over a
curve.

Find the area over the unit circle in the xy-plane and under the graph of
f(x, y) = x2 − y2 + 3, shown in Figure 15.1.7.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_linescalarfield2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_linescalarfield2b_3D.html
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(a) (b)

Figure 15.1.7 Finding area under a curve in Example 15.1.6

Solution. The curveC is the unit circle, which we will describe with the
parametrization r⃗(t) = ⟨cos t, sin t⟩ for 0 ≤ t ≤ 2π. We find ∥r⃗ ′(t)∥ =
1, so ds = 1dt.
We find the values of f over C as f(x, y) = f(cos t, sin t) = cos2 t −
sin2 t + 3. Thus the area we seek is (note the use of the

∮
f(s)ds nota-

tion): ∮
C

f(s) ds =

∫ 2π

0

(
cos2 t− sin2 t+ 3

)
dt

= 6π.

(Note: we may have approximated this answer from the start. The unit
circle has a circumference of 2π, and we may have guessed that due to
the apparent symmetry of our surface, the average height of the surface
is 3.)

We now consider the example that introduced this section.

Example 15.1.8 Evaluating a line integral: area under a surface over a
curve.

Find the area under f(x, y) = 1 − cos(x) sin(y) and over the parabola
y = x2, from−1 ≤ x ≤ 1.
Solution. We parametrize our curveC as r⃗(t) = ⟨t, t2⟩ for−1 ≤ t ≤ 1;
we find ∥r⃗ ′(t)∥ =

√
1 + 4t2, so ds =

√
1 + 4t2 dt.

Replacing x and ywith their respective functions of t, we have f(x, y) =
f(t, t2) = 1− cos(t) sin(t2). Thus the area under f and overC is found
to be ∫

C

f(s) ds =

∫ 1

−1

(
1− cos(t) sin

(
t2
))√

1 + t2 dt.

This integral is impossible to evaluate using the techniques developed
in this text. We resort to a numerical approximation; accurate to two
places after the decimal, we find the area is

= 2.17.

We give one more example of finding area.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_linescalarfield3a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_linescalarfield3b_3D.html
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Example 15.1.9 Evaluating a line integral: area under a curve in space.

Find the area above the xy-plane and below the helix parametrized by
r⃗(t) = ⟨cos t, 2 sin t, t/π⟩, for 0 ≤ t ≤ 2π, as shown in Figure 15.1.10.

Figure 15.1.10 Finding area under a
curve in Example 15.1.9

Solution. Note how this is problem is different than the previous exam-
ples: here, the height is not given by a surface, but by the curve itself.
We use the given vector-valued function r⃗(t) to determine the curve C
in the xy-plane by simply using the first two components of \vec r(t):
c⃗(t) = ⟨cos t, 2 sin t⟩. Thus ds = ∥c⃗ ′(t)∥ dt =

√
sin2 t+ 4 cos2 t dt.

The height is not found by evaluating a surface over C, but rather it is
given directly by the third component of \vec r(t): t/π. Thus∮

C

f(s) ds =

∫ 2π

0

t

π

√
sin2 t+ 4 cos2 t dt ≈ 9.69,

where the approximation was obtained using numerical methods.

Note how in each of the previous examples we are effectively finding “area
under a curve”, just as we did when first learning of integration. We have used
the phrase “area over a curve C and under a surface,” but that is because of
the important role C plays in the integral. The figures show how the curve C
defines another curve on the surface z = f(x, y), and we are finding the area
under that curve.

15.1.2 Properties of Line Integrals
Many properties of line integrals can be inferred from general integration prop-
erties. For instance, if k is a scalar, then

∫
C
k f(s)ds = k

∫
C
f(s)ds.

One property in particular of line integrals is worth noting. If C is a curve
composed of subcurves C1 and C2, where they share only one point in com-
mon (see Figure 15.1.11(a), then the line integral over C is the sum of the line
integrals over C1 and C2:∫

C

f(s) ds =

∫
C1

f(s) ds+

∫
C2

f(s) ds.

A
B

D

C1

C2

(a)

A
B

D

C1 C2

(b)

Figure 15.1.11 Illustrating properties of line integrals
This property allows us to evaluate line integrals over some curves C that

are not smooth. Note how in Figure 15.1.11(b) the curve is not smooth at D,
so by our definition of the line integral we cannot evaluate

∫
C
f(s)ds. However,

one can evaluate line integrals overC1 andC2 and their sumwill be the desired
quantity.

A curveC that is composed of two ormore smooth curves is said to be piece-
wise smooth. In this chapter, any statement that is made about smooth curves
also holds for piecewise smooth curves.

We state these properties as a theorem.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_linescalarfield4_3D.html
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Theorem 15.1.12 Properties of Line Integrals Over Scalar Fields.

1. Let C be a smooth curve parametrized by the arc-length parame-
ter s, let f and g be continuous functions of s, and let k1 and k2
be scalars. Then∫

C

(
k1f(s) + k2g(s)

)
ds = k1

∫
C

f(s) ds+ k2

∫
C

g(s) ds.

2. Let C be piecewise smooth, composed of smooth components C1

and C2. Then∫
C

f(s) ds =

∫
C1

f(s) ds+

∫
C2

f(s) ds.

15.1.3 Mass and Center of Mass
We first learned integration as a method to find area under a curve, then later
used integration to compute a variety of other quantities, such as arc length,
volume, force, etc. In this section, we also introduced line integrals as a method
to find area under a curve, and now we explore one more application.

Let a curve C (either in the plane or in space) represent a thin wire with
variable density δ(s). We can approximate the mass of the wire by dividing the
wire (i.e., the curve) into small segments of length∆si and assume the density
is constant across these small segments. Themass of each segment is density of
the segment × its length; by summing up the approximatemass of each segment
we can approximate the total mass:

Total Mass of Wire =
∑

δ(si)∆si.

By taking the limit as the length of the segments approaches 0, we have the
definition of the line integral as seen in Definition 15.1.2. When learning of the
line integral, we let f(s) represent a height; now we let f(s) = δ(s) represent
a density.

We can extend this understanding of computing mass to also compute the
center of mass of a thin wire. (As a reminder, the center of mass can be a useful
piece of information as objects rotate about that center.) We give the relevant
formulas in the next definition, followed by an example. Note the similarities
between this definition and Definition 14.6.27, which gives similar properties of
solids in space.

Definition 15.1.13 Mass, Center of Mass of Thin Wire.

Let a thin wire lie along a smooth curveC with continuous density func-
tion δ(s), where s is the arc length parameter.

1. Themass of the thin wire isM =

∫
C

δ(s) ds.

2. Themoment about the yz-plane isMyz =

∫
C

xδ(s) ds.

3. Themoment about the xz-plane isMxz =

∫
C

yδ(s) ds.
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4. Themoment about the xy-plane isMxy =

∫
C

zδ(s) ds.

5. The center of mass of the wire is

(x, y, z) =

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

Example 15.1.14 Evaluating a line integral: calculating mass.

A thin wire follows the path r⃗(t) = ⟨1 + cos t, 1 + sin t, 1 + sin(2t)⟩,
0 ≤ t ≤ 2π. The density of the wire is determined by its position in
space: δ(x, y, z) = y + z gm/cm. The wire is shown in Figure 15.1.15,
where a light color indicates low density and a dark color represents high
density. Find the mass and center of mass of the wire.

Figure 15.1.15 Finding the mass of a
thin wire in Example 15.1.14

Solution. We compute the density of the wire as

δ(x, y, z) = δ
(
1 + cos t, 1 + sin t, 1 + sin(2t)

)
= 2 + sin t+ sin(2t).

We compute ds as

ds = ∥r⃗ ′(t)∥ dt =

√
sin2 t+ cos2 t+ 4 cos2(2t) dt =

√
1 + 4 cos2(2t) dt.

Thus the mass is

M =

∮
C

δ(s) ds =

∫ 2π

0

(
2+sin t+sin(2t)

)√
1 + 4 cos2(2t) dt ≈ 21.08 gm .

We compute the moments about the coordinate planes:

Myz =

∮
C

xδ(s) ds

=

∫ 2π

0

(1 + cos t)
(
2 + sin t+ sin(2t)

)√
1 + 4 cos2(2t) dt

≈ 21.08.

Mxz =

∮
C

yδ(s) ds

=

∫ 2π

0

(1 + sin t)
(
2 + sin t+ sin(2t)

)√
1 + 4 cos2(2t) dt

≈ 26.35

Mxy =

∮
C

zδ(s) ds

=

∫ 2π

0

(
1 + sin(2t)

)(
2 + sin t+ sin(2t)

)√
1 + 4 cos2(2t) dt

≈ 25.40

Thus the center of mass of the wire is located at

(x, y, z) =

(
Myz

M
,
Mxz

M
,
Mxy

M

)
≈ (1, 1.25, 1.20),

as indicated by the dot in Figure 15.1.15. Note how in this example, the
curveC is “centered” about the point (1, 1, 1), though the variable den-
sity of the wire pulls the center of mass out along the y and z axes.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_linescalarfield6.html
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We end this section with a callback to the Integration Review that preceded
this section. A line integral looks like:

∫
C
f(s) ds. As stated before the definition

of the line integral, this means “sum up, along a curveC, function values f(s) ×
small arc lengths.” When f(s) represents a height, we have “height × length =
area.” When f(s) is a density (andwe use δ(s) by convention), we have “density
(mass per unit length) × length = mass.”

In the next section, we investigate a new mathematical object, the vector
field. The remaining sections of this chapter are devoted to understanding inte-
gration in the context of vector fields.
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15.1.4 Exercises

Terms and Concepts

1. Explain how a line integral can be used to find the area under a curve.

2. How does the evaluation of a line integral given as
∫
C
f(s) ds differ from a line integral given as

∮
C
f(s) ds?

3. Why are most line integrals evaluated using Theorem 15.1.3 instead of “directly” as
∫
C
f(s) ds?

4. Sketch a closed, piecewise smooth curve composed of three subcurves.

Problems

Exercise Group. In the following exercises, a planar curve C is given along with a function f that is defined over C.

Evaluate the line integral
∫
C

f(s) ds.

5. C is the line segment joining the points
(−2,−1) and (1, 2); the function is
f(x, y) = x2 + y2 + 2.

6. C is the segment of y = 3x+ 2 on [1, 2]; the
function is f(x, y) = 5x+ 2y.

7. C is the circle with radius 2 centered at the
point (4, 2); the function is f(x, y) = 3x− y.

8. C is the curve given by
r⃗(t) = ⟨cos t+ t sin t, sin t− t cos t⟩ on [0, 2π];
the function is f(x, y) = 5.

9. C is the piecewise curve composed of the line
segments that connect (0, 1) to (1, 1), then
connect (1, 1) to (1, 0); the function is
f(x, y) = x+ y2.

10. C is the piecewise curve composed of the line
segment joining the points (0, 0) and (1, 1),
along with the quarter-circle parametrized by
⟨cos t,− sin t+ 1⟩ on [0, π/2](which starts at
the point (1, 1) and ends at (0, 0); the function
is f(x, y) = x2 + y2.

Exercise Group. In the following exercises, a planar curve C is given along with a function f that is defined over C.

Set up the line integral
∫
C

f(s) ds, then approximate its value using technology.

11. C is the portion of the parabola y = 2x2+x+1
on [0, 1]; the function is f(x, y) = x2 + 2y.

12. C is the portion of the curve y = sinx on [0, π];
the function is f(x, y) = x.

13. C is the ellipse given by r⃗(t) = ⟨2 cos t, sin t⟩ on
[0, 2π]; the function is f(x, y) = 10− x2 − y2.

14. C is the portion of y = x3 on [−1, 1]; the
function is f(x, y) = 2x+ 3y + 5.

Exercise Group. In the following exercises, a parametrized curveC in space is given. Find the area above thexy-plane
that is under C.

15. C: r⃗(t) = ⟨5t, t, t2⟩ for 1 ≤ t ≤ 2. 16. C: r⃗(t) = ⟨cos t, sin t, sin(2t) + 1⟩ for
0 ≤ t ≤ 2π.

17. C: r⃗(t) = ⟨3 cos t, 3 sin t, t2⟩ for 0 ≤ t ≤ 2π. 18. C: r⃗(t) = ⟨3t, 4t, t⟩ for 0 ≤ t ≤ 1.

Exercise Group. In the following exercises, a parametrized curve C is given that represents a thin wire with density
δ. Find the mass and center of mass of the thin wire.

19. C: r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π;
δ(x, y, z) = z.

20. C: r⃗(t) = ⟨t− t2, t2− t3, t3− t4⟩ for 0 ≤ t ≤ 1;
δ(x, y, z) = x+ 2y + 2z. Use technology to
approximate the value of each integral.
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15.2 Vector Fields

We have studied functions of two and three variables, where the input of such
functions is a point (either a point in the plane or in space) and the output is a
number.

We could also create functions where the input is a point (again, either in
the plane or in space), but the output is a vector. For instance, we could create
the following function: F⃗ (x, y) = ⟨x+ y, x− y⟩, where F⃗ (2, 3) = ⟨5,−1⟩. We
are to think of F⃗ assigning the vector ⟨5,−1⟩ to the point (2, 3); in some sense,
the vector ⟨5,−1⟩ lies at the point (2, 3).

Such functions are extremely useful in any context where magnitude and
direction are important. For instance, we could create a function F⃗ that repre-
sents the electromagnetic force exerted at a point by a electromagnetic field, or
the velocity of air as it moves across an airfoil.

Because these functions are so important, we need to formally define them.

Definition 15.2.1 Vector Field.

1. A vector field in the plane is a function F⃗ (x, y)whose domain is a
subset of R2 and whose output is a two-dimensional vector:

F⃗ (x, y) = ⟨M(x, y), N(x, y)⟩.

2. A vector field in space is a function F⃗ (x, y, z) whose domain is a
subset of R3 and whose output is a three-dimensional vector:

F⃗ (x, y, z) = ⟨M(x, y, z), N(x, y, z), P (x, y, z)⟩.

This definition may seem odd at first, as a special type of function is called a
“field.” However, as the function determines a “field of vectors”, we can say the
field is defined by the function, and thus the field is a function.

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(a)

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(b)

Figure 15.2.2 Demonstrating methods of graphing vector fields
Visualizing vector fields helps cement this connection. When graphing a vec-

tor field in the plane, the general idea is to draw the vector F⃗ (x, y) at the point
(x, y). For instance, using F⃗ (x, y) = ⟨x+y, x−y⟩ as before, at (1, 1)wewould
draw ⟨2, 0⟩.

In Figure 15.2.2(a), one can see that the vector ⟨2, 0⟩ is drawn starting from
the point (1, 1). A total of 8 vectors are drawn, with the x- and y-values of
−1, 0, 1. In many ways, the resulting graph is a mess; it is hard to tell what this
field “looks like.”

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfieldintro1a.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfieldintro1b.html
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In Figure 15.2.2(b), the same field is redrawnwith each vector F⃗ (x, y) drawn
centered on the point (x, y). This makes for a better looking image, though the
long vectors can cause confusion: whenone vector intersects another, the image
looks cluttered.

A commonway to address this problem is limit the length of each arrow, and
represent long vectors with thick arrows, as done in Figure 15.2.3(a). Usually
we do not use a graph of a vector field to determine exactly the magnitude of a
particular vector. Rather, we are more concerned with the relative magnitudes
of vectors: which are bigger than others? Thus limiting the length of the vectors
is not problematic.

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3
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y

(a)

−3

−2

−1

1

2

3

−3 −2 −1 1 2 3

x

y

(b)

Figure 15.2.3 Demonstrating methods of graphing vector fields
Drawing arrows with variable thickness is best done with technology; search

thedocumentationof your favorite graphing program for terms like “vector fields”
or “slope fields” to learn how. Technology obviously allows us to plot many vec-
tors in a vector field nicely; in Figure 15.2.3(b), we see the same vector field
drawn with many vectors, and finally get a clear picture of how this vector field
behaves. (If this vector field represented the velocity of air moving across a flat
surface, we could see that the air tends to move either to the upper-right or
lower-left, and moves very slowly near the origin.)

We can similarly plot vector fields in space, as shown in Figure 15.2.4, though
it is not often done. The plots get very busy very quickly, as there are lots of ar-
rows drawn in a small amount of space. In Figure 15.2.4 the field F⃗ = ⟨−y, x, z⟩
is graphed. If one could view the graph from above, one could see the arrows
point in a circle about the z-axis. One should also note how the arrows far from
the origin are larger than those close to the origin.

It is good practice to try to visualize certain vector fields in one’s head. For
instance, consider a point mass at the origin and the vector field that represents
the gravitational force exerted by the mass at any point in the room. The field
would consist of arrows pointing toward the origin, increasing in size as they
near the origin (as the gravitational pull is strongest near the point mass).

Figure 15.2.4 Graphing a vector field
in space

15.2.1 Vector Field Notation and Del Operator

Definition 15.2.1 defines a vector field F⃗ using the notation

F⃗ (x, y) = ⟨M(x, y), N(x, y)⟩ and F⃗ (x, y, z) = ⟨M(x, y, z), N(x, y, z), P (x, y, z)⟩.

That is, the components of F⃗ are each functions of x and y (and also z in
space). As done in other contexts, we will drop the “of x, y and z” portions of

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfieldintro2a.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfieldintro2b.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfieldintro3_3D.html
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the notation and refer to vector fields in the plane and in space as

F⃗ = ⟨M,N⟩ and F⃗ = ⟨M,N,P ⟩,

respectively, as this shorthand is quite convenient.
Another item of notation will become useful: the “del operator.” Recall in

Section 13.6 how we used the symbol ∇ (pronounced “del”) to represent the
gradient of a function of two variables. That is, if z = f(x, y), then “del f”
= ∇f = ⟨fx, fy⟩.

We now define∇ to be the “del operator.” It is a vector whose components
are partial derivative operations.

In the plane,∇ =

〈
∂

∂x
,
∂

∂y

〉
; in space,∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
.

With this definition of ∇, we can better understand the gradient ∇f . As f
returns a scalar, the properties of scalar and vector multiplication gives

∇f =

〈
∂

∂x
,
∂

∂y

〉
f =

〈
∂

∂x
f,

∂

∂y
f

〉
= ⟨fx, fy⟩.

Now apply the del operator∇ to vector fields. Let F⃗ = ⟨x+sin y, y2+z, x2⟩.
We can use vector operations and find the dot product of∇ and F⃗ :

∇ · F⃗ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· ⟨x+ sin y, y2 + z, x2⟩

=
∂

∂x
(x+ sin y) +

∂

∂y
(y2 + z) +

∂

∂z
(x2)

= 1 + 2y.

We can also compute their cross products:

∇× F⃗ =

〈
∂

∂y

(
x2
)
− ∂

∂z

(
y2 + z

)
,
∂

∂z

(
x+ sin y

)
− ∂

∂x

(
x2
)
,
∂

∂x

(
y2 + z

)
− ∂

∂y

(
x+ sin y

)〉
= ⟨−1,−2x,− cos y⟩.

We do not yet know why we would want to compute the above. However,
as we next learn about properties of vector fields, wewill see how these dot and
cross products with the del operator are quite useful.

15.2.2 Divergence and Curl
Two properties of vector fields will prove themselves to be very important: di-
vergence and curl. Each is a special “derivative” of a vector field; that is, each
measures an instantaneous rate of change of a vector field.

If the vector field represents the velocity of a fluid or gas, then the divergence
of the field is a measure of the “compressibility” of the fluid. If the divergence
is negative at a point, it means that the fluid is compressing: more fluid is going
into the point than is going out. If the divergence is positive, it means the fluid
is expanding: more fluid is going out at that point than going in. A divergence of
zeromeans the same amount of fluid is going in as is going out. If the divergence
is zero at all points, we say the field is incompressible.

It turns out that the proper measure of divergence is simply∇ · F⃗ , as stated
in the following definition.
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Definition 15.2.5 Divergence of a Vector Field.

The divergence of a vector field F⃗ is

div F⃗ = ∇ · F⃗ .

• In the plane, with F⃗ = ⟨M,N⟩, div F⃗ = Mx +Ny.

• In space, with F⃗ = ⟨M,N,P ⟩, div F⃗ = Mx +Ny + Pz .

Curl is a measure of the spinning action of the field. Let F⃗ represent the flow
of water over a flat surface. If a small round cork were held in place at a point
in the water, would the water cause the cork to spin? No spin corresponds to
zero curl; counterclockwise spin corresponds to positive curl and clockwise spin
corresponds to negative curl.

In space, things are a bit more complicated. Again let F⃗ represent the flow
of water, and imagine suspending a tennis ball in one location in this flow. The
water may cause the ball to spin along an axis. If so, the curl of the vector field
is a vector (not a scalar, as before), parallel to the axis of rotation, following a
right hand rule: when the thumb of one’s right hand points in the direction of
the curl, the ball will spin in the direction of the curling fingers of the hand.

In space, it turns out the proper measure of curl is ∇ × F⃗ , as stated in the
following definition. To find the curl of a planar vector field F⃗ = ⟨M,N⟩, embed
it into space as F⃗ = ⟨M,N, 0⟩ and apply the cross product definition. SinceM
andN are functions of justx and y (and not z), all partial derivativeswith respect
to z become 0 and the result is simply ⟨0, 0, Nx −My⟩. The third component is
the measure of curl of a planar vector field.

Note that in twodimensions, curl
is a scalar quantity, while in three
dimensions, curl is a vector quan-
tity. Many authors reserve the
termcurl for the three-dimensional
vector quantity.

Definition 15.2.6 Curl of a Vector Field.

• Let F⃗ = ⟨M,N⟩ be a vector field in the plane. The curl of F⃗ is
curl F⃗ = Nx −My.

• Let F⃗ = ⟨M,N,P ⟩ be a vector field in space. The curl of F⃗ is
curl F⃗ = ∇× F⃗ = ⟨Py −Nz,Mz − Px, Nx −My⟩.

We adopt the convention of referring to curl as∇×F⃗ , regardless of whether
F⃗ is a vector field in two or three dimensions. (Some people prefer to write
(∇× F⃗ ) · k⃗ in two dimensions.)

We now practice computing these quantities.

Example 15.2.7 Computing divergence and curl of planar vector fields.

For each of the planar vector fields given below, view its graph and try
to visually determine if its divergence and curl are 0. Then compute the
divergence and curl.

1. F⃗ = ⟨y, 0⟩ (see Figure 15.2.8(a))

2. F⃗ = ⟨−y, x⟩ (see Figure 15.2.8(b))

3. F⃗ = ⟨x, y⟩ (see Figure 15.2.9(a))

4. F⃗ = ⟨cos y, sinx⟩ (see Figure 15.2.9(b))

Solution.
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1. The arrow sizes are constant along any horizontal line, so if one
were to draw a small box anywhere on the graph, it would seem
that the same amount of fluid would enter the box as exit. There-
fore it seems the divergence is zero; it is, as

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(y) +

∂

∂y
(0) = 0.

−1

1

−1 1

x

y

(a)

−1

1

−1 1

x

y

(b)

Figure 15.2.8 The vector fields in parts 1 and 2 in Example 15.2.7
At any point on the x-axis, arrows above it move to the right and
arrows below it move to the left, indicating that a cork placed on
the axis would spin clockwise. A cork placed anywhere above the
x-axis would have water above it moving to the right faster than
the water below it, also creating a clockwise spin. A clockwise
spin also appears to be created at points below the x-axis. Thus it
seems the curl should be negative (and not zero). Indeed, it is:

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(0)− ∂

∂y
(y) = −1.

2. It appears that all vectors that lie on a circle of radius r, centered
at the origin, have the same length (and indeed this is true). That
implies that the divergence should be zero: draw any box on the
graph, and any fluid coming in will lie along a circle that takes the
same amount of fluid out. Indeed, the divergence is zero, as

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(−y) +

∂

∂y
(x) = 0.

Clearly this field moves objects in a circle, but would it induce a
cork to spin? It appears that yes, it would: place a cork anywhere
in the flow, and the point of the cork closest to the origin would
feel less flow than the point on the cork farthest from the origin,
which would induce a counterclockwise flow. Indeed, the curl is
positive:

curl F⃗ = ∇×F⃗ = Nx−My =
∂

∂x
(x)− ∂

∂y
(−y) = 1−(−1) = 2.

Since the curl is constant, we conclude the induced spin is the
same no matter where one is in this field.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield1a_a.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield1a_b.html
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3. At the origin, there are many arrows pointing out but no arrows
pointing in. We conclude that at the origin, the divergence must
be positive (and not zero). If one were to draw a box anywhere
in the field, the edges farther from the origin would have larger
arrows passing through them than the edges close to the origin,
indicating that more is going from a point than going in. This indi-
cates a positive (and not zero) divergence. This is correct:

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(x) +

∂

∂y
(y) = 1 + 1 = 2.

One may find this curl to be harder to determine visually than pre-
vious examples. One might note that any arrow that induces a
clockwise spin on a cork will have an equally sized arrow inducing
a counterclockwise spin on the other side, indicating no spin and
no curl. This is correct, as

curl F⃗ = ∇× F⃗ = Nx −My =
∂

∂x
(y)− ∂

∂y
(x) = 0.

−1

1

−1 1

x

y

(a)

−6

−3

3

6

−6 −3 3 6

x

y

(b)

Figure 15.2.9 The vector fields in parts 3 and 4 in Example 15.2.7

4. One might find this divergence hard to determine visually as large
arrows appear in close proximity to small arrows, each pointing
in different directions. Instead of trying to rationalize a guess, we
compute the divergence:

div F⃗ = ∇ · F⃗ = Mx +Ny =
∂

∂x
(cos y) +

∂

∂y
(sinx) = 0.

Perhaps surprisingly, the divergence is 0. With all the loops of dif-
ferent directions in the field, one is apt to reason the curl is vari-
able. Indeed, it is:

curl F⃗ = ∇×F⃗ = Nx−My =
∂

∂x
(sinx)− ∂

∂y
(cos y) = cosx+sin y.

Depending on the values of x and y, the curl may be positive, neg-
ative, or zero.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield1b_a.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield1b_b.html
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Example 15.2.10 Computing divergence and curl of vector fields in
space.

Compute the divergence and curl of each of the following vector fields.

1. F⃗ = ⟨x2 + y + z,−x− z, x+ y⟩

2. F⃗ = ⟨exy, sin(x+ z), x2 + y⟩

Solution. We compute the divergence and curl of each field following
the definitions.

1.

div F⃗ = ∇ · F⃗ = Mx +Ny + Pz = 2x+ 0 + 0 = 2x

curl F⃗ = ∇× F⃗ = ⟨Py −Nz,Mz − Px, Nx −My⟩
= ⟨1− (−1), 1− 1,−1− (1)⟩ = ⟨2, 0,−2⟩.

For this particular field, no matter the location in space, a spin is
induced with axis parallel to ⟨2, 0,−2⟩.

2.

div F⃗ = ∇ · F⃗ = Mx +Ny + Pz = yexy + 0 + 0 = yexy

curl F⃗ = ∇× F⃗ = ⟨Py −Nz,Mz − Px, Nx −My⟩
= ⟨1− cos(x+ z),−2x, cos(x+ z)− xexy⟩

Example 15.2.11 Creating a field representing gravitational force.

The force of gravity between two objects is inversely proportional to the
square of the distance between the objects. Locate a point mass at the
origin. Create a vector field F⃗ that represents the gravitational pull of
the point mass at any point (x, y, z). Find the divergence and curl of this
field.
Solution. The point mass pulls toward the origin, so at (x, y, z), the
force will pull in the direction of ⟨−x,−y,−z⟩. To get the proper mag-
nitude, it will be useful to find the unit vector in this direction. Dividing
by its magnitude, we have

u⃗ =

〈
−x√

x2 + y2 + z2
,

−y√
x2 + y2 + z2

,
−z√

x2 + y2 + z2

〉
.

The magnitude of the force is inversely proportional to the square of
the distance between the two points. Letting k be the constant of pro-

portionality, we have the magnitude as
k

x2 + y2 + z2
. Multiplying this

magnitude by the unit vector above, we have the desired vector field:

F⃗ =

〈
−kx

(x2 + y2 + z2)3/2
,

−ky

(x2 + y2 + z2)3/2
,

−kz

(x2 + y2 + z2)3/2

〉
.

We leave it to the reader to confirm that div F⃗ = 0 and curl F⃗ = 0⃗. −1

1

−1 1

x

y

Figure 15.2.12 A vector field repre-
senting a planar gravitational force

The analogous planar vector field is given in Figure 15.2.12. Note how
all arrows point to the origin, and the magnitude gets very small when
“far” from the origin.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield3.html
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A function f(x, y) naturally induces a vector field, F⃗ = ∇f = ⟨fx, fy⟩.
Given what we learned of the gradient in Section 13.6, we know that the vectors
of F⃗ point in the direction of greatest increase of f . Because of this, f is said to
be the potential function of F⃗ . Vector fields that are the gradient of potential
functions will play an important role in the next section.

Example 15.2.13 A vector field that is the gradient of a potential func-
tion.

Let f(x, y) = 3 − x2 − 2y2 and let F⃗ = ∇f . Graph F⃗ , and find the
divergence and curl of F⃗ .
Solution. Given f , we find F⃗ = ∇f = ⟨−2x,−4y⟩. A graph of F⃗ is
given in Figure 15.2.14(a). In Figure 15.2.14(b), the vector field is given
along with a graph of the surface itself; one can see how each vector is
pointing in the direction of “steepest uphill”, which, in this case, is not
simply just “toward the origin.”

−1

1

−1 1

x

y

(a) (b)

Figure 15.2.14A graph of a function f(x, y) and the vector field F⃗ = ∇f
in Example 15.2.13

We leave it to the reader to confirm that div F⃗ = −6 and curl F⃗ = 0.

There are some important concepts visited in this section that will be revis-
ited in subsequent sections and again at the very end of this chapter. One is:
given a vector field F⃗ , both div F⃗ and curl F⃗ are measures of rates of change of
F⃗ . The divergence measures how much the field spreads (diverges) at a point,
and the curl measures how much the field twists (curls) at a point. Another im-
portant concept is this: given z = f(x, y), the gradient ∇f is also a measure
of a rate of change of f . We will see how the integrals of these rates of change
produce meaningful results.

This section introduces the concept of a vector field. The next section “ap-
plies calculus” to vector fields. A common application is this: let F⃗ be a vector
field representing a force (hence it is called a “force field,” though this name has
a decidedly comic-book feel) and let a particle move along a curve C under the
influence of this force. What work is performed by the field on this particle? The
solution lies in correctly applying the concepts of line integrals in the context of
vector fields.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield4a.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_vectorfield4b_3D.html
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15.2.3 Exercises

Terms and Concepts

1. Give two quantities that can be represented by a vector field in the plane or in space.
2. In your own words, describe what it means for a vector field to have a negative divergence at a point.
3. In your own words, describe what it means for a vector field to have a negative curl at a point.

4. The divergence of a vector field F⃗ at a particular point is 0. Does this mean that F⃗ is incompressible? Why/why
not?

Problems

Exercise Group. In the following exercises, sketch the given vector field over the rectangle with opposite corners
(−2,−2) and (2, 2), sketching one vector for every point with integer coordinates (i.e., at (0, 0), (1, 2), etc.).

5. F⃗ = ⟨x, 0⟩ 6. F⃗ = ⟨0, x⟩

7. F⃗ = ⟨1,−1⟩ 8. F⃗ = ⟨y2, 1⟩

Exercise Group. In the following exercises, find the divergence and curl of the given vector field.

9. F⃗ = ⟨x, y2⟩ 10. F⃗ = ⟨−y2, x⟩

11. F⃗ = ⟨cos(xy), sin(xy)⟩ 12. F⃗ =

〈
−2x

(x2 + y2)2
,

−2y

(x2 + y2)2

〉
13. F⃗ = ⟨x+ y, y + z, x+ z⟩ 14. F⃗ =

〈
x2 + z2, x2 + y2, y2 + z2

〉
15. F⃗ = ∇f , where f(x, y) = 1

2x
2 + 1

3y
3. 16. F⃗ = ∇f , where f(x, y) = x2y.

17. F⃗ = ∇f , where f(x, y, z) = x2y + sin z. 18. F⃗ = ∇f , where f(x, y, z) =
1

x2 + y2 + z2
.
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15.3 Line Integrals over Vector Fields

Suppose a particle moves along a curveC under the influence of an electromag-
netic force described by a vector field F⃗ . Since a force is inducing motion, work
is performed. How can we calculate how much work is performed?

Recall that when moving in a straight line, if F⃗ represents a constant force
and d⃗ represents the direction and length of travel, then work is simply W =
F⃗ · d⃗. However, we generally want to be able to calculate work even if F⃗ is not
constant and C is not a straight line.

As we have practiced many times before, we can calculate work by first ap-
proximating, then refining our approximation through a limit that leads to inte-
gration.

Assume as we did in Section 15.1 that C can be parametrized by the arc
length parameter s. Over a short piece of the curve with length ds, the curve
is approximately straight and our force is approximately constant. The straight-
line direction of this short length of curve is given by T⃗ , the unit tangent vector;
let d⃗ = T⃗ ds, which gives the direction and magnitude of a small section of C.
Thus work over this small section of C is F⃗ · d⃗ = F⃗ · T⃗ ds.

Summing up all the work over these small segments gives an approximation
of the work performed. By taking the limit as ds goes to zero, and hence the
number of segments approaches infinity, we can obtain the exact amount of
work. Following the logic presented at the beginning of this chapter in the Inte-
gration Review, we see that

W =

∫
C

F⃗ · T⃗ ds,

a line integral.
This line integral is beautiful in its simplicity, yet is not so useful in making

actual computations (largely because the arc length parameter is so difficult to
work with). To compute actual work, we need to parametrize C with another
parameter t via a vector-valued function r⃗(t). As stated in Section 15.1, ds =

∥r⃗ ′(t)∥ dt, and recall that T⃗ = r⃗ ′(t)/ ∥r⃗ ′(t)∥. Thus

W =

∫
C

F⃗ · T⃗ ds =

∫
C

F⃗ · r⃗ ′(t)

∥r⃗ ′(t)∥
∥r⃗ ′(t)∥ dt

=

∫
C

F⃗ · r⃗ ′(t) dt =
∫
C

F⃗ · dr⃗, (15.3.1)

where the final integral uses the differential dr⃗ for r⃗ ′(t) dt.

15.3.1 Evaluating Line Integrals over Vector Fields
These integrals are knownas line integrals over vector fields. By contrast, the line
integrals we dealt with in Section 15.1 are sometimes referred to as line integrals
over scalar fields. Just as a vector field is defined by a function that returns a
vector, a scalar field is a function that returns a scalar, such as z = f(x, y). We
waited until now to introduce this terminology so we could contrast the concept
with vector fields.

We formally define this line integral, then give examples and applications.

Definition 15.3.1 Line Integral Over A Vector Field.

Let F⃗ be a vector fieldwith continuous components definedon a smooth
curve C, parametrized by r⃗(t), and let T⃗ be the unit tangent vector of
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r⃗(t). The line integral over F⃗ along C is∫
C

F⃗ · dr⃗ =

∫
C

F⃗ · T⃗ ds.

In Definition 15.3.1, note how the dot product F⃗ · T⃗ is just a scalar. There-
fore, this new line integral is really just a special kind of line integral found in
Section 15.1; letting f(s) = F⃗ (s) · T⃗ (s), the right-hand side simply becomes∫
C
f(s) ds, and we can use the techniques of that section to evaluate the inte-

gral. We combine those techniques, along with parts of Equation (15.3.1), to
clearly state how to evaluate a line integral over a vector field in the following
Key Idea.

Key Idea 15.3.2 Evaluating a Line Integral Over A Vector Field.

Let F⃗ be a vector fieldwith continuous components definedon a smooth
curve C, parametrized by r⃗(t), a ≤ t ≤ b, where r⃗ is continuously dif-
ferentiable. Then∫

C

F⃗ · T⃗ ds =

∫
C

F⃗ · dr⃗ =

∫ b

a

F⃗
(
r⃗(t)

)
· r⃗ ′(t) dt.

An important concept implicit in this Key Idea: we can use any continuously
differentiable parametrization r⃗(t) of C that preserves the orientation of C:
there isn’t a “right” one. In practice, choose one that seems easy to work with.

Notation note: the above Definition and Key Idea implicitly evaluate F⃗ along
the curve C, which is parametrized by r⃗(t). For instance, if F⃗ = ⟨x+ y, x− y⟩
and r⃗(t) = ⟨t2, cos t⟩, then evaluating F⃗ alongC means substituting the x- and
y-components of r⃗(t) in for x and y, respectively, in F⃗ . Therefore, along C,
F⃗ = ⟨x + y, x − y⟩ =

〈
t2 + cos t, t2 − cos t

〉
. Since we are substituting the

output of r⃗(t) for the input of F⃗ , we write this as F⃗
(
r⃗(t)

)
. This is a slight abuse

of notation as technically the input of F⃗ is to be a point, not a vector, but this
shorthand is useful.

We use an example to practice evaluating line integrals over vector fields.

Example 15.3.3 Evaluating a line integral over a vector field: computing
work.

Two particles move from (0, 0) to (1, 1) under the influence of the force
field F⃗ = ⟨x, x + y⟩. One particle follows C1, the line y = x; the
other follows C2, the curve y = x4, as shown in Figure 15.3.4. Force
is measured in newtons and distance is measured in meters. Find the
work performed by each particle.

1

1

x

y

y = x

y = x4

Figure 15.3.4 Paths through a vector
field in Example 15.3.3

Solution. To compute work, we need to parametrize each path. We use
r⃗1(t) = ⟨t, t⟩ to parametrize y = x, and let r⃗2(t) = ⟨t, t4⟩ parametrize
y = x4; for each, 0 ≤ t ≤ 1.
Along the straight-line path, F⃗

(
r⃗1(t)

)
= ⟨x, x+y⟩ = ⟨t, t+ t⟩ = ⟨t, 2t⟩.

We find r⃗ ′1(t) = ⟨1, 1⟩. The integral that computes work is:∫
C1

F⃗ · dr⃗ =

∫ 1

0

⟨t, 2t⟩ · ⟨1, 1⟩ dt

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_livf1.html
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=

∫ 1

0

3t dt

=
3

2
t2
∣∣∣1
0
= 1.5 joules .

Along the curve y = x4, F⃗
(
r⃗2(t)

)
= ⟨x, x+ y⟩ =

〈
t, t+ t4

〉
. We find

r⃗ ′2(t) =
〈
1, 4t3

〉
. The work performed along this path is∫

C2

F⃗ · dr⃗ =

∫ 1

0

〈
t, t+ t4

〉
·
〈
1, 4t3

〉
dt

=

∫ 1

0

(
t+ 4t4 + 4t7

)
dt

=
(1
2
t2 +

4

5
t5 +

1

2
t8
)∣∣∣1

0
= 1.8 joules .

Note how differing amounts of work are performed along the different
paths. This should not be too surprising: the force is variable, one path
is longer than the other, etc.

Example 15.3.5 Evaluating a line integral over a vector field: computing
work.

Two particles move from (−1, 1) to (1, 1) under the influence of a force
field F⃗ = ⟨y, x⟩. One moves along the curve C1, the parabola defined
by y = 2x2−1. The other particlemoves along the curveC2, the bottom
half of the circle defined by x2+(y−1)2 = 1, as shown in Figure 15.3.6.
Force is measured in pounds and distances are measured in feet. Find
the work performed by moving each particle along its path.

−1

1

−1 1

x

y

y = 2x2 − 1

x2 + (y − 1)2 = 1

Figure 15.3.6 Paths through a vector
field in Example 15.3.5

Solution. We start by parametrizing C1: the parametrization r⃗1(t) =〈
t, 2t2 − 1

〉
is straightforward, giving r⃗ ′1 = ⟨1, 4t⟩. On C1, F⃗

(
r⃗1(t)

)
=

⟨y, x⟩ =
〈
2t2 − 1, t

〉
.

Computing the work along C1, we have:∫
C1

F⃗ · dr⃗1 =

∫ 1

−1

〈
2t2 − 1, t

〉
· ⟨1, 4t⟩ dt

=

∫ 1

−1

(
2t2 − 1 + 4t2

)
dt = 2 ft-lbs .

For C2, it is probably simplest to parametrize the half circle using sine
and cosine. Recall that r⃗(t) = ⟨cos t, sin t⟩ is a parametrization of the
unit circle on 0 ≤ t ≤ 2π; we add 1 to the second component to shift the
circle up one unit, then restrict the domain to π ≤ t ≤ 2π to obtain only
the lower half, giving r⃗2(t) = ⟨cos t, sin t+ 1⟩, π ≤ t ≤ 2π, and hence
r⃗ ′2(t) = ⟨− sin t, cos t⟩ and F⃗

(
r⃗2(t)

)
= ⟨y, x⟩ = ⟨sin t+ 1, cos t⟩.

Computing the work along C2, we have:∫
C2

F⃗ · dr⃗2 =

∫ 2π

π

⟨sin t+ 1, cos t⟩ · ⟨− sin t, cos t⟩ dt

=

∫ 2π

π

(
− sin2 t− sin t+ cos2 t

)
dt = 2 ft-lbs .

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_livf2.html
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Note how the work along C1 and C2 in this example is the same. We’ll
address why later in this section when conservative fields and path inde-
pendence are discussed.

15.3.2 Properties of Line Integrals Over Vector Fields
Line integrals over vector fields share the same properties as line integrals over
scalar fields, with one important distinction. The orientation of the curve C
matters with line integrals over vector fields, whereas it did not matter with line
integrals over scalar fields.

It is relatively easy to see why. Let C be the unit circle. The area under
a surface over C is the same whether we traverse the circle in a clockwise or
counterclockwise fashion, hence the line integral over a scalar field on C is the
same irrespective of orientation. On the other hand, if we are computing work
done by a force field, direction of travel definitely matters. Opposite directions
create opposite signs when computing dot products, so traversing the circle in
opposite directions will create line integrals that differ by a factor of−1.

Theorem 15.3.7 Properties of Line Integrals Over Vector Fields.

1. Let F⃗ and G⃗ be vector fields with continuous components defined
on a smooth curve C, parametrized by r⃗(t), and let k1 and k2 be
scalars. Then∫

C

(
k1F⃗ + k2G⃗

)
· dr⃗ = k1

∫
C

F⃗ · dr⃗ + k2

∫
C

G⃗ · dr⃗.

2. Let C be piecewise smooth, composed of smooth components C1

and C2. Then∫
C

F⃗ · dr⃗ =

∫
C1

F⃗ · dr⃗ +
∫
C2

F⃗ · dr⃗.

3. Let C∗ be the curve C with opposite orientation, parametrized by
r⃗ ∗. Then ∫

C

F⃗ · dr⃗ = −
∫
C∗

F⃗ · dr⃗ ∗.

We demonstrate using these properties in the following example.

Example 15.3.8 Using properties of line integrals over vector fields.

Let F⃗ = ⟨3(y − 1/2), 1⟩ and let C be the path that starts at (0, 0), goes
to (1, 1) along the curve y = x3, then returns to (0, 0) along the line
y = x, as shown in Figure 15.3.9. Evaluate

∮
C
F⃗ · dr⃗.

1

1

x

y

Figure 15.3.9 The vector field and
curve in Example 15.3.8

Solution. As C is piecewise smooth, we break it into two components
C1 andC2, whereC1 follows the curve y = x3 andC2 follows the curve
y = x.
We parametrize C1 with r⃗1(t) =

〈
t, t3

〉
on 0 ≤ t ≤ 1, with r⃗ ′1(t) =〈

1, 3t2
〉
. We will use F⃗

(
r⃗1(t)

)
=
〈
3(t3 − 1/2), 1

〉
.

While we always have unlimited ways in which to parametrize a curve,
there are 2 “direct” methods to choose from when parametrizing C2.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_livf3.html
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The parametrization r⃗2(t) = ⟨t, t⟩, 0 ≤ t ≤ 1 traces the correct line
segment but with the wrong orientation. Using Property 3 of Theo-
rem 15.3.7, we can use this parametrization and negate the result.
Another choice is to use the techniques of Section 11.5 to create the line
with the orientation we desire. We wish to start at (1, 1) and travel in
the d⃗ = ⟨−1,−1⟩ direction for one length of d⃗, giving equation ℓ⃗(t) =
⟨1, 1⟩+ t ⟨−1,−1⟩ = ⟨1− t, 1− t⟩ on 0 ≤ t ≤ 1.
Either choice is fine; we choose r⃗2(t) to practice using line integral prop-
erties. We find r⃗ ′2(t) = ⟨1, 1⟩ and F⃗

(
r⃗2(t)

)
= ⟨3(t− 1/2), 1⟩.

Evaluating the line integral (note how we subtract the integral over C2

as the orientation of r⃗2(t) is opposite):∮
C

F⃗ · dr⃗ =

∫
C1

F⃗ · dr⃗1 −
∫
C2

F⃗ · dr⃗2

=

∫ 1

0

〈
3(t3 − 1/2), 1

〉
·
〈
1, 3t2

〉
dt−

∫ 1

0

⟨3(t− 1/2), 1⟩ · ⟨1, 1⟩ dt

=

∫ 1

0

(
3t3 + 3t2 − 3/2

)
dt−

∫ 1

0

(
3t− 1/2

)
dt

=
(
1/4
)
−
(
1
)

= −3/4.

If we interpret this integral as computingwork, the negativework implies
that themotion ismostly against the direction of the force, which seems
plausible when we look at Figure 15.3.9.

Example 15.3.10 Evaluating a line integral over a vector field in space.

Let F⃗ = ⟨−y, x, 1⟩, and let C be the portion of the helix given by
r⃗(t) = ⟨cos t, sin t, t/(2π)⟩ on [0, 2π], as shown in Figure 15.3.11. Eval-
uate

∫
C
F⃗ · dr⃗.

Figure 15.3.11 The graph of r⃗(t) in Ex-
ample 15.3.10

Solution. A parametrization is already given for C, so we just need to
find F⃗

(
r⃗(t)

)
and \vec r ’(t).

We have F⃗
(
r⃗(t)

)
= ⟨− sin t, cos t, 1⟩ and r⃗ ′(t) =

⟨− sin t, cos t, 1/(2π)⟩. Thus∫
C

F⃗ · dr⃗ =

∫ 2π

0

⟨− sin t, cos t, 1⟩ · ⟨− sin t, cos t, 1/(2π)⟩ dt

=

∫ 2π

0

(
sin2 t+ cos2 t+

1

2π

)
dt

= 2π + 1 ≈ 7.28

15.3.3 The Fundamental Theorem of Line Integrals
We are preparing to make important statements about the value of certain line
integrals over special vector fields. Before we can do that, we need to define
some terms that describe the domains over which a vector field is defined.

A region in the plane is connected if any twopoints in the region canbe joined
by a piecewise smooth curve that lies entirely in the region. In Figure 15.3.12,
sets R1 and R2 are connected; set R3 is not connected, though it is composed

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_livf4_3D.html
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of two connected subregions.
A region is simply connected if every simple closed curve that lies entirely

in the region can be continuously deformed (shrunk) to a single point without
leaving the region. (A curve is simple if it does not cross itself.) In Figure 15.3.12,
only setR1 is simply connected. RegionR2 is not simply connected as any closed
curve that goes around the “hole” in R2 cannot be continuously shrunk to a
single point. AsR3 is not even connected, it cannot be simply connected, though
again it consists of two simply connected subregions.

We have applied these terms to regions of the plane, but they can be ex-
tended intuitively to domains in space (and hyperspace). In Figure 15.3.13(a),
the domain bounded by the sphere (at left) and the domain with a subsphere
removed (at right) are both simply connected. Any simple closed path that lies
entirely within these domains can be continuously deformed into a single point.
In Figure 15.3.13(a), neither domain is simply connected. A left, the ball has a
hole that extends its length and the pictured closed path cannot be deformed
to a point. At right, two paths are illustrated on the torus that cannot be shrunk
to a point.

We will use the terms connected and simply connected in subsequent defi-
nitions and theorems.

R1

R2

R3

Figure 15.3.12 R1 is simply con-
nected;R2 is connected, but not sim-
ply connected;R3 is not connected

(a) (b)

Figure 15.3.13 The domains in (a) are simply connected, while the domains in
(b) are not

Recall how in Example 15.3.5 particles moved from A = (−1, 1) to B =
(1, 1) along two different paths, wherein the same amount of work was per-
formed along each path. It turns out that regardless of the choice of path from
A to B, the amount of work performed under the field F⃗ = ⟨y, x⟩ is the same.
Since our expectation is that differing amounts of work are performed along dif-
ferent paths, we give such special fields a name.

Definition 15.3.14 Conservative Field, Path Independent.

Let F⃗ be a vector field defined on an open, connected domainD in the
plane or in space containing points A and B. If the line integral

∫
C
F⃗ ·

dr⃗ has the same value for all choices of pathsC starting atA and ending
atB, then

• F⃗ is a conservative field and

• The line integral
∫
C
F⃗ · dr⃗ is path independent and can be written

as ∫
C

F⃗ · dr⃗ =

∫ B

A

F⃗ · dr⃗.

When F⃗ is a conservative field, the line integral from pointsA toB is some-
times written as

∫ B

A
F⃗ · dr⃗ to emphasize the independence of its value from the

choice of path; all that matters are the beginning and ending points of the path.
How can we tell if a field is conservative? To show a field F⃗ is conservative

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_simply_connected_spacea_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_simply_connected_spaceb_3D.html
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using the definition, we need to show that all line integrals from points A to B
have the same value. It is equivalent to show that all line integrals over closed
paths C are 0. Each of these tasks are generally nontrivial.

There is a simpler method. Consider the surface defined by z = f(x, y) =
xy. We can compute the gradient of this function: ∇f = ⟨fx, fy⟩ = ⟨y, x⟩.
Note that this is the field from Example 15.3.5, which we have claimed is con-
servative. We will soon give a theorem that states that a field F⃗ is conservative
if, and only if, it is the gradient of some scalar function f . To show F⃗ is con-
servative, we need to determine whether or not F⃗ = ∇f for some function
f . (We’ll later see that there is a yet simpler method). To recognize the special
relationship between F⃗ and f in this situation, f is given a name.

Definition 15.3.15 Potential Function.

Let f be a differentiable function defined on a domain D in the plane
or in space (i.e., z = f(x, y) or w = f(x, y, z)) and let F⃗ = ∇f , the
gradient of f . Then f is a potential function of F⃗ .

We now state the Fundamental Theorem of Line Integrals, which connects
conservative fields and path independence to fields with potential functions.

Theorem 15.3.16 Fundamental Theorem of Line Integrals.

Let F⃗ be a vector fieldwhose components are continuous on a connected
domainD in the plane or in space, let A and B be any points inD, and
let C be any path inD starting at A and ending at B.

1. F⃗ is conservative if and only if there exists a differentiable function
f such that F⃗ = ∇f .

2. If F⃗ is conservative, then∫
C

F⃗ · dr⃗ =

∫ B

A

F⃗ · dr⃗ = f(B)− f(A).

Once again considering Example 15.3.5, we have A = (−1, 1), B = (1, 1)

and F⃗ = ⟨y, x⟩. In that example, we evaluated two line integrals from A to
B and found the value of each was 2. Note that f(x, y) = xy is a potential
function for F⃗ . Following the Fundamental Theorem of Line Integrals, consider
f(B)− f(A):

f(B)− f(A) = f(1, 1)− f(−1, 1) = 1− (−1) = 2,

the same value given by the line integrals.
We practice using this theorem again in the next example.

Example 15.3.17 Using the Fundamental Theorem of Line Integrals.

Let F⃗ =
〈
3x2y + 2x, x3 + 1

〉
, A = (0, 1) and B = (1, 4). Use the

first part of the Fundamental Theorem of Line Integrals to show that
F⃗ is conservative, then choose any path from A to B and confirm the
second part of the theorem.
Solution. To show F⃗ is conservative, we need to find z = f(x, y) such
that F⃗ = ∇f = ⟨fx, fy⟩. That is, we need to find f such that fx =
3x2y + 2x and fy = x3 + 1. As all we know about f are its partial
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derivatives, we recover f by integration:∫
∂f

∂x
dx = f(x, y) + C(y).

Note how the constant of integration is more than “just a constant”: it
is anything that acts as a constant when taking a derivative with respect
to x. Any function that is a function of y (containing no x’s) acts as a
constant when deriving with respect to x.
Integrating fx in this example gives:∫

∂f

∂x
dx =

∫
(3x2y + 2x) dx = x3y + x2 + C1(y).

Likewise, integrating fy with respect to y gives:∫
∂f

∂y
dy =

∫
(x3 + 1) dy = x3y + y + C2(x).

These two results should be equal with appropriate choices ofC1(y) and
C2(x):

x3y + x2 + C1(y) = x3y + y + C2(x) ⇒ C2(x) = x2 and C1(y) = y.

We find f(x, y) = x3y + x2 + y, a potential function of F⃗ . (If F⃗ were
not conservative, no choice of C2(x) and C1(y) would give equality.)
By the Fundamental Theorem of Line Integrals, regardless of the path
from A toB, ∫ B

A

F⃗ · dr⃗ = f(B)− f(A)

= f(1, 4)− f(0, 1)

= 9− 1 = 8.

To illustrate the validity of the Fundamental Theorem, we pick a path
from A to B. The line between these two points would be simple to
construct; we choose a slightly more complicated path by choosing the
parabola y = x2 + 2x + 1. This leads to the parametrization r⃗(t) =〈
t, t2 + 2t+ 1

〉
, 0 ≤ t ≤ 1, with r⃗ ′(t) = ⟨t, 2t+ 2⟩. Thus∫

C

F⃗ · dr⃗ =

∫
C

F⃗
(
r⃗(t)

)
· r⃗ ′(t) dt

=

∫ 1

0

〈
3(t)(t2 + 2t+ 1) + 2t, t3 + 1

〉
· ⟨t, 2t+ 2⟩ dt

=

∫ 1

0

(
5t4 + 8t3 + 3t2 + 4t+ 2

)
dt

=
(
t5 + 2t4 + t3 + 2t2 + 2t

)∣∣∣1
0

= 8,

which matches our previous result.

The Fundamental Theorem of Line Integrals states that we can determine
whether or not F⃗ is conservative by determining whether or not F⃗ has a po-
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tential function. This can be difficult. A simpler method exists if the domain of
F⃗ is simply connected (not just connected as needed in the Fundamental Theo-
rem of Line Integrals), which is a reasonable requirement. We state this simpler
method as a theorem.

Theorem 15.3.18 Curl of Conservative Fields.

Let F⃗ be a vector field whose components have continuous partial deriv-
atives on a simply connected domainD in the plane or in space. Then F⃗
is conservative if and only if curl F⃗ = 0 or 0⃗, in 2D or 3D, respectively.

In Example 15.3.17, we showed that F⃗ = ⟨3x2y+2x, x3+1⟩ is conservative
by finding a potential function for F⃗ . Using the above theorem, we can show
that F⃗ is conservative much more easily by computing its curl:

curl F⃗ = Nx −My = 3x2 − 3x2 = 0.
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15.3.4 Exercises

Terms and Concepts

1. T/F: In practice, the evaluation of line integrals over vector fields involves computing the magnitude of a vector-
valued function.

2. Let F⃗ (x, y) be a vector field in the plane and let r⃗(t) be a two-dimensional vector-valued function. Why is
“F⃗
(
r⃗(t)

)
” an “abuse of notation”?

3. T/F: The orientation of a curve C matters when computing a line integral over a vector field.
4. T/F: The orientation of a curve C matters when computing a line integral over a scalar field.

5. Under “reasonable conditions,” if curl F⃗ = 0⃗, what can we conclude about the vector field F⃗ ?

6. Let F⃗ be a conservative field and let C be a closed curve. Why are we able to conclude that
∮
C
F⃗ · dr⃗ = 0?

Problems

Exercise Group. In the following exercises, a vector field F⃗ and a curve C are given. Evaluate
∫
C

F⃗ · dr⃗.

7. F⃗ = ⟨y, y2⟩; C is the line segment from (0, 0)
to (3, 1).

8. F⃗ = ⟨x, x+ y⟩; C is the portion of the parabola
y = x2 from (0, 0) to (1, 1).

9. F⃗ = ⟨y, x⟩; C is the top half of the unit circle,
beginning at (1, 0) and ending at (−1, 0).

10. F⃗ = ⟨xy, x⟩; C is the portion of the curve
y = x3 on−1 ≤ x ≤ 1.

11. F⃗ = ⟨z, x2, y⟩; C is the line segment from
(1, 2, 3) to (4, 3, 2).

12. F⃗ = ⟨y + z, x+ z, x+ y⟩; C is the helix
r⃗(t) = ⟨cos t, sin t, t/(2π)⟩ on 0 ≤ t ≤ 2π.

Exercise Group. In the following exercises, find the work performed by the force field F⃗ moving a particle along the
path C.

13. F⃗ = ⟨y, x2⟩ N; C is the segment of the line
y = x from (0, 0) to (1, 1), where distances are
measured in meters.

14. F⃗ = ⟨y, x2⟩ N; C is the portion of y =
√
x from

(0, 0) to (1, 1), where distances are measured in
meters.

15. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0)
to (2, 4, 8) via r⃗(t) = ⟨t, t2, t3⟩ on 0 ≤ t ≤ 2,
where distance are measured in feet.

16. F⃗ = ⟨2xy, x2, 1⟩ lbs; C is the path from (0, 0, 0)
to (2, 4, 8) via r⃗(t) = ⟨t, 2t, 4t⟩ on 0 ≤ t ≤ 2,
where distance are measured in feet.

Exercise Group. In the following exercises, a conservative vector field F⃗ and a curve C are given.

(a) Find a potential function f for F⃗ .

(b) Compute curl F⃗ .

(c) Evaluate
∫
C

F⃗ · dr⃗ directly, i.e., using Key Idea 15.3.2.

(d) Evaluate
∫
C

F⃗ · dr⃗ using the Fundamental Theorem of Line Integrals.

17. F⃗ = ⟨y + 1, x⟩, C is the line segment from
(0, 1) to (1, 0).

18. F⃗ = ⟨2x+ y, 2y + x⟩, C is curve parametrized
by r⃗(t) = ⟨t2 − t, t3 − t⟩ on 0 ≤ t ≤ 1.

19. F⃗ = ⟨2xyz, x2z, x2y⟩, C is curve parametrized
by r⃗(t) = ⟨2t+ 1, 3t− 1, t⟩ on 0 ≤ t ≤ 2.

20. F⃗ = ⟨2x, 2y, 2z⟩, C is curve parametrized by
r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on 0 ≤ t ≤ 2π.

21. Prove part of Theorem 15.3.18: let F⃗ = ⟨M,N,P ⟩ be a conservative vector field. Show that curl F⃗ = 0.
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15.4 Flow, Flux, Green’s Theorem and the Divergence
Theorem

15.4.1 Flow and Flux
Line integrals over vector fields have the natural interpretation of computing
work when F⃗ represents a force field. It is also common to use vector fields to
represent velocities. In these cases, the line integral

∫
C
F⃗ ·dr⃗ is said to represent

flow.

1

1

x

y

C1

C2

C3

Figure 15.4.1 Illustrating the princi-
ples of flow and flux

Let the vector field F⃗ = ⟨1, 0⟩ represent the velocity of water as it moves
across a smooth surface, depicted in Figure 15.4.1. A line integral over C will
compute “how much water is moving along the path C.”

In the figure, “all” of thewater aboveC1 is moving along that curve, whereas
“none” of the water aboveC2 is moving along that curve (the curve and the flow
of water are at right angles to each other). Because C3 has nonzero horizontal
and vertical components, “some” of the water above that curve is moving along
the curve.

WhenC is a closed curve, we call flow circulation, represented by
∮
C
F⃗ · dr⃗.

The “opposite” of flow is flux, a measure of “how much water is moving
across the path C.” If a curve represents a filter in flowing water, flux measures
how much water will pass through the filter. Considering again Figure 15.4.1,
we see that a screen alongC1 will not filter any water as no water passes across
that curve. Because of the nature of this field, C2 and C3 each filter the same
amount of water per second.

The terms “flow” and “flux” are used apart from velocity fields, too. Flow is
measured by

∫
C
F⃗ · dr⃗, which is the same as

∫
C
F⃗ · T⃗ ds by Definition 15.3.1.

That is, flow is a summation of the amount of F⃗ that is tangent to the curve C.
By contrast, flux is a summation of the amount of F⃗ that is orthogonal to the

direction of travel. To capture this orthogonal amount of F⃗ , we use
∫
C
F⃗ · n⃗ ds

to measure flux, where n⃗ is a unit vector orthogonal to the curveC. (Later, we’ll
measure flux across surfaces, too. For example, in physics it is useful tomeasure
the amount of a magnetic field that passes through a surface.)

How is n⃗ determined? We’ll later see that ifC is a closed curve, we’ll want n⃗
to point to the outside of the curve (measuring howmuch is “going out”). We’ll
also adopt the convention that closed curves should be traversed counterclock-
wise.

(If C is a complicated closed curve, it can be difficult to determine what
“counterclockwise” means. Consider Figure 15.4.2. Seeing the curve as a whole,
we know which way “counterclockwise” is. If we zoom in on pointA, one might
incorrectly choose to traverse the path in the wrong direction. So we offer this
definition: a closed curve is being traversed counterclockwise if the outside is to
the right of the path and the inside is to the left.)

1

−1

−1 1

x

y

A

Figure 15.4.2 Determining “counter-
clockwise” is not always simple with-
out a good definition

When a curve C is traversed counterclockwise by r⃗(t) = ⟨f(t), g(t)⟩, we
rotate T⃗ clockwise 90◦ to obtain n⃗:

T⃗ =
⟨f ′(t), g′(t)⟩

∥r⃗ ′(t)∥
⇒ n⃗ =

⟨g′(t),−f ′(t)⟩
∥r⃗ ′(t)∥

.

Letting F⃗ = ⟨M,N⟩, we calculate flux as:∫
C

F⃗ · n⃗ ds =

∫
C

F⃗ · ⟨g
′(t),−f ′(t)⟩
∥r⃗ ′(t)∥

∥r⃗ ′(t)∥ dt

=

∫
C

⟨M,N⟩ · ⟨g′(t),−f ′(t)⟩ dt

=

∫
C

(
M g′(t)−N f ′(t)

)
dt

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_flowfluxintro.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_fluxcounterclockwise.html
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=

∫
C

M g′(t) dt−
∫
C

N f ′(t) dt.

As thex and y components of r⃗(t) are f(t) and g(t) respectively, the differentials
of x and y are dx = f ′(t)dt and dy = g′(t)dt. We can then write the above
integrals as:

=

∫
C

M dy −
∫
C

N dx.

This is often written as one integral (not incorrectly, though somewhat confus-
ingly, as this one integral has two “d ’s”):

=

∫
C

M dy −N dx.

We summarize the above in the following definition.

Definition 15.4.3 Flow, Flux.

Let F⃗ = ⟨M,N⟩ be a vector field with continuous components defined
on a smooth curve C, parametrized by r⃗(t) = ⟨f(t), g(t)⟩, let T⃗ be the
unit tangent vector of r⃗(t), and let n⃗be the clockwise 90◦degree rotation
of T⃗ .

• The flow of F⃗ along C is∫
C

F⃗ · T⃗ ds =

∫
C

F⃗ · dr⃗.

• The flux of F⃗ across C is∫
C

F⃗ · n⃗ ds =

∫
C

M dy −N dx =

∫
C

(
M g′(t)−N f ′(t)

)
dt.

This definition of flow also holds for curves in space, though it does notmake
sense to measure “flux across a curve” in space.

Measuring flow is essentially the same as finding work performed by a force
as done in the previous examples. Therefore we practice finding only flux in the
following example.

Example 15.4.4 Finding flux across curves in the plane.

Curves C1 and C2 each start at (1, 0) and end at (0, 1), where C1 fol-
lows the line y = 1 − x and C2 follows the unit circle, as shown in
Figure 15.4.5. Find the flux across both curves for the vector fields
F⃗1 = ⟨y,−x+ 1⟩ and F⃗2 = ⟨−x, 2y − x⟩.
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1

1

x

y

C2

C1

(a)

1

1

x

y

C2

C1

(b)

Figure 15.4.5 Illustrating the curves and vector fields in Example 15.4.4.
In (a) the vector field is F⃗1, and in (b) the vector field is F⃗2.

Solution. We begin by finding parametrizations of C1 and C2. As
done in Example 15.3.8, parametrize C1 by creating the line that starts
at (1, 0) andmoves in the ⟨−1, 1⟩ direction: r⃗1(t) = ⟨1, 0⟩+t ⟨−1, 1⟩ =
⟨1− t, t⟩, for 0 ≤ t ≤ 1. We parametrize C2 with the familiar r⃗2(t) =
⟨cos t, sin t⟩ on 0 ≤ t ≤ π/2. For reference later, we give each function
and its derivative below:

r⃗1(t) = ⟨1− t, t⟩ , r⃗ ′1(t) = ⟨−1, 1⟩ .

r⃗2(t) = ⟨cos t, sin t⟩ , r⃗ ′2(t) = ⟨− sin t, cos t⟩ .

When F⃗ = F⃗1 = ⟨y,−x+ 1⟩ (as shown in Figure 15.4.5(a)), over C1

we haveM = y = t and N = −x + 1 = −(1 − t) + 1 = t. Using
Definition 15.4.3, we compute the flux:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ 1

0

(
t(1)− t(−1)

)
dt

=

∫ 1

0

2t dt

= 1.

Over C2, we haveM = y = sin t and N = −x + 1 = 1 − cos t. Thus
the flux across C2 is:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ π/2

0

(
(sin t)(cos t)− (1− cos t)(− sin t)

)
dt

=

∫ π/2

0

sin t dt

= 1.

Notice how the flux was the same across both curves. This won’t hold
true when we change the vector field.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_flux1a.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_flux1b.html
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When F⃗ = F⃗2 = ⟨−x, 2y − x⟩ (as shown in Figure 15.4.5(b)), over C1

we haveM = −x = t − 1 and N = 2y − x = 2t − (1 − t) = 3t − 1.
Computing the flux across C1:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ 1

0

(
(t− 1)(1)− (3t− 1)(−1)

)
dt

=

∫ 1

0

(4t− 2) dt

= 0.

OverC2, we haveM = −x = − cos t andN = 2y−x = 2 sin t− cos t.
Thus the flux across C2 is:∫

C1

F⃗ · n⃗ ds =

∫
C1

(
M g′(t)−N f ′(t)

)
dt

=

∫ π/2

0

(
(− cos t)(cos t)− (2 sin t− cos t)(− sin t)

)
dt

=

∫ π/2

0

(
2 sin2 t− sin t cos t− cos2 t

)
dt

= π/4− 1/2 ≈ 0.285.

We analyze the results of this example below.

In Example 15.4.4, we saw that the flux across the two curves was the same
when the vector field was F⃗1 = ⟨y,−x+ 1⟩. This is not a coincidence. We
show why they are equal in Example 15.4.16. In short, the reason is this: the
divergence of F⃗1 is 0, and when div F⃗ = 0, the flux across any two paths with
common beginning and ending points will be the same.

We also saw in the example that the flux across C1 was 0 when the field
was F⃗2 = ⟨−x, 2y − x⟩. Flux measures “how much” of the field crosses the
path from left to right (following the conventions established before). Positive
flux means most of the field is crossing from left to right; negative flux means
most of the field is crossing from right to left; zero flux means the same amount
crosses from each side. When we consider Figure 15.4.5(b), it seems plausible
that the same amount of F⃗2 was crossing C1 from left to right as from right to
left.

15.4.2 Green’s Theorem
There is an important connectionbetween the circulation around a closed region
R and the curl of the vector field inside ofR, aswell as a connectionbetween the
flux across the boundary of R and the divergence of the field inside R. These
connections are described by Green’s Theorem and the Divergence Theorem,
respectively. We’ll explore each in turn.

Green’s Theorem states “the counterclockwise circulation around a closed
regionR is equal to the sum of the curls over R.”
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Theorem 15.4.6 Green’s Theorem.

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametrization of C, and let F⃗ = ⟨M,N⟩ where Nx andMy are con-
tinuous overR. Then ∮

C

F⃗ · dr⃗ =

∫∫
R

curl F⃗ dA.

We’ll explore Green’s Theorem through an example.

Example 15.4.7 Confirming Green’s Theorem.

Let F⃗ =
〈
−y, x2 + 1

〉
and let R be the region of the plane bounded

by the triangle with vertices (−1, 0), (1, 0) and (0, 2), shown in Fig-
ure 15.4.8. Verify Green’s Theorem; that is, find the circulation of F⃗
around the boundary ofR and show that is equal to the double integral
of curl F⃗ overR. 1

2

−1 1

x

y

R

Figure 15.4.8 The vector field and pla-
nar region used in Example 15.4.7

Solution. The curve C that bounds R is composed of 3 lines. While
we need to traverse the boundary of R in a counterclockwise fashion,
we may start anywhere we choose. We arbitrarily choose to start at
(−1, 0), move to (1, 0), etc., with each line parametrized by r⃗1(t), r⃗2(t)
and r⃗3(t), respectively.
We leave it to the reader to confirm that the following parametrizations
of the three lines are accurate:

r⃗1(t) = ⟨2t− 1, 0⟩, for 0 ≤ t ≤ 1, with r⃗ ′1(t) = ⟨2, 0⟩,
r⃗2(t) = ⟨1− t, 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′2(t) = ⟨−1, 2⟩, and
r⃗3(t) = ⟨−t, 2− 2t⟩, for 0 ≤ t ≤ 1, with r⃗ ′3(t) = ⟨−1,−2⟩.

The circulation around C is found by summing the flow along each of
the sides of the triangle. We again leave it to the reader to confirm the
following computations:∫

C1

F⃗ · dr⃗1 =

∫ 1

0

〈
0, (2t− 1)2 + 1

〉
· ⟨2, 0⟩ dt = 0,∫

C2

F⃗ · dr⃗2 =

∫ 1

0

〈
−2t, (1− t)2 + 1

〉
· ⟨−1, 2⟩ dt = 11/3, and∫

C3

F⃗ · dr⃗3 =

∫ 1

0

〈
2t− 2, t2 + 1

〉
· ⟨−1,−2⟩ dt = −5/3.

The circulation is the sum of the flows: 2.
We confirm Green’s Theorem by computing

∫∫
R
curl F⃗ dA. We find

curl F⃗ = 2x + 1. The region R is bounded by the lines y = 2x + 2,
y = −2x + 2 and y = 0. Integrating with the order dx dy is most
straightforward, leading to∫ 2

0

∫ 1−y/2

y/2−1

(2x+ 1) dx dy =

∫ 2

0

(2− y) dy = 2,

which matches our previous measurement of circulation.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_green1.html
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Example 15.4.9 Using Green’s Theorem.

Let F⃗ = ⟨sinx, cos y⟩ and let R be the region enclosed by the curve C
parametrized by r⃗(t) =

〈
2 cos t+ 1

10 cos(10t), 2 sin t+
1
10 sin(10t)

〉
on

0 ≤ t ≤ 2π, as shown in Figure 15.4.10. Find the circulation around C.

−2

2

−2 2

x

y

R

Figure 15.4.10 The vector field and
planar region used in Example 15.4.9

Solution. Computing the circulation directly using the line integral
looks difficult, as the integrand will include terms like “sin

(
2 cos t +

1
10 cos(10t)

)
.”

Green’s Theorem states that
∮
C
F⃗ ·dr⃗ =

∫∫
R
curl F⃗ dA; since curl F⃗ = 0

in this example, the double integral is simply 0 and hence the circulation
is 0.
Since curl F⃗ = 0, we can conclude that the circulation is 0 in two ways.
One method is to employ Green’s Theorem as done above. The second
way is to recognize that F⃗ is a conservative field, hence there is a func-
tion f(x, y)wherein F⃗ = ∇f . LetA be any point on the curveC; since
C is closed, we can say that C “begins” and “ends” at A. By the Funda-
mental Theorem of Line Integrals,

∮
C
F⃗ dr⃗ = f(A)− f(A) = 0.

One can use Green’s Theorem to find the area of an enclosed region by in-
tegrating along its boundary. Let C be a closed curve, enclosing the region R,
parametrized by r⃗(t) = ⟨f(t), g(t)⟩. We know the area of R is computed by
the double integral

∫∫
R
dA, where the integrand is 1. By creating a field F⃗

where curl F⃗ = 1, we can employ Green’s Theorem to compute the area of R
as
∮
C
F⃗ · dr⃗.

One is free to choose any field F⃗ to use as long as curl F⃗ = 1. Common
choices are F⃗ = ⟨0, x⟩, F⃗ = ⟨−y, 0⟩ and F⃗ = ⟨−y/2, x/2⟩. We demonstrate
this below.

Example 15.4.11 Using Green’s Theorem to find area.

Let C be the closed curve parametrized by r⃗(t) =
〈
t− t3, t2

〉
on−1 ≤

t ≤ 1, enclosing the regionR, as shown in Figure 15.4.12. Find the area
ofR.

−1 1

1

R

x

y

Figure 15.4.12 The region R, whose
area is found in Example 15.4.11

Solution. We can choose any field F⃗ , as long as curl F⃗ = 1. We choose
F⃗ = ⟨−y, 0⟩. We also confirm (left to the reader) that r⃗(t) traverses the
regionR in a counterclockwise fashion. Thus

Area ofR =

∫∫
R

dA

=

∮
C

F⃗ · dr⃗

=

∫ 1

−1

〈
−t2, 0

〉
·
〈
1− 3t2, 2t

〉
dt

=

∫ 1

−1

(−t2)(1− 3t2) dt

=
8

15
.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_green2.html
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15.4.3 The Divergence Theorem
Green’s Theorem makes a connection between the circulation around a closed
region R and the sum of the curls over R. The Divergence Theorem makes a
somewhat “opposite” connection: the total flux across the boundary of R is
equal to the sum of the divergences overR.

Theorem 15.4.13 The Divergence Theorem (in the plane).

Let R be a closed, bounded region of the plane whose boundary C is
composed of finitely many smooth curves, let r⃗(t) be a counterclockwise
parametrization of C, and let F⃗ = ⟨M,N⟩ whereMx and Ny are con-
tinuous overR. Then∮

C

F⃗ · n⃗ ds =

∫∫
R

div F⃗ dA.

Example 15.4.14 Confirming the Divergence Theorem.

Let F⃗ = ⟨x− y, x+ y⟩, let C be the circle of radius 2 centered at the
origin and define R to be the interior of that circle, as shown in Fig-
ure 15.4.15. Verify the Divergence Theorem; that is, find the flux across
C and show it is equal to the double integral of div F⃗ overR.

−2

2

−2 2

x

y

R

Figure 15.4.15 The region R used in
Example 15.4.14

Solution. We parametrize the circle in the usual way, with r⃗(t) =
⟨2 cos t, 2 sin t⟩, 0 ≤ t ≤ 2π. The flux across C is∮
C

F⃗ · n⃗ ds =

∮
C

(
Mg ′(t)−Nf ′(t)

)
dt

=

∫ 2π

0

(
(2 cos t− 2 sin t)(2 cos t)− (2 cos t+ 2 sin t)(−2 sin t)

)
dt

=

∫ 2π

0

4 dt = 8π.

We compute the divergence of F⃗ as div F⃗ = Mx + Ny = 2. Since the
divergence is constant, we can compute the following double integral
easily:∫∫

R

div F⃗ dA =

∫∫
R

2 dA = 2

∫∫
R

dA = 2( area ofR ) = 8π,

which matches our previous result.

Example 15.4.16 Flux when div F⃗ = 0.

Let F⃗ be any field where div F⃗ = 0, and let C1 and C2 be any two non-
intersecting paths, except that each begin at pointA and end at pointB
(see Figure 15.4.17). Show why the flux across C1 and C2 is the same.
Solution. By referencing Figure 15.4.17, we see we can make a closed
path C that combines C1 with C2, where C2 is traversed with its oppo-
site orientation. We label the enclosed region R. Since div F⃗ = 0, the

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_div1.html
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Divergence Theorem states that∮
C

F⃗ · n⃗ ds =

∫∫
R

div F⃗ dA =

∫∫
R

0 dA = 0.

Using the properties and notation given in Theorem 15.3.7, consider:

A

B

C1

C2

Figure 15.4.17 As used in Exam-
ple 15.4.16, the vector field has a di-
vergence of 0 and the two paths only
intersect at their initial and terminal
points.

0 =

∮
C

F⃗ · n⃗ ds

=

∫
C1

F⃗ · n⃗ ds+

∫
C∗

2

F⃗ · n⃗ ds

(where C∗
2 is the path C2 traversed with opposite orientation)

=

∫
C1

F⃗ · n⃗ ds−
∫
C2

F⃗ · n⃗ ds.∫
C2

F⃗ · n⃗ ds =

∫
C1

F⃗ · n⃗ ds.

Thus the flux across each path is equal.

In this section, we have investigated flow and flux, quantities that measure
interactions between a vector field and a planar curve. We can also measure
flow along spatial curves, though as mentioned before, it does not make sense
to measure flux across spatial curves.

It does, however, make sense to measure the amount of a vector field that
passes across a surface in space — i.e, the flux across a surface. We will study
this, though in the next section we first learn about a more powerful way to
describe surfaces than using functions of the form z = f(x, y).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_div2.html
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15.4.4 Exercises

Terms and Concepts

1. Let F⃗ be a vector field and let C be a curve. Flow is a measure of the amount of F⃗ going C; flux is
a measure of the amount of F⃗ going C.

2. What is circulation?
3. Green’s Theorem states, informally, that the circulation around a closed curve that bounds a region R is equal

to the sum of acrossR.

4. The Divergence Theorem states, informally, that the outward flux across a closed curve that bounds a regionR
is equal to the sum of acrossR.

5. Let F⃗ be a vector field and let C1 and C2 be any nonintersecting paths except that each starts at point A and
ends at point B. If = 0, then

∫
C1

F⃗ · T⃗ ds =
∫
C2

F⃗ · T⃗ ds.

6. Let F⃗ be a vector field and let C1 and C2 be any nonintersecting paths except that each starts at point A and
ends at point B. If = 0, then

∫
C1

F⃗ · n⃗ ds =
∫
C2

F⃗ · n⃗ ds.

Problems

Exercise Group. In the following exercises, a vector field F⃗ and a curve C are given. Evaluate
∫
C
F⃗ · n⃗ ds, the flux of

F⃗ over C.
7. F⃗ = ⟨x+ y, x− y⟩; C is the curve with initial

and terminal points (3,−2) and (3, 2),
respectively, parametrized by r⃗(t) = ⟨3t2, 2t⟩
on−1 ≤ t ≤ 1.

8. F⃗ = ⟨x+ y, x− y⟩; C is the curve with initial
and terminal points (3,−2) and (3, 2),
respectively, parametrized by r⃗(t) = ⟨3, t⟩ on
−2 ≤ t ≤ 2.

9. F⃗ = ⟨x2, y + 1⟩; C is line segment from (0, 0)
to (2, 4).

10. F⃗ = ⟨x2, y + 1⟩; C is the portion of the
parabola y = x2 from (0, 0) to (2, 4).

11. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to
(0, 1).

12. F⃗ = ⟨y, 0⟩; C is the line segment from (0, 0) to
(1, 1).

Exercise Group. In the following exercises, a vector field F⃗ and a closed curve C, enclosing a region R, are given.
Verify Green’s Theorem by evaluating

∮
C
F⃗ · dr⃗ and

∫∫
R
curl F⃗ dA, showing they are equal.

13. F⃗ = ⟨x− y, x+ y⟩; C is the closed curve
composed of the parabola y = x2 on 0 ≤ x ≤ 2
followed by the line segment from (2, 4) to
(0, 0).

14. F⃗ = ⟨−y, x⟩; C is the unit circle.

15. F⃗ = ⟨0, x2⟩; C the triangle with corners at
(0, 0), (2, 0) and (1, 1).

16. F⃗ = ⟨x+ y, 2x⟩; C the curve that starts at
(0, 1), follows the parabola y = (x− 1)2 to
(3, 4), then follows a line back to (0, 1).

Exercise Group. In the following exercises, a closed curve C enclosing a region R is given. Find the area of R by
computing

∮
C
F⃗ · dr⃗ for an appropriate choice of vector field F⃗ .

17. C is the ellipse parametrized by
r⃗(t) = ⟨4 cos t, 3 sin t⟩ on 0 ≤ t ≤ 2π.

18. C is the curve parametrized by
r⃗(t) = ⟨cos t, sin(2t)⟩ on−π/2 ≤ t ≤ π/2.

19. C is the curve parametrized by
r⃗(t) = ⟨−t3 +3t2 − 2t, 2(t− 1)2⟩ on 0 ≤ t ≤ 2.

20. C is the curve parametrized by r⃗(t) =
⟨2 cos t+ 1

10 cos(10t), 2 sin t+
1
10 sin(10t)⟩ on

0 ≤ t ≤ 2π.
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Exercise Group. In the following exercises, a vector field F⃗ and a closed curve C, enclosing a region R, are given.
Verify the Divergence Theorem by evaluating

∮
C
F⃗ · n⃗ ds and

∫∫
R
div F⃗ dA, showing they are equal.

21. F⃗ = ⟨x− y, x+ y⟩; C is the closed curve
composed of the parabola y = x2 on 0 ≤ x ≤ 2
followed by the line segment from (2, 4) to
(0, 0).

22. F⃗ = ⟨−y, x⟩; C is the unit circle.

23. F⃗ = ⟨0, y2⟩; C the triangle with corners at
(0, 0), (2, 0) and (1, 1).

24. F⃗ = ⟨x2/2, y2/2⟩; C the curve that starts at
(0, 1), follows the parabola y = (x− 1)2 to
(3, 4), then follows a line back to (0, 1).
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15.5 Parametrized Surfaces and Surface Area

Thus far we have focusedmostly on 2-dimensional vector fields, measuring flow
and flux along/across curves in the plane. Both Green’s Theorem and the Di-
vergence Theorem make connections between planar regions and their bound-
aries. We now move our attention to 3-dimensional vector fields, considering
both curves and surfaces in space.

15.5.1 Parametrizing surfaces
We are accustomed to describing surfaces as functions of two variables, usu-
ally written as z = f(x, y). For our coming needs, this method of describing
surfaces will prove to be insufficient. Instead, we will parametrize our surfaces,
describing them as the set of terminal points of some vector-valued function
r⃗(u, v) = ⟨f(u, v), g(u, v), h(u, v)⟩. The bulk of this section is spent practicing
the skill of describing a surface Susing a vector-valued function. Once this skill is
developed, we’ll showhow to find the surface areaS of a parametrically-defined
surface S , a skill needed in the remaining sections of this chapter.

We use the letter S to denote
SurfaceArea. This sectionbegins
a study into surfaces, and it is nat-
ural to label a surface with the
letter “S”. We distinguish a sur-
face from its surface area by us-
ing a calligraphic S to denote a
surface: S. When writing this
letter by hand, it may be useful
to add serifs to the letter, such
as:

Definition 15.5.1 Parametrized Surface.

Let r⃗(u, v) = ⟨ f(u, v), g(u, v), h(u, v)⟩ be a vector-valued function that
is continuous and one to one on the interior of its domain R in the u-v
plane. The set of all terminal points of r⃗ (i.e., the range of r⃗ ) is the
surface S , and r⃗ along with its domain R form a parametrization of S.
This parametrization is smooth on R if r⃗u and r⃗v are continuous and
r⃗u × r⃗v is never 0⃗ on the interior of R.

Given a point (u0, v0) in the domain of a vector-valued function r⃗, the vec-
tors r⃗u(u0, v0) and r⃗v(u0, v0) are tangent to the surface S at r⃗(u0, v0) (a proof
of this is developed later in this section). The definition of smoothness dictates
that r⃗u × r⃗v ̸= 0⃗; this ensures that neither r⃗u nor r⃗v are 0⃗, nor are they ever
parallel. Therefore smoothness guarantees that r⃗u and r⃗v determine a plane
that is tangent to S.

Recall that function isone to one
on its domain if the functionnever
repeats anoutput value over the
domain. In the case of r⃗(u, v), r⃗
is one to one if r⃗(u1, v1) ̸= r⃗(u2, v2)
for all points (u1, v1) ̸= (u2, v2)
in the domain of r⃗.

A surface S is said to be orientable if a field of normal vectors can be de-
fined on S that vary continuously along S. This definition may be hard to under-
stand; it may help to know that orientable surfaces are often called “two sided.”
A sphere is an orientable surface, and one can easily envision an “inside” and
“outside” of the sphere. A paraboloid is orientable, where again one can gener-
ally envision “inside” and “outside” sides (or “top” and “bottom” sides) to this
surface. Just about every surface that one can imagine is orientable, and we’ll
assume all surfaces we deal with in this text are orientable.

It is enlightening to examine a classic non-orientable surface: the Möbius
band, shown in Figure 15.5.2. Vectors normal to the surface are given, starting
at the point indicated in the figure. These normal vectors “vary continuously” as
they move along the surface. Letting each vector indicate the “top” side of the
band, we can easily see near any vector which side is the “top”.

However, if as we progress along the band, we recognize that we are labeling
“both sides” of the band as the top; in fact, there are not two “sides” to this band,
but one. The Möbius band is a non-orientable surface.

Figure 15.5.2 A Möbius band, a non-
orientable surface

We now practice parametrizing surfaces.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_mobius_3D.html
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Example 15.5.3 Parametrizing a surface over a rectangle.

Parametrize the surface z = x2 + 2y2 over the rectangular region R
defined by−3 ≤ x ≤ 3,−1 ≤ y ≤ 1.
Solution. There is a straightforward way to parametrize a surface of the
form z = f(x, y) over a rectangular domain. We let x = u and y = v,
and let r⃗(u, v) = ⟨u, v, f(u, v)⟩. In this instance, we have r⃗(u, v) =
⟨u, v, u2 + 2v2⟩, for −3 ≤ u ≤ 3, −1 ≤ v ≤ 1. This surface is graphed
in Figure 15.5.4.

Figure 15.5.4 The surface parame-
trized in Example 15.5.3

Example 15.5.5 Parametrizing a surface over a circular disk.

Parametrize the surface z = x2+2y2 over the circular regionR enclosed
by the circle of radius 2 that is centered at the origin.
Solution. We can parametrize the circular boundary of R with the
vector-valued function ⟨2 cosu, 2 sinu⟩, where 0 ≤ u ≤ 2π. We can
obtain the interior of R by scaling this function by a variable amount,
i.e., by multiplying by v: ⟨2v cosu, 2v sinu⟩, where 0 ≤ v ≤ 1.
It is important to understand the role of v in the above function. When
v = 1, we get the boundary of R, a circle of radius 2. When v = 0, we
simply get the point (0, 0), the center of R (which can be thought of as
a circle with radius of 0). When v = 1/2, we get the circle of radius 1
that is centered at the origin, which is the circle halfway between the
boundary and the center. As v varies from 0 to 1, we create a series of
concentric circles that fill out all of R.

Figure 15.5.6 The surface parame-
trized in Example 15.5.5

Thus far, we have determined the x and y components of our parame-
trization of the surface: x = 2v cosu and y = 2v sinu. We find the z
component simply by using z = f(x, y) = x2 + 2y2:

z = (2v cosu)2 + 2(2v sinu)2 = 4v2 cos2 u+ 8v2 sin2 u.

Thus r⃗(u, v) = ⟨2v cosu, 2v sinu, 4v2 cos2 u+8v2 sin2 u⟩, 0 ≤ u ≤ 2π,
0 ≤ v ≤ 1, which is graphed in Figure 15.5.6. The way that this graphic
was generated highlights how the surface was parametrized. When
viewing from above, one can see lines emanating from the origin; they
represent different values of u as u sweeps from an angle of 0 up to 2π.
One can also see concentric circles, each corresponding to a different
value of v.

Examples 15.5.3 and 15.5.5 demonstrate an important principle when pa-
rametrizing surfaces given in the form z = f(x, y) over a region R: if one can
determine x and y in terms of u and v, then z follows directly as z = f(x, y).

In the following two examples, we parametrize the same surface over trian-
gular regions. Each will use v as a “scaling factor” as done in Example 15.5.5.

Example 15.5.7 Parametrizing a surface over a triangle.

Parametrize the surface z = x2 + 2y2 over the triangular region R en-
closed by the coordinate axes and the line y = 2 − 2x/3, as shown in
Figure 15.5.8(a).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf1.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/fig_parsurf2_3D.html
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1 2 3

1

2

3

y =
2− 2x/3

R

x

y

(a) (b)

Figure 15.5.8 Part (a) shows a graph of the regionR, and part (b) shows
the surface overR, as defined in Example 15.5.7

Solution. Wemay begin by letting x = u, 0 ≤ u ≤ 3, and y = 2−2u/3.
This gives only the line on the “upper” side of the triangle. To get all of
the regionR, we can once again scale y by a variable factor, v.
Still letting x = u, 0 ≤ u ≤ 3, we let y = v(2−2u/3), 0 ≤ v ≤ 1. When
v = 0, all y-values are 0, and we get the portion of the x-axis between
x = 0 and x = 3. When v = 1, we get the upper side of the triangle.
When v = 1/2, we get the line y = 1/2(2 − 2u/3) = 1 − u/3, which
is the line “halfway up” the triangle, shown in the figure with a dashed
line.
Letting z = f(x, y) = x2+2y2, we have r⃗(u, v) = ⟨u, v(2−2u/3), u2+

2
(
v(2 − 2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1. This surface is graphed in
Figure 15.5.8(b). Again, when one looks from above, we can see the
scaling effects of v: the series of lines that run to the point (3, 0) each
represent a different value of v.
Another common way to parametrize the surface is to begin with y = u,
0 ≤ u ≤ 2. Solving the equation of the line y = 2 − 2x/3 for x, we
have x = 3− 3y/2, leading to using x = v(3− 3u/2), 0 ≤ v ≤ 1. With
z = x2+2y2, we have r⃗(u, v) = ⟨v(3−3u/2), u,

(
v(3−3u/2)

)2
+2v2⟩,

0 ≤ u ≤ 2, 0 ≤ v ≤ 1.

Example 15.5.9 Parametrizing a surface over a triangle.

Parametrize the surface z = x2 + 2y2 over the triangular region R en-
closed by the lines y = 3 − 2x/3, y = 1 and x = 0 as shown in Fig-
ure 15.5.10(a).

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf3b_3D.html
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Figure 15.5.10 Part (a) shows a graph of the regionR, and part (b) shows
the surface overR, as defined in Example 15.5.9

Solution. While the regionR in this example is very similar to the region
R in the previous example, and ourmethod of parametrizing the surface
is fundamentally the same, it will feel as though our answer is much
different than before.
We begin with letting x = u, 0 ≤ u ≤ 3. We may be tempted to let
y = v(3 − 2u/3), 0 ≤ v ≤ 1, but this is incorrect. When v = 1, we
obtain the upper line of the triangle as desired. However, when v = 0,
the y-value is 0, which does not lie in the region R.
We will describe the general method of proceeding following this ex-
ample. For now, consider y = 1 + v(2 − 2u/3), 0 ≤ v ≤ 1. Note
that when v = 1, we have y = 3 − 2u/3, the upper line of the
boundary of R. Also, when v = 0, we have y = 1, which is the
lower boundary of R. With z = x2 + 2y2, we determine r⃗(u, v) =

⟨u, 1+ v(2− 2u/3), u2 +2
(
1+ v(2− 2u/3)

)2⟩, 0 ≤ u ≤ 3, 0 ≤ v ≤ 1.
The surface is graphed in Figure 15.5.10(b).

Given a surface of the form z = f(x, y), one can often determine a pa-
rametrization of the surface over a regionR in a manner similar to determining
bounds of integration over a region R. Using the techniques of Section 14.1,
suppose a region R can be described by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e.,
the area ofR can be found using the iterated integral∫ b

a

∫ g2(x)

g1(x)

dy dx.

When parametrizing the surface, we can let x = u, a ≤ u ≤ b, and we
can let y = g1(u) + v

(
g2(u) − g1(u)

)
, 0 ≤ v ≤ 1. The parametrization of

x is straightforward, but look closely at how y is determined. When v = 0,
y = g1(u) = g1(x). When v = 1, y = g2(u) = g2(x).

As a specific example, consider the triangular regionR from Example 15.5.9,
shown in Figure 15.5.10(a). Using the techniques of Section 14.1, we can find
the area ofR as ∫ 3

0

∫ 3−2x/3

1

dy dx.

Following the above discussion, we can set x = u, where 0 ≤ u ≤ 3, and
set y = 1 + v

(
3 − 2u/3 − 1

)
= 1 + v(2 − 2u/3), 0 ≤ v ≤ 1, as used in that

example.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf4b_3D.html
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One can do a similar thing ifR is bounded by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y),
but for the sake of simplicity we leave it to the reader to flesh out those details.
The principles outlined above are given in the following Key Idea for reference.

Key Idea 15.5.11 Parametrizing Surfaces.

Let a surface S be the graph of a function f(x, y), where the domain of
f is a closed, bounded region R in the xy-plane. Let R be bounded by
a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), i.e., the area ofR can be found using the
iterated integral

∫ b

a

∫ g2(x)

g1(x)
dy dx, and let h(u, v) = g1(u) + v

(
g2(u) −

g1(u)
)
.

S can be parametrized as

r⃗(u, v) =
〈
u, h(u, v), f

(
u, h(u, v)

)〉
, a ≤ u ≤ b, 0 ≤ v ≤ 1.

Example 15.5.12 Parametrizing a cylindrical surface.

Find a parametrizationof the cylinderx2+z2/4 = 1, where−1 ≤ y ≤ 2,
as shown in Figure 15.5.13.

Figure 15.5.13 The cylinder parame-
trized in Example 15.5.12

Solution. The equation x2+z2/4 = 1 can be envisioned to describe an
ellipse in the xz-plane; as the equation lacks a y-term, the equation de-
scribes a cylinder (recall Definition 11.1.13) that extends without bound
parallel to the y-axis. This ellipse has a vertical major axis of length 4, a
horizontal minor axis of length 2, and is centered at the origin. We can
parametrize this ellipse using sines and cosines; our parametrization can
begin with

r⃗(u, v) = ⟨cosu, ??? , 2 sinu⟩ , 0 ≤ u ≤ 2π,

where we still need to determine the y component.
While the cylinder x2+z2/4 = 1 is satisfied by any y value, the problem
states that all y values are to be between y = −1 and y = 2. Since the
value of y does not depend at all on the values of x or z, we can use
another variable, v, to describe y. Our final answer is

r⃗(u, v) = ⟨cosu, v, 2 sinu⟩ , 0 ≤ u ≤ 2π,−1 ≤ v ≤ 2.

Example 15.5.14 Parametrizing an elliptic cone.

Find a parametrization of the elliptic cone z2 = x2

4 + y2

9 , where −2 ≤
z ≤ 3, as shown in Figure 15.5.15.

Figure 15.5.15 The elliptic cone as de-
scribed in Example 15.5.14

Solution. One way to parametrize this cone is to recognize that given
a z value, the cross section of the cone at that z value is an ellipse with
equation x2

(2z)2 +
y2

(3z)2 = 1. We can let z = v, for−2 ≤ v ≤ 3 and then
parametrize the above ellipses using sines, cosines and v.
We can parametrize the x component of our surface with x = 2z cosu
and the y component with y = 3z sinu, where 0 ≤ u ≤ 2π. Putting all
components together, we have

r⃗(u, v) = ⟨2v cosu, 3v sinu, v⟩ , 0 ≤ u ≤ 2π,−2 ≤ v ≤ 3.

When v takes on negative values, the radii of the cross-sectional ellipses
become “negative,” which can lead to some surprising results. Consider

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf5_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf6a.html
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Figure 15.5.16, where the cone is graphed for 0 ≤ u ≤ π. Because v
is negative below the xy-plane, the radii of the cross-sectional ellipses
are negative, and the opposite side of the cone is sketched below the
xy-plane.

Figure 15.5.16 The elliptic cone as de-
scribed in Example 15.5.14 with re-
stricted domain

Example 15.5.17 Parametrizing an ellipsoid.

Find a parametrization of the ellipsoid x2

25 + y2 + z2

4 = 1 as shown in
Figure 15.5.18(a).

(a) (b)

Figure 15.5.18 An ellipsoid in (a), drawn again in (b) with its domain re-
stricted, as described in Example 15.5.17

Solution. Recall Key Idea 11.2.20 from Section 11.2, which states that
all unit vectors in space have the form ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for
some angles θ and φ. If we choose our angles appropriately, this allows
us to draw the unit sphere. To get an ellipsoid, we need only scale each
component of the sphere appropriately.
The x-radius of the given ellipsoid is 5, the y-radius is 1 and the z-radius
is 2. Substituting u for θ and v for φ, we have

r⃗(u, v) = ⟨5 sinu cos v, sinu sin v, 2 cosu⟩,

where we still need to determine the ranges of u and v.
Note how the x and y components of r⃗ have cos v and sin v terms, re-
spectively. This hints at the fact that ellipses are drawn parallel to the
xy-plane as v varies, which implies we should have v range from 0 to 2π.
One may be tempted to let 0 ≤ u ≤ 2π as well, but note how the z
component is 2 cosu. We only need cosu to take on values between−1
and 1 once, therefore we can restrict u to 0 ≤ u ≤ π.
The final parametrization is thus

r⃗(u, v) = ⟨5 sinu cos v, sinu sin v, 2 cosu⟩, 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.

In Figure 15.5.18(b), the ellipsoid is graphed on π
4 ≤ u ≤ 2π

3 ,
π
4 ≤ v ≤

3π
2 to demonstrate how each variable affects the surface.

Parametrization is a powerful way to represent surfaces. One of the advan-
tages of the methods of parametrization described in this section is that the
domain of r⃗(u, v) is always a rectangle; that is, the bounds on u and v are con-
stants. This will make some of our future computations easier to evaluate.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf6b_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf7a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurf7b_3D.html
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Just as we could parametrize curves in more than one way, there will always
be multiple ways to parametrize a surface. Some ways will be more “natural”
than others, but these other ways are not incorrect. Because technology is of-
ten readily available, it is often a good idea to check one’s work by graphing a
parametrizationof a surface to check if it indeed representswhat it was intended
to.

15.5.2 Surface Area
It will become important in the following sections to be able to compute the
surface area of a surface S given a smooth parametrization r⃗(u, v), a ≤ u ≤
b, c ≤ v ≤ d. Following the principles given in the integration review at the
beginning of this chapter, we can say that

Surface Area of S = S =

∫∫
S
dS,

where dS represents a small amount of surface area. That is, to compute total
surface areaS, add up lots of small amounts of surface area dS across the entire
surface S. The key to finding surface area is knowing how to compute dS. We
begin by approximating.

In Section 14.5 we used the area of a plane to approximate the surface area
of a small portion of a surface. We will do the same here.

Let R be the region of the u-v plane bounded by a ≤ u ≤ b, c ≤ v ≤ d as
shown in Figure 15.5.19(a). PartitionR into rectangles of width∆u = b−a

n and
height∆v = d−c

n , for some n. Let p = (u0, v0) be the lower left corner of some
rectangle in the partition, and letm and q be neighboring corners as shown.

The point pmaps to a point P = r⃗(u0, v0) on the surface S , and the rectan-
gle with corners p,m and q maps to some region (probably not rectangular) on
the surface as shown in Figure 15.5.19(b), whereM = r⃗(m) andQ = r⃗(q). We
wish to approximate the surface area of this mapped region.

Let u⃗ = M − P and v⃗ = Q − P . These two vectors form a parallelogram,
illustrated in Figure 15.5.19(c), whose area approximates the surface area we
seek. In this particular illustration, we can see that parallelogram does not par-
ticularly match well the region we wish to approximate, but that is acceptable;
by increasing the number of partitions ofR,∆u and∆v shrink and our approx-
imations will become better.

a bu0 u0 +∆u

c

d

v0

v0 +∆v

p

q

m

R

u

v

(a)

(b) (c)

Figure 15.5.19 Illustrating the process of finding surface area by approximating
with planes

From Section 11.4 we know the area of this parallelogram is || u⃗× v⃗ ||. If
we repeat this approximation process for each rectangle in the partition of R,
we can sum the areas of all the parallelograms to get an approximation of the

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurfareab_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_parsurfareac_3D.html
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surface area S:

Surface area of S = S ≈
n∑

j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || ,

where u⃗i,j = r⃗(ui +∆u, vj)− r⃗(ui, vj) and v⃗i,j = r⃗(ui, vj +∆v)− r⃗(ui, vj).
From our previous calculus experience, we expect that taking a limit as n →

∞ will result in the exact surface area. However, the current form of the above
double sum makes it difficult to realize what the result of that limit is. The fol-
lowing rewriting of the double summation will be helpful:

n∑
j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || =

n∑
j=1

n∑
i=1

∣∣∣∣ (r⃗(ui +∆u, vj)− r⃗(ui, vj)
)
×
(
r⃗(ui, vj +∆v)− r⃗(ui, vj)

) ∣∣∣∣ =
n∑

j=1

n∑
i=1

∣∣∣∣∣∣∣∣ r⃗(ui +∆u, vj)− r⃗(ui, vj)

∆u
× r⃗(ui, vj +∆v)− r⃗(ui, vj)

∆v

∣∣∣∣∣∣∣∣∆u∆v.

We now take the limit as n → ∞, forcing∆u and∆v to 0. As∆u → 0,

r⃗(ui +∆u, vj)− r⃗(ui, vj)

∆u
→ r⃗u(ui, vj) and

r⃗(ui, vj +∆v)− r⃗(ui, vj)

∆v
→ r⃗v(ui, vj).

(This limit process also demonstrates that r⃗u(u, v) and r⃗v(u, v) are tangent
to the surface S at r⃗(u, v). We don’t need this fact now, but it will be important
in the next section.)

Thus, in the limit, the double sum leads to a double integral:

lim
n→∞

n∑
j=1

n∑
i=1

|| u⃗i,j × v⃗i,j || =
∫ d

c

∫ b

a

|| r⃗u × r⃗v || du dv.

Theorem 15.5.20 Surface Area of Parametrically Defined Surfaces.

Let r⃗(u, v) be a smooth parametrization of a surface S over a closed,
bounded regionR of the u-v plane.

• The surface area differential dS is: dS = || r⃗u × r⃗v || dA.

• The surface area S of S is

S =

∫∫
S
dS =

∫∫
R

|| r⃗u × r⃗v || dA.

Example 15.5.21 Finding the surface area of a parametrized surface.

Using the parametrization found in Example 15.5.5, find the surface area
of z = x2 +2y2 over the circular disk of radius 2, centered at the origin.
Solution. In Example 15.5.5, we parametrized the surface as r⃗(u, v) =〈
2v cosu, 2v sinu, 4v2 cos2 u+ 8v2 sin2 u

〉
, for 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

To find the surface area using Theorem 15.5.20, we need || r⃗u × r⃗v ||.
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We find:

r⃗u =
〈
−2v sinu, 2v cosu, 8v2 cosu sinu

〉
r⃗v =

〈
2 cosu, 2 sin v, 8v cos2 u+ 16v sin2 u

〉
r⃗u × r⃗v =

〈
16v2 cosu, 32v2 sinu,−4v

〉
|| r⃗u × r⃗v || =

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2.

Thus the surface area is

S =

∫∫
S
dS =

∫∫
R

|| r⃗u × r⃗v || dA

=

∫ 1

0

∫ 2π

0

√
256v4 cos2 u+ 1024v4 sin2 u+ 16v2 du dv

≈ 53.59.

There is a lot of tedious work in the above calculations and the final in-
tegral is nontrivial. The use of a computer-algebra system is highly rec-
ommended.

In Section 15.1, we recalled the arc length differential ds = || r⃗ ′(t) || dt.
In subsequent sections, we used that differential, but in most applications the
“|| r⃗ ′(t) ||” part of the differential canceled out of the integrand (to our bene-
fit, as integrating the square roots of functions is generally difficult). We will
find a similar thing happens when we use the surface area differential dS in the
following sections. That is, our main goal is not to be able to compute surface
area; rather, surface area is a tool to obtain other quantities that are more im-
portant and useful. In our applications, we will use dS, but most of the time
the “|| r⃗u × r⃗v ||” part will cancel out of the integrand, making the subsequent
integration easier to compute.
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15.5.3 Exercises

Terms and Concepts

1. In your own words, describe what an orientable surface is.
2. Give an example of a non-orientable surface.

Problems

Exercise Group. In the following exercises, parametrize the surface defined by the function z = f(x, y) over each of
the given regionsR of the xy-plane.

3. z = 3x2y;

(a) R is the rectangle bounded by
−1 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

(b) R is the circle of radius 3, centered at
(1, 2).

(c) R is the triangle with vertices (0, 0), (1, 0)
and (0, 2).

(d) R is the region bounded by the x-axis and
the graph of y = 1− x2.

4. z = 4x+ 2y2;

(a) R is the rectangle bounded by 1 ≤ x ≤ 4
and 5 ≤ y ≤ 7.

(b) R is the ellipse with major axis of length 8
parallel to the x-axis, and minor axis of
length 6 parallel to the y-axis, centered at
the origin.

(c) R is the triangle with vertices (0, 0), (2, 2)
and (0, 4).

(d) R is the annulus bounded between the
circles, centered at the origin, with radius
2 and radius 5.

Exercise Group. In the following exercises, a surface S in space is described that cannot be defined as the graph of
a function f(x, y). Give a parametrization of S.

5. S is the rectangle in space with corners at
(0, 0, 0), (0, 2, 0), (0, 2, 1) and (0, 0, 1).

6. S is the triangle in space with corners at
(1, 0, 0), (1, 0, 1) and (0, 0, 1).

7. S is the ellipsoid x2

9
+

y2

4
+

z2

16
= 1. 8. S is the elliptic cone y2 = x2 +

z2

16
, for

−1 ≤ y ≤ 5.

Exercise Group. In the following exercises, a domainD in space is given. Parametrize each of the bounding surfaces
ofD.
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9. D is the domain bounded by the planes
z = 1

2 (3− x), x = 1, y = 0, y = 2 and z = 0.
10. D is the domain bounded by the planes

z = 2x+ 4y − 4, x = 2, y = 1 and z = 0.

11. D is the domain bounded by z = 2y,
y = 4− x2 and z = 0.

12. D is the domain bounded by y = 1− z2,
y = 1− x2, x = 0, y = 0 and z = 0.

13. D is the domain bounded by the cylinder
x2 + y2/9 = 1 and the planes z = 1 and z = 3.

14. D is the domain bounded by the cone
x2 + y2 = (z − 1)2 and the plane z = 0.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_09_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_10_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_11_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_12_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_21_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_22_3D.html
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15. D is the domain bounded by the cylinder
z = 1− x2 and the planes y = −1, y = 2 and
z = 0.

16. D is the domain bounded by the paraboloid
z = 4− x2 − 4y2 and the plane z = 0.

Exercise Group. In the following exercises, find the surface area S of the given surface S. (The associated integrals
are computable without the assistance of technology.)

17. S is the plane z = 2x+ 3y over the rectangle
−1 ≤ x ≤ 1, 2 ≤ y ≤ 3.

18. S is the plane z = x+ 2y over the triangle with
vertices at (0, 0), (1, 0) and (0, 1).

19. S is the plane z = x+ y over the circular disk,
centered at the origin, with radius 2.

20. S is the plane z = x+ y over the annulus
bounded by the circles, centered at the origin,
with radius 1 and radius 2.

Exercise Group. In the following exercises, set up the double integral that finds the surface areaS of the given surface
S , then use technology to approximate its value.

21. S is the paraboloid z = x2 + y2 over the
circular disk of radius 3 centered at the origin.

22. S is the paraboloid z = x2 + y2 over the
triangle with vertices at (0, 0), (0, 1) and (1, 1).

23. S is the plane z = 5x− y over the region
enclosed by the parabola y = 1− x2 and the
x-axis.

24. S is the hyperbolic paraboloid z = x2 − y2 over
the circular disk of radius 1 centered at the
origin.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_23_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_05_ex_24_3D.html
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15.6 Surface Integrals

Consider a smooth surface S that represents a thin sheet of metal. How could
we find the mass of this metallic object?

If the density of this object is constant, then we can find mass via “mass=
density × surface area,” and we could compute the surface area using the tech-
niques of the previous section.

What if the density were not constant, but variable, described by a function
δ(x, y, z)? We can describe the mass using our general integration techniques
as

mass =

∫∫
S
dm,

where dm represents “a little bit of mass.” That is, to find the total mass of the
object, sum up lots of little masses over the surface.

How do we find the “little bit of mass” dm? On a small portion of the sur-
face with surface area∆S, the density is approximately constant, hence dm ≈
δ(x, y, z)∆S. As we use limits to shrink the size of ∆S to 0, we get dm =
δ(x, y, z)dS; that is, a little bit ofmass is equal to a density times a small amount
of surface area. Thus the total mass of the thin sheet is

mass =

∫∫
S
δ(x, y, z) dS. (15.6.1)

To evaluate the above integral, we would seek r⃗(u, v), a smooth parame-
trization of S over a region R of the u-v plane. The density would become a
function of u and v, and we would integrate

∫∫
R
δ(u, v) || r⃗u × r⃗v || dA.

The integral in Equation (15.6.1) is a specific example of a more general con-
struction defined below.

15.6.1 Surface integrals of scalar fields

Definition 15.6.1 Surface Integral.

LetG(x, y, z) be a continuous function defined on a surface S. The sur-
face integral ofG on S is ∫∫

S
G(x, y, z) dS.

Surface integrals can be used tomeasure a variety of quantities beyondmass.
IfG(x, y, z)measures the static charge density at a point, then the surface inte-
gral will compute the total static charge of the sheet. IfGmeasures the amount
of fluid passing through a screen (represented by S) at a point, then the surface
integral gives the total amount of fluid going through the screen.

Example 15.6.2 Finding the mass of a thin sheet.

Find the mass of a thin sheet modeled by the plane 2x + y + z = 3
over the triangular region of the xy-plane bounded by the coordinate
axes and the line y = 2 − 2x, as shown in Figure 15.6.3, with density
function δ(x, y, z) = x2 + 5y + z, where all distances are measured in
cm and the density is given as gm/cm2.

Figure 15.6.3 The surfacewhosemass
is computed in Example 15.6.2

Solution. We begin by parametrizing the planar surface S. Using the
techniques of the previous section, we can let x = u and y = v(2−2u),
where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Solving for z in the equation of the

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfint1_3D.html
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plane, we have z = 3− 2x− y, hence z = 3− 2u− v(2− 2u), giving
the parametrization r⃗(u, v) = ⟨u, v(2− 2u), 3− 2u− v(2− 2u)⟩.
We need dS = || r⃗u × r⃗v || dA, so we need to compute r⃗u, r⃗v and the
norm of their cross product. We leave it to the reader to confirm the
following:

r⃗u = ⟨1,−2v, 2v − 2⟩, r⃗v = ⟨0, 2− 2u, 2u− 2⟩,

r⃗u × r⃗v = ⟨4− 4u, 2− 2u, 2− 2u⟩ and || r⃗u × r⃗v || = 2
√
6
√
(u− 1)2.

We need to be careful to not “simplify” || r⃗u × r⃗v || = 2
√
6
√
(u− 1)2 as

2
√
6(u−1); rather, it is 2

√
6|u−1|. In this example, u is bounded by 0 ≤

u ≤ 1, and on this interval |u− 1| = 1− u. Thus dS = 2
√
6(1− u)dA.

The density is given as a function of x, y and z, for which we’ll substitute
the corresponding components of r⃗ (with the slight abuse of notation
that we used in previous sections):

δ(x, y, z) = δ
(
r⃗(u, v)

)
= u2 + 5v(2− 2u) + 3− 2u− v(2− 2u)

= u2 − 8uv − 2u+ 8v + 3.

Thus the mass of the sheet is:

M =

∫∫
S
dm

=

∫∫
R

δ
(
r⃗(u, v)

)
|| r⃗u × r⃗v || dA

=

∫ 1

0

∫ 1

0

(
u2 − 8uv − 2u+ 8v + 3

)(
2
√
6(1− u)

)
du dv

=
31√
6
≈ 12.66 gm.

15.6.2 Flux

Let a surface S lie within a vector field F⃗ . One is often interested in measuring
the flux of F⃗ across S; that is, measuring “how much of the vector field passes
across S .” For instance, if F⃗ represents the velocity field of moving air and S
represents the shape of an air filter, the fluxwillmeasure howmuch air is passing
through the filter per unit time.

As flux measures the amount of F⃗ passing across S , we need to find the
“amount of F⃗ orthogonal to S.” Similar to our measure of flux in the plane, this
is equal to F⃗ ·n⃗, where n⃗ is a unit vector normal toS at a point. We now consider
how to find n⃗.

Given a smooth parametrization r⃗(u, v) of S , the work in the previous sec-
tion showing the development of our method of computing surface area also
shows that r⃗u(u, v) and r⃗v(u, v) are tangent to S at r⃗(u, v). Thus r⃗u × r⃗v is
orthogonal to S , and we let

n⃗ =
r⃗u × r⃗v

|| r⃗u × r⃗v ||
,

which is a unit vector normal to S at r⃗(u, v).
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The measurement of flux across a surface is a surface integral; that is, to
measure total flux we sum the product of F⃗ · n⃗ times a small amount of surface
area: F⃗ · n⃗ dS.

A nice thing happens with the actual computation of flux: the || r⃗u × r⃗v ||
terms go away. Consider:

Flux =

∫∫
S
F⃗ · n⃗ dS

=

∫∫
R

F⃗ · r⃗u × r⃗v
|| r⃗u × r⃗v ||

|| r⃗u × r⃗v || dA

=

∫∫
R

F⃗ · (r⃗u × r⃗v) dA.

The above only makes sense if S is orientable; the normal vectors n⃗ must
vary continuously across S. We assume that n⃗ does vary continuously. (If the
parametrization r⃗ of S is smooth, then our above definition of n⃗ will vary con-
tinuously.)

Definition 15.6.4 Flux over a surface.

Let F⃗ be a vector field with continuous components defined on an ori-
entable surface S with normal vector n⃗. The flux of F⃗ across S is

Flux =

∫∫
S
F⃗ · n⃗ dS.

If S is parametrized by r⃗(u, v), which is smooth on its domain R, then

Flux =

∫∫
R

F⃗
(
r⃗(u, v)

)
· (r⃗u × r⃗v) dA.

Since S is orientable, we adopt the convention of saying one passes from
the “back” side of S to the “front” side when moving across the surface parallel
to the direction of n⃗. Also, when S is closed, it is natural to speak of the regions
of space “inside” and “outside” S. We also adopt the convention that when S is
a closed surface, n⃗ should point to the outside of S. If n⃗ = r⃗u× r⃗v points inside
S , use n⃗ = r⃗v × r⃗u instead.

When the computation of flux is positive, it means that the field is moving
from the back side of S to the front side; when flux is negative, it means the
field is moving opposite the direction of n⃗, and is moving from the front of S
to the back. When S is not closed, there is not a “right” and “wrong” direction
in which n⃗ should point, but one should be mindful of its direction to make full
sense of the flux computation.

We demonstrate the computation of flux, and its interpretation, in the fol-
lowing examples.

Example 15.6.5 Finding flux across a surface.

LetS be the surface given in Example 15.6.2, whereS is parametrized by
r⃗(u, v) = ⟨u, v(2− 2u), 3− 2u− v(2− 2u)⟩ on 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,
and let F⃗ = ⟨1, x,−y⟩, as shown in Figure 15.6.6. Find the flux of F⃗
across S.

Figure 15.6.6 The surface and vector
field used in Example 15.6.5

Solution. Using ourwork from the previous example, we have n⃗ = r⃗u×
r⃗v = ⟨4−4u, 2−2u, 2−2u⟩. We also need F⃗

(
r⃗(u, v)

)
= ⟨1, u,−v(2−

2u)⟩.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfflux1_3D.html
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Thus the flux of F⃗ across S is:

Flux =

∫∫
S
F⃗ · n⃗ dS

=

∫∫
R

⟨1, u,−v(2− 2u)⟩ · ⟨4− 4u, 2− 2u, 2− 2u⟩ dA

=

∫ 1

0

∫ 1

0

(
− 4u2v − 2u2 + 8uv − 2u− 4v + 4

)
du dv

= 5/3.

To make full use of this numeric answer, we need to know the direction
in which the field is passing across S. The graph in Figure 15.6.6 helps,
but we need a method that is not dependent on a graph.
Pick a point (u, v) in the interior ofR and consider n⃗(u, v). For instance,
choose (1/2, 1/2) and look at n⃗(1/2, 1/2) = ⟨2, 1, 1⟩/

√
6. This vector

has positive x, y and z components. Generally speaking, one has some
idea of what the surface S looks like, as that surface is for some reason
important. In our case, we know S is a plane with z-intercept of z = 3.
Knowing n⃗ and the flux measurement of positive 5/3, we know that the
field must be passing from “behind” S , i.e., the side the origin is on, to
the “front” of S .

Example 15.6.7 Flux across surfaces with shared boundaries.

Let S1 be the unit disk in the xy-plane, and let S2 be the paraboloid
z = 1−x2− y2, for z ≥ 0, as graphed in Figure 15.6.8. Note how these
two surfaces each have the unit circle as a boundary.

Figure 15.6.8 The surfaces used in Ex-
ample 15.6.7

Let F⃗1 = ⟨0, 0, 1⟩ and F⃗2 = ⟨0, 0, z⟩. Using normal vectors for each
surface that point “upward,” i.e., with a positive z-component, find the
flux of each field across each surface.
Solution. We begin by parametrizing each surface.
The boundary of the unit disk in the xy-plane is the unit circle, which can
be described with ⟨cosu, sinu, 0⟩, 0 ≤ u ≤ 2π. To obtain the interior
of the circle as well, we can scale by v, giving

r⃗1(u, v) = ⟨v cosu, v sinu, 0⟩, 0 ≤ u ≤ 2π0 ≤ v ≤ 1.

As the boundary of S2 is also the unit circle, the x and y components of
r⃗2 will be the same as those of r⃗1; we just need a different z component.
With z = 1− x2 − y2, we have

r⃗2(u, v) = ⟨v cosu, v sinu, 1−v2 cos2 u−v2 sin2 u⟩ = ⟨v cosu, v sinu, 1−v2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
We now compute the normal vectors n⃗1 and n⃗2.
For n⃗1: r⃗1u = ⟨−v sinu, v cosu, 0⟩, r⃗1v = ⟨cosu, sinu, 0⟩, so

n⃗1 = r⃗1u × r⃗1v = ⟨0, 0,−v⟩.

As this vector has a negative z-component, we instead use

n⃗1 = r⃗1v × r⃗1u = ⟨0, 0, v⟩.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_surfflux2_3D.html
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Similarly, n⃗2: r⃗2u = ⟨−v sinu, v cosu, 0⟩, r⃗2v = ⟨cosu, sinu,−2v⟩, so

n⃗2 = r⃗2u × r⃗2v = ⟨−2v2 cosu,−2v2 sinu,−v⟩.

Again, this normal vector has a negative z-component so we use

n⃗2 = r⃗2v × r⃗2u = ⟨2v2 cosu, 2v2 sinu, v⟩.

We are now set to compute flux. Over field F⃗1 = ⟨0, 0, 1⟩:

Flux across S1 =

∫∫
S1

F⃗1 · n⃗1 dS

=

∫∫
R

⟨0, 0, 1⟩ · ⟨0, 0, v⟩ dA

=

∫ 1

0

∫ 2π

0

(v) du dv

= π.

Flux across S2 =

∫∫
S2

F⃗1 · n⃗2 dS

=

∫∫
R

⟨0, 0, 1⟩ · ⟨2v2 cosu, 2v2 sinu, v⟩ dA

=

∫ 1

0

∫ 2π

0

(v) du dv

= π.

These two results are equal and positive. Each are positive because both
normal vectors are pointing in the positive z-directions, as does F⃗1. As
the field passes through each surface in the direction of their normal
vectors, the flux is measured as positive.
We can also intuitively understand why the results are equal. Consider
F⃗1 to represent the flow of air, and let each surface represent a filter.
Since F⃗1 is constant, andmoving “straight up,” it makes sense that all air
passing through S1 also passes through S2, and vice-versa.
If we treated the surfaces as creating one piecewise-smooth surface S ,
wewould find the total flux acrossS by finding the flux across each piece,
being sure that each normal vector pointed to the outside of the closed
surface. Above, n⃗1 does not point outside the surface, though n⃗2 does.
We would instead want to use−n⃗1 in our computation. We would then
find that the flux across S1 is −π, and hence the total flux across S is
−π+ π = 0. (As 0 is a special number, we should wonder if this answer
has special significance. It does, which is briefly discussed following this
example and will be more fully developed in the next section.)
We now compute the flux across each surface with F⃗2 = ⟨0, 0, z⟩:

Flux across S1 =

∫∫
S1

F⃗2 · n⃗1 dS.

Over S1, F⃗2 = F⃗2

(
r⃗2(u, v)

)
= ⟨0, 0, 0⟩. Therefore,

=

∫∫
R

⟨0, 0, 0⟩ · ⟨0, 0, v⟩ dA
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=

∫ 1

0

∫ 2π

0

(0) du dv

= 0.

Flux across S2 =

∫∫
S2

F⃗2 · n⃗2 dS.

Over S2, F⃗2 = F⃗2

(
r⃗2(u, v)

)
= ⟨0, 0, 1− v2⟩. Therefore,

=

∫∫
R

⟨0, 0, 1− v2⟩ · ⟨2v2 cosu, 2v2 sinu, v⟩ dA

=

∫ 1

0

∫ 2π

0

(v3 − v) du dv

= π/2.

This time the measurements of flux differ. Over S1, the field F⃗2 is just 0⃗,
hence there is no flux. Over S2, the flux is again positive as F⃗2 points in
the positive z direction over S2, as does n⃗2.

In the previous example, the surfaces S1 and S2 form a closed surface that
is piecewise smooth. That the measurement of flux across each surface was
the same for some fields (and not for others) is reminiscent of a result from
Section 15.4, where we measured flux across curves. The quick answer to why
the flux was the same when considering F⃗1 is that div F⃗1 = 0. In the next
section, we’ll see the second part of the Divergence Theorem, which will more
fully explain this occurrence. We will also explore Stokes’ Theorem, the spatial
analogue to Green’s Theorem.
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15.6.3 Exercises

Terms and Concepts

1. In the plane, flux is a measurement of how much of the vector field passes across a ; in space, flux
is a measurement of how much of the vector field passes across a .

2. When computing flux, what does it mean when the result is a negative number?

3. When S is a closed surface, we choose the normal vector so that it points to the of the surface.

4. If S is a plane, and F⃗ is always parallel to S , then the flux of F⃗ across S will be .

Problems

Exercise Group. In the following exercises, a surface S that represents a thin sheet of material with density δ is given.
Find the mass of each thin sheet.

5. S is the plane z = x+ y on−2 ≤ x ≤ 2,
−3 ≤ y ≤ 3, with δ(x, y, z) = z + 10.

6. S is the unit sphere, with
δ(x, y, z) = x+ y + z + 10.

Exercise Group. In the following exercises, a surface S and a vector field F⃗ are given. Compute the flux of F⃗ across
S. (If S is not a closed surface, choose n⃗ so that it has a positive z-component, unless otherwise indicated.)

7. S is the plane z = 3x+ y on 0 ≤ x ≤ 1,
1 ≤ y ≤ 4; F⃗ = ⟨x2,−z, 2y⟩.

8. S is the plane z = 8− x− y over the triangle
with vertices at (0, 0), (1, 0) and (1, 5);
F⃗ = ⟨3, 1, 2⟩.

9. S is the paraboloid z = x2 + y2 over the unit
disk; F⃗ = ⟨1, 0, 0⟩.

10. S is the unit sphere; F⃗ = ⟨y − z, z − x, x− y⟩.

11. S is the square in space with corners at (0, 0, 0),
(1, 0, 0), (1, 0, 1) and (0, 0, 1) (choose n⃗ such
that it has a positive y-component);
F⃗ = ⟨0,−z, y⟩.

12. S is the disk in the yz-plane with radius 1,
centered at (0, 1, 1) (choose n⃗ such that it has a
positive x-component); F⃗ = ⟨y, z, x⟩.

13. S is the closed surface composed of S1, whose
boundary is the ellipse in the xy-plane
described by x2

25 + y2

9 = 1 and S2, part of the
elliptical paraboloid f(x, y) = 1− x2

25 − y2

9 (see
graph); F⃗ = ⟨5, 2, 3⟩.

14. S is the closed surface composed of S1, part of
the unit sphere and S2, part of the plane
z = 1/2 (see graph); F⃗ = ⟨x,−y, z⟩.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_06_ex_13_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_06_ex_14_3D.html
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15.7 The Divergence Theorem and Stokes’ Theorem

15.7.1 The Divergence Theorem
Theorem 15.4.13 gives the Divergence Theorem in the plane, which states that
the flux of a vector field across a closed curve equals the sum of the divergences
over the region enclosed by the curve. Recall that the flux was measured via a
line integral, and the sum of the divergences was measured through a double
integral.

We now consider the three-dimensional version of the Divergence Theorem.
It states, in words, that the flux across a closed surface equals the sum of the
divergences over the domain enclosed by the surface. Since we are in space
(versus the plane), we measure flux via a surface integral, and the sums of diver-
gences will be measured through a triple integral.

Theorem 15.7.1 The Divergence Theorem (in space).

Let D be a closed domain in space whose boundary is an orientable,
piecewise smooth surface S with outer unit normal vector n⃗, and let F⃗
be a vector field whose components are differentiable onD. Then∫∫

S
F⃗ · n⃗ dS =

∫∫∫
D

div F⃗ dV .

Note: the term “outer unit nor-
mal vector” used in Theorem15.7.1
means n⃗ points to the outside of
S.

Example 15.7.2 Using the Divergence Theorem in space.

LetD be the domain in space bounded by the planes z = 0 and z = 2x,
along with the cylinder x = 1− y2, as graphed in Figure 15.7.3, let S be
the boundary ofD, and let F⃗ = ⟨x+ y, y2, 2z⟩.

Figure 15.7.3 The surfaces used in Ex-
ample 15.7.2

Verify the Divergence Theorem by finding the total outward flux of F⃗
across S , and show this is equal to

∫∫∫
D
div F⃗ dV .

Solution. The surface S is piecewise smooth, comprising surfaces S1,
which is part of the plane z = 2x, surfaceS2, which is part of the cylinder
x = 1 − y2, and surface S3, which is part of the plane z = 0. To find
the total outward flux across S , we need to compute the outward flux
across each of these three surfaces.
We leave it to the reader to confirm that surfaces S1, S2 and S3 can be
parametrized by r⃗1, r⃗2 and r⃗3 respectively as

r⃗1(u, v) =
〈
v(1− u2), u, 2v(1− u2)

〉
,

r⃗2(u, v) =
〈
(1− u2), u, 2v(1− u2)

〉
,

r⃗3(u, v) =
〈
v(1− u2), u, 0

〉
,

where−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1 for all three functions.
We compute a unit normal vector n⃗ for each as r⃗u×r⃗v

|| r⃗u×r⃗v || , though recall
that aswe are integrating F⃗ ·n⃗ dS, we actually only use r⃗u×r⃗v. Finally, in
previous flux computations, it did not matter which direction n⃗ pointed
as long as we made note of its direction. When using the Divergence
Theorem, we need n⃗ to point to the outside of the closed surface, so in
practice this means we’ll either use r⃗u × r⃗v or r⃗v × r⃗u, depending on
which points outside of the closed surface S.
We leave it to the reader to confirm the following cross products and
integrations are correct.
For S1, we need to use r⃗1v × r⃗1u = ⟨2(u2 − 1), 0, 1− u2⟩. (Note the z-
component is nonnegative as u ≤ 1, therefore this vector always points

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_divthm_space2_3D.html
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up, meaning to the outside, of S.) The flux across S1 is:

Flux across S1 : =

∫∫
S1

F⃗ · n⃗1 dS

=

∫ 1

0

∫ 1

−1

F⃗
(
r⃗1(u, v)

)
·
(
r⃗1v × r⃗1u

)
du dv

=

∫ 1

0

∫ 1

−1

〈
v(1− u2) + u, u2, 4v(1− u2)

〉
·
〈
2(u2 − 1), 0, 1− u2

〉
du dv

=

∫ 1

0

∫ 1

−1

(
2u4v + 2u3 − 4u2v − 2u+ 2v

)
du dv

=
16

15
.

For S2, we use r⃗2u × r⃗2v = ⟨2(1 − u2), 4u(1 − u2), 0⟩. (Note the x-
component is always nonnegative, meaning this vector points outside
S.) The flux across S2 is:

Flux across S2 : =

∫∫
S2

F⃗ · n⃗2 dS

=

∫ 1

0

∫ 1

−1

F⃗
(
r⃗2(u, v)

)
·
(
r⃗2u × r⃗2v

)
du dv

=

∫ 1

0

∫ 1

−1

〈
1− u2 + u, u2, 4v(1− u2)

〉
·
〈
2(1− u2), 4u(1− u2), 0

〉
du dv

=

∫ 1

0

∫ 1

−1

(
4u5 − 2u4 − 2u3 + 4u2 − 2u− 2

)
du dv

=
32

15
.

For S3, we use r⃗3u × r⃗3v = ⟨0, 0, u2 − 1⟩. (Note the z-component is
never positive, meaning this vector points down, outside of S.) The flux
across S3 is:

Flux across S3 : =

∫∫
S3

F⃗ · n⃗3 dS

=

∫ 1

0

∫ 1

−1

F⃗
(
r⃗3(u, v)

)
·
(
r⃗3u × r⃗3v

)
du dv

=

∫ 1

0

∫ 1

−1

〈
v(1− u2) + u, u2, 0

〉
·
〈
0, 0, u2 − 1

〉
du dv

=

∫ 1

0

∫ 1

−1

0 du dv

= 0.

Thus the total outward flux, measured by surface integrals across all
three component surfaces of S , is 16/15 + 32/15 + 0 = 48/15 =

16/5 = 3.2. We now find the total outward flux by integrating div F⃗
overD.
Following the steps outlined in Section 14.6, we see the bounds of x, y
and z can be set as (thinking “surface to surface, curve to curve, point
to point”):

0 ≤ z ≤ 2x; 0 ≤ x ≤ 1− y2;−1 ≤ y ≤ 1.
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With div F⃗ = 1 + 2y + 2 = 2y + 3, we find the total outward flux of F⃗
over S as:

Flux =
∫∫∫

D

div F⃗ dV =

∫ 1

−1

∫ 1−y2

0

∫ 2x

0

(
2y + 3

)
dz dx dy = 16/5,

the same result we obtained previously.

In Example 15.7.2 we see that the total outward flux of a vector field across a
closed surface can be found two different ways because of the Divergence Theo-
rem. One computation took far less work to obtain. In that particular case, since
S was comprised of three separate surfaces, it was far simpler to compute one
triple integral than three surface integrals (each of which required partial deriv-
atives and a cross product). In practice, if outward flux needs to be measured,
one would choose only one method. We will use both methods in this section
simply to reinforce the truth of the Divergence Theorem.

We practice again in the following example.

Example 15.7.4 Using the Divergence Theorem in space.

Let S be the surface formed by the paraboloid z = 1 − x2 − y2, z ≥
0, and the unit disk centered at the origin in the xy-plane, graphed in
Figure 15.7.5, and let F⃗ = ⟨0, 0, z⟩. (This surface and vector field were
used in Example 15.6.7.)

Figure 15.7.5 The surfaces used in Ex-
ample 15.7.4

Verify the Divergence Theorem; find the total outward flux across S and
evaluate the triple integral of div F⃗ , showing that these two quantities
are equal.
Solution. We find the flux across S first. As S is piecewise-smooth, we
decompose it into smooth components S1, the disk, and S2, the parab-
oloid, and find the flux across each.
In Example 15.6.7, we found the flux across S1 is 0. We also found that
the flux across S2 is π/2. (In that example, the normal vector had a pos-
itive z component hence was an outer normal.) Thus the total outward
flux is 0 + π/2 = π/2.
We now compute

∫∫∫
D
div F⃗ dV . We can describe D as the domain

bounded by (think “surface to surface, curve to curve, point to point”):

0 ≤ z ≤ 1− x2 − y2,−
√
1− x2 ≤ y ≤

√
1− x2,−1 ≤ x ≤ 1.

This description of D is not very easy to integrate. With polar, we can
do better. LetR represent the unit disk, which can be described in polar
simply as r, where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. With x = r cos θ and
y = r sin θ, the surface S2 becomes

z = 1− x2 − y2 ⇒ 1− (r cos θ)2 − (r sin θ)2 ⇒ 1− r2.

ThusD can be described as the domain bounded by:

0 ≤ z ≤ 1− r2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

With div F⃗ = 1, we can integrate, recalling that dV = r dz dr dθ:∫∫∫
D

div F⃗ dV =

∫ 2π

0

∫ 1

0

∫ 1−r2

0

r dz dr dθ =
π

2
,

which matches our flux computation above.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_divthm_space1_3D.html
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Example 15.7.6 A “paradox” of the Divergence Theorem and Gauss’s
Law.

The magnitude of many physical quantities (such as light intensity or
electromagnetic and gravitational forces) follow an “inverse square law”:
the magnitude of the quantity at a point is inversely proportional to the
square of the distance to the source of the quantity.
Let a point light source be placed at the origin and let F⃗ be the vector
field which describes the intensity and direction of the emanating light.
At a point (x, y, z), the unit vector describing the direction of the light
passing through that point is ⟨x, y, z⟩/

√
x2 + y2 + z2. As the intensity

of light follows the inverse square law, the magnitude of F⃗ at (x, y, z) is
k/(x2 + y2 + z2) for some constant k. Taken together,

F⃗ (x, y, z) =
k

(x2 + y2 + z2)3/2
⟨x, y, z⟩.

Consider the cube, centered at the origin, with sides of length 2a for
some a > 0 (hence corners of the cube lie at (a, a, a), (−a,−a,−a),
etc., as shown in Figure 15.7.7). Find the flux across the six faces of the
cube and compare this to

∫∫
D
div F⃗ dV .

Figure 15.7.7 The cube used in Exam-
ple 15.7.6

Solution. Let S1 be the “top” face of the cube, which can be parame-
trized by r⃗(u, v) = ⟨u, v, a⟩ for −a ≤ u ≤ a, −a ≤ v ≤ a. We leave it
to the reader to confirm that r⃗u × r⃗v = ⟨0, 0, 1⟩, which points outside
of the cube.
The flux across this face is:

Flux =

∫∫
S1

F⃗ · n⃗ dS

=

∫ a

−a

∫ a

−a

F⃗
(
r⃗(u, v)

)
·
(
r⃗u × r⃗v

)
du dv

=

∫ a

−a

∫ a

−a

k a

(u2 + v2 + a2)3/2
du dv.

This double integral is not trivial to compute, requiring multiple trigono-
metric substitutions. This example is not meant to stress integration
techniques, so we leave it to the reader to confirm the result is

=
2kπ

3
.

Note how the result is independent of a; no matter the size of the cube,
the flux through the top surface is always 2kπ/3.
An argument of symmetry shows that the flux through each of the six
faces is 2kπ/3, thus the total flux through the faces of the cube is 6 ×
2kπ/3 = 4kπ.
It takes a bit of algebra, but we can show that div F⃗ = 0. Thus the
Divergence Theorem would seem to imply that the total flux through
the faces of the cube should be

Flux =

∫∫∫
D

div F⃗ dV =

∫∫∫
D

0 dV = 0,

but clearly this does not match the result from above. What went
wrong?

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_divthm_space3_3D.html
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Revisit the statement of the Divergence Theorem. One of the condi-
tions is that the components of F⃗ must be differentiable on the do-
main enclosed by the surface. In our case, F⃗ is not differentiable at the
origin — it is not even defined! As F⃗ does not satisfy the conditions
of the Divergence Theorem, it does not apply, and we cannot expect∫∫

S F⃗ · n⃗ dA =
∫∫∫

D
div F⃗ dV .

Since F⃗ is differentiable everywhere except the origin, the Divergence
Theorem does apply over any domain that does not include the origin.
Let S2 be any surface that encloses the cube used before, and let D̂ be
the domain between the cube and S2; note how D̂ does not include the
origin and so the Divergence Theorem does apply over this domain. The
total outward flux over D̂ is thus

∫∫
D̂
div F⃗ dV = 0, which means the

amount of flux coming out ofS2 is the sameas the amount of flux coming
out of the cube. The conclusion: the flux across any surface enclosing
the origin will be 4kπ.
This has an important consequence in electrodynamics. Let q be a point
charge at the origin. The electric field generated by this point charge is

E⃗ =
q

4πϵ0

⟨x, y, z⟩
(x2 + y2 + z2)3/2

,

i.e., it is F⃗ with k = q/(4πϵ0), where ϵ0 is a physical constant (the “per-
mittivity of free space”). Gauss’s Law states that the outward flux of E⃗
across any surface enclosing the origin is q/ϵ0.

Our interest in the Divergence Theorem is twofold. First, its truth alone is
interesting: to study the behavior of a vector field across a closed surface, one
can examine properties of that field within the surface. Secondly, it offers an
alternative way of computing flux. When there are multiple methods of com-
puting a desired quantity, one has power to select the easiest computation as
illustrated next.

Example 15.7.8 Using the Divergence Theorem to compute flux.

Let S be the cube bounded by the planes x = ±1, y = ±1, z = ±1,
and let F⃗ = ⟨x2y, 2yz, x2z3⟩. Compute the outward flux of F⃗ over S.
Solution. We compute div F⃗ = 2xy + 2z + 3x2z2. By the Divergence
Theorem, the outward flux is the triple integral over the domain D en-
closed by S:

Outward flux:
∫ 1

−1

∫ 1

−1

∫ 1

−1

(2xy + 2z + 3x2z2) dz dy dx =
8

3
.

The direct flux computation requires six surface integrals, one for each
face of the cube. The Divergence Theorem offers a much more simple
computation.

15.7.2 Stokes’ Theorem
Just as the spatial Divergence Theorem of this section is an extension of the
planar Divergence Theorem, Stokes’ Theorem is the spatial extension of Green’s
Theorem. Recall that Green’s Theorem states that the circulation of a vector
field around a closed curve in the plane is equal to the sum of the curl of the
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field over the region enclosed by the curve. Stokes’ Theorem effectively makes
the same statement: given a closed curve that lies on a surfaceS , the circulation
of a vector field around that curve is the same as the sum of “the curl of the
field” across the enclosed surface. We use quotes around “the curl of the field”
to signify that this statement is not quite correct, as we do not sum curl F⃗ , but
curl F⃗ · n⃗, where n⃗ is a unit vector normal to S. That is, we sum the portion of
curl F⃗ that is orthogonal to S at a point.

Green’s Theorem dictated that the curve was to be traversed counterclock-
wise when measuring circulation. Stokes’ Theorem will follow a right hand rule:
when the thumb of one’s right hand points in the direction of n⃗, the path C will
be traversed in the direction of the curling fingers of the hand (this is equivalent
to traversing counterclockwise in the plane).

Theorem 15.7.9 Stokes’ Theorem.

Let S be a piecewise smooth, orientable surface whose boundary is a
piecewise smooth curve C, let n⃗ be a unit vector normal to S , let C be
traversed with respect to n⃗ according to the right hand rule, and let the
components of F⃗ have continuous first partial derivatives over S. Then∮

C

F⃗ · dr⃗ =

∫∫
S
(curl F⃗ ) · n⃗ dS.

In general, the best approach to evaluating the surface integral in Stokes’
Theorem is to parametrize the surface S with a function r⃗(u, v). We can find a
unit normal vector n⃗ as

n⃗ =
r⃗u × r⃗v

|| r⃗u × r⃗v ||
.

Since dS = || r⃗u × r⃗v || dA, the surface integral in practice is evaluated as∫∫
S
(curl F⃗ ) · (r⃗u × r⃗v) dA,

where r⃗u × r⃗v may be replaced by r⃗v × r⃗u to properly match the direction of
this vector with the orientation of the parametrization of C.

Example 15.7.10 Verifying Stokes’ Theorem.

Considering the planar surface f(x, y) = 7 − 2x − 2y, let C be the
curve in space that lies on this surface above the circle of radius 1 and
centered at (1, 1) in the xy-plane, let S be the planar region enclosed
byC, as illustrated in Figure 15.7.11, and let F⃗ = ⟨x+ y, 2y, y2⟩. Verify
Stoke’s Theorem by showing

∮
C
F⃗ · dr⃗ =

∫∫
S(curl F⃗ ) · n⃗ dS.

Figure 15.7.11 As given in Exam-
ple 15.7.10, the surface S is the por-
tion of the plane bounded by the
curve

Solution. We begin by parametrizing C and then find the circulation.
A unit circle centered at (1, 1) can be parametrized with x = cos t +
1, y = sin t + 1 on 0 ≤ t ≤ 2π; to put this curve on the surface f ,
make the z component equal f(x, y): z = 7 − 2(cos t + 1) − 2(sin t +
1) = 3 − 2 cos t − 2 sin t. All together, we parametrize C with r⃗(t) =
⟨cos t+ 1, sin t+ 1, 3− 2 cos t− 2 sin t⟩.
The circulation of F⃗ around C is∮

C

F⃗ · dr⃗ =

∫ 2π

0

F⃗
(
r⃗(t)

)
· r⃗ ′(t) dt

=

∫ 2π

0

(
2 sin3 t− 2 cos t sin2 t+ 3 sin2 t− 3 cos t sin t

)
dt

https://opentext.uleth.ca/apex-calculus/generated/asymptote/fig_stokes1_3D.html
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= 3π.

We now parametrize S. (We reuse the letter “r” for our surface as this is
our custom.) Based on the parametrization of C above, we describe S
with r⃗(u, v) = ⟨v cosu+ 1, v sinu+ 1, 3− 2v cosu− 2v sinu⟩, where
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
We leave it to the reader to confirm that r⃗u × r⃗v = ⟨2v, 2v, v⟩. As
0 ≤ v ≤ 1, this vector always has a non-negative z-component, which
the right-hand rule requires given the orientation of C used above. We
also leave it to the reader to confirm curl F⃗ = ⟨2y, 0,−1⟩.
The surface integral of Stokes’ Theorem is thus∫∫

S
(curl F⃗ ) · n⃗ dS =

∫∫
S
(curl F⃗ ) · (r⃗u × r⃗v) dA

=

∫ 1

0

∫ 2π

0

⟨2v sinu+ 2, 0,−1⟩ · ⟨2v, 2v, v⟩ du dv

= 3π,

which matches our previous result.

One of the interesting results of Stokes’ Theorem is that if two surfaces S1

andS2 share the same boundary, then
∫∫

S1
(curl F⃗ )·n⃗ dS =

∫∫
S2
(curl F⃗ )·n⃗ dS.

That is, the value of these two surface integrals is somehow independent of the
interior of the surface. We demonstrate this principle in the next example.

Example 15.7.12 Stokes’ Theorem and surfaces that share a boundary.

Let C be the curve given in Example 15.7.10 and note that it lies on the
surface z = 6 − x2 − y2. Let S be the region of this surface bounded
by C, and let F⃗ = ⟨x+ y, 2y, y2⟩ as in the previous example. Compute∫∫

S(curl F⃗ ) · n⃗ dS to show it equals the result found in the previous
example.

(a) (b)

Figure 15.7.13 As given in Example 15.7.12, the surface S is the portion
of the plane bounded by the curve

Solution. We begin by demonstrating that C lies on the surface z =
6 − x2 − y2. We can parametrize the x and y components of C with
x = cos t+ 1, y = sin t+ 1 as before. Lifting these components to the
surface z = 6 − x2 − y2 gives the z component as z = 6 − x2 − y2 =

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_stokes2a_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_stokes2b_3D.html
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6− (cos t+ 1)2 − (sin t+ 1)2 = 3− 2 cos t− 2 sin t, which is the same
z component as found in Example 15.7.10. Thus the curve C lies on the
surface z = 6− x2 − y2, as illustrated in Figure 15.7.13.
Since C and F⃗ are the same as in the previous example, we already
know that

∮
C
F⃗ · dr⃗ = 3π. We confirm that this is also the value of∫∫

S(curl F⃗ ) · n⃗ dS.
We parametrize S with

r⃗(u, v) = ⟨v cosu+ 1, v sinu+ 1, 6− (v cosu+ 1)2 − (v sinu+ 1)2⟩,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 1, and leave it to the reader to confirm
that

r⃗u × r⃗v =
〈
2v
(
v cosu+ 1

)
, 2v
(
v sinu+ 1

)
, v
〉
,

which also conforms to the right-hand rulewith regard to the orientation
of C. With curl F⃗ = ⟨2y, 0,−1⟩ as before, we have∫∫

S
(curl F⃗ ) · n⃗ dS

=

∫ 1

0

∫ 2π

0

⟨2v sinu+ 2, 0,−1⟩ ·
〈
2v
(
v cosu+ 1

)
, 2v
(
v sinu+ 1

)
, v
〉
du dv

= 3π.

Even though the surfaces used in this example and in Example 15.7.10
are very different, because they share the same boundary, Stokes’ The-
orem guarantees they have equal “sum of curls” across their respective
surfaces.

15.7.3 A Common Thread of Calculus
We have threefold interest in each of the major theorems of this chapter: the
Fundamental Theorem of Line Integrals, Green’s, Stokes’ and the Divergence
Theorems. First, we find the beauty of their truth interesting. Second, each
provides two methods of computing a desired quantity, sometimes offering a
simpler method of computation.

There is yet one more reason of interest in the major theorems of this chap-
ter. These important theorems also all share an important principle with the
Fundamental Theorem of Calculus, introduced in Chapter 5.

Revisit this fundamental theorem, adopting the notation used heavily in this
chapter. Let I be the interval [a, b] and let y = F (x) be differentiable on I , with
F ′(x) = f(x). The Fundamental Theorem of Calculus states that∫

I

f(x) dx = F (b)− F (a).

That is, the sum of the rates of change of a function F over an interval I can
also be calculated with a certain sum of F itself on the boundary of I (in this
case, at the points x = a and x = b).

Each of the named theorems above can be expressed in similar terms. Con-
sider the Fundamental Theorem of Line Integrals: given a function f(x, y), the
gradient ∇f is a type of rate of change of f . Given a curve C with initial and
terminal points A andB, respectively, this fundamental theorem states that∫

C

∇f ds = f(B)− f(A),
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where again the sum of a rate of change of f along a curve C can also be evalu-
ated by a certain sum of f at the boundary of C (i.e., the points A andB).

Green’s Theorem is essentially a special case of Stokes’ Theorem, so we con-
sider just Stokes’ Theorem here. Recalling that the curl of a vector field F⃗ is a
measure of a rate of change of F⃗ , Stokes’ Theorem states that over a surface S
bounded by a closed curve C,∫∫

S

(
curl F⃗

)
· n⃗ dS =

∮
C

F⃗ · dr⃗,

i.e., the sum of a rate of change of F⃗ can be calculated with a certain sum of F⃗
itself over the boundary of S. In this case, the latter sum is also an infinite sum,
requiring an integral.

Finally, the Divergence Theorems state that the sum of divergences of a vec-
tor field (another measure of a rate of change of F⃗ ) over a region can also be
computed with a certain sum of F⃗ over the boundary of that region. When the
region is planar, the latter sum of F⃗ is an integral; when the region is spatial, the
latter sum of F⃗ is a double integral.

The common thread among these theorems: the sum of a rate of change of
a function over a region can be computed as another sum of the function itself
on the boundary of the region. While very general, this is a very powerful and
important statement.
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15.7.4 Exercises

Terms and Concepts

1. What are the differences between the Divergence Theorems of Section 15.4 and this section?
2. What property of a vector field does the Divergence Theorem relate to flux?
3. What property of a vector field does Stokes’ Theorem relate to circulation?
4. Stokes’ Theorem is the spatial version of what other theorem?

Problems

Exercise Group. In the following exercises, a closed surface S enclosing a domain D and a vector field F⃗ are given.
Verify the Divergence Theorem on S; that is, show

∫∫
S F⃗ · n⃗ dS =

∫∫∫
D
div F⃗ dV .

5. S is the surface bounding the domainD
enclosed by the plane z = 2− x/2− 2y/3 and
the coordinate planes in the first octant;
F⃗ = ⟨x2, y2, x⟩.

6. S is the surface bounding the domainD
enclosed by the cylinder x2 + y2 = 1 and the
planes z = −3 and z = 3; F⃗ = ⟨−x, y, z⟩.

7. S is the surface bounding the domainD
enclosed by z = xy(3− x)(3− y) and the
plane z = 0; F⃗ = ⟨3x, 4y, 5z + 1⟩.

8. S is the surface composed of S1, the paraboloid
z = 4− x2 − y2 for z ≥ 0, and S2, the disk of
radius 2 centered at the origin; F⃗ = ⟨x, y, z2⟩.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_05_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_06_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_07_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_08_3D.html
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Exercise Group. In the following exercises, a closed curve C that is the boundary of a surface S is given along with a
vector field F⃗ . Verify Stokes’ Theorem on C; that is, show

∮
C
F⃗ · dr⃗ =

∫∫
S
(
curl F⃗

)
· n⃗ dS.

9. C is the curve parametrized by
r⃗(t) = ⟨cos t, sin t, 1⟩ and S is the portion of
z = x2 + y2 enclosed by C; F⃗ = ⟨z,−x, y⟩.

10. C is the curve parametrized by
r⃗(t) = ⟨cos t, sin t, e−1⟩ and S is the portion of
z = e−x2−y2

enclosed by C; F⃗ = ⟨−y, x, 1⟩.

11. C is the curve that follows the triangle with
vertices at (0, 0, 2), (4, 0, 0) and (0, 3, 0),
traversing the the vertices in that order and
returning to (0, 0, 2), and S is the portion of the
plane z = 2− x/2− 2y/3 enclosed by C;
F⃗ = ⟨y,−z, y⟩.

12. C is the curve whose x and y coordinates follow
the parabola y = 1− x2 from x = 1 to x = −1,
then follow the line from (−1, 0) back to (1, 0),
where the z coordinates of C are determined
by f(x, y) = 2x2 + y2, and S is the portion of
z = 2x2 + y2 enclosed by C;
F⃗ = ⟨y2 + z, x, x2 − y⟩.

Exercise Group. In the following exercises, a closed surface S and a vector field F⃗ are given. Find the outward flux
of F⃗ over S either through direct computation or through the Divergence Theorem.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_09_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_10_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_11_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_12_3D.html
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13. S is the surface formed by the intersections of
z = 0 and z = (x2 − 1)(y2 − 1);
F⃗ = ⟨x2 + 1, yz, xz2⟩.

14. S is the surface formed by the intersections of
the planes z = 1

2 (3− x), x = 1, y = 0, y = 2

and z = 0; F⃗ = ⟨x, y2, z⟩.

15. S is the surface formed by the intersections of
the planes z = 2y, y = 4− x2 and z = 0;
F⃗ = ⟨xz, 0, xz⟩.

16. S is the surface formed by the intersections of
the cylinder z = 1− x2 and the planes y = −2,
y = 2 and z = 0; F⃗ = ⟨0, y3, 0⟩.

Exercise Group. In the following exercises, a closed curve C that is the boundary of a surface S is given along with a
vector field F⃗ . Find the circulation of F⃗ around C either through direct computation or through Stokes’ Theorem.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_13_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_14_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_15_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_16_3D.html
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17. C is the curve whose x- and y-values are
determined by the three sides of a triangle with
vertices at (−1, 0), (1, 0) and (0, 1), traversed
in that order, and the z-values are determined
by the function z = xy; F⃗ = ⟨z − y2, x, z⟩.

18. C is the curve whose x- and y-values are given
by r⃗(t) = ⟨2 cos t, 2 sin t⟩ and the z-values are
determined by the function
z = x2 + y3 − 3y + 1; F⃗ = ⟨−y, x, z⟩.

19. C is the curve whose x- and y-values are given
by r⃗(t) = ⟨cos t, 3 sin t⟩ and the z-values are
determined by the function z = 5− 2x− y;
F⃗ = ⟨− 1

3y, 3x,
2
3y − 3x⟩.

20. C is the curve whose x- and y-values are sides
of the square with vertices at (1, 1), (−1, 1),
(−1,−1) and (1,−1), traversed in that order,
and the z-values are determined by the
function z = 10− 5x− 2y; F⃗ = ⟨5y2, 2y2, y2⟩.

Exercise Group. The following exercises are designed to challenge your understanding and require no computation.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_17_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_18_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_19_3D.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_07_ex_20_3D.html


CHAPTER 15. VECTOR ANALYSIS 943

21. Let S be any closed surface enclosing a domain
D. Consider F⃗1 = ⟨x, 0, 0⟩ and
F⃗2 = ⟨y, y2, z − 2yz⟩.

These fields are clearly very different. Why
is it that the total outward flux of each field
across S is the same?

22.

(a) Green’s Theorem can be used to find the
area of a region enclosed by a curve by
evaluating a line integral with the
appropriate choice of vector field F⃗ .
What condition on F⃗ makes this possible?

(b) Likewise, Stokes’ Theorem can be used to
find the surface area of a region enclosed
by a curve in space by evaluating a line
integral with the appropriate choice of
vector field F⃗ . What condition on F⃗
makes this possible?

23. The Divergence Theorem establishes equality
between a particular double integral and a
particular triple integral. What types of
circumstances would lead one to choose to
evaluate the triple integral over the double
integral?

24. Stokes’ Theorem establishes equality between a
particular line integral and a particular double
integral. What types of circumstances would
lead one to choose to evaluate the double
integral over the line integral?



Appendix A

Answers to Selected Exercises

1 · Limits
1.1 · An Introduction To Limits
1.1 · Exercises

Terms and Concepts

1.1.3. False

Problems

1.1.7. 5 1.1.9. DNE
1.1.11. −4 1.1.13. DNE
1.1.15. 1 1.1.17. 1
1.1.19. DNE

1.1.21. −7 1.1.23. 5
1.1.25. 29 1.1.27. −1

1.2 · Epsilon-Delta Definition of a Limit
1.2 · Exercises

Terms and Concepts

1.2.3. True

1.3 · Finding Limits Analytically
1.3 · Exercises

Problems

1.3.7. 9 1.3.9. 0
1.3.11. 3 1.3.13. 3

1.3.15. 0 1.3.17. π

944
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1.3.19. 23 1.3.21.
√
3
4

1.3.23. DNE 1.3.25. 2
√
3

3

1.3.27. π2−4π−2
2π2−2π+1

1.3.29. 1
4

1.3.31. 17
4 1.3.33. 4

9

1.3.35. 0 1.3.37. 1

1.3.39. 8 1.3.41. 1

1.4 · One-Sided Limits
1.4 · Exercises

Terms and Concepts

1.4.3. False

Problems

1.4.5.

(a) 2

(b) 2

(c) 2

(d) 1

(e) DNE

(f) 4

1.4.7.

(a) DNE or∞

(b) DNE or∞

(c) DNE or∞

(d) DNE

(e) 5

(f) 4

1.4.9.

(a) 1

(b) 1

(c) 1

(d) 1

1.4.11.

(a) 2

(b) 2

(c) 2

(d) 0

(e) 2

(f) 2

(g) 2

(h) DNE
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1.4.13.

(a) 2

(b) 6

(c) DNE

(d) 2

1.4.15.

(a) 9

(b) 9

(c) 9

(d) 9

(e) 126

(f) 126

(g) 126

(h) 126

1.4.17.

(a) 1− cos2(a)

(b) sin2(a)

(c) 1− cos2(a) or sin2(a)

(d) sin2(a)

1.4.19.

(a) −4

(b) −4

(c) −4

(d) −2

1.4.21.

(a) −1

(b) 1

(c) DNE

(d) 0

1.5 · Continuity
1.5 · Exercises

Terms and Concepts

1.5.5. False
1.5.7. True
1.5.9. False

Problems

1.5.11. No. 1.5.13. No.
1.5.15. Yes. 1.5.17. (a). No.

(b). Yes.
(c). No.

1.5.19.

(a) Yes.

(b) Yes.

1.5.21.

(a) Yes.

(b) Yes.
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1.5.23. (−∞,∞) 1.5.25. [−2, 2]

1.5.27. (−∞,−1.73205] , [1.73205,∞) 1.5.29. (−∞,∞)

1.5.31. (0,∞) 1.5.33. (−∞, 1.09861]

1.5.39. 1.23633
1.5.41. 0.693164

1.6 · Limits Involving Infinity
1.6 · Exercises

Terms and Concepts

1.6.1. False
1.6.3. False
1.6.5. True

Problems

1.6.9.

(a) −∞

(b) ∞

1.6.11.

(a) 0

(b) 3

(c) 1.5

(d) 1.5

1.6.13.

(a) DNE

(b) DNE

1.6.15.

(a) −∞

(b) ∞

(c) DNE

1.6.17.

(a) ∞

(b) ∞

(c) ∞

1.6.19. y = 2, x = −2, x = 9 1.6.21. y = 0, x = 0, x = 4

1.6.23. NONE

1.6.25. ∞ 1.6.27. ∞

2 · Derivatives
2.1 · Instantaneous Rates of Change: The Derivative
2.1 · Exercises
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Terms and Concepts

2.1.1. True

Problems

2.1.7. 0 2.1.9. −3

2.1.11. 3x2 2.1.13. −1
x2

2.1.15. (a). y = 6

(b). x = −2

2.1.17. (a). 3x+ y = 4

(b). y − 0.333333x = −19.3333

2.1.19. (a). y − 48x = −128

(b). 0.0208333x+ y = 64.0833

2.1.21. (a). 0.25x+ y = −1

(b). y − 4x = 7.5

2.1.23. 5.9x+ y = 1.2 2.1.25. y − 0.0192627x = 0.0953664

2.1.27.

(a) −2, 0, 4

(b) 2x

(c) −2, 0, 4

2.1.33. (a). (−2, 0) ∪ (2,∞)

(b). (−∞,−2) ∪ (0, 2)

(c). {−2, 0, 2}
(d). (−1, 1)

(e). (−∞,−1) ∪ (1,∞)

(f). {−1, 1}

2.1.35. no

2.2 · Interpretations of the Derivative
2.2 · Exercises

Terms and Concepts

2.2.1. velocity
2.2.3. linear functions

Problems

2.2.5. −89

2.2.7. f(10.1)
2.2.9. 7
2.2.11. foot per second squared

2.2.15. Choice 1 2.2.17. Choice 2
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2.3 · Basic Differentiation Rules
2.3 · Exercises

Terms and Concepts

2.3.1. the power rule
2.3.3. ex

2.3.5. Choice 1, Choice 2, Choice 5, Choice 6
2.3.7. 17x− 205

2.3.9. (a). a velocity function
(b). an acceleration function

Problems

2.3.11. − (14x+ 8) 2.3.13. 9−
(
20t4 + 3

4 t
2
)

2.3.15. 3er 2.3.17. 6
x + 9

2.3.19. sin(t)− (et + cos(t)) 2.3.21. 0

2.3.23. 24x2 + 96x+ 96 2.3.25. 8x+ 28

2.3.27. (a). 9x8

(b). 9 · 8x7

(c). 9 · 8 · 7x6

(d). 9 · 8 · 7 · 6x5

2.3.29. (a). − (4 · 2t+ 3 + et)

(b). − (8 + et)

(c). −et

(d). −et

2.3.31. (a). − (cos(θ)− sin(θ))
(b). sin(θ) + cos(θ)
(c). cos(θ)− sin(θ)
(d). − (sin(θ) + cos(θ))

2.3.33. (a). y = 20(x− 2) + 24

(b). y = − 1
20 (x− 2) + 24

2.3.35. (a). y = x− 1

(b). y = − (x− 1)

2.3.37. (a). y = 2·1
2

(
x− π

6

)
+ −2

√
3

2

(b). y = −
(
1
2 · 2

) (
x− π

6

)
+ −2

√
3

2

2.4 · The Product and Quotient Rules
2.4 · Exercises

Terms and Concepts

2.4.1. False
2.4.3. True
2.4.5. False
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Problems

2.4.15. sin(y) + y cos(y) 2.4.17. eq ln(q) + eq 1
q

2.4.19. t−4−(t+8)

(t−4)2
2.4.21. − (csc(y) cot(y) + ey)

2.4.23. 7 · 2q − 6 2.4.25.
(
5r2 + 17r + 10

)
er

2.4.27. 3 2.4.29. csc(z) sin(z)−csc(z) cot(z)(cos(z)+2)

(cos(z)+2)2

2.4.31. tan(r)−r sec2(r)
tan2(r) − csc2(r)r+cot(r)

r2
2.4.33.
7 · 5x4ex + 7x5ex − (cos(x) cos(x)− sin(x) sin(x))

2.4.35.
(
4z3 ln(z) + z4 1

z

)
cos(z)− z4 ln(z) sin(z)

2.4.37. (a). y = − (7x+ 7)

(b). y =
(
1
7

)
x− 7

2.4.39. (a). y = − (15(x+ 5) + 25)

(b). y =
(

1
15

)
(x+ 5)− 25

2.4.41. 17
2

2.4.43. NONE

2.4.45. 2 cos(x)− x sin(x) 2.4.47. csc(x) cot(x) cot(x) + csc2(x) csc(x)

2.5 · The Chain Rule
2.5 · Exercises

Terms and Concepts

2.5.1. True
2.5.3. False
2.5.5. True

Problems

2.5.7. 10
(
4x3 − x

)9 (
12x2 − 1

)
2.5.9. 3(sin(θ) + cos(θ))2 (cos(θ)− sin(θ))

2.5.11. 4
(
ln(x)− x4

)3 ( 1
x − 4x3

)
2.5.13. 5

(
y + 1

y

)4 (
1− 1

y2

)
2.5.15. 2 sec2(2q) 2.5.17.

(
6t5 − 3t2

(t3)2

)
cos
(
t6 + 1

t3

)
2.5.19.
−3 cos2

(
y2 + 3y − 3

)
(2y + 3) sin

(
y2 + 3y − 3

) 2.5.21. 1
q8 · 8q7

2.5.23. 1.79176 · 6t 2.5.25. 0

2.5.27. 1.79176·6w(5w+6)−(6w+5)·1.60944·5w

(5w+6)2 2.5.29.
(
1.60944·5r

2
·2r−1

)
·6r

2
−
(
5r

2
−r
)
·1.79176·6r

2
·2r

(6r2)
2

2.5.31. 6
(
x2 + 4x

)5
(2x+ 4)

(
7x4 + x

)3
+(

x2 + 4x
)6 · 3(7x4 + x

)2 (
7 · 4x3 + 1

) 2.5.33. 7 cos(9 + 7w) cos(4w − 5)−
4 sin(4w − 5) sin(9 + 7w)

2.5.35. − 6 sin(6r+4)(3r+1)3+3·3(3r+1)2 cos(6r+4)

((3r+1)3)
2

2.5.37. (a). y = 0

(b). x = 0

2.5.39. (a). y = −3
(
x− π

2

)
+ 1

(b). y = 1
3

(
x− π

2

)
+ 1
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2.5.41. 1
x

2.6 · Implicit Differentiation
2.6 · Exercises

Terms and Concepts

2.6.3. True

Problems

2.6.5. 1
2
√
w
+

1
2
√

w

(
√
w)

2
2.6.7. 1

2
√
9+t2

· 2t

2.6.9. 1.2y0.2 2.6.11.
√
w−(w−8) 1

2
√

w

(
√
w)

2

2.6.13. −4x3

2y+1
2.6.15. sin(x) sec(y)

2.6.17. y
x 2.6.19. −2 sin(y) cos(y)

x

2.6.21. 1
2y+2 2.6.23. 1−cos(x)

sin(y)+1

2.6.25. −(2x+y)
2y+x

2.6.27.

(a) y = 0

(b) y = −1.859(x− 0.1) + 0.2811

2.6.29.

(a) y = 4

(b) y = 3

108
1
4
(x− 2)− 108

1
4

2.6.31.

(a) y = −1√
3

(
x− 7

2

)
+ 6+3

√
3

2

(b) y =
√
3(x−(4+3

√
3))

2 + 3
2

2.6.33.
−
(
(2y+1)·12x2−4x3

2(−(4x3))
2y+1

)
(2y+1)2

2.6.35. sin2(x) sec2(y) tan(y) + cos(x) sec(y)

2.6.37. (a). (1 + x)
1
x

(
1

x(x+1) −
ln(1+x)

x2

)
(b). y = (1− 2 ln(2)) (x− 1) + 2

2.6.39. (a). xx

x+1

(
ln(x) + 1− 1

x+1

)
(b). y = 1

4 (x− 1) + 1
2

2.6.41. (a). x+1
x+2

(
1

x+1 − 1
x+2

)
(b). y = 1

9 (x− 1) + 2
3

2.7 · Derivatives of Inverse Functions
2.7 · Exercises
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Terms and Concepts

2.7.1. False

Problems

2.7.9. 1
7

2.7.11. −0.5

2.7.13. − 25
4

2.7.15. − 1√
1−(4w)2

· 4 2.7.17. 1
1+(2r)2

· 2

2.7.19. (sec(x))2 cos−1(x)− 1√
1−x2

tan(x) 2.7.21.
1

1+z2
sin−1(z)− 1√

1−z2
tan−1(z)

(sin−1(z))
2

2.7.23. csc
(

1
q3

)
cot
(

1
q3

)
3q2

(q3)2

2.7.29. y = 2
(
x− −

√
3

2

)
+
(
−π

3

)

3 · The Graphical Behavior of Functions
3.1 · Extreme Values
3.1 · Exercises

Terms and Concepts

3.1.5. False

Problems

3.1.7. (a). B
(b). NONE
(c). B,G
(d). C, F

3.1.9. 0 3.1.11. (a). 0

(b). 0

3.1.13. (a). DNE
(b). 0

3.1.15. 0

3.1.17. (a). 14

(b). −2

3.1.19. (a). −2.82843

(b). −4

3.1.21. (a). 9
2

(b). 2.82843
3.1.23. (a). e

π
4√
2

(b). −eπ

3.1.25. (a). 1
2e

(b). 0
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3.2 · The Mean Value Theorem
3.2 · Exercises

Problems

3.2.3. (−1, 1) 3.2.5. − 1
2

3.2.7. does not apply 3.2.9. does not apply

3.2.11. 0 3.2.13. 3
√
2
2

3.2.15. does not apply 3.2.17. − sec−1
(

2√
π

)
, sec−1

(
2√
π

)
3.2.19. 5 + 7

√
7
6 , 5− 7

√
7
6

3.3 · Increasing and Decreasing Functions
3.3 · Exercises

Terms and Concepts

3.3.3. Answers will vary; graphs should be steeper near x = 0 than near x = 2.
3.3.5. False

Problems

3.3.15. (a). (−∞,∞)

(b). −2

(c). [−2,∞)

(d). (−∞,−2]

(e). NONE
(f). −2

3.3.17. (a). (−∞,∞)

(b). − 5
7 ,

7
3

(c). (−∞,−0.714286] , [2.33333,∞)

(d). [−0.714286, 2.33333]

(e). − 5
7

(f). 7
3

3.3.19. (a). (−∞,∞)

(b). 5

(c). (−∞, 5]

(d). [5,∞)

(e). 5

(f). NONE

3.3.21. (a). (−∞,−7) ∪ (−7,−5) ∪ (−5,∞)

(b). −5.91608, 5.91608

(c). [−5.91608,−5) , (−5, 5.91608]

(d). (−∞,−7) , (−7,−5.91608] , [5.91608,∞)

(e). 5.91608

(f). −5.91608

3.3.23. (a). (−π, π)

(b). −2.35619,−0.785398, 0.785398, 2.35619

(c). (−3.14159,−2.35619) , (−0.785398, 0.785398) , (2.35619, 3.14159)

(d). (−2.35619,−0.785398) , (0.785398, 2.35619)

(e). −2.35619, 0.785398

(f). −0.785398, 2.35619

3.4 · Concavity and the Second Derivative
3.4 · Exercises
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Terms and Concepts

3.4.1. Answers will vary.
3.4.3. Yes; Answers will vary.

Problems

3.4.15. (a). NONE
(b). (−∞,∞)

(c). NONE

3.4.17. (a). 0

(b). [0,∞)

(c). (−∞, 0]

3.4.19. (a). − 32
3 , 0

(b). (−∞,−10.6667] , [0,∞)

(c). [−10.6667, 0]

3.4.21. (a). −2

(b). (−∞,∞)

(c). NONE

3.4.23. (a). −0.57735, 0.57735

(b). (−∞,−0.57735] , [0.57735,∞)

(c). [−0.57735, 0.57735]

3.4.25. (a). −0.785398, 2.35619

(b). (−3.14159,−0.785398] , [2.35619, 3.14159)

(c). [−0.785398, 2.35619]

3.4.27. (a). 0.22313

(b). [0.22313,∞)

(c). (0, 0.22313]

3.4.29. (a). −7

(b). NONE
(c). −7

3.4.31. (a). −1.1547, 1.1547

(b). −1.1547

(c). 1.1547

3.4.33. (a). −4

(b). NONE
(c). −4

3.4.35. (a). 3

(b). NONE
(c). NONE

3.4.37. (a). −9

(b). −9

(c). NONE

3.4.39. (a). −2.35619, 0.785398

(b). 0.785398

(c). −2.35619

3.4.41. (a). 0.606531

(b). NONE
(c). 0.606531

3.4.43. (a). NONE
(b). NONE

3.4.45. (a). NONE
(b). 0

3.4.47. (a). − 28
3

(b). 0

3.4.49. (a). NONE
(b). NONE

3.4.51. (a). 0

(b). 2

3.4.53. (a). −0.785398

(b). 2.35619

3.4.55. (a). NONE
(b). 0.22313

3.5 · Curve Sketching
3.5 · Exercises



APPENDIX A. ANSWERS TO SELECTED EXERCISES 955

Terms and Concepts

3.5.3. True
3.5.5. True

4 · Applications of the Derivative
4.1 · Newton’s Method
4.1 · Exercises

Terms and Concepts

4.1.1. False

Problems

4.1.3. (a). 1.57091

(b). 1.5708

(c). 1.5708

(d). 1.5708

(e). 1.5708

4.1.5. (a). 2

(b). 1.2

(c). 1.01176

(d). 1.00005

(e). 1

4.1.7. (a). 0.613706

(b). 0.913341

(c). 0.996132

(d). 0.999993

(e). 1

4.1.9. {−5.15633,−0.369102, 0.525428}
4.1.11. {−1.0134, 0.988312, 1.39341}

4.1.13. {−0.824132, 0.824132}
4.1.15. {0}

4.2 · Related Rates
4.2 · Exercises

Terms and Concepts

4.2.1. True

Problems

4.2.3.

(a) 0.198944 cm
s

(b) 0.0198944 cm
s
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(c) 0.00198944 cm
s

4.2.5. 51.066 mi
h

4.2.7.

(a) 258.537 rad
hr

(b) 413.417 rad
hr

(c) 424 rad
hr

4.2.9.

(a) 0.0417029 ft
s

(b) 0.458349 ft
s

(c) 3.35489 ft
s

(d) ∞
4.2.11.

(a) 19.1658 ft
s

(b) 0.191658 ft
s

(c) 0.0395988 ft
s

(d) 381.791 s
4.2.13.

(a) 80 ft

(b) 1.71499 ft
s

(c) 1.83829 ft
s

(d) 74.162 ft

4.2.15. 0.00230973 ft
s

4.3 · Optimization
4.3 · Exercises

Terms and Concepts

4.3.1. True

Problems

4.3.3. 5625
4.3.5. DNE
4.3.7. 1
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4.3.9. (a). 3.83722 cm
(b). 7.67443 cm
4.3.11. (a). 3.0456 cm
(b). 12.1824 cm
4.3.13. 10.3923 in; 14.6969 in
4.3.15. (a). 0mi
(b). $474,341.65

4.3.17. 23.7599 ft

4.4 · Differentials
4.4 · Exercises

Terms and Concepts

4.4.1. True
4.4.3. False

Problems

4.4.7. 4.28 4.4.9. 83.2
4.4.11. 5.05 4.4.13. 4.98667
4.4.15. 0.141593

4.4.17. (2x− 5) dx 4.4.19. − 24x5

(4x6)2
dx

4.4.21.
(
7x6 + 8e8x

)
dx 4.4.23. 9(tan(x)+2)−9x sec2(x)

(tan(x)+2)2
dx

4.4.25. (ex sin(x) + ex cos(x)) dx 4.4.27. x+5−(x−4)

(x+5)2
dx

4.4.29. tan−1(x) dx

4.4.31. 5.02655 cm3

4.4.33. 3.92699

4.4.35.

(a) 297.717 ft

(b) 62.3155 ft

(c) 20.9%

4.4.37.

(a) 298.868 ft

(b) 8.66751 ft

(c) 2.9%
4.4.39. 1%

5 · Integration
5.1 · Antiderivatives and Indefinite Integration
5.1 · Exercises

Terms and Concepts

5.1.7. velocity
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Problems

5.1.9.
(
7
6

)
x6 + C 5.1.11.

(
7
4

)
x8 + 6x+ C

5.1.13. s+ C 5.1.15. C − 1
t4

5.1.17. sec(θ) + C 5.1.19. sec(x) + csc(x) + C

5.1.21. 9t

ln(9) + C 5.1.23. 3t3 + 3t2 + t+
(
1
9

)
+ C

5.1.25. x15

15 + C 5.1.27. px+ C

5.1.31. 8ex + 5

5.1.33. tan(x) + 4

5.1.35. 2x2 + 2x+ 9

5.1.37. 6ex − 9x+ 2

5.1.39. 5x6

6 + 7x

3.78657 − sin(x) + 1.4861x+ 5.73591

5.2 · The Definite Integral
5.2 · Exercises

Terms and Concepts

5.2.3. 0

Problems

5.2.5.

(a) 3

(b) 4

(c) 3

(d) 0

(e) −4

(f) 9

5.2.7.

(a) 4

(b) 2

(c) 4

(d) 2

(e) 1

(f) 2

5.2.9.

(a) π

(b) π

(c) 2π

(d) 10π
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5.2.11.

(a) −59

(b) −48

(c) −27

(d) −33

5.2.13.

(a) 4

(b) 4

(c) −4

(d) −2

5.2.15.

(a) 2 ft
s

(b) 2 ft

(c) 1.5 ft

5.2.17.

(a) 64 ft
s

(b) 64 ft

(c) 2 s

(d) 4.64575 s
5.2.19. 2 5.2.21. 16

5.2.23. 22 5.2.25. 0

5.3 · Riemann Sums
5.3 · Exercises

Terms and Concepts

5.3.1. limits
5.3.3. rectangles

Problems

5.3.5. (a). 4 + 9 + 16 + 25

(b). 54

5.3.7. (a). 0 + (−1) + 0 + 1

(b). 0

5.3.9. (a). 1 + 1
2 + 1

3 + 1
4 + 1

5

(b). 137
60

5.3.11. (a). 1
2 + 1

6 + 1
12 + 1

20 + 1
30

(b). 5
6

5.3.13. 1; 4; 3i 5.3.15. 1; 4; i
i+3

5.3.17. 56 5.3.19. 946
5.3.21. −29582 5.3.23. 3655

5.3.25. 195 5.3.27. 49
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5.3.35. (a). (n+1)2

4n2

(b). 0.3025

(c). 0.255025

(d). 0.2505

(e). 1
4

5.3.37. (a). 12

(b). 12

(c). 12

(d). 12

(e). 12

5.3.39. (a). 88− 242
n

(b). 63.8

(c). 85.58

(d). 87.758

(e). 88

5.4 · The Fundamental Theorem of Calculus
5.4 · Exercises

Terms and Concepts

5.4.3. True

Problems

5.4.5. 16 5.4.7. 0
5.4.9.

√
3− 1 5.4.11. (

1295
216 )
ln(6)

5.4.13. −8 5.4.15. 128
3

5.4.17. 525
4 5.4.19. 4

5

5.4.21. 1
2 5.4.23. 1

4

5.4.25. 16 5.4.27. 0

5.4.31. 2.3094 5.4.33. 0.541325

5.4.35.
1

π−π
2
·3.14159

π

5.4.37. 5
2

5.4.39. 343
4

5.4.41. −848 ft 5.4.43. 57 ft
5.4.45. 2 ft

5.4.47. −192 ft
s 5.4.49. 32 ft

s

5.4.55. 3x2−7
x3−7x

5.4.57. 3x2
(
x3 − 5

)
− (x− 5)

5.4.59. 3x2 sin
(
4x6
)

5.5 · Numerical Integration
5.5 · Exercises
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Terms and Concepts

5.5.1. False

Problems

5.5.5.

(a) 0.75

(b) 0.666667

(c) 0.666667

5.5.7.

(a) 1.89612

(b) 2.00456

(c) 2

5.5.9.

(a) 38.5781

(b) 36.75

(c) 36.75

5.5.11.

(a) 0

(b) 0

(c) 0

5.5.13.

(a) 0.900628

(b) 0.904523

5.5.15.

(a) 13.9604

(b) 13.9066

5.5.17.

(a) 1.17029

(b) 1.18728

5.5.19.

(a) 1.08025

(b) 1.07699

5.5.21.

(a) 161

(b) 12

5.5.23.

(a) 994

(b) 62

5.5.25. (a). 30.8667 cm2

(b). 308667 ft2

6 · Techniques of Antidifferentiation
6.1 · Substitution
6.1 · Exercises

Terms and Concepts

6.1.1. the Chain Rule

Problems

6.1.3. 1
9

(
x4 + 3

)9
+ C 6.1.5. 1

20

(
x2 + 8

)10
+ C

6.1.7. 1
3 ln(|3x+ 4|) + C 6.1.9. 2

3 (x+ 6)
√
x− 3 + C
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6.1.11. 2e
√
x + C 6.1.13. C − 1

2

(
1
x + 6

)2
6.1.15. (sin(x))3

3 + C 6.1.17. C − sin(7−7x)
7

6.1.19. 1
5 ln(|sec(5x) + tan(5x)|) + C 6.1.21. C − 1

7 cos
(
x7
)

6.1.23. ln(|sin(x)|) + C

6.1.25. 1
3e

3x+9 + C 6.1.27. 1
2e

(x−3)2 + C

6.1.29. ln(ex + 6) + C 6.1.31. 88x

16.6355 + C

6.1.33. ln
2(x)
2 + C 6.1.35.

(
3
2

)
(ln(x))2 + C

6.1.37. x2

2 − x+ 6 ln(|x|) + C 6.1.39. 1
3 (x+ 1)

3
+
(
3
2

)
(x+ 1)

2
+ 3(x+ 1)−

6 ln(|x+ 1|) + C

6.1.41. 4(x+ 4)
2 − 66(x+ 4) + 137 ln(|x+ 4|) + C

6.1.43. 1.73205 tan−1
(

x
1.73205

)
+ C 6.1.45. 2 sin−1

(
x

2.44949

)
+ C

6.1.47.
(
2
3

)
sec−1

(
|x|
6

)
+ C 6.1.49. 0.301511 tan−1

(
x+5
11

)
+ C

6.1.51. 6 sin−1
(
x−9
9

)
+ C

6.1.53. C − 1
4(x4−5) 6.1.55.

√
5 + x2 + C

6.1.57. C − 2
3 (cos(x))

( 3
2 ) 6.1.59. ln(|x+ 7|) + C

6.1.61. 2x2 − 7x+ ln
(∣∣x2 − 7x− 1

∣∣)+ C 6.1.63. 4 ln
(∣∣6x− 3x2 + 4

∣∣)+ C

6.1.65. 1
12 tan

−1
(

x2

6

)
+ C 6.1.67. sec−1(|8x|) + C

6.1.69.(
9
2

)
ln
(∣∣x2 + 18x+ 130

∣∣)− ( 57) tan−1
(
x+9
7

)
+ C

6.1.71. x+ 0.774597 tan−1
(

x−5
3.87298

)
+(

9
2

)
ln
(∣∣x2 − 10x+ 40

∣∣)+ C

6.1.73. 1
2x

2 + 2x+
(
17
2

)
ln
(∣∣x2 − 2x+ 6

∣∣)+
20.1246 tan−1

(
x−1

2.23607

)
+ C

6.1.75. tan−1(sin(x)) + C

6.1.77. 6
√
x2 − 14x+ 48 + C

6.1.79. ln
((

5
8

))
6.1.81. 1

5

6.1.83. 1
2

(
e4 − e4

)
6.1.85. π

2

6.2 · Integration by Parts
6.2 · Exercises

Terms and Concepts

6.2.1. True
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Problems

6.2.5. sin(x)− x cos(x) + C 6.2.7. −x2 cos(x) + 2x sin(x) + 2 cos(x) + C

6.2.9. 1
2e

x2

+ C 6.2.11. − 1
2xe

−2x − e−2x

4 + C

6.2.13. 1
5e

2x(sin(x) + 2 cos(x)) + C 6.2.15.
(

1
12

)
e6x(sin(6x) + cos(6x)) + C

6.2.17.
√
1− x2 + x sin−1(x) + C 6.2.19. 0.5x2 tan−1(x)− x

2 + 0.5 tan−1(x) + C

6.2.21. 0.5x2 ln(x)− x2

4 + C 6.2.23.
1
2x

2 ln(x+ 1)− 1
4 (x+ 1)

2
+ x−

(
1
2

)
ln(x+ 1) + C

6.2.25. 0.333333x3 ln(x)− x3

9 + C 6.2.27. 2(x+ 7) + (x+ 7) (ln(x+ 7))
2 −

2(x+ 7) ln(x+ 7) + C

6.2.29. ln(|sin(x)|)− x cot(x) + C 6.2.31. 1
3

(
x2 − 4

)( 3
2 ) + C

6.2.33. x sec(x)− ln(|sec(x) + tan(x)|) + C

6.2.35. x
2 (sin(ln(x)) + cos(ln(x))) + C 6.2.37. 2 cos(

√
x) + 2

√
x sin(

√
x) + C

6.2.39. 2
√
xe

√
x − 2e

√
x + C

6.2.41. π 6.2.43. 0
6.2.45. 7

2 6.2.47.
(
− 7

4

)
e−6 −

(
− 3

4

)
e−2

6.2.49. 0.4
(
−e2π + e−2π

)
6.3 · Trigonometric Integrals
6.3 · Exercises

Terms and Concepts

6.3.1. False
6.3.3. False

Problems

6.3.5. −0.2 cos5(x) + C 6.3.7. 1
5 (cos(x))

5 − 1
3 (cos(x))

3
+ C

6.3.9. 1
9 (sin(x))

9 − 2
7 (sin(x))

7
+ 1

5 (sin(x))
5
+ C 6.3.11. x

8 − 0.03125 sin(4x) + C

6.3.13. C −
((

1
4

)
cos(2x) +

(
1
8

)
cos(4x)

)
6.3.15. 1

8π sin(4πx)−
1

12π sin(6πx) + C

6.3.17. 3
5π cos

(
5π
6 πx

)
+ 3

7π cos
(
7π
6 πx

)
+ C 6.3.19. tan

5(x)
5 + tan3(x)

3 + C

6.3.21. 1
8 (tan(x))

8
+ C 6.3.23.

1
12 (sec(x))

12 − 1
5 (sec(x))

10
+ 1

8 (sec(x))
8
+ C

6.3.25. 0.25 tan(x) sec3(x) +
0.375(sec(x) tan(x) + ln(|sec(x) + tan(x)|)) + C

6.3.27. 0.25 tan(x) sec3(x)−
0.125(sec(x) tan(x) + ln(|sec(x) + tan(x)|)) + C

6.3.29. 0 6.3.31. 1
2

6.3.33. 2
5

6.4 · Trigonometric Substitution
6.4 · Exercises
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Terms and Concepts

6.4.1. backward
6.4.3. (a). tan2(θ) + 1 = sec2(θ)
(b). 5 sec2(θ)

Problems

6.4.5. 1
2

(
x
√
x2 + 1 + ln

(√
x2 + 1 + x

))
+ C 6.4.7. 1

2 sin
−1(x) + x

2

√
1− x2 + C

6.4.9. 1
2x

√
x2 − 1− 1

2 ln
(∣∣x+

√
x2 − 1

∣∣)+ C 6.4.11. x
2

√
16x2 + 1 + 1

8 ln
(
4x+

√
16x2 + 1

)
+ C

6.4.13. x
2

√
36x2 − 1− 1

12 ln
(∣∣6x+

√
36x2 − 1

∣∣)+C 6.4.15. 7 sin−1
(

x
3.60555

)
+ C

6.4.17.
√
x2 − 15− 3.87298 sec−1

(
x

3.87298

)
+ C 6.4.19.

√
x2 − 3 + C

6.4.21. C − 1√
x2+25

6.4.23.
(

1
162

)
x−2

x2−4x+85 +
(

1
1458

)
tan−1

(
x−2
9

)
+ C

6.4.25. C −
(√

5−x2

8x + 1
8 sin

−1
(

x
2.23607

))
6.4.27. π

2 6.4.29.
(
3
2

)√
13 + 2 ln

((
3
2

)
+
(
1
2

)√
13
)

6.4.31. 9 sin−1
((

2
3

))
+ 2

√
5

6.5 · Partial Fraction Decomposition
6.5 · Exercises

Terms and Concepts

6.5.1. rational
6.5.3. A

x + B
x+8 6.5.5. A

x−
√
3
+ B

x+
√
3

Problems

6.5.7. 2 ln(|x+ 3|) + 5 ln(|x+ 2|) + C 6.5.9.
(
9
4

)
ln(|x+ 4|)−

(
9
4

)
ln(|x− 4|) + C

6.5.11. 9 ln(|x− 6|)− 7
x−6 + C 6.5.13. 3 ln(|x|) + 7 ln(|x+ 8|) + 8

x+8 + C

6.5.15.(
1
4

)
ln(|4x+ 3|)−

(
3
7

)
ln(|7x+ 10|) + ( 2

5 )
5x−60 + C

6.5.17.
1
2x

2 + 7x+
(
1
9

)
ln(|x+ 1|) +

(
512
9

)
ln(|x− 8|) + C

6.5.19.
(
1
6

)
ln(|x|)−

(
1
12

)
ln
(
x2 − 4x+ 6

)
+

0.235702 tan−1
(

x−2
1.41421

)
+ C

6.5.21. ln
(∣∣9x2 − x+ 9

∣∣)+ ln(|x− 1|) + C

6.5.23.
(
343
40

)
ln(|x− 6|)−

(
23
80

)
ln
(
x2 + 4

)
+(

111
40

)
tan−1

(
x
2

)
+ C

6.5.25. ln
(
x2 + 2x+ 4

)
− ln(|x− 3|) +

2.88675 tan−1
(

x+1
1.73205

)
+ C

6.5.27. ln
((

3125
524288

))
6.5.29. ln

((
2
3

))
+ tan−1(−2)− tan−1(−4)

6.6 · Hyperbolic Functions
6.6 · Exercises



APPENDIX A. ANSWERS TO SELECTED EXERCISES 965

Problems

6.6.11. 2 cosh(2x) 6.6.13. sech2
(
x2
)
· 2x

6.6.15. cosh(x) cosh(x) + sinh(x) sinh(x) 6.6.17. − 1

x2
√

1−(x2)2
· 2x

6.6.19. 1√
(2x2)2−1

· 2 · 2x 6.6.21. − 1
1−cos2(x) sin(x)

6.6.23. 1(x− 0) + 0 6.6.25. 0.36(x− (−1.09861)) + (−0.8)

6.6.27. 1(x− 0) + 0

6.6.29. 0.5 ln(cosh(2x)) + C 6.6.31. 0.5 sinh2(x) + C

6.6.33. x cosh(x)− sinh(x) + C 6.6.35. cosh−1 x/3 + C = ln
(
x+

√
x2 − 9

)
+ C

6.6.37. cosh−1
(

x2

2

)
+ C 6.6.39. −0.0625 tan−1

(
x
2

)
+ 0.03125 ln(|x− 2|)−

0.03125 ln(|x+ 2|) + C

6.6.41. tan−1(ex) + C 6.6.43. x tanh−1(x) + 0.5 ln
(∣∣x2 − 1

∣∣)+ C

6.6.45. 0 6.6.47. 0.761594

6.7 · L’Hospital’s Rule
6.7 · Exercises

Terms and Concepts

6.7.3. False

Problems

6.7.9. 3 6.7.11. −1

6.7.13. 5 6.7.15. 0.666667
6.7.17. ∞ 6.7.19. 0
6.7.21. 0 6.7.23. ∞
6.7.25. 0 6.7.27. −2

6.7.29. 0 6.7.31. 0
6.7.33. ∞ 6.7.35. ∞
6.7.37. 0 6.7.39. 1
6.7.41. 1 6.7.43. 1
6.7.45. 1 6.7.47. 1
6.7.49. 2 6.7.51. −∞
6.7.53. 0

6.8 · Improper Integration
6.8 · Exercises

Terms and Concepts

6.8.5. p > 1
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Problems

6.8.7. e5

2
6.8.9. 1

3

6.8.11. 1
ln(2)

6.8.13. ∞

6.8.15. 1 6.8.17. ∞
6.8.19. ∞ 6.8.21. ∞
6.8.23. 1 6.8.25. 0
6.8.27. −1

4
6.8.29. ∞

6.8.31. 1 6.8.33. 1
2

6.8.35. (a). Limit Comparison Test
(b). diverges
(c). 1

x

6.8.37. (a). Limit Comparison Test
(b). diverges
(c). 1

x

6.8.39. (a). Direct Comparison Test
(b). converges
(c). e−x

6.8.41. (a). Direct Comparison Test
(b). converges
(c). 1

x2−1

6.8.43. (a). Direct Comparison Test
(b). converges
(c). 1

ex

7 · Applications of Integration
7.1 · Area Between Curves
7.1 · Exercises

Terms and Concepts

7.1.1. True

Problems

7.1.5. 22.436 7.1.7. 3.14159
7.1.9. 0.5 7.1.11. 0.721354

7.1.13. 4.5 7.1.15. 0.429204
7.1.17. 0.166667

7.1.19. All enclosed regions have the same area, with regions being the reflection of adjacent regions. One region is
formed on [π/4, 5π/4], with area 2

√
2.

7.1.21. 1 7.1.23. 4.5
7.1.25. 0.514298

7.1.27. 1 7.1.29. 4

7.1.31. 262800 ft2

7.2 · Volume by Cross-Sectional Area; Disk and Washer Methods
7.2 · Exercises
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Terms and Concepts

7.2.1. T

Problems

7.2.5. 175π/3 units3 7.2.7. π/6 units3

7.2.9. 35π/3 units3 7.2.11. 2π/15 units3

7.2.13.

(a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

7.2.15.

(a) 104π/15

(b) 64π/15

(c) 32π/5

7.2.17.

(a) 8π

(b) 8π

(c) 16π/3

(d) 8π/3

7.2.19. 250π/3 7.2.21. 187.5

7.3 · The Shell Method
7.3 · Exercises

Terms and Concepts

7.3.1. T
7.3.3. F

Problems

7.3.5. 9π/2 units3 7.3.7. π2 − 2π units3

7.3.9. 48π
√
3/5 units3 7.3.11. π2/4 units3

7.3.13.

(a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

7.3.15.

(a) 4π/3

(b) π/3

(c) 4π/3

(d) 2π/3
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7.3.17.

(a) 2π(
√
2− 1)

(b) 2π(1−
√
2 + sinh−1(1))

7.4 · Arc Length and Surface Area
7.4 · Exercises

Problems

7.4.3.
√
2 7.4.5. 10

3

7.4.7. 157
3 7.4.9. 12

5

7.4.11. − ln(2−
√
3) ≈ 1.31696

7.4.13.
∫ 1

0

√
1 + 4x2 dx 7.4.15.

∫ e

1

√
1 + 1

x2 dx

7.4.17.
∫ π/2

0

√
1 + sin2(x) dx

7.4.19. 1.4790 7.4.21. 2.1300
7.4.23. 1.00013

7.4.25. 2π
∫ 1

0
2x

√
5 dx = 2π

√
5 7.4.27. 2π

∫ 1

0
x
√
1 + 4x2 dx = π/6(5

√
5− 1)

7.4.29.
∫ 1

0

√
1 + 1

4x dx 7.4.31.
∫ 3

−3

√
1 + x2

81−9x2 dx

7.4.33. 2π
∫ 1

0

√
1− x2

√
1 + x/(1− x2) dx = 4π

7.5 · Work
7.5 · Exercises

Terms and Concepts

7.5.1. In SI units, it is one joule, i.e., one newton–meter, or kg·ms2 m In Imperial Units, it is ft–lb.

7.5.3. Smaller.

Problems

7.5.5.

(a) 500 ft–lb

(b) 100− 50
√
2 ≈ 29.29 ft

7.5.7.

(a) 1
2 · d · l2 ft–lb

(b) 75 %

(c) ℓ(1−
√
2/2) ≈ 0.2929ℓ
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7.5.9.

(a) 756 ft–lb

(b) 60,000 ft–lb

(c) Yes, for the cable accounts for about 1% of the total work.
7.5.11. 575 ft–lb
7.5.13. 0.05 J
7.5.15. 5/3 ft–lb
7.5.17. f · d/2 J
7.5.19. 5 ft–lb
7.5.21.

(a) 52,929.6 ft–lb

(b) 18,525.3 ft–lb

(c) When 3.83 ft of water have been pumped from the tank, leaving about 2.17 ft in the tank.
7.5.23. 212,135 ft–lb
7.5.25. 187,214 ft–lb
7.5.27. 4,917,150 J

7.6 · Fluid Forces
7.6 · Exercises

Terms and Concepts

7.6.1. Answers will vary.

Problems

7.6.3. 499.2 lb 7.6.5. 6739.2 lb
7.6.7. 3920.7 lb 7.6.9. 2496 lb
7.6.11. 602.59 lb

7.6.13.

(a) 2340 lb

(b) 5625 lb

7.6.15.

(a) 1597.44 lb

(b) 3840 lb
7.6.17.

(a) 56.42 lb

(b) 135.62 lb

7.6.19. 5.1 ft

8 · Differential Equations
8.1 · Graphical and Numerical Solutions to Differential Equations
8.1 · Exercises
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Terms and Concepts

8.1.1. An initial value problems is a differential equation that is pairedwith one ormore initial conditions. A differential
equation is simply the equation without the initial conditions.
8.1.3. Substitute the proposed function into the differential equation, and show the the statement is satisfied.
8.1.5. Many differential equations are impossible to solve analytically.

Problems

8.1.7. Answers will vary. 8.1.9. Answers will vary.

8.1.11. C = 2

8.1.13.

x

y

8.1.15.

x

y

8.1.17. b 8.1.19. d

8.1.21.

x

y

8.1.23.

x

y

8.1.25.

xi yi

0.00 1.0000

0.25 1.5000

0.50 2.3125

0.75 3.5938

1.00 5.5781

8.1.27.

xi yi

0.0 2.0000

0.2 2.4000

0.4 2.9197

0.6 3.5816

0.8 4.4108

1.0 5.4364

8.1.29.

x 0.0 0.2 0.4 0.6 0.8 1.0

y(x) 1.0000 1.0204 1.0870 1.2195 1.4706 2.0000
h = 0.2 1.0000 1.0000 1.0400 1.1265 1.2788 1.5405
h = 0.1 1.0000 1.0100 1.0623 1.1687 1.3601 1.7129
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8.2 · Separable Differential Equations
8.2 · Exercises

Problems

8.2.1. Separable.
1

y2 − y
dy = dx

8.2.3. Not separable.

8.2.5.
{
y =

1 + Ce2x

1− Ce2x
, y = −1

}
8.2.7. y = Cx4

8.2.9. (y − 1)ey = −e−x − 1

3
e−3x + C 8.2.11.

{
arcsin 2y − arctan(x2 + 1) = C, y = ±1

2

}

8.2.13. sin y + cos(x) = 2 8.2.15. 1
2y

2 − ln(1 + x2) = 8

8.2.17.
1

2
y2 − y =

1

2

(
(x2 + 1) ln(x2 + 1)− (x2 + 1)

)
+

1

2

8.2.19. 2 tan 2y = 2x+ sin 2x

8.3 · First Order Linear Differential Equations
8.3 · Exercises

Problems

8.3.1. y =
3

2
+ Ce2x 8.3.3. y = − 1

2x
+ Cx

8.3.5. y = secx+ C(cscx) 8.3.7. y = Ce3x − (x+ 1)e2x

8.3.9. y = (x2 + 2)ex
8.3.11. y = 1− 2

x
+

2− e1−x

x2

8.3.13. y =
x2 + 1

x+ 1
e−x 8.3.15. y =

(x− 2)(x+ 1)

x− 1

8.3.17. Both; y = −5ex+
1
3x

3

8.3.19. linear; y =
x3 − 3x− 6

3(x− 1)

8.3.21.

x

y

The solution will increase and begin to follow the
line y = x− 1.

y = x− 1 + e−x

8.4 · Modeling with Differential Equations
8.4 · Exercises
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Problems

8.4.1. y = 10 + Ce−kx 8.4.3. 4.43 days

8.4.5. x =


ab(1− e(a−b)kt)

b− ae(a−b)kt
if a ̸= b

a2kt

1 + akt
if a = b

8.4.7. y = 60− 3.69858e−
1
4 t + 43.69858e−0.0390169t

8.4.9. y = 8(1− e−
1
2 t) g/cm2 8.4.11. 11.00075 g

9 · Sequences and Series
9.1 · Sequences
9.1 · Exercises

Terms and Concepts

9.1.1. Answers will vary.
9.1.3. Answers will vary.

Problems

9.1.5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45 9.1.7. − 1

3 ,−2,− 81
5 ,− 512

3 ,− 15625
7

9.1.9. an = 3n+ 1 9.1.11. an = 10 · 2n−1

9.1.13. 1/7 9.1.15. 0

9.1.17. diverges 9.1.19. converges to 0
9.1.21. diverges 9.1.23. converges to e
9.1.25. converges to 0 9.1.27. converges to 2

9.1.29. bounded 9.1.31. bounded
9.1.33. neither bounded above or below

9.1.35. monotonically increasing 9.1.37. never monotonic

9.2 · Infinite Series
9.2 · Exercises

Terms and Concepts

9.2.1. Answers will vary.
9.2.5. F

9.3 · Integral and Comparison Tests
9.3 · Exercises
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Terms and Concepts

9.3.1. continuous, positive and decreasing

Problems

9.3.5. Converges 9.3.7. Diverges
9.3.9. Converges 9.3.11. Converges

9.4 · Ratio and Root Tests
9.4 · Exercises

Terms and Concepts

9.4.1. algebraic, or polynomial.
9.4.3. Integral Test, Limit Comparison Test, and Root Test

Problems

9.4.5. Converges 9.4.7. Converges
9.4.9. The Ratio Test is inconclusive; the p-Series Test
states it diverges.

9.4.11. Converges

9.4.13. Converges; note the summation can be

rewritten as
∞∑

n=1

2nn!

3nn!
, from which the Ratio Test or

Geometric Series Test can be applied.

9.4.15. Converges 9.4.17. Converges
9.4.19. Diverges 9.4.21. Diverges. The Root Test is inconclusive, but

the nth-Term Test shows divergence. (The terms of
the sequence approach e−2, not 0, as n → ∞.)

9.4.23. Converges

9.5 · Alternating Series and Absolute Convergence
9.5 · Exercises

Terms and Concepts

9.5.3. Many examples exist; one common example is an = (−1)n/n.

9.7 · Taylor Polynomials
9.7 · Exercises
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Terms and Concepts

9.7.3. 6 + 3x− 4x2

Problems

9.7.5. 1− x+ 0.5x2 − 0.166667x3 9.7.7. x+ x2 + 0.5x3 + 0.166667x4 + 0.0416667x5

9.7.9. 1 + 2x+ 2x2 + 1.33333x3 + 0.666667x4 9.7.11. 1− x+ x2 − x3 + x4

9.7.13. 1 + 0.5(x− 1)− 0.125(x− 1)
2
+

0.0625(x− 1)
3 − 0.0390625(x− 1)

4

9.7.15.
0.707107− 0.707107

(
x− π

4

)
− 0.353553

(
x− π

4

)2
+

0.117851
(
x− π

4

)3
+ 0.0294628

(
x− π

4

)4 −
0.00589256

(
x− π

4

)5 − 0.000982093
(
x− π

4

)6
9.7.17.
0.5−0.25(x− 2)+0.125(x− 2)

2−0.0625(x− 2)
3
+

0.03125(x− 2)
4
+ 0.015625(x− 2)

5

9.7.19. 0.5 + 0.5(x+ 1) + 0.25(x+ 1)
2

9.7.31. The nth term is: when n even, 0; when n is
odd, (−1)(n−1)/2

n! xn.

10 · Curves in the Plane
10.1 · Conic Sections
10.1 · Exercises

Problems

10.1.19. (x+1)2

9 + (y−2)2

4 = 1; foci at (−1±
√
5, 2);

e =
√
5/3

10.1.29. x2 − y2

3 = 1 10.1.31. (y−3)2

4 − (x−1)2

9 = 1

10.1.45. The sound originated from a point approximately 31m to the right ofB and 1390m above or below it. (Since
the three points are collinear, we cannot distinguish whether the sound originated above/below the line containing
the points.)

10.2 · Parametric Equations
10.2 · Exercises

Terms and Concepts

10.2.1. True
10.2.3. rectangular
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Problems

10.2.5.

2 4 6 8 10 12

−8

−6

−4

−2

2

x

y

10.2.7.

−0.5 0.5 1 1.5 2 2.5

1

2

x

y

10.2.9.

−10 −5 5 10

2

4

6

8

x

y

10.2.11.

−4 −2 2 4

−4

−2

2

4

x

y

10.2.13.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

10.2.15.

2 4 6 8 10

−10

10

x

y
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10.2.17.

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

y

10.2.19.

(a) Traces the parabola y = x2, moves from left to
right.

(b) Traces the parabola y = x2, but only from
−1 ≤ x ≤ 1; traces this portion back and forth
infinitely.

(c) Traces the parabola y = x2, but only for 0 < x.
Moves left to right.

(d) Traces the parabola y = x2, moves from right
to left.

10.2.21. 3x+ 2y = 17 10.2.25. y − 2x = 3

10.2.35. (a). t+11
6

(b). t2−97
12

(c). (2,−8)

(d). 6x− 11

(e). 1

10.2.37. (a). cos−1(t)

(b).
√
1− t2

(c). (0, 0)

(d). cos(x)
(e). 1

10.2.39. (a). −1, 1

(b). (3,−2)

10.2.51. 3 cos(2πt) + 1; 3 sin(2πt) + 1

10.3 · Calculus and Parametric Equations
10.3 · Exercises

Terms and Concepts

10.3.1. False
10.3.3. False
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Problems

10.3.15. (a). −0.5

(b). (0.75,−0.25)

10.3.21. (a). 0

(b). 0

10.3.27. (a). − 4
(2t−1)3

(b). (−∞, 0.5]

(c). [0.5,∞)

10.3.33. 6π 10.3.35. 2
√
34

10.4 · Introduction to Polar Coordinates
10.4 · Exercises

Terms and Concepts

10.4.1. Answers will vary.
10.4.3. True

Problems

10.4.5.

1 2O

A
B

C

D

10.4.7. A = P (2.5, π/4) and P (−2.5, 5π/4);
B = P (−1, 5π/6) and P (1, 11π/6);
C = P (3, 4π/3) and P (−3, π/3);
D = P (1.5, 2π/3) and P (−1.5, 5π/3);

10.4.9. (a).
(√

2,
√
2
)

(b).
(√

2,−
√
2
)
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(c).
(√

5, tan−1
(−1

2

))
(d).

(√
5, π + tan−1

(−1
2

))
10.4.11.

−0.5 0.5 1 1.5 2 2.5

−0.5

0.5

1

1.5

2

x

y

10.4.13.

−2 −1 1 2

−2

−1

1

2

x

y

10.4.15.

−3 −2 −1 1 2 3

−2

2

x

y

10.4.17.

−3 −2 −1 1 2 3

−2

2

x

y

10.4.19.

−1 −0.5 0.5 1

−1

1

x

y

10.4.21.

−1 −0.5 0.5 1

−1

1

x

y
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10.4.23.

−2 −1 1 2

2

3

1

x

y

10.4.25.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

10.4.27.

−4 −2 2 4

−4

−2

2

4

x

y

10.4.29.

−4 −2 2 4

−4

−2

2

4

x

y

10.4.31. (x− 3)
2
+ y2 = 9 10.4.33. (x− 0.5)

2
+ (y − 0.5)

2
= 0.5

10.4.35. x = 3 10.4.39. x2 + y2 = 4

10.4.41. θ = π
4 10.4.43. r = 5 sec(θ)

10.4.45. r = cos(θ)
sin2(θ)

10.4.47. r =
√
7

10.4.49. P
(√

3
2 , π

6

)
, P
(
0, π

2

)
, P
(

−
√
3

2 , 5π
6

)
10.4.51. P (0, 0) , P

(√
2, π

4

)

10.5 · Calculus and Polar Functions
10.5 · Exercises

Problems

10.5.3. (a). − cot(θ)

(b). y = −
(
x−

√
2
2

)
+

√
2
2

(c). y = x

10.5.7. (a). θ cos(θ)+sin(θ)
cos(θ)−θ sin(θ)

(b). y = −2
π x+ π

2

(c). y = π
2x+ π

2
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10.5.9. (a). 4 sin(θ) cos(4θ)+sin(4θ) cos(θ)
4 cos(θ) cos(4θ)−sin(θ) sin(4θ)

(b). y = 5
√
3
(
x+

√
3
4

)
− 3

4

(c). y = −1
5
√
3

(
x+

√
3
4

)
− 3

4

10.5.19. π
12 10.5.21. 3π

2

10.5.23. 2π + 3·1.73205
2

10.5.25. 1

10.5.29. 4π 10.5.31.
√
2π

10.5.33. 2.2592 or 2.22748

11 · Vectors
11.1 · Introduction to Cartesian Coordinates in Space
11.1 · Exercises

Problems

11.1.7. (a).
√
6

(b).
√
17

(c).
√
11

(d). do
11.1.9. (a). (4,−1, 0)

(b). 3

11.1.15. 11.1.17.

11.1.19. x2 + z2 =
(

1
1+y2

)2 11.1.21. x2 + y2 = z

11.1.23. (a)x = y2 +
z2

9
11.1.25. (b) x2 +

y2

9
+

z2

4
= 1

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_10_01_ex_15_3DX.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_10_01_ex_17_3DX.html
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11.1.27. 11.1.29.

11.1.31.

11.2 · An Introduction to Vectors
11.2 · Exercises

Problems

11.2.7.

(a) ⟨1, 6⟩

(b) i+ 6j

11.2.9.

(a) ⟨6,−1, 6⟩

(b) 6i− j + 6k

11.2.11.

(a) u⃗+ v⃗ = ⟨2,−1⟩; u⃗− v⃗ = ⟨0,−3⟩; 2u⃗− 3v⃗ = ⟨−1,−7⟩.

(c) x⃗ = ⟨1/2, 2⟩.

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_10_01_ex_28_3DX.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_10_01_ex_23_3DX.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_10_01_ex_26_3DX.html
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11.2.17. (a).
√
5

(b).
√
13

(c).
√
26

(d).
√
10

11.2.19. (a).
√
5

(b). 3
√
5

(c). 2
√
5

(d). 4
√
5

11.2.23. ⟨0.6, 0.8⟩ 11.2.25.
〈

1√
3
, −1√

3
, 1√

3

〉
11.2.27.

〈
−1
2 ,

√
3
2

〉
11.3 · The Dot Product
11.3 · Exercises

Terms and Concepts

11.3.1. Scalar

Problems

11.3.5. −22 11.3.7. 3
11.3.9. not defined

11.3.11. Answers will vary.

11.3.13. cos−1
(

3√
10

)
11.3.15. π

4

11.3.17. (a). ⟨−7, 4⟩
(b). ⟨4, 7⟩

11.3.19. (a). ⟨1, 0,−1⟩
(b). ⟨1, 1, 1⟩

11.3.21.
〈−5

10 ,
15
10

〉
11.3.23.

〈−1
2 , −1

2

〉
11.3.25.

〈
14
14 ,

28
14 ,

42
14

〉
11.3.27. (a).

〈−5
10 ,

15
10

〉
(b).

〈
15
10 ,

5
10

〉 11.3.29. (a).
〈−1

2 , −1
2

〉
(b).

〈−5
2 , 5

2

〉
11.3.31. (a).

〈
14
14 ,

28
14 ,

42
14

〉
(b).

〈
0
14 ,

42
14 ,

−28
14

〉
11.3.33. 1.96lb
11.3.35. 141.42ft–lb
11.3.37. 500ft–lb
11.3.39. 500ft–lb

11.4 · The Cross Product
11.4 · Exercises

Terms and Concepts

11.4.1. vector
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11.4.3. “Perpendicular” is one answer.
11.4.5. Torque

Problems

11.4.7. ⟨12,−15, 3⟩ 11.4.9. ⟨−5,−31, 27⟩
11.4.11. ⟨0,−2, 0⟩ 11.4.13. u⃗× v⃗ = ⟨0, 0, ad− bc⟩
11.4.15. −j

11.4.17. Answers will vary.
11.4.19. 5 11.4.21. 0

11.4.23.
√
14 11.4.25. 3

11.4.27. 5
√
2

2
11.4.29. 1

11.4.31. 7

11.4.33. 2

11.4.35. ⟨0.408248, 0.408248,−0.816497⟩ or ⟨−0.408248,−0.408248, 0.816497⟩
11.4.37. ⟨0, 1, 0⟩ or ⟨0,−1, 0⟩

11.4.39. 87.5ft–lb
11.4.41. 200/3 ≈ 66.67ft–lb

11.5 · Lines
11.5 · Exercises

Terms and Concepts

11.5.1. A point on the line and the direction of the line.
11.5.3. parallel, skew

Problems

11.5.11. (a). (7, 2,−1) + t⟨1,−1, 2⟩
(b). x = 7 + t, y = 2− t, z = −1 + 2t

(c). x− 7 = 2− y = z+1
2

11.5.15. parallel 11.5.19. skew

11.5.23.
√
41/3 11.5.25. 5

√
2/2

11.5.27. 3/
√
2

11.6 · Planes
11.6 · Exercises
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Terms and Concepts

11.6.1. A point in the plane and a normal vector (i.e., a direction orthogonal to the plane).

Problems

11.6.3. Answers will vary. 11.6.5. Answers will vary.

11.6.17. (a). x− 5 + y − 7 + z − 3 = 0

(b). x+ y + z = 15

11.6.19. (a). 3(x+ 4) + 8(y − 7)− 10(z − 2) = 0

(b). 3x+ 8y − 10z = 24

11.6.27.
√
5/7 11.6.29. 1/

√
3

12 · Vector Valued Functions
12.1 · Vector-Valued Functions
12.1 · Exercises

Terms and Concepts

12.1.1. parametric equations
12.1.3. displacement

Problems

12.1.15.

−1−0.5

0.5
1

−1

1

−1

1

x y

z

12.1.17. |t|
√
1 + t2 12.1.19.

√
4 + t2

12.1.21. ⟨2 cos(t) + 1, 2 sin(t) + 2⟩ 12.1.25. ⟨t+ 2, 5t+ 3⟩
12.1.27. Specific forms may vary, though most direct
solutions are

r⃗(t) = ⟨1, 2, 3⟩+ t ⟨3, 3, 3⟩ and
r⃗(t) = ⟨3t+ 1, 3t+ 2, 3t+ 3⟩.

12.1.29. ⟨2 cos(t) , 2 sin(t) , 2t⟩
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12.1.31. ⟨1, 0⟩ 12.1.33. ⟨0, 0, 1⟩

12.2 · Calculus and Vector-Valued Functions
12.2 · Exercises

Terms and Concepts

12.2.1. component

Problems

12.2.5. ⟨11, 74, sin(5)⟩ 12.2.7. ⟨1, e⟩

12.2.9. (−∞, 0) ∪ (0,∞)

12.2.11.
〈
− sin(t) , et, 1

t

〉
12.2.13.

〈
2t sin(t) + t2 cos(t) , 6t2 + 10t

〉
12.2.15.〈
−1, cos(t)− 2t, 6t2 + 10t+ 2 + cos(t)− sin(t)− t cos(t)

〉
12.2.21. ⟨2 + 3t, t⟩ 12.2.23. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩

12.2.33.
〈
1
4 t

4, sin(t), tet − et
〉
+ C⃗ 12.2.35. ⟨−2, 0⟩

12.2.37.
〈

t2

2 + 2,− cos(t) + 3
〉

12.2.39.
〈

t4

12 + t+ 4, t3

6 + 2t+ 5, t2

2 + 3t+ 6
〉

12.2.41. 2 · 3.60555π 12.2.43. 1
54

(
22

3
2 − 8

)

12.3 · The Calculus of Motion
12.3 · Exercises

Problems

12.3.7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩

12.3.19. (a). |sec(t)|
√
tan2(t) + sec2(t)

(b). 0

(c). π
4

12.3.39.

(a) 0.013 radians

(b) 11.7 ft

12.4 · Unit Tangent and Normal Vectors
12.4 · Exercises
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Terms and Concepts

12.4.1. 1

12.4.3. T⃗ (t) and N⃗(t).

Problems

12.4.5. T⃗ (t) =
〈

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

〉
;

T⃗ (1) =
〈
4/
√
17, 1/

√
17
〉

12.4.9. (2, 0) + t
〈

4√
17
, 1√

17

〉
12.4.13. T⃗ (t) = ⟨− sin(t), cos(t)⟩;
N⃗(t) = ⟨− cos(t),− sin(t)⟩

12.4.15.
T⃗ (t) =

〈
− sin(t)√

4 cos2(t)+sin2(t)
, 2 cos(t)√

4 cos2(t)+sin2(t)

〉
;

N⃗(t) =

〈
− 2 cos(t)√

4 cos2(t)+sin2(t)
,− sin(t)√

4 cos2(t)+sin2(t)

〉

12.5 · The Arc Length Parameter and Curvature
12.5 · Exercises

Terms and Concepts

12.5.1. time and/or distance
12.5.3. Answers may include lines, circles, helixes
12.5.5. κ

Problems

12.5.15. (a). less than
(b). |2 cos(t) cos(2t)+4 sin(t) sin(2t)|

(4 cos2(2t)+sin2(t))
3
2

(c). 1
4

(d). 8

12.5.23.
√
2

4√5
, −

√
2

4√5
12.5.25. 1

4

13 · Functions of Several Variables
13.2 · Limits and Continuity of Multivariable Functions
13.2 · Exercises
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Problems

13.2.7.

(a) Answers will vary. interior point: (1, 3)
boundary point: (3, 3)

(b) S is a closed set

(c) S is bounded

13.2.11.

(a) D =
{
(x, y) | 9− x2 − y2 ≥ 0

}
.

(b) D is a closed set.

(c) D is bounded.

13.2.13.

(a) D =
{
(x, y) | y > x2

}
.

(b) D is an open set.

(c) D is unbounded.

13.3 · Partial Derivatives
13.3 · Exercises

Terms and Concepts

13.3.3. f_x

Problems

13.3.19. (a). 2y2√
4xy2+1

(b). 4xy√
4xy2+1

(c). −4y4(√
4xy2+1

)3

(d). −8xy3(√
4xy2+1

)3 + 4y√
4xy2+1

(e). −8xy3(√
4xy2+1

)3 + 4y√
4xy2+1

(f). −16x2y2(√
4xy2+1

)3 + 4x√
4xy2+1

13.5 · The Multivariable Chain Rule
13.5 · Exercises

Terms and Concepts

13.5.5. F



APPENDIX A. ANSWERS TO SELECTED EXERCISES 988

Problems

13.5.7.

(a) dz
dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dzdt = 14.

13.5.9.

(a)
dz

dt
= 5(−2 sin(t)) + 2(cos(t)) =

−10 sin(t) + 2 cos(t)

(b) At t = π/4, dzdt = −4
√
2.

13.5.11.

(a)
dz

dt
= 2x(cos(t)) + 4y(3 cos(t)).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and

dz
dt = 19.

13.5.21. (a). 2x cos(t) + 2y sin(t)
(b). −2xs sin(t) + 2ys cos(t)
(c). 4

(d). 0

13.6 · Directional Derivatives
13.6 · Exercises

Terms and Concepts

13.6.3. j

Problems

13.6.13.

(a) 2/5

(b) −2/
√
5

13.6.15.

(a) 0

(b) 2
√
2/9

13.6.17.

(a) 0

(b) 0

13.6.19.

(a) ∇f(2, 1) = ⟨−2, 2⟩

(b)
√
8

(c) ⟨2,−2⟩

(d) u⃗ =
〈
1/
√
2, 1/

√
2
〉

13.6.21.

(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩

(b) 2
√
2/9

(c) ⟨2/9, 2/9⟩

(d) u⃗ =
〈
1/

√
2,−1/

√
2
〉
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13.6.23.

(a) No such direction

(b) 0

(c) No such direction

(d) All directions

13.6.25.

(a) ∇F (x, y, z) =
〈
6xz3 + 4y, 4x, 9x2z2 − 6z

〉
(b) 113/

√
3

13.6.27.

(a) ∇F (x, y, z) =
〈
2xy2, 2y(x2 − z2),−2y2z

〉
(b) 0

13.7 · Tangent Lines, Normal Lines, and Tangent Planes
13.7 · Exercises

Terms and Concepts

13.7.3. True

13.8 · Extreme Values
13.8 · Exercises

Terms and Concepts

13.8.1. False
13.8.3. True

Problems

13.8.15. (a). 3

(b). (0, 1)

(c). 3
4

(d).
(
0, −1

2

)
14 · Multiple Integration
14.1 · Iterated Integrals and Area
14.1 · Exercises

Terms and Concepts

14.1.3. curve to curve, then from point to point
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Problems

14.1.5.

(a) 18x2 + 42x− 117

(b) −108

14.1.7.

(a) x4/2− x2 + 2x− 3/2

(b) 23/15

14.1.9.

(a) sin2(y)

(b) π/2

14.3 · Double Integration with Polar Coordinates
14.3 · Exercises

Problems

14.3.3. 4π 14.3.5. 16π

14.5 · Surface Area
14.5 · Exercises

Problems

14.5.7. SA =∫ 2π

0

∫ 2π

0

√
1 + cos2(x) cos2(y) + sin2(x) sin2(y) dx dy

14.5.9. SA =

∫ 1

−1

∫ 1

−1

√
1 + 4x2 + 4y2 dx dy

14.6 · Volume Between Surfaces and Triple Integration
14.6 · Exercises

Problems

14.6.9. dz dy dx:
∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0

dz dy dx

dz dx dy:
∫ 1

0

∫ 3−3y

0

∫ 2−2x/3−2y

0

dz dx dy

dy dz dx:
∫ 3

0

∫ 2−2x/3

0

∫ 1−x/3−z/2

0

dy dz dx

dy dx dz:
∫ 2

0

∫ 3−3z/2

0

∫ 1−x/3−z/2

0

dy dx dz

dx dz dy:
∫ 1

0

∫ 2−2y

0

∫ 3−3y−3z/2

0

dx dz dy

dx dy dz:
∫ 2

0

∫ 1−z/2

0

∫ 3−3y−3z/2

0

dx dy dz

V =

∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0

dz dy dx = 1.

14.6.11. dz dy dx:
∫ 2

0

∫ 0

−2

∫ −y

y2/2

dz dy dx

dz dx dy:
∫ 0

−2

∫ 2

0

∫ −y

y2/2

dz dx dy

dy dz dx:
∫ 2

0

∫ 2

0

∫ −z

−
√
2z

dy dz dx

dy dx dz:
∫ 2

0

∫ 2

0

∫ −z

−
√
2z

dy dx dz

dx dz dy:
∫ 0

−2

∫ −y

y2/2

∫ 2

0

dx dz dy

dx dy dz:
∫ 2

0

∫ −z

−
√
2z

∫ 2

0

dx dy dz

V =

∫ 2

0

∫ 2

0

∫ −z

−
√
2z

dy dz dx = 4/3.
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14.6.13. dz dy dx:
∫ 2

0

∫ 1

1−x/2

∫ 2x+4y−4

0

dz dy dx

dz dx dy:
∫ 1

0

∫ 2

2−2y

∫ 2x+4y−4

0

dz dx dy

dy dz dx:
∫ 2

0

∫ 2x

0

∫ 1

z/4−x/2+1

dy dz dx

dy dx dz:
∫ 4

0

∫ 2

z/2

∫ 1

z/4−x/2+1

dy dx dz

dx dz dy:
∫ 1

0

∫ 4y

0

∫ 2

z/2−2y+2

dx dz dy

dx dy dz:
∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2

dx dy dz

V =

∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y−2

dx dy dz = 4/3.

14.6.15. dz dy dx:
∫ 1

0

∫ 1−x2

0

∫ √
1−y

0

dz dy dx

dz dx dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0

dz dx dy

dy dz dx:∫ 1

0

∫ x

0

∫ 1−x2

0

dy dz dx+

∫ 1

0

∫ 1

x

∫ 1−z2

0

dy dz dx

dy dx dz:∫ 1

0

∫ z

0

∫ 1−z2

0

dy dx dz +

∫ 1

0

∫ 1

z

∫ 1−x2

0

dy dx dz

dx dz dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0

dx dz dy

dx dy dz:
∫ 1

0

∫ 1−z2

0

∫ √
1−y

0

dx dy dz Answers

will vary. Neither order is particularly “hard.” The
order dz dy dx requires integrating a square root, so
powers can be messy; the order dy dz dx requires
two triple integrals, but each uses only polynomials.

14.7 · Triple Integration with Cylindrical and Spherical Coordinates
14.7 · Exercises

Problems

14.7.11.
∫ θ2

θ1

∫ r2

r1

∫ z2

z1

h(r, θ, z)r dz dr dθ

14.7.19. Describes the portion of the unit ball that
resides in the first octant.

15 · Vector Analysis
15.1 · Introduction to Line Integrals
15.1 · Exercises

Terms and Concepts

15.1.1. When C is a curve in the plane and f is a function defined over C, then
∫
C
f(s) ds describes the area under

the spatial curve that lies on f , over C.
15.1.3. The variable s denotes the arc-length parameter, which is generally difficult to use. The Key Idea allows one
to parametrize a curve using another, ideally easier-to-use, parameter.

Problems

15.1.5. 12
√
2 15.1.7. 40π

15.1.9. Over the first subcurve of C, the line integral
has a value of 3/2; over the second subcurve, the line
integral has a value of 4/3. The total value of the line
integral is thus 17/6.
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15.1.11.∫ 1

0
(5t2 +2 t+ 2)

√
(4t+ 1)2 + 1 dt ≈ 17.071

15.1.13.∮ 2π

0

(
10− 4 cos2 t− sin2 t

)√
cos2 t+ 4 sin2 t dt ≈

74.986

15.1.15. 7
√
26/3 15.1.17. 8π3

15.1.19. M = 8
√
2π2; center of mass is

(0,−1/(2π), 8π/3).

15.2 · Vector Fields
15.2 · Exercises

Terms and Concepts

15.2.1. Answers will vary. Appropriate answers include velocities of moving particles (air, water, etc.); gravitational or
electromagnetic forces.
15.2.3. Specific answers will vary, though should relate to the idea that the vector field is spinning clockwise at that
point.

Problems

15.2.5. Correct answers should look similar to

−2

2

−2 2

x

y

15.2.7. Correct answers should look similar to

−2

2

−2 2

x

y

15.2.9. div F⃗ = 1 + 2y
curl F⃗ = 0

15.2.11. div F⃗ = x cos(xy)− y sin(xy)
curl F⃗ = y cos(xy) + x sin(xy)

15.2.13. div F⃗ = 3
curl F⃗ = ⟨−1,−1,−1⟩

15.2.15. div F⃗ = 1 + 2y
curl F⃗ = 0

15.2.17. div F⃗ = 2y − sin z
curl F⃗ = 0⃗

15.3 · Line Integrals over Vector Fields
15.3 · Exercises

https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_02_ex_05.html
https://opentext.uleth.ca/apex-calculus/generated/asymptote/img_14_02_ex_07.html
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Terms and Concepts

15.3.1. False. It is true for line integrals over scalar fields, though.
15.3.3. True.

15.3.5. We can conclude that F⃗ is conservative.

Problems

15.3.7. 11/6. (One parametrization for C is
r⃗(t) = ⟨3t, t⟩ on 0 ≤ t ≤ 1.)

15.3.9. 0. (One parametrization for C is
r⃗(t) = ⟨cos t, sin t⟩ on 0 ≤ t ≤ π.)

15.3.11. 12. (One parametrization for C is
r⃗(t) = ⟨1, 2, 3⟩+ t⟨3, 1,−1⟩ on 0 ≤ t ≤ 1.)

15.3.13. 5/6 joules. (One parametrization for C is
r⃗(t) = ⟨t, t⟩ on 0 ≤ t ≤ 1.)

15.3.15. 24 ft-lbs.

15.3.17.

(a) f(x, y) = xy + x

(b) curl F⃗ = 0.

(c) 1. (One parametrization for C is
r⃗(t) = ⟨t, t− 1⟩ on 0 ≤ t ≤ 1.)

(d) 1 (with A = (0, 1) andB = (1, 0),
f(B)− f(A) = 1.)

15.3.19.

(a) f(x, y) = x2yz

(b) curl F⃗ = 0⃗.

(c) 250.

(d) 250 (with A = (1,−1, 0) andB = (5, 5, 2),
f(B)− f(A) = 250.)

15.4 · Flow, Flux, Green’s Theorem and the Divergence Theorem
15.4 · Exercises

Terms and Concepts

15.4.1. along, across

15.4.3. the curl of F⃗ , or curl F⃗

15.4.5. curl F⃗

Problems

15.4.7. 12 15.4.9. −2/3

15.4.11. 1/2
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15.4.13. The line integral
∮
C
F⃗ · dr⃗, over the parabola,

is 38/3; over the line, it is−10. The total line integral
is thus 38/3− 10 = 8/3. The double integral of
curl F⃗ = 2 overR also has value 8/3.

15.4.15. Three line integrals need to be computed to
compute

∮
C
F⃗ · dr⃗. It does not matter which corner

one starts from first, but be sure to proceed around
the triangle in a counterclockwise fashion.

From (0, 0) to (2, 0), the line integral has a value
of 0. From (2, 0) to (1, 1) the integral has a value of
7/3. From (1, 1) to (0, 0) the line integral has a value
of−1/3. Total value is 2.

The double integral of curl F⃗ overR also has
value 2.

15.4.17. Any choice of F⃗ is appropriate as long as
curl F⃗ = 1. When F⃗ = ⟨−y/2, x/2⟩, the integrand of
the line integral is simply 6. The area of R is 12π.

15.4.19. Any choice of F⃗ is appropriate as long as
curl F⃗ = 1. The choices of F⃗ = ⟨−y, 0⟩, ⟨0, x⟩ and
⟨−y/2, x/2⟩ each lead to reasonable integrands. The
area ofR is 16/15.

15.4.21. The line integral
∮
C
F⃗ · n⃗ ds, over the

parabola, is−22/3; over the line, it is 10. The total
line integral is thus−22/3 + 10 = 8/3. The double
integral of div F⃗ = 2 overR also has value 8/3.

15.4.23. Three line integrals need to be computed to
compute

∮
C
F⃗ · n⃗ ds. It does not matter which corner

one starts from first, but be sure to proceed around
the triangle in a counterclockwise fashion.

From (0, 0) to (2, 0), the line integral has a value
of 0. From (2, 0) to (1, 1) the integral has a value of
1/3. From (1, 1) to (0, 0) the line integral has a value
of 1/3. Total value is 2/3.

The double integral of div F⃗ overR also has value
2/3.

15.5 · Parametrized Surfaces and Surface Area
15.5 · Exercises

Terms and Concepts

15.5.1. Answers will vary, though generally should meaningfully include terms like “two sided”.

Problems

15.5.3.

(a) r⃗(u, v) = ⟨u, v, 3u2v⟩ on−1 ≤ u ≤ 1,
0 ≤ v ≤ 2.

(b) r⃗(u, v) = ⟨3v cosu+ 1, 3v sinu+
2, 3(3v cosu+ 1)2(3v sinu+ 2)⟩, on
0 ≤ u ≤ 2π, 0 ≤ v ≤ 1.

(c) r⃗(u, v) = ⟨u, v(2− 2u), 3u2v(2− 2u)⟩ on
0 ≤ u, v ≤ 1.

(d) r⃗(u, v) = ⟨u, v(1− u2), 3u2v(1− u2)⟩ on
−1 ≤ u ≤ 1, 0 ≤ v ≤ 1.

15.5.5. r⃗(u, v) = ⟨0, u, v⟩ with 0 ≤ u ≤ 2, 0 ≤ v ≤ 1. 15.5.7. r⃗(u, v) = ⟨3 sinu cos v, 2 sinu sin v, 4 cosu⟩
with 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.
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15.5.9. Answers may vary.
For z = 1

2 (3− x): r⃗(u, v) = ⟨u, v, 1
2 (3− u)⟩,

with 1 ≤ u ≤ 3 and 0 ≤ v ≤ 2.
For x = 1: r⃗(u, v) = ⟨1, u, v⟩, with 0 ≤ u ≤ 2,

0 ≤ v ≤ 1
For y = 0: r⃗(u, v) = ⟨u, 0, v/2(3− u)⟩, with

1 ≤ u ≤ 3, 0 ≤ v ≤ 1
For y = 2: r⃗(u, v) = ⟨u, 2, v/2(3− u)⟩, with

1 ≤ u ≤ 3, 0 ≤ v ≤ 1
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩, with 1 ≤ u ≤ 3,

0 ≤ v ≤ 2

15.5.11. Answers may vary.
For z = 2y : r⃗(u, v) = ⟨u, v(4− u2), 2v(4− u2)⟩

with−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For y = 4− x2 : r⃗(u, v) = ⟨u, 4− u2, 2v(4− u2)⟩

with−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v(4− u2), 0⟩ with

−2 ≤ u ≤ 2 and 0 ≤ v ≤ 1.

15.5.13. Answers may vary.
For x2 + y2/9 = 1: r⃗(u, v) = ⟨cosu, 3 sinu, v⟩

with 0 ≤ u ≤ 2π and 1 ≤ v ≤ 3.
For z = 1: r⃗(u, v) = ⟨v cosu, 3v sinu, 1⟩ with

0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
For z = 3: r⃗(u, v) = ⟨v cosu, 3v sinu, 3⟩ with

0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

15.5.15. Answers may vary.
For z = 1− x2: r⃗(u, v) = ⟨u, v, 1− u2⟩ with

−1 ≤ u ≤ 1 and−1 ≤ v ≤ 2.
For y = −1: r⃗(u, v) = ⟨u,−1, v(1− u2)⟩ with

−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For y = 2: r⃗(u, v) = ⟨u, 2, v(1− u2)⟩ with

−1 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
For z = 0: r⃗(u, v) = ⟨u, v, 0⟩ with−1 ≤ u ≤ 1

and−1 ≤ v ≤ 2.

15.5.17. S = 2
√
14. 15.5.19. S = 4

√
3π.

15.5.21. S =
∫ 3

0

∫ 2π

0

√
v2 + 4v4 du dv =

(37
√
37− 1)π/6 ≈ 117.319.

15.5.23.
S =

∫ 1

0

∫ 1

−1

√
(5u2 − 5)2 + 2(1− u2)2 du dv =

4
√
3 ≈ 6.9282.

15.6 · Surface Integrals
15.6 · Exercises

Terms and Concepts

15.6.1. curve; surface
15.6.3. outside

Problems

15.6.5. 240
√
3

15.6.7. 24 15.6.9. 0
15.6.11. −1/2 15.6.13. 0; the flux over S1 is−45π and the flux over

S2 is 45π.

15.7 · The Divergence Theorem and Stokes’ Theorem
15.7 · Exercises

Terms and Concepts

15.7.1. Answers will vary; in Section 15.4, the Divergence Theorem connects outward flux over a closed curve in the
plane to the divergence of the vector field, whereas in this section the Divergence Theorem connects outward flux
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over a closed surface in space to the divergence of the vector field.
15.7.3. Curl.

Problems

15.7.5. Outward flux across the plane
z = 2− x/2− 2y/3 is 14; across the plane z = 0 the
outward flux is−8; across the planes x = 0 and y = 0
the outward flux is 0.

Total outward flux: 14.∫∫
D
div F⃗ dV =∫ 4

0

∫ 3−3x/4

0

∫ 2−x/2−2y/3

0
(2x+ 2y) dz dy dx = 14.

15.7.7. Outward flux across the surface
z = xy(3− x)(3− y) is 252; across the plane z = 0
the outward flux is−9.

Total outward flux: 243.∫∫
D
div F⃗ dV =∫ 3

0

∫ 3

0

∫ xy(3−x)(3−y)

0
12 dz dy dx = 243.

15.7.9. Circulation on C:
∮
C
F⃗ · dr⃗ = π∫∫

S
(
curl F⃗

)
· n⃗ dS = π.

15.7.11. Circulation on C: The flow along the line
from (0, 0, 2) to (4, 0, 0) is 0; from (4, 0, 0) to (0, 3, 0)
it is−6, and from (0, 3, 0) to (0, 0, 2) it is 6. The total
circulation is 0 + (−6) + 6 = 0.∫∫

S
(
curl F⃗

)
· n⃗ dS =

∫∫
S 0 dS = 0.

15.7.13. 128/225 15.7.15. 8192/105 ≈ 78.019

15.7.17. 5/3 15.7.19. 23π

15.7.21. Each field has a divergence of 1; by the
Divergence Theorem, the total outward flux across S
is
∫∫

D
1 dS for each field.

15.7.23. Answers will vary. Often the closed surface S
is composed of several smooth surfaces. To measure
total outward flux, this may require evaluating
multiple double integrals. Each double integral
requires the parametrization of a surface and the
computation of the cross product of partial
derivatives. One triple integral may require less work,
especially as the divergence of a vector field is
generally easy to compute.



Appendix B

Quick Reference

B.1 Differentiation Formulas

List B.1.1 Derivative Rules

1.
d

dx
(cx) = c

2.
d

dx
(u± v) = u′ ± v′

3.
d

dx
(u · v) = uv′ + u′v

4.
d

dx
(
u

v
) =

vu′ − uv′

v2

5.
d

dx
(u(v)) = u′(v)v′

6.
d

dx
(c) = 0

7.
d

dx
(x) = 1

List B.1.2 Derivatives of Elementary Functions

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ex) = ex

3.
d

dx
(ax) = ln a · ax

4.
d

dx
(lnx) =

1

x

5.
d

dx
(loga x) =

1

ln a
· 1
x

6.
d

dx
(sinx) = cosx

7.
d

dx
(cosx) = − sinx

8.
d

dx
(cscx) = − cscx cotx

9.
d

dx
(secx) = secx tanx

10.
d

dx
(tanx) = sec2 x

11.
d

dx
(cotx) = − csc2 x

12.
d

dx
(coshx) = sinhx

13.
d

dx
(sinhx) = coshx

14.
d

dx
(sechx) = − sechx tanhx

15.
d

dx
(tanhx) = sech2 x

16.
d

dx
(cschx) = − cschx cothx

17.
d

dx
(cothx) = − csch2 x

997
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List B.1.3 Derivatives of Inverse Functions

1.
d

dx
(sin−1 x) =

1√
1− x2

2.
d

dx
(cos−1 x) =

−1√
1− x2

3.
d

dx
(csc−1 x) =

−1

|x|
√
x2 − 1

4.
d

dx
(sec−1 x) =

1

|x|
√
x2 − 1

5.
d

dx
(tan−1 x) =

1

1 + x2

6.
d

dx
(cot−1 x) =

−1

1 + x2

7.
d

dx
(cosh−1 x) =

1√
x2 − 1

8.
d

dx
(sinh−1 x) =

1√
x2 + 1

9.
d

dx
(sech−1 x) =

−1

x
√
1− x2

10.
d

dx
(csch−1 x) =

−1

|x|
√
1 + x2

11.
d

dx
(tanh−1 x) =

1

1− x2

12.
d

dx
(coth−1 x) =

1

1− x2

B.2 Integration Formulas

List B.2.1 Basic Rules

1.
∫

c · f(x) dx = c

∫
f(x) dx

2.
∫ (

f(x)±g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

List B.2.2 Integrals of Elementary (non-Trig) Functions

1.
∫

ex dx = ex + C

2.
∫
lnx dx = x lnx− x+ C

3.
∫

ax dx =
1

ln a
· ax + C

4.
∫

1

x
dx = ln |x|+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

List B.2.3 Integrals Involving Trigonometric Functions

1.
∫
cosx dx = sinx+ C

2.
∫
sinx dx = − cosx+ C

3.
∫
tanx dx = − ln |cosx|+ C

4.
∫
secx dx = ln |secx+ tanx|+ C

5.
∫
cscx dx = − ln |cscx+ cotx|+ C



APPENDIX B. QUICK REFERENCE 999

6.
∫
cotx dx = ln |sinx|+ C

7.
∫
sec2 x dx = tanx+ C

8.
∫
csc2 x dx = − cotx+ C

9.
∫
secx tanx dx = secx+ C

10.
∫
cscx cotx dx = − cscx+ C

11.
∫
cos2 x dx =

1

2
x+

1

4
sin
(
2x
)
+ C

12.
∫
sin2 x dx =

1

2
x− 1

4
sin
(
2x
)
+ C

13.
∫

1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ C

14.
∫

1√
a2 − x2

= sin−1
(x
a

)
+ C

15.
∫

1

x
√
x2 − a2

=
1

a
sec−1

(
|x|
a

)
+ C

List B.2.4 Integrals Involving Hyperbolic Functions

1.
∫
coshx dx = sinhx+ C

2.
∫
sinhx dx = coshx+ C

3.
∫
tanhx dx = ln(coshx) + C

4.
∫
cothx dx = ln |sinhx|+ C

5.
∫

1√
x2 − a2

dx = ln
∣∣∣x+

√
x2 − a2

∣∣∣+ C

6.
∫

1√
x2 + a2

dx = ln
∣∣∣x+

√
x2 + a2

∣∣∣+ C

7.
∫

1

a2 − x2
dx =

1

2a
ln
∣∣∣∣a+ x

a− x

∣∣∣∣+ C

8.
∫

1

x
√
a2 − x2

dx =
1

a
ln
(

x

a+
√
a2 − x2

)
+ C

9.
∫

1

x
√
x2 + a2

=
1

a
ln
∣∣∣∣ x

a+
√
x2 + a2

∣∣∣∣+ C
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B.3 Trigonometry Reference

The Unit Circle.

x

y

0◦ 0 (1, 0)

30◦
π/6

(√
3

2
, 1
2

)
45◦

π/4

(√
2

2
,
√

2
2

)
60◦

π/3

(
1
2
,
√
3
2

)

90◦

π/2

(0, 1)

120◦

2π/3

(
− 1

2
,
√

3
2

)

135◦
3π/4

(
−

√
2

2
,
√
2
2

)

150◦
5π/6

(
−

√
3

2
, 1
2

)

180◦π(−1, 0)

210◦
7π/6(

−
√
3

2
,− 1

2

) 225◦

5π/4(
−

√
2

2
,−

√
2

2

) 240◦

4π/3(
− 1

2
,−

√
3
2

)
270◦

3π/2

(0,−1)

300◦

5π/3(
1
2
,−

√
3

2

)
315◦

7π/4 (√
2

2
,−

√
2
2

)
330◦

11π/6 (√
3

2
,− 1

2

)

B.3.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1

y
sec θ =

1

x

tan θ =
y

x
cot θ =

x

y
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Right Triangle Definition.

Adjacent

O
ppositeHy

po
ten
use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

B.3.2 Common Trigonometric Identities

1. sin2 x+ cos2 x = 1

2. tan2 x+ 1 = sec2 x

3. 1 + cot2 x = csc2 x

List B.3.1 Pythagorean Identities

1. sin 2x = 2 sinx cosx

2.

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

3. tan 2x =
2 tanx

1− tan2 x

List B.3.2 Double Angle Formulas

1. sin
(π
2
− x
)
= cosx

2. cos
(π
2
− x
)
= sinx

3. tan
(π
2
− x
)
= cotx

4. csc
(π
2
− x
)
= secx

5. sec
(π
2
− x
)
= cscx

6. cot
(π
2
− x
)
= tanx

List B.3.3 Cofunction Identities

1. sin(−x) = − sinx

2. cos(−x) = cosx

3. tan(−x) = − tanx

4. csc(−x) = − cscx

5. sec(−x) = secx

6. cot(−x) = − cotx

List B.3.4 Even/Odd Identities
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1. sin2 x =
1− cos 2x

2

2. cos2 x =
1 + cos 2x

2

3. tan2 x =
1− cos 2x
1 + cos 2x

List B.3.5 Power-Reducing Formulas

1. sinx+ sin y = 2 sin
(
x+ y

2

)
cos
(
x− y

2

)

2. sinx− sin y = 2 sin
(
x− y

2

)
cos
(
x+ y

2

)
3. cosx + cos y =

2 cos
(
x+ y

2

)
cos
(
x− y

2

)
4. cosx − cos y =

−2 sin
(
x+ y

2

)
sin
(
x− y

2

)
List B.3.6 Sum to Product Formulas

List B.3.7 Product to Sum Formulas

1. sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
2. cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
3. sinx cos y =

1

2

(
sin(x+ y) + sin(x− y)

)
List B.3.8 Angle Sum/Difference Formulas

1. sin(x± y) = sinx cos y ± cosx sin y

2. cos(x± y) = cosx cos y ∓ sinx sin y

3. tan(x± y) =
tanx± tan y
1∓ tanx tan y

B.4 Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:

c2 = a2+b2−2ab cos θ

b

θ

a
c

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr

√
r2 + h2 + πr2

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πr2h

Surface Area = 2πrh +
2πr2

h

r
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Trapezoids

Area = 1
2 (a+ b)h

b

a

h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
r

Circles

Area = πr2

Circumference = 2πr
r

General Cone

Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ
r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A

B.5 Algebra

Factors and Zeros of Polynomials.

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the
polynomial and a solution of the equation p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra.

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imagi-
nary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula.

If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±
√
b2 − 4ac)/2a

Special Factors.

x2 − a2 = (x− a)(x+ a)

x3 − a3 = (x− a)(x2 + ax+ a2)

x3 + a3 = (x+ a)(x2 − ax+ a2)

x4 − a4 = (x2 − a2)(x2 + a2)
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(x+ y)n = xn + nxn−1y +
n(n− 1)

2!
xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y +
n(n− 1)

2!
xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem.

(x+ y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x− y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

Rational Zero Theorem.

If p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 has integer coefficients, then every rational zero of p is
of the form x = r/s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping.

acx3 + adx2 + bcx+ bd = ax2(cx+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithmetic Operations.

ab+ ac = a(b+ c)
a

b
+

c

d
=

ad+ bc

bd

a+ b

c
=

a

c
+

b

c(a
b

)
( c
d

) =
(a
b

)(d

c

)
=

ad

bc

(a
b

)
c

=
a

bc

a(
b

c

) =
ac

b

a

(
b

c

)
=

ab

c

a− b

c− d
=

b− a

d− c

ab+ ac

a
= b+ c

Exponents and Radicals.

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y
√
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n

a−x =
1

ax
n
√
ab = n

√
a

n
√
b (ax)y = axy n

√
a

b
=

n
√
a

n
√
b
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B.6 Additional Formulas

Summation Formulas:.

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

Trapezoidal Rule:.∫ b

a

f(x) dx ≈ ∆x

2

[
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)

]
with Error≤ (b− a)3

12n2

[
max |f ′′(x)|

]
Simpson’s Rule:.

∫ b

a

f(x) dx ≈ ∆x

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)

]
with Error≤ (b− a)5

180n4

[
max

∣∣∣f (4)(x)
∣∣∣ ]

Arc Length:.

L =

∫ b

a

√
1 + f ′(x)2 dx

Surface of Revolution:.

2π

∫ b

a

f(x)
√
1 + f ′(x)2dx

(where f(x) ≥ 0)

S = 2π

∫ b

a

x
√
1 + f ′(x)2dx

(where a, b ≥ 0)

Work Done by a Variable Force:.

W =

∫ b

a

F (x)dx
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Force Exerted by a Fluid:.

F =

∫ b

a

w d(y) ℓ(y)dy

Taylor Series Expansion for f(x):.

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

Maclaurin Series Expansion for f(x), where c = 0:.

pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · ·

B.7 Summary of Tests for Series

Table B.7.1

Test Series Condition(s) of
Convergence

Condition(s) of
Divergence Comment

nth-Term
∞∑

n=1

an lim
n→∞

an ̸= 0
Cannot be used to show
convergence.

Geometric Series
∞∑

n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑

n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑

n=1

1

(an+ b)p
p > 1 p ≤ 1

Integral Test
∞∑

n=0

an

∫ ∞

1

a(n) dn

converges

∫ ∞

1

a(n) dn diverges
an = a(n)must be
continuous

Direct Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

0 ≤ an ≤ bn

∞∑
n=0

bn diverges and

0 ≤ bn ≤ an

Limit Comparison
∞∑

n=0

an

∞∑
n=0

bn converges and

lim
n→∞

an

bn
≥ 0

∞∑
n=0

bn diverges and

lim
n→∞

an

bn
> 0

Also diverges if
lim

n→∞
an

bn
= ∞

Ratio Test
∞∑

n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1 {an}must be positive

Also diverges if lim
n→∞

an+1

an
= ∞

Root Test
∞∑

n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1 {an}must be positive

Also diverges if lim
n→∞

(an)
1/n = ∞
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Absolute Convergence Theorem,

498
absolute maximum, 129
absolute minimum, 129
Absolute Value Theorem, 449
acceleration, 78, 683
accumulated error

using Euler’s method, 416
Alternating Harmonic Series, 468,

497, 509
Alternating Series Test, 493
aN, 700, 711
analytic function, 528
angle of elevation, 688
antiderivative, 200

of vector-valued function, 678
approximation

linear, 192
tangent line, 192

arc length, 381, 567, 591, 680, 705
arc length parameter, 705, 707
asymptote

horizontal, 51
vertical, 50

aT, 700, 711
average rate of change, 669
average value of a function, 806
average value of function, 246
average velocity, 6

bacterial growth, 434
Binomial Series, 528
Bisection Method, 42
boundary point, 723
bounded

interval, 38
bounded sequence, 451

convergence, 452
bounded set, 723

carrying capacity, 414
center of mass, 821, 822, 824, 825,

853
Chain Rule, 102

multivariable, 753, 756
notation, 108

circle of curvature, 709
circulation, 901
closed, 723
closed disk, 723
concave down, 152
concave up, 152
concavity, 152, 565

inflection point, 154
test for, 154

conic sections, 539
degenerate, 539
ellipse, 542
hyperbola, 545
parabola, 539

connected, 895
simply, 896

conservative field, 896, 897, 899
Constant Multiple Rule

of derivatives, 85
of integration, 204
of series, 467

constrained optimization, 785
continuity

of exponential functions, 19
of logarithmic functions, 19
of polynomial functions, 18
of rational functions, 18
of trigonometric functions, 19

continuous
at a point, 37
everywhere, 37
on an interval, 37

continuous function, 37, 728
properties, 40, 729

1007
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vector-valued, 672
continuously differentiable, 746
contour lines, 717
convergence

absolute, 497, 498
Alternating Series Test, 493
conditional, 497
Direct Comparison Test, 478
for integration, 346

Integral Test, 475
interval of, 504
Limit Comparison Test, 480
for integration, 347

nth-term test, 470
of geometric series, 462
of improper int., 341, 346,

347
of monotonic sequences, 455
of p-series, 464
of power series, 504
of sequence, 447, 452
of series, 459
radius of, 504
Ratio Comparison Test, 486
Root Comparison Test, 488

coordinates
cylindrical, 859
polar, 572
spherical, 862

critical number, 131
critical point, 131, 781, 783
cross product

and derivatives, 675
applications, 641
area of parallelogram, 642
torque, 644
volume of parallelepiped,
643

definition, 638
properties, 640

curl, 885
of conservative fields, 899

curvature, 707
and motion, 711
equations for, 708
of circle, 709
radius of, 709

curve
parametrically defined, 552
rectangular equation, 552
smooth, 558

curve sketching, 161
cusp, 558
cycloid, 668

cylinder, 600
cylindrical coordinates, 859

decreasing function, 144
finding intervals, 145

definite integral, 211
and substitution, 277
of vector-valued function, 678
properties, 212

del operator, 884
derivative

acceleration, 78
as a function, 66
at a point, 62
basic rules, 83
Chain Rule, 102, 108, 753, 756
Constant Multiple Rule, 85
Constant Rule, 83
differential, 192
directional, 762, 763, 765, 768
exponential functions, 108
First Deriv. Test, 147
Generalized Power Rule, 103
higher order, 86
interpretation, 87

hyperbolic funct., 324
implicit, 111, 757
interpretation, 76
inverse function, 122
inverse hyper., 328
inverse trig., 125
logarithmic, 117
Mean Value Theorem, 139
mixed partial, 737
motion, 78
multivariable differentiability,

745, 750
normal line, 64
notation, 66, 86
parametric equations, 562
partial, 732, 740
Power Rule, 83, 97, 116
power series, 507
Product Rule, 91
Quotient Rule, 94
Second Deriv. Test, 157
Sum/Difference Rule, 84
tangent line, 62
trigonometric functions, 95
vector-valued functions, 673,

675
velocity, 78

difference quotient, 6
differentiable, 62, 745, 750
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on a closed interval, 70
differential, 192

notation, 192
differential equation

definition, 408
first order linear, 426
general solution, 409
graphical solution, 412
implicit soution, 411
integrating factor, 427
logistic, 413, 437
modeling, 434
numerical solution, 414
order of, 408
particular solution, 409
separable, 420

Direct Comparison Test
for integration, 346
for series, 478

direction field, see slope field
directional derivative, 762, 763,

765, 768
directrix, 539, 600
discontinuity

infinite, 41
jump, 41
removable, 41

Disk Method, 362
displacement, 240, 668, 680
distance

between lines, 653
between point and line, 653
between point and plane, 661
between points in space, 598
traveled, 690

divergence, 884, 885
Alternating Series Test, 493
Direct Comparison Test, 478
for integration, 346

Integral Test, 475
Limit Comparison Test, 480
for integration, 347

nth-term test, 470
of geometric series, 462
of improper int., 341, 346,

347
of p-series, 464
of sequence, 447
of series, 459
Ratio Comparison Test, 486
Root Comparison Test, 488

Divergence Theorem
in space, 930
in the plane, 907

dot product
and derivatives, 675
definition, 626
properties, 626, 627

double integral, 800, 801
in polar, 811
properties, 803

eccentricity, 544, 546
elementary function, 250
ellipse

definition, 542
eccentricity, 544
parametric equations, 557
reflective property, 544
standard equation, 542

Euler’s Method, 415
Euler’s method

accumulated error, 416
everywhere continuous, 37
exponential function

continuity of, 19
extrema

absolute, 129, 781
and First Deriv. Test, 147
and Second Deriv. Test, 157
finding, 132
relative, 130, 781

Extreme Value Theorem, 130, 785
extreme values, 129

factorial, 444
First Derivative Test, 147
first octant, 598
floor function, 37
flow, 901, 902
fluid pressure/force, 400, 401
flux, 901, 902, 924, 925
focus, 539, 542, 545
Fubini’s Theorem, 801
function

continuous, 37
floor, 37
of three variables, 719
of two variables, 715
vector-valued, 665

Fundamental Theorem of Calculus,
237, 238

and Chain Rule, 242
Fundamental Theorem of Line

Integrals, 895, 897

Gabriel’s Horn, 386
Gauss’s Law, 933
general solution
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of a differential equation, 409
Generalized Power Rule, 103
geometric series, 461, 462
gradient, 763, 765, 768, 778

and level curves, 765
and level surfaces, 778

Green’s Theorem, 904, 905

half life, 442
Harmonic Series, 468
Head To Tail Rule, 616
Hooke’s Law, 393
hyperbola

definition, 545
eccentricity, 546
parametric equations, 557
reflective property, 547
standard equation, 545

hyperbolic function
definition, 321
derivatives, 324
identities, 324
integrals, 324
inverse, 326
derivative, 328
integration, 329
logarithmic def., 327

implicit differentiation, 111, 757
improper integration, 341, 344
incompressible vector field, 884
increasing function, 144

finding intervals, 145
indefinite integral, 200

of vector-valued function, 678
indeterminate form, 2, 50, 335,

337
inflection point, 154
initial condition, 409
initial point, 613
initial value problem, 205

for differential equations, 409
Integral Test, 475
integration

arc length, 381
area, 211, 793
area between curves, 243,

353
average value, 246
by parts, 283
by substitution, 266
definite, 211
and substitution, 277
properties, 212

Riemann Sums, 232
displacement, 240
distance traveled, 690
double, 800
fluid force, 400, 401
Fun. Thm. of Calc., 237, 238
general application technique,

351
hyperbolic funct., 324
improper, 341, 344, 346, 347
indefinite, 200
inverse hyperbolic, 329
iterated, 792
Mean Value Theorem, 244
multiple, 792
notation, 201, 211, 238, 792
numerical, 250
Left/Right Hand Rule, 250,
258

Simpson’s Rule, 256, 258,
259

Trapezoidal Rule, 253, 258,
259

of multivariable functions,
790

of power series, 507
of trig. functions, 271
of trig. powers, 294, 298
of vector-valued function, 678
of vector-valued functions,

678
partial fraction decomp., 313
Power Rule, 204
Sum/Difference Rule, 204
surface area, 384, 568, 592
trig. subst., 305
triple, 839, 850, 852
volume
cross-sectional area, 361
Disk Method, 362
Shell Method, 372, 375
Washer Method, 365, 375

with cylindrical coordinates,
860

with spherical coordinates,
864

work, 390
interior point, 723
Intermediate Value Theorem, 42
interval of convergence, 504
iterated integration, 792, 800, 801,

839, 850, 852
changing order, 795
properties, 803, 845
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l’Hospital’s Rule
infinity over infinity, 334
zero over zero, 333

lamina, 818
Left Hand Rule, 221, 225, 250
Left/Right Hand Rule, 258
level curves, 717, 765
level surface, 720, 778
limit

Absolute Value Theorem, 449
at infinity, 51
definition, 10
difference quotient, 6
does not exist, 4, 30
indeterminate form, 2, 23, 50,

335, 337
l’Hospital’s Rule, 333, 334
left-handed, 28
of exponential functions, 19
of infinity, 48
of logarithmic functions, 19
of multivariable function, 724,

725, 730
of polynomial functions, 18
of rational functions, 18
of sequence, 447
of trigonometric functions, 19
of vector-valued functions,

671
one-sided, 28
properties, 17, 725
pseudo-definition, 2
right-handed, 28
Squeeze Theorem, 21

Limit Comparison Test
for integration, 347
for series, 480

line integral
Fundamental Theorem, 895,

897
over scalar field, 873, 874,

891
over vector field, 892
path independent, 896, 897
properties over a scalar field,

878
properties over a vector field,

894
linearization, 192
lines, 648

distances between, 653
equations for, 649
intersecting, 650
parallel, 650

skew, 650
logarithmic differentiation, 117
logarithmic function

continuity of, 19

Maclaurin Polynomial
definition, 515

Maclaurin Polynomial|see{Taylor
Polynomial}, 515

Maclaurin Series
definition, 525

Maclaurin Series|see{Taylor
Series}, 525

magnitude of vector, 613
mass, 818, 819, 853, 878

center of, 821, 878
maximum

absolute, 129, 781
and First Deriv. Test, 147
and Second Deriv. Test, 157
relative/local, 130, 781, 784

Mean Value Theorem
of differentiation, 139
of integration, 244

Midpoint Rule, 221, 225
minimum

absolute, 129, 781
and First Deriv. Test, 147, 157
relative/local, 130, 781, 784

moment, 823, 825, 853
monotonic sequence, 452
multiple integration|see{iterated

integration}, 792
multivariable function, 715, 719

continuity, 728–730, 745, 750
differentiability, 745, 746, 750
domain, 715, 719
level curves, 717
level surface, 720
limit, 724, 725, 730
range, 715, 719

Möbius band, 911

Newton’s Law of Cooling, 435
Newton’s Method, 170
norm, 613
normal line, 64, 562, 774
normal vector, 657
nth-term test, 470
numerical integration, 250

Left/Right Hand Rule, 250,
258

Simpson’s Rule, 256, 258
error bounds, 259
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Trapezoidal Rule, 253, 258
error bounds, 259

octant
first, 598

one to one, 911
open, 723
open ball, 730
open disk, 723
optimization, 184

constrained, 785
order

of a differential equation, 408
orientable, 911
orthogonal, 629, 774

decomposition, 633
orthogonal decomposition of

vectors, 633
orthogonal projection, 631
osculating circle, 709
outer unit normal vector, 930

p-series, 464
parabola

definition, 539
general equation, 540
reflective property, 541

parallel vectors, 619
Parallelogram Law, 616
parametric equations

arc length, 567
concavity, 565
definition, 552
finding d2y

dx2 , 565
finding dy

dx , 562
normal line, 562
of a surface, 911
surface area, 568
tangent line, 562

parametrized surface, 911
partial derivative, 732, 740

high order, 741
meaning, 734
mixed, 737
second derivative, 737
total differential, 744, 749

partition, 227
size of, 227

path independent, 896, 897
perpendicular|see{orthogonal},

629
piecewise smooth curve, 877
planes

coordinate plane, 599

distance between point and
plane, 661

equations of, 657
introduction, 599
normal vector, 657
tangent, 777

point of inflection, 154
polar

coordinates, 572
function
arc length, 591
gallery of graphs, 578
surface area, 592

functions, 575
area, 588
area between curves, 590
finding dy

dx , 586
graphing, 575

polar coordinates, 572
plotting points, 572

polynomial function
continuity of, 18

potential function, 889, 897
Power Rule

differentiation, 83, 91, 97, 116
integration, 204

power series, 503
algebra of, 530
convergence, 504
derivatives and integrals, 507

projectile motion, 688, 701

quadric surface
definition, 604
ellipsoid, 606
elliptic cone, 606
elliptic paraboloid, 605
gallery, 605, 607
hyperbolic paraboloid, 607
hyperboloid of one sheet, 606
hyperboloid of two sheets,

607
sphere, 606
trace, 604

Quotient Rule, 94

R, 613
radius of convergence, 504
radius of curvature, 709
Ratio Comparison Test

for series, 486
rational function

continuity of, 18
rearrangements of series, 498
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Related Rates, 175
related rates, 175
Riemann Sum, 221, 224, 227

and definite integral, 232
Right Hand Rule, 221, 225, 250
right hand rule

of Cartesian coordinates, 597
of the cross product, 641

Rolle’s Theorem, 139
Root Comparison Test

for series, 488

saddle point, 783, 784
Second Derivative Test, 157, 784
sensitivity analysis, 749
separation of variables, 420
sequence

Absolute Value Theorem, 449
positive, 478

sequences
boundedness, 451
convergent, 447, 452, 455
definition, 444
divergent, 447
limit, 447
limit properties, 450
monotonic, 452

series
absolute convergence, 497
Absolute Convergence

Theorem, 498
alternating, 493
Approximation Theorem,
495

Alternating Series Test, 493
Binomial, 528
conditional convergence, 497
convergent, 459
definition, 459
Direct Comparison Test, 478
divergent, 459
geometric, 461, 462
Integral Test, 475
interval of convergence, 504
Limit Comparison Test, 480
Maclaurin, 525
nth-term test, 470
p-series, 464
partial sums, 459
power, 503, 504
derivatives and integrals,
507

properties, 467
radius of convergence, 504

Ratio Comparison Test, 486
rearrangements, 498
Root Comparison Test, 488
Taylor, 525
telescoping, 465

Shell Method, 372, 375
signed area, 211
signed volume, 800, 801
simple curve, 896
simply connected, 896
Simpson’s Rule, 256, 258

error bounds, 259
slope field, 413
smooth, 675

curve, 558
surface, 911

smooth curve
piecewise, 877

speed, 683
sphere, 598
spherical coordinates, 862
Squeeze Theorem, 21
Stokes’ Theorem, 935
Sum/Difference Rule

of derivatives, 84
of integration, 204
of series, 467

summation
notation, 222
properties, 224

surface, 911
smooth, 911

surface area, 831
of parametrized surface, 917,

918
solid of revolution, 384, 568,

592
surface integral, 923
surface of revolution, 602, 603

tangent line, 62, 562, 586, 674
directional, 772

tangent plane, 736, 777
to a graph, 736

Taylor Polynomial
definition, 515
Taylor’s Theorem, 518

Taylor Series
common series, 530
definition, 525
equality with generating

function, 527
Taylor’s Theorem, 518
telescoping series, 465
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terminal point, 613
theorem

Intermediate Value, 42
torque, 644
total differential, 744, 749

sensitivity analysis, 749
total signed area, 211
trace, 604
Trapezoidal Rule, 253, 258

error bounds, 259
trigonometric function

continuity of, 19
triple integral, 839, 850, 852

properties, 845

unbounded sequence, 451
unbounded set, 723
unit normal vector

aN, 700
and acceleration, 699, 700
and curvature, 711
definition, 697
in R2, 699

unit tangent vector
and acceleration, 699, 700
and curvature, 707, 711
aT, 700
definition, 696
in R2, 699

unit vector, 617
properties, 619
standard unit vector, 620
unit normal vector, 697
unit tangent vector, 696

vector field, 882
conservative, 896, 897
curl of, 885
divergence of, 884, 885
over vector field, 892
potential function of, 889, 897

vector-valued function
algebra of, 667

arc length, 680
average rate of change, 669
continuity, 672
definition, 665
derivatives, 673, 675
describing motion, 683
displacement, 668
distance traveled, 690
graphing, 665
integration, 678
limits, 671
of constant length, 677, 687,

697
projectile motion, 688
smooth, 675
tangent line, 674

vectors, 613
algebra of, 615
algebraic properties, 617
component form, 614
cross product, 638, 640
definition, 613
dot product, 626, 627
Head To Tail Rule, 616
magnitude, 613
norm, 613
normal vector, 657
orthogonal, 629
orthogonal decomposition,

633
orthogonal projection, 631
parallel, 619
Parallelogram Law, 616
resultant, 616
standard unit vector, 620
unit vector, 617, 619
zero vector, 616

velocity, 78, 683
average velocity, 6

volume, 800, 801, 837

Washer Method, 365, 375
work, 390, 635
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