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Preface

A Note on Using this Text. Thank you for reading this short preface. Allow us
to share a few key points about the text so that you may better understand what
you will find beyond this page.

This text comprises a three—volume series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material of-
ten taught in “Calc 2:” integration and its applications, including an introduction
to differential equations, along with an introduction to sequences, series and
Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics
common in “Calc 3” or “multivariable calc:” parametric equations, polar coordi-
nates, vector-valued functions, and functions of more than one variable, found
in Chapters 10 through 15. All three are available separately for free at apexcal-
culus.com?, and HTML versions of the book can be found at opentext.uleth.ca’®.

These three texts are intended to work together and make one cohesive text,
APEX Calculus, which can also be downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com®.

For Students: How to Read this Text. Mathematics textbooks have a reputa-
tion for being hard to read. High—level mathematical writing often seeks to say
much with few words, and this style often seeps into texts of lower—Ilevel top-
ics. This book was written with the goal of being easier to read than many other
calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and ends with alook ahead
to see how the just—learned material helps address future problems.

e Please read the text.

It is written to explain the concepts of Calculus. There are numerous ex-
amples to demonstrate the meaning of definitions, the truth of theorems,
and the application of mathematical techniques. When you encounter a
sentence you don’t understand, read it again. If it still doesn’t make sense,
read on anyway, as sometimes confusing sentences are explained by later
sentences.

2apexcalculus.com
*opentext.uleth.ca/calculus.html
‘amazon.com


https://apexcalculus.com
https://apexcalculus.com
https://opentext.uleth.ca/calculus.html
https://amazon.com

vi

e You don’t have to read every equation.

The examples generally show “all” the steps needed to solve a problem.
Sometimes reading through each step is helpful; sometimes it is confus-
ing. When the steps are illustrating a new technique, one probably should
follow each step closely to learn the new technique. When the steps are
showing the mathematics needed to find a number to be used later, one
can usually skip ahead and see how that number is being used, instead of
getting bogged down in reading how the number was found.

e Most proofs have been omitted.

In mathematics, proving something is always true is extremely important,
and entails much more than testing to see if it works twice. However, stu-
dents often are confused by the details of a proof, or become concerned
that they should have been able to construct this proof on their own. To al-
leviate this potential problem, we do not include the proofs to most theo-
rems in the text. The interested reader is highly encouraged to find proofs
online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing
fully why it is true.

Interactive, 3D Graphics. Versions 3.0 and 4.0 of the textbook include inter-
active, 3D graphics in the pdf version. Nearly all graphs of objects in space can
be rotated, shifted, and zoomed in/out so the reader can better understand the
object illustrated. However, the only pdf viewers that support these 3D graphics
are Adobe Reader Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones).

The latest version of the book, which is authored in PreTeXt, is available in
html. In html, the 3D graphics are rendered using WebGL, and should work in
any modern web browser.

Interactive graphics are no longer supported within the pdf, but clicking on
any 3D graphic within the pdf will take you directly to the interactive version on
the web.

APEX - Affordable Print and Electronic teXts. APEX is a consortium of au-
thors who collaborate to produce high quality, low cost textbooks. The current
textbook—writing paradigm is facing a potential revolution as desktop publish-
ing and electronic formats increase in popularity. However, writing a good text-
book is no easy task, as the time requirements alone are substantial. It takes
countless hours of work to produce text, write examples and exercises, edit and
publish. Through collaboration, however, the cost to any individual can be less-
ened, allowing us to create texts that we freely distribute electronically and sell
in printed form for an incredibly low cost. Having said that, nothing is entirely
free; someone always bears some cost. This text “cost” the authors of this book
their time, and that was not enough. APEX Calculus would not exist had not the
Virginia Military Institute, through a generous Jackson—Hope grant, given the
lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won't
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need. The source files can be found at github.com/APEXCalculus®.
You can learn more at www.vmi.edu/APEX®.

First PreTeXt Edition (Version 5.0). Key changes from Version 4.0 to 5.0:

e The underlying source code has been completely rewritten, to use the
PreTeXt” language, instead of the original BTEX.

e Using PreTeXt allows us to produce the books in multiple formats, includ-
ing html, which is both more accessible and more interactive than the orig-
inal pdf. html versions of the book can be found at opentext.uleth.ca®.

e The appendix on differential equations from the “Calculus for Quarters”
version of the book has been included as Chapter 8, just after applications
of integration. Chapters 8 — 14 are now numbered 9 — 15 as a result.

e |nthe html version of the book, many of the exercises are now interactive,
and powered by WeBWorK.

Key changes from Version 3.0 to 4.0:

e Numerous typographical and “small” mathematical corrections (again, thanks
to all my close readers!).

o “Large” mathematical corrections and adjustments. There were a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com’ for more information.

e More useful numbering of Examples, Theorems, etc. . “Definition 11.4.2”
refers to the second definition of Chapter 11, Section 4.

e The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

e The addition of Chapter 14: Vector Analysis.

*github.com/APEXCalculus

‘www. vmi.edu/APEX
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A Brief History of Calculus

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17th century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate x time.” But what if the rate is not
constant—can distance still be computed? Or, if distance is known, can we dis-
cover the rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
Isaac Newton and Gottfried Leibniz, are credited with independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

viii
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Chapter 1
Limits

The foundation of “the calculus” is the limit. It is a tool to describe a particular
behavior of a function. This chapter begins our study of the limit by approximat-
ing its value graphically and numerically. After a formal definition of the limit,
properties are established that make “finding limits” tractable. Once the limit is
understood, then the problems of area and rates of change can be approached.

1.1 An Introduction To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the function y = w When z is near the value 1, what value (if
any) is y near?

While our question is not precisely formed (what constitutes “near the value
1"7?), the answer does not seem difficult to find. One might think first to look
at a graph of this function to approximate the appropriate y values. Consider
Figure 1.1.2, where y = w is graphed. For values of x near 1, it seems that
1y takes on values near 0.85. In fact, when x = 1, then y = w ~ 0.84, so it
makes sense that when z is “near” 1, y will be “near” 0.84.

0.8 1

0.6 1

AN v N\ .
v —2 2 U ﬂ‘ z
" o5 1 15
Figure 1.1.1sin(z)/z Figure 1.1.2 sin(z)/x nearz = 1

Consider this same function again at a different value for x. When zx is near
0, what value (if any) is y near? By considering Figure 1.1.3, one can see that it
seems that y takes on values near 1. But what happens when x = 0? We have

sin(0) “0”
- = .
0 0
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The expression 0/0 has no value; it is indeterminate. Such an expression gives
no information about what is going on with the function nearby. We cannot find
out how y behaves near = = 0 for this function simply by letting x = 0.

Finding a limit entails understanding how a function behaves near a particu-
lar value of . Before continuing, it will be useful to establish some notation. Let
y = f(x); thatis, let y be a function of « for some function f. The expression 0.8 |
“the limit of y as = approaches 1” describes a number, often referred to as L,
that y nears as x nears 1. We write all this as

0.9 1

-1 —0.5 0.5 1

lim y = lim f(z) = L. Figure 1.1.3 sin(z) /z near z = 0

z—1

This is not a complete definition (that will come in the next section); this is a
pseudo-definition that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated
sin(z)

lim ~0.84 and lim —~ ~ 1.
z—1 x rz—0 T

sin(x)

(We approximated these limits, hence used the “~” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)
Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approxi-
mate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can
provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.
Consider again lim,_, w To approximate this limit numerically, we can
create a table of x and f(z) values where z is “near” 1. This is done in Fig-
ure 1.1.4. x sin(z)/x
Notice that for values of x near 1, we have sin(x)/x near 0.841. Thez = 1 0.9 0.870363
row is included, but we stress the fact that when considering limits, we are not 0.99  0.844471
concerned with the value of the function at that particular x value; we are only 0.999 0.841772
concerned with the values of the function when x is near 1. 1 0.841471
Now approximate lim,_,o 22 humerically. We already approximated the 1.001  0.841170

xr
value of this limit as 1 graphically in Figure 1.1.3. Figure 1.1.5 shows the value 101 0.838447
1.1 0.810189

of sin(z) /x for values of x near 0. Ten places after the decimal point are shown
to highlight how close to 1 the value of sin(x)/x gets as x takes on values very
near 0. We include the x = 0 row but again stress that we are not concerned

- i ¢ k Figure 1.1.4 Values of sin(z) /= with ©
with the value of our function at x = 0, only on the behavior of the function

near 1
near 0.
This numerical method gives confidence to say that 1 is a good approxima-
tion of lim,_, S'”i“:) : that is,
sin(a) x sin(x)/x
J'Lno - ~ 1. -0.1 0.9983341665
-0.01 0.9999833334
Later we will be able to prove that the limit is exactly 1. -0.001 0.9999998333
We now consider several examples that allow us explore different aspects of 0 not defined
the limit concept. 0.001  0.9999998333

0.01 0.9999833334
0.1 0.9983341665

Example 1.1.6 Approximating the value of a limit.

Use graphical and numerical methods to approximate . . .
Figure 1.1.5 Values of sin(z) /= with ©

. 2—z—6 near 0
lim —— .
z—3 622 — 192 + 3
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Solution. To graphically approximate the limit, graph

2 —x—6

Y= 622 —192+3

on a small interval that contains 3. To numerically approximate the limit,
create a table of values where the x values are near 3. This is done in
Figure 1.1.7 and Figure 1.1.8, respectively.

0.35
y z2—z2—6

z 622 10013
2.9 0.29878

s \ 2.99  0.204569
2.999  0.294163

0.25 3 not defined

3.001  0.294073

ﬂ‘ i 3.01 0.293669
bia 26 28 3 32 34 36 3.1 0.289773

Figure 1.1.7 Graphically approxi- Figure 1.1.8 Numerically approxi-
mating a limit in Example 1.1.6 mating a limit in Example 1.1.6

The graph shows that when z is near 3, the value of y is very near 0.3.
By considering values of x near 3, we see that y = 0.294 is a better
approximation. The graph and the table imply that

2—r—6
lim — — Y72~ 0.204.
205 622 — 192 + 3

This example may bring up a few questions about approximating limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximation as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Graphs are useful since they give a visual understanding concerning the be-
havior of a function. Sometimes a function may act “erratically” near certain x
values which is hard to discern numerically but very plain graphically (see Exam-
ple 1.1.18). Since graphing utilities are very accessible, it makes sense to make
proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.6, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 1.1.9 Approximating the value of a limit.

Graphically and numerically approximate the limit of f(x) as x ap-
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proaches 0, where

fz) =

rz+1 z <0

—2241 2>0
Solution. Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function,
so it behaves differently on either side of 0. Figure 1.1.10 shows a graph
of f(x), and on either side of 0 it seems the y values approach 1. Note
that f(0) is not actually defined, as indicated in the graph with the open
circle.

x f(z)
—0.1 0.9
—-0.01  0.99
—0.001  0.999

0.001 0.999999
0.01 0.9999
-1 0.5 0.5 1 0.1 0.99

Figure 1.1.10 Graphically approxi-  Figure 1.1.11 Numerically approx-
mating a limit in Example 1.1.9 imating a limit in Example 1.1.9

Figure 1.1.11 shows values of f(z) for values of x near 0. It is clear that
as « takes on values very near 0, f(z) takes on values very near 1. It
turns out that if we let z = 0 for either “piece” of f(x), 1 is returned;
this is significant and we'll return to this idea later.

The graph and table allow us to say that lim,_,o f(x) & 1; in fact, we
are probably very sure it equals 1.

1.1.1 Identifying When Limits Do Not Exist

A function may not have a limit for all values of x. That is, we cannot write that
lim,_. f(x) = L (where L is some real number) for all values of ¢, for there
may not be a number that f(x) is approaching. There are three common ways
in which a limit may fail to exist.

1. The function f(x) may approach different values on either side of c.
2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches ¢ without approaching a spe-
cific value.

We'll explore each of these in turn.

Example 1.1.12 Different Values Approached From Left and Right.

Explore why lim,,_,1 f(x) does not exist, where

2 —-2x+3 <1
f(x)={ -
x x>1
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Solution. A graph of f(z) around = 1 and a table are given in Fig-
ures Figure 1.1.13 and Figure 1.1.14, respectively. It is clear that as x ap-
proaches 1, f(x) does not seem to approach a single number. Instead,
it seems as though f(z) approaches two different numbers. When con-
sidering values of x less than 1 (approaching 1 from the left), it seems
that f(x) is approaching 2; when considering values of x greater than
1 (approaching 1 from the right), it seems that f(x) is approaching 1.
Recognizing this behavior is important; we'll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x)
is approaching two different values as x approaches 1.

Y

3

2 0.9 2.01
/ 0.99  2.0001

L 0.999  2.000001

1.001  1.001
N .01 1.01
0.5 1 1.5 2 1.1 1.1

Figure 1.1.13 Observing no limit  Figure 1.1.14 Values of f(x) near
asx — 1in Example 1.1.12 x = 1in Example 1.1.12

Example 1.1.15 The Function Grows Without Bound.

Explore why lim,_,, ﬁ does not exist.

Solution. A graph and table of f(x) = ﬁ are given in Figure 1.1.16

and Figure 1.1.17, respectively. Both show that as = approaches 1, f(z)
grows larger and larger.

100 Y ‘
0 | v f@
w : 0.9  100.
; 0.99  10000.
10 i 0.099 1.x 10°
" 1.001 1. x 106
E 1.01  10000.
0.5 i 15 2T 1.1 100.

Figure 1.1.16 Observing no limit  Figure 1.1.17 Values of f(x) near
as x — 1in Example 1.1.15 x = 1in Example 1.1.15

We can deduce this on our own, without the aid of the graph and table.
If x is near 1, then (x — 1) is very small, and:
1
very small number

= very large number .
Since f(x) is not approaching a single number, we conclude that

im o
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[ does not exist.

Example 1.1.18 The Function Oscillates.

Explore why lim._,o sin(1/2) does not exist.

Solution. Two graphs of f(z) = sin(1/z) are given in Figure 1.1.19. Fig-
ure 1.1.19(a) shows f(x) on the interval [—1, 1]; notice how f(z) seems
to oscillate near x = 0. One might think that despite the oscillation, as
x approaches 0, f(z) approaches 0. However, Figure 1.1.19(b) zooms
in on sin(1/z), on the interval [—-0.1,0.1]. Here the oscillation is even
more pronounced. Finally, in Figure 1.1.20, we see sin(1/x) evaluated
for values of 2 near 0. As x approaches 0, f(x) does not appear to ap-

proach any value.
FT /\
0.5 1 01| —p-

b
(a) (el x sin(1/z)
Figure 1.1.19 Observing that f(x) = sin(1/z) has no limitas z — 0in 0.1 —0.544021
Example 1.1.18 0.01 —0.506366
It can be shown that in reality, as 2 approaches 0, sin(1/z) takes on all 0.001 0.82688
values between —1 and 1 infinitely many times! Because of this oscilla- 0.0001 —0.305614
| tion, lim,_,q sin(1/x) does not exist. 1.x 10™° 0.0357488

1.x 107% —0.349994
1. x 1077 0.420548

1.1.2 Limits of Difference Quotients . .
Figure 1.1.20 Observing that f(z) =

We have approximated limits of functions as x approached a particular number. sin(1/z) has no limit as « — 0 in Ex-
We will consider another important kind of limit after explaining a few key ideas. ample 1.1.18

Let f(x) represent the position function, in feet, of some particle that is
moving in a straight line, where x is measured in seconds. Let’s say that when
x = 1, the particle is at position 10 ft., and when z = 5, the particle is at 20 ft.
Another way of expressing this is to say

f(1) =10 and £(5) = 20.

Since the particle traveled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:

f(5) — f(1) ft _ 10ft
5—1 s  4s

= 2.5ft/s.

This difference quotient can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essentially what we are doing:
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given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.1.21.

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,
consider the positions of the particle when z = 1 and when x = 1 + h. The
difference quotient (excluding units) is now

fA+h) - 1) _ fA+h) - f(1)
(1+h) -1 h ’

Let f(z) = —1.522% + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of i (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values i # 0, the difference quotient computes the
average velocity of the particle over an interval of time of length A starting at
r=1.

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.22. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

o AR - f)
im =7
h—0 h

25 1 25 %, 25
20 20 20
15 15 15
10 10 10

5 5 5

2 4 o 2 4 6 2 4 v
(a)h =2 (b)h=1 (c)h=0.5

Figure 1.1.22 Secant lines of f(z) atz = 1 and x = 1 + h, for shrinking values
of h (i.e., h — 0)

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.23. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. In the following exercises, we continue our
introduction and approximate the value of limits.

25 1

20 A

15 |

10 |

z

2 i 6
Figure 1.1.21 Interpreting a differ-

ence quotient as the slope of a secant
line

L [+ =1 (1)
h

—0.5  9.25

—0.1 865

—0.01 8515

0.01  8.485

0.1 835

0.5 775

Figure 1.1.23 The difference quotient
evaluated at values of i near 0
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1.1.3 Exercises

Terms and Concepts

In your own words, what does it mean to “find the limit of f(x) as 2 approaches 3"?

An expression of the form 2 is called

1

2 0

3. (OTrue OFalse) The limit of f(x) as « approaches 5 is f(5).
4

Describe three situations where lim f(x) does not exist.
Tr—cC

5. In your own words, what is a difference quotient?

. sinz |
6. When z is near 0, —— is near what value?
X
Problems

Exercise Group. Approximate the limit numerically and graphically.

7. lim (2% + 22+ 2) 8. lim (2% + 42? — 42 + 2)
rz—1 z—1
. z—5 : +22-8
2. n!";no (””g*‘l“’) 10. ml_|>rrl4 (; == 20)
. -2 +10z+21 . 2_132-32
1. lim, (rx2+5§+6 ) 2. lim (22+sf+16 )
13.  lim_ f(z), where 14. lim_f(z), where
z——1 r——2
r+1 if r < —1 22 -2 —2 ifx< -2
fx) = . flz) = .
—(Bz+4) ifz>-1 2x 4+ 10 if x> —2
15. lim f(z), where sin <z
o0 16. lim f(x), where f(z) = (@) =<3
f(x) cos(x) ifx <0 TG cos(r) x> %
€T =
242241 ifz>0
H x . _ 1/
17. Jino\aj 18. zIanO e ¢
19.  lim_||z||!, where |z is the absolute value of 20. lim |[z|]!, where |z|is the absolute value of
r——>5 r——1
x, |« is the floor of x (the greatest integer less x, |« is the floor of x (the greatest integer less
than or equal to z), and ! is x factorial. than or equal to z), and z! is x factorial.

Exercise Group. Approximate the limit of the difference quotient, llimo w using h = £0.1, +0.01.
—

21, f(x)=2—-Tx,a=3 22. f(z)=92+0.06,a =—1
23. f(z)=2>+3z-T,a=1 24, f(z)= A5,a=2

25. f(z)=5xr—42*—-1,a=-3 26. f(xz)=In(z),a=5

27. f(z)=sin(z),a=m 28. f(x)=cos(x),a=m
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1.2 Epsilon-Delta Definition of a Limit

This section introduces the formal definition of a limit. Many refer to this as “the
epsilon-delta” definition, referring to the letters ¢ and ¢ of the Greek alphabet.

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an z-value, ¢, we say that “the
limit of the function f, as x approaches c, is a value L” if:

Tends  “ytendsto L” as “x tends to c.”
Approaches “y approaches L" as “x approaches c.”
Near  “yisnear L” whenever “x is near ¢.”

n o«

The problem with these definitions is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, ¢? How near do = and y have to be to c and L, respectively?

The definition we describe in this section comes from formalizing “Near”. A
quick restatement gets us closer to what we want:

Tolerance Levels
If 2 is within a certain tolerance level of ¢, then the corresponding

value y = f(z) is within a certain tolerance level of L.

The traditional notation for the x-tolerance is the lowercase Greek letter
delta, or 4, and the y-tolerance is denoted by lowercase epsilon, or €. One more
rephrasing of “Tolerance Levels” nearly gets us to the actual definition:

Named Tolerance Levels
If = is within ¢ units of ¢, then the corresponding value of y is

within € units of L.

We can write “x is within § units of ¢” mathematically as
|z —¢| <6,
which is equivalent to
c—d<xz<c+d.

Letting the symbol “ = " represent the word “implies,” we can rewrite
“Named Tolerance Levels” as

|t —¢c|<d = ly—L|<e
or
c—d0<zr<c+d = L—-ec<y<L+e.

The point is that ¢ and ¢, being tolerances, can be any positive (but typically
small) values satisfying this implication. Finally, we have the formal definition of
the limit with the notation seen in the previous section.

Definition 1.2.1 The Limit of a Function f at a point.

Let I be an open interval containing ¢, and let f be a function defined
on I, except possibly at c. The statement that “the limit of f(x), as
approaches ¢, is L” is denoted by

lim f(z) = L,

Tr—c

and means that given any € > 0, there exists § > 0 such that for all z in

Note: the common phrase “the
e-0 definition” is read aloud as
“the epsilon delta definition.” The
hyphen between e and § is not a
minus sign.
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I, where z # ¢, if |z — ¢| < d, then |f(z) — L| <e.

Mathematicians often enjoy writing ideas without using any words. Here is
the wordless definition of the limit:

lim f(z) =L
Tr—cC
—
Ve>0,30 >0st.0<|z—c|<d = |f(zx)—L|<e.
Note the order in which ¢ and § are given. In the definition, the y-tolerance
¢ is given first and then the limit will exist if we can find an z-tolerance § that
works.

An example will help us understand this definition. Note that the explanation
is long, but it will take one through all steps necessary to understand the ideas.

Example 1.2.2 Evaluating a limit using the definition.

Show that lim /z = 2.
z—4

Solution. Before we use the formal definition, let’s try some numerical
tolerances. What if the y tolerance is 0.5, or in other words ¢ = 0.5?
How close to 4 does x have to be so that y is within 0.5 units of 2? That
is, 1.5 < y < 2.5? In this case, we can proceed as follows:

1<y <25

1.5 <z <25 (Lety = v2)
1.5%2 <z < 2.52 (Square the inequality)
2.25 < x <6.25

225 —4<x—4<625—-4 (Subtract 4 from both sides)
1.7 <x—-4<225

So, what is the desired z tolerance? Remember, we want to find a §
so that |z — 4| is smaller than §. Since 1.75 < 2.25, then if we require
|z — 4| < 1.75, then we have

|z — 4] < 1.75
— 1.7 <x—-4<1.75<2.25

Therefore we can have § < 1.75. See Figure 1.2.3.

Choose € > 0. Then ... -
e=0.5 e=0.5
2+ 2+t
e=05 =05
...choose § smaller
than each of these:
1 1
width width
1.75 . 2.25
z ) z
2 4 6 2 4 6
(a) (b)

Figure 1.2.3 lllustrating the ¢ —  process. With ¢ = 0.5, we pick any
6 < 1.75
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Given the y tolerance ¢ = 0.5, we have found an z tolerance, § < 1.75,
such that whenever z is within ¢ units of 4, then y is within ¢ units of 2.
That's what we were trying to find.

Let’s try another value of ¢.

What if the y tolerance is 0.01, i.e. ¢ = 0.01? How close to 4 does z
have to be in order for y to be within 0.01 units of 2? (In other words for
1.99 < y < 2.01?) Again, we just square these values to get 1.99? <
x < 2.012, or

3.9601 < =z < 4.0401
—0.0399 < z — 4 < 0.0401

What is the desired z tolerance? In this case we must have 6 < 0.0399,
which is the minimum distance from 4 of the two bounds given above.
What we have so far: if e = 0.5, then § < 1.75 leads to f(z) being less
than e from f(4) and if ¢ = 0.01, then 6 < 0.0399 being less than
from f(4). A pattern is not easy to see, so we switch to general ¢ try to
determine an adequate ¢ symbolically. We start by assuming y = /z is
within e units of 2:

ly—2| <e
—e<y—2<e
—e<Vr—-2<e (y = V)
2—e<Vr<2+¢ (Add 2)
2—-e)P<z<(2+¢)? (Square all)
4— et e <x<4+4e+ 2 (Expand)
—de+e?<r—4<de+e? (Subtract 4)

The “desired form” in the last step is “4 — something < =z < 4 +
something.” Since we want this last interval to describe an x tolerance
around 4, we have that either § < 4¢ — €2 or § < 4e + €2, whichever is
smaller:

§ < min{de — &% 4e + &2},

Since £ > 0, we have 4 — €2 < 4e + 2, the minimum is § < 4e — £2.
That’s the formula: given an ¢, set § < 4e — 2.

We can check this for our previous values. If ¢ = 0.5, the formula gives
§ < 4(0.5) — (0.5)2 = 1.75 and when ¢ = 0.01, the formula gives
§ < 4(0.01) — (0.01)2 = 0.0399.

Sogivenanye > 0,setd < 4e—e2. Thenif |z — 4| < & (and x # 4), then
|f(z) — 2] < e, satisfying the definition of the limit. We have shown
formally (and finally!) that lim,_,4 /7 = 2.

The previous example was a little long in that we sampled a few specific
cases of ¢ before handling the general case. Normally this is not done. The
previous example is also a bit unsatisfying in that v/4 = 2; why work so hard
to prove something so obvious? Many e-§ proofs are long and difficult to do.
In this section, we will focus on examples where the answer is, frankly, obvious,
because the non-obvious examples are even harder. In the next section we will
learn some theorems that allow us to evaluate limits analytically, that is, without
using the e-6 definition.



CHAPTER 1. LIMITS 12

Example 1.2.4 Evaluating a limit using the definition.

Show that lim z2 = 4.
r—2

Solution. Let’s do this example symbolically from the start. Lete > 0
be given; we want |y — 4| < ¢, i.e., [2? — 4| < . How do we find § such
that when |z — 2| < &, we are guaranteed that |z? — 4| < £?

This is a bit trickier than the previous example, but let’s start by noticing
that |22 — 4| = [z — 2| - |2 + 2|. Consider:

£
|z + 2|

|2 —4| <e = 22| |z +2/<e = |z-2[<

Could we not set § = ﬁ"

We are close to an answer, but the catch is that § must be a constant
value (so it can’t depend on x). There is a way to work around this, but
we do have to make an assumption. Remember that ¢ is supposed to
be a small number, which implies that § will also be a small value. In
particular, we can (probably) assume that 6 < 1. If this is true, then
|z — 2| < § would imply that | — 2| < 1, giving 1 < < 3.

Now, back to the fraction ﬁ Ifl<z<3,then3 <x+2 <5 (add
2 to all terms in the inequality). Taking reciprocals, we have

1 < 1 - 1
5 |lz+2| 3
which implies
1 - 1
5 |z +2|
which implies
€ €
- < . 1.2.1
5 |z+2| ( )

This suggests that we set § < £. To see why, let consider what follows
when we assume |z — 2| < §:

|z —2] < 4§
|z — 2| < % (Our choice of §)
€ .
\m—2|-|x+2\<\x+2|-g (Multiply by |z + 2|)
y
|2? —4| < |z +2|- % (Simplify left side) /
|22 —4| < |z +2]- ——  (Inequality (1.2.1),5 < 1) ) |
|z + 2] |
o2 — 4] <« ! 1
We have arrived at |x2 — 4| < ¢ asdesired. Note again, in order to make € 5=c/5
this happen we needed ¢ to first be less than 1. That is a safe assumption; ! !
we want ¢ to be arbitrarily small, forcing ¢ to also be small. PR v
We have also picked ¢ to be smaller than “necessary.” We could get by 2

with a slightly larger §, as shown in Figure 1.2.5. The outer lines show
the boundaries defined by our choice of €. The inner lines show the
boundaries defined by setting 6 = /5. Note how these dotted lines are
within the dashed lines. That is perfectly fine; by choosing x within the
dotted lines we are guaranteed that f(z) will be within ¢ of 4.

Figure 1.2.5 Choosing 6 = ¢/5 in Ex-
ample 1.2.4
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In summary, given ¢ > 0, set § = ¢/5. Then |z —2| < § implies
|22 — 4] < e (i.e. |y — 4] < €) as desired. This shows that lim,_,5 z* =
4. Figure 1.2.5 gives a visualization of this; by restricting = to values
within 0 = /5 of 2, we see that f(x) is within ¢ of 4.

Make note of the general pattern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |z — ¢| < ¢ and conclude that

2. [f(x) - L| <,

we actually start by doing what is essentially some “scratch-work” first:

1. assume |f(x) — L| < ¢, then perform some algebraic manipulations to
give an inequality of the form

2. |z — ¢| < something.

When we have properly done this, the something on the “greater than” side
of the inequality becomes our §. We can refer to this as the “scratch-work”
phase of our proof. Once we have §, we can formally start the actual proof with
|z — ¢| < 0 and use algebraic manipulations to conclude that | f(z) — L| < ¢,
usually by using the same steps of our “scratch-work” in reverse order.

We highlight this process in the following example.

Example 1.2.6 Evaluating a limit using the definition.

Prove that lim (2% — 2x) = —1.
rz—1

Solution. We start our scratch-work by considering | f(z) — (—1)| < e:

|f(z) = (-1 <e
2® — 22+ 1] <e (Now factor)
[(z—1)(z*+z-1)|<e
€

We are at the phase of saying that |x — 1| < something, where
something = ¢/ |z* + z — 1|. We want to turn that something into
d.
Since x is approaching 1, we are safe to assume that x is between 0 and
2. So

O<x <2

0<z’<4 (Squared each term.)
Since 0 < x < 2, we can add 0, z and 2, respectively, to each part of the
inequality and maintain the inequality.

0<z?’4+2<6

“1l<a’4+2-1<5 (Subtracted 1 from each part.)

In Inequality (1.2.2), we wanted |z — 1| < ¢/ |2? + = — 1|. The above
shows that given any z in [0, 2], we know that

2?+r—-1<5 which implies that
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L < L which implies that
5 x24x-—1 P
€ €
- . 1.2.3
5 x224x-1 ( )

Sowe set d < €/5. This ends our scratch-work, and we begin the formal
proof (which also helps us understand why this was a good choice of 9).
Given g, let § < £/5. We want to show that when |z — 1| < §, then
|(2® — 2z) — (—1)| < e. We start with [z — 1| < &:

|l —1] <8
€
-1l < =
-1 < 2
€
— 1| < ———— (Inequality (1.2.3), x near 1
|z — 1] PR (Inequality (1.2.3),z )
lo—1]-Ja*+z -1 <e
|x3—2x+1’ <e
|(z® —22) — (-1)| <&,
| which is what we wanted to show. Thus lim,_,; (z* — 2z) = —1.

We illustrate evaluating limits once more.
Example 1.2.7 Evaluating a limit using the definition.

Prove that lim e¢* = 1.
x—0

Solution. Symbolically, we want to take the inequality |e* — 1| < € and
unravel it to the form |« — 0| < §. Here is our scratch-work:

e — 1] < e

—e<e’—1<e

l—e<e®<1+4¢
In(1—¢) <z <In(l+¢)

(Definition of absolute value)
(Add 1)
(Take natural logs)

Making the safe assumption that ¢ < 1 ensures the last inequality is
valid (i.e., so that In(1 — ¢) is defined). We can then set ¢ to be the
minimum of |In(1 — )| and In(1 + ¢); i.e.,

d=min{|In(1 —¢)|,In(1+¢)} =In(1 +¢).
Now, we work through the actual the proof:

|z —0] <d
—6<zT<6
—Inl+e) <z <In(l+e)
In(l—¢)<az<In(l+¢)

(Definition of absolute value)

(sinceIn(1 —¢) < —In(1 +¢)).

The above line is true by our choice of § and by the fact that since
In(1—¢)] > In(1 +¢)andIn(l —¢) < 0, we know In(1 — ¢) <
—In(1+¢).

l—-e<e®<1l+e (Exponentiate)

14

RecallIn1 = 0OandInx < 0O
when0 < z < 1. SoIn(1 —¢)
is negative because 1 — ¢ < 1;
hence we consider its absolute
value:

[In(1 —¢)|
=—In(1-¢)

:|n<1i€>.

To determine which is smaller
between  |In(1—¢)| and
In(1 + ¢) amounts to determin-
ing which is smaller between
——and1+e¢. But

(1+5)/<1i€>

=1+e)(1—-¢)
=1-e?<1,

50 (1+¢) < 1. And therefore
In(1+¢) < |In(1 —¢)|.
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—e<et—1<e (Subtract 1)

In summary, givene > 0, let 6 = In(1 + ). Then |z — 0] < § implies
|e* — 1| < ¢ as desired. We have shown that lim,_,q e” = 1.

We note that we could actually show that lim,_,.e* = ¢ for any con-
stant ¢. We do this by factoring out e¢ from both sides, leaving us to show
lim,_,.e* ¢ = 1 instead. By using the substitution © = = — ¢, this reduces
to showing lim,_,o e* = 1 which we just did in the last example. As an added
benefit, this shows that in fact the function f(x) = e is continuous at all values
of z, an important concept we will define in Section 1.5.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square
roots and exponentials. It is very difficult to prove, using the techniques given
above, that lim,_.¢ w = 1, as we approximated in Section 1.1.

There is hope. Section 1.3 shows how one can evaluate complicated lim-
its using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of Section 1.3 are
employed.
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1.2.1 Exercises

Terms and Concepts

1.  What is wrong with the following “definition” of a limit?
“The limit of f(x), as = approaches a, is K” means that given any § > 0 there exists ¢ > 0 such that
whenever | f(z) — K| < ¢, we have |x — a| < 6.

2.  Whichis given first in establishing a limit?
(O x-tolerance [ y-tolerance)

3. (OTrue [OFalse) e must always be positive.

(O True [OFalse) & must always be positive.

Problems

Exercise Group. Prove the given limit using an -6 proof.

5. lim (22 4+ 5) = 13 6. lim(3—x)= -2
T—4 z—5

7. lim (22 -3) =6 8. lim (22 +z —5) =15
z—3 z—4

9. lim (222 +3z+1) =6 10. lim (2*-1) =7
z—1 T—2

11. lim5=5 12, lim (e** —1) =0
T—2 z—0

13. lim i =1 14.  lim sin(z) =0

z—17% z—0
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1.3 Finding Limits Analytically

In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi-
mations were correct. Thus far, our method of finding a limit is

1. make a really good approximation either graphically or numerically, and

2. verify our approximation is correct using a -9 proof.

Recognizing that -6 proofs are cumbersome, this section gives a series of
theorems which allow us to find limits much more quickly and intuitively.

Suppose thatlim,_,o f(z) = 2andlim;_2 g(x) = 3. Whatislim,_,o(f(z)+
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit Properties.

Let b, ¢, L and K be real numbers, let n be a positive integer, and let f
and g be functions defined on an open interval I containing c with the
following limits:

lim f(z) =L lim g(z) = K.

r—c T—>C

The following limits hold.

Constants limb=10
Tr—cC
Identity limz=c¢
Tr—rcC
Sums/Differences lim(f(x)£g(zx)) =L+ K
Tr—rc
Scalar Multiples lim(b- f(x)) =bL
Tr—cC
Products lim (f(z)-g(z)) = LK
Tr—rc
Quotients lim (f(x)/g(x)) = L/K, when K # 0
Tr—cC
Powers lim f(z)" = L"
Tr—c
Roots |im 1/f(z) = VL
r—rC
(If n is even then require f(x) > OonI.)
Compositions Adjust the limit requirements to

lim f(z) =L IiLnLg(:v) =K g(L)=K.

r—c

Then lim g(f(z)) = K.

r—cC
We apply the theorem to an example.
Example 1.3.2 Using basic limit properties.

Let

lim f(x) =2 lim g(z) =3

T—2 r—2

p(z) = 32% — bx + 7.

Many people like to remember
the Sum Property as stating that
“the limit of the sum is the sum
of the limits”, and the Product
Property as stating that the “limit
of a product is the product of the
limits.”

In practice, the Scalar Multi-
ple Property is often viewed as
telling us that we can “take con-
stants out of limits”:

lim (b- f(z)) =b- lim f(z).

r—cC Tr—cC
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Find the following limits:

@ lim(f() + ) imGf@) + (O limpl)
9(x)) 9(@)?)

Solution.

(a) Using the Sums/Differences property, we know that

lim (f() + g(x)) = lim f(x) + lim ()
=24+3=05.

(b) Using the Scalar Multiples, Sums/Differences, and Powers proper-
ties, we find that

(5(x) + g(2)?) = lim (5 (x)) + lim (9()?)

lim lim

r—2 T—2
2

=5 Jim f(@)+ (ng(x))

=5-24+3%2=19.

(c) Here we combine the Powers, Scalar Multiples, Sums/Differences
and Constants properties. We show quite a few steps, but in gen-
eral these can be omitted:

li =i 2
lim p(z) = lim (3z* — Bz +7)

T 2\ g .

791@2(393 ) 4@2(51:) +g!in27
. 2 .

- 3@3}2 z)" - 591@2(33) 7

=3.22-5.247

-9

Part c of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only

that, recognize that
lim p(z) =9 = p(2);

z—2

i.e., the limit at 2 could have been found just by plugging 2 into the function.
This holds true for all polynomials, and also for rational functions (which are

quotients of polynomials), as stated in the following theorem.
Theorem 1.3.3 Limits of Polynomial and Rational Functions.

Let p(x) and q(z) be polynomials and ¢ a real number. Then:

1. lim p(z) = p(c)

r—c

2. lim 22 = 2 \when g(c) # 0.

(x
z—c (&) T q(e)’
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Example 1.3.4 Finding a limit of a rational function.
Using Theorem 1.3.3, find

lim 322 —5r+1
e——1 ot — 22 +3°

Solution. Using Theorem 1.3.3, we can quickly state that

302 — Bz +1  3(-1)2—5(—1)+1

lim =
a——1 g4 — 22 +3 (=4 = (-1)2+3
9
=-=3.
L 3
It was likely frustrating in Section 1.2 to do a lot of work with £ and § to prove

that

lim 2% =4

r—2

as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function
in Example 1.3.4.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behavior is particularly “nice” in terms of limits. In Section 1.5, we will give a
formal name to these functions that behave “nicely.”

Theorem 1.3.5 Limits of Common Functions.

Let ¢ be a real number in the domain of the given function and let n be
a positive integer. The following limits hold:

1. g!li)ncsm(x) = sin(c) 6. zI'an cot(x) = cot(c)
2. lim cos(z) = cos(c) . .
z—c 7. limg_.a® =af ifa>0
3. lim tan(z) = tan(c)
e 8. lim In(z) = In(c)
4. lim csc(z) = csc(e) B=oe
Tr—cC
5. lim sec(z) = sec(c) 9. lim ¥z = {/c
r—>C T—rC

(Item 9 follows from the Identity and Roots rules.)

Example 1.3.6 Evaluating limits analytically.

Evaluate the following limits.

(a) lim cos(z) (@ lim )

(b) lim (sec?(z) — tan®(z))

(c) lim (cos(z)sin(x)) (e lim sin(z)
/2 o} R

Solution.
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(a) This is a straightforward application of Theorem 1.3.5:
xllnﬂ cos(z) = cos(m) = —1.
(b) We can approach this in at least two ways. First, by directly apply-
ing Theorem 1.3.5, we have:
li 2 ) — sec2(3) — tan2(3).
lim (sec*(x) — tan*(z)) = sec?(3) — tan’(3)
Using the Pythagorean Theorem, this last expression is 1; there-
fore
lim (sec*(z) — tan®*(z)) = 1.

x—3

We can also use the Pythagorean Theorem from the start.

. 2 o 2 i _
lim (sec®(z) — tan*(z)) lim 1=1,

using the Constants rule. Either way, we find the limit is 1.

-~

(c) Applying the Products rule and Theorem 1.3.5 gives

lim cos(x)sin(z) = cos(w/2)sin(w/2) =0-1=0.

z—m/2

(d) Again, we can approach this in two ways. First, we can use the

exponential/logarithmic identity that ¢™(®) = z and evaluate
lim e(®) = lim z = 1.
z—1 rz—1

We can also use the Compositions rule. Using Theorem 1.3.5, we
have Iimlln(x) = In(1) = 0 and lim,_,¢ e® = ¢ = 1, satisfying
r—r

the conditions of the Compositions rule. Applying this rule,

|im1 eln(m) — elimm_ﬂ In(z) _ eln(l) — 60 —1.
z—

Both approaches are valid, giving the same result.

(e) We encountered this limit in Section 1.1. Applying our theorems,
we attempt to find the limit as

im sin(z) R sm(O)’
r—0 T 0

which is of the form %. This, of course, violates a condition of the
Quotients rule, as the limit of the denominator is not allowed to
be 0. Therefore, we are still unable to evaluate this limit with tools
we currently have at hand.

Based on what we've done so far, this section could have been titled “Using
Known Limits to Find Unknown Limits.” By knowing certain limits of functions,
we can find limits involving sums, products, powers, etc., of these functions. We
further the development of such comparative tools with the Squeeze Theorem,
a clever and intuitive way to find the value of some limits.

Before stating this theorem formally, suppose we have functions f, g, and h
where g always takes on values between f and h; that is, for all = in an interval,

f(@) < g(x) < h(z).
If f and h have the same limit at ¢, and g is always “squeezed” between them,
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then g must have the same limit as well. That is what the Squeeze Theorem
states. This is illustrated in Figure 1.3.7.

Theorem 1.3.8 Squeeze Theorem.

Let f, g and h be functions on an open interval I containing c such that
forall z in I,

f(z) < g(z) < h(x).

If
Jim /(s) = £ = lim (o),
then
lim g(z) = L.
r—c

It can take some work to figure out appropriate functions by which to “squeeze”
a given function. However, that is generally the only place where work is neces-

sary; the theorem makes the “evaluating the limit part” very simple.

We(u)se the Squeeze Theorem in the following example to finally prove that
I- sin(x — 1
IinO z

Example 1.3.9 Using the Squeeze Theorem.
Use the Squeeze Theorem to show that

lim sin(x)

x—0 x

=1.

Solution. We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos(8), sin(6)) for some angle 6 as shown in
Figure 1.3.10. Using similar triangles, we can extend the line from the
origin through the point to the point (1,tan(6)), as shown. (Here we
are assuming that 0 < 6 < 7/2. Later we will show that we can also
consider 8 < 0.)

Figure 1.3.10 shows three regions have been constructed in the first
quadrant, two triangles and a sector of a circle, which are also drawn
below. The area of the large triangle is % tan(6); the area of the sector
is 6/2; the area of the triangle contained inside the sector is § sin(6). It
is then clear from Figure 1.3.11 that

tan(6)
2

sin(0)
5

252

[NVRES

(You may need to recall that the area of a sector of a circle is %739 with
6 measured in radians.)

tan(9)

(a) (b) (c)

Figure 1.3.11 Bounding the sector between two triangles

c

Figure 1.3.7 An illustration of the
Squeeze Theorem

0s(6), sin(6)

(1,tan(0))

(1,0)

Figure 1.3.10 The unit circle and re-

lated triangles
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Multiply all terms by %, giving

1 0
cos(6)

(These inequalities hold for all values of # near 0, even negative values,
since cos(—0) = cos(6) and sin(—6) = —sin(9).)
Now take limits.

sin(0)

lim cos(6) < lim < lim 1
9—0 0—0 0 0—0
in(0
cos(0) < lim sin(6)
0—0

1

IN

1< lim
6—0

IN

sin(0)
—y =1

Clearly this means that lim Si"ée) =1.
6—0

Two notes about the Example 1.3.9 are worth mentioning. First, one might
be discouraged by this application, thinking “I would never have come up with
that on my own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as = approaches 0, sin(z)/x
approaches 1. Both x and sin(x) are approaching 0, but the ratio of x and sin(x)
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small z, the functions y = z and y = sin(z)
are essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.12 Special Limits.

1. tim M@ _ 3. lim (1+2)"/% = ¢
x—0 €T
cos(x) — 1 ¢ _q
2 tim @1 4 lim S =1
z—0 a5 z—0 €T

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cos(z) goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos(z) is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, ¢, approximately 2.718.

In the fourth limit, we see that as x — 0, €” approaches 1 “just as fast” as
x — 0, resulting in a limit of 1.
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The special limits stated in Theorem 1.3.12 are called indeterminate forms;
in this case they are of the form 0/0, except the third limit, which is of a differ-
ent form. You'll learn techniques to find these limits exactly using calculus in
Section 6.7.

Our final theorem for this section will be motivated by the following example.

Example 1.3.13 Using algebra to evaluate a limit.

Evaluate the following limit:

Solution. We begin by attempting to apply Theorem 1.3.3 and substi-
tuting 1 for x in the quotient. This gives:

which is of the form %, an indeterminate form. We cannot apply the
theorem.

By graphing the function, as in Figure 1.3.14, we see that the function
seems to be linear, implying that the limit should be easy to evaluate.
Recognize that the numerator of our quotient can be factored:

-1 (:L‘—l)(m—i—l)'

r—1 r—1
The function is not defined when z = 1, but for all other z,

-1 (z—1)(z+1)

z—1 z—1
D+
Le—~1]
=x+1, ifz#l

Clearly I|m (a: + 1) = 2. Recall that when considering limits, we are not

concerned Wlth the value of the function at 1, only the value the function
approaches as x approaches 1. Since (z2 —1)/(z —1) and 2 + 1 are the
same at all points except at x = 1, they both approach the same value
as x approaches 1. Therefore we can conclude that

2

lim
x—1 T —

=2

The key to Example 1.3.13 is that the functions y = (22 — 1)/(x — 1) and
y = z+1 areidentical except at x = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Theorem 1.3.15 Limits of Functions Equal At All But One Point.

Let g(x) = f(x) for all x in an open interval, except possibly at ¢, and let

05 1 15 2
Figure 1.3.14 Graphing f in Exam-
ple 1.3.13 to understand a limit
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lim g(z) = L for some real number L. Then
r—cC

lim f(z) = L.

Tr—rc

The Fundamental Theorem of Algebra tells us that when dealing with a ra-
tional function of the form g(z)/ f () and directly evaluating the limit lim ?EB
r—c

returns “0/0”, then (x — c¢) is a factor of both g(z) and f(x). One can then
use algebra to factor this binomial out, cancel, then apply Theorem 1.3.15. We
demonstrate this once more.

Example 1.3.16 Evaluating a limit using Theorem 1.3.15.

Evaluate
3 — 222 —5x+6

lim .
z—3 223 4+ 322 — 322 + 15

Solution. We attempt to apply Theorem 1.3.3 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numer-
ator and denominator are each polynomials, we know that (x — 3) is
factor of each. Using whatever method is most comfortable to you, fac-
tor out (x — 3) from each (using polynomial division, synthetic division,
a computer algebra system, etc.). We find that

23— 222 — 52 +6 (z—3) (22 +x —2)

203 + 322 — 322+ 15 (z—3) (222 + 92 —5)’

We can cancel the (z—3) factors as long as « # 3. Using Theorem 1.3.15
we conclude:

. 23 —22% — 52 +6  (z=3)(z*+2—-2)
lim - = lim
e—=3 223 + 322 — 322 + 15 23 (v — 3) (222 + 92 — 5)

i A2

T a—32224 92 -5

_10

40

_1

e

Example 1.3.17 Evaluating a Limit with a Hole.

Evaluate

Solution. We begin by trying to apply the Quotients limit rule, but the
denominator evaluates to zero. In fact, this limit is of the indeterminate
form 0/0. We will do some algebra to resolve the indeterminate form. In
this case, we multiply the numerator and denominator by the conjugate
of the numerator.

Vi-3 _Ji-3 (Ji+3)

-9  2-9 (Vz+3)
rz—9

(x—9)(Va +3)
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We can cancel the (z—9) factors as long as 2 # 9. Using Theorem 1.3.15
we conclude:
-3 —
fim Y7 =3 _ jim r =9
z—=9 r—9 x—>9(l‘—9)(\/§+3)
1

I
1

1

Viiimg gz +3

We end this section by revisiting a limit first seen in Section 1.1, a limit of a
difference quotient. Let f(z) = —1.52% + 11.52; we approximated the limit

}ILimO w ~ 8.5. We formally evaluate this limit in the following exam-
—

ple.

Example 1.3.18 Evaluating the limit of a difference quotient.

Let f(z) = —1.52% + 11.5z; find lim LU=/
h—0 h

Solution. Since f is a polynomial, our first attempt should be to employ
Theorem 1.3.3 and substitute 0 for A. However, we see that this gives us
“0/0.” Knowing that we have a rational function hints that some algebra
will help. Consider the following steps:

_f(+n)—f) . —15(1+4h)*+11.5(1+h) — (—1.5(1)% + 11.5(1))
lim —————= = lim
h—0 h h—0 h
i —1.5(1 +2h + h?®) + 11.5+ 11.5h — 10
T =0 h
. —1.5n? +8.5h
= lim ——
h—0 h
. h(—1.5h+8.5)
= lim ———=
h—0 h
= llimo(—l.f)h +8.5) (using Theorem 1.3.15, as h # 0)
—

= 8.5 (using Theorem 1.3.3)

| This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.5; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 1.5 we give
a name to this nice behavior; we label such functions as continuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.



CHAPTER 1. LIMITS

1.3.1 Exercises

Terms and Concepts

26

1. Explain in your own words, without using -6 formality, why lim b = b.
Tr—c

2. Explain in your own words, without using -6 formality, why lim x = c.

Tr—cC

3. What does the text mean when it says that certain functions’ “behavior is ‘nice’ in terms of limits”? What, in

particular, is “nice”?

Sketch a graph that visually demonstrates the Squeeze Theorem.

5.  You are given the following information:

I J(@) =0 Jm (o) =

What can be said about the relative sizes of f(x) and g(z) as = approaches 1?

6. (O True [ False)

Problems

limInz =0.
rx—1

Exercise Group. Use the following information to evaluate the given limit, when possible.

J, f(@) = 6 (@)
Jm,g(@) =3 ()
7. lim (f(z) + g(x)) 8.
ol ()
11. iingg(f(x)) 12.
13, lim g(f(f(x))) 1,

Exercise Group.

determine the limit, state why not.

) =2 Ay ) =1
LYCRL i o(e) =
15.  lim (f(z)g(x)) 16.
z—1
17.  lim g(5f(x)) 18.
z—1
Exercise Group. Evaluate the given limit.
. 2
19.  lim (2% — 3z +5) 20.
21.  lim cos(z)sin(x) 22
z—=z °
23. Jﬁnoln(:l:) 24.
25. lim csc(x) 26.

P i
.lC—?S

=9
=3

o (3(@)
tim (%45
: f(z)
tim (524525)
lim f(g(x))
r—6
(

lim (f(z)g

z—6

z) = f(2)* +g(2))

Use the following information to evaluate the given limit, when possible. If it is not possible to

F1)=1/5
g(10) ==

limcos(g(x))

tm 510

5 4
lim (‘“”_8)
z—m \T
—(5z+2)

lim =

r—6

lim 4%° 22
r—2

I 4 +.)
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27 Jim £ 8. fim 35
29. lim L3t 0. lim &0
N fim s 2 lm bt
3. lim SR 3. lim e

Exercise Group. Use the Squeeze Theorem to evaluate the limit.

: (1 H i 1

35.  lim (zsin(2)) 36.  lim (sin(z) cos(-5))

37.  lim f(x), where 3z — 2 < f(x) < 23 38. Iimgf(x), where 6z — 9 < f(z) < 22
T T—

Exercise Group. The following exercises challenge your understanding of limits but can be evaluated using the
knowledge gained in Section 1.3.

39. lim ) 40. |im SnGz)
z—0 z x—0 8z
41 li In(1+x) . sin(z) . .
. lim /=== 42. lim ==, where x is measured in degrees, not
z—0 T z—=0 7
radians.

43. Let f(x) =0and g(z) = Z.

x

(a) Explain why lim f(x) = 0.
r—2

(b) Explain why lim g(z) = 1.
z—0

(c) Explain why Iim2 g(f(x)) does not exist.
z—

(d) Explain why the previous statement does not violate the Composition Rule of Theorem 1.3.1.
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1.4 One-Sided Limits

We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tedious method for evaluating them. Section 1.3 gave us tools
(which we call theorems) that allow us to compute limits with greater ease. Chief
among the results were the facts that polynomials and rational, trigonometric,
exponential and logarithmic functions (and their sums, products, etc.) all be-
have “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we saw three ways in which limits of functions can fail to exist:

1. The function approaches different values from the left and right.
2. The function grows without bound.
3. The function oscillates.

In this section we explore in depth the concepts behind Item 1 by introducing
the one-sided limit. We begin with formal definitions that are very similar to the
definition of the limit given in Section 1.2, but the notation is slightly different
and “x # ¢" is replaced with either “z < ¢” or “z > ¢."

There is a slightly different definition for a left-hand limit, than for a right-
hand limit, but both have a lot in common with Definition 1.2.1.

Definition 1.4.1 One Sided Limits: Left- and Right-Hand Limits.

Left-Hand Limit
Let f be a function defined on (a, ¢) for some ¢ < ¢ and

let L be a real number. The statement that the limit of
f(x), as x approaches ¢ from the left, is L, (alternatively,
that the left-hand limit of f at cis L) is denoted by

lim f(z) =1L,
r—c—
and means that for any € > 0, there exists 6 > 0 such that
forallz € (a,c¢), if |[v — c| < d,then |f(z) — L| <e.

Right-Hand Limit
Let f be afunction defined on (¢, b) for some b > cand let
L be a real number. The statement that the limit of f(z),
as x approaches c from the right, is L, (alternatively, that
the right-hand limit of f at cis L) is denoted by

lim f(x) =1L,
z—ct
and means that for any € > 0, there exists 6 > 0 such that
forallz € (¢,b), if |[v — ¢| <, then |f(z) — L| <e.

Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of = “to the left of ¢,” i.e., where x < c. The admittedly imperfect notation
x — ¢~ is used to imply that we look at values of z to the left of c. The notation
has nothing to do with positive or negative values of either x or c. It's more like
you are adding very small negative values to c to get values for z. A similar state-
ment holds for evaluating right-hand limits; there we consider only values of =
to the right of ¢, i.e., x > ¢. We can use the theorems from previous sections to
help us evaluate these limits; we just restrict our view to one side of c.
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We practice evaluating left- and right-hand limits through a series of exam-
ples.

Example 1.4.2 Evaluating one-sided limits.

Let f(z) = v 0szs 1,as shown in Figure 1.4.3. Find each of
3—z 1l<xz<?2
the following:
@ fim () (@ tim f(z)
(b) lim_ f(z) ) 1(0)
(@ lim f() (g) lim f()
(d f(1) (h) f(2)

Solution. For these problems, the visual aid of the graph is likely more
effective in evaluating the limits than using f itself. Therefore we will
refer often to the graph.

(a) As x goes to 1 from the left, we see that f(x) is approaching the
value of 1.

Therefore lim f(x) = 1.
r—1—
(b) Asx goes to 1 from the right, we see that f(x) is approaching the
value of 2. Recall that it does not matter that there is an “open cir-
cle” there; we are evaluating a limit, not the value of the function.

Therefore lim f(z) = 2.

z—1t

—
(a)
-

The limit of f as x approaches 1 does not exist, as discussed in
Section 1.1. The function does not approach one particular value,
but two different values from the left and the right.

(d) Using the definition, and by looking at the graph, we see that
f)=1

As x goes to 0 from the right, we see that f(z) is approaching
0. Therefore lim,_,o+ f(z) = 0. Note we cannot consider a left-
hand limit at 0 as f is not defined for values of = < 0.

~

(e

(f) Using the definition and the graph, f(0) = 0.

(8) As x goes to 2 from the left, we see that f(x) is approaching the
value of 1.

Therefore lim f(x) = 1.

T2~

(h) The graph and the definition of the function show that f(2) is not
defined.

Note how the left- and right-hand limits were different at + = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left- and right-hand limits are equal.

1.5+

0.5

05 1 15 2

Figure 1.4.3 A graph of f in Exam-
ple 1.4.2
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Theorem 1.4.4 Limits and One-Sided Limits.

Let f be a function defined on an open interval I containing c, except
possibly at c. Then
lim f(z) =L

T—C

if, and only if,

lim f(z)= Land Iim+ (z) = L.

Tr—c— Tr—cC

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.2-1.4.9 is that the value of the func-
tion may/may not be equal to the value(s) of its left/right-hand limits, even when
these limits agree.

Example 1.4.5 Evaluating limits of a piecewise-defined function.

2 — 1
Let f(z) = * O<w< . Evaluate the following:
(r—2)?2 1<x<?2

@) lim f(x) (e) fim f(x)
(b) lim f(x) (f) £(0)
© lim f(z) (&) lim f(x)
(d f(1) (h) f(2)

Solution. In this example, we evaluate each expression using just the
definition of f, without using a graph as we did in the previous example.

(a) As x approaches 1 from the left, we consider a limit where all z-
values are less than 1. This means we use the “2 — z" piece of
the piecewise-defined function f. As the z-values near 1, 2 — x
approaches 1; that is, f(x) approaches 1.

Therefore lim f(z) = 1.
r—1-

A concise mathematical presentation of the above argument could
be written as follows:

/Iin?i f(z) = /_Iinlwi(2—a:) (flx)=xz—-2for0<x < 1)

=2—-1=1 ( properties of limits )

(b) As x approaches 1 from the right, we consider a limit where all -
values are greater than 1. This means we use the “(x — 2)2” piece
of f. As the z-values near 1, (z — 2)? approaches 1; that is, we
see that again f(x) approaches 1.

Therefore LI—I>n11+f(x) =1.
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Once again, we can present our work computationally as follows:

lim f(x) = lim (z—2)* (f(z)=(z—2)?forl <z <?2)

z—1t r—1+t

(1—-2)> =1 ( properties of limits )

(c) The limit of f as x approaches 1 exists and is 1, as f approaches 1
from both the right and left.

Therefore lim f(x) = 1.
z—1

(d) Neither piece of f is defined for the z-value of 1; in other words,
1is not in the domain of f. Therefore f(1) is not defined.

(e) As x approaches 0 from the right, we consider a limit where all
z-values are greater than 0. This means we use the 2 — x piece
of f. As the z-values near 0, 2 — x approaches 2; that is, f(x)
approaches 2.

So lim =2.
a:i>0+ f(l')

(f) f(0) is not defined as 0 is not in the domain of f.

(g) As x approaches 2 from the left, we consider a limit where all z-
values are less than 2. This means we use the (z — 2)? piece of f.

As the x-values near 2, (z — 2)? nears 0; that is, f(x) approaches Figure 1.4.6 A graph of f from Exam-
0. ple 1.4.5
So lim f(x)=0.

r—2—

(h) f(2)is not defined as 2 is not in the domain of f.

We can confirm our analytic result by consulting the graph of f shown
in Figure 1.4.6. Note the open circles on the graph at x = 0, 1 and 2,
where f is not defined.

Example 1.4.7 Evaluating limits of a piecewise-defined function.

(r—1)2 0<ax<2,0#1

Let f(x) = as shown in Figure 1.4.8.
1 r=1
Evaluate the following:
(@) lim f(x) (© lim f(z) Figure 1.4.8 Graphing f in Exam-
z—1- z—1 ple 1.4.7
(b) lim_f(z) (d) £(1)

Solution. It is clear by looking at the graph that both the left- and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the
limit is 0; i.e., lim,_—1 f(z) = 0. Itis also clearly stated that f(1) = 1.




CHAPTER 1. LIMITS 32

Example 1.4.9 Evaluating limits of a piecewise-defined function.

2 <z <
Let f(x) = v 0szsl as shown in Figure 1.4.10. Evaluate the
2—x 1<zxz<?2
following:
(@ lim f(z) (© lim f(x)
z—1- z—1
(b) fim, f() (@ £(1)

Solution. It is clear from the definition of the function and its graph
that all of the following are equal:

im f(@) = lim () = f(1) = 1,

r—1

In Examples 1.4.2-1.4.9 we were asked to find both lim,_,; f(z) and f(1).

Consider the following table:

lim f()  f()

Example 1.4.2 does not exist 1

Example 1.4.5 1 not defined
Example 1.4.7 0 1
Example 1.4.9 1 1

Only in Example 1.4.9 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in Section 1.5 entitled “Continuity.” In short, a continuous
function is one in which when a function approaches avalue as x — ¢ (i.e., when
lim,_. f(x) = L), it actually attains that value at c¢. Such functions behave
nicely as they are very predictable.

0.5

05 1 15 2

Figure 1.4.10 Graphing f in Exam-
ple 1.4.9
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1.4.1 Exercises

Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. (OTrue OFalse) If lim f(x)=>5,then lim f(z) =5.
z—1— z—1

3. (OTrue [OFalse) If lim f(x)=75,then lim f(z)=>5.
z—1- z—1+

4. (OTrue DOFalse) If lim f(z) =5, then lim f(z)=>5.
rz—1 r—1—

Problems

Exercise Group. Evaluate each expression using the given graph of f
5. 6.

-1 | 1 2 3 4 5 6

(a) lim f(z)

r—1—

(b) lim f(x)

z—1t
@ Im /)
(d (1)
(e) lim f(x)

z—0~

(f) lim f(z)

z—0t

33

(@) lim f(x)

Tz—4-

(b) fim f(z)

z—4t
@ Jim, o)
(d) f(4)
() lim f(z)

z—0~

() lim f(x)

z—0t
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7. 8.

<
<

\

46 E 921
T
I i ; x | —1 1 2
-1 1 2 3 4
(a) lim f(z) (a) lim_ f(z)
(b) x'L”L f(x) (b) lim f (z)
@ Jim 1 @ Jim 2
(d) f(1) (d) f(1)

@ lim 7

9 10.
3 Ty
26
: 7
-1 1 2 3 4 5 6
-1+t
(a) lim f(z) (a) fim f(x)

o) I, 1) () lim f(x)

@ im0

(d) f(2)

@ Jim (2

(d) f(0)
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11.
4 .
Yy
2 1
®
—4 -2
_2 1
_4 1
AL
®) im0
(d) f(-2)
(e) lim f(z)
M) lim /()

(®) lim /(x)

(h) f(2)

35

12.
Y
41
e—oO
2 —oO
&—oO
‘ ‘ X
4 2 '_I_O 2 4
*—0-2
&—oO
e—oO —4

Let a be an integer with —3 < a < 3.

(@) lim f(x)

T—a

(b) lim f(x)

(c) lim f(x)

(d) f(a)

Exercise Group. Evaluate the given limits of the piecewise defined function.

r—1 ifz<3
13. f(m)—{$2_3 ifx >3
(a) Iirgff(fc)

(b) lim f(z)
@ Jm )

(d) £(3)

20— 222 -5 ifr<3
u f@= {sin(:p —-3)  ifz>3
(a) flim f(x)

(b) lim f(z)
@ Jm )

(d) £(3)
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2 4+3r—-1 ifz<?2
15. f(z)=<2®+1 if2<z<5
22 +4x+81 ifz>5

(a) fim f(x)
) i, 72
@ im0

(d £(2)

(e) lim f(x)

(g) lim f(x)

(h) f(5)
1— 2
17. f(x) = 2cos (z) w<a where a is a real
sin“(x) z>a
number.

(a) lim f(z)
(b) lim f(x)
(c) lim f(z)
(d) f()
x? — 20 -7 ifz < —1

19. f(x)=<z-1 ife =—1
—(ac2+x—|—4) ifx >—1

(@ lim f(x)

z——1—

(b) lim f(x)

z——1+

(d) f(-1)

Ja|
21. f(;l:)—{o“" zig

(a) lim f(z)
(b) lim f()
@ im, /(2

(d) £(0)

18.

fl) = {Cos(x) r<T

sin(z) x>

(a) lim f()

T—T

(b) lim f(x)

(c) lim f(z)

(d) f(m)

r+1 ife<—1
fle)=Qx—1 ifr=-1
z+2 ifz>-—1

(a) lim f(x)

r——1"

(b) lim f(x)

rz——1+

@ im, 12

(d) f(-1)

~Jal@=b*+c z<b
f(x)_{a(xb)Jrc x>b

(@ fim f(x)
) i 12
@ im /(2

(d) f(b)

36
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1.5 Continuity

As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if Iim1 f(x) = 3, then as x is close to
T—

1, f(zx) is close to 3. We have seen, though, that this is not necessarily a good
indicator of what f(1) actually is. This can be problematic; functions can tend
to one value but attain another. This section focuses on functions that do not
exhibit such behavior.

Definition 1.5.1 Continuous Function.

Let f be a function whose domain contains an open interval 1.
1. fis continuous at a point cin I if lim f(z) = f(c).
Tr—c

2. f is continuous on the open interval I if f is continuous at ¢ for
all values of cin I. If f is continuous on (—o0, c0), we say f is
continuous everywhere (or everywhere continuous).

Note that in Definition 1.5.1, a function f can only be continuous at a point
cif cis in the domain of f.

A useful way to establish whether or not a function f is continuous at c is to
verify the following three things:

1. lim f(z) exists,
r—c
2. f(c) is defined, and
3. Jim f(2) = /()
Example 1.5.2 Finding intervals of continuity.

Let f be defined as shown in Figure 1.5.3. Give the interval(s) on which
f is continuous.

Solution. We proceed by examining the three criteria for continuity.

1. The limits lim f(x) exists for all ¢ between 0 and 3.
r—cC

2. f(c) is defined for all ¢ between 0 and 3, except for ¢ = 1. We
know immediately that f cannot be continuous at x = 1.

3. The limit lim f(z) = f(c) for all ¢ between 0 and 3, except, of
Tr—cC
course, forc = 1.

We conclude that f is continuous at every point of the interval (0, 3)
except at = 1. Therefore f is continuous on (0, 1) and (1, 3).

Example 1.5.4 Finding intervals of continuity.

The floor function, f(x) = |xz], returns the largest integer smaller than,
or equal to, the input z. (For example, f(r) = |7] = 3.) The graph of
f in Figure 1.5.5 demonstrates why this is often called a “step function.”
Give the intervals on which f is continuous.

Solution. We examine the three criteria for continuity.

1. The limits lim f(z) do not exist at the jumps from one “step” to
r—c
the next, which occur at all integer values of c. Therefore the limits

0.5t

Figure 1.5.3 A graph of f in Exam-
ple 1.5.2

Our definition of continuity (cur-
rently) only applies to open in-
tervals. After Definition 1.5.6,
we'll be able to say that f is con-
tinuous on [0, 1) and (1, 3].

Y
2+ &———0
1 —0
T
-2 -1 1 2 3
1
—o -2

Figure 1.5.5 A graph of the step func-
tion in Example 1.5.4
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exist for all c except when c is an integer.
2. The function is defined for all values of c.

3. Thelimit lim f(z) = f(c) for all values of ¢ where the limit exist,
xr—rc
since each step consists of just a line.

We conclude that f is continuous everywhere except at integer values
of c. So the intervals on which f is continuous are

o (=2,-1),(=1,0),(0,1), (1,2),. ...

We could also say that f is continuous on all intervals of the form (n, n+
1) where n is an integer.

Our definition of continuity on an interval specifies the interval is an open inter-
val. We can extend the definition of continuity to closed intervals of the form
[a, b] by considering the appropriate one-sided limits at the endpoints.

Definition 1.5.6 Continuity on Closed Intervals.

Let f be defined on the closed interval [a, b] for some real numbers a <
b.
We say f is continuous on the closed interval [a, b] if:

1. fis continuous on (a, b),

2. lim f(z) = f(a)and

r—at

3. lim f(z) = f(b).

rz—b~

We can make the appropriate adjustments to talk about continuity on half-
open intervals such as [a, b) or (a, b] if necessary.

If the domain of f includes values less than a, we say that Item 2 in Defini-
tion 1.5.6 indicates that f is continuous from the right at a. But if f is undefined
for z < a, we can say that f is continuous at a without ambiguity.

Similarly, Item 3 indcates that f is continuous from the left at b, and if f is
not defined for x > b, we can simply say that f is continuous at b.

For example, it makes sense to say that the function f(x) = 1 — a2 is
continuous at 1 and —1, while the floor function in Example 1.5.4 is continuous
from the left at 1 and —1, but is not continuous at these points.

Using this new definition, we can adjust our answer in Example 1.5.2 by stat-
ing that f is continuous on [0, 1) and (1, 3], as mentioned in that example. We
can also revisit Example 1.5.4 and state that the floor function is continuous on
the following half-open intervals

o [=2,-1),[~1,0),[0,1),[1,2), ...

This can tempt us to conclude that f is continuous everywhere; after all, if
f is continuous on [0, 1) and [1, 2), isn't f also continuous on [0,2)? Of course,
the answer is no, and the graph of the floor function immediately confirms this.

Continuous functions are important as they behave in a predictable fashion:
functions attain the value they approach. Because continuity is so important,
most of the functions you have likely seen in the past are continuous on their
domains. This is demonstrated in the following example where we examine the
intervals of continuity of a variety of common functions.

In this text, when we use the
term “closed interval”, we mean
aninterval of the form [a, b], where
a and b are real numbers. One
may be surprised to learn that
intervals of the form [a, c0), (—o0, D]
and even (—oo, c0) are all also
considered closed in advanced cal-
culus. While the mathematics sup-
ported by this definition of closed
is fascinating and important, it
is beyond the scope of our pur-
poses here.

Some results, such as The Ex-
treme Value Theorem, are valid
for intervals of the form [a, b], but
not for intervals such as [a, 00).
The latter interval is closed, but
not bounded.

Aset of real numbersis bounded
if thereis anumber thatis greater
than every element in the set (an
upper bound), and a number that
is less than every element in the
set (a lower bound). When we
do calculus in higher dimensions,
we can no longer talk about in-
tervals, but we can still talk about
sets being closed and bounded.
See Section 13.8 for details.
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Example 1.5.7 Determining intervals on which a function is continu-
ous.

For each of the following functions, give the domain of the function and
the interval(s) on which it is continuous.

1. f(z)=1/z 4. f(z)=+v1—2a2
2. f(x) = sin(x)
3. f(z) =z 5. f(x) = ||

Solution. We examine each in turn.

1. The domain of f(x) = 1/xis (—o0,0) U (0, 00). As it is a rational
function, we apply Theorem 1.3.3 to recognize that f is continu-
ous on all of its domain.

2. Thedomain of f(x) = sin(x) is all real numbers, or (—oo, 00). Ap-
plying Theorem 1.3.5 shows that sin(x) is continuous everywhere.

3. The domain of f(x) = /x is [0,00). Applying Theorem 1.3.5
shows that f(x) = /x is continuous on its domain of [0, o).

4. The domain of f(z) = +1—a2?is [-1,1]. Applying Theo-
rems 1.3.1 and 1.3.5 shows that f is continuous on all of its do-
main, [—1, 1].

5. The domain of f(z) = |z|is (—o0,00). We can define the ab-
solute value function as

f(a;):{_x z <0

T xZO'

Each “piece” of this piecewise defined function is continuous on all
of its domain, giving that f is continuous on (—o0, 0) and [0, co).
We cannot assume this implies that f is continuous on (—oco, 00);
we need to check that mlii)nO f(z) = f(0), asz = 0is the point

where f transitions from one “piece” of its definition to the other.
It is easy to verify that this is indeed true, hence we conclude that
f(z) = |z| is continuous everywhere.

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 1.3.1 and 1.3.3 apply to continuity as well.
Further, now knowing the definition of continuity we can re-read Theorem 1.3.5
as giving a list of functions that are continuous on their domains. The following
theorem states how continuous functions can be combined to form other con-
tinuous functions, followed by a theorem which formally lists functions that we
know are continuous on their domains.

Theorem 1.5.8 Properties of Continuous Functions.

Let f and g be continuous functions on an interval I, let c be a real num-
ber and let n be a positive integer. The following functions are continu-
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for a function to be continuous
onaninterval, but many functions,
such as f(x) = tan(x), have do-
mains that are the union of more
than one interval.

ouson I.

Sums/Difference f£yg

Constant Multiple c- f If the domain of a function is
Product f-g a union of intervals, saying that
Quotient /g (aslong as g # 0 on I) afunctionis continuous onits do-

main means that the function is
continuous on each of those in-
Root Y/ f (If n is even then require f(z) > 0on1.) tervals. But be careful to note
that the converse is not true. As
we learned in Example 1.5.4, a
function can be continuous on a
collection of intervals, but not on

Power m

Compositions Adjust the definitions of f and g to: Let f be
continuous on I, where the range of f on I is
J, and let g be continuous on J. Then g o f,
i.e., g(f(x)), is continuous on I.

their union.
Theorem 1.5.9 Continuous Functions.
Let n be a positive integer. The following functions are continuous on
their domains.
1. f(z) =sin(x) 6. f(x) = cos(x)
2. f(z) = tan(z) 7. f(x) = cot(z)
3. f(z) = sec(z) 8. f(x) = csc(x)
4 f(z) =Inz) 9. f(z) = /z, where n is a
5 f(z)=a"(a>0) positive integer.
We apply these theorems in the following Example.
Example 1.5.10 Determining intervals on which a function is continu-
ous.
State the interval(s) on which each of the following functions is continu-
ous.
1 fx)=vVr—1+V5—=x 3. f(x) =tan(x)
2. f(z) = asin(x) 4. f(z) =+/In(z)
31y

Solution. We examine each in turn, applying Theorems 1.5.8 and 1.5.9

as appropriate. m
2 1

1. The square root terms are continuous on the intervals [1, co) and
(—o0, 5], respectively. As f is continuous only where each term
is continuous, f is continuous on [1, 5], the intersection of these
two intervals. A graph of f is given in Figure 1.5.11.

2. The functions y = z and y = sin(x) are each continuous every-
where, hence their product is, too.

1 2 3 4 5
3. Th 1.5.9 states that =t i ti its do- .
maeizrelrt: domasinai:sludisj;flxr)eal nflrrlrfta;g.rlssg)?cne r;uoodudS r?:zjlltls I(:s Figure 1.5.11 A graph of f(z) =
) P P Vr—1++vb—=x
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of 7/2. Thus the intervals on which f(z) = tan(x) is continuous

are
8m 7 (,E z) T 3T
. 27 2 b 272 b 272 9y

4. Here, f(x) is the composition g(h(z)), where g(z) = +/z and
h(z) = In(z). The domain of g is [0, c0), while the range of h
is (—o0, 00). If we restrict the domain to [1, 0o), then the output
from h(x) = In(z) is restricted to [0, 00), on which g(x) = /z is
defined. Thus the domain of f(z) = y/In(x) is [1, o).

Classification of discontinuities. We now know what it means for a function
to be continuous, so of course we can easily say what it means for a function
to be discontinuous; namely, not continuous. However, to better understand
continuity, it is worth our time to discuss the different ways in which a function
can fail to be discontinuous. By definition, a function f is continuous at a point
a in its domain if Jlnaf(x) = f(a). If this equality fails to hold, then f is not
continuous. We note, however, that there are a number of different things that
can go wrong with this equality.

1.

lim f(x) = Lexists, but L # f(a), or f(a) is undefined. Such a discon-
Tr—ra
tinuity is called a removable discontinuity .

A removable discontinuity can be pictured as a “hole” in the graph of f.

The term “removable” refers to the fact that by simply redefining f(a) to

equal L (that is, changing the value of f at a single point), we can create a

new function that is continuous at x = a, and agrees with f at all x # a.

Iim+ f(z) = Land lim f(z) = M exist, but L # M. In this case
ks

r—a x

a
the left and right hand limits both exist, but since they are not equal, the
limit of f as x — a does not exist. Such a discontinuity is called a jump
discontinuity.

The phrase “jump discontinuity” is meant to represent the fact that visu-
ally, the graph of f “jumps” from one value to another as we cross the
value z = a.

The function f is unbounded near x = a. This means that the value of f
becomes arbitrarily large (or large and negative) as x approaches a. Such
a discontinuity is called an infinite discontinuity.

Infinite discontinuities are most easily understood in terms of infinite lim-
its, which are discussed in Section 1.6.

Yy v
3

/N 0
2 )

- z . T

1 2 3 4 1 2 3 4 1 2 3 4

(a) The graph of a func- (b) The graph of a func- (c) The graph of a func-
tion with a removable tion with a jump discon- tion with an infinite dis-
discontinuity at z = 2 tinuity at = 2 continuity at z = 2

Figure 1.5.12 lllustrating three common types of discontinuity
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Consequences of continuity. A common way of thinking of a continuous func-
tion is that “its graph can be sketched without lifting your pencil.” That is, its
graph forms a “continuous” curve, without holes, breaks or jumps. This pseudo-
definition glosses over some of the finer points of continuity. There are some
very strange continuous functions that one would be hard pressed to actually
sketch by hand.

However, this intuitive notion of continuity does help us understand another
important concept as follows. Suppose f is defined on [1,2], and f(1) = —10
and f(2) = 5. If f is continuous on [1, 2] (i.e., its graph can be sketched as a con-
tinuous curve from (1, —10) to (2, 5)) then we know intuitively that somewhere
on the interval [1,2] f must be equal to —9, and —8, and —7,—6,...,0,1/2,
etc. In short, f takes on all intermediate values between —10 and 5. It may take
on more values; f may actually equal 6 at some time, for instance, but we are
guaranteed all values between —10 and 5.

While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.5.14 Intermediate Value Theorem.

Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there
is at least one value c in (a, b) such that f(c) = y.

One important application of the Intermediate Value Theorem is root find-
ing. Given a function f, we are often interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
tions can be found through successive applications of this theorem. Suppose
through direct computation we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one cin (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such
a value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b], with f(a) < 0and f(b) > 0 and consider f(d).
There are three possibilities:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] — we
have halved the size of our interval, hence are closer to a good approxima-
tion of the root.

3. f(d) > 0: Then we know there is a root of f on the interval [a,d] —
again,we have halved the size of our interval, hence are closer to a good
approximation of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.5.15 Using the Bisection Method.

Approximate the root of f(z) = x — cos(x), accurate to three places
after the decimal.

Solution.  Consider the graph of f(x) = z — cos(z), shown in Fig-
ure 1.5.16. It is clear that the graph crosses the z-axis somewhere near

10

S
v

Figure 1.5.13 Illustration of the Inter-
mediate Value Theorem: the output
3isin between —10 and 5, and there-
fore any continuous function on [1, 2]
with f(1) = —10 and f(2) = 5 will
achieve the output 3 somewhere in
[1.2]
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x = 0.8. To start the Bisection Method, pick an interval that contains
0.8. We choose [0.7,0.9]. Note that all we care about are signs of f(z),
not their actual value, so this is all we display.

Iteration1:  f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So
replace 0.9 with 0.8 and repeat.

Iteration2:  f(0.7) < 0, f(0.8) > 0, and at the midpoint,
0.75, we have f(0.75) > 0. So replace 0.8
with 0.75 and repeat. Note that we don't need
to continue to check the endpoints, just the Yy
midpoint. Thus we put the rest of the itera- ’
tions in Table 1.5.17. (

0.2 0.4 0.6 0.8 ‘ 1
Table 1.5.17 Iterations of the Bisection Method of Root Finding

Iteration # Interval Midpoint Sign 09

1 [0.7,0.9] £(0.8) > -1

; {8;: 8?5] ;gg ;;)5) Figure_ 1.5.16 Graphing a root of
f(x) =x — cos(x)

4 [0.725,0.75] £(0.7375) < 0

5 [0.7375,0.75] £(0.7438) >

6 [0.7375,0.7438]  f(0.7407) > 0

7 [0.7375,0.7407]  f(0.7391) >

8 [0.7375,0.7391]  f(0.7383) <

9 [0.7383,0.7391]  f(0.7387) <

10 [0.7387,0.7391]  f(0.7389) <

11 [0.7389,0.7391]  f(0.7390) <

12 [0.7390,0.7391]

Notice that in the 12th iteration we have the endpoints of the interval
each starting with 0.739. Thus we have narrowed the zero down to an
accuracy of the first three places after the decimal. Using a computer,
we have

£(0.7390) = —0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where f
is 0. The Theorem 1.5.14 states that the actual zero is still within this
interval. While we do not know its exact value, we know it starts with
0.739.

This type of exercise is rarely done by hand. Rather, it is simple to pro-
gram a computer to run such an algorithm and stop when the endpoints
differ by a preset small amount. One of the authors did write such a pro-
gram and found the zero of f to be 0.7390851332, accurate to 10 places
after the decimal. While it took a few minutes to write the program, it
took less than a thousandth of a second for the program to run the nec-
essary 35 iterations. In less than 8 hundredths of a second, the zero was
calculated to 100 decimal places (with less than 200 iterations).

Itis a simple matter to extend the Bisection Method to solve problems similar
to “Find z, where f(x) = 0.” For instance, we can find x, where f(z) = 1. It
actually works very well to define a new function g where g(z) = f(z) — 1.
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Then use the Bisection Method to solve g(z) = 0.

Similarly, given two functions f and g, we can use the Bisection Method
to solve f(x) = g(x). Once again, create a new function h where h(z) =
f(z) — g(z) and solve h(z) = 0.

In Section 4.1 another equation solving method will be introduced, called
Newton’s Method. In many cases, Newton's Method is much faster. It relies on
more advanced mathematics, though, so we will wait before introducing it.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.
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1.5.1 Exercises

Terms and Concepts

1. In your own words, describe what it means for a function to be continuous.
2.  Inyour own words, describe what the Intermediate Value Theorem states.
3.  Whatis a “root” of a function?
4.  Given functions f and g on an interval I, how can the Bisection Method be used to find a value c where f(c) =
g9(c)?
5. (OTrue OFalse) If fisdefined on an open interval containing ¢, and lim f(z) exists, then f is continuous
Tr—c
at c.
6. (OTrue OFalse) If fis defined on an open interval containing ¢, and f is continuous at ¢, then lim f(z)
r—rc
exists.
7. (O True O False) If f is defined on an open interval containing ¢, and f is continuous at ¢, then
lim_f(z) = f(c)
r—cC
8. (OTrue OFalse) If fis continuous on [a,b], then lim f(z) = f(a).
r—a—
9. (OTrue OFalse) If fis continuous on [0, 1) and [1, 2), then f is continuous on [0, 2).
10. (O True [OFalse) The sum of continuous functions is also continuous.
Problems
Exercise Group. Use the graph to determine if the function is continuous at the given point.
11. Is f in the graph below continuous at 1? 12. Is f in the graph below continuous at 1?
Yy Yy
2 A4
1 4
X X
1 p
—0.5 2.5 —0.5 0.5 1 1.5 2 2.5
(O Yes. [ONo.) (O Yes. [ONo.)
13. Is f in the graph below continuous at 1? 14. Is f in the graph below continuous at 0?
' Y
2 | 2
i o
14 | 14
i ‘
: \ .
—e k + + L 4 |
—0.5 0.5 ] 1.5 2 2.5 —0.5 0.5 1 1.5 2 2.5

(D Yes. [No.) (D Yes. [No.)



CHAPTER 1. LIMITS

15. Is f in the graph below continuous at 1?

Y

(O Yes. ONo.)

17. Is f in the graph below continuous at —2, 0, and

2?
4 .
Yy
2 1
T
—4 -2
_2 |1
_4 1
At —2: (OYes. [ONo.)
At0: (dYes. [No.)
At2: (OYes. [ONo.)

16.

18.

Is f in the graph below continuous at 4?
6 .

Y

46

(O Yes. [ONo.)

Is f in the graph below continuous at 37”?

Y

SERN

Exercise Group. Determine if f is continuous at the indicated values.

1 rz=0
19. f(l‘) = {sin(a:)
- ©#0
(a) Is f is continuous at 0?
(OYes. [ONo.)

(b) Is f is continuous at 7?
(O Yes. [ONo.)

- T ™ st or
(O Yes. [ONo.)
3 2
x> —x° fr<l1
20. f(x)=
(@) {x—2 ife>1

(a) Is f is continuous at 0?
(OYes. [ONo.)

(b) Is f is continuous at 1?
(OYes. ONo.)



CHAPTER 1. LIMITS

22+ 544

T IOV e
21, f(a)=da2iss42 127

3 fo=—1

(a) Is fis continuous at —17?

47

x? — 64 )
2 —1lx+24 ifz #8
5 ifr =28

(a) Is fis continuous at 0?

(O Yes. [ONo.) (O Yes. [ONo.)
(b) Is f is continuous at 10? (b) Is f is continuous at 8?
(OYes. [ONo.) (OYes. [ONo.)
Exercise Group. Give the intervals on which the function is continuous.
23. f(z) =22 —6z+2 24. f(x)=+22 -4
25.  f(x) — 2 26. f(z) = m +Vz+3
27. f(t) = \/712 28. g(t) = m
29. g(t) = 5i 0. f(a) =
3t gs) = log2< ) 32. h(t) = cos(t)
33. f(k)=+V3—¢k 34. f(z)= (e + zt)

Exercise Group. Test your understanding of the Intermediate Value Theorem.

35.

36.

37.

38.

Let f be continuous on [1, 5] where f(1) = —2 and f(5) = —10. Does a value 1 < ¢ < 5 exist such that

f(c) = —9? Why/why not?

Let g be continuous on [—3, 7] where ¢g(0) = 0 and g(2) = 25. Does a value —3 < ¢ < 7 exist such that
g(c) = 15? Why/why not?

Let f be continuous on [—1, 1] where f(—
that f(c¢) = 11? Why/why not?

Let h be a function on [—1, 1] where h(—
that h(c) = 0? Why/why not?

1) = —10and f(1) = 10. Does a value —1 < ¢ < 1 exist such

1) = —10 and h(1) = 10. Does a value —1 < ¢ < 1 exist such

Exercise Group. Use the Bisection Method to approximate, accurate to two decimal places, the value of the root of
the given function in the given interval.

39.
40.
41.
42.

f(z) = 2% 4+ 22 — 4 on the interval [1, 1.5]
f(x) = sin(z) — 1 on the interval [0.5, 0.55]
(x) = €” — 2 on the interval [0.65, 0.7]

f(z) = cos(z) — sin(z) on the interval [0.7, 0.8]

~



CHAPTER 1. LIMITS 48

1.6 Limits Involving Infinity

In Definition 1.2.1 we stated that in the equation lim,_,. f(x) = L, both c and
L were numbers. In this section we relax that definition a bit by considering
situations when it makes sense to let ¢ and/or L be “infinity.”

As a motivating example, consider f(x) = 1/z2, as shown in Figure 1.6.1.
Note how, as = approaches 0, f(x) grows very, very large—in fact, it grows with-
out bound. It seems appropriate, and descriptive, to state that

Also note that as = gets very large, f(z) gets very, very small. We could
represent this concept with notation such as

. 1
lim - =0.

We explore both types of use of oo in turn.

Definition 1.6.2 Limit of Infinity, co.

Let I be an open interval containing ¢, and let f be a function defined
on I, except possibly at c.

e The limit of f(x), as = approaches c, is infinity, denoted by

Jim f() = oo
if given any N > 0, there exists § > 0 such that for all = in I,
where z # ¢, if |x — ¢| < §, then f(z) > N.

o The limit of f(z), as x approaches ¢, is negative infinity, denoted
by

LECEE

if given any N < 0, there exists § > 0 such that for all z in I,
where x # ¢, if |[v — ¢| <, then f(z) < N.

The first definition is similar to the -6 definition in Definition 1.2.1 from
Section 1.2. In that definition, given any (small) value ¢, if we let = get close
enough to ¢ (within ¢ units of ¢) then f(x) is guaranteed to be within ¢ of L.
Here, given any (large) value NV, if we let = get close enough to ¢ (within ¢ units
of ¢), then f(z) will be at least as large as N. In other words, if we get close
enough to ¢, then we can make f(x) as large as we want.

It is important to note that by saying lim,_,. f(z) = oo we are implicitly
stating that the limit of f(z), as 2 approaches ¢, does not exist. A limit only
exists when f(z) approaches an actual numeric value. We use the concept of
limits that approach infinity because it is helpful and descriptive. Itis one specific
way in which a limit can fail to exist.

We define one-sided limits that approach infinity in a similar way.

Definition 1.6.3 One-Sided Limits of Infinity.

e Let f be a function defined on (a, ¢) for some a < ¢. We say the
limit of f(x), as « approaches ¢ from the left, is infinity, or, the

-1 —0.5 0.5 1

Figure 1.6.1 Graphing f(z) = 1/2?
for values of x near O
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left-hand limit of f at c is infinity, denoted by

lim f(z) = oo,
r—c—
if given any IV > 0, there exists 6 > 0 such that foralla < z < ¢,
if |x — ¢| < ¢, then f(z) > N.

e Let f be a function defined on (c, b) for some b > c. We say the
limit of f(x), as x approaches c from the right, is infinity, or, the
right-hand limit of f at c is infinity, denoted by

T
1.5 2

lim f(x) = oo,
z—ct 0.5

I Y

if given any V > 0, there exists § > 0 such that forall c < z < b, Figure 1.6.5 Observing infinite limit as
if |z — ¢| < ¢, then f(x) > N. x — 1in Example 1.6.4

o The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 1.6.2.

Example 1.6.4 Evaluating limits involving infinity.

Find Iim1 ﬁ as shown in Figure 1.6.5.
r—r

Solution. In Example 1.1.15 of Section 1.1, by inspecting values of =
close to 1 we concluded that this limit does not exist. That is, it cannot
equal any real number. But the limit could be infinite. And in fact, we
see that the function does appear to be growing larger and larger, as
£(0.99) = 10%, £(0.999) = 105, £(0.9999) = 10%. A similar thing
happens on the other side of 1. From the graph and the numeric infor-
mation, we could state lim,_,; 1/(z — 1)2 = oo. We can prove this by
using Definition 1.6.2

In general, let a “large” value N be given. Let § = 1/\/N If z is within
sof 1,ie., if |z — 1] < 1/V/N, then: y

. 40 |
|z — 1| < —=
VN 20 1
1
(z-1)? < < ‘ ‘ z
. N 0.5 1

[ N
@w—12 "

which is what we wanted to show. So we may say lim,_,; 1/(z — 1)? =
0.

Figure 1.6.7 Evaluating lim +
z—0 7%

Example 1.6.6 Evaluating limits involving infinity.

Find lim L, as shown in Figure 1.6.7.
z—0 %

Solution. Itis easy to see that the function grows without bound near 0,
but it does so in different ways on different sides of 0. Since its behavior
is not consistent, we cannot say that lim,_,q % = o0. Instead, we will say
lim,_0 % does not exist. However, we can make a statement about one-

sided limits. We can state that lim,_, o+ % = oo and lim,_,o- % = —00.
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1.6.1 Vertical asymptotes

The graphs in the two previous examples demonstrate that if a function f has a
limit (or, left- or right-hand limit) of infinity at x = ¢, then the graph of f looks
similar to a vertical line near = c¢. This observation leads to a definition.

Definition 1.6.8 Vertical Asymptote.

Let I be an interval that either contains ¢ or has ¢ as an endpoint, and
let f be a function defined on I, except possibly at c.

If the limit of f(x) as x approaches c from either the left or right (or
both) is co or —oo, then the line = c is a vertical asymptote of f.

Example 1.6.9 Finding vertical asymptotes.

. . _ 3
Find the vertical asymptotes of f(z) = —%;.

Solution. Vertical asymptotes occur where the function grows without
bound; this can occur at values of ¢ where the denominator is 0. When =
is near ¢, the denominator is small, which in turn can make the function
take on large values. In the case of the given function, the denominator
is 0 at x = +2. Substituting in values of x close to 2 and —2 seems to
indicate that the function tends toward co or —oco at those points. We
can graphically confirm this by looking at Figure 1.6.10. Thus the vertical
asymptotes are at x = £2.

When arational function has a vertical asymptote at x = ¢, we can conclude
that the denominator is 0 at x = c¢. However, just because the denominator
is 0 at a certain point does not mean there is a vertical asymptote there. For
instance, f(x) = (% — 1)/(x — 1) does not have a vertical asymptote at z = 1,
as shown in Figure 1.6.11. While the denominator does get small near z = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(z) = (x —1)(z+ 1).
z—1

Canceling the common term, we get that f(z) = « + 1 for x # 1. So there
is clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a little contrived. Another example demon-
strating this important concept is f(z) = (sin(z))/x. We have considered this
function several times in the previous sections. We found that lim,_, w =1;
i.e., there is no vertical asymptote. No simple algebraic cancellation makes this
fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

1.6.2 Indeterminate Forms
We have seen how the limits lim,_,q @ and lim,_,; % each return the
indeterminate form 0/0 when we blindly plug in 2 = 0 and « = 1, respectively.
However, 0/0 is not a valid arithmetical expression. It gives no indication that
the respective limits are 1 and 2.

S =g R
S
[=2}

Figure 1.6.10 Graphing f(z) = —3Z

r2—4

Figure 1.6.11 2Gra
that f(z) = =1

z—1

asymptoteatxr =1

phically showing
does not have an
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With a little cleverness, one can come up with 0/0 expressions which have
a limit of oo, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0. The
respective rates at which they do this are very important and determine the ac-
tual value of the limit.

An indeterminate form indicates that one needs to do more work in order
to compute the limit. That work may be algebraic (such as factoring and cancel-
ing), it may involve using trigonometric identities or logarithm rules, or it may
require a tool such as the Squeeze Theorem. In Section 6.7 we will learn yet
another technique called L'Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are co — oo, 0o - 0, 00/00, 0%, 00
and 1°°. Again, keep in mind that these are the “blind” results of directly sub-
stituting c into the expression, and each, in and of itself, has no meaning. The
expression oo — oo does not really mean “subtract infinity from infinity.” Rather,
it means “One quantity is subtracted from the other, but both are growing with-
out bound.” What is the result? It is possible to get every value between —oo
and oo.

Note that 1/0 and co/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be oo, —o0, or simply not exist if the
left- and right-hand limits do not match.

1.6.3 Limits at Infinity and Horizontal Asymptotes

At the beginning of this section we briefly considered what happens to f(z) =
1/x? as = grew very large. Graphically, it concerns the behavior of the function
to the “far right” of the graph. We make this notion more explicit in the following
definition.

Definition 1.6.12 Limits at Infinity and Horizontal Asymptotes.
Let L be a real number.

1. Let f be a function defined on (a, co) for some number a. The
limit of f at infinity is L, denoted lim,_,, f(x) = L, if for every
¢ > 0 there exists M > a such that if x > M, then |f(z) — L| <
€.

2. Let f be a function defined on (—o0, b) for some number b. The
limit of f at negative infinity is L, denoted lim,_, _, f(z) = L,
if for every € > 0 there exists M < b such that if x < M, then
|f(z)—L| <e.

3. Iflim; o0 f(z) = Lorlim,_ f(z) = L, we say the line y =
L is a horizontal asymptote of f.

We can also define limits such as lim,_,, f(z) = oo by combining this defi-
nition with Definition 1.6.2.
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Example 1.6.13 Approximating horizontal asymptotes.

Approximate the horizontal asymptote(s) of f(z) = w:,m—;.

Solution. We will approximazte the horizontal azsymptotes by approxi-
mating the limits lim,_, _ i;”ﬁ andlim,_, x§—+4. (A rational function
can have at most one horizontal asymptote. So we could get away with
only taking x — o0).

Figure 1.6.14(a) shows a sketch of f, and the table in Figure 1.6.14(b)
gives values of f(x) for large magnitude values of . It seems reason-
able to conclude from both of these sources that f has a horizontal as-

ymptote aty = 1.

*>g=c---------=-- s b -
).8 T f(l')
0\6 10 0.9615
. 100 0.9996
10000 0.999996
02 ~10 0.9615
v am— ” > ~100  0.9996
02 ~10000  0.999996
(a) (b)

Figure 1.6.14 Using a graph and a table to approximate a horizontal as-
ymptote in Example 1.6.13

| Later, we will show how to determine this analytically.

52

Horizontal asymptotes can take on a variety of forms. Figure 1.6.15(a) shows
that f(z) = x/(x? + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.
Figure 1.6.15(b) shows that f(z) = z/vx2 + 1 has two horizontal asymp-
totes; one at y = 1 and the other at y = —1.
Figure 1.6.15(c) shows that f(x) = sin(z)/x has even more interesting be-
havior than at just z = 0; as = approaches +co, f(x) approaches 0, but oscil-
lates as it does this.

1Y 11y e
0.5 0.5
Kﬁ- 0.5

—2(

(a)

= 10 20 —20 —10 10 20

0.

—207 Mo \/ v %/
(b) (c)

Figure 1.6.15 Considering different types of horizontal asymptotes

P
20

We can analytically evaluate limits at infinity for rational functions once we
understand lim,_, o, % As x gets larger and larger, 1 /x gets smaller and smaller,
approaching 0. We can, in fact, make 1/z as small as we want by choosing a
large enough value of . Given ¢, we can make 1/x < ¢ by choosing > 1/e.
Thus we have lim, o, 1/z = 0.

It is now not much of a jump to conclude the following:

. . 1
lim — =0 lim — =0.
z—oo " rz——oo M
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Now suppose we need to compute the following limit:

. 2 +2c 41
lim ——m——.
z—o0 423 — 222 + 9
A good way of approaching this is to divide through the numerator and de-
nominator by 23 (hence multiplying by 1), which is the largest power of z to
appear in the denominator. Doing this, we get
im B +2+1 - /a3 a3+2z+1
z—o0 4g3 — 222 + 9  a—oco 1/23 4x3 — 202 +9
— Im 23 /2% + 22 /2% + 1/2°
 a—oo 433 /23 — 202 /23 + 9 /a3
— im 1+2/2% +1/23
Caoo 4—2/x+9/23 "

Then using the rules for limits (which also hold for limits at infinity), as well
as the fact about limits of 1/2™, we see that the limit becomes

14+0+0 1

4-0+0 4
This procedure works for any rational function. In fact, it gives us the follow-
ing theorem.

Theorem 1.6.16 Limits of Rational Functions at Infinity.

Let f(x) be a rational function of the following form:

Anx” 4 Qp_12" "+ a1z + ag

J@) = g o F bra™ T+ bz by’

where m, n are positive integers and where any of the coefficients may
be 0 except for a,, and b,,,. Then:

1. If n = m, then

lim f(z)= lim f(z)= -2,

T—00 T——00 b,
2. If n < m, then

lim f(z)= lim f(z)=0.

Tr—ro0 r——00
3. If n > m, thenlim,_, o f(x)andlim,_,_, f(x) are both infinite.

We can see why this is true. If the highest power of z is the same in both
the numerator and denominator (i.e. n = m), we will be in a situation like the
example above, where we will divide by ™ and in the limit all the terms will
approach 0 except for a,z™/z™ and b, 2™ /™. Since n = m, this will leave
us with the limit a,, /b,,. If n < m, then after dividing through by ™, all the
terms in the numerator will approach 0 in the limit, leaving us with 0/b,,, or 0.
If n > m, and we try dividing through by 2™, we end up with the denominator
tending to b,,, while the numerator tends to co.

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to a,z", and likewise all the terms in the denominator are small
compared to b,,x™. If n = m, looking only at these two important terms, we
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have (a,x™)/(bmx™). This reduces to a,, /by,. If n < m, the function behaves
like a,,/(bma™ ™), which tends toward 0. If n > m, the function behaves like
anx™~™ /by, which will tend to either co or —oco depending on the values of n,
m, ay, by, and whether you are looking for lim,_,, f(z) or lim,_, _ f(x).

Example 1.6.17 Finding a limit of a rational function.

Confirm analytically that y = 1 is the horizontal asymptote of f(x) =
%, as approximated in Example 1.6.13.

Solution. Before using Theorem 1.6.16, let’s use the technique of evalu-
ating limits at infinity of rational functions that led to that theorem. The
largest power of x in f is 2, so divide the numerator and denominator
of f by 22, then take limits.

' 22 ' 2? /22

im —— = lim ———

z—o0 12 +4  wooo 12 /22 + 4/x?
= lim ——
z—oo 1 44 /2?2
1

140

We can also use Theorem 1.6.16 directly; in this case n = m so the limit
is the ratio of the leading coefficients of the numerator and denominator,
ie,1/1=1.

Example 1.6.18 Finding limits of rational functions.

Use Theorem 1.6.16 to evaluate each of the following limits.

. 22+ 2x—1 |
1 lim S 3. lim
22 +2rx—1

2 wll—>moc 1—2— 322

Solution.

1. The highest power of z is in the denominator. Therefore, the limit
is 0; see Figure 1.6.19(a).

2. The highest power of z is 22, which occurs in both the numerator
and denominator. The limit is therefore the ratio of the coeffi-
cients of 22, which is —1/3. See Figure 1.6.19(b).

3. The highest power of z is in the numerator so the limit will be co
or —oo. To see which, consider only the dominant terms from the
numerator and denominator, which are 2 and —z. The expres-
sion in the limit will behave like 2% /(—z) = —x for large values of
x. Therefore, the limit is —oco. See Figure 1.6.19(c).
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—20

z
02 10 20 30 10 —30
0.2
-0.4 —40
0.4
—0.6 =50

(a) (b) (c)
| Figure 1.6.19 Visualizing the functions in Example 1.6.18

T
0.4 y 10 20 30 40
0.4 10

With care, we can quickly evaluate limits at infinity for a large number of
functions by considering the long run behavior using “dominant terms” of f(x).
For instance, consider again lim,_, 4+ ﬁ graphed in Figure 1.6.15(b). The

dominant terms are x in the numerator and v 22 in the denominator. When z
is very large, 2 4+ 1 =~ z2. Thus

Va2 + 1~ Va2 = |z L~

Vaz+1 |z
This expression is 1 when x is positive and —1 when z is negative. Hence
we get asymptotes of y = 1 and y = —1, respectively. We will show this more

formally in the next example.
Example 1.6.20 Finding a limit using dominant terms.

Confirm analytically that y = 1 and y = —1 are the horizontal asymp-
tote of lim, 4+ \/ﬁ, as graphed in Figure 1.6.15(b).

Solution. The dominating term of f in the denominator is V22 = |z|
so divide the numerator and denominator of f by v/z2, then take limits.

1

T —~
lim ——— = lim Ve
z—00 /2 +1 T—00 /2 +1 7o
T
— lim —2
Tr—r 00 x2+1
IQ
. 1
= lim ————=forz >0
_ 1
V140
=1.

As x — —oo, the only thing that changes is the value of I%I For xz < 0,

we have % = —1, making lim,_,_ \/ﬁ = —1. Therefore, the

|
| horizontal asymptotesarey = 1 and y = —1.
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1.6.4 Exercises

Terms and Concepts

1. (OTrue [OFalse) If lim f(x) = oo, then we are implicitly stating that the limit exists.
r—5

2. (O True [OFalse) If Iim5 f(z) = 5, then we are implicitly stating that the limit exists.
T—

3. (OTrue OFalse) If lim f(z) = —oo,then lim f(z) = occ.
z—1— z—1+t

4. (O True [OFalse) If Iim5 f(x) = oo, then f has a vertical asymptote at = 5.
T—

5. (OTrue OFalse) o0/0is not an indeterminate form.

6. List five indeterminate forms.

7.  Construct a function with a vertical asymptote at z = 5 and a horizontal asymptote at y = 5.

8. Let Iim7 f(z) = oo. Explain how we know that f is or is not continuous at =z = 7.

xr—r

Problems

Exercise Group. Evaluate the given limits using the graph of the function.

9. f(x)= ﬁ has the graph: 10. f(z) = m has the graph:

| y y |
! 40 + 40 + !
20 | 20 |
_ : z, :
4 3\ 2 1 1 -1 1
-20 | -20 |
! —40 | —40 | !

(@ lim f(x) (@) lim f(x)

T——2" Tz—1—
i ; b) i

@ i 1)

(d) lim f(x)

T2~

() lim f(x)

r—2+

0 lim f(2)

e N
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11.  f(z) = s=2 has the graph:

4 5

Y
3 1
2 1
—10 -5 5 10
-1+

(b) lim f(x)
@ g 1

13. f(z) = sin(4x) has the graph:

(@ lim f(z)

T——00

(b) lim f(x)

Exercise Group. Numerically approximate the limits.

2_ —
15. f(a) = ;73272400

@) i

(b) lim f(x)

z—8t

@ Jim (2

T
R

12.  f(z) = 2®sin(4mx) has the graph:

1,000 |

57

(@) lim f(x)
(b) lim f(z)
@ i

(d) lim f ()

14. f(z) = 2.4" — 9 has the graph:

2,,
Oy

10 t

~10 5 / 5

—10

—20 -

(@ lim f(x)

T—r—00

(b) lim f(x)

_ 22 —4x-5
16.  f(2) = ra67t95.7618

(@ lim f(x)

rz——9~

(b) lim f(x)

z——9+

@ im, /(2

10
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7. fo) = s 8. /(@) = =5
@ lim f(x) () lim f(z)
(b) lim f(x) (b) lim f(x)
(c lim_f(x) (@ tlim, f(z)

Exercise Group. Identify the horizontal and vertical asymptotes, if any, of the given function.

2024215 bu’+o—4

19. f(z) = Z£z=15 20. f(x) = =518
422 —122+8 202122416
21, f(z) = m 22. f(x) = %
2102424 4> — 442496
23, f(z) = =525 24 f(o) = 25205

Exercise Group. Evaluate the given limit.

3 2 3 2
. x°—4x°—x+2 . x°+9x°+7x—6

2. I|I~r>nc>o 3z—3 26. zll—l;noo 32+8
27. lim 2lt32—de+o 28. lim 2’=5e’+5e+3

00 312-3 o 31248
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Chapter Summary. In this chapter we:
e defined the limit,

o found accessible ways to approximate their values numerically and graph-
ically,

e developed a not-so-easy method of proving the value of a limit (¢-0 proofs),
o explored when limits do not exist,

e defined continuity and explored properties of continuous functions, and
e considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to be
no exception. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quantity by a smaller and smaller number and see
what value the quotient approaches. In other words, we will want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.



Chapter 2

Derivatives

Chapter 1 introduced the most fundamental of calculus topics: the limit. This
chapter introduces the second most fundamental of calculus topics: the deriva-
tive. Limits describe where a function is going; derivatives describe how fast the
function is going.

2.1 Instantaneous Rates of Change: The Derivative

2.1.1 Introduction

A common amusement park ride lifts riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, ¢ seconds after freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = —16t2 + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground when f(t) = 0 so at t = 2.5v/1.5 ~ 3.06 seconds. Suppose
the designers of the ride decide to begin slowing the riders’ fall after 2 seconds
(corresponding to a height of f(2) = 86 ft). How fast will the riders be traveling
at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, we do know from common experience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Section 1.1 when we introduced the
difference quotient. We have

change in distance  “rise”

“« ”

change in time run

= average velocity.

We can approximate the instantaneous velocity at ¢ = 2 by considering the
average velocity over some time period containing ¢t = 2. If we make the time in-
terval small, we will get a good approximation. (This fact is commonly used. For
instance, high speed cameras are used to track fast moving objects. Distances
are measured over a fixed number of frames to generate an accurate approxi-
mation of the velocity.)

60
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Consider the interval from ¢ = 2 tot = 3 (just before the riders hit the
ground). On that interval, the average velocity is

fB)—f(2) 6-86

39 =7 = —80ft/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan-
taneous velocity. On [2, 2.5] we have

f@25) = f2)  50-86
55 2 05 2fvs

We can do this for smaller and smaller intervals of time. For instance, over
a time span of one tenth of a second, i.e., on [2, 2.1], we have

F(2.1) — f(2)  79.44 — 86

_ — _65.6ft/s.
212 01 65.6t/s

Over a time span of one hundredth of a second, on [2,2.01], the average

velocity is
f(2.01) — f(2) ~85.3584 — 86

201—-2 0.01

What we are really computing is the average velocity on the interval [2, 2+ h]
for small values of h. That is, we are computing

f2+h) - f(2)
h

= —64.16 ft/s.

where h is small.

We really want to use h = 0, but this, of course, returns the familiar “0/0"
indeterminate form. So we employ a limit, as we did in Section 1.1.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 2.1.1. It looks as though the velocity is approaching —64 %

Computing the limit directly gives

i f@2+h)—f(2) i —16(2 4 h)? + 150 — (—16(2)% + 150)
h—0 h o h—0 h
~im —16(4 + 4h + h?%) + 150 — 86

T h—0 h

. —64 — 64h — 16h? + 64

lim
h—0 h

. —64h — 16h?

lim ————
h—0 h
= lim (—64 — 16h)

h—0

= —64.

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2 + h, f(2+4 h)). In Figures 2.1.2-2.1.4, the secant line corresponding to
h = 1is shown in three contexts. Figure 2.1.2 shows a “zoomed out” version
of f with its secant line. In Figure 2.1.3, we zoom in around the points of inter-
section between f and the secant line. Notice how well this secant line approx-
imates f between those two points — it is a common practice to approximate
functions with straight lines.

Units in Calculations. Inthe above
calculations, we left off the units
until the end of the problem. You
should always be sure that you
label your answer with the cor-
rect units. For example, if g(x)
gave you the cost (in $) of pro-
ducing x widgets, the units on
the difference quotient would be
$/widget.

h Average Velocity (%)
1 —80

0.5 —72

0.1 —65.6
0.01 —64.16
0.001 —64.016

Figure 2.1.1 Approximating the in-
stantaneous velocity with average ve-
locities over a small time period h
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v 120
100

80
100 +
60
40

20

¢
al 2 22 24 26 28 3 32 34

1 2 3
Figure 2.1.3 The function f(¢) and a
secant line corresponding to ¢t = 2
and ¢t = 3, zoomed in neart = 2

Figure 2.1.2 The function f(t¢) and its
secant line corresponding to ¢t = 2
andt =3

120 ™ Y

100
100
80

60

40

20

| ¢ | ¢
{ 16 18 2 22 24 26 { 16 18 2 22 24 26

Figure 2.1.4 The function f(¢) with  Figure 2.1.5 The function f(¢) with its
the same secant line, zoomed in fur- tangent lineatt = 2
ther
As h — 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of —64. In Figure 2.1.4 and
Figure 2.1.5, we zoom in around the point (2, 86). We see the secant line, which
approximates f well, but not as well the tangent line shown in Figure 2.1.5.
We have just introduced a number of important concepts that we will flesh
out more within this section. First, we formally define two of them.

Definition 2.1.6 Derivative at a Point.

Let f be a continuous function on an open interval I and let ¢ be in I.
The derivative of f at ¢, denoted f/(c), is

o fleth) = fo)
Jm, S

provided the limit exists. If the limit exists, we say that f is differentiable
at ¢; if the limit does not exist, then f is not differentiable at c. If f is
differentiable at every point in I, then f is differentiable on I.

Definition 2.1.7 Tangent Line.

Let f be continuous on an open interval I and differentiable at ¢, for
some cin I. The line with equation ¢(z) = f'(¢)(x — ¢) + f(c) is the
tangent line to the graph of f at ¢; that is, it is the line through (¢, f(c))
whose slope is the derivative of f at c.

Some examples will help us understand these definitions.
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Example 2.1.8 Finding derivatives and tangent lines.
Let f(z) = 322 + 5z — 7. Find:

(@) f'(1)

(b) The equation of the tangent
line to the graph of f atx = (d) The equation of the tangent
1. line to the graph f atx = 3.

(© f'(3)

Solution.

(a) We compute this directly using Definition 2.1.6.

h—0 h

i 3(1+h)?2+5(1+h)—7—(3(1)2+5(1)—7)
o h—0 h

. 3(14+2h+h?) +5+5h—-T7—1
= lim

h—0 h

. 34+6h+3h2+5+5h—38
= lim

h—0 h

. 3R%2+11h
= lim ————

h—0 h
= lim (3h + 11)

h—0
=11.

(b) The tangent line at x = 1 has slope f’(1) and goes through the
point (1, f(1)) = (1,1). Thus the tangent line has equation, in
point-slope form, y = 11(xz — 1) + 1. In slope-intercept form we
have y = 11z — 10.

(c) Again, using the definition,

h—0 h

o 33+h)2+50B+h)—T7—(33)2+5(3)-7)
h—0 h

0 3(9+6h+h?)+15+3h —7—35

h—0 h

. 3h2+23h
= lim —/————
h—0 h
= lim 3h + 23

h—0

= 23.

(d) The tangent line at x = 3 has slope 23 and goes through the
point (3, f(3)) = (3,35). Thus the tangent line has equation
y=23(x — 3) + 35 =23z — 34.

A graph of f is given in Figure 2.1.9 along with the tangent linesat x = 1
L andx = 3.

60 1
40 +

20 +

x
71‘//1 2 3 4
Figure 2.1.9 A graph of f(z) = 322 +

5x — 7 and its tangent linesat x = 1
andz =3
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Another important line that can be created using information from the de-
rivative is the normal line. It is perpendicular to the tangent line, hence its slope
is the negative-reciprocal of the tangent line’s slope.

Definition 2.1.10 Normal Line.

Let f be continuous on an open interval I and differentiable at ¢, for
some cin I. The normal line to the graph of f at cis the line with equa-
tion

-1
f()
when f'(c) # 0. (When f/(¢) = 0, the normal line is the vertical line
through (¢, f(c)); thatis, z = c.)

(z =) + f(o),

n(x) =

Example 2.1.11 Finding equations of normal lines.

Let f(z) = 322 + 5x — 7, as in Example 2.1.8. Find the equations of the
normal lines to the graph of f atz =1 and x = 3.

Solution. In Example 2.1.8, we found that f’(1) = 11. Hence atz = 1,
the normal line will have slope —1/11. An equation for the normal line
is

n(x):%ll(x—l)—i—l. ,

The normal line is plotted with y = f(x) in Figure 2.1.12. Note how
the line looks perpendicular to f. (A key word here is “looks.” Mathe-
matically, we say that the normal line is perpendicular to f at x = 1 as 2|
the slope of the normal line is the negative-reciprocal of the slope of the
tangent line. However, normal lines may not always look perpendicular.
The aspect ratio of the picture of the graph plays a big role in this. When
using graphing software, there is usually an option called Zoom Square
that keeps the aspectratiol : 1 z
We also found that f/(3) = 23, so the normal line to the graph of f at 1 2 3 1

2 = 3 will have slope —1/23. An equation for the normal line is

Figure 2.1.12 Agraphof f(x) = 3z2+
—1 5x — 7, along with its normal line at
(z — 3) + 35. =1

n(x) = -

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not-
so-difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f, the best linear approximation
to f isits tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit from a tangent line approximation
is a line; it is rather simple to recognize that the tangent line to a line is the line
itself. We look at this in the following example.

Example 2.1.13 Finding the derivative of a linear function.

Consider f(x) = 3x + 5. Find the equation of the tangent line to f at
r=1landz =71.
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Solution. We find the slope of the tangent line by using Definition 2.1.6.
1+h)— f(1
#0) = i L0ER = 1)

h—0 h
3(1+h)+5—(3+5)

I
?
|

We just found that f’(1) = 3. That is, we found the instantaneous
rate of change of f(z) = 3z + 5 is 3. This is not surprising; lines are
characterized by being the only functions with a constant rate of change.
That rate of change is called the slope of the line. Since their rates of
change are constant, their instantaneous rates of change are always the
same; they are all the slope.

So given a line f(z) = ax + b, the derivative at any point = will be g;
thatis, f/(z) = a.

It is now easy to see that the tangent line to the graph of f atz = 1 s
just f, with the same being true at x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. While we will eventually be able
to find derivatives of many common functions, the algebra and limit calculations
on some functions are complex. Until we develop further techniques, the best
we may be able to do is approximate the tangent line. We demonstrate this in
the next example.

Example 2.1.14 Numerical approximation of the tangent line.

Approximate the equation of the tangent line to the graph of f(z) =
sin(z) atz = 0.

Solution. In order to find the equation of the tangent line, we need
a slope and a point. The point is given to us: (0,sin(0)) = (0,0). To
compute the slope, we need the derivative. This is where we will make
an approximation. Recall that

sin(0 + h) — sin(0)

7o) = ;

for a small value of h. We choose (somewhat arbitrarily) to let A = 0.1.

Thus (0.1 (0
f1(0) ~ w ~ 0.9983.
0.1
Thus our approximation of the equation of the tangent line is y =
0.9983(x — 0) + 0 = 0.9983x; it is graphed in Figure 2.1.15. The graph

seems to imply the approximation is rather good.

Recall from Section 1.3 that lim,_,g S'”xﬂ = 1, meaning for values of x near

0, sin(x) & x. Since the slope of the line y = zis 1 at z = 0, it should seem
reasonable that “the slope of f(x) = sin(x)"” is near 1 at x = 0. In fact, since
we approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We'll come back to this later.

|

|
[SIE]
(SE]

Figure 2.1.15 f(x) = sin(z) graphed
with an approximation to its tangent
lineatz =0
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Consider again Example 2.1.8. To find the derivative of f at x = 1, we
needed to evaluate a limit. To find the derivative of f at x = 3, we needed
to again evaluate a limit. We have this process:

input specific do something return
_> ,
number ¢ to fand ¢ number f'(c)

This process describes a function; given one input (the value of ¢), we return
exactly one output (the value of f’(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of ¢, let us
apply it just once to the variable 2. We then take a limit just once. The process
now looks like:

input do something return
variable x to fand z function f'(x)

The output is the derivative function, f'(x). The f’(x) function will take a
number ¢ as input and return the derivative of f at c. This calls for a definition.

Definition 2.1.16 Derivative Function.

Let f be a differentiable function on an open interval I. The function

is the derivative of f.

Let y = f(z). The following notations all represent the derivative of f:

dy df d d

y = 4 = —_— = —_— = —_— = —_—

flla) =y = — = — = —(f) = (1)

Important: The notation % is one symbol; it is not the fraction “dy /dx". The

notation, while somewhat confusing at first, was chosen with care. A fraction-
looking symbol was chosen because the derivative has many fraction-like prop-
erties. Among other places, we see these properties at work when we talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

Examples will help us understand this definition.

Example 2.1.17 Finding the derivative of a function.

Let f(x) = 322 + 5x — 7 as in Example 2.1.8. Find f'(z).
Solution. We apply Definition 2.1.16.

oy e J@+h) = f(2)
flw) = }!anO h
i 3(x+h)?2+5(x+h)—T7— (32> +5x—7)
- h—0 h
. 3h% +6zh+5h
= lim —mM8M8—
h—0 h
= lim (3h + 6z + 5)
h—0
=6x+5

So f'(x) = 6z + 5. Recall earlier we found that f/(1) = 11 and f/(3) =
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| 23. Note our new computation of f’(x) affirms these facts.

Example 2.1.18 Finding the derivative of a function.

Let f(z) = 7. Find f'(x).
Solution. We apply Definition 2.1.16.

. fl@+h) - f(x)
1N
@) = iILILno h
1 1
o zfhtl  z+l
o i!ano h

Now find common denominator then subtract; pull 1/k out front to fa-
cilitate reading.

~im L z+1  z+h+l
S hmoh \(z+1)(z+h+1) (z+D(z+h+1)
Now simplify algebraically.

e L fz+l—(z+h+1)
= jim <(m+1)(x+h+1)>

h—0 h

1 —h
A g <(x+1)(x+h+1))

Finally, apply the limit.

-1
= I'
S0 (z + D(z + h+ 1)

B -1

(x4 1D)(z+1)

-1
(x+1)2

So f'(x) = ——1. To practice using our notation, we could also state

= @z
4/ 1\ -1
de \z+1)  (z+1)2

Example 2.1.19 Finding the derivative of a function.

Find the derivative of f(z) = sin(z).
Solution. Before applying Definition 2.1.16, note that once this is found,

we can find the actual tangent line to f(z) = sin(x) at 2 = 0, whereas
we settled for an approximation in Example 2.1.14.

sin(x 4+ h) — sin(x)

() = }Iim Derivative definition
1 —0 h
— lim sin(x) cos(h) + cos(z) sin(h) — sin(x) Angle addition identity
h—0 h
. 1 .
= lim sin(z)(cos(h) ) + cos(z) sin(#) Regrouped and factored

h—0 h
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lim (sin(w)(cos(h) -1 + cos(z) sin(h)) Split into two fractions

h—0 h h
h)—1
— lim sin(z) - lim <5 =1
h—0 h—0
in(h
+ lim cos(z) - lim sin(#) Product/sum limit rules
h—0 h—0 h
=sin(z) - 0+ cos(x) - 1 Applied Theorem 1.3.12
= cos(x). (Are you surprised?)

We have found that when f(x) = sin(z), f'(x) = cos(z). This should
be somewhat amazing; the result of a tedious limit process on the sine
function is a nice function. Then again, perhaps this is not entirely sur-
prising. The sine function is periodic — it repeats itself on regular inter-
vals. Therefore its rate of change also repeats itself on the same regular
intervals. We should have known the derivative would be periodic; we
now know exactly which periodic function it is.

Thinking back to Example 2.1.14, we can find the slope of the tangent
line to f(z) = sin(z) at x = 0 using our derivative. We approximated
the slope as 0.9983; we now know the slope is exactly cos(0) = 1.

Example 2.1.20 Finding the derivative of a piecewise defined function.

Find the derivative of the absolute value function,

f@ﬁhﬂ{_m i

x xZO'

See Figure 2.1.21.

Solution. We need to evaluate lim;,_,q W As f is piecewise- 1Y
defined, we need to consider separately the limits when z < 0 and when
z > 0. 0.8
When z < 0: 0.6 |
d — h) — (- |
dx h—0 h
—h 2
= lim —
h—0 h ‘ ‘ ‘ z
= lim -1 -1 0.5 0.5 1
h—0 —0.2
=—1.

Figure 2.1.21 The absolute value func-
tion f(x) = |z|. Notice how the
slope of the lines (and hence the tan-
gent lines) abruptly changes at z = 0.

When z > 0, a similar computation shows that -4 (z) = 1.
We need to also find the derivative at z = 0. By the definition of the
derivative at a point, we have

£(0) — tim TO0) = F0)

h—0 h

Since x = 0 is the point where our function’s definition switches from
one piece to the other, we need to consider left and right-hand limits.
Consider the following, where we compute the left and right hand limits
side by side.
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h—0— h h—0t h
— fim =0 — gim 220
h—0- h h—0+ h
= lim -1 = lim 1
h—0— h—0t

The last lines of each column tell the story: the left and right hand lim-
its are not equal. Therefore the limit does not exist at 0, and f is not
differentiable at 0. So we have

f/($)={_1 z <0

1 >0

At x = 0, f'(x) does not exist; there is a jump discontinuity at 0; see
| Figure 2.1.22. So f(z) = |z| is differentiable everywhere except at 0.

The point of non-differentiability came where the piecewise defined func-
tion switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 2.1.23 Finding the derivative of a piecewise defined function.

Find the derivative of f(z), where

_Jsin(z) @ <7/2
f<x)_{1 z>m/2

See Figure 2.1.24.

Solution. Using Example 2.1.19, we know that when z < 7 /2, f'(x) =
cos(x). Itis easy to verify that when z > 7 /2, f'(x) = 0; consider:

lim M: lim iz lim 0 = 0.
h—0 h h—0 h h—0

So far we have
cos(x) x<m/2
pray [eoste) @ <2
0 z>m/2

We still need to find f/(7/2). Notice at = /2 that both pieces of f’
are 0, meaning we can state that f/(7/2) = 0.

Being more rigorous, we can again evaluate the difference quotient limit
at x = 7 /2, utilizing again left- and right-hand limits. We will begin with
the left-hand limit:

i L/25 ) = f(1/2)
h—0— h
sin(n/2+h

~—

— im —sin(w/2)
h—0—

>

— lim sin(%) cos(h) + sin(h) cos(5) — sin(%)
h—0~

Figure 2.1.22 A graph of the deriva-
tive of f(z) = |z|

[SEE

Figure 2.1.24 A graph of f(z) as de-
fined in Example 2.1.23
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1-cos(h) +sin(h)-0—1

= I'
erg— h
— im cos(h) — 1 im sin(h)
h—0— h h—0— h
=1.0
= 0.

Notice we used Limits of Common Functions to finally evaluate the limit.
Now we will find the right-hand limit:

fm/2+h) - f(7/2)

Since both the left and right hand limits are 0 at 2 = 7/2, the limit exists
and f'(m/2) exists (and is 0). Therefore we can fully write f’ as

;o\ Jcos(z) x<m/2
f(x){() z>m/2

L See Figure 2.1.25 for a graph of this derivative function.

Recall we pseudo-defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo-definition for
differentiability as well: it is a continuous function that does not have any “sharp

corners” or avertical tangent line. One such sharp corner is shown in Figure 2.1.21.

Even though the function f in Example 2.1.23 is piecewise-defined, the transi-
tion is “smooth” hence it is differentiable. Note how in the graph of f in Fig-
ure 2.1.24 it is difficult to tell when f switches from one piece to the other;
there is no “corner.”

2.1.2 Differentiability on Closed Intervals

When we defined the derivative at a point in Definition 2.1.6, we specified that
the interval I over which a function f was defined needed to be an open inter-
val. Open intervals are required so that we can take a limit at any point cin I,
meaning we want to approach ¢ from both the left and right.

Recall we also required open intervals in Definition 1.5.1 when we defined
what it meant for a function to be continuous. Later, we used one-sided limits to
extend continuity to closed intervals. We now extend differentiability to closed
intervals by again considering one-sided limits.

Our motivation is three-fold. First, we consider “common sense.” In Exam-
ple 2.1.17 we found that when f(z) = 322 + 5z — 7, f'(z) = 6z + 5, and this
derivative is defined for all real numbers, hence f is differentiable everywhere.
It seems appropriate to also conclude that f is differentiable on closed intervals,
like [0, 1], as well. After all, f/(z) is defined at both = 0 and = = 1.

Secondly, consider f(z) = \/z. The domain of f is [0, c0). Is f differentiable
on its domain — specifically, is f differentiable at 0? (We'll consider this in the
next example.)

e

Figure 2.1.25 A graph of f/(z) in Ex-
ample 2.1.23.
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Finally, in later sections, having the derivative defined on closed intervals will
prove useful. One such place is Section 7.4 where the derivative plays a role in
measuring the length of a curve.

After a formal definition of differentiability on a closed interval, we explore
the concept in an example.

Definition 2.1.26 Differentiability on a Closed Interval.
Let f be continuous on [a, b] and differentiable on (a, b). If the one-sided
limits
[t h) ~ f(a) bR~ )
h—0+ h h—0— h

exist, then we say f is differentiable on [a, b].

For all the functions f in this text, we can determine differentiability on [a, b]
by considering the limits lim,_, .+ f/(x) and lim,_,;— f/(z). This is often easier
to evaluate than the limit of the difference quotient.

Example 2.1.27 Differentiability at an endpoint.

Consider f(z) = v/ = x'/? and g(x) = V23 = 2%/, The domain of
each function is [0, cc). It can be shown that each is differentiable on
(0, 00); determine the differentiability of each at x = 0.

Solution. We start by considering f and take the right-hand limit of the
difference quotient:

. fla+h)— f(a) . V0+h-V0
lim ——————~ = |lm —m——
h—0+ h h—0+ h
. Vh
= lim —
h—0+ h
- h|l>n(}+ Rz~

The one-sided limit of the difference quotient does not exist at x = 0
for f; therefore f is differentiable on (0, c0) and not differentiable on
[0, 00).

We state (without proof) that f’(z) = 1/(2y/z). Note that
lim,_o+ f'(x) = oo; this limit was easier to evaluate than the limit
of the difference quotient, though it required us to already know the
derivative of f.

Now consider g:

gla+h) —g(a)

VO +h)3 =0
h

lim = lim
h—0t h h—0t
h3/2
= lim —
h—o0t+ h
= lim B2 = 0.
h—0t

As the one-sided limit exists at z = 0, we conclude g is differentiable on
its domain of [0, c0).

We state (without proof) that ¢'(z) = 3y/z/2. Note that
lim,_o+ ¢'(x) = 0; again, this limit is easier to evaluate than the limit
of the difference quotient.

y=x'/?
3/2

y=x

xT

—6.2 012 014 016 018 1 1:2

Figure 2.1.28 Agraphof y = z!/2 and
y = 23/ in Example 2.1.27



CHAPTER 2. DERIVATIVES 72

The two functions are graphed in Figure 2.1.28. Note how f(z) = /=
seems to “go vertical” as x approaches 0, implying the slopes of its tan-
gent lines are growing toward infinity. Also note how the slopes of the
tangent lines to g(x) = V/z3 approach 0 as = approaches 0.

Most calculus textbooks omit this topic and simply avoid specific cases where
it could be applied. We choose in this text to not make use of the topic unless
it is “needed.” Many theorems in later sections require a function f to be differ-
entiable on an open interval I'; we could remove the word “open” and just use
“...onaninterval I,” but choose to not do so in keeping with the current math-
ematical tradition. Our first use of differentiability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivative mean?”
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2.1.3 Exercises

Terms and Concepts

1. (OTrue [OFalse) Let f be a position function. The average rate of change on [a, b] is the slope of the line
through the points (a, f(a)) and (b, f(b)).

2. (DO True [False) The definition of the derivative of a function at a point involves taking a limit.

3. In your own words, explain the difference between the average rate of change and instantaneous rate of change.
4. In your own words, explain the difference between Definitions 2.1.7 and Definition 2.1.19.

5. Lety = f(x). Give three different notations equivalent to “ f'(z).”

6. If two lines are perpendicular, what is true of their slopes?

Problems

Exercise Group. Use the definition of the derivative to compute the derivative of the given function.

7. f(x)=6 8 f(x ):21'

9. f(t)y=4-3t 10. g(x) =

11. h(z) =23 12. f(z) =322 —x+4
13. r(z)=1 14. r(s) =

Exercise Group. A function and an z-value are given. (Note: these functions are the same as those given in Exer-
cises 7-14.) Give the equations of the tangent line and the normal line at that z-value.

15. f(z)=6atx = -2 16. f(z) =2zvatz =3
17. f(x)=4-3zatz =7 18. g(z)=2%atz =2
19. h(z)=a2%atz =4 20. f(a:)—Sa: —z+44atz=-1
21, r(z)=1latz=-2 22, r(r)=_—gatx=3

Exercise Group. A function f and an x-value a are given. Approximate the equation of the tangent line to the graph
of f at x = a by numerically approximating f’(a), using h = 0.1.

23. f(z)=2>—-2z+5anda = —2 24. f(zr)=—%anda=-9
25. f(z)=e"anda = —4 26. f(x)=cos(xz)anda =0

27. The graph of f(z) = 22 — 1 is shown.

(a) Use the graph to approximate the slope of the tangent line to f at (—1,0), (0, —1), and (2, 3).
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(b) Using the definition of the derivative, find f'(z).
(c) Use the derivative to find the slope of the tangent line at the points (—1, 0), (0, —1) and (2, 3).

28. The graph of f(z) = —1 is shown.

—}1 1 2 3
(a) Use the graph to approximate the slope of the tangent line to f at (0,1) and (1, 0.5).
(b) Using the definition of the derivative, find f'(x).
(c) Use the derivative to find the slope of the tangent line at the points (0, 1) and (1, 0.5).

Exercise Group. A graph of a function f(x) is given. Using the graph, sketch f'(x).
29. 30.

‘ x
2
—1 4
31. 32.
y
4 |4
2 |4
z T
-3 2 -1 1 o
_2 1
41




CHAPTER 2. DERIVATIVES

Exercise Group. Use the graph of the function to answer the following questions.

(a) Whereis g(z) > 0?

(b) Whereis g(z) < 0?

(c) Whereis g(z) = 0?
33.

(d) Whereis ¢'(z) < 0?
(e) Whereis ¢’'(z) > 0?
(f) Whereis ¢'(x) = 0?
34.
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Exercise Group. A function f(z) is given, along with its domain and derivative. Determine if f(x) is differentiable

on its domain.

35. f(z) =+/2°(1 — z),domainis [0, 1], f'(x)

(Oyes Ono)

36. f(z) = cos(y/z),domainis [0, 00), f'(z) =

(Dyes [no)

_ (5—6x)z®/?
2y/1—x

sin(\/E)
-
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2.2 Interpretations of the Derivative

Section 2.1 defined the derivative of a function and gave examples of how to
compute it using its definition (i.e., using limits). The section also started with a
brief motivation for this definition, that is, finding the instantaneous velocity of a
falling object given its position function. Section 2.3 will give us more accessible
tools for computing the derivative; tools that are easier to use than repeated
use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do | compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em-
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

2.2.1 Interpretation of the Derivative as Instantaneous Rate of
Change

Section 2.1 started with an example of using the position of an object (in this
case, a falling amusement park rider) to find the object’s velocity. This type of
example is often used when introducing the derivative because we tend to read-
ily recognize that velocity is the instantaneous rate of change in position. In
general, if f is a function of z, then f/(z) measures the instantaneous rate of
change of f with respect to x. Put another way, the derivative answers “When
x changes, at what rate does f change?” Thinking back to the amusement park
ride, we asked “When time changed, at what rate did the height change?” and
found the answer to be “By —64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads
“60 mph.” Five minutes later, you wonder how far you have traveled. Certainly,
lots of things could have happened in those 5 minutes; you could have intention-
ally sped up significantly, you might have come to a complete stop, you might
have slowed to 20 mph as you passed through construction. But suppose that
you know, as the driver, none of these things happened. You know you main-
tained a fairly consistent speed over those 5 minutes. What is a good approxi-
mation of the distance traveled?

One could argue the only good approximation, given the information pro-
vided, would be based on “distance = rate x time.” In this case, we assume a
constant rate of 60 mph with a time of 5 minutes or 5/60 of an hour. Hence we
would approximate the distance traveled as 5 miles.

Referring back to the falling amusement park ride, knowing that at t =
2 the velocity was —64 ft/s, we could reasonably approximate that 1 second
later the riders’ height would have dropped by about 64 feet. Knowing that
the riders were accelerating as they fell would inform us that this is an under-
approximation. If all we knew was that f(2) = 86 and f/(2) = —64, we'd know
that we'd have to stop the riders quickly otherwise they would hit the ground.

In both of these cases, we are using the instantaneous rate of change to
predict future values of the output.

2.2.2 Units of the Derivative

It is useful to recognize the units of the derivative function. If y is a function of x,
i.e., y = f(x) for some function f, and y is measured in feet and z in seconds,
then the units of ¢y’ = f’ are “feet per second,” commonly written as “ft/s.” In
general, if i is measured in units P and x is measured in units ), then 3’ will be
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measured in units “P per Q", or “P/Q.” Here we see the fraction-like behavior

of the derivative in the notation: the units of g—yare units of y
T units of =

Example 2.2.1 The meaning of the derivative: World Population.

Let P(t) represent the world population ¢ minutes after 12:00 a.m., Jan-
uary 1, 2012. It is fairly accurate to say that P(0) = 7,028,734,178
(www.prb.org). Itis also fairly accurate to state that P'(0) = 156; that is,
at midnight on January 1, 2012, the population of the world was growing
by about 156 people per minute (note the units). Twenty days later (or
28,800 minutes later) we could reasonably assume the population grew
by about 28,800 - 156 = 4,492,800 people.

Example 2.2.2 The meaning of the derivative: Manufacturing.

The term widget is an economic term for a generic unit of manufactur-
ing output. Suppose a company produces widgets and knows that the
market supports a price of $10 per widget. Let P(n) give the profit, in
dollars, earned by manufacturing and selling n widgets. The company
likely cannot make a (positive) profit making just one widget; the start-
up costs will likely exceed $10. Mathematically, we would write this as
P(1) <.

What do P(1000) = 500 and P’(1000) = 0.25 mean? Approximate
P(1100).

Solution. The equation P(1000) = 500 means that selling 1000 wid-
gets returns a profit of $500. We interpret P’(1000) = 0.25 as meaning
that when we are selling 1000 widgets, the profit is increasing at rate of
$0.25 per widget (the units are “dollars per widget.”) Since we have no
other information to use, our best approximation for P(1100) is:

P(1100) ~ P(1000) + P'(1000) x 100
= $500 + (100 widgets ) - $0.25/widget
= $525.

We approximate that selling 1100 widgets returns a profit of $525.

The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this section. Five minutes after looking at the speedometer, our best
approximation for distance traveled assumed the rate of change was constant.
In Examples 2.2.1 and Example 2.2.2 we made similar approximations. We were
given rate of change information which we used to approximate total change.
Notationally, we would say that

fleth) = fle)+ f'(c) - h.

This approximation is best when h is “small.” “Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

|n

2.2.3 The Derivative and Motion

One of the most fundamental applications of the derivative is the study of mo-
tion. Let s(¢) be a position function, where ¢ is time and s(t) is distance. For
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instance, s could measure the height of a projectile or the distance an object
has traveled.

Let s(¢) measure the distance traveled, in feet, of an object after ¢ seconds
of travel. Then s’(¢) has units “feet per second,” and s’(t) measures the instan-
taneous rate of distance change with respect to time — it measures velocity.

Now consider v(t), a velocity function. That is, at time ¢, v(t) gives the ve-
locity of an object. The derivative of v, v/(t), gives the instantaneous rate of
velocity change with respect to time — acceleration. (We often think of accel-
eration in terms of cars: a car may “go from 0 to 60 in 4.8 seconds.” This is an
average acceleration, a measurement of how quickly the velocity changed.) If
velocity is measured in feet per second, and time is measured in seconds, then
the units of acceleration (i.e., the units of v/(¢)) are “feet per second per sec-
ond,” or (ft/s)/s. We often shorten this to “feet per second squared,” or S% but
this tends to obscure the meaning of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32ft/s? or g = 9.8 m/s%. What do these numbers mean?

A constant acceleration of 32 ﬂT/S means that the velocity changes by 32 ft/s
each second. For instance, let v(t) measure the velocity of a ball thrown straight
up into the air, where v has units ft/s and ¢ is measured in seconds. The ball will
have a positive velocity while traveling upwards and a negative velocity while
falling down. The acceleration is thus —32 ft/s?. If v(1) = 20 ft/s, then 1 second
later, the velocity will have decreased by 32 ft/s; thatis, v(2) = —12ft/s. Wecan
continue: v(3) = —44 ft/s. Working backward, we can also figure that v(0) =
52ft/s.

These ideas are so important we write them out as a Key Idea.

Key Idea 2.2.3 The Derivative and Motion.

1. Let s(¢) be the position function of an object. Then s'(t) = v(t) is
the velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v'(t) = a(t) is
the acceleration function of the object.

2.2.4 Interpretation of the Derivative as the Slope of the Tangent
Line

We now consider the second interpretation of the derivative given in this section.
This interpretation is not independent from the first by any means; many of the
same concepts will be stressed, just from a slightly different perspective.

Given a function y = f(z), the difference quotient w gives a
change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the secant line that goes through two points on
the graph of f: (¢, f(¢)) and (¢ + h, f(c + h)). As h shrinks to 0, these two
points come close together; in the limit we find f’(c), the slope of a special line
called the tangent line that intersects f only once near z = c.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value ¢ by computing f'(c). We can get an idea of how f
is behaving by looking at the slopes of its tangent lines. We explore this idea in
the following example.

Convention with s. Using s(t)
to represent position is a fairly
common mathematical conven-
tion. It is also common to use s
to represent arc length.
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Example 2.2.4 Understanding the derivative: the rate of change.

Consider f(z) = 2 as shown in Figure 2.2.5. It is clear that at x = 3
the function is growing faster than at x = 1, as it is steeper at z = 3.
How much faster is it growing at 3 compared to 1?

Solution. We can answer this exactly (and quickly) after Section 2.3,
where we learn to quickly compute derivatives. For now, we will answer
graphically, by considering the slopes of the respective tangent lines.
With practice, one can fairly effectively sketch tangent lines to a curve at
a particular point. In Figure 2.2.6, we have sketched the tangent lines to
fatx = 1and x = 3, along with a grid to help us measure the slopes
of these lines. At x = 1, the slope is 2; at x = 3, the slope is 6. Thus we
can say not only is f growing faster at x = 3 than at x = 1, it is growing
three times as fast.

Example 2.2.7 Understanding the graph of the derivative.

Consider the graph of f(z) and its derivative, f’(x), in Figure 2.2.8. Use
these graphs to find the slopes of the tangent lines to the graph of f at
r=1,r=2andz = 3.

Solution. To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f’.

¢ The slope of the tangent line to f at x = 1is f’(1); this looks to
be about —1.

¢ The slope of the tangent line to f at z = 2is f(2); this looks to
be about 4.

¢ The slope of the tangent line to f at z = 3is f’(3); this looks to
be about 3.

Using these slopes, tangent line segments to f are sketched in Fig-
ure 2.2.9. Included on the graph of f’ in this figure are points where
z = 1,z = 2and z = 3 to help better visualize the y value of f’ at
those points.

Example 2.2.10 Approximation with the derivative.

Consider again the graph of f(x) and its derivative f'(z) in Exam-
ple 2.2.7. Use the tangent line to f at = = 3 to approximate the value
of f(3.1).

Solution. Figure 2.2.11 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near z = 3, the tangent line makes
an excellent approximation of f. Since lines are easy to deal with, often
it works well to approximate a function with its tangent line. (This is
especially true when you don’t actually know much about the function
at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 2.2.7, it was not
explicitly computed. Recall that the tangent line to f at x = cis
y = f'(e)(z — ¢) + f(c). While f is not explicitly given, by the graph
it looks like f(3) = 4. Recalling that f/(3) = 3, we can compute the
tangent line to be approximately y = 3(x — 3) + 4. It is often useful to
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-1 1 2 3 4

Figure 2.2.5 A graph of f(z) = 22

10

-1 1 2 3 4

Figure 2.2.6 A graph of f(z) = 2
and tangent linesatz =1land x = 3

y f(z)
\ /'/(mm
T
2 3

t

Figure 2.2.8 Graphs of f and f’ in Ex-
ample 2.2.7

Figure 2.2.9 Graphs of f and f’ in Ex-
ample 2.2.7
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leave the tangent line in point-slope form.
To use the tangent line to approximate f(3.1), we simply evaluate y at
3.1 instead of f.

f(3.1) = y(3.1)

=3(31-3)+4
—0.1-3+4
= 4.3.

We approximate f(3.1) ~ 4.3.

To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 2.2.10, f(z) = —2% + 72? — 12z + 4. We can evalu-
ate f(3.1) = 4.279. Had we known f all along, certainly we could have just
made this computation. In reality, we often only know two things:

1. what f(c) is, for some value of ¢, and
2. what f'(c) is.

For instance, we can easily observe the location of an object and its instan-
taneous velocity at a particular point in time. We do not have a “function f”
for the location, just an observation. This is enough to create an approximating
function for f.

This last example has a direct connection to our approximation method ex-
plained above after Example 2.2.2. We stated there that

Fleth) ~ f(©)+ f/(¢) - h.

If we know f(c) and f’(c) for some value x = ¢, then computing the tangent
line at (¢, f(c)) iseasy: y(z) = f'(c)(x —¢)+ f(c). In Example 2.2.10, we used
the tangent line to approximate a value of f. Let’s use the tangent lineatz = ¢
to approximate a value of f near x = ¢; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that 7 is “small.” Note:

yle+h) = f'(c)((c+h) —c) + f(c)
= f'(c)-h+ f(0).

This is the exact same approximation method used above! Not only does
it make intuitive sense, as explained above, it makes analytical sense, as this
approximation method is simply using a tangent line to approximate a function’s
value.

The importance of understanding the derivative cannot be understated. When

f is a function of z, f/(x) measures the instantaneous rate of change of f with
respect to = and gives the slope of the tangent line to f at x.

T

Qﬂ\
o8 20 3 31 32 33

Figure 2.2.11 Zooming in on f and its
tangent line at x = 3 for the func-
tion given in Examples 2.2.7 and Ex-
ample 2.2.10
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2.2.5 Exercises
Terms and Concepts
1.  What is the instantaneous rate of change of position called?

2. Given a function y = f(x), in your own words describe how to find the units of f/(z).

3.  What functions have a constant rate of change?

Problems

4. Given f(4) = 18 and f/(4) = 2, approximate f(5).

5.  Given P(100) = —19 and P’(100) = —7, approximate P(110).

6.  Given z(60) = 106 and z'(60) = 3, approximate z(55).

7.  Knowing f(10) = 25 and f’(10) = 5 and the methods described in this section, which approximation is likely

to be most accurate? (Of(10.1) Of(11) ©Of(20))
Given f(8) = 43 and f(9) = 41, approximate f'(8).
Given H(5) = 12 and H (8) = 33, approximate H'(5).

10. Let V' (z) measure the volume, in decibels, measured inside a restaurant with « customers. What are the units
of V/(z)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a straight line ¢ seconds after starting. What are the
units of v/ (t)?

12. The height H, in feet, of a river is recorded ¢ hours after midnight, April 1. What are the units of H'(¢)?

13. Pis the profit, in thousands of dollars, of producing and selling c cars.

©

(a) What are the units of P’(c)?

(b) What is likely true of P(0)?
14. T'is the temperature in degrees Fahrenheit, h hours after midnight on July 4 in Sidney, NE.

(a) What are the units of 7(h)?
(b) 1s T'(8) likely greater than or less than 0? Why?
(c) Is T'(8) likely greater than or less than 0? Why?

Exercise Group. Graphs of functions f and g are given. Identify which function is the derivative of the other.
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15.

e fisthe derivative of g.

e g isthe derivative of f.
17.

e fisthe derivative of g.

e g isthe derivative of f.
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16.
)
— f(z)
5 - g(o)
2 -1 T 1
./ l. _5 1
e fisthe derivative of g.
e g isthe derivative of f.
18.
2 Ty
— f(z)
- g(o)
1 1
— , /': i".\ 4
- L
—9 1l

e fis the derivative of g.

e g is the derivative of f.



CHAPTER 2. DERIVATIVES 83

2.3 Basic Differentiation Rules

The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx +b. What is y’? With-
out limits, recognize that linear functions are characterized by being functions
with a constant rate of change (the slope). The derivative, 3/, gives the instanta-
neous rate of change; with a linear function, this is constant, m. Thus ¢y’ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = az? + bx + c. Using the definition of the derivative, we have:

a(x 4+ h)? +b(z + h) + ¢ — (az® + bz +¢)

!/ — I
@) Pl h
— lim ar? + 2ahx + ah? + bz + bh + ¢ — ax? — bz — ¢)
 h—0 h
_ jim ah? + 2ahx + bh
 h—0 h

lim ah + 2az + b
h—0
= 2ax + b.
Soif y = 622 4+ 11z — 13, we can immediately compute ¢’ = 12z + 11.
In this section (and in some sections to follow) we will learn some of what
mathematicians have already discovered about the derivatives of certain func-

tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 2.3.1 Derivatives of Common Functions.

ConstantRule 4 (¢) = 0, where c is a constant.
Power Rule ﬁ(z") = nz" !, where n is an integer, n >
0
Other common 4L (sin(z)) = cos(z)
functions 4 (cos(z)) = —sin(z)
4 ey = e
“L(In(z)) =1, forz >0

This theorem starts by stating an intuitive fact: constant functions have zero
rate of change as they are constant. Therefore their derivative is O (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivatives of Power Functions (of the form iy = x™) are very
straightforward: multiply by the power, then subtract 1 from the power. We see
something incredible about the function y = e”: it is its own derivative. We
also see a new connection between the sine and cosine functions.

One special case of the Power Rule is when n = 1, i.e.,, when f(z) = z.
What is f/(z)? According to the Power Rule,

f(z) = %(x) = %(ml) —1.20=1.

In words, we are asking “At what rate does f change with respect to z?”
Since f is x, we are asking “At what rate does x change with respect to x?”
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The answer is: 1. They change at the same rate. We can also interpret the

derivative as the slope of the tangent line to the function at a point (¢, f(c)).

Since f(x) = « is a linear function with constant slope 1, we can say that the
derivative of f(x) = xis f'(x) = 1.
Let’s practice using this theorem.

Example 2.3.2 Using common derivative rules to find, and use, deriva-

tives.
Let f(z) = 2®.
1. Find f(x).

2. Find the equation of the line tangent to the graph of f atx = —1.
3. Use the tangent line to approximate (—1.1)3.

4., Sketch f, f’ and the tangent line from Item 2 on the same axis.

Solution.
1. The Power Rule states that if f(x) = 22, then f’(z) = 3z2.

2. To find the equation of the line tangent to the graph of f at x =
—1, we need a point and the slope. The pointis (=1, f(—1)) =
(—=1,—1). The slopeis f/(—1) = 3. Thus the tangent line has
equationy = 3(z — (—1)) + (—1) = 3z + 2.

3. We can use the tangent line to approximate (—1.1)3 since —1.1 is
close to —1. We have

(113~ 3(-1.1)+2=—-1.3.

We can easily find the actual value: (—1.1)% = —1.331.

4. See Figure 2.3.3.

Theorem 2.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = 23, but it
does not tell how to compute the derivative of y = 223, y = 2 + sin(z) nor
y = x3 sin(x). The following theorem helps with the first two of these examples
(the third is answered in the next section).

Theorem 2.3.4 Properties of the Derivative.

Let f and g be differentiable on an open interval I and let c be a real
number. Then:

Sum/Difference Rule

L (F(@) £ g(a)) = 5 (@) £ =-(9(a)

= f'(z) £ g'(x)

Figure 2.3.3 A graph of f(z) = 23,
along with its derivative f’(z) = 322
and its tangent lineat z = —1
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Constant Multiple
d d
Fule (e f@) = T(f(@))
=c- f'(x)

Theorem 2.3.4 allows us to find the derivatives of a wide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 2.1.17 that we found, using the limit definition,
the derivative of f(x) = 322 + 5z — 7. We can now find its derivative without
expressly using limits:

d . 5 d d d

%(31 + 5z 7)*3dm(x)+5dx(x) (7
=3-20+5-1-0
=6z + 5.

We were a bit pedantic here, showing every step. Normally we would do
all the arithmetic and steps in our head and readily find - (322 + 52 +7) =
6x + 5.

Example 2.3.5 Using the tangent line to approximate a function value.

Let f(z) = sin(xz) + 22 + 1. Approximate f(3) using an appropriate
tangent line.

Solution. This problem is intentionally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximation
are we seeking? What does “appropriate” mean?

In the “real world,” people solving problems deal with these issues all
time. One must make a judgment using whatever seems reasonable. In
this example, the actual answer is f(3) = sin(3) + 7, where the real
problem spot is sin(3). What is sin(3)?

Since 3 is close to 7r, we can assume sin(3) = sin(7) = 0. Thus one guess
is f(3) = 7. Can we do better? Let’s use a tangent line as instructed and
examine the results; it seems best to find the tangent line at z = .
Using Theorem 2.3.1 we find f’(z) = cos(x) + 2. The slope of the
tangent lineis thus f’'(7) = cos(w)+2 = 1. Also, f(7) = 2r+1 ~ 7.28.
So the tangent line tothe graphof fatx = wisy = 1(z—7)+27+1 =
r+ 7T+ 1 ~ x + 4.14. Evaluated at x = 3, our tangent line gives
y = 3+ 4.14 = 7.14. Using the tangent line, our final approximation is
that f(3) ~ 7.14.

Using a calculator, we get an answer accurate to four places after the
decimal: f(3) = 7.1411. Our initial guess was 7; our tangent line ap-
proximation was more accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calcula-
tor.” Sure, that might be handy sometime, but your phone could prob-
ably give you the answer. Rather, the point is to say that tangent lines
are a good way of approximating, and many scientists, engineers and
mathematicians often face problems too hard to solve directly. So they
approximate.

The graphs in Figure 2.3.6 shows the graph of the function f(xz) along
with the tangent line constructed at x = =. The graph in Figure 2.3.6
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shows the same tangent line and function. Once zoomed in, you can
barely distinguish the tangent line from the function. This indicates that
the tangent line is a good a approximation of the function so long as we
are near the point of tangency.

7.4

6.8

T
‘ x
-1 1 2 3 4 5 Fos 28 3 32 34

Figure 2.3.6 A graph of f(z) =  Figure 2.3.7 A graph of f(z) =

sin(z) + 2z + 1along withitstan-  sin(z) + 22 + 1 along with its tan-

gent line approximationatz =7 gent line approximation at = = T,
zoomed in

2.3.1 Higher Order Derivatives

The derivative of a function f is itself a function, therefore we can take its
derivative. The following definition gives a name to this concept and introduces

its notation.
Definition 2.3.8 Higher Order Derivatives.

Lety = f(x) be adifferentiable function on I. The following are defined,
provided the corresponding limits exist.

1. The second derivative of f is:
d d (dy d?y
" _ Y _ 22y _ %Y _
F@ =) -4 (2) - -
2. The third derivative of f is:

d d [ d>2 3
f///(x) = I(f//(x)) = % (d;p:g> — Tﬁ — y///.

X

3. The nth derivative of f is:

d d dn—ly dny
(n) — 2 fln-1 - = — — )
F(=) dx (f (a?)) dx (dl’”l) i A

In general, when finding the fourth derivative and on, we resort to the f ) (2)

notation, not f””/(z); after a while, too many ticks is confusing.
Let’s practice using this new concept.

Note: The second derivative no-
tation could be written as
d2y B d2y d2

@~ (day ~ [@p W)

That is, we take the deriva-
tive of y twice (hence d?), both
times with respect to = (hence
(dr)? = dz?).

Higher Order Derivative Caveat.
Definition 2.3.8 comes with the
caveat “Where the correspond-
ing limits exist.” With f differen-
tiable on 1, it is possible that f’
is not differentiable on all of I,
and so on.
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Example 2.3.9 Finding higher order derivatives.

Find the first four derivatives of the following functions:
1. f(z) = 422 2. f(x) =sin(z) 3. f(z) =5€"

Solution.

1. Using the Power and Constant Multiple Rules, we have: f'(z) =
8x. Continuing on, we have

)=t =8 f0)=0  fP@)=0

Notice how all successive derivatives will also be 0.
2. We employ Theorem 2.3.1 repeatedly.
J'(x) = cos(z) J"(x) = — cos(z)
f"(x) = —sin(x) J@ (@) = sin(z)

Note how we have come right back to f () again. (Can you quickly
figure what £(2%) () is?)

3. Employing Theorem 2.3.1 and the Constant Multiple Rule, we can
see that

flla) = f"(@) = f" (@) = f(2) = 5.

2.3.2 Interpreting Higher Order Derivatives

What do higher order derivatives mean? What is the practical interpretation?
Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function f is the rate of change of the
rate of change of f.

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 2.2.3, f/ describes the rate of position change: velocity.
We now consider f”, which describes the rate of velocity change. Sports car
enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement park riders free-falling with posi-
tion function f(t) = —16t% + 150. It is easy to compute f'(t) = —32t ft/s and
f"(t) = —32 (ft/s)/s. We may recognize this latter constant; it is the accelera-
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” written as “ft/s=.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f.” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”
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Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of series makes extensive use of higher order derivatives.
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2.3.3 Exercises

Terms and Concepts

1.  Whatis the name of the rule which states that %(m") = nz"~!, where n > 0 is an integer?
2. Whatis £ (In(z))?
3. Give an example of a function f(x) where f'(z) = f(x).
4.  Give an example of a function f(x) where f'(z) = 0.
5.  The derivative rules introduced in Section 2.3 explain how to compute the derivative of which of the following
functions?
3
z2
o 3z° —x+ 17
5132
® c
e sin(z) cos(z)
° \/E
e 5In(z)
6.  Explain in your own words how to find the third derivative of a function f(x).
7.  Give an example of a function where f/(z) # 0 and f”(z) = 0.
8. Explain in your own words what the second derivative “means”.
9. If f(z) describes a position function, then f’(z) describes what kind of function? What kind of function is

f"(x)?

10. Let f(x) be a function measured in pounds (Ib), where z is measured in feet (ft). What are the units of " (xz)?

Problems

Exercise Group. Compute the derivative of the given function.

11, f(z) = — (T2* + 8z +7) 12. g(x) = 142% — 162% + 5z + 2
13. m(t) =9t — (4155 +1t3) -6 14. f(9) = — (3sin(0) + 19 cos(H))
15. f(r) = 16. g(t) = 7t> — 5cos(t) — 2sin(t)
17. f(z)=6 In( ) + 9 18. p(s)=1s'+is8+ 12 +s+1
19. h(t) = — (e’ +sin(t) + cos(t)) 20. f(z) =In(32%)

21, f(t) =In(6) + €® +sin(%) 22, g(t) = (4 +3t)°

23, g(z) = 2z +4)° 24, f(z)=3+2)°

25.  f(z) = (7T+2x)

26. A property of logarithms is that log, (x) = :ngz; ,for all bases a,b > 0, # 1.
(a) Rewrite this identity when b = ¢, i.e., using log, (z) = In(z), with @ = 10.
(b) Use part (a) to find the derivative of y = log;((z).
(c) Find the derivative of y = log, () forany a > 0, # 1.

Exercise Group. Compute the first four derivatives of the given function.



CHAPTER 2. DERIVATIVES 90

27. f(x)=2° 28. g(x) = 8cos(x)
29. h(t) = — (42 + 3t +¢') 30. p(f) =62+ 63
31.  f(0) = — (sin(0) + cos(h)) 32. f(z) =692

Exercise Group. Find the equations of the tangent and normal lines to the graph of the function at the given point.
33. f(z)=23+8vatz=2 34. f(t)=e'—2att=0
35. g(z)=In(z)atx =1 36. f(z)=4sin(z)atz =7/6
37. f(x)=—2cos(z)atz =7/6 38. f(z)=9—9zatx=-9
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2.4 The Product and Quotient Rules

Section 2.3 showed that, in some ways, derivatives behave nicely. The Constant
Multiple Rule and Sum/Difference Rule established that the derivative of f(x) =
52 + sin(z) was not complicated. We neglected computing the derivative of
things like g(x) = 522 sin(z) and h(z) = % on purpose; their derivatives are
not as straightforward. (If you had to guess what their respective derivatives are,
you would probably guess wrong.) For these, we need the Product and Quotient
Rules, respectively, which are defined in this section. We begin with the Product

Rule.

Theorem 2.4.1 Product Rule.

Let f and g be differentiable functions on an open interval I. Then fg
is a differentiable function on I, and

%(f(w)g(fﬂ)) = f'(x)g(x) + f(x)g' (x).

Warning 2.4.2 L (f(2)g(z)) # f'(x)g'(z)! While this would be simpler than
the Product Rule, it is wrong.

We practice using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example 2.4.3 Using the Product Rule.

Use the Product Rule to compute the derivative of y = 522 sin(x). Eval-
uate the derivative at = = /2.

Solution. To make our use of the Product Rule explicit, let’s set f(x) =
522 and g(z) = sin(z). We easily compute/recall that f’(z) = 10z and
¢'(x) = cos(x). Employing the rule, we have

% (527 sin(z)) = % (52%) sin(x) + BxQ%(sin(m))

= 10z sin(z) + 522 cos(z).
At x = /2, we have
'(rj2) =10- Tsin (T ™’ (Z) =
y'(m/2) =10 5 S|n(2) +5(2> cos { 3 = 5.
We graph y and its tangent line at = x/2, which has a slope of 5,

in Figure 2.4.4. While this does not prove that the Product Rule is the
correct way to handle derivatives of products, it helps validate its truth.

We now investigate why the Product Rule is true.

Proof of Product Rule. We can use the definition of the derivative to prove The-
orem 2.4.1.
By the limit definition, we have

L oyate)  tim TEEWI+B) = [@)o(w),

% h—0 h

We now do something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of — f(xz)g(x + h) + f(z)g(x + h), then do some
regrouping as shown.

10

o

™

SRS

Figure 2.4.4 Agraph of y = 522 sin(x)
and its tangent line at x = 7/2

Adding 0 in some clever form is
a common mathematical proof
technique.
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d  flz+h)glz+h) - flz)g(x)
= f(@)g(z)) = lim -

(now add 0 to the numerator)

— im @9z +h) — fz)g(z + h) + fz)g(x + h) — f(z)g(z)

h—0 h

(regroup)

— iim @+ R)g(z +h) — f(z)g(x + h)] + [f(z)g(x + h) — f(z)g(2)]
h—0 h

(split fraction)

fle+h)glx+h) - fx)g(z+h) f(@)g(z +h) — f(z)g(x)

- ;1'5’0 h + iILILno h
(factor)

= lim (Wg(x + h)) + lim (f(@W)
(apply limit properties)

o St )~ f@) gz +h) — g(x)

h—0 h ' ;liL“og(x +h)+ f(z)- iILiLno
(apply limits)
= f'()g(z) + f(2)g'(z)

(by definition of the derivative).

We have proven the product rule as desired. (In the last step, we also relied on
the fact that since g is differentiable, it is also continuous, which guarantees that
limp—o0g9(z+ h) =g(z).) [ |

It is often true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.5 Exploring alternate derivative methods.

Lety = (22 + 3z + 1)(22® — 3z + 1). Find v two ways: first, by
expanding the given product and then taking the derivative, and second,
by applying the Product Rule. Verify that both methods give the same
answer.

Solution. We first expand the expression for y; a little algebra shows
that y = 22% + 323 — 622 + 1. Itis easy to compute y:

y =82 + 927 — 12z.
Instead, let’s apply the Product Rule to the original factored form:

/

d d
y = %(x2+3x+1)(2x2—3x+1)+(x2+3x+1)%(2x2 —3z+1)
= (224 3)(22% — 3z 4+ 1) + (2® 4+ 3z + 1)(4z — 3)
= (4x3—7m+3) + (4x3+9x2—5x—3)
= 8z° + 927 — 12z.

The uninformed usually assume that “the derivative of the product is
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the product of the derivatives.” Thus we are tempted to say that 3/ =
(2z + 3) (4 — 3) = 822 + 62 — 9. Obviously this is not correct.

Example 2.4.6 Using the Product Rule with a product of three func-
tions.

Let y = 22 In(x) cos(z). Find 3//.

Solution. We have a product of three functions while the Product Rule
only specifies how to handle a product of two functions. Our method
of handling this problem is to simply group the latter two functions to-
gether, and consider y = 23 - [In(x) cos(z)]. Following the Product Rule,
we have

y = d (1;3) In(x) cos(z) + (mg)%(ln(x) cos(x))

dx

To evaluate %(In(m) cos(x)), we apply the Product Rule again:
y’ = 32% [In(x) cos(x)] + (2%) %cos(a:) + In(z)(—sin(z))
= 32%In(x) cos(z) + :1:3% cos(z) + 22 In(z)(— sin(x)).

Recognize the pattern in our answer above: when applying the Product
Rule to a product of three functions, there are three terms added to-
gether in the final derivative. Each term contains only one derivative of
one of the original functions, and each function’s derivative shows up in
only one term. It is straightforward to extend this pattern to finding the
derivative of a product of four or more functions.

Ultimately though, we would simplify our final computation to:

y' = 327 In(z) cos(z) + x? cos(z) + —2® In(z) sin(z)
If you check this answer with a cas, it may factor and give the answer:

/

y' = —2? [zIn(z) sin(z) + cos(z) + 3In(z) cos(z)]

We consider one more example before discussing another derivative rule.
Example 2.4.7 Using the Product Rule.
Find the derivatives of the following functions.

1. f(z) =zIn(x)

2. g(x)=zIn(z) —x

Solution. Recalling that the derivative of In(z) is 1/, we use the Prod-
uct Rule to find our answers.

1. Applying the Product Rule:

d
S-(@hn(z)) =1-In(2) +z-1/z

=In(z)+ 1.
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2. Using the result from above, we compute

d
%(xln(x) —z)=In(z)+1-1
= In(x).

This seems significant; if the natural log function In(z) is an important
function (it is), it seems worthwhile to know a function whose derivative
is In(x). We have found one. (We leave it to the reader to find another;
| acorrect answer will be very similar to this one.)

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 2.4.8 Quotient Rule.

Let f and g be differentiable functions defined on an open interval I,
where g(z) # 0on I. Then f/g is differentiable on I, and

4 (10 _ s/ o) fie
dz \ g(x) g(x)? ‘

The Quotient Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fraction’s numerator
and denominator as “HI” and “LO”, respectively. Then

d(HI)_ LO - dHI — HI - dLO

’

dz \ LO LOLO

read “low dee high minus high dee low, over low low.” Said fast, that phrase can

roll off the tongue, making it easy to memorize. The “dee high” and “dee low”

parts refer to the derivatives of the numerator and denominator, respectively.
Let’s practice using the Quotient Rule.

Example 2.4.9 Using the Quotient Rule.

2 .
Let f(z) = g5y Find f'(2).
Solution. Directly applying the Quotient Rule gives:

d ( 512 ) _sin(z) - 4 (522) — 5a? - 4L (sin(z))

da \ sin(z) sin? ()
10z sin(z) — 522 cos(x)
B sin?(z) '

The Quotient Rule allows us to fill in holes in our understanding of derivatives
of the common trigonometric functions. We start with finding the derivative of
the tangent function.

Example 2.4.10 Using the Quotient Rule to find -& (tan(z)).

Find the derivative of y = tan(z).

Solution. At first, one might feel unequipped to answer this question.
But recall that tan(z) = sin(x)/ cos(z), so we can apply the Quotient
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Rule.

cos(m)%(sin(m)) - sin(z)%(cos(x))

cos?(x)
cos(z) cos(x) — sin(z)(— sin(x))
cos?(x)
_ cos?(z) + sin*(z)
N cos2(x)
1
cos?(x)

= sec?(z).

This is a beautiful result. To confirm its truth, we can find the equation of
the tangent line to y = tan(z) at z = 7 /4. The slope is sec? (7 /4) = 2;
|y = tan(z), along with its tangent line, is graphed in Figure 2.4.11.

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sin(z) in Exam-
ple 2.1.19 and stated the derivative of the cosine function in Theorem 2.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 2.3.1 and the Quotient Rule.

Theorem 2.4.12 Derivatives of Trigonometric Functions.

1. %(sin(m)) = cos(r) 4. %(cot(m)) = —csc?(z)
2. %(cos(x)) = —sin(x) 5. %(sec(x)) = sec(x) tan(z)
3. %(tan(w)) = sec?(z) é. %(csc(m)) = —csc(x) cot(x)

To remember the above, it may be helpful to keep in mind that the deriv-
atives of the trigonometric functions that start with “c” have a minus sign in
them.

Example 2.4.13 Exploring alternate derivative methods.

In Example 2.4.9 the derivative of f(x) = % was found using the

Quotient Rule. Rewriting f as f(z) = 522 csc(z), find f’ using Theo-
rem 2.4.12 and verify the two answers are the same.

Solution. We found in Example 2.4.9 that f/(z) = 12 sin(2) 507 cos(z)

sin?(x)
We now find f’ using the Product Rule, considering f as f(z) =
522 csc(x).
f(z) = %(5:52 cse(x))
= 5x2i(csc(x)) + 4 (527) csc(x)
dx dx

= 527 (—csc(z) cot(x)) + 10z csc(x)  (now rewrite trig functions)

10 ¥

ot

Rk
\ |
k)
SERES

—10

Figure 2.4.11 A graph of y = tan(xz)
along with its tangent line at z = 7 /4
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—1  cos(x) 10z
sin(z) sin(z) = sin(x)
—5r%cos(x) 10w .
= — + — (get common denominator)
sin (x) sm(a:)

10z sin(z) — 522 cos(x)

= 522

sin?(z)

Finding f’ using either method returned the same result. At first, the
answers looked different, but some algebra verified they are the same.
In general, there is not one final form that we seek; the immediate result
from the Product Rule is fine. Work to “simplify” your results into a form
that is most readable and useful to you.

The Quotient Rule gives other useful results, as shown in the next example.
Example 2.4.14 Using the Quotient Rule to expand the Power Rule.

Find the derivatives of the following functions.

1
1 f(z)= Z
, 1 L
2. f(x)= ot where n > 0 is an integer.

Solution. We employ the Quotient Rule.
1.

/ —_
nl.nfl
IZn
- n
- 7xn+1 :

1
"

The derivative of y = turned out to be rather nice. It gets better. Con-

sider:
d (1 d, _,
=)= (z7") (apply result from Example 2.4.14)
— _nLH (rewrite algebraically)
x
= —pg~ (D
= —pz "t

This is reminiscent of the Power Rule: multiply by the power, then subtract
1 from the power. We now add to our previous Power Rule, which had the re-
striction of n > 0.
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Theorem 2.4.15 Power Rule with Integer Exponents.

Let f(x) = a™, where n # 0 is an integer. Then
fl(x)=n-z" 1

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend-
ing on how the function is treated. One of the beautiful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivative. We demonstrate this concept in an example.

Example 2.4.16 Exploring alternate derivative methods.

Let f(z) = % Find f'(x) in each of the following ways:
1. By applying the Quotient Rule,

2. by viewing f as f(z) = (2? — 3z +1) - ™! and applying the
Product Rule and Power Rule with Integer Exponents, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.
Solution.

1. Applying the Quotient Rule gives:
x-di(xQ —333—1—1) - (x2 —3m—|—1) %(Jﬁ)

f(z) = “ 72
- (20-3)— (22 =3z +1)-1
z? -1
1

2. Byrewriting f, we can apply the Product Rule and Power Rule with
Integer Exponents as follows:

fl(z) = (2% =3z +1) %(x’l) - %(ﬁ —3z+ 1)z

=@2*-3z+1) (-1)z *+(2z-3) 2!
2> —-3r+1 2rv-3
—~ +

2 x
22 —3x+1 22°2 -3z
- 2 + 2
T T
x?—1 1
T2 :1_9’

the same result as above.

3. Asz # 0, we can divide through by « first, giving f(z) =2 — 3+
z~1. Now apply the Power Rule with Integer Exponents.

) =1~

the same result as before.
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Example 2.4.16 demonstrates three methods of finding f’. One s hard pressed
to argue for a “best method” as all three gave the same result without too much
difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f’, including:

1
=2
-2z -3)— (22 =3z +1)-1

22
(z° =3z +1) (12 >+ (22 —3) -z~ .

They are equal; they are all correct; only the first is “simple.” Work to make
answers simple.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo-
rize the derivatives of a certain set of functions, such as “the derivative of sin(z)
is cos(z).” The Sum/Difference Rule, Constant Multiple Rule, Power Rule with
Integer Exponents, Product Rule and Quotient Rule show us how to find the de-
rivatives of certain combinations of these functions. The next section shows how
to find the derivatives when we compose these functions together.
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2.4.1 Exercises

Terms and Concepts

1. (OTrue OFalse) The Product Rule states that -& (22 sin(z)) = 2z cos(z).
2 __ cos(x)
2. (O True [OFalse) The Quotient Rule states that (SI:(JU)) 5 -
3. (O True [ False) The derivatives of the trigonometric functions that start with “c” have minus signs in
them.

What derivative rule is used to extend the Power Rule to include negative integer exponents?

(OTrue [ False) Regardless of the function, there is always exactly one right way of computing its deriv-

ative.
6. In your own words, explain what it means to make your answers “clear.”
Problems

Exercise Group.
(a) Use the Product Rule to differentiate the function.
(b) Manipulate the function algebraically and differentiate without using the Product Rule.

(c) Show that the two derivatives are equivalent.
7. f(z)=z(a + 32) 8 flx)=2
9. f(s)=(2s—1)(s+4) 10. f(z) = (22 +5) (3 —2?)

Exercise Group.
(a) Use the Quotient Rule to differentiate the function.
(b) Manipulate the function algebraically and differentiate without using the Quotient Rule.

(c) Show that the two derivatives are equivalent.

11, f(z) = % 12.  f(z) = 13'2;22952
13, f(x) = % 14, f(z) = L=

Exercise Group. Compute the derivative of the given function.

15. k(y) = ysin(y) 16. k(t) =t cos(¢)

17. plq) = e?In(q) 18. f(y)= (CSC( ) —5)
_ t+8 P

19. f(t) =2 20. 9(9) = s

21. h(y) = csc(y) —e¥ 22. h(t) =tan(t)In(t)

. ] == - - = +9

23. j(q) =T7¢" —6q—6 24, k(y) =

25. k(r)=(5r+Tr+3)e" 26. p(z) = 2=

27. p(z) = (82° — 2222 + bz) grbr 2+ 28. f(r)= (tan( )+er)

29. g(2) = il 30. g(6) = 0 sec(9) + =

31, A(r) = COtT(T) + tanT(r) 32. j(z) = e3(cos(n/6) — 1)

33. j(z) = Tz°e” — sin(x) cos(z) 34. k(r)= %
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35. p(z) = 2*In(z) cos(z) 36. p(x) =9z cos(x)tan(x)

Exercise Group. Find the equations of the tangent and normal lines to the graph of g at the indicated point.

37. g(z) =e"(2? —7) at (0,—7) 38. g(x) = wcos(x)at (3, 3)
39. g(z) = 2 at (—5,—25) 40. g(x) = @227 4t (0, 0)

Exercise Group. Find the x-values where the graph of the function has a horizontal tangent line.

41, f(z) =22 — 17z — 29 42.  f(x) = wsin(x)on[—1,1]
43. f(IIJ) = 732;+3 44, f(a:) = zgi;

Exercise Group. Find the requested higher order derivative.
45.  f"(z), where f(z) = xsin(z) 46. ™M (x), where f(z) = xsin(x)

47.  f"(x), where f(z) = csc() 48. £ (z), where
f(z) = (23 — 4o — 3) (2% — 9z — 2)
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2.5 The Chain Rule

We have covered almost all of the derivative rules that deal with combinations of
two (or more) functions. The operations of addition, subtraction, multiplication
(including by a constant) and division led to the Sum/Difference Rule, the Con-
stant Multiple Rule, the Power Rule with Integer Exponents, the Product Rule
and the Quotient Rule. To complete the list of differentiation rules, we look at
the last way two (or more) functions can be combined: the process of composi-
tion (i.e. one function “inside” another).

One example of a composition of functions is f(x) = cos(z?). We currently
do not know how to compute this derivative. If forced to guess, one might guess
f'(z) = —sin(2x), where we recognize — sin(z) as the derivative of cos(x) and
2z as the derivative of 22. However, this is not the case; f/(z) # — sin(2x). One
way to see this is to examine the graph of y = cos(z?) in Figure 2.5.1 and its
tangent line at x = 7 /2. Clearly the slope of the tangent line there is nonzero,
but —2sin(2 - 7/2) = 0. So it can’t be correct to say that y/ = — sin(2z).

In Example 2.5.7 we'll see the correct way to compute the derivative of
sin (ZB2) which employs the new rule this section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func-
tions. We write (fog)(z) or f(g(x)),read as “ f of g of z,” to denote composing
f with g. In shorthand, we simply write f o g or f(g) and read it as “f of g." Be-
fore giving the corresponding differentiation rule, we note that the rule extends
to multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 2.5.2 Exploring similar derivatives.

Find the derivatives of Fy(z) = (1 — z)?, Fa(z) = (1 — z)3, and
F3(z) = (1 — 2)* (We'll see later why we are using subscripts for dif-
ferent functions and an uppercase F'.)

Solution. In order to use the rules we already have, we must first ex-
pand each function as

Fi(z) =1— 2z + 2?
Fy(x) =1—3z + 32> — 2
Fy(x) =1 — 4z + 62% — 42% + 2*
It is not hard to see that:
Fl(z)=-2+42z
Fy(x) = —3 4 62 — 322
Fj(x) = —4 4 122 — 1222 + 423
An interesting fact is that these can be rewritten as:
Fi(z) = -2(1 - )
Fy(z) = -3(1 — 2)?
Fj(x) = —4(1 —z)?
A pattern might jump out at you; note how the we end up multiplying
by the old power and the new power is reduced by 1. We also always
multiply by (—1).

Recognize that each of these functions is a composition, letting g(x) =
1—a:

Fi(z) = fi(g(x)), where fi(z) = a?,

kg

Figure 2.5.1 A graph of y = cos(x?)
and a tangent line at 7/2
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When composing functions, we

F — , where — 23 need to make sure that the new
2(z) = f2(g(@)) fa(®) a:4 function is actually defined. For
Fs(z) = f3(g(2)), where f3(z) = a”. instance, consider f(z) = z

and g(z) = —2? — 1. The do-
main of f excludes all negative
numbers, but the range of g is
only negative numbers. There-

We'll come back to this example after giving the formal statements of
the Chain Rule; for now, we are just illustrating a pattern.

Theorem 2.5.3 The Chain Rule. fore the composition f(g(x)) =
v —x2 — 1is not defined for any

Let g be a differentiable function on an interval I, let the range of g be x, and hence is not differentiable.

a subset of the interval J, and let f be a differentiable function on J. The statement of Theorem 2.5.3
Theny = f(g(z)) is a differentiable function on I, and takes care to ensure this problem
, , , does not arise, but our focus is
= f(9(2)) - (). vt
Y =1 more on the derivative result than

. ) ; onthe domain/range conditions.
Here is the Chain Rule in words:

The derivative of the outside function, evaluated at the inside func-
tion, multiplied by the derivative of the inside function.

To help understand the Chain Rule, we return to Example 2.5.2.

Example 2.5.4 Using the Chain Rule.

Use the Chain Rule to find the derivatives of the functions F; (), F»(x),
and F3(x), as given in Example 2.5.2.

Solution. Example 2.5.2 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confu-
sion, we ignore most of the subscripts here.

Fi(z)=(1-2)>  Wefound that

y=01-2)=f(g()),

where f(z) = 2% and g(z) = 1 — x. To find
1y’, we apply the The Chain Rule. We need to
note that f'(x) = 2z and ¢'(x) = —1.

Part of the The Chain Rule uses f’(g(x)). This
means substitute g(z) for x in the equation
for f'(x). Thatis, f'(x) = 2(1 — x). Finishing
out the The Chain Rule we have

y' = f'(9(x) ¢'(x)
=2(1-2)-(-1)
=-2(1—-x)
=2z — 2.
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F(z)=(01-2)3 Lety = (1—-2)% = f(g(x)), where f(z) = 2°
and g(z) = (1 — z). We have f'(z) = 322,
so f'(g(x)) = 3(1 — x)2. The The Chain Rule
then states

y' = fg(x) g (x)
—3(1—2)2-(~1)
=-3(1 — )%
F3(z) = (1—2)*  Finally,wheny = (1—2)% wehave f(x) = 24
and g(x) = (1 — ). Thus f/(x) = 423 and
f'(g(x)) = 4(1 — z)3. Thus

v =rg@)-g'=)
=4(1—-2)*- (-1)
= —4(1 — )3,

Example 2.5.4 demonstrated a particular pattern: when f(z) = z™, then
y' =n-(g(z))""t - ¢'(x). Thisis called the Generalized Power Rule.

Theorem 2.5.5 Generalized Power Rule.

Let g(x) be a differentiable function and let n # 0 be an integer. Then

2 (gla)) = n- (o)™ o (2).

This allows us to quickly find the derivative of functions like y = (322 — 5z +
7+ sin(x))2°. While it may look intimidating, the Generalized Power Rule states
that

y' =20(3z% — 5z + 7+ sin(x))* - (6z — 5 + cos(z)).

Treat the derivative-taking process step-by-step. In the example just given,
first multiply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

We now consider more examples that employ the The Chain Rule.

Example 2.5.6 Using the Chain Rule.

Find the derivatives of the following functions:

1. y = sin(2x). 2.y = In(4a3 — .y=e
272

~—

Solution.

1. Consider y = sin(2z). Recognize that this is a composition of
functions, where f(z) = sin(z) and g(z) = 2z. Thus

Y = f'(g(x))-g'(x)

= cos(2z) - %(233)
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= cos(2z) - 2
= 2cos(2x).

2. Recognize that y = In(42® — 22%) is the composition of f(z) =
In(x) and g(z) = 423 — 222. Also, recall that

d 1
L n(z)) = -.
L i) = 1
This leads us to:
1 d
b - .z 4 3 _ 2 2
Y= 4s o2 dm(x x)
1 2
= g (1207 )
1227 —4x
T 43 — 222
_ dx(3r—1)
- 22(222 — 1)
23z —1)
w2z

Note that In(42® — 2z%) = In(42%(z — 1/2)) was only defined
2(30—1)
222 —x

forz > 1/2,sotheresultof y/ = is only valid for x > 1/2

as well.

3. Recognize that y = e~ is the composition of f(z) = e* and

g(r) = —2%. Remembering that f’(z) = €%, we have
2 d
y/ —e . %(7‘%2)
—e . (—2x)
= 2z

Example 2.5.7 Using the Chain Rule to find a tangent line.

Let f(x) = cos(z?). Find the equation of the line tangent to the graph
of fatz =1.
Solution. The tangent line goes through the point (1, f(1)) ~ (1,0.54)
with slope f’(1). To find f/, we need the The Chain Rule.
f(z) = —sin(z?) - (22) = —2xsin(z?). Evaluated at = = 1, we have
f'(1) = =2sin(1) = —1.68. Thus the equation of the tangent line is
approximated by

y~ —1.68(z — 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.8.

The The Chain Rule is used often in taking derivatives. Because of this, one
can become familiar with the basic process and learn patterns that facilitate find-
ing derivatives quickly. For instance,

p 1 d 4 (anything)
——(In(anything)) = ———— - — (anything) = ="~ ==.
4 (In(anvthing)) anything  dx (anything) anything

0.5

, I,

- 2 [ 1\ o2l |3
~05
1

Figure 2.58 f(x) = cos(x?)

sketched along with its tangent line
atx =1
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A concrete example of this is

14 ? T
i(In(3ac15 — cos(z) + €7)) = 50 7 + sin(z) + e

dx 3z —cos(x) +er

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the numer-
ator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In gen-
eral, instead of writing “anything”, we use u as a generic function of z. We then

say

'U/

d
—(in(u)) = —.

The following is a short list of how the The Chain Rule can be quickly applied
to familiar functions.

L L)y =n-ut u. 4. 4 (cos(u)) = —sin(u) - v’
2. Lev)y=ev-u.
3. 4L (sin(u)) = cos(u) - v'. 5. L (tan(u)) = sec?(u) - v'.

Of course, the The Chain Rule can be applied in conjunction with any of the
other rules we have already learned. We practice this next.

Example 2.5.9 Using the Product, Quotient and Chain Rules.
Find the derivatives of the following functions.

1. f(z) = a°sin(223). 2. f(z) = 5z

e—e?’

Solution.

1. We must use the Product Rule and The Chain Rule. Do not think
that you must be able to “see” the whole answer immediately;
rather, just proceed step-by-step.

f/(x) =2 dd (sin(22?)) + sin(22?) - di(f)

=2° (cos(2x3) : ;;(2363)) + 5 (sin(227))
=P (63:2 cos (23:3) ) + 5$4(sin (23:3) )
= 627 cos(22%) + 5z sin(22?).

2. We must employ the Quotient Rule along with the The Chain Rule.
Again, proceed step-by-step.

e %(Bx?’) — 5. % (e‘zz)
()

e 1522 — 5a3 e A (—g?)
()

e (1522) — 5a® ((72@67302)

(=)

f'(z) =
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e (102* + 1522)

—2x2

e
= ¢ (102" + 1527).

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
Rule and The Chain Rule together, just consider the first part of the Product Rule
at first: f(x)g’(z). Just rewrite f(z), then find ¢’(x). Then move on to the
f'(z)g(x) part. Don't attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

We can also employ the The Chain Rule itself several times, as shown in the
next example.

Example 2.5.10 Using the Chain Rule multiple times.

Find the derivative of y = tan® (623 — 7x).
Solution. Recognize that we have the g(x) = tan (623 — 7z) function
“inside” the f(x) = #® function; that is, we have y = (tan (6% — 7x))5.
We begin using the Generalized Power Rule; in this first step, we do not
fully compute the derivative. Rather, we are approaching this step-by-
step.

y =5 (tan(62” — 733))4 g (z).

We now find ¢’(z). We again need the The Chain Rule;

. d ]
g (x) = sec*(6z° — Tz) - e (62° — Tz).
= sec? (62 — Tz) - (182% — 7).
Combine this with what we found above to give

y =5 (tan(62° — 7z))" - sec® (62° — 7x) - (182 — 7)
= (902® — 35) sec® (62° — Tz) tan* (62® — 7z).

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many ver-
tical asymptotes and 623 — 7z grows so very fast. The important thing
to learn from this is that the derivative can be found. In fact, it is not
“hard”; one can take several simple steps and should be careful to keep
track of how to apply each of these steps.

It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 2.5.11 Using the Product, Quotient and Chain Rules.

Find the derivative of f(z) = %Jw

Solution. This function likely has no practical use outside of demonstrat-
ing derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the The Chain Rule
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three times.
f'(x)
= (et ) (o (-3t 2
# 1 cos(a) ) - 2ain(e™) -cos(e™) - (1) |
~ (reos(a?) — sin())

/(in(a? + 52%))?

The reader is highly encouraged to look at each term and recognize why

it is there. (i.e., the Quotient Rule is used; in the numerator, identify

the “LOdHI” term, etc.) This example demonstrates that derivatives can

be computed systematically, no matter how arbitrarily complicated the
| functionis.

2x 4 2023
22 + bt

The The Chain Rule also has theoretic value. That is, it can be used to find the
derivatives of functions that we have not yet learned as we do in the following
example.

Example 2.5.12 The Chain Rule and exponential functions.

Use the Chain Rule to find the derivative of y = 2*.

Solution. We only know how to find the derivative of one exponential
function, y = e®. We can accomplish our goal by rewriting 2 in terms of e.
Recalling that e® and In(z) are inverse functions, we can write 2 = ¢'?
and so

y= 2T (eln 2)z _ 6ac(ln(2))Y

using the “power to a power” property of exponents.
The function is now the composition y = f(g(x)), with f(z) = e® and
g(x) = z(In(2)). Since f'(x) = e” and ¢'(z) = In(2), the The Chain
Rule gives

y = ") . |n 2,

Recall that the e*("(2)) term on the right hand side is just 2%, our original
function. Thus, the derivative contains the original function itself. We
have

y' =y-In(2) =27 -In(2).

We can extend this process to use any base a, wherea > Oand a # 1. All
we need to do is replace each “2” in our work with “a.” The Chain Rule,
coupled with the derivative rule of e¢*, allows us to find the derivatives
of all exponential functions.

The comment at the end of previous example is important and is restated
formally as a theorem.
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Theorem 2.5.13 Derivatives of Exponential Functions.

Let f(z) = a”, fora > 0,a # 1. Then f is differentiable for all real
numbers (i.e., differentiable everywhere) and

Alternate Chain Rule Notation. It is instructive to understand what the The
Chain Rule “looks like” using “%” notation instead of 3’ notation. Suppose that
y = f(u) is a function of u, where u = g(x) is a function of z, as stated in
Theorem 2.5.3. Then, through the composition f o g, we can think of y as a
function of x, as y = f(g(«x)). Thus the derivative of y with respect to « makes
sense; we can talk about %. This leads to an interesting progression of notation:

y' = f(9(x))-g'(x)

d

ﬁ =1y'(u) - u'(x) sincey = f(u) and u = g(x)

d dy d

o4 _4 (using “fractional notation” for the derivative)
dx du dx

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy dy
de  dz’

Itis important to realize that we are not canceling these terms; the derivative
notation of Z—Z is one symbol. It is equally important to realize that this notation
was chosen precisely because of this behavior. It makes applying the The Chain
Rule easy with multiple variables. For instance,

dy dy dO dA

dt — dO dA dt
where () and A are any variables you'd like to use.

One of the most common ways of “visualizing” the The Chain Rule is to con-
sider a set of gears, as shown in Figure 2.5.14. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves

twice. That is, the rate at which the u gear makes a revolution is twice as fast as
the rate at which the = gear makes a revolution.
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Using the terminology of calculus, the
rate of u-change, with respect to z, is
du =2,
Likewise, every revolution of u causes
3 revolutions of y: % = 3. How does
y change with respect to x? For each
revolution of x, y revolves 6 times;
that is,
dy dy du
dr  du dx =2:3=6
We can then extend the The Chain
Rule with more variables by adding
more gears to the picture.

Figure 2.5.14 A series of gears to

demonstrate the Chain Rule. Note

dy _ dy  du
howdmidu dx

It is difficult to overstate the importance of the The Chain Rule. So often the
functions that we deal with are compositions of two or more functions, requir-
ing us to use this rule to compute derivatives. It is also often used in real life
when actual functions are unknown. Through measurement, we can calculate
(or, approximate) % and ‘;—Z. With our knowledge of the The Chain Rule, we can
find 2.

In Section 2.6, we use the The Chain Rule to justify another differentiation
technique. There are many curves that we can draw in the plane that fail the
“vertical line test.” For instance, consider 22 + y2 = 1, which describes the unit
circle. We may still be interested in finding slopes of tangent lines to the circle
at various points. Section 2.6 shows how we can find % without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.
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2.5.1 Exercises

Terms and Concepts

(O True
(O True
(O True
(O True
(O True

[ False)
[ False)
[ False)
[J False)
[ False)

110

The Chain Rule describes how to evaluate the derivative of a composition of functions.

n—1

The Generalized Power Rule states that - (g(z)") = n (g(z))

a4 (In(2%)) = z=-
437~ 113"

dz der dt

dy — dt "~ dy*

AN U T o

(O True O False)
Chain Rules.

Taking the derivative of f(x) = 22 sin(5z) requires the use of both the Product and

Problems

Exercise Group. Compute the derivative of the given function.

7. flo)= (42® — )" 8. f(t)=(3t—2)
9.  g(6) = (sin(f) + cos(h))3 10.  h(t) = ¥+
1. j(@) = (In(@) - 2*)" 12 j(q) =27

(
13. 14. p(t) = cos(5t)

15. p(q) = tan(2q)
17. g(t) =sin(t* + %)

16.  f(
18.  g(q) = cos’(7q)
(

19. h(y) = cos®(y* + 3y — 3) 20. j(t) = In(cos(t))
21, j(q) = In(¢®) 22, k(y) = 3In(y)
23. p(t) = 6t 24, p(Z) — QCSC(z)
25. f(x) =28 26. g(t) = 372
27. h(w) = £ 28, h(y) = T8
7‘2 _ 3
29. j(r) = 567;7“ 30. k(w)=w" cot(5w)
31 p(x) = (22 +42)° (72 + 2)° 32. m(r) =sin(8 — 4r) cos(6r + r?)

33. m(w) = cos(4w — 5)sin(9 + Tw) 34. f(z) = sin(1)
_ (6r+4) 2
3. 90 =Gy 3. h() = 5

Exercise Group. Find the equations of tangent and normal lines to the graph of the function at the given point. Note:
the functions here are the same as in Exercises 7-10.

37. f(z) = (42® — x)lo atz =0
39. g(z) = (sin(z) + cos(z))? at x = /2.

38. f(r)=(3z—-2)P5atx=1

40. h(z) =3t laty = —1

41. Compute d%(ln(ka:)) two ways. First by using the Chain Rule. Second, by using the logarithm rule In(ab) =

In(a) 4 In(b) and then taking the derivative.

Compute - (In(z*)) two ways. First by using the Chain Rule. Second, by using the logarithm rule In(a?) =

pln(a) (for positive a) and then taking the derivative.

42,
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2.6 Implicit Differentiation

In the previous sections we learned to find the derivative, g—z, or y', when y is

given explicitly as a function of x. That is, if we know y = f(z) for some function
f, we can find y//. For example, given y = 3x2 — 7, we can easily find 4/ = 6x.
(Here we explicitly state how y depends on z. Knowing z, we can directly find
y.)

Sometimes the relationship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that 22 — y = 4. This equality defines a
relationship between x and y; if we know z, we could figure out y. Can we still
find y'? In this case, sure; we solve for y to get y = 22 — 4 (hence we now know
1y explicitly) and then differentiate to get vy’ = 2.

Sometimes the implicit relationship between = and y is complicated. Sup-
pose we are given sin(y) + v = 6 — z3. A graph of this implicit relationship
is given in Figure 2.6.1. In this case there is absolutely no way to solve for y in
terms of elementary functions. The surprising thing is, however, that we can
still find 3/’ via a process known as implicit differentiation.

2.6.1 The method of implicit differentiation

Implicit differentiation is a technique based on the The Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be functions of z. Then

L (Flol@)) = o)) o' (@),

Suppose now that y = g(x). We can rewrite the above as

LU =Wy o W)= FW) P 26

These equations look strange; the key concept to learn here is that we can
find 1/ even if we don't exactly know how y and z relate.
We demonstrate this process in the following example.

Example 2.6.2 Using Implicit Differentiation.

Find ¢/ given that sin(y) + y® = 6 — 23.
Solution. We start by taking the derivative of both sides (thus maintain-
ing the equality.) We have:

d , . 3 d 3
—(sin = —(6— .
dx( (y)+y) dx( x)

The right hand side is easy; it returns —3z2.

The left hand side requires more consideration. We take the derivative
term-by-term. Using the technique derived from Equation (2.6.1) above,

we can see that
/

d , .

—(sin =cos(y) - y'.

75 Sin(®)) W) -y
We apply the same process to the 3 term.

%(y?’) = Lg(=)3(y)2 -y

Figure 2.6.1 A graph of the implicit re-
lationship sin(y) + y* = 6 — 2®
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Putting this together with the right hand side, we have
cos(y)y’ + 3y%y = -3z

Now solve for 3/’. It's important to treat 3’ as an algebraically indepen-
dent variable from y and x.

cos(y)y’ + 3%y = —32>

(cos(y) + 3y*) v/ = —32°
, —322

v= cos(y) + 3y?

This equation for 3y’ probably seems unusual for it contains both x and y
terms. How is it to be used? We'll address that next.

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com-
puting the corresponding y value. With an implicit function, one often has to
find = and y values at the same time that satisfy the equation. It is much eas-
ier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point (v/6,0) lies on the graph of
the implicit function sin(y) + v = 6 — 2. Plugging in 0 for y, we see the left
hand side is 0. Setting z = /6, we see the right hand side is also 0; the equation
is satisfied. The following example finds the equation of the tangent line to this
function at this point.

Example 2.6.3 Using implicit differentiation to find a tangent line.

Find the equation of the line tangent to the curve of the implicitly de-
fined function sin(y) + y* = 6 — 2 at the point (V/6,0).
Solution. In Example 2.6.2 we found that

2
p —3x

v = cos(y) + 3y?

We find the slope of the tangent line at the point (v/6, 0) by substituting
V/6 for 2 and 0 for y. Thus at the point (V/6, 0), we have the slope as

_3(V8)T _ -3VE
Y7 os(0)+3-02 1 0

Therefore the equation of the tangent line to the implicitly defined func-
tion sin(y) + y® = 6 — 2® at the point (/6,0) is

y:—3<°/%(x— \/6) £ 0~ —991z + 18.

The curve and this tangent line are shown in Figure 2.6.4.

This suggests a general method for implicit differentiation. For the steps be-
low assume y is a function of z.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply

Figure 2.6.4 The function sin(y) +
y3 = 6 — 22 and its tangent line at
the point (v/6,0)
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except that, because of the Theorem 2.5.3, we need to multiply each term
by y'.

2. Get all the 3’ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out 3/; solve for 3’ by dividing.

(Practical Note: when working by hand, it may be beneficial to use the sym-
bol % instead of 3/, as the latter can be easily confused for y or y'.)

Example 2.6.5 Using Implicit Differentiation.

Given the implicitly defined function y® + 2%y* = 1 4 2z, find 3//.

Solution. We will take the implicit derivatives term by term. The deriv-

ative of 3 is 3y2y/.

The second term, x2y4, is a little tricky. It requires the Product Rule

as it is the product of two functions of x: 22 and y*. Its derivative is 5ty

22(4y3y") + 2xy*. The first part of this expression requires a 3/’ because g

we are taking the derivative of a y term. The second part does not re- = : ‘ - ‘ i

quire it because we are taking the derivative of z2.

The derivative of the right hand side is easily found to be 2. In all, we

get: _
3y2y + 4x?ySy’ + 2xy* = 2.

Move terms around so that the left side consists only of the ' terms and
the right side consists of all the other terms:

3y%y + 42Pyy =2 — 2ayt. 10T

, ) Figure 2.6.6 A graph of the implicitly
Factor out ¢’ from the left side and solve to get defined function 3 + 22y* = 1+ 2z
along with its tangent line at the point

2 — 2xyt
’ zry (0,1)

v = 3y2 + 4a2y3’

To confirm the validity of our work, let’s find the equation of a tangent
line to this function at a point. It is easy to confirm that the point (0, 1)
lies on the graph of this function. At this point, 3/ = 2/3. So the equa-
tion of the tangent line is y = 2/3(x — 0) 4+ 1. The function and its
tangent line are graphed in Figure 2.6.6.

Notice how our curve looks much different than for functions we have
seen. For one, it fails the vertical line test, and so the complete curve is
not truly representing y as a function of x. But when we indicate we are
interested in the derivative at (0, 1), we are indicating that we want the
function defined by the small portion of the curve that passes through
(0, 1), and that small portion does pass the vertical line test. Such func-
tions are important in many areas of mathematics, so developing tools
to deal with them is also important.

Example 2.6.7 Using Implicit Differentiation.

Given the implicitly defined function sin(22y?) + y* = z + y, find .
Solution. Differentiating term by term, we find the most difficulty in
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the first term. It requires both the The Chain Rule and Product Rule.

%(sin(wzyz)) _ cos(x2y2) . %(nyZ)

= cos(2°y°) - (z*(2yy’) + 22y°)
=2 (2%yy’ + zy?) cos(z°y?).

We leave the derivatives of the other terms to the reader. After taking
the derivatives of both sides, we have

2 (z%yy’ + 2y®) cos(2?y?) +3y°y' =14y,

We now have to be careful to properly solve for 1/, particularly because
of the product on the left. It is best to multiply out the product. Doing
this, we get

22y cos(22y°)y’ + 2ay® cos(2?y?) + 3y*y =1+ y.
From here we can safely move around terms to get the following:

207y cos(2*y*)y’ + 3y*y’ — ' =1 — 2zy® cos(2*y?).
Then we can solve for 3/ to get

/

B 1 — 22y cos (:v2y2)
Y= 92y cos(z2y?) +3y2 — 1"

A graph of this implicit function is given in Figure 2.6.8.

It is easy to verify that the points (0, 0), (0,1) and (0, —1) all lie on the
graph. We can find the slopes of the tangent lines at each of these points
using our formula for 3.

e At (0,0), the slope is —1.
e At (0,1), the slopeis 1/2.
e At (0,—1), the slopeis also 1/2.

The tangent lines have been added to the graph of the function in Fig-
ure 2.6.9.

Quite a few “famous” curves have equations that are given implicitly. We can

use implicit differentiation to find the slope at various points on those curves.

We investigate two such curves in the next examples.

Example 2.6.10 Finding slopes of tangent lines to a circle.

Find the slope of the tangent line to the circle z2 + y2 = 1 at the point

(1/2,v/3/2).

Solution. Taking derivatives, we get 2z + 2y’ = 0. Solving for v’ gives:
, -z

y =—
y

This is a clever formula. Recall that the slope of the line through the ori-
gin and the point (x, y) on the circle will be y/x. We have found that
the slope of the tangent line to the circle at that point is the opposite

Figure 2.6.8 A graph of the implicitly
defined curve sin(22y?) +y3 = 2 +y

Figure 2.6.9 A graph of the implicitly

defined curve sin(2?y?) +y* = 2 +y
and certain tangent lines
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reciprocal of y/xz, namely, —z/y. Hence these two lines are always per-
pendicular.
At the point (1/2,v/3/2), we have the tangent line’s slope as

v O

A graph of the circle and its tangent line at (1/2,1/3/2) is given in Fig-
ure 2.6.11, along with a thin dashed line from the origin that is perpen-
dicular to the tangent line. (It turns out that all normal lines to a circle
pass through the center of the circle.)

This section has shown how to find the derivatives of implicitly defined func-
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu-
lar” differentiation.

One hole in our current understanding of derivatives is this: what is the de-
rivative of the square root function? That is,

d d 1/2)
— (V) =—|= =7
dx (\[) dx (
We allude to a possible solution, as we can write the square root function as
a power function with a rational (or, fractional) power. We are then tempted to
apply the Power Rule with Integer Exponents and obtain

i(xl/z) Lo L
dz 2 2z

The trouble with this is that the Power Rule with Integer Exponents was ini-
tially defined only for positive integer powers, n > 0. While we did not justify
this at the time, generally the Power Rule with Integer Exponents is proved us-
ing something called the Binomial Theorem, which deals only with positive in-
tegers. The Quotient Rule allowed us to extend the Power Rule with Integer Ex-
ponents to negative integer powers. Implicit Differentiation allows us to extend
the Power Rule with Integer Exponents to rational powers, as shown below.

Lety = 2™/ where m and n are integers with no common factors (so
m = 2andn = 5is fine, but m = 2 and n = 4 is not). We can rewrite this
explicit function implicitly as 4™ = z™. Now apply implicit differentiation.

y= m/n
yn — l,m
d, . d, .
) = @)
n ynfl_y/:m m 1
m—1
y = mr (now substitute z™/™ for )
n ynfl
m xm—l

= n T (apply lots of algebra)

m (m-n)/n

n

m

= —
n

m/n—1

The above derivation is the key to the proof extending the Power Rule with
Integer Exponents to rational powers. Using limits, we can extend this once

(1/2.V3/2)

0.5

Figure 2.6.11 The unit circle with its
tangent line at (1/2,/3/2)
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more to include all powers, including irrational (even transcendental!) powers,
giving the following theorem.

Theorem 2.6.12 Power Rule for Differentiation.

Let f(x) = a™, where n # 0 is a real number. Then f is differentiable
on its domain, except possibly at z = 0, and f'(x) = n - a1,

This theorem allows us to say the derivative of 2™ is Tz™ 1.
We now apply this final version of the Power Rule for Differentiation in the
next example, the second investigation of a “famous” curve.

Example 2.6.13 Using the Power Rule.

Find the slope of 22/ 4- 32/3 = 8 at the point (8, 8).
Solution. This is a particularly interesting curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling
around inside of a larger circle, as shown in Figure 2.6.14.
To find the slope of the astroid at the point (8, 8), we take the derivative
implicitly.

2 s 2 i3y

Z + = =0

393 3y Yy

2 . 2 _
Zy 1/3y':—§x 1/3

3
) 2—1/3
Yy =——"—"7/=
y—1/3
by Ly
y zl/3 T

Plugging in x = 8 and y = 8, we get a slope of —1. The astroid, with its
| tangent line at (8, 8), is shown in Figure 2.6.15.

2.6.2 Implicit Differentiation and the Second Derivative

We can use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find %, then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.16 Finding the second derivative.

Given 22 + y? = 1, find ZZT?; =y
Solution. We found that 3/ = % = —z/y in Example 2.6.10. To find
y"”, we apply implicit differentiation to y/'.

d
nw_ Qo

d T .
= (= (Now use the Quotient Rule.)
dx y

1=z
= _yy;(y) replace y’ with — x/y:

Figure 2.6.14 An astroid, traced out
by a point on the smaller circle as it
rolls inside the larger circle

Figure 2.6.15 An astroid with a tan-
gent line
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_y—z(=a/y)
y2
y+a°/y
Y2

While this is not a particularly simple expression, it is usable. We can see
thaty” > Owheny < 0and y” < 0 wheny > 0. In Section 3.4, we will
see how this relates to the shape of the graph.
Also, if we remember that we are only considering points on the curve

22 +y? = 1, then we know that 22 = 1 — 42. So we can replace the x>
in the expression for 3 to get

y//_ y+(1_y2)/y_ 1

y> T
which is a simpler expression. Recognizing when simplifications like this
are possible is not always easy.

2.6.3 Logarithmic Differentiation

117

Consider the function y = z%; it is graphed in Figure 2.6.17. It is well-defined
for x > 0 and we might be interested in finding equations of lines tangent and

normal to its graph. How do we take its derivative?

The function is not a power function: it has a “power” of x, not a constant.

It is not an exponential function either: it has a “base” of x, not a constant.

A differentiation technique known as logarithmic differentiation becomes
useful here. The basic principle is this: take the natural log of both sides of an
equation y = f(x), then use implicit differentiation to find y’. We demonstrate

this in the following example.
Example 2.6.18 Using Logarithmic Differentiation.

Given y = &%, use logarithmic differentiation to find ¢/'.

Solution. As suggested above, we start by taking the natural log of both
sides then applying implicit differentiation.

y=zx
In(y) = In(z™) (apply logarithm rule)
In(y) = zIn(x) (now use implicit differentiation)
d d
~(In(y)) = (@ In())
y/
p— | 2) + _
) n(z) +x
Yo n(z) +1

Yy
y =y(n(z)+1) (substitute y = 2)
y =a%(In(z) + 1)

To “test” our answer, let’s use it to find the equation of the tangent line

at x = 1.5. The point on the graph our tangent line must pass through
is (1.5,1.5'%) ~ (1.5,1.837). Using the equation for 3/, we find the

In calculus the expression 0° is
also considered well-defined and
equalto 1. Thisis easily confused
with a limit of the form 0°, which
is indeterminate. We skirt the is-
sue here.

0.5 1 1.5 2

Figure 2.6.17 A plot of y = z*
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slope as
y = 1.5 (In(1.5) + 1) ~ 1.837(1.405) ~ 2.582.

Thus the equation of the tangent line is (approximately) y ~ 2.582(x —
1.5) + 1.837. Figure 2.6.19 graphs y = z* along with this tangent line.

Implicit differentiation proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of functions. In particular, it extended the
Power Rule for Differentiation to rational exponents, which we then extended
to all real numbers. In Section 2.7, implicit differentiation will be used to find
the derivatives of inverse functions, such as iy = sin~!(z).

(1.5,1.55)

0.5 1 15 2
Figure 2.6.19 A graph of y = x” and
its tangent lineat x = 1.5
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2.6.4 Exercises

Terms and Concepts

1. In your own words, explain the difference between implicit functions and explicit functions.
2.  Implicit differentiation is based on what other differentiation rule?

3. (OTrue DO False) Implicit differentiation can be used to find the derivative of y = /.
4. (O True [OFalse) Implicit differentiation can be used to find the derivative of y = x3/4,
Problems

Exercise Group. Compute the derivative of the given function.

5. j(w) = V- = 6 k)= giiyd
p(t) = Vo +12 m(w) = y/w tan(w)
mly) = y-? 10, f(r) = r™ 4 P58 4 738
1 glw) = Y 12 hz) = Y(cos(a) + )

Exercise Group. Find Z—i{ using implicit differentiation.

13. 242 +y="7 14, 22/5 4 42/5 =1
15. cos(z) +sin(y) =1 16. L —10
y

17. 4 =10 18. 22" +2V =5

xr
19. z*tan(y) =50 20. (322 +2y%)" =2
21, (y2+2y—x)° =200 22. =17
23, Sedty 24. In(22+y?) =e

25. In(a:2 + zy + y2) =1
26. Show that % is the same for each of the following implicitly defined functions.
(@) 2y =1
(b) z2¢y% =1
(c) sin(zy) =1
(d) In(zy) =1

Exercise Group. Find the equation of the tangent line to the graph of the implicitly defined function at the indicated
points. As a visual aid, the function is graphed.
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27. Onthecurve 2%/5 4+ ¢2/5 = 1. 28. Onthecurvez* +y* = 1.
119 ¥
(v/0.6,/0.8)
0.5/ 0.5 |
(0.1,0.281)
-1 0.5 1 0.5
—0.5
-1 t
(a) At(1,0). (a) At (1,0).
(b) At (0.1,0.2811) (which does not exactly (b) At (v0.6,0.8).
lie on the curve, but is very close).
29. Onthecurve (22 + y? — 4)3 = 108y 30. Onthecurve (22 + y? + )% = 2% + 2.
:L.u
; 0.5
—4
(a) At (0,4).

(b) At (2, —/108).
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31. Onthecurve (z —2)% + (y — 3)2 = 9. 32. Onthe curve 22 + y3 + 22y = 0.

6 1Y ,,y

X
‘ x
6
7 64+3V3
(a) At (5, 5 )
(b) At (£5543,3).
Exercise Group. An implicitly defined function is given. Find %. Note: these are the same functions used in
Exercises 13 through 16.
8. 2ty +y="T 34, 22/5 4425 =1
35. cos(z) +sin(y) =1 36. £ —10
Yy

Exercise Group. Use logarithmic differentiation to find %, then find the equation of the tangent line at the indicated
z-value.

40. y=a"@+2 5ty = 1/2

x

39. y= atx =1

rz+1

r+1 (z+1)(z+2)
41. = atx =1 42. =  ‘“atx =0
YT r12 VS wrd)ara
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2.7 Derivatives of Inverse Functions

Recall that a functiony = f(z) is said to be one-to-one if it passes the horizontal
line test; that is, for two different x values x; and x5, we do not have f(z1) =
f(x2). In some cases the domain of f must be restricted so that it is one-to-one.
For instance, consider f(x) = 2. Clearly, f(—1) = f(1), so f is not one-to-one
on its regular domain, but by restricting f to (0, c0), f is one-to-one.

Now recall that one-to-one functions have inverses. That is, if f is one-to-
one, it has an inverse function, denoted by f~!, such that if f(a) = b, then
f71(b) = a. The domain of f~1 is the range of f, and vice-versa. For ease of
notation, we set g = f~! and treat g as a function of z.

Since f(a) = bimplies g(b) = a, when we compose f and g we get a nice
result:

F(9(®)) = f(a) =b.

In general, f(g(z)) = x and g(f(z)) = . This gives us a convenient way
to check if two functions are inverses of each other: compose them and if the
result is z (on the appropriate domains), then they are inverses.

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflection of f across the
line y = x. In Figure 2.7.1 we see a function graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relationship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.7.2 where the tangent line to f at the point
(1,1.5) is drawn. That line has slope 3. Through reflection across y = x, we can
see that the tangent line to g at the point (1.5, 1) has slope 1/3. Their slopes
are reciprocals. This should make sense since reflecting a line (such as a tangent
line) across the line y = x switches the x and y values. Also consider the point
(0,0.5) on the graph of f, where the tangent line is horizontal. At the point
(0.5,0) on g, the tangent line is vertical.

More generally, consider the tangent line to f at the point (a,b). That line
has slope f’(a). Through reflection across y = x, we can extend our above
observation to say that the tangent line to g at the point (b, a) should have slope
1/f'(a). This then tells us that ¢'(b) = 1/ f'(a).

The information from these two graphs is summarized in Table 2.7.3 below:

Table 2.7.3

Information about f Information about g = f~!
(1,1.5) lieson f (1.5,1) lieson g
Slope of tangent line to Slope of tangent line to
fatx=1is3 gatz =1.5is1/3
f(1)=3 g'(1.5) =1/3

We have discovered a relationship between f’ and ¢’ in a mostly graphical
way. We can realize this relationship analytically as well. Let y = g(x), where
again g = f~1. We want to find /. Since y = g(z), we know that f(y) = x.
Using the The Chain Rule and Implicit Differentiation, take the derivative of both
sides of this last equality.

d d
%(f(ll)) = @( )
fy)-v =1

1

_ =4 =4 ///
7}/ 1 2
(0.375,—0.5)

1

Figure 2.7.1 A function f along with
itsinverse f 1. (Note how it does not
matter which function we refer to as
f; the otheris f~1.)

1+

(—0.5,0.375)

7
,
,
7
,
/
,
’
A
,
2
A
,

42/ I 1
(0.375, —0.5)

|

Figure 2.7.2 Corresponding tangent
lines drawn to f and f~*
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Yy = —-—.
f(g(x))
This leads us to the following theorem.

Theorem 2.7.4 Derivatives of Inverse Functions.

Let f be differentiable and one-to-one on an open interval I, where
f'(x) #O0forall zin I, let J be the range of f on I, let g be the inverse
function of f, and let f(a) = b for some a in I. Then g is a differentiable
function on J, and in particular,

f'(g(x))

The results of Theorem 2.7.4 are not trivial; the notation may seem confusing
at first. Careful consideration, along with examples, should earn understanding.
In the next example we apply Theorem 2.7.4 to the arcsine function.

Example 2.7.5 Finding the derivative of an inverse trigonometric func-
tion.

Let y = arcsin(z) = sin~*(z). Find y using Theorem 2.7.4.
Solution. Adopting our previously defined notation, let g(z) =

arcsin(z) and f(x) = sin(z). Thus f/(z) = cos(z). Applying the theo-
rem, we have

/
90 = T 1 .
B 1
cos(arcsin(x))’
This last expression is not immediately illuminating. Drawing a figure Y
will help, as shown in Figure 2.7.6. Recall that the sine function can be >
viewed as taking in an angle and returning a ratio of sides of a right trian- V-
gle, specifically, the ratio “opposite over hypotenuse.” This means that Figure 2.7.6 A right triangle defined
the arcsine function takes as input a ratio of sides and returns an angle. by y = sin_l(:c/l) with the length
The equation y = arcsin(x) can be rewritten as y = arcsin(z/1); that of the third leg found using the

is, consider a right triangle where the hypotenuse has length 1 and the
side opposite of the angle with measure y has length x. This means the
final side has length v/1 — x2, using the Pythagorean Theorem.

Pythagorean Theorem

Therefore
cos(sin™"(2)) = cos(y)
V1 =22
1
=+v1-22
resulting in
d 1
%(al’csin(m)) = 17_332

Remember that the input x of the arcsine function is a ratio of a side of a
right triangle to its hypotenuse; the absolute value of this ratio will never be
greater than 1. Therefore the inside of the square root will never be negative.
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Inorder to make y = sin(z) one-to-one, we restrict its domain to [—7 /2, 7 /2];
on this domain, the range is [—1, 1]. Therefore the domain of y = arcsin(z) is
[—1,1] and the range is [-7/2, 7/2]. When z = %1, note how the derivative of
the arcsine function is undefined; this corresponds to the fact that as x — =+1,
the tangent lines to arcsine approach vertical lines with undefined slopes.

y 3y
LRVE]
1+ 37 2
™ (ﬁ 1)
1 23
5 A
N
‘ ¢,§ ‘ T ;}(\ xT
_m T us s -2 -1 \5// 1 2
2 1 1 2
-z
14
-z

Figure 2.7.7 Graphs of sin(z) and sin_l(:v) along with corresponding tangent
lines

In Figure 2.7.7 we see f(z) = sin(z) and f~'(z) = sin~!(x) graphed on
their respective domains. The line tangent to sin(x) at the point (77/3, \/5/2)

has slope cos(7)/3 = 1/2. The slope of the corresponding point on sin~*(z),
the point (v/3/2,7/3), is

1 1
Vi- (vt VIS
1
.
—_ 1 J—
-

verifying yet again that at corresponding points, a function and its inverse have
reciprocal slopes.

Using similar techniques, we can find the derivatives of all the inverse trigono-
metric functions. In Table 2.7.8 we show the restrictions of the domains of the
standard trigonometric functions that allow them to be invertible.

Table 2.7.8 Domains and ranges of the trigonometric and inverse trigonometric
functions

Function  Domain Range

sin(x) [—7/2,7/2] [-1,1]

sin~!(z)  [-1,1] [—7/2,7/2]

cos(z) [0, 7] [-1,1]

cos™H(z) [-1,1] [0, 7]

tan(zx) (—m/2,7/2) (—00, 00)
tan~!(z) (—o0,00) (—m/2,7/2)
csc(x) [—7/2,0) U (0,7/2] (—o0,—1]U]I1,00)
csci(z)  (—o0,—1]U[1,00)  [-7/2,0)U(0,7/2]
sec(x) [0,7/2) U (7/2,7] (=00, —1]U[1,00)
sec ! (z) (—o0,—1]U[l,00) [0,7/2)U (7/2,7]
cot(z) (0,) (—00,00)
cot™}(z) (—o0,0) (0,7)
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Theorem 2.7.9 Derivatives of Inverse Trigonometric Functions.

The inverse trigonometric functions are differentiable on all open sets
contained in their domains (as listed in Table 2.7.8) and their derivatives
are as follows:

1. %(sin_l(m‘)) = ﬁ

, a1

. %(cos (z)) = T
d, o1

3. %(tan (z)) = 22
d 1 _ 1

4. %(csc (z)) = ENCES
d, . . 1

5 %(sec (z)) = ENCES
d, . . 1

6. %(cot (z)) = e

Note how each derivative is the negative of the derivative of its “co” function.
Because of this, derivatives of sin "' (), tan~!(x), and sec ! () are used almost
exclusively throughout this text.

In Section 2.3, we stated without proof or explanation that - (In(z)) = 1.
We can justify that now using Theorem 2.7.4, as shown in the example.

Example 2.7.10 Finding the derivative of y = In(x).

Use Theorem 2.7.4 to compute - (In(z)).

Solution. View y = In(x) as the inverse of y = e*. Therefore, using
our standard notation, let f(z) = e* and g(z) = In(z). We wish to find
g'(x). Theorem 2.7.4 gives:

In this chapter we have defined the derivative, given rules to facilitate its
computation, and given the derivatives of a number of standard functions. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.11 Glossary of Derivatives of Elementary Functions.

Let f and g be differentiable functions, and let a, c and n be real numbers, a > 0, n. # 0.
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d d
1. %(c) =0 13. E(sm(x)) = cos(z)
2 %(x) _ 14, %(cos(z)) — _sin(x)
3. %(x") = ng" ! 15. %(tan(:p)) = sec?(x)
o %(f(x):l:g(x)) = f'(z) £ ¢ () 16. %(csc(m)) = —csc(x) cot(x)
5. %(C f@) =c- f(z) 17. %(Sec(:c)) = sec(x) tan(z)
d
6. (@) 9@) = F@)-9(@) +F@)-g/(@) 1B gy(cotla) = —esc(a)
d, . _ 1
7. L (f(g@) = F(o(a)) - o (@) B @) = =
d(f@) _ @ 9@)—f@) 9@ 20 L(cos () = ———
(5 @) e A
9. %(em) — et 21. %(tan_l(m)) = 1—|—1:L‘2
4 _ 1 22. i(csc_l(:zr)) S
10. %(n(a:)) = - dx lz| Vo2 — 1
11. %(ax) =In(a) - a” 23, ——(sec(x)) = W%
d 1 1
12. ——(log, z) = n@) = 24, %(cot_l(x)) = —ﬁ
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2.7.1 Exercises

Terms and Concepts

1. (O True [OFalse) Every function has an inverse.

2.  Inyour own words explain what it means for a function to be “one-to-one.”

3. If(1,10) lies on the graph of y = f(x), what can be said about the graph of y = f~1(z)?
4. 1f(1,10) lies on the graph of y = f(z) and f'(1) = 5, what can be said about y = f~!(z)?
Problems

Exercise Group. Verify that the given functions are inverses.
5 f(z)=2z+6andg(z) =iz —3
6. f(r)=a2>+6z+11,x>3andg(zr)=+v2—-2-3,2>2
7. f(z)=2c,x#bandg(z) =252, £ 0
8. f(z)=35, 2 # landg(z) = f(x)

x
Exercise Group. An invertible function f(z) is given along with a point that lies on its graph. Using Theorem 2.7.4,
evaluate (f 1) () at the indicated value.

9. The point (9,65) is on the graph of f(x) = 7z + 2. Find (f ')’ (65).

10.  The point (—6,51) is on the graph of f(x) = 2 — 2 + 3,z > 1.Find (=)' (51).

S

(=
11. The point (2”—4, S

) is on the graph of f(x) = cos(4z),0 < z < T.Find (f~!)’ (@) .
12.  The point (3,576) is on the graph of f(z) = 2® — 2722 + 2672 — 9. Find (f ')’ (576).

9

(
13. The point (2, 1) is on the graph of f(z) = H%,J: > 0. Find (f‘l)/ (3)-
(

14.  The point (0, 3) is on the graph of f(z) = 3¢*. Find (=)' (3).

Exercise Group. Compute the derivative of the given function.

15. h(w) = cos™!(4w) 16. h(x) = csc(7x)
17. j(r) =tan"1(2r) 18. k(w) = wcos™!(w)
19. p(z) = tan(x) cos~!(x) 20. f(t) =In(t)e!

21 m(z) = 2 22, f(x) = tan(V/x)

23. g(q) = csc(q%) 24. g(z) =sin(sin"'(2))

Exercise Group. Compute the derivative of the given function in two ways:
(a) By simplifying first, then taking the derivative, and
(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.
25.  f(x) =sin(sin"*(z)) 26. f(x)=tan"!(tan(z))
27.  f(z) =sin(cos™1(x)) 28. f(x) =sin(2sin"*(z))

Exercise Group. Find the equation of the line tangent to the graph of f at the indicated z value.
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29. f(z)=sin (z)atz = =3 30. f(x)=cos™!(2z)atz =

5



Chapter 3

The Graphical Behavior of Func-
tions

Our study of limits led to continuous functions, a certain class of functions that
behave in a particularly nice way. Limits then gave us an even nicer class of
functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor-
mation that continuous and differentiable functions provide.

3.1 Extreme Values

Given any quantity described by a function, we are often interested in the largest
and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 3.1.1 Extreme Values.
Let f be defined on an interval I containing c.

1. f

¢) is the minimum (also, absolute minimum) of f on I if f(c) <
x)forall zinI.

¢) is the maximum (also, absolute maximum) of f on I if f(c) >
x) forallzin 1.

—~ —~~

f
2. f
f

The maximum and minimum values are the extreme values, or extrema,
of fonI.

Consider Figure 3.1.2. The function displayed in Figure 3.1.2(a) has a max-
imum, but no minimum, as the interval over which the function is defined is
open. In Figure 3.1.2(b), the function has a minimum, but no maximum; there
is a discontinuity in the “natural” place for the maximum to occur. Finally, the
function shown in Figure 3.1.2(c)has both a maximum and a minimum; note that
the function is continuous and the interval on which it is defined is closed.

129

Note: The extreme values of a

function are “y” values, values
the function attains, not the in-
put values. However we often
say there is an extreme value at
certain input values. For exam-
ple, “sin(z) has a maximum at
/2, and the maximum of sin(x)
is1.
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(a) (b) (c)
Figure 3.1.2 Graphs of functions with and without extreme values

It is possible for discontinuous functions defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al-
ways have a maximum and minimum value.

Theorem 3.1.3 The Extreme Value Theorem.

Let f be a continuous function defined on a closed interval I = [a,b).
Then f has both a maximum and minimum value on 1.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. After the example, we will draw on lessons
learned to form a more general and powerful method for finding extreme val-
ues.

Example 3.1.4 Approximating extreme values.

Consider f(z) = 22® — 922 on I = [—1, 5], as graphed in Figure 3.1.5.
Approximate the extreme values of f.

Solution. The graph is drawn in such a way to draw attention to certain
points. It certainly seems that the smallest y-value is —27, found when
x = 3. It also seems that the largest y-value is 25, found at the endpoint
of I, x = 5. We use the word seems, for by the graph alone we cannot
be sure the smallest value is not less than —27. Since the problem asks
for an approximation, we approximate the extreme values to be 25 and
—27.

Notice how the minimum value came at “the bottom of a hill,” and the maxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [—1, 4]. The idea that the point (0, 0)
is the location of an extreme value for some interval is important, leading us to
a definition of a relative maximum. In short, a “relative max” is a y-value that’s
the largest y-value “nearby.”

Definition 3.1.6 Relative Minimum and Relative Maximum.

Let f be defined on an interval I containing c.

1. If thereis a 6 > 0 such that f(c) < f(x) for all z in I where
|z —¢c| < 0, then f(c) is a relative minimum of f. We also say
that f has a relative minimum at (¢, f(c)).

2. If thereisa d > 0 such that f(c) > f(z) for all z in I where
x —c| < 4, then f(c) is a relative maximum of f. We also say
that f has a relative maximum at (¢, f(c)).

20

(0,0) ‘ -

(=1,-11)

—20 +

(3,-27)

Figure 3.1.5 A graph of f(r) = 223 —
922 as in Example 3.1.4
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The relative maximum and minimum values comprise the relative ex-
trema of f.

We briefly practice using these definitions.

Example 3.1.7 Approximating relative extrema.

Consider f(z) = (3z* — 423 — 1222 + 5)/5, as shown in Figure 3.1.8.
Approximate the relative extrema of f. At each of these points, evaluate
fh.

Solution. We still do not have the tools to exactly find the relative ex-
trema, but the graph does allow us to make reasonable approximations.
It seems f has relative minima at x = —1 and z = 2, with values of
f(=1) = 0and f(2) = —5.4. It also seems that f has a relative maxi-
mum at the point (0, 1).

We approximate the relative minima to be 0 and —5.4; we approximate
the relative maximum to be 1.

Itis straightforward to evaluate f'(z) = £ (122% — 1222 — 24z) atz =
0,1and 2. In each case, f'(z) = 0.

Example 3.1.9 Approximating relative extrema.

2/3

Approximate the relative extrema of f(z) = (z — 1)%/° 4 2, shown in

Figure 3.1.10. At each of these points, evaluate f’.

Solution. The figure implies that f does not have any relative maxima,
but has a relative minimum at (1, 2). In fact, the graph suggests that not
only is this point a relative minimum, y = f(1) = 2 is the minimum
value of the function.

We compute f'(z) = Z(z — 1)7'/3. When z = 1, f’ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading
to a definition and a theorem.

Definition 3.1.11 Critical Numbers and Critical Points.

Let f be defined at c. The value c is a critical number (or critical value)
of fif f'(c) = 0or f'(c) is not defined.
If cis a critical number of f, then the point (¢, f(c)) is a critical point of

1.

Theorem 3.1.12 Relative Extrema and Critical Points.

Let a function f be defined on an open interval I containing c, and let
f have a relative extremum at the point (c, f(c)). Then c is a critical
number of f.

Be careful to understand that this theorem states “Relative extrema on open
intervals occur at critical points.” It does not say “All critical numbers produce
relative extrema.” For instance, consider f(z) = z3. Since f/'(z) = 322, itis
straightforward to determine that = 0 is a critical number of f. However, f
has no relative extrema, as illustrated in Figure 3.1.13.

Alternative Vocabulary. The terms
local minimum and local maximum
are often used as synonyms for
relative minimum and relative max-
imum.

As it makes intuitive sense that
an absolute maximum is also a
relative maximum, Definition 3.1.6
allows a relative maximum to oc-
cur at an interval’s endpoint.

6 1Y

Figure 3.1.8 A graph of f(z) =
(3z* — 42® — 1222 + 5)/5 as in Ex-
ample 3.1.7

3N

T
—0.5 0.5 1 1.5 2 2.5

Figure 3.1.10 A graph of f(z) = (z —
1)2/3 + 2 as in Example 3.1.9

In this text we use “critical num-
ber” and “critical value” interchange-
ably. Other textbooks reserve the
term critical value for the func-
tion value f(c), when cis a criti-
cal number.
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Theorem 3.1.3 states that a continuous function on a closed interval will have
both an absolute maximum and an absolute minimum. Common sense tells us
“extrema occur either at the endpoints or somewhere in between.” It is easy
to check for extrema at endpoints, but there are infinitely many points to check
that are “in between.” Theorem 3.1.12 tells us we need only check at the critical
points that are in between the endpoints. We combine these concepts to offer
a strategy for finding extrema.

Key Idea 3.1.14 Finding Extrema on a Closed Interval.

Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.
2. Find the critical numbers of f in [a, b].
3. Evaluate f at each critical number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We practice these ideas in the next examples.

Example 3.1.15 Finding extreme values.

Find the extreme values of f(z) = 223 + 322 — 12z on [0, 3], graphed
in Figure 3.1.16.

Solution. We follow the steps outlined in Key Idea 3.1.14. We first
evaluate f at the endpoints:

f(0)=0 f(3) = 45.

Next, we find the critical values of f on [0, 3]. f(z) = 622 + 62 — 12 =
6(z+2)(z — 1); therefore the critical values of f arexz = —2and z = 1.
Since z = —2 does not lie in the interval [0, 3], we ignore it. Evaluating
f at the only critical number in our interval gives: f(1) = —7.

Figure 3.1.17 gives f evaluated at the “important” z values in [0, 3]. We
can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is —7.

Note that all this was done without the aid of a graph; this work followed an
analytic algorithm and did not depend on any visualization. Figure 3.1.16 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We practice again.

Example 3.1.18 Finding extreme values.

Find the maximum and minimum values of f on [—4, 2], where

f(:v):{(x_l)2 r=0

z+1 >0

Solution. Here f is piecewise-defined, but we can still apply Key
Idea 3.1.14 as it is continuous on [—4, 2] (one should check to verify that

0.5 1

Figure 3.1.13 A graph of f(z) = °
which has a critical value of x = 0, but
no relative extrema

40 +
30 1
20 1

10 |

z
.5 1 1.5 2 2.5 3

Figure 3.1.16 A graph of f(z) =
22°% + 322 — 12z on [0, 3] as in Exam-
ple 3.1.15

r_flx)
0 0

1 -7
3 45

Figure 3.1.17 Finding the extreme val-
ues of f(z) = 22% + 322 — 127z in
Example 3.1.15
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lim 7(x) = F(O).

Evaluating f at the endpoints gives:
f(~4) =25 f(2)=3.

We now find the critical numbers of f. We have to define f’ in a piece-
wise manner; it is

f,(x):{Q(x—l) <0

1 >0

Note that while f is defined for all of [—4, 2], f’ is not, as the derivative of
f does not exist when z = 0. (From the left, the derivative approaches
—2; from the right the derivative is 1.) Thus one critical number of f is
z=0.

We now set f/(z) = 0. Whenz > 0, f’(z) is never 0. When z < 0,
f/(x) is also never 0, so we find no critical values from setting f’(z) = 0.
So we have three important x-values to consider: x = —4, 2 and 0. Eval-
uating f at each gives, respectively, 25, 3 and 1, shown in Figure 3.1.19.
Thus the absolute minimum of f is 1, the absolute maximum of f is 25.
Our answer is confirmed by the graph of f in Figure 3.1.20.

25ty
20
15
T f(z) 10
—4 25
0 1 5
-4 -3 -2 -1 1 2

Figure 3.1.19 Finding the extreme
values of a piecewise-defined  Figure 3.1.20 A graph of f(x) on
function in Example 3.1.18 [—4, 2] as in Example 3.1.18

Example 3.1.21 Finding extreme values.

Find the extrema of f(z) = cos(2?) on [-2,2].

Solution. We again use Key Idea 3.1.14. Evaluating f at the endpoints
of the interval gives: f(—2) = f(2) = cos(4) = —0.6536. We now find
the critical values of f.

Applying the The Chain Rule, we find f(z) = —2z sin(2?). Set f'(z) =
0 and solve for x to find the critical values of f.

We have f'(z) = 0 when z = 0 and when sin(z?). In general,
sin(t) = Owhent = ... — 2, —m,0,m,... Thus sin(z?) = 0 when
2% = 0,m,2m,... (z? is always nonnegative so we ignore —, etc.) So
sin(2?) = 0 when 2 = 0,+/7, £v/2m,.... The only values to fall in
the given interval of [—2, 2] are 0 and /7, where /7 ~ 1.77.

We again construct a table of important values in Figure 3.1.22. In this
example we have five values to consider: x = 0, +2, ++/7. From the
table it is clear that the maximum value of f on[—2, 2] is 1; the minimum
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value is —1. The graph in Figure 3.1.23 confirms our results.

0.5

z f(z)

-2 —0.65 ‘ ‘ ‘ z

_ﬁ 1 -2 -1 1 2

0 1 05

T -1

2 —0.65 -1
Figure 3.1.22 Finding the extrema  Figure 3.1.23 A graph of f(z) =
of f(x) = cos(z?) in Exam- cos(z?) on [-2,2] as in Exam-

| ple3.1.21 ple 3.1.21

We consider one more example.

Example 3.1.24 Finding extreme values.

Find the extreme values of f(x) = v/1 — 22.

Solution. A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 — 22 > 0; thus the domain
of fis[—1,1]. Evaluating f at either endpoint returns 0.

Y

-1 05 05 1
-05 z  f(z)

-1 0

-1 0 1

1 0

Figure 3.1.25 A graph of f(z) =
1—22 on [—1,1] as in Exam-  Figure 3.1.26 Finding the extrema
ple 3.1.24 of the half-circle in Example 3.1.24

Using the The Chain Rule, we find f'(z) = —x/v/1 — 22. The critical
points of f are found when f/(z) = 0 or when f’ is undefined. It is
straightforward to find that f'(z) = O when 2 = 0, and f” is undefined
when x = +1, the endpoints of the interval (which are in the domain of
f.) The table of important values is given in Figure 3.1.26. The maximum
value is 1, and the minimum value is 0.

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In Section 3.2, we further our study of the information we can
glean from “nice” functions with the Mean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we'll see.

Circle Revisited. We implicitly found
the derivative of 22 + 32 = 1,
the unit circle, in Section 2.6 Ex-
ample 2.6.10 as g—g =—z/y. In
Example 3.1.24, half of the unit
circle is given as y = f(z) =
V1—z2

Wefound f'(z) = —z/v1 — 22.
Recognize that the denominator
of this fraction is y; that is, we
againfound f(z) = & = —z/y.

=5 =
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3.1.1 Exercises

Terms and Concepts

AT

Describe what an “extreme value” of a function is in your own words.
Sketch the graph of a function f on (—1, 1) that has both a maximum and minimum value.
Describe the difference between absolute and relative maxima in your own words.
Sketch the graph of a function f where f has a relative maximum at z = 1 and f’(1) is undefined.
(d True O False) If cis a critical value of a function f, then f has either a relative maximum or relative
minimum at z = c.

Fill in the blanks: The critical points of a function f are found where f’(z) is equal to or where f'(x)

Problems

Exercise Group. ldentify each of the marked points as being an absolute maximum or minimum, a relative maximum
or minimum, or none of the above.

7. 8.
Y
2 s
2 4
1 4
‘ ‘ xr
1 5
_1 4
FE
A
—2 DA -2
Exercise Group. Evaluate f’(z) at the points indicated in the graph.
_ 2
9. f@)=2m 10.
T
3




CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 136

11.  f(z) = sin(z) 12. f(z)=2*Vd—x

)

(m/2,1)

(37/2,-1)
13, f(z) =1+ &=2° 14, fz) = Vat =222+ 1
y
6 3 |
4] 2

—0.5 —0.5 !

Exercise Group. Find the extreme values of the function on the given interval.

17. f(z) = 2?4+ 2z —lon[-5,1] 18. f(x) =23+ (g) 22 — 18z — 60on [0, 3]
19. f(z) = 4cos( )on [3T, x| 20. f(z)= —z2on[-2,2]

21. f(x)= on [1,4] 22. f(z)= ﬂ” on [—2,2]

23. f(x) = e*cos(x) on [0, 7] 24. f(x)=e€"sin(z) on [0, 7]
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25. f(z) = "2 on[1,7] 26, f(z)=2(3) —z3on]0,2]
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3.2 The Mean Value Theorem

We motivate this section with the following question: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, completing the
trip in two hours. At any point during the trip do you necessarily have to be going
50 miles per hour?

In answering this question, it is clear that the average speed for the entire
trip is 50 mph (i.e. 100 miles in 2 hours), but the question is whether or not your
instantaneous speed is ever exactly 50 mph. More simply, does your speedome-
ter ever read exactly 50 mph? The answer, under some very reasonable assump-
tions, is “yes.”

Let’s now see why this situation is in a calculus text by translating it into
mathematical symbols.

First assume that the function y = f(t) gives the distance (in miles) traveled
from your home at time ¢ (in hours) where 0 < ¢ < 2. In particular, this gives
f(0) = 0and f(2) = 100. The slope of the secant line connecting the starting
and ending points (0, f(0)) and (2, f(2)) is therefore

Af _ f(2) - £(0)
At 2—-0
100 -0
2
= 50 mph.

The slope at any point on the graph itself is given by the derivative f’(t). So,
since the answer to the question above is “yes,” this means that at some time
during the trip, the derivative takes on the value of 50 mph. Symbolically,

f(2) = £(0)

=50
2-0

f'(e) =

for some time 0 < ¢ < 2.

How about more generally? Given any function y = f(z) and arange a <
x < b does the value of the derivative at some point between a and b have to
match the slope of the secant line connecting the points (a, f(a)) and (b, f())?
Or equivalently, does the equation f/(c) = W have to hold for some
a<c<b?

Let’s look at two functions in an example.

Example 3.2.1 Comparing average and instantaneous rates of change.

Consider functions

h@) == fa(w) = ||

with @ = —1 and b = 1 as shown in Figure 3.2.2. Both functions have a
value of 1 at a and b. Therefore the slope of the secant line connecting
the end points is 0 in each case. But if you look at the plots of each, you
can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no ¢ in [—1, 1]

such that
f(QQ) = f(=1)

1— (-1 =0

f'e) =
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1 S
e

-1 1 -1 1

(a) A graph of fi(z) = 1/2? (b) A graph of fa(z) = |z|

| Figure 3.2.2 Graphs of two “misbehaving” functions

So what went “wrong”? It may not be surprising to find that the discontinuity
of f1 and the corner of f5 play a role. If our functions had been continuous and
differentiable, would we have been able to find that special value ¢? This is our
motivation for the following theorem.

Theorem 3.2.3 The Mean Value Theorem of Differentiation.

Let y = f(x) be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a, b). There exists a value ¢, a < ¢ <

b, such that 6) — f(a)
, - — a
il = =2,

That s, there is a value cin (a, b) where the instantaneous rate of change
of f at cis equal to the average rate of change of f on [a, b].

Note that the reasons that the functions in Example 3.2.1 fail are indeed that
f1 has a discontinuity on the interval [—1, 1] and f5 is not differentiable at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.4 Rolle’s Theorem.

Let f be continuous on [a, b] and differentiable on (a, b), where f(a) =
f(b). There is some cin (a, b) such that f'(c) = 0.

Consider Figure 3.2.5 where the graph of a function f is given, where f(a) =
f(b). It should make intuitive sense that if f is differentiable (and hence, con-
tinuous) that there would be a value ¢ in (a, b) where f'(¢) = 0; that is, there
would be a relative maximum or minimum of f in (a, b). Rolle’s Theorem guar-
antees at least one; there may be more.

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a,b) is 0, and the theorem
guarantees some ¢ where f’(¢) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem. Let f be differentiable on (a,b) where f(a) = f(b).

We consider two cases.

Case. Consider the case when f is constant on [a, b]; that is, f(z) = f(a) =
f(b) for all zin [a,b]. Then f’(x) = O for all z in [a, b], showing there is at least
one value cin (a,b) where f'(c) = 0.

Figure 3.2.5 A graph of f(z) = 23 —
522 + 3x + 5, where f(a) = f(b).
Note the existence of ¢, where a <
¢ < b, where f’(¢) = 0.
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Case. Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at
the endpoints or at a critical value in (a,b). Since f(a) = f(b) and f is not
constant, it is clear that the maximum and minimum cannot both be found at
the endpoints. Assume, without loss of generality, that the maximum of f is
not found at the endpoints. Therefore there is a ¢ in (a, b) such that f(c) is the
maximum value of f. By Theorem 3.1.12, ¢ must be a critical number of f; since
1 is differentiable, we have that f’(c) = 0, completing the proof of the theorem.

[ |

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem. Define the function

1)~ f@)

gla) = fla) - T2

We know g is differentiable on (a, b) and continuous on [a, b] since f is. We can
show g(a) = ¢(b) (itis actually easier to show g(b) — g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of cin (a, b) such
that ¢’(¢) = 0. But note that

0=d(e)= (o - 1O,
hence )
Pl =10t
which is what we sought to prove. |

Going back to the very beginning of the section, we see that the only assump-
tion we would need about our distance function f(¢) is that it be continuous and
differentiable for ¢ from 0 to 2 hours (both reasonable assumptions). By the The-
orem 3.2.3, we are guaranteed a time during the trip where our instantaneous
speed is 50 mph. This fact is used in practice. Some law enforcement agencies
monitor traffic speeds while in aircraft. They do not measure speed with radar,
but rather by timing individual cars as they pass over lines painted on the high-
way whose distances apart are known. The officer is able to measure the aver-
age speed of a car between the painted lines; if that average speed is greater
than the posted speed limit, the officer is assured that the driver exceeded the
speed limit at some time.

Note that the Theorem 3.2.3 is an existence theorem. It states that a special
value c exists, but it does not give any indication about how to find it. It turns
out that when we need the Theorem 3.2.3, existence is all we need.

Example 3.2.6 Using the Mean Value Theorem.

Consider f(x) = 2® + 52 + 5 on [—3, 3]. Find cin [—3, 3] that satisfies
the Theorem 3.2.3.
Solution. The average rate of change of f on [—3, 3] is:
J(3) — F(=3) _ 47— (=37)
3-(-3) 6

= 14.
We want to find ¢ such that f/(¢) = 14. We find f/(x) = 322 + 5. We




CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 141

set this equal to 14 and solve for .

fl(z) =14
322 +5=14
z2 =3

r=+V3~ +1.732

We have found two values ¢ in [—3, 3] where the instantaneous rate of
change is equal to the average rate of change; the Theorem 3.2.3 guar-
anteed at least one. In Figure 3.2.7, f is graphed with a line representing
the average rate of change; the lines tangent to f at z = 4++/3 are also
given. Note how these lines are parallel (i.e., have the same slope) to
the secant line.

While the Theorem 3.2.3 has practical use (for instance, the speed monitor-
ing application mentioned before), it is mostly used to advance other theory.
We will use it in the next section to relate the shape of a graph to its derivative.

Before ending this section, we give two important consequences of the Mean
Value Theorem. Each of these consequences has important applications to math-
ematical theory, and can be easily understood in the context of the position and
velocity of objects in motion.

First, we recall that the derivative of any constant function is zero. Is the
converse true? That is, are constant functions the only ones whose derivative is
zero? The Mean Value Theorem says yes. This officially establishes our intuition
about objects in (or, actually, not in) motion: if the velocity of an object is 0, then
the object’s position is unchanged; it is constant. Second, if two functions f and
g have the same derivative, what does this tell us about f and ¢? The Mean
Value Theorem implies that these functions must only differ by a constant; that
is, f(z) = g(z) + C, for some constant C'.

This has an application to motion that is not intuitive to some. Suppose two
objects start moving while 5 ft apart, and always move with the same velocity.
Then the two objects will always be 5 ft apart. (If two pennies are dropped from
the 30th and 31st stories of a tall building at the same time, they will always be
1 story apart as they fall.)

Theorem 3.2.8 Consequences of the Mean Value Theorem.

Let f, g, and h be differentiable (and therefore continuous) functions on
anin terval 1.

1. If f'(x) = Ofor all z in the interval I, then f is a constant function
onl.

2. If g'(x) = ¢'(x) for all z in I, then there is a constant C' such that
g(x) = h(z)+ Cforall zin I.
Proof.

1. Choose any two points a and b in the interval I. By the Mean Value Theo-
rem, we must have
f() — f(a)

R

for some ¢ between a and b. But f'(¢) = 0, so f(b) — f(a) = 0, or
f(a) = f(b). Since a and b were any two points, this tells us that f must

Figure 3.2.7 Demonstrating the Mean
Value Theorem in Example 3.2.6
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have the same value at every point; that is, f must be constant.

2. Suppose ¢'(z) = h/(z) for each point z in I, and consider the function
f(z) = g(z) — h(z). By the difference rule for derivatives, we have

since ¢'(z) = h/(z).

By the previous result, this means that f(z) is a constant function. That is,
f(z) = Cforeachzin I, givingus g(z) — h(x) = C,or g(x) = h(z)+C.
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3.2.1 Exercises

Terms and Concepts

1. Explain in your own words what the Mean Value Theorem states.

2. Explain in your own words what Rolle’s Theorem states.

Problems

Exercise Group. A function f(z) and interval [a, b] are given. Check if Rolle’s Theorem can be applied to f on [a, b];
if so, find ¢ in (a, b) such that f'(¢) = 0.

3. f(x)=6o0n[-1,1] 4. f(x)=6zon[-1,1]

5. f(x)=2>+xz—60n[-3,2] 6. f(r)=a2>+x—20n[-3,2]
7. f(x)=2?+zon[-2,2] 8. f(x)=sin(x)on [r/6,57/6]
9.  f(x) =cos(z)on [0, 7] 10. f(z) = z=5z57 0N [0,2]

Exercise Group. A function f(z) and interval [a, b] are given. Check if The Mean Value Theorem of Differentiation
can be applied to f on [a, b]; if so, find cin (a, b) guaranteed by the Mean Value Theorem.

11. f(z)=22+3z—1on[-2,2] 12. f(z) =522 —6x +8on|0,5]
13. f(z)=+v9—=z20n]0,3] 14. f(z)=+/25—=z0n][0,9]

17. f(x) =tan(x)on [—7/4,7/4] 18. f
19. f(z) =223 - 522+ 6x+ 1on[-5,2] 20. f

=23 -2z +x+1on[-2,2]

(x) (
15. f(z) = %=2on|0,2] 16.  f(
(x) (
(2) (z) = sin"*(x) on [1,1]
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3.3 Increasing and Decreasing Functions

Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f'(z) = 0 or f’ does
not exist, and points ¢ where f’(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these terms mathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Definition 3.3.2 Increasing and Decreasing Functions.
Let f be a function defined on an interval I.
1. fisincreasing on I if forevery a < bin I, f(a) < f(b).

2. fisdecreasing on I if for every a < bin I, f(a) > f(b).

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increas-
ing, differentiable function on an open interval I, such as the one shown in Fig-
ure 3.3.3, and let @ < b be given in I. The secant line on the graph of f from
x = atox = bisdrawn; it has a slope of (f(b) — f(a))/(b— a).

But note, since b > a and f is increasing, f(b) > f(a). And these facts
imply b —a > 0and f(b) — f(a) > 0. Therefore:

5 1Y (b, ()
b) — .
f0) - f@) _, B
b—a 15+ ‘
— slope of the secant line > 0
= Average rate of change of f

on [a,b]is > 0. 0.5

Figure 3.3.3 Examining the secant line of an increasing function

We have shown mathematically what may have already been obvious: when
f is increasing, its secant lines will have a positive slope. Now recall that the
Mean Value Theorem guarantees that there is a number ¢, where a < ¢ < b,

such that b
o= 101

By considering all such secant lines in T, we strongly imply that f/(z) > Oon
1. A similar statement can be made for decreasing functions.

> 0.

ot
<

1 2 3

Figure 3.3.1 A graph of a function f
used to illustrate the concepts of in-
creasing and decreasing

Caution: the definition we give
in Definition 3.3.2 is not the one
you will find in formal mathemat-
ics textbooks. Such texts define
a function to be increasing on I
if, for every a < bin I, f(a) <
f(b). (Notice how equality is al-
lowed.) The condition f(a) <
f(b)isthenreferred to as strictly
increasing. Similar definitions are
made for decreasing and strictly
decreasing.

While this definition has cer-
tain technical advantagesin a proof-
based course, it is also concep-
tually counterintuitive for many
students. For example, with this
definition a constant function would
be both increasing and decreas-
ing!



CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 145

Our above logic can be summarized as “If f is increasing, then f’ is probably
positive.” Theorem 3.3.4 below turns this around by stating “If f is positive,
then f is increasing.” This leads us to a method for finding when functions are
increasing and decreasing.

Theorem 3.3.4 Test For Increasing/Decreasing Functions.

Let f be a continuous function on [a, b] and differentiable on (a, b).
1. If f'(c¢) > Oforall cin (a,b), then f is increasing on [a, b].
2. If f'(¢) < Oforall cin (a,b), then f is decreasing on [a, b].
3. If f’(¢) = 0forall cin (a,b), then f is constant on [a, b].

The conclusions of Item 1 and Item 2 also hold if f'(c) = 0 for a finite
number of nonadjacent values of cin 1.

Let f be differentiable on aninterval I and let a and b be in I where f'(a) > 0
and f’(b) < 0. If f’is continuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value ¢ between a and b where f/(c) = 0. (It
turns out that this is still true even if f” is not continuous on [a, b].) This leads us
to the following method for finding intervals on which a function is increasing or
decreasing.

3N

Key Idea 3.3.5 Finding Intervals on Which f is Increasing or Decreasing.

Let f be a continuous function on aninterval I. To find intervals on which
f isincreasing and decreasing:

1. If not stated, find the domain of f, D. Begin a number line that
only includes D.

2. Find the critical values of f. That is, find all ¢ in the domain of
f where f’(¢) = 0or f’is not defined. (Note: Any values of ¢
not in the domain of f where f’(c) is undefined should already
be marked on your number line from Step 1).

3. Use the critical values to divide D into subintervals.

4. Pick any point p in each subinterval, and find the sign of f’(p).

(@) If f'(p) > 0, then f is increasing on that subinterval.
(b) If f'(p) < 0, then f is decreasing on that subinterval.

Note that although Theorem 3.3.4 allows us to use determine that a func-
tion is increasing or decreasing on a closed interval, it is conventional to
state the intervals of increase and decrease as open intervals. We will fol-
low this convention in the examples that follow, but it is also acceptable
to answer using closed intervals.

In particular, one should note the following:

o If f/(z) > 0on (a,b) and on (b,c), with f'(b) = 0, then we
should say that f is increasing on (a, ¢) (or on [a, ¢]) — the zero of
the derivative should be included.

o If f/(x) > 0on (a,b) and on (b, c), but f(b) is undefined (or f is
discontinuous at b), then we should not include the point b in our
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interval. Instead, we say that f is increasing on (a, b) and (b, ¢), or
on [a,b) and (b, ¢].

We demonstrate using this process in the following example.

Example 3.3.6 Finding intervals of increasing/decreasing.

Let f(z) = 2® + 2% — x + 1. Find intervals on which f is increasing or
decreasing.

Solution. Since an interval was not specified for us to consider, using
Key Idea 3.3.5, the domain of f is R or (—oo, 00). Next, we find the
critical values of f. We have f/(z) = 322 + 22 — 1 = (3z — 1)(x + 1),
so f'(z) = 0when z = —1 and when & = 1/3. f’ is never undefined.
We thus break the domain (in this case the (—oco, 00)) into three subin-
tervals based on the two critical values we just found: (—oc,—1),
(—=1,1/3) and (1/3, 00). This is shown in Figure 3.3.7.

We now pick a value p in each subinterval and find the sign of f/(p). All
we care about is the sign, so we do not actually have to fully compute
f'(p); pick “nice” values that make this simple.

Subinterval 1: We (arbitrarily) pick p = —2. We can compute
(—o0,—1)  f'(=2)directly: f/(—=2) = 3(—2)2+2(-2) —
1 =7 > 0. We conclude that f is increasing
on (—oo, —1).
Note we can arrive at the same conclusion
without computation. For instance, we could
choose p = —100. The first term in f'(—100),
i.e., 3(—=100)?%is clearly positive and very large.
The other terms are small in comparison, so
we know f’(—100) > 0. All we need is the
sign.
Subinterval 2: We pick p = 0 since that value seems easy to
(—1,1/3)  deal with. f’(0) = —1 < 0. We conclude f is
decreasing on (—1,1/3).

Subinterval 3: Pick an arbitrarily large value for p > 1/3 and
(1/3,00)  note that f'(p) = 3p® +2p —1 > 0. We
conclude that f is increasing on (1/3, c0).

Figure 3.3.8 summarizes our work.

We can verify our calculations by considering Figure 3.3.9, where f is
graphed. The graph also presents f’; note how f’ > 0 when f is in-
creasing and f/ < 0 when f is decreasing.

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near z = —1 and = = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding critical values is important; once we know
the significant points are x = —1 and 2 = 1/3, the graph shows the increasing/
decreasing traits just fine. That is true. However, the technique prescribed here

-1 1/3

Figure 3.3.7 Number line for f in Ex-
ample 3.3.6

>0 <o >0
fincr [ decr fincr

-1 1/3

Figure 3.3.8 Completed number line
for f in Example 3.3.6

Figure 3.3.9 A graph of f(x) in Exam-
ple 3.3.6, showing where f is increas-
ing and decreasing



CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 147

helps reinforce the relationship between increasing/decreasing and the sign of
f'. Once mastery of this concept (and several others) is obtained, one finds that
either (a) just the critical points are computed and the graph shows all else that
is desired, or (b) a graph is never produced, because determining increasing/
decreasing using [’ is straightforward and the graph is unnecessary. So our sec-
ond reason why the above work is worthwhile is this: once mastery of a subject
is gained, one has options for finding needed information. We are working to
develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice-versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = ¢, after which it de-
creases. A quick sketch helps confirm that f(c¢) must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.10 First Derivative Test.

Let f be continuous on an interval I, and differentiable on I, except pos-
sibly at ¢, where c is a critical number in I.

1. If the sign of f' switches from positive to negative at c, then f(c)
is a relative maximum of f.

2. If the sign of f’ switches from negative to positive at c, then f(c)
is a relative minimum of f.

3. If ' is positive (or, negative) before and after c, then f(c) is nota
relative extrema of f.

Remark 3.3.11 Importance of Continuity. The continuity of f when using the
first derivative test is very important. Without continuity, almost anything can
happen at a critical number. For example, we can construct a piecewise function
where the sign of f’ switches to positive to negative at ¢ and f(c) is not a local
maximum. This is shown in Figure 3.3.12.

Example 3.3.13 Using the First Derivative Test.

Find the intervals on which f is increasing and decreasing, and use the
First Derivative Test to determine the relative extrema of f, where

z2+3
x—1"

fz) =

1 1 R

Figure 3.3.12 A discontinuous func-
tion where f’ changes sign at 1, but
f(1) is not a local maximum
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Solution. We start by noting the domain of f: (—oc0,1) U (1, 00).
Since f is not defined at « = 1 (it has a vertical asymptote), the increas-
ing/decreasing nature of f could switch at this value. We know that f’(1)
will be undefined since f is discontinuous at 1. We do not formally con-
sider x = 1 to be a critical value of f, but we will use 1 to subdivide the
real number line.

Using the Quotient Rule, we find

22 —2x—3

T

We need to find the critical values of f; we want to knowwhen f/(z) = 0
and when [’ is not defined. That latter is straightforward: when the
denominator of f/(z) is 0, f’ is undefined. That occurs when z = 1,
which we've already recognized as an important value, but not a critical
number.

f'(z) = 0 when the numerator of f/(x) is 0. That occurs when z? —
2z —3=(z—3)(x+1) =0;i.e,whenz =—1,3.

We have found that f has two critical numbers, t = —1,3,andatz = 1
something important might also happen. These three numbers divide
the real number line into four subintervals:

(—o0,—1),(—1,1),(1,3), and (3, c0).

Pick a number p from each subinterval and test the sign of f’ at p to
determine whether f is increasing or decreasing on that interval. Again,
we do well to avoid complicated computations; notice that the denomi-
nator of f’ is always positive so we can ignore it during our work.

Interval 1:
(—o0, —1)

Choosing a very small number (i.e., a nega-
tive number with a large magnitude) p returns
p? —2p — 3 in the numerator of f’; that will be
positive. Hence f is increasing on (—oo, —1).

Interval 2: (—1,1)  Choosing 0 seems simple: f/(0) = —3 < 0.

We conclude f is decreasing on (—1,1).

Interval 3: (1,3)  Choosing 2 seems simple: f/(2) = —3 < 0.

Again, f is decreasing.

Choosing an very large number p from this
subinterval will give a positive numerator and
(of course) a positive denominator. So f is in-
creasing on (3, 00).

Interval 4: (3, c0)

In summary, f is increasing on the intervals (—oo, —1) and (3, co0) and
is decreasing on the intervals (—1,1) and (1, 3). Since at x = —1, the
sign of f’ switched from positive to negative, Theorem 3.3.10 states that
f(=1)isarelative maximum of f. Atz = 3, the sign of f’ switched from
negative to positive, meaning f(3) is a relative minimum. Atz = 1, f
is not defined, so there is no relative extremum at x = 1. As previously
stated, z = 1 is a vertical asymptote of f.

This is summarized in the number line shown in Figure 3.3.14. Also, Fig-
ure 3.3.15 shows a graph of f, confirming our calculations. This figure
also shows f/, again demonstrating that f is increasing when f’ > 0 and
decreasing when f’ < 0.
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rel rel
max VA min
/>0 ff<0| f<0
fincr | fdecr | fdecr

>0
fincr

-1 1 3 5

Figure 3.3.14 Number line for f in Ex-
ample 3.3.13

_______________

Figure 3.3.15 A graph of f(x) in Ex-
ample 3.3.13, showing where f is in-
creasing and decreasing
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One is often tempted to think that functions always alternate “increasing, de-
creasing, increasing, decreasing,...” around critical values. Our previous example
demonstrated that this is not always the case. While x = 1 was not technically
a critical value, it was an important value we needed to consider. We found that
f was decreasing on “both sides of z = 1.”

We examine one more example.

Example 3.3.16 Using the First Derivative Test.

Find the intervals on which f(z) = x8/3 — 422/3 is increasing and de-
creasing and identify the relative extrema.

Solution. The domain of f is R (you can take the odd root of both
positive and negative nubmers). Next, we take the first derivative. Since
we know we want to solve f’(z) = 0, we will do some algebra after
taking the derivative.

f(zx) — 5 — 4a3
8 5 8
fl(x) = 370~ gx_%
8 _1
= gx_E (mg — 1)
8 _1
= gx_ﬁ ($2 — 1)
8 _1
=-z 5(x—1)(x+1).

This derivation of f’ shows that f'(x) = 0 when z = +1 and f’is not
defined when x = 0. Thus we have three critical values, breaking the
number line into four subintervals as shown in Figure 3.3.17.

Interval 1: (o0, —1) We choose p = —2; we can easily verify that
f'(=2) < 0. So f is decreasing on (—oo, —1).
Interval 2: (—1,0)  Choose p = —1/2. Once more we prac-

tice finding the sign of f’(p) without com-
puting an actual value. We have f'(p) =
(8/3)p~1/3(p—1)(p+1); find the sign of each
of the three terms at the chosen value of p.

8 1
f’(p):§-p s-(p—1)(p+1).
<0 <0 >0

We have a “negative x negative x positive”
giving a positive number; f is increasing on
(—1,0).

Interval 3: (0,1) We do a similar sign analysis as before, using
pin (0,1).

8 1
fo)=5-p 3 --Dp+1).
>0 <0 >0
We have two positive factors and one negative
factor; f'(p) < 0 and so f is decreasing on
(0,1).

rel rel rel
min max min
ff<o| ff>01 f<0
fdecr | fincr | fdecr

>0
fincr

-1 0 1

Figure 3.3.17 Number line for f in Ex-
ample 3.3.16
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Similar work to that done for the other three
intervals shows that f’(z) > 0 on (1,0), so
f isincreasing on this interval.

Interval 4: (1, 00)

We conclude by stating that f is increasing on the intervals (—1,0) and
(1, 00) and decreasing on the intervals (—oo, —1) and (0,1). The sign
of f’ changes from negative to positive around z = —1land z = 1,
meaning by Theorem 3.3.10 that f(—1) and f(1) are relative minima of
f. Asthe sign of f’ changes from positive to negative at z = 0, we have a
relative maximum at f(0). Figure 3.3.18 shows a graph of f, confirming
our result. We also graph f’, highlighting once more that f is increasing
L when f’ > 0 and is decreasing when [’ < 0.

We have seen how the first derivative of a function helps determine when
the graph of a function is going “up” or “down.” In the next section, we will see
how the second derivative helps determine how the graph of a function curves.

10

Figure 3.3.18 A graph of f(z) in Ex-
ample 3.3.16, showing where f is in-
creasing and decreasing
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3.3.1 Exercises

Terms and Concepts

In your own words describe what it means for a function to be increasing.
What does a decreasing function “look like”?

Sketch a graph of a function on [0, 2] that is increasing, where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4.  Give an example of a function describing a situation where it is “bad” to be increasing and “good” to be decreas-
ing.

5. (O True [ False) Functions always switch from increasing to decreasing, or decreasing to increasing, at
critical points.

6.  Afunction f has derivative f'(z) = (sinz + 2)6‘”2“, where f'(x) > 1for all z. Is f increasing, decreasing, or
can we not tell from the given information? Why or why not?

Problems

Exercise Group. A function f(z) is given. Graph f and f’ on the same axes (using technology is permitted) and verify
Theorem 3.3.4.

7. f(x)=2x+3 8. f(x)=22-3z+5

9.  f(z) = cos(x) 10. f(z) =tan(x)

1. f(z)=2a% -5+ Tz —1 12. f(z)=223 -2+ -1
13. f(z) =2 —b52%+4 14, f(z)= =5

Exercise Group. A function f(x) is given.
(a) Give the domain of f.
(b) Find the critical numbers of f.
(c) Find the intervals on which f is increasing.
(d) Find the intervals on which f is decreasing.
(e) Use the First Derivative Test to determine which critical points are a relative maximum.

(f) Use the First Derivative Test to determine which critical points are a relative minimum.

15. f(z) =22 +4x 16. f(z)=2a%+22>+9
17.  f(z) =723 —172% — 352 + 1 18. f(z) =a® — 92 + 272 — 27
19. f(=) = mmm 20. f(x)= %
21. x — = z—(—5))3
f( ) 2+12$+3Q 22' f(iE) — ( (x5))3
23.  f(z) = sin(z) cos(x) on (—m, ) 24.  f(z)=2%+192x
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3.4 Concavity and the Second Derivative

Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f’, can relay important information about f. We
now apply the same technique to f” itself, and learn what this tells us about f.

The key to studying f’ is to consider its derivative, namely f”, which is the
second derivative of f. When f” > 0, f’ is increasing. When f” < 0, f'is
decreasing. f’ has relative maxima and minima where f/ = 0 or is undefined.

This section explores how knowing information about f” gives information
about f.

3.4.1 Concavity
We begin with a definition, then explore its meaning.
Definition 3.4.1 Concave Up and Concave Down.

Let f be continuous on an interval I. The graph of f is concave up on [
if foranya < bin I,

f(a+b> @+ 0 (3.4.1)
2 2
The graph of f is concave down on [ if forany a < bin I,

f(a;b> > f(a);f(b). (3.4.2)

Geometrically, the condition in Equation (3.4.1) states that a graph is concave
up if the midpoint of the secant line from (a, f(a)) to (b, f(b)) (and hence, the
secant line itself) is above the graph y = f(z). Similarly, Equation (3.4.2) states
that the secant line lies below the graph.

In order for equality to hold instead of Equation (3.4.1) or Equation (3.4.2),
the function would have to be of the form f(z) = mx + ¢, in which case the
graph is a straight line. Straight lines are considered to have no concavity.

Y Y

| 1 2
(a) A graph that is concave up. No- (b) A graph that is concave down. No-
tice how the secant line lies above the tice how the secant line lies below the
graph. graph.

Figure 3.4.2 lllustrating the nature of concave up and concave down

Consider a function f such that f is continuous on [a, b] and differentiable
on (a,b). Note that 2£2 is the midpoint of the interval [a, b]. By the The Mean

Loose Language. We often state
that “ f is concave up” instead of
“the graph of f is concave up” for
simplicity.
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Value Theorem of Differentiation, there must be a point ¢; in [a, “T”’} such that

Py =TI 2 (1(550) - s).

Similarly, there must be a point ¢ in [%£2, b] such that

fle2) = f(b)b_i-z(%:;b) - bfa (f(b) -7 (a;b)> .

But then we have
Fle - e = 22 (10 -1 (“50) 1 (%52) + @)

_ 4 <f(a)+f(b)f(a;b>).

Now, let us suppose that f’(z) is an increasing function on (a,b). In that
case, f'(ca) — f'(c1) > 0, and since b — a > 0, this implies that

fla)+ f(b) a+b

zN 7 N7 - O’
2 ! 2 -

which, by Definition 3.4.1 means that the graph of f is concave up.

Similarly, if f'(x) is a decreasing function on (a, b), then the graph of f will
be concave down. Using Theorem 3.3.4, we arrive at the following theorem.

Theorem 3.4.3
Let f be a continuous function on [a, b] and differentiable on (a, b).
1. If f”(¢) > Oforall cin (a,b), then f is concave up on [a, b].
2. If f"(c) < Oforall cin (a,b), then f is concave down on [a, b].
)

3. If f"(c) = 0forall cin (a,b), then f is linear on [a, b].

The graph of a function f is concave up when f'is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.4, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,

Aswith Theorem 3.3.4, Theorem 3.4.3

lets us conclude that the graph
of a function is concave up (or
down) on a closed interval, assum-
ing that the function is continu-
ous on that interval. Again, we
follow the convention that when
a problem asks us to give the in-
tervals on which the graphis con-
cave up or down, we give open
intervals, even if a closed inter-
val is technically correct.

If afunction has the same con-
cavity on adjacent intervals (a, b)
and (b, ¢), and the function is con-
tinuous at b, we should combine
the intervals, and state the result
as (a, ¢). However, if b is a point
of discontinuity, we must omit it
from our intervals.

12 3

Figure 3.4.4 A function f with a con-
cave up graph. Notice how the slopes
of the tangent lines, when looking
from left to right, are increasing. (The
slope values pictured are —12, —6,6
and 12).

downward, corresponding to a lesser (large negative) value of f’. On the right,
the tangent line is steep, upward, corresponding to a greater (large positive)
value of f’.

If afunctionis decreasing and concave up, thenits rate of decrease is slowing;
itis “leveling off.” You can see this in the left side of Figure 3.4.4. If the function is
increasing and concave up, then the rate of increase is increasing. The function
is increasing at a faster and faster rate. You can see this in the right side of
Figure 3.4.4.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function f is concave down when f'is decreasing. That means
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.5, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a greater (large positive) value of f/. On
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the right, the tangent line is steep, downward, corresponding to a lesser (large
negative) value of f’.

If a function is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section to find intervals on which a graph is concave up or down. That
is, we recognize that f’ is increasing when f” > 0, etc.

Theorem 3.4.6 Test for Concavity.

Let f be twice differentiable on an interval I. The graph of f is concave
up if f” > 0on I, and is concave down if f”’ < 0on I.

=

(@) f/ > 0, fin-
creasing; " <
0, f is concave
down

<

(b) f/ <0, f de-
creasing; f’ <
0, f is concave
down

N

(c) f' <0, f de-
creasing; [’ > creasing; f >
0, f is concave 0, f is concave
up up

_/

(d) f' >0, fin-

Figure 3.4.7 Demonstrating the four ways that concavity interacts with increas-
ing/decreasing, along with the relationships with the first and second derivatives

If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 3.4.8 Point of Inflection.

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.9 shows a graph of a function with inflection points labeled.

If the concavity of f changes at a point (¢, f(c)), then f’is changing from
increasing to decreasing (or, decreasing to increasing) at x = c. That means
that the sign of f”is changing from positive to negative (or, negative to positive)
at x = c. A sign change may occur when f”/ = 0 or f” is undefined. This leads
to the following theorem.

-3 -2 -1 1 2 3

Figure 3.4.5 A function f with a con-
cave down graph. Notice how the
slopes of the tangent lines, when
looking from left to right, are decreas-
ing.

Concavity Depravity. A mnemonic
for remembering what concave
up/down meansis: “Concave up

is like a cup; concave downiis like

a frown.” It is admittedly terri-
ble, but it works.

Geometric Concavity. Geomet-
rically speaking, afunctionis con-
cave up if its graph lies above its

tangent lines and below secant

line segments. A function is con-

cave down if its graph lies below

its tangent lines and above secant
line segments.

15 1Y f <o,
fr>00 " fis | f7>0
fis| concave |fis
concave | down | concave

10 | up up

1 > 3l 4
Figure 3.4.9 A graph of a function
with its inflection points marked. The

intervals where concave up/down are
also indicated.
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Theorem 3.4.10 Points of Inflection.

If (¢, f(c)) is a point of inflection on the graph of f, then either " (c) = 0
or " is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.11 Finding intervals of concave up/down, inflection
points.

Let f(z) = 2 — 3z + 1. Find the inflection points of f and the intervals
on which it is concave up/down.

Solution. We start by finding f'(z) = 32? — 3 and f”(x) = 6x. To find
the inflection points, we use Theorem 3.4.10 and find where " (z) =0
or where f”is undefined. We find f”is always defined, and is 0 only
when z = 0. So the point (0, f(0)) = (0, 1) is the only possible point of
inflection.

This possible inflection point divides the real line into two intervals,
(—00,0) and (0,00). We use a process similar to the one used in the
previous section to determine increasing/decreasing. Pick any ¢ < 0;
f"(e) < 0so fis concave down on (—o0, 0). Pickany ¢ > 0; f(c) > 0
so f is concave up on (0, c0). Since the concavity changes at « = 0, the
point (0, 1) is an inflection point.

The number line in Figure 3.4.12 illustrates the process of determining
concavity; Figure 3.4.13 shows a graph of f and f”, confirming our re-
sults. Notice how f is concave down precisely when f”(x) < 0 and
concave up when f”(z) > 0.

Example 3.4.14 Finding intervals of concave up/down, inflection
points.

Let f(z) = x/(x® — 1). Find the inflection points of f and the intervals
on which it is concave up/down.

Solution. We need to find f’and f”. Using the Quotient Rule and sim-
plifying, we find

, —(1+ 22 g 2z(x? + 3
f<x>=<x(z+1>z) f<f”>:($(2+1>3)-

To find the possible points of inflection, we seek to find where f”(z) = 0
and where f” is not defined. Solving f”(z) = 0 reduces to solving
2z(x? + 3) = 0; we find z = 0. We find that f”is not defined when
x = =1, for then the denominator of f”’is 0. We also note that f itself is
not defined at x = £1, having a domain of (—oo, —1)U(—1,1)U(1, c0).
Since the domain of f is the union of three intervals, it makes sense that
the concavity of f could switch across intervals. We technically cannot
say that f has a point of inflection at z = +1 as they are not part of the
domain, but we must still consider these xz-values to be important and
will include them in our number line.

The important z-values at which concavity might switch are x = —1,
z = 0 and z = 1, which split the number line into four intervals as

f// <0 f// >0
[ is concave down f is concave up

0
Figure 3.4.12 A number line deter-

mining the concavity of f in Exam-
ple 3.4.11

['(@)

Figure 3.4.13 A graph of f(z) used in
Example 3.4.11
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shown in Figure 3.4.15. We determine the concavity on each. Keep in
mind that all we are concerned with is the sign of f”'on the interval.

Interval 1: Select a number c in this interval with a large

(—o0,—1) magnitude (for instance, ¢ = —100). The de-
nominator of f”/(z) will be positive. In the nu-
merator, the (¢? + 3) factor will be positive
and the 2¢factor will be negative. Thus the nu-
merator is negative and f”'(c¢) is negative. We
conclude f is concave down on (—oo, —1).

Interval 2: (—1,0) For any number c in this interval, the factor
2¢ in the numerator will be negative, the fac-
tor (c? + 3) in the numerator will be positive,

and the factor (c? — 1)3 in the denominator
will be negative. Thus f”(c) > 0 and f is con-
cave up on this interval.

Interval 3: (0,1)  Any number c in this interval will be posi-
tive and “small.” Thus the numerator is pos-
itive while the denominator is negative. Thus
f"(c) < 0and f is concave down on this in-
terval.

Interval 4: (1,00)  Choose a large value for c. It is evident that
f"(c) > 0, so we conclude that f is concave
upon (1,00).

We conclude that f is concave up on (—1,0) and (1, c0) and concave

down on (—oo,—1) and (0,1). There is only one point of inflection,

(0,0), as f is not defined at z = 1. Our work is confirmed by the graph

of f in Figure 3.4.16. Notice how f is concave up whenever f”’is positive,

and concave down when f”’is negative. The inflection in f occurs where
L f” changes sign.

Recall that relative maxima and minima of f are found at critical points of
f; that is, they are found when f’(x) = 0 or when f’ is undefined. Likewise,
the relative maxima and minima of f’are found when f”(z) = 0 or when f”is
undefined; note that these are the inflection points of f.

What does a “relative maximum of f/” mean? The derivative measures the
rate of change of f; maximizing f/ means finding where f is increasing the most
— where f has the steepest tangent line. A similar statement can be made for
minimizing f’; it corresponds to where f has the steepest negatively-sloped tan-
gent line.

We utilize this concept in the next example.

Example 3.4.17 Understanding inflection points.

The sales of a certain product over a three-year span are modeled by
S(t) = t* —8t2 420, where t is the time in years, shown in Figure 3.4.18.
Over the first two years, sales are decreasing. Find the point at which
sales are decreasing at their greatest rate.

Solution. We want to maximize the rate of decrease, which is to say, we
want to find where S’ has a minimum. To do this, we find where S” is
0 and S” changes from negative to positive. We find S’(t) = 4t> — 16t

<o f">0 f"<o0 f'>0
feonc | fconc | fconc | fconc
down up down up

-1 0 1
Figure 3.4.15 Number line for f in Ex-
ample 3.4.14

Figure 3.4.16 A graph of f(x) and
f"(x) in Example 3.4.14

20 +

10 1

05 1 15 2 25 3
Figure 3.4.18 A graph of S(t) in Ex-

ample 3.4.17, modeling the sale of a
product over time
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and S”(t) = 12t> — 16. Setting S”(t) = 0 and solving, we get t =
\/m ~ 1.16 (we ignore the negative solution for ¢ since it does not lie
in the domain of our function \S).

Since (1) = —4 < 0and S”(2) = 32 > 0, we can say S’(+/4/3) is
a local minimum of S’. This is both the inflection point and the point of
maximum decrease. This is the point at which things first start looking
up for the company. After the inflection point, sales are still decreasing,
but not decreasing quite as quickly as they had been.

Agraphof S(t) and S’(t) is given in Figure 3.4.19. When S’(¢) < 0, sales
are decreasing; note how at ¢ & 1.16, S’(t) is minimized. That is, sales
are decreasing at the fastest rate at t ~ 1.16. On the interval of (1.16, 2),
S is decreasing but concave up, so the decline in sales is “leveling off.”

Not every critical point corresponds to a relative extrema; f(x) = 2% has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f”(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f”(z) = 0
without concavity changing is f(x) = z%. Atz = 0, f”(x) = 0 but f is always
concave up, as shown in Figure 3.4.20.

3.4.2 The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value corre-
sponded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function f is concave up, then that critical value
must correspond to a relative minimum of f, etc. See Figure 3.4.21 for a visual-
ization of this.

Theorem 3.4.22 The Second Derivative Test.
Let ¢ be a critical value of f where f”(c) is defined.
1. If f”(c) > 0, then f has a local minimum at (c, f(c)).

2. If f"(c) < 0, then f has a local maximum at (¢, f(c)).

The Second Derivative Test relates to the First Derivative Test in the following
way. If f”(¢) > 0, then the graph is concave up at a critical point ¢ and f” itself
is growing. Since f'(c) = 0 and f” is growing at ¢, then it must go from negative
to positive at c¢. This means the function goes from decreasing to increasing,
indicating a local minimum at c.

Example 3.4.23 Using the Second Derivative Test.

Let f(x) = 100/x 4+ x. Find the critical points of f and use the The
Second Derivative Test to label them as relative maxima or minima.

Solution. We find f’(z) = —100/22 + 1 and f”(z) = 200/23. We
set f/(x) = 0 and solve for x to find the critical values (note that f’ is
not defined at z = 0, but neither is f so this is not a critical value.) We
find the critical values are x = 4+-10. We now evaluate the second deriv-
ative at these critical numbers. Evaluating f”(10) = 0.1 > 0, so there

“0f . s

Figure 3.4.19 A graph of S(¢) in Exam-
ple 3.4.17, along with S’ (¢)

-1 -0.5 0.5 1

Figure 3.4.20 A graph of f(z) = z%.
Clearly f is always concave up, de-
spite the fact that f”(z) = 0 when
x = 0. In this example, the possible
point of inflection (0, 0) is not a point
of inflection.

10 ¥
contave doywn
rel ma
5 4
-2 -1 1 2
75 1
concave u
rel pin

~10 |

Figure 3.4.21 Demonstrating the fact
that relative maxima occur when the
graph is concave down and relative
minima occur when the graph is con-
cave up
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mining a relative maximum at x = —10. These results are confirmed in

t is a local minimum at x = 10. Evaluating f”/(—10) = —0.1 < 0, deter-
Figure 3.4.24.

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter 1
we saw how limits explained asymptotic behavior. In the next section we com-
bine all of this information to produce accurate sketches of functions.

y
40 |
20
J7(10) >0
—20 -10 10 20
17(~10) <0
—20
— 0 i

Figure 3.4.24 A graph of f(z) in Ex-
ample 3.4.23. The second deriva-
tive is evaluated at each critical point.
When the graph is concave up, the
critical point represents a local min-
imum; when the graph is concave
down, the critical point represents a
local maximum.

Use Wisely. The second deriva-
tive test can only be used on a
function that is twice differentiable
at ¢. For functions that are not
twice differentiable at ¢, you will
need to use the First Derivative
Test. If you've already determined
the sign diagram for f’, the First
Derivative Test is usually easier
to apply, and it applies in cases
when First Derivative Test does
not.
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3.4.3 Exercises
Terms and Concepts
1. Sketch a graph of a function f(x) that is concave up on (0, 1) and is concave down on (1, 2).
2. Sketch a graph of a function f(x) that is:
e increasing, concave up on (0, 1),
e increasing, concave down on (1, 2),
e decreasing, concave down on (2, 3), and
e increasing, concave down on (3, 4).
3. Is is possible for a function to be increasing and concave down on (0, co) with a horizontal asymptote of y = 1?
If so, give a sketch of such a function.
4.  Isis possible for a function to be increasing and concave up on (0, co) with a horizontal asymptote of y = 1? If

so, give a sketch of such a function.

Problems

Exercise Group. A function f(z) is given. Graph f and f” on the same axes (using technology is permitted) and

verify Theorem 3.4.6.

5. f(x)=-Tz+3 f(x) = —42% +32 -8
7. f(r) =42% + 320 — 8 8. flr)=a%-322+2-1
9. fx)=-a3+22-22+5 10. f(z) =sin(z)
11.  f(z) =tan(z) 1
12. =
f(@) 22 +1
13, f(z)=; 14, f@)=%
Exercise Group. A function f(z) is given.

(a) Find the possible points of inflection of f.

(b) Find the intervals on which the graph of f is concave up.

(c) Find the intervals on which the graph of f is concave down.
15. f(x) =22 -4z +4 16. f(x)=—2?+4x -1
17. f(x)=2>—-8z -7 18. f(z) =8x3+ 622 +92 -5
19. f(z) =2 + 16%3 — 79— 6 20.  f(z) = 2z* — 402> 4 29622 — 960z + 7
21, f(x) = 2 + 82% + 2422 4 327 + 16 22. f(x)=sec(z)on (—3n/2,3m/2)
23, f(z) = = 2. f(2)= =t
25. f(x) =sin(z) + cos(z) on (—m, ) 26. f(x) =a%"
27.  f(z) = 2%In(2) 28. f(z)=e¢"

Exercise Group. A function f(x) is given. Find the critical points of f and use the Second Derivative Test, when
possible, to determine the relative extrema. (Note: these are the same functions as in Exercise Group 15-28.)

29. f(z)=2%+ 14z +49 30. f(x)=—-2>-5z+3
31. f(z)=a%—4x—4 32. f(z)=—a%+82% —25x—3
33, f(x) =L + 64z —9 34. f(z) =22* — 823 — 1622 + 962 + 9



CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 160

35. f(x) =a2*— 1223 + 542% — 108z + 81 36. f(x)=sec(z)on (—3m/2,31/2)
37. f(2) = i 38. f(z)==lgs

39. f(x) =sin(x) + cos(z) on (—m, ) 40. f(x) = a22%e®

41.  f(z) =2 In(z) 42, f(z)=e"

Exercise Group. A function f(z) is given. Find the z values where f’(x) has a relative maximum or minimum. (Note:
these are the same functions as in Exercise Group 15-28.)

43. f(x) =22 -8z +16 44, f

(z)
45. f(z)=23—9x -2 46. f(x)
47. f(z) =% 4145 47 48. f(x) = 32* — 242% + 6622 — 722 — 6
49. f(x)=a*+ 423 +62% +42+1 50. f(x)=sec(x)on (—37/2,37/2)
51 f(z) = —tmy 5. f(2) = m—pras
53. f(z) =sin(z) + cos(z) on (—m, ) 54. f(x) = 22"
() (z)

55. f(x) =2%In(x) 56. f
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3.5 Curve Sketching

We have been learning how we can understand the behavior of a function based
on its first and second derivatives. While we have been treating the properties
of a function separately (increasing and decreasing, concave up and concave
down, etc.), we combine them here to produce an accurate graph of the function
without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand-held calculator, or a smartphone. These resources are usually very fast
and accurate. We will see that our method is not particularly fast — it will require
time (but it is not hard). So again: why bother?

We are attempting to understand the behavior of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behavior we care about is
explained by f’and f”. Understanding the interactions between the graph of f
and f’and f”’is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands how an engine works after looking only
at pictures. Itis true that the basic ideas will be conveyed, but “hands-on” access
increases understanding.

Key Idea 3.5.1 summarizes what we have learned so far that is applicable to
sketching graphs of functions and gives a framework for putting that information
together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching.

To produce an accurate sketch a given function f, consider the following
steps.

1. Findthe domain of f. Generally, we assume that the domain is the
entire real line then find restrictions, such as where a denominator
is 0 or where negatives appear under the radical.

2. Find the critical values of f.
3. Find the possible points of inflection of f.

4. Find the location of any vertical asymptotes of f (usually done in
conjunction with Item 1).

5. Consider the limits lim f(x) and lim f(z) to determine the
T——00 T—00

end behavior of the function.

6. Create a number line that includes all critical points, possible
points of inflection, and locations of vertical asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each critical point and possible point of inflection.
Plot these points on a set of axes. Connect these points with
curves exhibiting the proper concavity. Sketch asymptotes and x
and y intercepts where applicable.
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Example 3.5.2 Curve sketching.
Use Key Idea 3.5.1 to sketch f(x) = 323 — 1022 + 7z + 5.
Solution. We follow the steps outlined in Key Idea 3.5.1.

1. The domain of f is the entire real line; there are no values z for
which f(z) is not defined.

2. Find the critical values of f. We compute f’(z) = 922 — 20z + 7.
Use the Quadratic Formula to find the roots of f:

_ 204 /(=20) — 4(9)(7)
T 2(9)

- é (10 + ﬁ)
x ~ 0.435,1.787.

3. Find the possible points of inflection of f. Compute f”(z) =
182 — 20. We have

f'(x) =0
182 — 20 = 0
z=10/9
~ 1111

4. There are no vertical asymptotes.
5. We determine the end behavior using limits as 2 approaches +-cc.

lim f(z) = —o0 lim f(z) = occ.

T——00 r—r00

We do not have any horizontal asymptotes.

6. We place the values = = (10 & 1/37)/9 and =z = 10/9 on a num-
ber line, as shown in Figure 3.5.3. We mark each subinterval as in-
creasing or decreasing, concave up or down, using the techniques
used in Sections 3.3-3.4.

7. Evaluate f at each critical number and possible inflection point.

£(0.435) ~ 6.400 f(1.111) ~ 4.547  f(1.787) ~ 2.695

We plot the appropriate points on axes as shown in Figure 3.5.4(a)
and connect the points with straight lines (to show increasing/
decreasig behavior). In Figure 3.5.4(b) we adjust these lines to
demonstrate the proper concavity. In Figure 3.5.4(c) we show a
graph of f drawn with a computer program, verifying the accu-
racy of our sketch.

>0, f <o, f <o, f>o0,
f incr f decr f decr f incr

<o, f <o, f >0, f>o,

f c.down f c.down fcoup fcoup

So-vE) B~ f(0+v)
~ 0.435 ~ 1.787

Figure 3.5.3 Number line for f in Example 3.5.2
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z u z
-1 1 2 3 -1 / 1 2 3 ) / 1 2 3
5 5 5

(a) (b) (c)
| Figure 3.5.4 Sketching f in Example 3.5.2

Example 3.5.5 Curve sketching.

2 —x—2
2 —x—6
Solution. We again follow the steps outlined in Key Idea 3.5.1.

Sketch f(z) =

1. In determining the domain, we assume it is all real numbers and
look for restrictions. We find that at z = —2 and z = 3, f(x) is
not defined. So the domain of fis D = {z | z # —2,3}.

2. To find the critical values of f, we first find f’(x). Using the Quo-
tient Rule, we find

—8xr + 4 —8xr + 4

Fe) = e —or =~ G- rop

We get f/(z) = Owhenz = 1/2, and f’ is undefined when z =
—2,3. Since f’is undefined only when f is also undefined, these
are not critical values. The only critical value is z = 1/2.

3. To find the possible points of inflection, we find f”(x), again em-
ploying the Quotient Rule:

242% — 24z + 56

P = st op

Wefind that f”(z) is never O (setting the numerator equal to 0 and
solving for x, we find the only roots to this quadratic are not real
numbers) and f”is undefined when x = —2,3. Thus concavity
will possibly only change at z = —2 and x = 3 (which are not in
the domain of f, so these won't be inflection points).

4. The vertical asymptotes of f are at t = —2 and = = 3, the places
where f is undefined.

5. There is a horizontal asymptote of y = 1,as lim f(z) =1and
r——00

IIme flz)=1.
6. We place the values © = 1/2, x = —2 and z = 3 on a number

line as shown in Figure 3.5.6. We mark in each interval whether
f is increasing or decreasing, concave up or down. We see that f
has a relative maximum at = = 1/2; concavity changes only at the
vertical asymptotes.

163
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7. Evaluate f at each critical number.
F(0)=1/3 F(1/2) = 9/25

In Figure 3.5.7(a), we plot the points from the number line on a set
of axes and connect the points with straight lines to get a general
idea of what the function looks like (these lines effectively only
convey increasing/decreasing information). In Figure 3.5.7(b), we
adjust the graph with the appropriate concavity. We also show f
crossing the z-axis at x = —1 and x = 2 and crossing the y-axis
aty = 1/3. Finally, Figure 3.5.7(c) shows a computer generated
graph of f, which verifies the accuracy of our sketch.

f >0, f' >0, f <o, <o,
fincr fincr f decr fincr
>0, <o, " <o, " <o,
fcup f c.down f c.down f c.down

-2 1 3
2

Figure 3.5.6 Number line for f in Example 3.5.5

(a) (b) (c)
| Figure 3.5.7 Sketching f in Example 3.5.5

Example 3.5.8 Curve sketching.

5z —2)(x+1)
22+ 22 + 4
Solution. We again follow Key Idea 3.5.1.

Sketch f(z) =

1. We assume that the domain of f is all real numbers and consider
restrictions. The only restrictions could come when the denom-
inator is 0, but this never occurs because the denominator is a
quadratic polynomial with no real roots. Therefore the domain of
f is all real numbers, R.

2. We find the critical values of f by setting f/(z) = 0 and solving

for x. We find
15z(z + 4)
(o) —
flz) = (22 + 22+ 4)?
0= 15z (x + 4)
(22422 +4)2
= —4,0.

Since the denominator of f” is just the square of the denominator
of f, there are no values of x for which f” is undefined.




CHAPTER 3. THE GRAPHICAL BEHAVIOR OF FUNCTIONS 165

3. We find the possible points of inflection by solving f”/(x) = 0 for
x (again, there are no values of z for which f” is undefined.) We
find 5 )

() = 30 2+ 180z2 — 240
(22 + 22+ 4)3
The cubic in the numerator does not factor very “nicely.” We in-

stead approximate the roots (using a cas) at + = —5.759, x =
—1.305 and z = 1.064.

4. There are no vertical asymptotes as the denominator never equals

zero.
5. We have a horizontal asymptote of y = 5, as lim f(z) =
Tr—r—00
lim f(z) =5.
Tr—r 00

6. We place the critical points and possible points on a number line
as shown in Figure 3.5.9 and mark each interval as increasing/
decreasing, concave up/down appropriately.

7. Evaluate f at each critical number, possible inflection point.

£(—5.759) & 7.200 f(~4) =75
£(~1.305) =~ 1.630 f(0)=25
£(1.064) ~ —1.331

In Figure 3.5.10(a) we plot the significant points from the num-
ber line as well as the x- and y-intercepts, and connect the points
with straight lines to get a general impression about the graph
(this graph only includes increasing/decreasing information). In
Figure 3.5.10(b), we add concavity, drawing the function so that
it is smooth (since f is differentiable everywhere, there should be
no kinks or corners). Figure 3.5.10(c) shows a computer generated
graph of f, affirming our results.

>0, | >0, | ff<o | f<o| ff>0] f >0,
f incr f incr f decr f decr f incr f incr

f// > 0’ f// < 0’ f// < 0, f// > 0, f// > 0’ f// < 0’
fcoup fc.down | fc.down fcoup fcoup f c.down

—5.579 —4 —1.305 0 1.064

Figure 3.5.9 Number line for f in Example Example 3.5.8

(a) (b) (c)
| Figure 3.5.10 Sketching f in Example 3.5.8

In each of our examples, we found a few significant points on the graph of
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f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smarter”
than we are. Rather, it is largely because computers are much faster at comput-
ing than we are. In general, computers graph functions much like most students
do when first learning to draw graphs: they plot equally spaced points, then con-
nect the dots using lines. By using lots of points, the connecting lines are short
and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method used
for many graphs in this text). However, in regions where the graph is very “curvy,”
this can generate noticeable sharp edges on the graph unless a large number of
points are used. High quality computer algebra systems, such as Mathematica
and Sage, use special algorithms to plot lots of points only where the graph is
“curvy.”

In Figure 3.5.11, two graph of y = sin(x) is given, generated by Sage and
Mathematica. The small points represent each of the places where each cas
sampled the function. Notice how at the “bends” of sin(z), lots of points are
used; where sin(z) is relatively straight, fewer points are used. (In the Math-
ematica plot, many points are also used at the endpoints to ensure the “end
behavior” is accurate.)

1.0

1.0

03 /\
i /
05k /

| 2 3 \ . s 6/
-0.5 \ /
~1.0 N \/
(a) Sage output (b) Mathematica output

Figure 3.5.11 CAS plots of y = sin(z) illustrating the sample points

How does Sage know where the graph is “curvy”? Calculus. When we study
curvature in a later chapter, we will see how the first and second derivatives of a
function work together to provide a measurement of “curviness.” Sage employs
algorithms to determine regions of “high curvature” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behavior of the
function at afew key places.” In Example 3.5.8, we were able to accurately sketch
a complicated graph using only five points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond
curve sketching. The next chapter explores some of these applications, demon-
strating just a few kinds of problems that can be solved with a basic knowledge
of differentiation.
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3.5.1 Exercises

Terms and Concepts

1.  Why is sketching curves by hand beneficial even though technology is ubiquitous?

2.  What does “ubiquitous” mean?

3. T/F: When sketching graphs of functions, it is useful to find the critical points. ([ True [ False)

4. T/F: When sketching graphs of functions, it is useful to find the possible points of inflection. ((OTrue [JFalse)

5.  T/F: When sketching graphs of functions, it is useful to find the horizontal and vertical asymptotes. ((J True
[ False)

Problems

Exercise Group. In the following exercises, practice using Key Idea 3.5.1 by applying the principles to the given
functions with familiar graphs.

6. Use Key Idea 3.5.1 to sketch a graph of f(x
Use Key Idea 3.5.1 to sketch a graph of f(x —22+1

(x) =2z +4
7 (z) =
8.  UseKey Idea 3.5.1 to sketch a graph of f(x) = sin(x)
9 (z) =

Use Key Idea 3.5.1 to sketch a graph of f(x

10. Use Key Idea 3.5.1 to sketch a graph of f(z) =

e*
1
z
1

11. Use Key Idea 3.5.1 to sketch a graph of f(z) = e

Exercise Group. In the following exercises, sketch a graph of the given function using Key Idea 3.5.1. Show all work;
check your answer with technology.

12. Use Key Idea 3.5.1 to sketch a graph of f(x
13. Use Key Idea 3.5.1 to sketch a graph of f(x

(z) =2® —22° 4 4o + 1
(z) =
14. Use Key Idea 3.5.1 to sketch a graph of f(z)
(z) =
() =
() =

—22 + 522 — 32 +2
22+ 322+ 3z +1

15. Use Key Idea 3.5.1 to sketch a graph of f(x -z —zr+1
(

16. Use Key Idea 3.5.1 to sketch a graph of f(z x—2)In(zx —2)
17. Use Key Idea 3.5.1 to sketch a graph of f(x r—2)%In(z —2)
22 —4
18. Use Key Idea 3.5.1 to sketch a graph of f(z) = —;
X
22 —4x+3
19. Use Key Idea 3.5.1 to sketch h of ==
se Key Idea o sketch a graph of f(x) 7 6r 18
2?2 -2 41
20. Use Key Idea 3.5.1 to sketch h of =
se Key Idea o sketch a graph of f(x) 7 6018

21. Use Key Idea 3.5.1 to sketch a graph of f(z) = 2vx + 1
22.  Use Key Idea 3.5.1 to sketch a graph of f(z) = z2¢”
23. Use Key Idea 3.5.1 to sketch a graph of f(z) = ( ) cos(x) on [—m, 7]
(2) = (z = 3)*° +2
(z —1)2/3
xZ

24. Use Key Idea 3.5.1 to sketch a graph of f(x

25. Use Key Idea 3.5.1 to sketch a graph of f(z) =
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Exercise Group. In the following exercises, a function with the parameters a and b are given. Describe the critical
points and possible points of inflection of f in terms of a and b.

26. f(x)=

a
2 + b2

(a) Find the critical points of f.

(b) Find the inflection points of f.
27. f(x) =sin(az +b)

(a) Find the critical points of f.

(b) Find the inflection points of f.
28. f(z)=(x—a)(xz—0»)

(a) Find the critical points of f.

(b) Find the inflection points of f.

29. Givenz? + 42 = 1, use implicit differentiation to find % and 327’5. Use this information to justify the sketch
of the unit circle.



Chapter 4

Applications of the Derivative

In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method

Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as #° + = + 1 = 0 or cos(z) = z cannot be solved by
algebraic methods in terms of familiar functions. Fortunately, there are methods
that can give us approximate solutions to equations like these. These methods
can usually give an approximation correct to as many decimal places as we like.
In Section 1.5 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if z is
sufficiently close to aroot of f(x), then the tangent line to the graph at (z, f(z))
will cross the z-axis at a point closer to the root than .

We start Newton’s Method with an initial guess about roughly where the
root is. Call this zy. (See Figure 4.1.1(a).) Draw the tangent line to the graph
at (zo, f(x0)) and see where it meets the z-axis. Call this point z;. Then re-
peat the process — draw the tangent line to the graph at (z1, f(z1)) and see
where it meets the z-axis. (See Figure 4.1.1(b).) Call this point 5. Repeat the
process again to get x3, x4, etc. This sequence of points will often converge
rather quickly to a root of f.

o P P
0.5 0.5 0.5
J.‘” A To T EA To T ) o
—0.5 -0.5 —0.5
-1 -1 -1
(a) (b) (c)

Figure 4.1.1 Demonstrating the geometric concept behind Newton’s Method

We can use this geometric process to create an algebraic process. Let’s look
at how we found x;. We started with the tangent line to the graph at (z¢, f(x¢)).
The slope of this tangent line is f/(z() and the equation of the line is

y = f'(x0)(x — x0) + f(z0).

169
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This line crosses the x-axis when y = 0, and the z-value where it crosses is
what we called ;. So let y = 0 and replace = with x1, giving the equation:

0= f'(z0)(@1 — x0) + f(o)-

Now solve for z7:

P (C)
f'(wo)
Since we repeat the same geometric process to find x5 from 21, we have
f(x1)
To = T1 — .
f'(z1)

In general, given an approximation x,,, we can find the next approximation,
Ty 41 as follows:

LTntl = Tp — f/(l’ )
n

We summarize this process as follows.

Key Idea 4.1.2 Newton’s Method.

Let f be a differentiable function on an interval I with a root in I. To
approximate the value of the root, accurate to d decimal places:

1. Choose a value x( as an initial approximation of the root. (This is
often done by looking at a graph of f.)

2. Create successive approximations iteratively; given an approxima-
tion x,,, compute the next approximation z,, 41 as

Tnt1 = Tp — f’(.T )
n

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Let’s practice Newton'’s Method with a concrete example.
Example 4.1.3 Using Newton'’s Method.

Approximate the real root of 23 — 22 — 1 = 0, accurate to the first
three places after the decimal, using Newton’s Method and an initial
approximation of z¢ = 1.

Solution. To begin, we compute f/(x) = 322 — 2z. Then we apply the
Newton’s Method algorithm, outlined in Key Idea 4.1.2.

Newton’s Method is not Infalli-

ble. The sequence of approximate
values may not converge, or it may
converge so slowly that one is “tricked”
into thinking a certain approxima-

tion is better than it actually is.
These issues will be discussed at

the end of the section.
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F(1) £(1.625)
—1_ 5 =1.625 — 22
o /(@) s J/(1.625)
3 _ 12 _ 3 _ 2 _
B s L g 1625° — 16257 1
3.12-2-1 3.1.6252 — 2-1.625
—9 ~ 1.48579
£(1.48579)
vy = 1.48579 — L2000
e 7/(1.48579)
To =2 — f/(2) ~ 1.46596
f(2)
93 92 1 £(1.46596)
_g_ 2 = 1.46596 — 2200
2 3.92_9.9 5 17(1.46596)
—1.625 ~ 1.46557

We performed five iterations of Newton's Method to find a root accu-
rate to the first three places after the decimal; our final approximation
is 1.465. The exact value of the root, to six decimal places, is 1.465571; It
turns out that our x5 is accurate to more than just three decimal places.
A graph of f(x) is given in Figure 4.1.4. We can see from the graph
that our initial approximation of 7 = 1 was not particularly accurate; a
closer guess would have been xy = 1.5. Our choice was based on ease
of initial calculation, and shows that Newton’s Method can be robust
enough that we do not have to make a very accurate initial approxima-
tion.

We can automate this process on a calculator that has an ANS key that returns
the result of the previous calculation. Start by pressing 1 and then Enter. (We
have just entered our initial guess, zo = 1.) Now compute

s — LLANS )

f'(ANS )

by entering the following and repeatedly press the Enter key.

ANS-(ANS*3-ANS*2-1)/ (3*ANS*2-2*ANS)

Each time we press the Enter key, we are finding the successive approxima-
tions, x1, xo, ..., and each one is getting closer to the root. In fact, once we get
past around x7 or so, the approximations don't appear to be changing. They
actually are changing, but the change is far enough to the right of the decimal
point that it doesn’t show up on the calculator’s display. When this happens, we
can be pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many itera-

tions can be computed very quickly.

Example 4.1.5 Using Newton’s Method to find where functions inter-
sect.

Use Newton'’s Method to approximate a solution to cos(z) = z, accu-
rate to five places after the decimal.

Solution. Newton'’s Method provides a method of solving f(x) = 0; itis
not (directly) a method for solving equations like f(x) = g(z). However,
thisis not a problem; we can rewrite the latter equation as f(z)—g(x) =
0 and then use Newton'’s Method.

0.5 1Y

02 04 06 08 1 12 14 16

Figure 4.1.4 A graph of f(z) = 2° —
22 — 1in Example 4.1.3
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So we rewrite cos(z) = x as cos(x) — x = 0. Written this way, we are
finding a root of f(z) = cos(z) — . We compute f/(x) = —sin(z) — 1.
Next we need a starting value, x. Consider Figure 4.1.6, where f(z) =
cos(x) — x is graphed. It seems that xg = 0.75 is pretty close to the
root, so we will use that as our x. (The figure also shows the graphs of
y = cos(x) and y = x. Note how they intersect at the same x value as
when f(z) =0.)

We now compute x1, 2, etc. The formula for x4 is

cos(0.75) — 0.75
—sin(0.75) — 1
~ 0.7391111388.

1 =0.75 —

Apply Newton’s Method again to find x5:

cos(0.7391111388) — 0.7391111388
—sin(0.7391111388) — 1

x2 = 0.7391111388 —
~ 0.7390851334.

We can continue this way, but it is really best to automate this process.
On a calculator with an ANS key, we would start by entering .75, then
Enter, inputting our initial approximation. We then enter:

ANS - (cos(ANS)-ANS)/(-sin(ANS)-1)

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

r3 = 0.7390851332
x4 = 0.7390851332.

Our approximations xo and x5 did not differ for at least the first five
places after the decimal, so we could have stopped. However, using our
calculator in the manner described is easy, so finding x4 was not hard.
It is interesting to see how we found an approximation, accurate to as
many decimal places as our calculator displays, in just four iterations.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computation in this problem.

X = 0.75
while true
oldx = x
X = x = (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < 0.0000000001
break

This code calculates x4, 2, etc., storing each result in the variable x. The previ-
ous approximation is stored in the variable oldx. We continue looping until the
difference between two successive approximations, abs(x-oldx), is less than
some small tolerance, in this case, 0.0000000001.

Convergence of Newton’s Method. What should one use for the initial guess,
xo? Generally, the closer to the actual root the initial guess is, the better. How-

1 —05 0.5 \1

Figure 4.1.6 A graph of f(z) =
cos(z) — x used to find an initial ap-
proximation of its root
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ever, some initial guesses should be avoided. For instance, consider Example 4.1.3
where we sought the root to f(z) = 2® — 22 — 1. Choosing 2y = 0 would have
been a particularly poor choice. Consider Figure 4.1.7, where f(x) is graphed
along with its tangent line at x = 0. Since f'(0) = 0, the tangent line is horizon-
tal and does not intersect the z-axis. Graphically, we see that Newton'’s Method
fails.

We can also see analytically that it fails. Since

_ fO)
f'(0)

and f/(0) = 0, we see that z is not well defined.

This problem can also occur if, for instance, it turns out that f/(z5) = 0.
Adjusting the initial approximation zq by a very small amount will likely fix the
problem.

Itis also possible for Newton's Method to not converge while each successive
approximation is well defined. Consider f(z) = x'/3, as shown in Figure 4.1.8.
It is clear that the root is z = 0, but let’s approximate this with 2y = 0.1. Fig-
ure 4.1.8(a) shows graphically the calculation of z1; notice how it is farther from
the root than xq. Figure 4.1.8(b) and Figure 4.1.8(c) show the calculation of x5
and x3, which are even farther away; our successive approximations are getting
worse. (It turns out that in this particular example, each successive approxima-
tion is twice as far from the true answer as the previous approximation.)

931:0

Yy Yy Yy

(a) (b) (c)

Figure 4.1.8 Newton’s Method fails to find a root of f(x) = x'/3, regardless of
the choice of xg.

There is no “fix” to this problem; Newton’s Method simply will not work
and another method must be used. (In this case the particular reason Newton's
Method fails is that the tangent line is vertical at the root).

While Newton’s Method does not always work, it does work “most of the
time,” and it is generally very fast. Once the approximations get close to the root,
Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro-
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

0.5 1Y

—_

—05 0.5

I

—-1.5"

Figure 4.1.7 A graph of f(x)

22 — 1, showing why an initial approx-
0 with Newton'’s

imation of z( =
Method fails
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4.1.1 Exercises

Terms and Concepts
1. (OTrue O False) Given afunction f(x), Newton's Method produces an exact solution to f(z) = 0.
2. (O True O False) In order to get a solution to f(x) = 0 accurate to d places after the decimal, at least

d + 1 iterations of Newton’s Method must be used.

Problems

Exercise Group. The roots of the function f(x) are known or are easily found. Use five iterations of Newton’s Method
with the given initial approximation to approximate the root. Compare it to the known value of the root.

3.  f(z)=-cos(x), o =15 4.  f(x)=sin(z),z0=1
5. fla)=22+2-2,30=0 6. f(x)=22-2,20=15
7. f(x)=In(x), 20 =2 8. fl)=a3—a?4+2—1,20=2

Exercise Group. Use Newton’s Method to approximate all roots of the given function accurate to three places after
the decimal. If an interval is given, find only the roots that lie within that interval. Use technology to obtain good
initial approximations.

9. flx)=a4+522—z—1

10. f(zx)=a*+22° - T22 —2+5

1. f(z) =2'" — 2213 — 1028 + 10 on (-2,2)
12.  f(z) = 2? cos(x) + (z — 1) sin(z) on (-3, 3)

Exercise Group. Use Newton’s Method to approximate when the given functions are equal, accurate to 3 places after
the decimal. Use technology to obtain good initial approximations.

13.  f(z) = 22, g(v) = cos(x)
14.  f(z) =2 -1, g(z) = sin(z)
15.  f(z) = e*”, g(z) = cos(z)

16. f(z) =z, g(z) = tan(z) on [—6, 6]
17.  Why does Newton’s Method fail in finding a root of f(z) = 2® — 322 + z + 3 when zg = 1?

18. Why does Newton’s Method fail in finding a root of f(z) = —17z* + 1302% — 30122 + 156z + 156 when
To = 1?
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4.2 Related Rates

When two quantities are related by an equation, knowing the value of one quan-
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C' = 27r; knowing that C'is 67 in determines
the radius must be 3in.

But what if both variables are changing with time? If we know how two
variables are related and we know how one of them changes with time, can we
find how the other variable changes with time?

The topic of related rates allows us to answer this question: knowing the
rate at which one quantity is changing can determine the rate at which another
changes.

Remark 4.2.1 This section relies heavily on implicit differentiation, so referring
back to Section 2.6 may help.

We demonstrate the concepts of related rates through examples.

Example 4.2.2 Understanding related rates.

The radius of a circle is growing at a rate of 5 % At what rate is the
circumference growing?

Solution. The circumference and radius of a circle are related by C' =
27r. We are given information about how the length of  changes with
respect to time; that is, we are told % ish % We want to know how the
length of C' changes with respect to time, i.e., we want to know %<

W.
Implicitly differentiate both sides of C' = 27 with respect to ¢:

C =2nr
d d
ac _,
a Tt

As we know % js 51 we know

% =275 =107 ~ 31.4in/hr.

In related rates problems, we will be presented with an application prob-
lem that involves two or more variables and one or more rate. It is the job of
the reader to construct the appropriate model that can be used to answer the
posed question. Key Idea 4.2.3 outlines the basic steps for solving a related rates
problem.

Key Idea 4.2.3 Related Rates.

1. Read the problem carefully and identify the quantities that are
changing with time. (There may be many quantities that change
with time, try to identify which variables are important to your
goal and only focus on these quantities.)

2. Draw a diagram (if applicable) and assign mathematical variables
to each quantity that is changing with time. (If you are given a par-
ticular value of a quantity that is also changing with time, do not
include these values on your diagram. We will call these “instan-
taneous values” of the variable.)
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3. Relate the important variables using a mathematical model.

(Typical models are known formulas for area, perimeter, the
Pythagorean Theorem or Trigonometric Ratios.) It may be neces-
sary to use more than one technique (such as similar triangles) to
reduce your model down to one that only involves the variables
of interest.

. Implicitly differentiate both sides of the equation found in Step 3
with respect to t.

. Substitute in the known values of rates and known instantaneous

values of the variables.
6. Solve for the unknown rate.

7. Write a full sentence conclusion.

Consider another, similar example.

Example 4.2.4 Finding related rates.

Water streams out of a faucet at a rate of 2 @ onto a flat surface at a
constant rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Solution.

1. We can answer this question two ways: using “common sense” or

related rates. The common sense method states that the volume
of the puddle is growing by 2 %, where

volume of puddle = area of circle x depth.

Since the depth is constant at 1/8in, the area must be growing

by 16 g since 16 - % = 2. This approach reveals the underlying
related rates principle.

Now let’s solve the problem using Key Idea 4.2.3. Based on the
problem description, the quantities that change with time are the
volume of water (the volume of the puddle), the area of the circu-
lar puddle and the radius of the circle. We don’t need a diagram
for this problem. The important variables for this part of the prob-
lem are the volume and area.

Let V and A represent the Volume and Area of the puddle. We
know V = A x %. Take the derivative of both sides with respect
to ¢, employing implicit differentiation.

1
=4
V=3
d d (1
el ——(ZA
V) dt(8 )
AV 1dA

dt - 8dt
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av

We know the change in volume, 7

= 2, so we substitute this
value into our related rates equation: 2 =

1dA dA _
55 and hence =

16. Thus the area is growing by 16 %

2. We already identified the quantities that are changing in Part 1.
The variables of interest in this problem are the radius and the
volume. We need an equation that relates the volume of the circle
to the radius. Since the puddle is a right circular cylinder, we will
use a known volume formula, V' = 7r2h where V is the volume
of the puddle (in in3, r is the radius (in inches) and & is the height
(i.e. depth) of the puddle in inches. (Notice that this formula is
equivalentto V' = areax depth.) We know that the height (depth)
is a constant 1/8 inch. Since this quantity does not change in the
problem, we can safely substitute this value now.

Implicitly derive both sides of V' = 721 with respect to ¢:

8
1

V=§7T7‘2

d d (1 ,
v o1, dr
at 8 " at
av._1_dr
at 4" dt

dr

7 we have

Solving for

dr 8

dt
Note how our answer is not a number, but rather a function of r.
In other words, the rate at which the radius is growing depends on
how big the circle already is. If the circle is very large, adding 2 g
of water will not make the circle much bigger at all. If the circle is
dime-sized, adding the same amount of water will make a radical
change in the radius of the circle.

In some ways, our problem was (intentionally) ill-posed. We need
to specify a current (instantaneous) value of the radius in order to
know a rate of change. When the puddle has a radius of 10 in, the
radius is growing at a rate of

dr 8

4
— = — = — ~0.25i .
B di " T0n  5n 2 0-2pinss
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Example 4.2.5 Studying related rates.

Radar guns measure the rate of distance change between the gun and
the object it is measuring. For instance, a reading of “55 mph” means
the object is moving away from the gun at a rate of 55 miles per hour,
whereas a measurement of “—25 mph” would mean that the object is
approaching the gun at a rate of 25 miles per hour.

If the radar gun is moving (say, attached to a police car) then radar read-
outs are only immediately understandable if the gun and the object are B = 1/2 —>

moving along the same line. If a police officer is traveling 60 mph and Car
gets a readout of 15 mph, he knows that the car ahead of him is moving
away at a rate of 15 miles an hour, meaning the car is traveling 75 mph.
(This straight-line principle is one reason officers park on the side of the
highway and try to shoot straight back down the road. It gives the most
accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving
due east, as shown in Figure 4.2.6. Using his radar gun, he measures T

A=1/2
Q

a reading of 20 mph. By using landmarks, he believes both he and the Officer

other car are about 1/2 mile from the intersection of their two roads.
If the speed limit on the other road is 55 mph, is the other driver speed- Figure 4.2.6 A sketch of a police car

ing? (at bottom) attempting to measure
Solution. The important quantities that are changing are: the distance the speed of a car (at right) in Exam-
of the officer to the intersection, the distance of the car to the intersec- ple 4.2.5

tion, and the distance of the officer to the car. (There are other quanti-

ties that are changing as well such as the angles and area of the triangle,

but these are not important to this problem.)

Using the diagram in Figure 4.2.6, let’s label what we know about the sit-

uation. As both the police officer and other driver are 1/2 mile from the

intersection, we have A = 1/2, B = 1/2, and through the Pythagorean

Theorem, C' = 1/+/2 ~ 0.707. These values are “instantaneous” values

for our variables, so we won't use them until the end of the problem.

Instead, we will use the variables A, B, and C.

We need an equation that relates A, B, and C. The Pythagorean The-

orem is a good choice: A2 + B? = (C?. Differentiate both sides with

respect to t:

A?+ B2 =C?

d d
LAz p?y= Y2
dA dB dC
2A— +2B— =2C—
dt * © dt

dt
We know the police officer is traveling at 30 mph; that is, % = —30.
The reason this rate of change is negative is that A is getting smaller; the
distance between the officer and the intersection is shrinking. The radar
measurement is % = 20. We want to find %.

We have values for everything except %—’f. Solving for this we have:
dc dA
dB  Cr — AW.

dt B
Now we substitue in our known rates and instantaneous values of our
variables:
dB 0.707(20) — 0.5(—30)
dt "~ (0.5)
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= 58.28 mph.
The other driver appears to be speeding slightly.
Example 4.2.7 Studying related rates.
A camera is placed on a tripod 10 ft from the side of a road. The camera
is to turn to track a car that is to drive by at 100 mph for a promotional
video. The video's planners want to know what kind of motor the tripod
should be equipped with in order to properly track the car as it passes
by. Figure 4.2.8 shows the proposed setup.
How fast must the camera be able to turn to track the car?
Solution. The quantities that changing are = and # as drawn on Fig-
ure 4.2.8. (The hypotenuse of the triangle is also changing, but this isn't
important to the problem). We seek information about how fast the
camera is to turn; therefore, we need an equation that will relate an an-
gle 6 to the position of the camera and the speed and position of the
car.
Figure 4.2.8 suggests we use a trigonometric equation. Letting x repre-
sent the distance the car is from the point on the road directly in front
of the camera, we have
T
tan(f) = —. 4.2.1
0)= 15 (4.2.1)
Now take the derivative of both sides of Equation (4.2.1) using implicit
differentiation:
T
tan(f) = —
d d/x
—(tan(#)) = —(—)
dt( @) dt \10
df 1 dzx
2
sec’(f)— = ——
©) dt 10 dt
Now we solve for fl—f:
dd  cos?(6) d
9 _ cos’(6) dz (4.2.2)
dt 10 dt
As the car is moving at 100 mph, we have that % is —100 mph (asin the
last example, since x is getting smaller as the car travels, ‘fi—f is negative).

We need to convert the measurements so they use the same units (we
chose ft); rewrite —100 mph in terms of %:

dx mi
= = -100—
dt hr
mi ft 1 hr
= 100 5280 50 s
= —146.6 ft/s.

We want to know the fastest the camera has to turn. Common sense
tells us this is when the car is directly in front of the camera (i.e., when
6 = 0). Our mathematics bears this out. In Equation (4.2.2) we see this
is when cos? () is largest; this is when cos() = 1, or when § = 0. We
also know that we should get an answer that is in % Since cos(#) is
a “dimensionless” measure, it won'’t contribute to the units. However,

179

Practicality. Example 4.2.5is both
interesting and impractical. It high-
lights the difficulty in using radar

in anonlinear fashion, and explains
why “in real life” the police offi-
cer would follow the other dri-
ver to determine their speed, and
not pull out pencil and paper.

The principles here are impor-
tant, though. Many automated
vehicles make judgments about
other moving objects based on
perceived distances, radar-like mea-
surements and the concepts of
related rates.

100mph

10ft

Figure 4.2.8 Tracking a speeding car
(at left) with a rotating camera
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radians are also dimensionless. This means we can write (or erase) the
word “radian” without any unit consequences. (The same is not true of
degrees — always convert degress to radians).
With % approximately —146.7 2, we have
df 1
"~ 0w 146.67 ft/s
= —14.667 radians/s

We find that % is negative; this matches our diagram in Figure 4.2.8 for
0 is getting smaller as the car approaches the camera.

What is the practical meaning of —14.667 %? Recall that 1 circular rev-
olution goes through 27 radians, thus 14.667 24 means 14.667/(2) ~
2.33 revolutions per second. The negative sign indicates the camera is
rotating in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’s Method uses the derivative to approximate roots of functions; this sec-
tion stresses the “rate of change” aspect of the derivative to find a relationship
between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.
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4.2.1 Exercises

Terms and Concepts

1. (OTrue [OFalse) Implicit differentiation is often used when solving “related rates” type problems.
2. (DO True [OFalse) A study of related rates is part of the standard police officer training.
Problems

3. Water flows onto a flat surface at a rate of 4 @ forming a circular puddle 8 mm deep. How fast is the radius
growing when the radius is:

(a) 2cm
(b) 20 cm
(c) 200 cm

4.  Aspherical balloon is inflated with air flowing at a rate of 5 ? How fast is the radius of the balloon increasing
when the radius is:

(a) 1cm
(b) 10cm

(c) 100 cm

5.  Consider the traffic situation introduced in Example 4.2.7. How fast is the “other car” traveling if the officer and
the other car are each % mile from the intersection, the other car is traveling due west, the officer is traveling
north at 55 mph, and the radar reading is —75 mph?

6.  Consider the traffic situation introduced in Example 4.2.7. Calculate how fast the “other car” is traveling in each
of the following situations.

(a) The officer is traveling due north at 50 mph and is % mile from the intersection, while the other car is 1
mile from the intersection traveling west and the radar reading is —85 mph?

(b) The officer is traveling due north at 50 mph and is 1 mile from the intersection, while the other car is %
mile from the intersection traveling west and the radar reading is —85 mph?

7. An F-22 aircraft is flying at 530 mph with an elevation of 6600 ft on a straight-line path that will take it directly
over an anti-aircraft gun.

e~

-
-

6600 ft

A
Y

X

How fast (in radians per second) must the gun be able to turn to accurately track the aircraft when the plane

(a) 1 mile away?
(b) 1/5 mile away?

(c) Directly overhead?
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8. An F-22 aircraft is flying at 500 mi/h with an elevation of 100 ft on a straight-line path that will take it directly
over an anti-aircraft gun as in Exercise 4.2.7 (note the lower elevation here).
How fast must the gun be able to turn to accurately track the aircraft when the plane is:

(a) 1800 ft away?
(b) 350 ft away?

(c) Directly overhead?

9. A 24ftladder is leaning against a house while the base is pulled away at a constant rate of 1 ft/s.

A

)
el

o 1 ft/S

el
—

At what rate is the top of the ladder sliding down the side of the house when the base is:

(a) 1 foot from the house?
(b) 10 feet from the house?
(c) 23 feet from the house?

(d) 24 feet from the house?

10. Aboat is being pulled into a dock at a constant rate of 30 ft/min by a winch located 10 ft above the deck of the
boat.

At what rate is the boat approaching the dock when the boat is:
(a) 50 feet out?
(b) 15 feet out?
(c) 1 foot from the dock?
(d) What happens when the length of rope pulling in the boat is less than 10 feet long?

11. Aninverted cylindrical cone, 28 ft deep and 25 ft across at the top, is being filled with water at a rate of 12 ft;
At what rate is the water rising in the tank when the depth of the water is:

(a) 1 foot?
(b) 10 feet?
(c) 22 feet?

(d) How long will the tank take to fill when starting at empty?
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12.

13.

14.

15.

A rope, attached to a weight, goes up through a pulley at the ceiling and back down to a worker. The man holds
the rope at the same height as the connection point between rope and weight.

ft /s
/\ —>

Suppose the man stands directly next to the weight (i.e., a total rope length of 60 feet) and begins to walk
away at a rate of 2 ft/s. How fast is the weight rising when the man has walked:

- 30 ft -

(a) 10 feet?
(b) 40 feet?

(c) How far must the man walk to raise the weight all the way to the pulley?

Consider the situation described in Exercise 4.2.12. Suppose the man starts 40 ft from the weight and begins to
walk away at a rate of 2 %

(a) How long is the rope?
(b) How fast is the weight rising after the man has walked 10 feet?
(c) How fast is the weight rising after the man has walked 30 feet?

(d) How far must the man walk to raise the weight all the way to the pulley?

A hot air balloon lifts off from ground rising vertically. From 90 feet away, a 6 ft tall woman tracks the path of
the balloon. When her sightline with the balloon makes a 45° angle with the horizontal, she notes the angle is
increasing at about 3° per minute.

(a) What is the elevation of the balloon?

(b) How fast is it rising?
A company that produces landscaping materials is dumping sand into a conical pile. The sand is being poured
3
at arate of 5 ft? The physical properties of the sand, in conjunction with gravity, ensure that the cone’s height

is roughly % the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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4.3 Optimization

In Section 3.1 we learned about extreme values — the largest and smallest val-
ues a function attains on an interval. We motivated our interest in such values
by discussing how it made sense to want to know the highest/lowest values of
a stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.1 Optimization: perimeter and area.

A man has 100 feet of fencing, a large yard, and a small dog. He wants to
create a rectangular enclosure for his dog with the fencing that provides
the maximal area. What dimensions provide the maximal area?

Solution. One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context
that proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched
twice in Figure 4.3.2, either with treetop grass and nice fence boards or
as a simple rectangle. Either way, drawing a rectangle forces us to realize
that we need to know the dimensions of this rectangle so we can create
an area function — after all, we are trying to maximize the area.

AAAA

X

Figure 4.3.2 A sketch of the enclosure in Example 4.3.1.
We let = and y denote the lengths of the sides of the rectangle. Clearly,

Area = zy.

We do not yet know how to handle functions with two variables; we
need to reduce this down to a single variable. We know more about the
situation: the man has 100 feet of fencing. By knowing the perimeter of
the rectangle must be 100, we can create another equation:

Perimeter = 100 = 2z + 2y.

We now have two equations and two unknowns. In the latter equation,
we solve for y:
y =50 —=z.

Now substitute this expression for y in the area equation:
Area = A(x) = (50 — x).

Note we now have an equation of one variable; we can truly call the Area
a function of x.




CHAPTER 4. APPLICATIONS OF THE DERIVATIVE 185

This function only makes sense when 0 < x < 50, otherwise we get
negative values of area. So we find the extreme values of A(z) on the
interval [0, 50] using Key Idea 3.1.14.

To find the critical points, we take the derivative of A(z) and set it equal
to 0, then solve for x.

A(zr) = 2(50 — )
= 50x — z°

Al(x) =50 — 2x

We solve 50 — 22 = 0 to find = = 25; this is the only critical point. We
evaluate A(x) at the endpoints of our interval and at this critical point to
find the extreme values; in this case, all we care about is the maximum.
Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625ft>. This is the
maximum. Since we earlier found y = 50 — x, we find that y is also
25. Thus the dimensions of the rectangular enclosure with perimeter of
100 ft. with maximum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi-variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

N

Key Idea 4.3.3 Solving Optimization Problems.

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We'll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able function using substitutions derived from the other equations
(we'll call these constraint equations).

4. Identify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. Identify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.3 in a variety of examples.
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Example 4.3.4 Optimization: perimeter and area.

Here is another classic calculus problem: A woman has a 100 feet of fenc-
ing, a small dog, and a large yard that contains a stream (that is mostly
straight). She wants to create a rectangular enclosure with maximal area
that uses the stream as one side. (Apparently her dog won’t swim away.)
What dimensions provide the maximal area?

Solution. We will follow the steps outlined by Key Idea 4.3.3.

1. We are maximizing area. A sketch of the region will help; Fig-
ure 4.3.5 gives two sketches of the proposed enclosed area. A
key feature of the sketches is to acknowledge that one side is not
fenced.

X

B —_

X

Figure 4.3.5 A sketch of the enclosure in Example 4.3.4

2. We want to maximize the area; as in the example before,
Area = zy.

This is our fundamental equation. This defines area as a function
of two variables, so we need another equation to reduce it to one
variable.

We again appeal to the perimeter; here the perimeter is
Perimeter = 100 = x + 2y.

The perimeter is our constraint equation. Note how this is a dif-
ferent equation for perimeter than in Example 4.3.1, since one of
the sides does not need to be fenced.

3. We now reduce the fundamental equation to a single variable us-
ing our constraint equation. In the perimeter equation, solve for
y: y = 50 — x/2. We can now write Area as

Area = A(x) = x(50 — z/2)
1
= 50x — §x2.
Area is now defined as a function of one variable.

4. We want the area to be non-negative. Since A(z) = (50 — z/2),
we want z > 0 and 50 — 2/2 > 0. The latter inequality implies
that z < 100,s00 < x < 100.

5. We now find the extreme values. At the endpoints, the minimum
is found, giving an area of 0.
Find the critical points. We have A’(x) = 50— x; setting this equal
to 0 and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.
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have two sides of length 25 and one side of length 50, with a total

L 6. We earlier set y = 50 — x/2; thus y = 25. Thus our rectangle will
area of 1250 ft2.

Keep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a system of equations. These equations
allow us to write a certain quantity as a function of one variable, which we then
optimize.

Example 4.3.6 Optimization: minimizing cost.

A power line needs to be run from a power station located on the beach
to an offshore facility. Figure 4.3.7 shows the distances between the
power station to the facility.

It costs $50/ ft to run a power line along the land, and $130/ ft to run
a power line under water. How much of the power line should be run
along the land to minimize the overall cost? What is the minimal cost?
Solution. We will follow the strategy of Key Idea 4.3.3 implicitly, without
specifically numbering steps.

There are two immediate solutions that we could consider, each of
which we will reject through “common sense.” First, we could minimize
the distance by directly connecting the two locations with a straight line.
However, this requires that all the wire be laid underwater, the most
costly option. Second, we could minimize the underwater length by run-
ning a wire all 5000 ft along the beach, directly across from the offshore
facility. This has the undesired effect of having the longest distance of
all, probably ensuring a non-minimal cost.

The optimal solution likely has the line being run along the ground for
a while, then underwater, as the figure implies. We need to label our
unknown distances — the distance run along the ground and the dis-
tance run underwater. Recognizing that the underwater distance can
be measured as the hypotenuse of a right triangle, we choose to label
the distances as shown in Figure 4.3.8.

By choosing = as we did (instead of letting = be the distance along the
land), we make the expression under the square root simple. We now
create the cost function.

Cost = land cost + water cost
$50 x land distance + $130 x water distance

50(5000 — x) + 130/ 22 4 10002.

So we have ¢(z) = 50(5000 — z) + 130v/2? + 10002. This function only
makes sense on the interval [0, 5000]. While we are fairly certain the
endpoints will not give a minimal cost, we still evaluate ¢(x) at each to
verify.

¢(0) = 380,000 ¢(5000) ~ 662,873.

(Notice that if z = 0, the line is run the full 5000 ft along land and a full
1000 ft under water. If x = 5000, the line is run the maximum distance
underwater.)

We now find the critical values of ¢(x). We compute /() as

130z

d(z) = =50 + ———.
@) V2 + 10002

5000 ft

Figure 4.3.7 Running a power line
from the power station to an offshore
facility with minimal cost in Exam-
ple 4.3.6

1000 ft

e
;2

5000 — z L

Figure 4.3.8 Labeling unknown dis-
tances in Example 4.3.6
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Recognize that this is never undefined. Setting ¢/ () = 0 and solving for
x, we have:

130z —0
Va2 +10002
130z _ 50
V2 410002
130222
x2 4+ 10002
130%2% = 50% (22 + 1000%)
130%22 — 50222 = 50% - 10002
(130% — 50%)2? = 50,0002
» 50,000
YT 1302 — 502
50, 000
V1302 — 502

50,000 1250
= ’ = —— ~416. .
120 3 6.67

—50 +

= 502

Evaluating c¢(x) at = 416.67 gives a minimal cost of about $370,000.
The distance the power line is laid along land is 5000—416.67 = 4583.33
| ft., and the underwater distance is v/416.672 + 10002 = 1083 ft.

In the exercises you will see a variety of situations that require you to com-
bine problem-solving skills with calculus. Focus on the process; learn how to
form equations from situations that can be manipulated into what you need. Es-
chew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

Section 4.4 introduces our final application of the derivative: differentials.
Given y = f(z), they offer a method of approximating the change in y after «
changes by a small amount.
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4.3.1 Exercises

Terms and Concepts

1. (O True [OFalse) An “optimization problem” is essentially an “extreme values” problem in a “story prob-
lem” setting.

2. (OTrue OFalse) This section teaches one to find the extreme values of a function that has more than one
variable.

Problems

3. Find the maximum product of two numbers (not necessarily integers) that have a sum of 150.

4. Find the minimum sum of two positive numbers whose product is 560.

5. Find the maximum sum of two positive numbers whose product is 580.

6. Find the maximum sum of two numbers, each of which is less than or equal to 290, whose product is 400.

7. Find the maximal area of a right triangle with hypotenuse of length 2.

8.  Arancher has 900 feet of fencing in which to construct adjacent, equally sized rectangular pens. What dimen-

sions should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355 cm? of liquid. What dimensions should the cylinder
have to minimize the material needed to produce the can? Based on your dimensions, determine whether or
not the standard can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of 206 in® that minimizes the surface area.
The “#10 can”is a standard sized can used by the restaurant industry that holds about 206 in® with a diameter
of 6 % in and height of 7in. Does it seem these dimensions where chosen with minimization in mind?

11. A standard soda can is roughly cylindrical and holds 355 cm?® of liquid. A real-world soda can has material on
the top and bottom that is thicker than the material around the side. Assume that the top/bottom material
is twice as thick as the material around the side. What dimensions should the cylinder have to minimize the
material needed to produce the can? Based on your dimensions and the assumption about material thickness,
determine whether or not the standard can is produced to minimize the material costs.

12. The United States Postal Service charges more for boxes whose combined length and girth exceeds 108 inches.
(The “length” of a package is the length of its longest side; the girth is the perimeter of the cross section, i.e.,
2w + 2h).

What is the maximum volume of a package with a square cross section (w = h) that does not exceed the
108 inch standard?

13. The strength S of a wooden beam is directly proportional to its cross sectional width w and the square of its

height h. that is, S = kwh? for some constant k.
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14.

15.

16.

17.

18.

12 |h

Given a circular log with diameter of 18 inches, what sized beam can be cut from the log with maximum
strength?

A power line is to be run to an offshore facility in the manner described in Example 4.3.7. The offshore facility
is 6 miles at sea and 4 miles along the shoreline from the power plant. It costs $35,000 per mile to lay a power
line underground and $70,000 to run the line underwater.

How much of the power line should be run underground? What is the minimum overall cost?

A power line is to be run to an offshore facility in the manner described in Example 4.3.7. The offshore facility
is 6 miles at sea and 2 miles along the shoreline from the power plant. It costs $45,000 per mile to lay a power
line underground and $75,000 to run the line underwater.

How much of the power line should be run underground? What is the minimum overall cost?
A woman throws a stick into a lake for her dog to fetch; the stick is 35 feet down the shore line and 13 feet into
the water from there. The dog may jump directly into the water and swim, or run along the shore line to get
closer to the stick before swimming. The dog runs about 19 f;t and swims about 2 %

How far along the shore should the dog run to minimize the time it takes to get to the stick? (Hint: the figure
from Example 4.3.7 can be useful.)
A woman throws a stick into a lake for her dog to fetch; the stick is 25 feet down the shore line and 16 feet into
the water from there. The dog may jump directly into the water and swim, or run along the shore line to get
closer to the stick before swimming. The dog runs about 22 % and swims about 1.7 %

How far along the shore should the dog run to minimize the time it takes to get to the stick? (Google “calculus
dog” to learn more about a dog’s ability to minimize times.)

What are the dimensions of the rectangle with largest area that can be drawn inside the unit circle?
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4.4 Differentials

In Section 2.2 we explored the meaning and use of the derivative. This section
starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f. At z = ¢, the tangent line to the graph of f has
equation

y=f)@=c)+ fle).

The tangent line can be used to find good approximations of f(x) for values
of x near c.

For instance, we can approximate sin(1.1) using the tangent line to the graph
of f(x) = sin(z) at z = 7/3 ~ 1.05. Recall that sin(7/3) = v/3/2 ~ 0.866,
and f'(n/3) = cos(n/3) = 1/2. Thus the tangent line to f(z) = sin(x) at
x=m/3is:

Uz) = %(az —7/3) + 0.866.

1Y Y
RS £(1.1) ~ sin(1.1) )
: (7/3,v/3/3) 0.89 sin(1.1)
0.5 0.88
#
0.87
NG
z (m/3,v/3/3) N
8 5 1.1
(a) (b)

Figure 4.4.1 Graphing f(x) = sin(z) and its tangent line at x = 7/3 in order to
estimate sin(1.1)

In Figure 4.4.1(a), we see a graph of f(z) = sin(x) graphed along with its
tangent line at x = 7/3. The small rectangle shows the region that is displayed
in Figure 4.4.1(b). In this figure, we see how we are approximating sin(1.1) with
the tangent line, evaluated at 1.1. Together, the two figures show how close
these values are.

Using this line to approximate sin(1.1), we have:

1
((11) = 5 (11— 7/3) +0.866
1
= 5(0.053) +0.866 = 0.8925.

(We leave it to the reader to see how good of an approximation this is.)

We now generalize this concept. Given f(z) and an z-value ¢, the tangent
lineisy = ¢(x), where {(z) = f'(c)(x —c)+ f(c). Clearly, f(c) = {(c). Let Az
be a small number, representing a small change in the z-value. We assert that:

fle+ Az) = l(c+ Ax),

since the tangent line to a function approximates well the values of that func-
tion near z = c. This tangent line approximation is used frequently enough in
applications that we give it a name.
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Definition 4.4.2

The function ¢(x) is often referred to as the linearization, or linear ap-
proximation of f at c. It is the linear function that best approximates
the value of f(x) when z is close to c.

As the z-value changes from c to ¢+ Az, the y-value of f changes from f(c)
to f(c 4+ Az). We call this change of y-value Ay. That is:

Ay = f(c+ Az) — f(o).
Replacing f(c + Ax) with its tangent line approximation, we have

Ay = {l(c+ Azx) — f(c)
= f'(0)((c+Az) —c) + f(c) = f(c)
= f'(c)Aw.

This final equation is important; it becomes the basis of Definition 4.4.3 and
Key Idea 4.4.4. In short, it says that when the z-value changes from cto ¢+ Az,
the y value of a function f changes by about f’(c)Ax.

We introduce two new variables, dz and dy in the context of a formal defin-
ition.

(4.4.1)

Definition 4.4.3 Differentials of = and y.

Let y = f(x) be differentiable. The differential of x, denoted dz, is
any nonzero real number (usually taken to be a small number). The
differential of y, denoted dy, is

We can solve for f/(x) in the above equation: f'(x) = dy/dx. This states
that the derivative of f with respect to x is the differential of y divided by the
differential of z; this is not the alternate notation for the derivative, Z—Z. This
latter notation was chosen because of the fraction-like qualities of the derivative,
but again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place.

Key Idea 4.4.4 Differential Notation.
Let y = f(z) be a differentiable function.
1. Let Ax represent a small, nonzero change in z value.

2. Let dx represent a small, nonzero change in x value (i.e., Az =
dx).

3. Let Ay be the change in y value as = changes by Ax; hence
Ay = f(z + Az) — f(z).

4. Let dy = f'(x)dz which, by Equation (4.4.1), is an approximation
of the change in y-value as = changes by Ax; dy ~ Ay.

\ J

What is the value of differentials? Like many mathematical concepts, differ-

entials provide both practical and theoretical benefits. We explore both here.

Differentials and linearization. The
relationship between the differ-
ential and the linearization given

in Definition 4.4.2 is as follows:

(x) = f(c) +dy,

if we take dy to be evaluated at
T =c

It is often useful to think of
dyisthe linear changein f, while
Ay represents the true change

inf.
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Example 4.4.5 Finding and using differentials.

Consider f(x) = z2. Knowing f(3) = 9, approximate f(3.1).

Solution. The z-value is changing from x = 3 to x = 3.1; therefore,
we see that dx = 0.1. If we know how much the y-value changes from
f(3)to f(3.1) (i.e., if we know Ay), we will know exactly what f(3.1) is
(since we already know f(3)). We can approximate Ay with dy.

Ay ~ dy
= f'(3)dx
=2-3-0.1=0.6.

We expect the y-value to change by about 0.6, so we approximate
f(3.1) = 9.6.

We leave it to the reader to verify this, but the preceding discussion links
the differential to the tangent line of f(z) at x = 3. One can verify that
the tangent line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximation is really good!)

So why bother?

In “most” real life situations, we do not know the function that describes
a particular behavior. Instead, we can only take measurements of how things
change — measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
tial Equations courses.

We use differentials once more to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques
can sometimes be used to easily compute something that looks rather hard.

Example 4.4.6 Using differentials to approximate a function value.

Approximate v/4.5.

Solution. We expect v/4.5 ~ 2, yet we can do better. Let f(z) = \/,
and let ¢ = 4. Thus f(4) = 2. We can compute f'(x) = 1/(2+/x), so
f4)=1/4.

We approximate the difference between f(4.5) and f(4) using differen-
tials, with dz = 0.5:

f(4.5) = f(4) = Ay = dy

= f'(4) dx
=1/4-1/2
—1/8

= 0.125.

PID controllers. Another place
differentials are used is in a PID
controller, which stands for “Pro-
portional Integral Derivative”. A
PID controller uses concepts of
both derivative and integral cal-
culus to very accurately control

a process (such as maintaining a
stable temperature on an espresso
machine).
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The approximate change in f fromxz = 4tox = 4.5is 0.125, so we
approximate v/4.5 = 2.125.

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as

/f(x) dx

quite often. While we don't discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practice finding differentials in general.

Example 4.4.7 Finding differentials.

In each of the following, find the differential dy.

1. y = sin(x) 2.y = 3.y =
e$

(22 +2) Va1
Solution.
1. y = sin(x): As f(z) = sin(z), f'(x) = cos(x). Thus
dy = cos(z)dz.

2. y=¢" (22 +2): Let f(z) = e (2% 4 2). We need f'(z), requir-
ing the Theorem 2.4.1.

We have f'(z) = e® (22 + 2) + 2ze”, s0

dy = (e“‘ (x2 + 2) + 2:1:6”) dz.

3.y = Va2 + 3z — 1: Let f(z) = Va2 + 3z — 1; we need f'(z),

requiring the Theorem 2.5.3.

_1
e have f/(r) = § (s 430~ 1) ¢ (20 +9) = A
Thus
gy = _FEF3dr
2v2? + 3z — 1

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f; we just multiply f’(x) by dz. It is important to remember that
we are not simply adding the symbol “dz” at the end.

We have seen a practical use of differentials as they offer a good method
of making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is z + Az (where Az is the
error, which we hope is small). This measurement of x may be used to compute
some other value; we can think of this latter value as f(x) for some function f.
As the true length is z + Az, one really should have computed f(z + Az). The
difference between f(x) and f(x + Ax) is the propagated error.

How close are f(z) and f(z + Ax)? This is a difference in “y” values:

fla+ Az) — f(z) = Ay =~ dy.

We can approximate the propagated error using differentials.
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Example 4.4.8 Using differentials to approximate propagated error.

A steel ball bearing is to be manufactured with a diameter of 2cm.
The manufacturing process has a tolerance of +0.1mm in the diameter.
Given that the density of steel is about 7.85 cm% estimate the propa-
gated error in the mass of the ball bearing.

Solution. The mass of a ball bearing is found using the equation “mass
= volume x density.” In this situation the mass function is a product of
the radius of the ball bearing, henceitism = 7.85§7rr3. The differential
of the mass is

dm = 31.47wr%dr.

The radius is to be 1 cm; the manufacturing tolerance in the radius is
+0.05mm, or +0.005cm. The propagated error is approximately:

Am ~ dm
= 31.4m(1)?(40.005)
= £0.493g
Is this error significant? It certainly depends on the application, but

we can get an idea by computing the relative error. The ratio between
amount of error to the total mass is

dﬂ _, 0.493
m 7.85%7r
0.493
= :l:i
32.88
= 40.015,

or +1.5%.

We leave it to the reader to confirm this, but if the diameter of the ball
was supposed to be 10 cm, the same manufacturing tolerance would
give a propagated error in mass of +12.33g, which corresponds to a
percent error of +0.188%. While the amount of error is much greater
(12.33 > 0.493), the percent error is much lower.
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4.4.1 Exercises

Terms and Concepts

1. (OTrue [OFalse) Given a differentiable function y = f(x), we are generally free to choose a value for dx,
which then determines the value of dy.

2. (O True OFalse) The symbols “dz” and “Az” represent the same concept.

3. (OTrue [OFalse) The symbols “dy” and “Ay” represent the same concept.

4, (OTrue [False) Differentials are important in the study of integration.

5. How are differentials and tangent lines related?

6. (OTrue OFalse) Inreal life, differentials are used to approximate function values when the function itself
is not known.

Problems

Exercise Group. Use differentials to approximate the given value by hand.

7.  2.07? 8. 2952

9. 443 10. 4.73

11. /255 12. /346
13. V124 14. /216.6
15.  sin(3) 16. 01

Exercise Group. Compute the differential dy.

17. y=22-5x—6 18. y=2°+2°

19. y— L 20. y = (62 +sin(z))’
46

2. y=al e 8

y=a" +e 2. y=—

23, y— 9z 24. y=In(92)
tan(z) + 2

25. y=e"sin(x) 26. y = cos(sin(x))

27. y= r—4 28. y=>5%In(x)
T+5

29. y=axtan"!(z) - 0.5 In(l + xQ) 30. y = In(sin(z))

31. A set of plastic spheres are to be made with a diameter of 4 cm. If the manufacturing process is accurate to
2 mm, what is the propagated error in volume of the spheres?

32. Thedistance, in feet, a stone dropsin ¢ seconds is given by d(t) = 16t2. The depth of a hole is to be approximated
by dropping a rock and listening for it to hit the bottom. What is the propagated error if the time measurement
is accurate to 4/10 of a second and the measured time is:

(a) 4 seconds?

(b) 6 seconds?

33. What is the propagated error in the measurement of the cross sectional area of a circular log if the diameter is
measured at 20", accurate to 1/8"?

34. A wallis to be painted that is 8 high and is measured to be 13’, 2 long. Find the propagated error in the
measurement of the wall’s surface area if the measurement is accurate to 1/ — 2”.
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Exercise Group. The following exercises explore some issues related to surveying in which distances are approximated
using other measured distances and measured angles. (Hint: Convert all angles to radians before computing.)

35.

37.

The length L of a long wall is to be

approximated. The angle 6, as shown in the

diagram (not to scale), is measured at a

distance of 25 feet from the wall, and found to
be 85.2°, accurate to 1°. Assume that the

triangle formed is a right triangle.

(a) What is the measured length L of the

wall?
(b) What is the propagated error?

(c) What is the percent error?

The length L of a long wall is to be calculated by
measuring the angle # shown in the diagram
(not to scale) at a distance of 50 feet from the
wall. Assume the formed triangle is an isosceles
triangle. The measured angle is 143°, accurate

to 1°.

(a) What is the measured length L of the

wall?
(b) What is the propagated error?

(c) What is the percent error?

36.

38.

The length L of a long wall is to be
approximated. The angle 8, as shown in the
diagram (not to scale), is measured at a
distance of 100 feet from the wall, and found to
be 71.5°, accurate to 1°. Assume that the
triangle formed is a right triangle.

(a) What is the measured length L of the
wall?

(b) What is the propagated error?

(c) What is the percent error?

The length of the walls in Exercise 4.4.35-4.4.37
are essentially the same. Which setup gives the
most accurate result?

e Right triangle at 25 feet
e Right triangle at 100 feet

o Isosceles triangle at 50 feet
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39. Consider the setup in Exercise 4.
assume the angle measurement

4.37. This time,
of 143° is exact

but the measured 50’ from the wall is accurate

to 6”.

What is the approximate percent error?

198
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We first learned of the derivative in the context of instantaneous rates of change
and slopes of tangent lines. We furthered our understanding of the power of the
derivative by studying how it relates to the graph of a function (leading to ideas
of increasing/decreasing and concavity). This chapter has put the derivative to
yet more uses:

Equation solving (Newton’s Method),

Related Rates (furthering our use of the derivative to find instantaneous
rates of change),

Optimization (applied extreme values), and

Differentials (useful for various approximations and for something called
integration).

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f, can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applica-

tions.



Chapter 5

Integration

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F'(x) such that F'(z) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is an equation that incorpo-
rates y, x, and the derivatives of y. For instance, a simple differential equation
is:

y = 2z.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that ¢/ = 2x?

Can you find another?

And yet another?

Hopefully you were able to come up with at least one solution: y = 2.
“Finding another” may have seemed impossible until one realizes that a function
like y = 22 + 1 also has a derivative of 22. Once that discovery is made, finding
“yet another” is not difficult; the function y = 2% + 123,456,789 also has a
derivative of 2z. The differential equation ¥’ = 2z has many solutions. This
leads us to some definitions.

Definition 5.1.1 Antiderivatives and Indefinite Integrals.

Let afunction f(x) be given. An antiderivative of f(z) is a function F(x)
such that F'(z) = f(x).
The set of all antiderivatives of f(x) is the indefinite integral of f, de-

noted by
/ f(z)dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.
We often use upper-case letters to denote antiderivatives.

200
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When f is continuous, knowing one antiderivative of f allows us to find in-
finitely more, simply by adding a constant. Not only does this give us more anti-
derivatives, it gives us all of them.

Theorem 5.1.2 Antiderivative Forms.

Let F(x) and G(x) be antiderivatives of a continuous function f(x) on
an interval I. Then there exists a constant C' such that, on I,

G(z) = F(z)+ C.

Given a continuous function f defined on an interval I and one of its anti-
derivatives F', we know all antiderivatives of f on I have the form F'(x) + C for
some constant C'. Using Definition 5.1.1, we can say that

/f(a:)dz =F(x)+C.

Note that we are abusing notation somewhat: when we write F'(z) + C on
the right-hand side, we really mean the set of all such functions, for each real
number value of C. Let’s analyze this indefinite integral notation.

Integral symbol . . . .
k» Differential of x Constant of integration
T
[ 10 @ = rw + o

Integrand function ‘3 (‘Any antiderivative of f

Figure 5.1.3 Antiderivative notation

Figure 5.1.3 shows the typical notation of the indefinite integral. The integra-
tion symbol, f is in reality an “elongated S,” representing “take the sum.” We
will later see how sums and antiderivatives are related.

The function we want to find an antiderivative of is called the integrand. It
contains the differential of the variable we are integrating with respect to. The f
symbol and the differential dx are not “bookends” with a function sandwiched
in between; rather, the symbol f means “find all antiderivatives of what follows,”
and the function f(z) and dx are multiplied together; the da does not “just sit
there.”

Another way of looking at the notation is that it tells us that f(z) dx is the dif-
ferential of F'(x): dF(z) = f(x) dz, confirming that F'(x) = f(x), as required
of an antiderivative. The integral symbol can then be viewed as an instruction
to “undo” the differential and recover the antiderivative F'(z).

Another important aspect of the dx is that it tells us which variable we're
taking the antiderivative with respect to, much like how d% would mean to take
the derivative with respect to z, while % would be the derivative with respect
tot.

Let’s practice using this notation.

Example 5.1.4 Evaluating indefinite integrals.

Evaluate [ sin(xz) dx.

Solution. We are asked to find all functions F'(x) such that F’'(z) =
sin(z). Some thought will lead us to one solution: F(z) = — cos(z),

because %(— cos(x)) = sin(x).

The indefinite integral of sin(x) is thus — cos(x), plus a constant of inte-




CHAPTER 5. INTEGRATION 202

gration. So:
/sin(x) dx = —cos(z) + C.

A commonly asked question is “What happened to the dz?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The

integral
/ sin(z) dz

presents us with a differential, dy = sin(z) dx. It is asking: “What is y?” We
found lots of solutions, all of the form y = — cos(z) + C.
Letting dy = sin(z) dx, rewrite

./sin(x) dx as/dy.

This is asking: “What functions have a differential of the form dy?” The an-
swer is “Functions of the form y+C, where C'is a constant.” What is y? We have
lots of choices, all differing by a constant; the simplest choice is y = — cos(z).

Understanding all of this is more important later as we try to find antideriv-
atives of more complicated functions. In this section, we will simply explore
the rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 5.1.5 Evaluating indefinite integrals.

Evaluate [ (3z% + 4z +5) da.

Solution. We seek a function F'(x) whose derivative is 322 + 4z + 5.
When taking derivatives, we can consider functions term-by-term, so we
can likely do that here.

What functions have a derivative of 32:2? Some thought will lead us to a
cubic, specifically 3 + C1, where C; is a constant.

What functions have a derivative of 42? Here the x term is raised to the
first power, so we likely seek a quadratic. Some thought should lead us
to 222 + Cs, where Cy is a constant.

Finally, what functions have a derivative of 5? Functions of the form
5x 4+ C3, where Cj is a constant.

Our answer appears to be

/(3$2+4x+5) de = 22 + C) + 222 + C5 + 5z + Cs.

We do not need three separate constants of integration; combine them
as one constant, giving the final answer of

/(3:L'2—|—4x—|—5) dr = 23 + 22° + 5z + C.

It is easy to verify our answer; take the derivative of 2% + 222 + 52 + C
and see we indeed get 322 + 42 + 5.
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This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

([ 1@as) = s

Differentiation “undoes” the work done by antidifferentiation.

Theorem 2.7.11 gave a list of the derivatives of common functions we had
learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.

Theorem 5.1.6 Derivatives and Antiderivatives.

Here are the Common Differentiation Rules and their Common Indefinite Integral Rule
counterparts.

d 1
—(In(@) = =, &> 0

e =c 1) [et@aa=c- [ f@)as
U@ 29e) = F@ 2@ [ (@ 2e@)do= [ 1) dut [ga)do
£(¢)=0 / 0de = C
%(I) /ldz:/d:r:erC
%(w"):n 1 /x”dxznilx"“w (n £ —1)
%(sm(m)) = () / cos(z) dz — sin(z) + C
2 (cos(a)) = —sin(a) / sin(c) dz = — cos(x) + C
2 tan(2)) = sec’(x) / sec?(z) dz = tan(z) + C
%(csc(a:)) — — cse(x) cot(z) / el ) o = — el =@
%(sec(m)) — el =) / sec(z) tan(z) dz — see(z) + C
2 (cot(a)) = —esc*(a) / esc?(z) do = — cot() + C
%(ez)zem /e””d:c:ez—i—c
%(aﬁ”) — In(a) - & /af fin = Inza) @4 C

/

1
—dz=Inlz|+C
0

We highlight a few important points from Theorem 5.1.6.

/c.f(x)dx:c./f(x)dz
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This is the Constant Multiple Rule: we can temporarily ignore constants
when finding antiderivatives, just as we did when computing derivatives

(i.e., -L (32?) is just as easy to compute as - (z%)). An example:

/5cos(1’) de =5- /cos(x) dx =5 - (sin(z) + C) = 5sin(x) + C.

In the last step we can consider the constant as also being multiplied by 5,
but “5 times a constant” is still a constant, so we just write “C"”.

/(f(x):l:g(x))dm:/f(:r)dx:l:/g(x)dw

This is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Exam-
ple 5.1.5. So:

/(3x2+4x+5)da§=/3x2dx+/4xdx+/5dx
=3/x2dx+4/xda:+/5dx

1 1
=3~§x3+4-§x2+5x+0

=224+ 224524+ C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

1 +1
7 = n _1
/x do = ——=a" ™+ C (n# 1)

This is the Power Rule of indefinite integration. There are two important
things to keep in mind:

1. Notice the restriction that n # —1. This is important: [ % dr #
“%xo + C”; rather, see the last rule from the list.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the anti-
derivative, do the opposite things in the opposite order: first add 1
to the power, then second divide by the power.

/ldx:In|:1:|+C’
T

Note that this rule uses the absolute value of x. The exercises will work
the reader through why this is the case; for now, know the absolute value
is important and cannot be ignored.
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Initial Value Problems. In Section 2.3 we saw that the derivative of a position
function gave a velocity function, and the derivative of a velocity function de-
scribes acceleration. We can now go “the other way:” the antiderivative of an
acceleration function gives a velocity function, etc.. While there is just one de-
rivative of a given function, there are infinitely many antiderivatives. Therefore
we cannot ask “What is the velocity of an object whose acceleration is —32 _:—E 7
since there is more than one answer.

We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 5.1.7 Solving initial value problems.

The acceleration due to gravity of a falling object is —32 ng Attimet = 3,
afalling object had a velocity of —10 f;t Find the equation of the object’s
velocity.

Solution. We want to know a velocity function, v(t). We know two
things:

e The acceleration, i.e., v'(t) = —32, and
o the velocity at a specific time, i.e., v(3) = —10.

Using the first piece of information, we know that v(t) is an antideriv-
ative of v/(t) = —32. So we begin by finding the indefinite integral of
—32:

/(—32) dt = =32t + C = v(1).
Now we use the fact that v(3) = —10to find C:

v(t) = =32t + C

v(3) = —10
—32(3)+ C = —10
C =86
Thus v(t) = —32t 4+ 86. We can use this equation to understand the

motion of the object: when ¢ = 0, the object had a velocity of v(0) =
86%. Since the velocity is positive, the object was moving upward.
When did the object begin moving down? Immediately after v(¢) = 0:

43
-32t+86=0 = t = 16 ~ 2.69s.
Recognize that we are able to determine quite a bit about the path of

the object knowing just its acceleration and its velocity at a single point
in time.

Example 5.1.8 Solving initial value problems.

Find f(t), given that f”(t) = cos(t), f'(0) = 3and f(0) = 5.
Solution. We start by finding f/(¢), which is an antiderivative of f”(¢):

/ F)dt = / . cos(t) dt
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=sin(t) + C
= f'(t).

So f'(t) = sin(t) + C for the correct value of C'. We are given that
1'(0) = 3, so:

sin(0) +C =3
C=3.

Using the initial value, we have found f’(¢) = sin(t) 4+ 3. We now find
f(t) by integrating again. We will use a different integration constant
since we have already defined C' to equal 3 above.

f(t):/f’(t) dt:/(sin(t)+3) dt = —cos(t) + 3t + D.

We are given that f(0) = 5, so

—cos(0)+3(0)+ D=5
-14+C=5
C=6

Thus f(t) = —cos(t) + 3t + 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, we will see how areas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the name of the theorem
that describes it: The Fundamental Theorem of Calculus.



CHAPTER 5. INTEGRATION 207

5.1.1 Exercises

Terms and Concepts

1. Define the term “antiderivative” in your own words.

2. Isit more accurate to refer to “the” antiderivative of f(x) or “an” antiderivative of f(z)?

3. Use your own words to define the indefinite integral of f(x).

4, Fill in the blanks: “Inverse operations do the things in the

5.  What s an “initial value problem”?

6. The derivative of a position function is a/an _ function.

7. An antiderivative of an acceleration functionisa/an function.

8. If F(x)is an antiderivative of f(z), and G(x) is an antiderivative of g(x), give an antiderivative of f(x) + g(x).
Problems

Exercise Group. Evaluate the indefinite integral. Don’t forget your constant of integration!

9. [T2Pdx 10. [2%dz

11. [ (14274 6) dz 12. [dt

13. [1lds 14. [ g-dt

15. [4dt 16. [ -de

17. [ sec(f)tan(9) do 18. [sin(9) do

19. [ (sec(x)tan(z) — csc(x) cot(x)) dx 20. [ 8e’ do

21, [9'dt 22. [ % dt

23, [(3t+1)%dt 24. [ (£ —6) (t* - 4t) dt
25. [2%2%dx 26.  [el41421 gy

27. [pdx

28. Consider the two integrals, /s” ds and /s" dn.
(a) What is the difference between these two indefinite integrals?

(b) Evaluate/s" ds.

(c) Evaluate/s" dn.

1
29. This problem investigates why Theorem 5.1.6 states that / —dx=Inlz|+C.
X

(a) What is the domain of y = In(z)?

(b) Find -L (In()).

(c) What is the domain of y = In(—x)?

(d) Find - (In(—=z)).

(e) You should find that 1/ has two types of antiderivatives, depending on whether > 0 or < 0. In one

. . 1 . . .
expression, give a formula for / — dx that takes these different domains into account, and explain your
T

answer.
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Exercise Group. Find the function determined by the given initial value problem.

30. f/(z)=sin(z)and f(0)=7

31. f'(z) =8e%and f(0) =13

32. fl(x)= — 7z and f(— ) -1

8. f(z)= ( ) and f(f) =

34. f'(z)=3%and f(2) =

35. f”(:v): and /(0 )—2 f(0)=9

36. f"(x)=-3xand f'(1) =6, f(1) = —

37. f"(x) =6¢e"and f'(0) = -3, f(0) =

38. f”(9): s(#) and f"(0) =3, £ (0) =

39.  f"(x) =252 + 7% +sin(z) and f/(0) =1, f(0) =
40. f"(z)=0and f'(4) = -3, f(4) = —
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5.2 The Definite Integral

We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 % for 10 seconds. How far away from its starting point is the object?

We approach this problem with the familiar “Distance Rate x Time”
equation. In this case, the distance traveled is 5 % x 10s = 50 feet.

Itis interesting to note that this solution of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5 f;t is graphed on
the axes. Shading the area under the line from ¢t = 0 to ¢t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5 % for 10 seconds,
then instantly reverses course at a rate of 2 f;t for 4 seconds. (Since the object is
traveling in the opposite direction when reversing course, we say the velocity is
a constant —2 f;t.) How far away from the starting point is the object — what is
its displacement?

Here we use “Distance = Rate; x Time; + Ratey x Times,” which is

Distance =5-10 + (—2) -4 = 42 ft.

Hence the object is 42 feet from its starting location.

We can again depict this situation graphically. In Figure 5.2.2 we have the
velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis-
placement of the object is

“Area above the t-axis —Area below the t-axis,”

which is easy to calculate as 50 — 8 = 42 feet.
Now consider a more difficult problem.

Example 5.2.3 Finding position using velocity.

The velocity of an object moving straight up/down under the accelera-
tion of gravity is given as v(t) = —32t + 48, where time ¢ is given in
seconds and velocity is in % When t = 0, the object had a height of O ft.

1. What was the initial velocity of the object?
2. What was the maximum height of the object?
3. What was the height of the object at time t = 2?

Solution. It is straightforward to find the initial velocity; at time ¢t = 0,

v(0) = =320+ 48
= 48

The initial velocity was 48 .

To answer questions about the height of the object, we need to find the
object’s position function s(¢). This is an initial value problem, which we
studied in the previous section. We are told the initial height is 0, i.e.,
s(0) = 0. We know s'(t) = v(t) = —32t + 48. To find s, we find the
indefinite integral of v(t):

s(t) = /v(t) dt

= /.(73215 +48) dt

v (ft/s)
t

2 4 6 8 10
t(s)

Figure 5.2.1 The area under a con-
stant velocity function corresponds to
distance traveled

ot

v (ft/s)

Figure 5.2.2 The total displacement is
the area above the t-axis minus the
area below the t-axis
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= —16t% + 48t + C.

Since s(0) = 0, we conclude that C' = 0 and s(t) = —16t2 + 48t.

To find the maximum height of the object, we need to find the maxi-
mum of s. Recalling our work finding extreme values, we find the critical
points of s by setting its derivative (the velocity function) equal to 0 and

solving for ¢:
0=—-32t+48
t=48/32
=15s.

(Notice how we ended up just finding when the velocity was 0ft/s!) The
first derivative test shows this is a maximum, so the maximum height of
the object is found at

5(1.5) = —16(1.5)% 4 48(1.5) = 36 ft .
The height at time ¢ = 2 is now straightforward to compute:

5(2) = —16(2)2 +48(2)
=32.

The height is 32 ft after 2 seconds.

While we have answered all three questions (using derivatives and anti- =

derivatives), let’s look at them again graphically, using the concepts of E 40

area that we explored earlier. h %

Figure 5.2.4 shows a graph of v(¢) on axes from¢ = Otot = 3. Itis

again straightforward to find v(0). How can we use the graph to find the

maximum height of the object? —05 05 1

Recall how in our previous work that the displacement of the object (in —-20

this case, its height) was found as the area under the velocity curve, as

shaded in the figure. Moreover, the area between the curve and the —40

t-axis that is below the ¢-axis counted as “negative” area. That is, it rep-

resents the object coming back toward its starting position. So to find Figure 5.2.4 A graph of v(t) = —32t +
the maximum distance from the starting point — the maximum height 48; the shaded areas help determine
— we find the area under the velocity line that is above the t-axis, i.e., displacement

fromt = 0tot = 1.5. Thisregion is a triangle; its area is
1 .
Area = 5 Base x Height

1
:5 x 1.5s x 48 ft/s
=36 ft

which matches our previous calculation of the maximum height.
Finally, to find the height of the object at time t = 2 we calculate the
total “signed area” (where some area is negative) under the velocity
function from ¢ = 0 to ¢ = 2. This signed area is equal to s(2), the
displacement (i.e., signed distance) from the starting position att = 0
to the position at time ¢t = 2. That is,

Displacement = Area above the t-axis — Area below t-axis.

The regions are triangles, and we find

1

Displacement = %(1.55)(48 ft/s) 2(0.55)(16 ft/s)
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=32ft.

This also matches our previous calculation of the height at ¢ = 2.
Notice how we answered each question in this example in two ways. Our
first method was to manipulate equations using our understanding of
antiderivatives and derivatives. Our second method was geometric: we
answered questions looking at a graph and finding the areas of certain
regions of this graph.

The above example does not prove a relationship between area under a ve-
locity function and displacement, but it does imply a relationship exists. Sec-
tion 5.4 will fully establish fact that the area under a velocity function is dis-
placement.

Given a graph of a function y = f(x), we will find that there is great use
in computing the area between the curve y = f(z) and the z-axis. Because of
this, we need to define some terms.

Definition 5.2.5 The Definite Integral, Total Signed Area.

Lety = f(x) be defined on a closed interval [a, b]. The total signed area
fromx = atox = bunder fis:

(area under y = f(x) and above the z-axis on [a,b]) — (area above
y = f(z) and under the z-axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],

denoted .
[ @

where a and b are the bounds of integration.

By our definition, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which related to an-
tiderivatives. We have now defined the definite integral, which relates to areas
under a function. The two are very much related, as we'll see when we learn
the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the “ [ symbol was an “elongated S” that represented finding a “sum.” In
the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f.

We practice using this notation.

Example 5.2.6 Evaluating definite integrals.

Consider the function f given in Figure 5.2.7.
Find:

—0.5 +

—1+

Figure 5.2.7 A graph of f(x) in Exam-
ple 5.2.6
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3 3
1. / f(z)dx 4. / 5f(x)dx
0 0
5 1
2. [ fla)ds . [ 1@y ds
3 1
3. / f(x)dx
0
Solution.

1. fo x) dx is the area under f on the interval [0, 3]. This region is
a trlangle so the area is fo z)dz = 1(3)(1) = 1.5.

2. fs x) dx represents the area of the triangle found under the x-
axis on [3 5). The areais 3(2)(1) = 1; since it is found under the
x-axis, this is “negative area.” Therefore f3 x)dr =

3. fo x) dx is the total signed area under f on [0, 5]. Thisis 1.5 +
(-1) = O 5.

4. f03 5f(z) dx is the area under 5 f on [0, 3]. This is sketched in Fig-
ure 5.2.8. Again, theregion is a triangle, with height 5 times that of
the height of the original triangle. Thus the area is f03 5f(x)dx =
%(15)(1) =T7.5.

5. f1 x) dx is the area under f on the “interval” [1,1]. This de-

This example illustrates some of the properties of the definite integral, given

here.

scrlbes a line segment, not a region; it has no width. Therefore
the areais 0.

Theorem 5.2.9 Properties of the Definite Integral.

Let f and g be defined on a closed interval I that contains the values a,
b and ¢, and let k be a constant. The following hold:

1. /aaf(x)d:c—

N

w

»

wn

/abf(x)dx—i—/bcf(x)dx:/acf(:v)dx
/f —- [ 1@

/(f( )+ g(z) dx—/ e dwi/: () da
/k )l = - /f

212

Figure 5.2.8 A graph of 5f in Exam-
ple 5.2.6. (Yes, it looks just like the
graph of f in Figure 5.2.7, just with a
different y-scale.)
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We give a brief justification of Theorem 5.2.9 here.

1. As demonstrated in Example 5.2.6, there is no “area
under the curve” when the region has no width; hence
this definite integral is O.

2.  This states that total area is the sum of the areas of
subregions. It is easily considered when we let a <
b < c¢. We can break the interval [a, c] into two subin-
tervals, [a, b] and [b, c]. The total area over [a, c] is the
area over [a, b] plus the area over [b, ¢|. It isimportant
to note that this still holds true evenif a < b < cis
not true. We discuss this in the next point.

3.  This property can be viewed a merely a convention to
make other properties work well. (Later we will see
how this property has a justification all its own, not
necessarily in support of other properties.) Suppose
b < a < c. The discussion from the previous point
clearly justifies

/baf(lc)d:L’Jr/acf(x)dx/bcf(x)dx. (5.2.1)

However, we still claim that, as originally stated,

/abf(x)dx—i—/bcf(x)dm:/acf(:c)dx. (5.2.2)

How do Equations (5.2.1) and (5.2.2) relate? Start
with Equation (5.2.1):

/baf(x)dx+/acf(a:)dx:/bcf(x)da:
/:f(x)dx:—/baf(x)dx+/bcf(x)dx

Property (3) justifies changing the sign and switching

a

the bounds of integration on the — / f(z) dx term;

when this is done, Equations (5.2.1)band (5.2.2) are
equivalent. The conclusion is this: by adopting the
convention of Property (3), Property (2) holds no mat-
ter the order of a, b and c. Again, in the next section
we will see another justification for this property.

4,5. Each of these may be non-intuitive. Property (5) states
that when one scales a function by, for instance, 7, the
area of the enclosed region also is scaled by a factor
of 7. Both Properties (4) and (5) can be proved using
geometry. The details are not complicated but are not
discussed here.
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Example 5.2.10 Evaluating definite integrals using Theorem 5.2.9.

Consider the graph of a function f(z) shown in Figure 5.2.11.
Answer the following:

b c
1. Which value is greater: / f(x)dx or/ f(z)da?
a b

(&
2. 1Is / f(x) dx greater or less than 0?
a

b b
3. Which value is greater:/ f(x)dx or/ f(z)dz?

Solution.

1. f; f(x) dz has a positive value (since the area is above the z-axis)

whereas [,” f(z) dx has a negative value. Hence f: f(x) dz is big-
ger.

2. [ f(x)dx is the total signed area under f between z = a and
x = c. Since the region below the z-axis looks to be larger than
the region above, we conclude that the definite integral has a
value less than 0.

3. Note how the second integral has the bounds “reversed.” There-
fore fcb f(z)dz = — [; f(z)dx represents a positive number,
greater than the area described by the first definite integral.

Hence f(b f(x) dx is greater.

The area definition of the definite integral allows us to use geometry to com-
pute the definite integral of some simple functions.

Example 5.2.12 Evaluating definite integrals using geometry.

Evaluate the following definite integrals:
5 3
1./ (2x — 4) dx 2./ V9 —x2dx.
-2 -3
Solution.

1. Itis useful to sketch the function in the integrand, as shown in Fig-
ure 5.2.13. We see we need to compute the areas of two regions,
which we have labeled R, and R5. Both are triangles, so the area
computation is straightforward:

Region R, lies under the z-axis, hence it is counted as negative
area (we can think of the triangle’s height as being “—8"), so

5
/ 2z —4)der=-164+9=—T.

-2

2. Recognize that the integrand of this definite integral describes a
half circle, as sketched in Figure 5.2.14, with radius 3. Thus the

A

Figure 5.2.11 A graph of a function in
Example 5.2.10
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area is: 5
1 9
/ V9 —22de = —mr? = =
_3 2 2
101y 51
5 4
_9 R
v{: x
~10 | 3 3
Fi 2.1 =2xr—4 . _ = 15
| Figure5.2.13 fx) =2z Figure 5.2.14 f(z) = V9 — 2 g
T 10
. . . . 38
Example 5.2.15 Understanding motion given velocity. s
Consider the graph of a velocity function of an object movingin a straight t(s)
line, given in Figure 5.2.16, where the numbers in the given regions gives a b
the area of that region. Assume that the definite integral of a velocity 5\ 1L 1l
function gives displacement. Find the maximum speed of the object and

its maximum displacement from its starting position. . o
Figure 5.2.16 A graph of a velocity in

Solution. Since the graph gives velocity, finding the maximum speed is Example 5.2.15

simple: it looks to be 15ft/s.

At time t = 0, the displacement is 0; the object is at its starting position.
At time t = a, the object has moved backward 11 feet. Between times
t = a and t = b, the object moves forward 38 feet, bringing it into a
position 27 feet forward of its starting position. Fromt = btot = cthe
object is moving backwards again, hence its maximum displacement is
27 feet from its starting position.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.17, where a region below y = 22 is shaded.
What is its area? The functiony = x2 is relatively simple, yet the shape it defines
has an area that is not simple to find geometrically.

In Section 5.3 we will explore how to find the areas of such regions.

Y
10

1 2 3
Figure 5.2.17 What is the area below

y = x2 on [0, 3]? The region is not a
usual geometric shape.
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5.2.1 Exercises

Terms and Concepts

What is “total signed area”?

What is “displacement”?

3
3. Whatis/ sin(x) dz?
3

Problems

Give a single definite integral that has the same value as

1 2
1:/ (2x+3)da¢+/ (2¢ + 3) dz.
0 1

216

Exercise Group. A graph of a function f(x) is given. Using the geometry of the graph, evaluate the definite integrals.

5.

6.

—4 +

(a) [ (—2z+4)dx
(b) [2(—2x +4)dx
() [ (—2z +4)dx
(d) [ (—22+4)dx
(e) [, (—2a +4)dx

(f) [} (—6x+12)d

(a) [ f(z)dz
(b) [} f(x)dz
() [} f(x)da
(d) [) f(z)de
() [ f(x)dx
() [ —2f(x) da
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7. 8.
Y
4 4
3 4
y=f(z)
2 4
1+ T
t Y t } z
1 2 3 4
(a) [ f(z)da (a) [, (z—1)dz
(b) [, f(z)dz (b) [Z(zx—1)da
() [, 2f(x)dx (© [2(z—1)de
(d) [, 4z da (d) [ (z—1)da
(e) [, (2x —4)dz (e) ['(z—1)d
(f) [ (4e —8) da 0 [ ((z—1)+1)dz
9 10.
Yy Y
3 4
fl@) =/4—(z-2) flx)=3
92 3
2 4
1 4
1 i
t t t t z | | | | \$
1 2 3 1 2 A 6 s 10
(@) J2 f(x) da @ Jy /(@) d
b) [ () de (b) [, f(x)dz
(© [ f(z)ds (© [ f(z)dz
b
(d) [y 5f(x)dz (d) / f(z)dz,where 0 < a < b < 10

Exercise Group. A graph of a function f(x) is given; the numbers inside the shaded regions give the area of that
region. Evaluate the definite integrals using this area information.
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11.
50 Ty
y = f(x)
/q}\\ 21 .
59 2 3
_50 |1
~100 |
(@ fy f(x)dz
(b) [ f(z)dz
(©) [y f(x)ds
(d) [ —3f(z)da
13.
101Y  f(z)=32%-3
5 1
4 4 .
—9 Jk\\\;ﬁ/ﬁ 2
_5 i

(a) o, f(z)dw
(b) [ f(z)dx
(© f1, f(z)da
(d) [ f(z)de

218

12.

f(z) = sin(rz/2)

(a) fozf x)dx
(b) [, f(x)dz
(0 [ f(z)dz

(d) [y f(a)dz
14.

(a) f02 522 dx

(b) (=
(c) fl (r —1)%dw

+3 dx

(d [, ((x—2)2+5)de

Exercise Group. A graph is given of the velocity function of an object moving in a straight line. Answer the questions

based on the graph.
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15. 16.
35 i,
y (ft/s) y (ft/s)
2 B
1 1
t(s)
1 2 3
1 1 2 3 1 5
(a) What is the object’s maximum velocity? (a) What is the object’s maximum velocity?
(b) What is the object’s maximum (b) What is the object’s maximum
displacement? displacement?
(c) What is the object’s total displacement (c) What is the object’s total displacement
on [0, 3]? on [0, 5]?

17.  An object is thrown straight up with a velocity, in ft/s, given by v(t) = —32t 4 64, where t is in seconds, from a
height of 48 feet.

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find when the displacement is —48ft.)

18. Anobject is thrown straight up with a velocity, in ft/s, given by v(¢) = —32t + 96, where ¢ is in seconds, from a
height of 64 feet.

(a) What is the object’s initial velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its initial height?
(d) What is the maximum height the object reaches?

Exercise Group. The values of several definite integrals are given as follows:

/:f(a:)dm:E) /ng(x)da::7 /029(96)(15102—3 /QSg(m)dx:5

Use these values and properties of definite integrals to evaluate the indicated definite integral.
2 3
19. [, (f(2) +g(@)) dw 20. [ (f(x) - g(x)) d
21. f23 (Sf(a;) + Zg(x)) dx 22. Fin3d a formula for a in terms of b such that
/ (af(x)+bg(z)) dz = 0.
0

Exercise Group. The values of several definite integrals are given as follows:

/:s(t)dtlo /SSS(t)dtS /;r(t)dtl /(;Sr(t)dtn



CHAPTER 5. INTEGRATION 220

Use these values and properties of definite integrals to evaluate the indicated definite integral.
23. [} (s(t)+r(®) dt 24, [0 (s(t) —r(t)) dt

9

25 f33 (m(t) _ 7r(t)) dt 26. Find a formula for @ in terms of b such that

/ " (ar(t) + bs(®)) dt = 0.
0
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5.3 Riemann Sums

In the previous section we defined the definite integral of a function on [a, b] to
be the signed area between the curve and the x-axis. Some areas were simple
to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4z —22
on [0,4]. What is the signed area of this region — i.e., what is f04(4x — 2?) dx?

We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over-approximation; we are including area in the rectangle
that is not under the parabola.

We have an approximation of the area, using one rectangle. How can we
refine our approximation to make it better? The key to this section is this answer:
use more rectangles.

Let’s use four rectangles with an equal width of 1. This partitions the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Left Hand Rule, the Right Hand Rule, and the Midpoint Rule. The Left Hand
Rule says to evaluate the function at the left-hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.3, the rectangle drawn on the
interval [2, 3] has height determined by the Left Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the function at the
midpoint and make the rectangle that height. The rectangle drawn on [1, 2] was
made using the Midpoint Rule, with a height of f(1.5). That rectangle is labeled
“MPR.”

These are the three most common rules for determining the heights of ap-
proximating rectangles, but one is not forced to use one of these three methods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you'll be able to figure how to do this, too.)

The following example will approximate the value of f04(4a: — 22) dx using
these rules.

Example 5.3.4 Using the Left Hand, Right Hand and Midpoint Rules.

Approximate the value of f04(41: — 22) dx using the Left Hand Rule, the
Right Hand Rule, and the Midpoint Rule, using 4 equally spaced subin-
tervals.

Solution. We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.5(a) we see 4 rectangles drawn on f(z) = 4x — 22 using
the Left Hand Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) =
0. We add up the areas of each rectangle (heightx width) for our Left

T

1 2 3 2\

Figure 5.3.1 A graph of f(z) = 4z —

xT~.

2

What is the area of the shaded

region?

1 2 3
y = dx — x?

Figure 5.3.2 Approximating area un-
der a curve with one rectangle

Y
4 |1
3
1
RHR MPR LHR other T
1 2 3 4

Figure 5.3.3 Approximating f04(41' —
x?) dx using rectangles. The heights
of the rectangles are determined us-
ing different rules.
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Hand Rule approximation:

fO) -1+ f(1)- 14+ f(2) -1+ f(3)-1
=0+3+4+3 =10

Figure 5.3.5(b) shows 4 rectangles drawn under f using the Right Hand
Rule; note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangles seem to be the mirror image of those
found in Figure 5.3.5(a). This is because of the symmetry of our shaded
region. Our approximation gives the same answer as before, though cal-
culated a different way:

fO) -1+ f(2)- 14+ f3) -1+ f(4)-1
=3+4+3+0=10.

Figure 5.3.5(c) shows 4 rectangles drawn under f using the Midpoint

Rule.
This gives an approximation of f04(4x — 2?) dz as:

F(0.5) - 14 f(1.5)- 1+ f(2.5) - 1+ f(3.5) - 1
—1.7543.75+3.75 + 1.75 = 11.

Our three methods provide two approximations of f04(4:c — 22)dz: 10
and 11.

y Yy Yy

(a) using the Left Hand (b) using the Right (c) using the Midpoint
Rule Hand Rule Rule

Figure 5.3.5 Approximating f04(43: — 22) dz in Example 5.3.4

5.3.1 Summation Notation

It is hard to tell at this moment which is a better approximation: 10 or 11? We
can continue to refine our approximation by using more rectangles. The notation
can become unwieldy, though, as we add up longer and longer lists of numbers.
We introduce summation notation to ameliorate this problem.
Suppose we wish to add up a list of numbers aq, as, as, ..., ag. Instead of
writing
a; +ag + a3z +ayg + as + ag + ar + ag + ag,

we use summation notation and write 27::1 a;. The upper case sigma, Sigma

represents the term “sum”. The index (counter) of summation in this example
is 7; any symbol can be used. By convention, the index takes on only the integer
values between (and including) the lower and upper bounds. To the right of X,
the expression a; is called the summand. It tells us what we are summing. This
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is summarized in Equation (5.3.1).

upper bound

=~
9
Z a; (5.3.1)
1=1 d
summan

4-index of summation

Let’s practice using this notation.

Example 5.3.6 Using summation notation.

Let the numbers {a;} be defined as a; = 2i — 1 for integers i, where
1 >1.S0a; = 1,a, = 3, a3 = 5, etc. (The output is the positive odd
integers). Evaluate the following summations:

1.

6
a;

K2

Solution.

1.

6

Zai:a1+a2+a3+a4+a5+a6
i=1

=1+3+5+7+9+11
= 36.

2. Note the starting value is different than 1:

7

2(3(11‘ — 4) = (3@3 — 4) + (3&4 — 4) + (3&5 — 4) + (3&6 — 4) + (3(17 — 4)
1=3

=114+17+23 429+ 35
=115.

4

D (ai)? = (a1)* + (a2)* + (a3)* + (as)?

i=1
=12+32+52+72
= 84.

It might seem odd to stress a new, concise way of writing summations only
to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without
writing individual terms. Examples will follow.
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Theorem 5.3.7 Properties of Summations.

4. Zal Z

i=j+1

n

1. g ¢ = c-n,wherecisa
i=1
constant.

n n - _n(n+1)
2. (ai £b;) = > a; £ > ;’_ 2

i=m i=m

n
= E ai
i=m

n(n+1)(2n+1)
6

Zbi 6.22
3.ic-ai:c~iai 7.i ( n—l—l))
i=m i=m =il

Example 5.3.8 Evaluating summations using Theorem 5.3.7.

Revisit Example 5.3.6 and, using Theorem 5.3.7, evaluate

6
Zal—z 2i—1).

Solution.

We obtained the same answer without writing out all six terms. When
dealing with small sizes of n, it may be faster to write the terms out
by hand. However, Theorem 5.3.7 is incredibly important when dealing
with large sums as we'll soon see.

5.3.2 Riemann Sums

Consider again f04(4a: — x?) dxr. We will approximate this definite integral us-
ing 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.10.
Before doing so, it will pay to do some careful preparation.

Figure 5.3.9 shows a number line of [0, 4] divided, or partitioned, into 16
equally spaced subintervals. We denote 0 as x(; we have marked the values of
T4, Tg, T12 and x15. We could mark them all, but the figure would get crowded.
While it is easy to figure that 9 = 2.25, in general, we want a method of deter-
mining the value of x; without consulting the figure. Consider:

] ] I

| | | |
T
0 1 2
o T4 x

00
8

Figure 5.3.9 Dividing [0,4] into 16
equally spaced subintervals
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number of subintervals
etween zy and z;

|

T = xo +iAx
T Al
starting subinterval
value size
So xg =z + 9(4/16) = 2.25.
If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin-
terval would have length Az = 4/100 = 0.04. We could compute x3; as

z31 = mo + 31(4/100) = 1.24.

(That was far faster than creating a sketch first.)

Given any subdivision of [0, 4], the first subinterval is [x¢, 21]; the second is
[x1, x2]; the ith subinterval is [z;_1, z;].

When using the Left Hand Rule, the height of the ith rectangle will be f(x;_1).

When using the Right Hand Rule, the height of the ith rectangle will be f(z;).

When using the Midpoint Rule, the height of the ith rectangle will be f (W) .
Thus approximating f04(4a: — x?) dx with 16 equally spaced subintervals can

be expressed as follows, where Az = 4/16 = 1/4:

Left Hand Rule 16
Z f(a?z_l)A:v

1=1
Right Hand Rule 16
Z f(xi)Az
1=1

Midpoint Rule

16
Sf (xz‘l; x) Az
=1

We use these formulas in the next two examples. The following example lets
us practice using the Right Hand Rule and the summation formulas introduced
in Theorem 5.3.7.

Example 5.3.10 Approximating definite integrals using sums.

Approximate f04(4x — 2%) dx using the Right Hand Rule and summation
formulas with 16 and 1000 equally spaced intervals.

Solution. Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite inte-
gral as

16
Zf(xz)Ax
i=1
We have Az = 4/16 = 0.25. Since z; = 0 + Az, we have
z; = 0+ i1Ax = iAx.

Using the summation formulas, consider:

4 16
/ (4o — 2%) dox ~ Zf(xz)Ax
0 i=1
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16

= Z fiAz)Ax
21:61

= Z (4iAz — (iAz)?) Az
21:61

= Z(4iAx2 —i*Ax®)

i=1

16 16
= (482%) i — Ax®y i (5.3.2)
=1 1=1
16-17 16(17)(33
=4-0.25%-136 — 0.25% - 1496
=10.625

We were able to sum up the areas of 16 rectangles with very little
computation. In Figure 5.3.11 the function and the 16 rectangles are
graphed. While some rectangles over-approximate the area, other
under-approximate the area (by about the same amount). Thus our ap-
proximate area of 10.625 is likely a fairly good approximation.

Notice Equation (5.3.2); by replacing 16 by 1,000 (and appropriately
changing the value of Axz), we can use that equation to sum up 1000
rectangles!

We do so here, skipping from the original summand to the equivalent of
Equation (5.3.2) to save space. Note that Az = 4/1000 = 0.004.

4 1000
/ (4o — 732) dr ~ Z f(z:)Ax
0 i=1
1000 1000
= (4827) ) i — Ax® ) 42
i=1 i=1
— (4&#)% _ A3 1000(1001)(2001)
2 6
= 10.666656

Using many, many rectangles, we have a likely good approximation of
f04(4x — 2?)Ax. That is,

4
/ (42 — %) dz ~ 10.666656.
0

Before the above example, we stated what the summations for the Left Hand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as Az, and

2. eachrectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rec-
tangle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.

Figure 5.3.11 Approximating f04(4x -
x2) dx with the Right Hand Rule and
16 evenly spaced subintervals
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One could partition an interval [a, b] with subintervals that do not have the
same size. We refer to the length of the ith subinterval as Ax;. Also, one could
determine each rectangle’s height by evaluating f at any point ¢; in the ith subin-
terval. Thus the height of the ith subinterval would be f(c;), and the area of the
ith rectangle would be f(c;)Ax;. These ideas are formally defined below.

Definition 5.3.12 Partition.

A partition Az of a closed interval [a, b] is a set of numbers zg, z1, ...
x,, where
a=20<x1<...<Zp_1<xH =0

The length of the ith subinterval, [z;_1, 2], is Ax; = 2; — 2;_1. If [a, D]
is partitioned into subintervals of equal length, we let Az represent the
length of each subinterval.

The size of the partition, denoted ||Az||, is the length of the largest
subinterval of the partition.

Summations of rectangles with area f(c;)Ax; are named after mathemati-
cian Georg Friedrich Bernhard Riemann, as given in the following definition.

Definition 5.3.13 Riemann Sum.

Let f be defined on a closed interval [a, b], let Ax be a partition of [a, b]
as given in Definition 5.3.12, and let ¢; denote any value in the ith subin-
terval.

The sum
n

> fle)Az;

i=1

is a Riemann sum of f on [a, b].

Figure 5.3.14 shows the approximating rectangles of a Riemann sum of f04 (4ax—

xz) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a particular rule.

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construction makes computations easier. Be-
fore working another example, let’s summarize some of what we have learned
in a convenient way.

Key Idea 5.3.15 Riemann Sum Concepts.
b n
Consider/ flx)de =~ Zf(ci)Al'i'
< i=1

b—a
—

1. When the n subintervals have equal length, Ax; = Ax =

2. Theith term of an equally spaced partitionis z; = a+:Ax. (Thus
x9 = aand x,, = b.)

n
3. The Left Hand Rule summation is: Z fzi—1)Ax.
i=1

Figure 5.3.14 An example of a gen-

eral Riemann sum to approximate
4 2

Jo 4z — 2?) dx
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n
4. The Right Hand Rule summation is: Z flx;)Ax.
i=1

n
5. The Midpoint Rule summation is: Z f <:Cl_12+xl> Ax.
i=1

Let’s do another example.

Example 5.3.16 Approximating definite integrals with sums.

Approximate f32(5x + 2) dx using the Midpoint Rule and 10 equally
spaced intervals.

Solution. Following Key Idea 5.3.15, we have
3-(=2)

A =
. 10

—1/2andz; = (—2) + (1/2)(i) = i/2 — 2.

XTj— xX;
As we are using the Midpoint Rule, we will also need z;_; and L—i_l

Sincex; =i/2 —2,x;—1 = (i — 1)/2 — 2 =i/2 — 5/2. This gives

wiatw (i/2-5/2)+(i/2—2) i—9/2
5 = 5 = =1i/2—9/4.

We now construct the Riemann sum and compute its value using sum-
mation formulas.

3 10 z +x
i—1 %
[2(5x +2)dx ~ ;:1 f (2) Azx

= Zf(i/2 —9/4)Ax

10
= (5(i/2 - 9/4) + 2) Az

(500 . 9)
2\ 2 2 4
45
=5 = 22.5

Note the graph of f(z) = 5x + 2 in Figure 5.3.17. The regions whose
area is computed by the definite integral are triangles, meaning we can
find the exact answer without summation techniques. We find that the
exact answer is indeed 22.5. One of the strengths of the Midpoint Rule is
that often each rectangle includes area that should not be counted, but
misses other area that should. When the partition size is small, these
two amounts are about equal and these errors almost “cancel each other
out.” In this example, since our function is a line, these errors are exactly
equal and they do cancel each other out, giving us the exact answer.

10 74

—
[S]
w

>

Fi§ure 5.3.17 Approximating
J ,(5z 4+ 2)dx using the Mid-
point Rule and 10 evenly spaced
subintervals in Example 5.3.16




CHAPTER 5. INTEGRATION 229

Note too that when the function is negative, the rectangles have a “neg-
ative” height. When we compute the area of the rectangle, we use
f(ei)Ax; when f is negative, the area is counted as negative.

Notice in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculations until the very end.
Mathematicians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, where we do not specify a value of n until the very
end.

Example 5.3.18 Approximating definite integrals with a formula, using
sums.

Revisit f04(4x—x2) dx yet again. Approximate this definite integral using
the Right Hand Rule with n equally spaced subintervals.

Solution. Using Key Idea 5.3.15, we know Ax = % = 4/n. We also
find z; = 0 + iAx = 4i/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to
follow each step carefully. If you get stuck, and do not understand how
one line proceeds to the next, you may skip to the result and consider
how this result is used. You should come back, though, and work through
each step for full understanding.

_ (16Az\ n(n+1) [16Az) n(n+1)(2n+1)
N < n 2 ( n? ) 6
32(n+1) 32(n+1)2n+1)

= - — 32 (recall Ax = 4/n)
32

3

1
(1 — 2) (after simplifying)
n

The result is an amazing, easy to use formula. To approximate the def-
inite integral with 10 equally spaced subintervals and the Right Hand
Rule, set n = 10 and compute

4
32 1
dr —2¥)dr~—(1—- — | =10.56.
/0(33 x*) dx 3( 102)

Recall how earlier we approximated the definite integral with 4 subinter-
vals; with n = 4, the formula gives 10, our answer as before.
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It is now easy to approximate the integral with 1,000,000 subintervals!
Hand-held calculators will round off the answer a bit prematurely giving
an answer of 10.66666667. (The actual answer is 10.666666666656.)
We now take an important leap. Up to this point, our mathematics has
been limited to geometry and algebra (finding areas and manipulating
expressions). Now we apply calculus. For any finite n, we know that

4
32 1
2\ 1
/0(4:v—x)dx~ 3 (1—n2).

Both common sense and high-level mathematics tell us that as n gets
large, the approximation gets better. In fact, if we take the limit as n —
oo, we get the exact area described by jgl(élx — 22) dx. That is,

4
32 1
/0 (4 — 2?) dx = Jim = (1 - n2)
32

= 1-0

S (1-0)
32 _

=— =106
3

This is a fantastic result. By considering n equally-spaced subintervals,
we obtained a formula for an approximation of the definite integral that
involved our variable n. As n grows large — without bound — the error
shrinks to zero and we obtain the exact area.

This section started with a fundamental calculus technique: make an approxi-
mation, refine the approximation to make it better, then use limits in the refining
process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 5.3.19 Approximating definite integrals with a formula, using
sums.

Find a formula that approximates f: 23 dx using the Right Hand Rule
and n equally spaced subintervals, then take the limit as n — oo to find
the exact area.

Solution. Following Key Idea 5.3.15, we have Ax = 5_(”_1) =6/n. We
have z; = (—1)+4Ax, which is the right endpoint of the ith subinterval.
The Riemann sum corresponding to the Right Hand Rule is (followed by
simplifications):

5

/ 3 dr ~ z”: f(z) Az

-1 i=1

= 2": f(=1+iAx)Ax
i=1

= zn:(—l +iAx)*Ax
i=1

= ((iAx)® — 3(iAz)? + 3iAxz — 1) Az (now distribute Ax)
i=1
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n

<.
—=

Ax4zn:i3 — 3Ax?’zn:i2 +3Am2i:i — Zn:Ax
i=1 i=1 i=1

i=1

|
>

. 2

(use Az = 6/n)

+355

nt 4 n3 6 2

(now do a sizable amount of algebra to simplify)

378 216
=156 + —— +
n n

Once again, we have found a compact formula for approximating the
definite integral with n equally spaced subintervals and the Right Hand
Rule. Using 10 subintervals, we have an approximation of 195.96 (these
rectangles are shown in Figure 5.3.20). Using n = 100 gives an approxi-
mation of 159.802.

Now find the exact answer using a limit:

° 378 216
/ 2®dx = lim <156+ —+ 2) = 156.
n n

1 n—00

5.3.3 Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always work? It
can be shown, given not-very-restrictive conditions, that yes, it will always work
— this is the content of Theorem 5.3.21 below.

The previous two examples demonstrated how an expression such as

Zf(xl)A;r;
i=1

can be rewritten as an expression explicitly involving n, such as 32/3(1 — 1/n?).
Viewed in this manner, we can think of the summation as a function of n.
An n value is given (where n is a positive integer), and the sum of areas of n
equally spaced rectangles is returned, using the Left Hand, Right Hand, or Mid-
point Rules.
Given a definite integral f; f(x)dz, let:

n
e Sp(n) = Z f(z;—1)Az, the sum of equally spaced rectangles formed
i=1
using the Left Hand Rule,
n
e Sp(n) = Z f(x;) Az, the sum of equally spaced rectangles formed us-

i=1
ing the Right Hand Rule, and

= (iSAI’4 —3i2A2® + 3iAz? — Az) (now split up summation)

~ 1296 n*(n+ 1) _3216_n(n+1)(2n+1) 36 n(n+1)

2
4 (n(n—i—l)) _3Ax3n(n+1)6(2n+ 1) +3Ax2n(n2—|— 1) Az

—6
120 1Y ]
100 |
80 |
60 | 7
40 |
20 |
T
1 1 2 3 4 5

Figure 5.3.20 Approximating
J7,a®dx using the Right Hand
Rule and 10 evenly spaced subinter-
vals
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2

* Su(n) = Z f <W> Az, the sum of equally spaced rectangles
i=1
formed using the Midpoint Rule.

Recall the definition of a limit as n — oco: lim Sp(n) = K if, given any
n—oo
€ > 0, there exists N > 0 such that

|SL(n) — K| < ewhenn > N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral f: f(z)dx. 1t also goes two steps further.
The theorem states that the height of each rectangle doesn’t have to be de-
termined following a specific rule, but could be f(c;), where ¢; is any point in
the ith subinterval, as discussed before Riemann Sums were defined in Defini-
tion 5.3.13.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 5.3.12, let Ax; denote the length
of the ith subinterval in a partition of [a, b] and let || Ax|| represent the length
of the largest subinterval in the partition: that is, || Az|| is the largest of all the
Ax;. If ||Az]| is small, then [a, b] must be partitioned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as || Az|| goes
to zero” implies that the number n of subintervals in the partition is growing to
infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

n

[|Az||—0 4
i=1

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but getting small, and the height of each rectangle is
not necessarily determined by a particular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.21 Definite Integrals and the Limit of Riemann Sums.

Let f be continuous on the closed interval [a,b] and let Sp,(n), Sr(n),
Sy (n), Az, Ax; and ¢; be defined as before. Then:

lim Sp(n) = lim Sg(n)

1 = nll_)moo SM (n)

= lim > fle)Ax
1=1
n b

2, nImeZf(ci)sz/ f(x)dx
i=1 a

n b
3. |A|;r|na0;f(ci>Axi/a f(z)dzx

We summarize what we have learned over the past few sections here.

e Knowing the “area under the curve” can be useful. One common example:
the area under a velocity curve is displacement.

One of the things Theorem 5.3.21
tells us is that if f is continuous
on [a, b], then the definite inte-
gral f: f(z) dz is guaranteed to
exist.

Knowing that every continu-
ous function can be integrated
is useful, since most of the func-
tions we work with are continu-
ous. However, it turns out that a
function can be integrated even
if it has a finite number of dis-
continuities, as long as these are
removable or jump discontinuities.
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e We have defined the definite integral, f: f(z) dz, to be the signed area
under f on the interval [a, b].

e While we can approximate a definite integral many ways, we have focused
on using rectangles whose heights can be determined using the Left Hand
Rule, the Right Hand Rule and the Midpoint Rule.

e Sums of rectangles of this type are called Riemann sums.

e The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivatives through limits then learned rules that made
the process simpler. We know of a way to evaluate a definite integral using limits;
in the next section we will see how the Fundamental Theorem of Calculus makes
the process simpler. The key feature of this theorem is its connection between
the indefinite integral and the definite integral.
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5.3.4 Exercises

Terms and Concepts

1.  Afundamental calculus technique is to use to refine approximations to get an exact answer.

2. What is the upper bound in the summation % (40i — 80)?
=8

3.  This section approximates definite integrals using what geometric shape?

(D True [False) A sum using the Right Hand Rule is an example of a Riemann Sum.

Problems

Exercise Group. Write out each term of the summation and compute the sum.

5 2
5. i 6. 3 (2i—2)
1=2 1=—3
1 , 7
7. ‘_22 sin( %) 8. ; 9
5 7 .
9. 1 10. (-1)"i
i=1 =1
5 5 .
1. (% - i%) 12, S (—1) cos(ri)
=1 =1

Exercise Group. Write the sum in summation notation.
13. 3+6+9+12 14. 1+2+5+104+17426
15, 1424344 16. 1—e+e?—e®+¢et

Exercise Group. Evaluate the summation using Theorem 5.3.7.

7 26
17. 8 18. i
i=1 i=1
11 19
19. > (2i% i) 20. (56 +7)
i=1 i=1
12 8
21, Y (—4i® -T2 —10i 4 7) 22, Y (B —-9+4i+7)
i=1 i=1
23. 14+243+---+84+85 24, 1+449+---+ 3614400
n k n n n k
Exercise Group. Theorem 5.3.7 states > a; = >. a;+ Y, a;,S0 Y. a; = a; — Y a;. Use this fact, along
=1 1=1 i=k+1 i=k+1 1=1 =1
with other parts of Theorem 5.3.7, to evaluate the summation.
21 27
25. i 2. >3
i=9 i=16
13 15
27. Y7 28. >4
i=7 i=7

b
Exercise Group. In the following exercises, a definite integral / f(z) dx is given.
a

(a) Graph f(z) on [a,].
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(b) Add to the sketch rectangles using the provided rule.

b
(c) Approximate / f(z) da by summing the areas of the rectangles.
a

3 2
29. / x? dx, with 6 rectangles using the Left 30. / (5 — %) dx, with 4 rectangles using the
-3 0
Hand Rule. Midpoint Rule.
T 3
31. / sin(z) dz, with 6 rectangles using the Right 32, / 2" dx, with 5 rectangles using the Left Hand
0
Hand Rule. Rﬂle.
-2 94
33. / In(z) dx, with 3 rectangles using the 34. / — dx, with 4 rectangles using the Right
1 1 X
Midpoint Rule. Hand Rule.

Exercise Group. A definite integral is given below. As demonstrated in Examples 5.3.18 and 5.3.19, do the following:
(a) Find a formula to approximate the definite integral using n subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100, and 1000.

(c) Find the limit of the formula, as n — oo, to find the exact value of the definite integral.

1 1
35. / x> dx, using the Right Hand Rule. 36. / 422 dx, using the Right Hand Rule.
0 -2

4 6
37. / (3z — 1) dwx, using the Midpoint Rule. 38. / (22° + 1) du, using the Left Hand Rule.
-2 2

11 1
39. / (4 — x) dz, using the Left Hand Rule. 40. / (2® — 2®) dz, using the Left Hand Rule.
—11 0
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5.4 The Fundamental Theorem of Calculus

Let f(t) be a continuous function defined on [a, b]. The definite integral f; f(x)dx
isthe “area under f” on [a, b]. We can turn this concept into a function by letting
the upper (or lower) bound vary.

Let F(z) = [ f(t) dt. It computes the area under f on [a, 2] as illustrated
in Figure 5.4.1. We can study this function using our knowledge of the definite
integral. For instance, F(a) = O'since [ f(t) dt = 0.

Y

81y
61
t
a T b 4
9|
Figure 5.4.1 The area of the shaded region is F'(z) = [ f(t)dt
t

Example 5.4.2 Exploring the “Area so far” function. 1
Consider f(t) = 2t pictured in Figure Figure 5.4.3 and its associated -2
“area so far” function, F'(z) = [;" 2t dt. Using the graph of f and geom- Figure 5.4.3 The area of the shaded
etry, find an explicit formula for F'. region is F(z) = f1z 2% dt
Solution. We can see from Figure 5.4.4 that for x > 1, the area under
the curve can be found by subtracting the area of two triangles. The
larger triangle will have a base of z and a height of f(z) = 2z, while the
smaller triangle will have a base of 1 and a height of 2. Therefore, the
areaunder the curveforz > lisgivenby A(z) = 4 (z)(22)—5(1)(2) =
x? — 1.
Note that this same formula holds for z < 1. If x < 1, then F(z) =
[ 2tdt = — fxl 2t dt. The areas to the left of z = 1 will have oppo-
site signs (since they areas are accumulated before x = 1). For exam-
ple, when & = 0, F(0) = — [, 2tdt = —3(1)(2) = —1. This is the
same value we get from evaluating 22 — 1 for z = 0. Also notice that
F(-1) = [7'2tdt = — [', 2tdt. This integral is clearly 0 since the
areas over [—1,0] and [0, 1] will sum to zero. Again, this is the same
answer obtained by evaluating 22 — 1 for x = —1.
Therefore, we can reasonably say that F(z) = 2% — 1. A plot of both Sty
f(x) = 2z and F(x) = 22 — 1 are given in Figure Figure 5.4.5. You
should notice a familiar relationship between these two functions. This 6]
relationship is formally stated in Theorem 5.4.6. .

5] 2z

2
1 t
1
-
_2 i

Figure 5.4.4 The area of the shaded

regionis F'(z) = [} 2tdt
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-2

| Figure 5.4.5 Graphs of f(z) = 2z and F(z) = 2% — 1

5.4.1 Fundamental Theorem of Calculus, Parts 1 and 2

As Example 5.4.2 hinted, we can apply calculus ideas to F'(z); in particular, we
can compute its derivative. In Example 5.4.2, F(z) = 22 — 1,50 F'(x) = 22 =
f(z). While this may seem like an innocuous thing to do, it has far-reaching
implications, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.6 The Fundamental Theorem of Calculus, Part 1.

Let f be continuous on [a,b] and let F(x) = [ f(t)dt. Then F is con-
tinuous on [a, b], differentiable on (a, b), and

F'(z) = f(a).

& ([ 1) = s

Initially this seems simple, as demonstrated in the following example.

In other words:

Example 5.4.7 Using the Fundamental Theorem of Calculus, Part 1.

xr
Let F(z) = / (12 + sin(t)) dt. What is F'(z)?
-5
Solution. Using the Fundamental Theorem of Calculus, we have
F'(x) = 22 +sin(z). Thatis, the derivative of the “area so far” function,
is simply the integrand replacing x with ¢.

This simple example reveals something incredible: F'(z) is an antideriv-
ative of z? + sin(z)! Therefore, F(z) = £a® — cos(z) + C for
some value of C. (We can find C, but generally we do not care. We
know that F'(—5) = 0, which allows us to compute C'. In this case,

125
C = cos(—5) + =5°.

What we have done in Example 5.4.7 was more than finding a complicated
way of computing an antiderivative. Consider a function f defined on an open

interval containing a, b and c. Suppose we want to compute f; f(t) dt. First, let

Fla) = / " r)at. (5.4.1)
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Using the properties of the definite integral found in Theorem 5.2.9, we know

/abf(t)dt:/:f(t)dt—i—/cbf(t)dt
:—/caf(t)dt+/cbf(t)dt

Using Equation (5.4.1), let x = a in the first integral and = b in the second
integral so that [ f(t) dt = F(a) and fcb f(t)dt = F(b). Therefore:

b
/ f(t)dt = —F(a) + F(b)
= F(b) — F(a).

We now see how indefinite integrals and definite integrals are related: we
can evaluate a definite integral using antiderivatives! In fact, this is exactly what
we noticed in Example 5.4.2. The “area so far” function was indeed an anti-
derivative of the integrand. This is the second part of the Fundamental Theorem
of Calculus.

Theorem 5.4.8 Fundamental Theorem of Calculus, Part 2.

Let f be continuous on [a, b] and let F' be any antiderivative of f. Then

/ f(@)dz = F(b) - F(a).

Example 5.4.9 Using the Fundamental Theorem of Calculus, Part 2.

We spent a great deal of time in the previous section studying f04(4x —
x2) dx. Using the Fundamental Theorem of Calculus, evaluate this defi-
nite integral.

Solution. We need an antiderivative of f(x) = 4x — x2. All antideriva-
tives of f have the form F(z) = 222 — %:1:3 + C; for simplicity, choose
C=0.

The Fundamental Theorem of Calculus states

/04(4x —2%)dx = F(4) — F(0)

= (2047 - 34%) - (0-0)
64

=32 — =32/3.
3 /

This is the same answer we obtained using limits in the previous section,
| just with much less work.

Notation: A special notation is often used in the process of evaluating defi-
nite integrals using the Fundamental Theorem of Calculus. Instead of explicitly

b
writing F'(b) — F(a), the notation F(x)‘ is used. Thus the solution to Exam-
ple 5.4.9 would be written as: ¢

* 1
/ (4o — %) dx = (2332 - a:3>
0 3

4

0
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= (2(4)* - %43) —(0-0) =32/3.

The Constant C': Any antiderivative F'(x) can be chosen when using the Fun-
damental Theorem of Calculus to evaluate a definite integral, meaning any value
of C' can be picked. The constant always cancels out of the expression when eval-
uating F'(b) — F(a), so it does not matter what value is picked. This being the
case, we might as well let C' = 0.

Example 5.4.10 Using the Fundamental Theorem of Calculus, Part 2.

Evaluate the following definite integrals.

2 5 5
1. / 22 dx 3. / et dt 5. / 2dx
-2 0 1

2. /Oﬂsin(x)dx 4, ‘/jﬁdu

Solution.
1.
2 2
. 1
/ 22de = Szt
—2 4,
1 1
— 724 _ - _2 4
() - (3e)
=0.
2.

T

/0 sin(z) de = — cos(x) .

= —cos(m) — ( — cos(0))
=14+1=2.

(This is interesting; it says that the area under one “hump” of a
sine curve is 2.)

3.
5 5
/ eldt = et
0 0
— B
=€’ — 1~ 14741,
4.

.9 .9 .
/ Vudu = / u2 du
4 4

_ 2P
3 4
2 3 3
=z 9*—4*)
3(2 ’
2 38
= Z(27-8) ==,
3278 =3
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5 5
/ 2dxz2x‘
1 1

=2(5) -2
=2(5-1)=8.

This integral is interesting; the integrand is a constant function,
hence we are finding the area of a rectangle with width (5—1) = 4
and height 2. Notice how the evaluation of the definite integral led
to 2(4) = 8. In general, if ¢ is a constant, then fab cdx = c(b—a).

5.4.2 Understanding Motion with the Fundamental Theorem of
Calculus

We established, starting with Key Idea 2.2.3, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac-
celeration function. Now consider definite integrals of velocity and acceleration

b
functions. Specifically, if v(t) is a velocity function, what does / v(t) dt mean?
a

The Fundamental Theorem of Calculus states that

/bv(t) dt = V(b) - V(a),

where V (t) is any antiderivative of v(¢). Since v(¢) is a velocity function, V' (t)
must be a position function, and V' (b) — V'(a) measures a change in position, or
displacement.

Example 5.4.11 Finding displacement and distance.

A ball is thrown straight up with velocity given by v(t) = —32¢ + 20ft/
s, where t is measured in seconds. Find, and interpret, j;)l v(t) dt and

1
Jo lv(@)] dt.
Solution. Using the Fundamental Theorem of Calculus, we have

/01 o(t) dt = /01(_3% +20) dt

1
= (~16£2 + 20t) ’0

=4,
Thus if a ball is thrown straight up into the air with velocity v(t) = —32t+
20, the height of the ball, 1 second later, will be 4 feet above the initial
height.
Note that the ball has traveled much farther. It has gone up to its peak
and is falling down, but the difference between its height at ¢t = 0 and
t = 1is 4ft.
If we wish to find the total distance traveled, we must evaluate
fol |v(t)| dt (noting that negative velocities will reduce the diplacement,
but we want distance, not displacement). In this case, we know that the
velocity changes sign once when v(t) = 0,s0 t = 20/32 = 5/8 seconds.
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The velocity is positive over [0,5/8] and negative over [5/8,1]. There-

fore
1 5/8 1
/ \U(mdt:/ v(t)dt—i—/ —o(t)dt
0 0 5/8

-5/8 1
:/ (732t+20)dt7/ (—32t + 20) dt
0 5/8
5/8 1
= (162 4+-20t) |~ (=162 + 201) |
0 0

25 9
4(4>9~

So the total distance traveled over [0, 1] is fol |—32t 4 20| dt = 9 feet .
As we can see in Figure 5.4.12, the positive area between v(¢) and the
t-axis, A; = 25/4, while the negative area, A2 = —9/4. When we add
these two areas, we get the displacement of 4 ft. But when we add the
absolute value of both of these areas (as in Figure 5.4.13), we get the
total distance of 9 ft.

) y
20 20

10 10

~10 -10

Figure 5.4.12 The area between  Figure 5.4.13 The area between
v(t) and the t-axis can be used to  |v(¢)| and the ¢-axis can be used
represent displacement to represent distance

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. That is,
the speed an object is the absolute value of its velocity. This is what we saw
in Example 5.4.11 when we evaluated fol |v(t)| dt. So integrating a speed func-
tion gives total change of position, without the possibility of “negative position
change.” Hence the integral of a speed function gives distance traveled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h? and ¢ is measured in hours,

then .
/ a(t) dt = 15
0

means the velocity has increased by 15m/h from¢ = 0tot = 3.



CHAPTER 5. INTEGRATION 242

5.4.3 The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theorem of Calculus (FTC) states that given

e = [ s,

we have F/(x) = f(z). Using other notation,

2w - ([ 10a) - 1w,

While we have just practiced evaluating definite integrals, sometimes finding
antiderivatives is impossible and we need to rely on other techniques to approx-
imate the value of a definite integral. Functions written as F\(z) = [ f(t) dt
are useful in such situations.

It may be of further use to compose such a function with another. As an
example, we may compose F'(x) with g(x) to get

g(z)
Flo@) = [ ot

What is the derivative of such a function? The Chain Rule can be employed

to state p
= (Fg@)) = F'(9(@))g(2) = £(9(2)) g ().

An example will help us understand this.

Example 5.4.14 The FTC, Part 1, and the Chain Rule.

2

Find the derivative of F'(z) = / In(t) dt.
2

Solution. We can view F'(z) as being the function G(z) = [, In(t) dt
composed with g(z) = #%; thatis, F(z) = G(g(«)). The Fundamental
Theorem of Calculus states that G’(z) = In(z). The Chain Rule gives us

F'(@) = & (9@)g'(a)
= In(g(a))g’ (@)

= In(z?)2x

Normally, the steps defining G(x) and g(x) are skipped.

Let’s practice this once more.

Example 5.4.15 The FTC, Part 1, and the Chain Rule.

5

Find the derivative of F'(z) = / t3 dt.
cos(z)
cos(x)

Solution. Note that F(z) = —/ t3dt. Viewed this way, the

derivative of F'is straightforward:

F'(z) = —cos®(x) (—sin(z))
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| = cos®(x) sin(x).

5.4.4 Area Between Curves

Consider continuous functions f(z) and g(z) defined on [a, b], where f(z) >
g(z) for all z in [a, b], as demonstrated in Figure 5.4.16. What is the area of the
shaded region bounded by the two curves over [a, b]?

Y Y
\ G G
e
gz g
= | T - .
a b a b

(a) (b)

Figure 5.4.16 Finding the area bounded by two functions on an interval by sub-
tracting the area under g from the area under f

The area can be found by recognizing that this area is “the area under f —
the area under ¢.” Using mathematical notation, the area is

/abf(x)d:c‘/abg(m)dx.

Properties of the definite integral allow us to simplify this expression to

b
| (@) - g(a)) da.

Theorem 5.4.17 Area Between Curves.

Let f(z) and g(x) be continuous functions defined on [a,b] where
f(z) > g(z) for all z in [a,b]. The area of the region bounded by the
curvesy = f(x), y = g(x) and the linesx = aand x = b is

/ (f@) - 9(=)) d.

Example 5.4.18 Finding area between curves.

Find the area of the region enclosed by y = z2 +  — 5and y = 3z — 2.
Solution. It will help to sketch these two functions, as done in Fig-
ure 5.4.19.

The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = —1 and x = 3. To check, set
22+ — 5 = 3z — 2 and solve for z:

X4rx—5=3x-2

15 1Yy

10

Figure 5.4.19 Sketching the region en-
closedbyy = 22 + 2 —5andy =
3x — 2 in Example 5.4.18
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(2 +2-5)—(3x—-2)=0

22 —22-3=0

(x—3)(z+1)=0
r=-—1,3.

Following Theorem 5.4.17, the area is

3 3
/ (3x—2—(m2+x—5))dx:/ (=2 + 2z + 3) dx

—1 -1

1
= <x3 + 2% + Sx)
3 -1

1 1
—Z@2N)+9+9—(5+1-3
SN +9+ (3+ )

3

—102—106
=105 =10.

5.4.5 The Mean Value Theorem and Average Value

Consider the graph of a function f in Figure 5.4.20 and the area defined by
f14 f(x) dz. Three rectangles are drawn in Figure 5.4.21; in Figure 5.4.21(a), the
height of the rectangle is greater than f on [1, 4], hence the area of this rectangle
is is greater than f14 f(z)dx.

In Figure 5.4.21(b), the height of the rectangle is smaller than f on [1, 4],
hence the area of this rectangle is less than f14 f(z) de.

Finally, in Figure 5.4.21(c) the height of the rectangle is such that the area of
the rectangle is exactly that of f14 f(z) dz. Since rectangles that are “too big”,
as in (a), and rectangles that are “too little,” as in (b), give areas greater/lesser
than f14 f(z) dx, it makes sense that there is a rectangle, whose top intersects
f(x) somewhere on [1, 4], whose area is exactly that of the definite integral.

Yy Y Yy

fo— o -

(a) (b) (c)

Fi§ure 5.4.21 Differently sized rectangles give upper and lower bounds on
| [(x)dx; the last rectangle matches the area exactly

We state this idea formally in a theorem.
Theorem 5.4.22 The Mean Value Theorem of Integration.

Let f be continuous on [a, b]. There exists a value c in [a, b] such that

b
RO Sl

Figure 5.4.20 A graph of a function
f to introduce the Mean Value Theo-
rem
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This is an existential statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.22 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 3.2.3; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.23 Using the Mean Value Theorem.

Consider [, sin(z) dz. Find a value ¢ guaranteed by the Mean Value
Theorem.

Solution. We first need to evaluate foﬂ sin(z) dz. (This was previously
done in Example 5.4.10.)

T
=2.
0

/7r sin(z) dz = — cos(x)
0

Thus we seek a value ¢ in [0, 7] such that 7 sin(c) = 2.
msin(c) =2 = sin(c) =2/ = c=arcsin(2/7) ~ 0.69.

In Figure 5.4.24 sin(z) is sketched along with a rectangle with height
sin(0.69). The area of the rectangle is the same as the area under sin(z)
on [0, ].

We now turn our attention to a related topic —average value. Let f be a
function on [a, b] with c such that f(c) fb f(x) dx. Consider f: (f(z)—

f(e)) da:
/ab(f(ar)—f(C))daf—/f /f ) dz

= f(e)(b—a) = f(c)(b—a)
=0.

When f(x) is shifted by — f(c), the amount of area under f above the x-
axis on [a, b] is the same as the amount of area below the z-axis above f; see
Figure 5.4.25 for an iIIustration of this. In this sense, we can say that f(c) is the
average value of f on [a, b].

\ / Y= (&) - 1)
@ 5@ |

a c b a (\/ },

Figure 5.4.25 On the left, a graph of y = f(z) and the rectangle guaranteed by
the Mean Value Theorem. On the right, y = f(x) is shifted down by f(c); the
resulting “area under the curve” is 0

<

The value f(c) is the average value in another sense. First, recognize that

The Theorem 5.4.22 simply says
that thereis arectangle with height
f(¢) and width b— a, the area of
which is the same as the area be-
tween f and the z-axis over|a, b].
Furthermore, we know that c will
be in the interval [a, b].

sin(0.69)

Figure 5.4.24 A graph of y = sin(z)
on [0, 7] and the rectangle guaran-
teed by the Mean Value Theorem
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the Mean Value Theorem can be rewritten as

_ bia/abf(x)dx

for some value of ¢ in [a, b]. Replacing the integral with the limit of a Riemann
sum (as in Theorem 5.3.21):

b—a/f

C
1 .
= lim Zf ¢i) Using Theorem 5.3.21
— @ n—oo
lim Z £( Ap—l=@
b — @ n—oo Cl r= n
= lim Z f(ci)— Cancelling the common factor of b — a.
n—00 — n

Examining this last line closely, the expression Z?:l f(ci)% represents adding
up n sample values of f(x)and then dividing by n. This is exactly what we do
when we calculate the average of a set of n numbers. Now when we consider
taking the limit as n goes to oo, nIme > f(ci)%, we are adding up all of the

function’s output values over [a, b] and dividing by the “number of numbers”. In
a sense, we are adding up an infinite number of output values and then dividing
by the number of terms we summed (which is again infinite).

This leads us to a definition.

Definition 5.4.26 The Average Value of f on [a, b].

Let f be continuous on [a, b]. The average value of f on [a,b] is f(c),
where cis a value in [a, b] guaranteed by the Mean Value Theorem. i.e.,

Average Value of f on [a, ]

An application of this definition is given in the following example.
Example 5.4.27 Finding the average value of a function.

An object moves back and forth along a straight line with a velocity given
by v(t) = (t — 1) on [0, 3], where t is measured in seconds and v(t) is
measured in ft/s.

What is the average velocity of the object?

Solution. By our definition, the average velocity is:
1 3 ) 13,

e t—1)°dt = = t“—2t+1)dt

570 ), ¢ D=3 /O ( +1)

3
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We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.27? We calculate
this by integrating its velocity function: f03 (t — 1)2dt = 3 ft. Its final position
was 3 feet from its initial position after 3 seconds: its average velocity was 1 ft/s.

This section has laid the groundwork for a lot of great mathematics to follow.
The most important lesson is this: definite integrals can be evaluated using anti-
derivatives. Since Section 5.3 established that definite integrals are the limit of
Riemann sums, we can later create Riemann sums to approximate values other
than “area under the curve,” convert the sums to definite integrals, then evalu-
ate these using the Theorem 5.4.8. This will allow us to compute the work done
by a variable force, the volume of certain solids, the arc length of curves, and
more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. Chapter 6 is devoted to techniques
of finding antiderivatives so that a wide variety of definite integrals can be eval-
uated. Before that, Section 5.5 explores techniques of approximating the value
of definite integrals beyond using the Left Hand, Right Hand and Midpoint Rules.
These techniques are invaluable when antiderivatives cannot be computed, or
when the actual function f is unknown and all we know is the value of f at
certain x-values.
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5.4.6 Exercises

Terms and Concepts

1. How are definite and indefinite integrals related?
2.  What constant of integration is most commonly used when evaluating definite integrals?
x
3. (OTrue DOFalse) If fis a continuous function, then F'(z) = / f(¢) dt is also a continuous function.
a

4,  The definite integral can be used to find “the area under a curve.” Give two other uses for definite integrals.

Problems

Exercise Group. Evaluate the definite integral.

"3 5
5. [ (208 @ 6. [ -9
2 0
3 z
7 (z° —2") da 8 / sin(z) dz
-3 0
5 e®
9 / sec?(z) dx 10. / ~dx
T 1 T
1 —2
11. / 6" dx 12. / (4 - 7333) dx
-3 -3
T 4
13, / (6 cos(x) — 4sin(z)) da 14, / o d
0 3
16 y: 91
15. tdt 16. / —dt
Jo 1 Vi
64 51
17. Jx dx 18. / —dz
27 1 X
5 9
1 1
1 x 1 xr
1 1
21. / T dx 22. / 2% dx
0 0
1 1
23. / 22 dx 24, / 23 dx
0 0
8 —2
25. dx 26. / 6 dx
-8 =7
6 I
27. / 0dx 28. / csc?(z) dx

|
o
o

29.

1
(a) Explain why/ z"™ dr = 0 when n is a positive, odd integer.
-1
1 1
(b) Explain why/ " dr = 2/ z" dxr when n is a positive, even integer.
0

-1

a+2m
30. Explain why / sint dt = 0 for all values of a.
a
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Exercise Group. Find all values ¢ such that ff f(z)dx = f(c)(b— a), as guaranteed by the Theorem 5.4.22.
31 [2%dx 32. [a2%dx
33. [e"dx 4. [Vrdx

Exercise Group. Find the average value of the function on the given interval.
35. f(z)=sin(z)on [5,7] 36. y=sin(z)on |0, ]
37. y==xon]0,5] 38. y=2z%0on]0,6]

39. y=a3on|0,7] 0. y="Lon[1,e]

Exercise Group. A velocity function is given for an object moving along a straight line. Find the displacement of the
object over the given time interval.

41. o(t) =32t +22%on 0, 8] 42. o(t) = —32t+140 T on [0,7]
43. o(t)=19%0on|0,3] 44. v(t) =2' mphon [-3,2]
45. v(t) = sin(t) f;t on [0, 7] 46. v(t) =Vt f;t on [0, 256]

Exercise Group. An acceleration function of an object moving along a straight line is given. Find the change of the
object’s velocity over the given time interval.

47. a(t) = —32 5 on[0,6] 48. a(t) =7 %on|0,7]
49. a(t)=t%onl0,8 50. a(t) = cos(t) % on [0,3r]
Exercise Group. Sketch the given relations and find the area of the enclosed region.

51. y=2x,y=>bx,andx =3 5. y=—z+1,y=3x+6,x=2andz=-1
53. y=2a22-22+5y=>5zx—-5 54, y=222+2x-5y=2>+3x+7,

Exercise Group. Find F'(x).

23—z 1 5
55. F(z)= / Zdt 56. F(z)= / 2 dt
9 t z2
23 e®
57, F(x):/ (t—5) dt 58. F(x):A( st

59. F(:c)_/: (sin(4¢%)) dt 60. F(x):/e (Vtt +2t2)dt
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5.5 Numerical Integration

The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on computing an-
tiderivatives. Despite the power of this theorem, there are still situations where
we must approximate the value of the definite integral instead of finding its exact
value. The first situation we explore is where we cannot compute the antideriv-
ative of the integrand. The second case is when we actually do not know the
function in the integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomial,
nth root, rational, exponential, logarithmic and trigonometric functions. We can
compute the derivative of any elementary function, but there are many elemen-
tary functions of which we cannot compute an antiderivative. For example, the
following functions do not have antiderivatives that we can express with elemen-
tary functions:

e, sin(2?), Sina(f) .

The simplest way to refer to the antiderivatives of e~ is to simply write
J e dr.

This section outlines three common methods of approximating the value of
definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite
integrals:

fol e~ dz, f_% sin(2?) du, fo4.75r Siniﬁ dz,

as pictured in Figure 5.5.1.

_ sin(x)

T

5 Y— 15

(a) (b) (c)

Figure 5.5.1 Graphically representing three definite integrals that cannot be eval-
uated using antiderivatives

5.5.1 The Left and Right Hand Rule Methods

In Section 5.3 we addressed the problem of evaluating definite integrals by ap-
proximating the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

b
interval [a, b]. We wish to approximate / f(x) dz. We partition [a, b] into n
a

h—
equally spaced subintervals, each of length Ax = J. The endpoints of these
n
subintervals are labeled as

ro=a,x1 =a+Ax, x0o =a+2Ax, ..., x;=a+1iAx, ..., x, =D.
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Key Idea 5.3.15 states that to use the Left Hand Rule we use the summation

n n
Z f(x;—1)Ax and to use the Right Hand Rule we use Z f(x;)Az. We review
i=1 i=1
the use of these rules in the context of examples.

Example 5.5.2 Approximating definite integrals with rectangles.
1 2
Approximate / e~ * dx using the Left and Right Hand Rules with 5

0
equally spaced subintervals.
Solution. We begin by partitioning the interval [0, 1] into 5 equally

spaced intervals. We have Az = 122 = 1/5 = 0.2, so

Tro = O, T = 02, Tg = 04, I3 = 06, T4 = 08, and Ty = 1.

Using the Left Hand Rule, we have:

Z f@im)Az = (f(zo) + f(z1) + flz2) + f(zs) + f(za)) Az
=1

= (f(0) + £(0.2) + f(0.4) + f(0.6) + f(0.8)) Az
~ (1 + 0.9608 + 0.8521 + 0.6977 + 0.5273)(0.2)
~ 0.8076.

Using the Right Hand Rule, we have:

n

D i) Ax = (f(wr) + flws) + flws) + flxa) + f(xs)) A

i=1
= (f(0.2) + f(0.4) + £(0.6) + f(0.8) + f(1)) Az
~ (0.9608 + 0.8521 + 0.6977 + 0.5273 + 0.3678)(0.2)

~ 0.6812.
Yy y
1 y= e’ 1 Y= e’
0.5 0.5
x xT
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
(a) Using the Left Hand Rule (b) Using the Right Hand Rule

Figure 5.5.3 Approximating fol e drin Example 5.5.2

Figure 5.5.3 shows the rectangles used in each method to approximate
the definite integral. These graphs show that in this particular case, the
Left Hand Rule is an over approximation and the Right Hand Rule is an
under approximation. To get a better approximation, we could use more
rectangles, as we did in Section 5.3. We could also average the Left and
Right Hand Rule results together, giving

0.8076 + 0.6812

= 0.7444.
2
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The actual answer, accurate to 4 places after the decimal, is 0.7468,
showing our average is a good approximation.

Example 5.5.4 Approximating definite integrals with rectangles.

us
2

Approximate / sin(z%) dz using the Left and Right Hand Rules with

™

10 equally spacec41 subintervals.
Solution. We begin by finding Ax:

b—a w/2—(—7m/4) 3m

= = — = 0.2356. ; in(z3
- 10 10 0.2356 x;  Exact Approx.  sin(x3)
It is useful to write out the endpoints of the subintervals in a table; in ro —m/4 —0.7854 —0.4657
Figure 5.5.5, we give the exact values of the endpoints, their decimal ap- xy  —Tr/40 —0.5498 —0.1654
proximations, and decimal approximations of sin(z”) evaluated at these w2 —7/10 _0.3142 —0.0310

points.
Once this table is created, it is straightforward to approximate the defi-
nite integral using the Left and Right Hand Rules. (Note: the table itself

xz —m/40  —0.0785 —0.0005
x4 /20 0.1571 0.0039

is easy to create, especially with a standard spreadsheet program on a Zs /8 0.3927 0.0605

computer. The last two columns are all that are needed.) The Left Hand 6 /5 0.6283 0.2455

Rule sums the first 10 values of sin(z3}) and multiplies the sum by Ax; z7  11r/40  0.8639 0.6011

the Right Hand Rule sums the last 10 values of sin(z?) and multiplies by rg  Tm/20 1.0996  0.9710

Az. Therefore we have: x9 17w/40  1.3352 0.6899
2

Left Hand Rule: / sin(z®) dz ~ (1.9093)(0.2356) = 0.4498. v10 /2 1.5708  —0.6700

_Z% Figure 5.5.5 Values used to ap-

Right Hand Rule: sin(z?) dz ~ (1.705)(0.2356) ~ 0.4017. proximate [ 2, sin(z3)dz in Exam-
- 4

Average of the Left a|41d Right Hand Rules: 0.4258. ple 5.5.4

Y Y y=sin(2®)

W

—0.5 —0.5

(a) (b)

i

Figure 5.5.6 Approximating fjl sin(z?) dx in Example 5.5.4
4

The actual answer, accurate to 4 places after the decimal, is 0.4609. Our
approximations were once again fairly good. The rectangles used in each
approximation are shown in Figure 5.5.6(a). It is clear from the graphs
that using more rectangles (and hence, narrower rectangles) should re-
sult in a more accurate approximation.
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1 f— y = e
5.5.2 The Trapezoidal Rule ™S
1 2
In Example 5.5.2 we approximated the value of e~ * dx with 5 rectangles of 0.5
Jo
equal width. Figure 5.5.3 shows the rectangles used in the Left and Right Hand
Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximations will only come by using ‘ ‘ | @
lots of rectangles. 02 04 06 08 1

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.7, we show the region under f(z) = e=*" on [0,1] Figure , 5.5.7 Approximating
approximated with 5 trapezoids of equal width; the top “corners” of each trape- o € “ dx using 5 trapezoids of
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids equal widths
more accurately approximate the area under f and hence should give a better
approximation of fol e da. (In fact, these trapezoids seem to give a great
approximation of the area!)

The formula for the area of a trapezoid is given in Figure 5.5.8. We approxi-

= atb
mate fol e~ dx with these trapezoids in the following example. a b Area = 5=h
Example 5.5.9 Approximating definite integrals using trapezoids. 3
1 , . .
Use 5 trapezoids of equal width to approximate / e du. Figure 5.5.8 The area of a trapezoid
0
Solution. To compute the areas of the 5 trapezoids in Figure 5.5.7, it
will again be useful to create a table of values as shown in Figure 5.5.10.
The leftmost trapezoid has legs of length 1 and 0.9607 and a height of
0.2. Thus, by our formula, the area of the leftmost trapezoid is:
2
1+ 0.9608 x; e
%(0.2) =0.1961.
. . 0 1
Moving right, the next trapezoid has legs of length 0.9607 and 0.8521
. . . 0.2 0.9608
and a height of 0.2. Thus its area is:
0.4 0.8521
0.9608 + 0.8521 0.6 0.6977
—— (0.2) = 0.1813.
2 (02) 0.8 0.5273
The sum of the areas of all 5 trapezoids is: 1 0.3679
14 0.9608 0.9608 + 0.8521 0.8521 + 0.6977 Figure 5.5.10 A table of values of e~
f(O.Z) + f(O.Q) + f(O.Q)—I—
0.6977 + 0.5273 0.5273 + 0.3679
DO D9205 .9y 4 2222 T 00D 4 9y — 0.7444,
2 2
| We approximate fol e~ dy ~ 0.7444.

There are many things to observe in this example. Note how each term in
the final summation was multiplied by both 1/2 and by Az = 0.2. We can factor
these coefficients out, leaving a more concise summation as:

1
5(0:2) (1 +0.9608) + (0.9608 +0.8521) + (0.8521 +0.6977)

+ (0.6977 + 0.5273) + (0.5273 + 0.3679)} .

Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2
- [1 +2(0.9608 + 0.8521 + 0.6977 4 0.5273) + 0.3679} .
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This is the heart of the Trapezoidal Rule, wherein a definite integral f: f(z)dx
is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints xz,

— a. Thus:

i, ..., Ty, We again have Ax =

Example 5.5.11 Using the Trapezoidal Rule.

2

Revisit Example 5.5.4 and approximate / sin(z?) dz using the Trape-

™

4
zoidal Rule and 10 equally spaced subintervals.

Solution. We refer back to Figure 5.5.5 for the table of values of sin(z?3).
Recall that Az = 37/40 =~ 0.236. Thus we have:

o 220 [ 04657 + 2( —0.1654 + (—0.031) + ... + 0.68999) + (—0.67)}
= 0.4258.
The actual answer, accurate to 4 decimal places is 0.4609. So the Trape-

zoidal Rule with 10 subintervals is an under-approximation by about
0.0351.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of ; and f(x;) values. Once this is completed,
approximating the definite integral is not difficult. Again, using technology is
wise. Spreadsheets can make quick work of these computations and make us-
ing lots of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effectively
renders the Left and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximation is needed, one is gener-
ally better off using the Trapezoidal Rule instead of either the Left or Right Hand
Rule. However, there are two other methods that are also generally more accu-
rate than the Left or Right Hand Rule.

5.5.3 The Midpoint Rule

Another method that can be more accurate than the Trapezoidal Rule is the Mid-
point Rule:

SM(TL) = Zf <x112+1‘1) A:U
=1
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=) f(@) A
i=1

where T; is the midpoint of each subinterval,

. o1
xza+Ax<z2)

Example 5.5.12 Using the Midpoint Rule.

1
Use the Midpoint Rule with n = 5 to approximate / e~ dr.
0

Solution. We cannot use the table in Figure 5.5.10 that we used for the
Trapezoidal, Right and Left Hand Rules when using the Midpoint Rule.
The Trapezoidal rule averages the outputs of the function to obtain a
more accurate estimate of the definite integral. The Midpoint Rule av-
erages the inputs of each subinterval to create a rectangle with height

f <901712+11) Generally f (whl;-ivb) 75 f(ﬁi—lé"‘f(wi).
So we will create a new table of values as shown in Figure 5.5.13. We
have Az = (1 — 0)/5 = 0.2. The midpoint of the first subinteval is at

Z; e
0+ 0.2(1/2) = 0.1 and each successive midpoint is 0.2 from the last. '
So we have 0.1 0.9900
L 0.3 0.9139
/ e dx ~0.2(0.99 + 0.9139 + 0.7788 + 0.6126 + 0.4449) 0.5 0.7788
0 . .
~ 0.7480 0.7 0.6126
0.9 0.4449
1
H —IQ .
We approximate / e " dr ~ 0.7480. Figure 5.5.13 A table of values of e~
L 0
Example 5.5.14 Using the Midpoint Rule.
z
Revisit Example 5.5.11 and approximate / sin(x3) dx using the Mid-
point Rule and 10 equally spaced subintervals. o o
Solution.  Again, a table will be useful. Recall that Az = 37/40 = Li Exact Approx. sin(z7)
0.2356. The midpoint of the first subinterval isT7 = a+Axz/2 = —7/4+ —
3m/40(1/2) = —17x /80 (notice that 77 is half of a subinterval width to Ty —17w/80 —0.6676 —0.2932
the right of a). Each successive midpoint is Az = 37/40 = 67/80 to Tz —117/80 —0.4320 —0.0805
the right of the last. So we have: T3 —57/80  —0.1963 —0.0076
Thus we have: T4 17/80 —0.0393 0.0001
z Ts  7m/80 0.2749 0.0208
/ sin(z%) dx T 137/80  0.5105  0.1327
-% 7 197/80  0.7461  0.4035

z0.2356{—0.2932+(—0.0805)+(—0.0076)+-~+0.9729+0.0740} Ts  25m/80 09817 08112
Ty 3lw/80 12174 0.9729

= 0.2356 - 2.0339 Tio 377/80  1.4530  0.0740

~ 0.4792.

Figure 5.5.15 Values used to ap-
The actual answer, accurate to 4 decimal places is 0.4609. So the proximate f%" sin(z%) dz in Exam-
Midpoint Rule with 10 subintervals is an overrapproximation by about ple 5.5.14 e

0.0183. Notice that this error is about half of the error in using the Trape-
zoidal Rule.
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In many cases, the Midpoint Rule will more accurate than the Trapezoidal
Rule. You may wonder though, how can we improve on the Trapezoidal and
Midpoint Rules, apart from using more and more subintervals? The answer is
clear once we look back and consider what we have really done so far. The
Left Hand Rule, Right Hand Rule and Midpoint Rules are not really about using
rectangles to approximate area. Instead, they approximate a function f with
constant functions on small subintervals and then compute the definite integral
of these constant functions. The Trapezoidal Rule is really approximating a func-
tion f with a linear function on a small subinterval, then computing the definite
integral of this linear function. In all of these cases the definite integrals are easy
to compute in geometric terms.

So we have a progression: we start by approximating f with a constant func-
tion and then with a linear function. What is next? A quadratic function. By
approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp-
son’s Rule, named after Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

5.5.4 Simpson’s Rule

Given one point, we can create a constant function that goes through that point.
Given two points, we can create a linear function that goes through those points.
Given three points, we can create a quadratic function that goes through those
three points (given that no two have the same z-value).

Consider three points (zo, yo0), (21, y1) and (z2, y2) whose z-values are equally

spaced and xy < z1 < x2. Let f be the quadratic function that goes through
these three points. It is not hard to show that

/ flx da:—

Consider Figure 5.5.16. A function f goes through the 3 points shown and
the parabola g that also goes through those points is graphed with a dashed line.
Using our equation from above, we know exactly that

0 (yo + dy1 + yo).- (5.5.1)

/1 g(x)dm—3;1(3+4( ) 12)=3.

Since g is a good approximation for f on [1, 3], we can state that

/f )dx ~

Notice how the interval [1, 3] was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson'’s Rule, we need to break the
interval into an even number of sbubintervals.

In general, to approximate f(z) dz using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n isaeven and each subinterval has width Az =
(b — a)/n. We approximate f with n/2 parabolic curves, using Equation (5.5.1)
to compute the area under these parabolas. Adding up these areas gives the
formula:

While it’s not hard to show the
results of Equation (5.5.1), it’s also
not exactly easy. This video might
help: youtu.be/uc4xJsi99bk

1 2 3
Figure 5.5.16 A graph of a function f

and a parabola that approximates it
well on [1, 3]

/ F@) o~ SE[ a0+ (0421 (02 447 () A2 (2 44F (0 1)+ (20)]-

Note how the coefficients of the terms in the summation have the pattern 1,
4!2:4v2$4y--~,2,4,1.


https://www.youtube.com/embed/uc4xJsi99bk
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Figure 5.5.17 illustrates how the area calculated by Simpson’s Rule approxi-
mates fOE' f(z) dx for the function f(z) = sin(wx). In this case, 8 subintervals
were used, resulting in 4 quadratic curves (dashed lines) being fitted to each
pair of subintervals. The actual answer (accurate to 4 decimal places) is about
10.6366, while Simpson’s rule gives 10.7294. Of course more subintervals would
result in better accuracy. However 8 intervals were chosen specifically so that
you could see how the parabolas compare to the original function. With larger
values of n, it becomes difficult to distinguish the function and its quadratic ap-
proximations on each subinterval.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.18 Using Simpson'’s Rule.

1
Approximate e’””2 dx using Simpson’s Rule and 4 equally spaced

subintervals.

Solution. We begin by making a table of values as we have in the past,
as shown in Figure 5.5.19(a).

z; e % Y
1 y= (—3_1'2
0 1 \
0.25 0.939
0.5 0.779 05
0.75 0.570
1 0.368
(a) | &
0.25 0.5 0.75 1

(b)

Figure 5.5.19 A table of values to approximate fol e~ dx, along with a
graph of the function

Simpson'’s Rule states that

1

0.25 _

/ e do ~ = [1+4(0.939)+2(0.779)4—4(0.570)4—0.368} — 0.74683.
0

Recall in Example 5.5.2 we stated that the correct answer, accurate to
4 places after the decimal, was 0.7468. Our approximation with Simp-
son’s Rule, with 4 subintervals, is better than our approximation with
the Trapezoidal Rule using 5!

Figure 5.5.19(b) shows f(z) = e along with its approximating
parabolas, demonstrating how good our approximation is. The approxi-
mating curves are nearly indistinguishable from the actual function.

Example 5.5.20 Using Simpson'’s Rule.

z
Approximate / sin(x3)dx using Simpson’s Rule and 10 equally

1
spaced intervals.

-1 T2 3 4 s
Figure 5.5.17 An illustration of Simp-
son'sruleon f(x) = sin(wx)+ 2 over

[0, 5] using 8 subintervals, resulting in
4 quadratic approximations



x; sin(z?)
—0.7854 —0.4657
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—-0.3142 —-0.0310

Solution. Figure 5.5.21 shows the table of values that we used in the 8(1)5077185 880%%05
past for this problem, shown here again for convenience. Again, Ax = ) )
(r/2+mw/4)/10 = 0.236. 0.3927  0.0605

Simpson’s Rule states that 0.6283 0.2455
0.8639 0.6011

1.0996 0.9710
1.3352 0.6899

INE

0.2
/ sin(z?) da ~ ;56 [(—0.4657) +4(—0.1654) + 2(—0.0310) + . ..

w13

.+ 2(0.9710) + 4(0.6899) + (—0.6700)] 15708 —0.6700
~ 0.4701 Figure 5.5.21 Values used to ap-
proximate [ 2, sin(z3)dz in Exam-
4

Recall that the actual value, accurate to 3 decimal places, is 0.4609. Our
approximation is within one 1/100th of the correct value. The graph in
Figure 5.5.22 shows how closely the parabolas match the shape of the

graph. 1]

ple 5.5.20

5.5.5 Summary and Error Analysis ]

We summarize the key concepts of this section thus far in the following Key Idea.

-1 —00
Key Idea 5.5.23 Numerical Integration. Vr

Let f be a continuous function on [a, b], let n be a positive integer, and —057

b—a
let Az = n Figure 5.5.22 Approximating
Set g = a, o= @ Az, ...,z =a+iAz, T, =b. J 2. sin(z?)dz in Example 5.5.20
4
Consider/ f(z) da. with Simpson’s Rule and 10 equally
a spaced intervals

b
Left Hand Rule: / f(@)de = Az|[f(zo) + f(z1) + ... + f(@n_1)]
b
Right Hand Rule: / f(@)dz ~ Az[f(z1) + f(z2) + ...+ f(za)]

b
Trapezoidal Rule: / f(z)dx =~ % [f(zo) +2f(®1) +2f (z2) +... +
2f(zn-1) + f(xn)]

b ® ' |
Midpoint Rule: / f(z)de ~ Zf (331_124%) Aw.
¢ i=1

b
Simpson’s Rule: / f(z)dz =~ %[f(zo) +4f(z1) +2f(x2) + ...+

a
Af(zn-1) + f(x,)] for n even.
In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several questions in the reader’s mind, such as:

1. How was the “right” answer computed?
2. If the right answer can be found, what is the point of approximating?

3. If there is value to approximating, how are we supposed to know if the
approximation is any good?

These are good questions, and their answers are educational. In the exam-
ples, the right answer was never computed. Rather, an approximation accurate
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to a certain number of places after the decimal was given. In Example 5.5.2, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximations were computed using numerical integration but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximation still has its place.
How are we to tell if the approximation is any good?

“Trial and error” provides one way. Using technology, make an approxima-
tion with, say, 10, 100, and 200 subintervals. This likely will not take much time
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximation will be. For instance, the formula might state that the approxima-
tion is within 0.1 of the correct answer. If the approximation is 1.58, then one
knows that the correct answer is between 1.48 and 1.68. By using lots of subin-
tervals, one can get an approximation as accurate as one likes. Theorem 5.5.24
states what these bounds are.

Theorem 5.5.24 Error Bounds in the Trapezoidal Rule and Simpson’s
Rule.

b
1. Let Ex and E\;be the error in approximating / f(z) dz using

the Trapezoidal and Midpoint Rules respect'ively,awith n subinter-
vals. If f has a continuous second derivative on [a, b] and K is any
upper bound of | f ()| on [a, b], then

(b —a)®
Er<~—271
T =192
and

(b—a)®
Ey < 2%
M = "94n2

b
2. Let Es be the error in approximating / f(x) dzx using Simpson'’s

Rule with n subintervals.. If f has a co(;m'nuous 4th derivative on
[a,b] and K is any upper bound of | f*) (z)| on [a, b], then

(b—a)®
< X 77
Es < gnt

There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
itively.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The maximum error in the Midpoint Rule is half of the maximum error in
the Trapezoidal Rule. (Usually the errors in these two rules have opposite
signs as well, that is one will be an under approximation and the other will
be an over approximation).

4. The error in Simpson’s Rule has a term relating to the 4th derivative of f.
Consider a cubic polynomial: its 4th derivative is 0. Therefore, the error in
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approximating the definite integral of a cubic polynomial with Simpson'’s
Rule is 0 — Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.9 and 5.5.18 and compute the error bounds using
Theorem 5.5.24 in the following example.

Example 5.5.25 Computing error bounds.

1
Find the error bounds when approximating e da using the Trape-

0
zoidal and Midpoint Rules and 5 subintervals, and using Simpson’s Rule
with 4 subintervals.

Solution. Trapezoidal and Midpoints Rules with n = 5: ,
We start by computing the 2nd derivative of f(x) = e™*":

' (x) = e~ (42* — 2).

Figure 5.5.26 shows a graph of f”(z) on [0, 1]. It is clear that the largest )

value of f”, in absolute value, is 2. 0.5
Thus we let K = 2 and apply the error formula from Theorem 5.5.24. "
02 04 06/ 08 1
Ep < -0 2 = 0.006 —05 |
- 12.52 )

Since the maximum error in the Midpoint rule is half the error in the
Trapezoidal Rule, we can say: E; < 0.003

Our error estimation formula states that our approximation of 0.7444
found in Example 5.5.9 is within 0.0067 of the correct answer. Hence we )

know that the actual value is within [0.7444—0.0067, 0.7444+0.0067] = . . o
[0.7377,0.7511]. So: Figure 5.5.26 Graphing f”(x) in Ex-
ample 5.5.25 to help establish error

bounds

157 y=e" (422 - 2)

1
0.7377 < / e de < 0.7511
0

But we can do better than this with the Midpoint Rule since its er-
ror is at most half of the error of the Trapezoidal Rule. Our error es-
timate formula state that our approximate of 0.7480 found in Exam-
ple 5.5.12 is within 0.0034 of the correct answer. Hence Hence we know
that the actual value is within [0.7480 — 0.0034,0.7480 + 0.0033] =
[0.7447,0.7513].

We had earlier stated the actual answer, correct to 4 decimal places, to
be 0.7468, affirming the validity of Theorem 5.5.24.

Simpson’s Rule with n = 4: I y

We start by computing the 4th derivative of f(x) = e 10 | y=e " (16a° ~ 48"+ 12)

FO(2) = e (162* — 4822 + 12). ]

Figure 5.5.27 shows a graph of () () on [0, 1]. Itis clear that the largest
value of £, in absolute value, is 12. Thus we let K = 12 and apply the 02 04
error formula from Theorem 5.5.24.

(1-0)°
B, =<~
7 180 - 44
Our error estimation formula states that our approximation of 0.74683 Figure 5.5.27 Graphing f)(z) in Ex-

found in Example 5.5.18 is within 0.00026 of the correct answer, ample 5.5.25 to help establish error
bounds

-12 = 0.00026.
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hence we know that the correct answer is in the interval [0.74683 —
0.00026, 0.74683 + 0.00026] = [0.74657,0.74709]. So:

1
0.74657 < / e~ da < 0.74700.
0

Once again we affirm the validity of Theorem 5.5.24 since the answer to
| 4 decimal places is actually 0.7468.

At the beginning of this section we mentioned two main situations where
numerical integration was desirable. We have considered the case where an
antiderivative of the integrand cannot be computed. We now investigate the
situation where the integrand is not known. This is, in fact, the most widely
used application of Numerical Integration methods. “Most of the time” we ob-
serve behavior but do not know “the” function that describes it. We instead
collect data about the behavior and make approximations based on this data.
We demonstrate this in an example.

Example 5.5.28 Approximating distance traveled.

Time Speed
One of the authors drove his daughter home from school while she (min)  (mph)
recorded their speed every 30 seconds. The data is given in Figure 5.5.29. 0 0
Approximate the distance they traveled. 1 25
Solution. Recall that by integrating a speed function we get distance 2 29
traveled. We have information about v(t); we will use Simpson’s Rule to 3 19
b
approximate / v(t) dt. 4 39
a 5 0
The most difficult aspect of this problem is converting the given data into 6 43
the form we need it to be in. The speed is measured in miles per hour, - 59
whereas the time is measured in minutes. 8 54
We need to compute Az = (b — a)/n. With 25 data points collected,
there are n = 24 subintervals. What are a and b? Since we start at time 9 51
t = 0, we have ¢ = 0. The final recorded time was ¢ = 12 minutes, 10 43
which is 1/5 of an hour. Thus we have 11 35
12 40
pp_bze 1501 Ar 1 1343
Thus the distance traveled is approximately: 15 0
16 0
o2 1 17 28
/ v(t)dt ~ —— [f(xo) FAf(z) + 2f (20) -+ Af (Tn1) + f(a:")}
0 360 18 40
:—[0+4-25+2-22+---+2-40+4.23+0} 19 42
360 20 40
~ 6.2167 miles. 21 39
. . 22 40
We approximate the author drove 6.2 miles. (Because we are sure the 93 93
reader wants to know, the author’s odometer recorded the distance as
| about 6.05 miles.) 24 0

Figure 5.5.29 Speed data collected
at 30 second intervals for Exam-
ple 5.5.28
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5.5.6 Exercises

Terms and Concepts

262

1.  T/F:Simpson’s Rule is a method of approximating antiderivatives. ((JTrue [ False)

2. What are the two basic situations where approximating the value of a definite integral is necessary?
3. Why are the Left and Right Hand Rules rarely used?

4.  Simpson’s Rule is based on approximating portions of a function with what type of function?
Problems

Exercise Group. In the following exercises, approximate the definite integral with the Trapezoidal Rule and Simpson’s

Rule, with n = 4. Then find the exact value.
5.  Fortheintegral Lll 22 dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.
7. Fortheintegral [ sin(z) dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

9. Fortheintegral [ (z® + 222 — 5z + 7) da:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

11. For the integral [ cos(x) da:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

(c) Find the exact value.

6.  For the integral f010 5z dx:
(a) Approximate using the trapezoidal rule.
(b) Approximate using Simpson’s rule.

(c) Find the exact value.

8.  Forthe integral f(jl VT da:
(a) Approximate using the trapezoidal rule.
(b) Approximate using Simpson’s rule.

(c) Find the exact value.
10. For the integral [, * da:

(a) Approximate using the trapezoidal rule.
(b) Approximate using Simpson’s rule.
(c) Find the exact value.

12. For the integral fii V9 — 22 dx:
(a) Approximate using the trapezoidal rule.
(b) Approximate using Simpson’s rule.

(c) Find the exact value.

Exercise Group. In the following exercises, approximate the definite integral with the Trapezoidal Rule and Simpson'’s

Rule, with n = 6.

13. For the integral fol cos (2?) da:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.
15.  For the integral f05 Va? 4 1da:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

14. For the integral f_11 e da
(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.
16. For the integral [ @ sin(x) da:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.



CHAPTER 5. INTEGRATION

17. For the integral foﬂ/z \V/cos(x) da:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

19. For the integral jil m dx:

(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

263

18. For the integral f14 In(z) dx:
(a) Approximate using the trapezoidal rule.
(b) Approximate using Simpson’s rule.

20. For the integral job m dx:
(a) Approximate using the trapezoidal rule.

(b) Approximate using Simpson’s rule.

Exercise Group. In the following exercises, find n such that the error in approximating the given definite integral is
less than 0.0001 when using the Trapezoidal Rule and Simpson’s Rule.

21.  Forthe integral [ sin(z) dx:
(a) Using the trapezoid rule.
(b) Using Simpson’s rule.

23.  For the integral [ cos (2?) da:
(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

. 4 q .
22. Fortheintegral [ - da
(a) Using the trapezoid rule.

(b) Using Simpson’s rule.
24. For the integral fOE' x4 d:

(a) Using the trapezoid rule.

(b) Using Simpson’s rule.

Exercise Group. In the following exercises, a region is given. Find the area of the region using Simpson’s Rule:

(a) where the measurements are in centimeters, taken in 1 cm increments, and

(b) where the measurements are in hundreds of feet, taken in 100 ft increments.

25.

]
] \

47
6.3
6.9
6.6

5.1

26.

AN

4.5
6.6
5.6
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We started this chapter learning about antiderivatives and indefinite integrals.
We then seemed to change focus by looking at areas between the graph of a
function and the x-axis. We defined these areas as the definite integral of the
function, using a notation very similar to the notation of the indefinite integral.
The Fundamental Theorem of Calculus tied these two seemingly separate con-
cepts together: we can find areas under a curve, i.e., we can evaluate a definite
integral, using antiderivatives.

We ended the chapter by noting that antiderivatives are sometimes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximations of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we'll see more applications of the definite integral. Before that, in
Chapter 6 we'll learn advanced techniques of integration, analogous to learning
rules like the Product, Quotient and Chain Rules of differentiation.



Chapter 6

Techniques of Antidifferentiation

The previous chapter introduced the antiderivative and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applications of definite integrals than just area. As eval-
uating definite integrals will become important, we will want to find antideriva-
tives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions (a con-
cept introduced in the section on Numerical Integration), we can still find anti-
derivatives of a wide variety of functions.

6.1 Substitution

We motivate this section with an example. Let f(z) = (22 + 3z — 5)'". We can
compute f’(x) using the Chain Rule. It is:

f'(x) =10(a? + 3z — 5)° - (22 + 3)
= (202 + 30)(2® + 3z — 5)°.

Now consider this: What is [(20z + 30)(z? + 3z — 5)? dz? We have the
answer in front of us;

/(203: +30) (2 + 3z — 5)%dx = (2® + 32z — 5)'° + C.

How would we have evaluated this indefinite integral without starting with
f(x) as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form
| f(z) dz as a not-so-complicated integral [ h(u)du. We'll formally establish
later how this is done. First, consider again our introductory indefinite integral,
J(20z + 30)(z? + 3z — 5)? dz. Arguably the most “complicated” part of the
integrand is (z2 + 3z — 5)?. We wish to make this simpler; we do so through a
substitution. Let u = z2 + 3z — 5. Thus

(2 + 3z —5)Y = .

265
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We have established u as a function of z, so now consider the differential of

du = (2z + 3)dz.

Keep in mind that (22 + 3) and dz are multiplied; the dx is not “just sitting
there.”

Return to the original integral and do some substitutions through algebra:
/(20x +30)(2? + 3z — 5)° dx = / 10(2z + 3)(2® + 3z — 5)% dx

:/10(:102—1—31‘—5)9 (22 4 3) dx
—_— —
u

du
= / 10u° du

=u'"+C (replace u with 22 + 3z — 5)
=@*+32-5)"Y+C
One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.
We stated before that integration by substitution “undoes” the Chain Rule.

Specifically, let F/(x) and g(z) be differentiable functions and consider the de-
rivative of their composition:

%(F(g(l’))) = F'(g(2))g' (2).
Thus
/ F'(g(2))g'(v) dz = F(g(w)) + C.

Integration by substitution works by recognizing the “inside” function g(x)

and replacing it with a variable. By setting u = g(x), we can rewrite the deriva-
tive as

d
o (F(u)) = F'(u)u'.
Since du = ¢’(z)dx, we can rewrite the above integral as

/ F/(g(a))g (@) do = / F'(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.
Theorem 6.1.1 Integration by Substitution.

Let F' and g be differentiable functions, where the range of g is an interval
I contained in the domain of F'. Then

If u = g(z), then du = ¢'(x)dx and

/ F(g(e))d (=) dic = / F(u) du = F(u) + C = F(g(z)) + C.
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The point of substitution is to make the integration step easy. Indeed, the
step [ F'(u)du = F(u) + C looks easy, as the antiderivative of the deriva-
tive of F'is just F', plus a constant. The “work” involved is making the proper
substitution. There is not a step-by-step process that one can memorize; rather,
experience will be one’s guide. To gain experience, we now embark on many
examples.

Example 6.1.2 Integrating by substitution.

Evaluate /xsin(z2 +5)dx.

Solution. Knowing that substitution is related to the Chain Rule, we
choose to let u be the “inside” function of sin(z2+5). (This is not always
a good choice, but it is often the best place to start.)

Let u = 22 + 5, hence du = 2z dz. The integrand has an = dz term, but
not a 2z dx term. (Recall that multiplication is commutative, so the x
does not physically have to be next to dz for there to be an z dx term.)
We can divide both sides of the du expression by 2:

1
du =2z dx = idu =xdx.
We can now substitute.

/a:sin(:r:2 +5)dx = /sin(ac2 +5)xdz
S——

1
zdu

/%sin(u) du

1
~3 cos(u) + C' (now replace u with % +5)

1
=-3 cos(z® +5) + C.

Thus [ @ sin(z? +5) dv = — 3 cos(2? 4 5) 4+ C. We can check our work
by evaluating the derivative of the right hand side.

Example 6.1.3 Integrating by substitution.

Evaluate /cos(Sx) dz.

Solution. Again let u replace the “inside” function. Letting u = b5z,
we have du = 5 dx. Since our integrand does not have a 5 dx term, we
can divide the previous equation by 5 to obtain %du = dz. We can now
substitute.
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| We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 6.1.4 Substitution With A Linear Function.

Consider [ F’(ax + b) dx, where a # 0 and b are constants. Letting
u = ax + b gives du = a - dx, leading to the result

/F'(am—i—b)dx:%F(ax—l—b)—i—C.

Thus [sin(7z — 4) dz = —1 cos(7z — 4) + C. Our next example can use
Key Idea 6.1.4, but we will only employ it after going through all of the steps.

Example 6.1.5 Integrating by substituting a linear function.

Evaluate / L dx.
—3xr+1

Solution. View the integrand as the composition of functions f(g(x)),
where f(z) = 7/x and g(x) = —3x + 1. Employing our understanding
of substitution, we let u = —3x + 1, the inside function. Thus du =
—3dzx. The integrand lacks a —3; hence divide the previous equation by
—3 to obtain —du/3 = dxz. We can now evaluate the integral through

substitution.
7 7 du
- dr= e
/ Br+r1 / u—3
T [
3 U
-7
=—1 C
5 In lu| +
7
Using Key Idea 6.1.4 is faster, recognizing that w is linear and a = —3.

One may want to continue writing out all the steps until they are com-
fortable with this particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.6 Integrating by substitution.

Evaluate/sin(m) cos(x) dz.

Solution. There is not a composition of functions here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given
an integral to evaluate, it is often beneficial to think “If | let u be this,
then du must be that ...” and see if this helps simplify the integral at all.
In this example, let’s set u = sin(z). Then du = cos(x) dz, which we
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have as part of the integrand! The substitution becomes very straight-

forward:

/sin(m) cos(x) dx = /udu
1
5'&2 + C

1
3 sin?(x) + C.

One would do well to ask “What would happen if we let u = cos(z)?”

The result is just as easy to find, yet looks very different. The challenge

to the reader is to evaluate the integral letting « = cos(x) and discover
| why the answer is the same, yet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 6.1.7 Integrating by substitution.

Evaluate /x\/a: + 3dx.

Solution. Recognizing the composition of functions, set u = = + 3.
Then du = dzx, giving what seems initially to be a simple substitution.
But at this stage, we have:

/x\/mdx:/x\/ﬂdu.

We cannot evaluate an integral that has both an x and an w in it. We
need to convert the x to an expression involving just wu.

Since we set u = x + 3, we can also state that u — 3 = . Thus we can
replace x in the integrand with u — 3. It will also be helpful to rewrite

Vuasuz,
/x\/a:+3dx:/(u—3)u% du
:/(u% —3u%)du
2 5 3
= 5u§ —2u?2 +C
2 5 3
=—(x+3)2 —2(x+3)2 + C.

5

Checking your work is always a good idea. In this particular case, some
algebra will be needed to make one’s answer match the integrand in the
original problem.

Example 6.1.8 Integrating by substitution.

1
Evaluate/idz
zIn(z)

Solution. This is another example where there does not seem to be
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an obvious composition of functions. The line of thinking used in Exam-
ple 6.1.7 is useful here: choose something for « and consider what this
implies du must be. If u can be chosen such that du also appears in the
integrand, then we have chosen well.

Choosing u = 1/x makes du = —1/x? dx; that does not seem helpful.
However, setting u = In(z) makes du = 1/x dz, which is part of the

integrand. Thus:
1 1 1
/ T . / Ly,
xIn(x) In(z) x
~—~—

M du
= /ldu
J u
=lInju|+C
=In|In(z)| + C.

The final answer is interesting; the natural log of the natural log. Take
| the derivative to confirm this answer is indeed correct.

6.1.1 Integrals Involving Trigonometric Functions

Section 6.3 delves deeper into integrals of a variety of trigonometric functions;
here we use substitution to establish a foundation that we will build upon.

The next three examples will help fill in some missing pieces of our antideriv-
ative knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.9 Integrating by substitution: the antiderivative of tan(z).

Evaluate [ tan(z) da.

Solution. The previous paragraph established that we did not know the
antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite inte-
gral.

Rewrite tan(z) as sin(x)/ cos(z). While the presence of a composition
of functions may not be immediately obvious, recognize that cos(x) is
“inside” the 1/x function. Therefore, we see if setting u = cos(x) re-
turns usable results. We have that du = —sin(z) dz, hence —du =
sin(z) dz. We can integrate:

/tan(x) dx = / csl)ns((i)) dx

1 .
_/cos(x) sin(z) do
——

—du
u

-1
= /—du

u
=—Inlu|+C
= —In|cos(z)| + C.
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Some texts prefer to bring the —1 inside the logarithm as a power of

cos(x), as in:
—In|cos(z)| 4+ C = In|(cos(z)) | + C
=In L
| cos(x)
= In|sec(z)| + C.

Thus the result they give is [ tan(z) dz = In|sec(z)| + C. These two
answers are equivalent.

Example 6.1.10 Integrating by substitution: the antiderivative of
sec(x).

Evaluate [ sec(z) dz.

Solution. This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case,

we write “1” as
_sec(x) + tan(x)

 sec(z) + tan(x)’

This may seem like it came out of left field, but it works beautifully. Con-

sider:
sec(x) + tan(z)
/Sec(.’l?) dr = /Sec(l’) . m dxr

[ sec®(z) + sec(x) tan(x) p
B / sec(z) + tan(z) .

Now let u = sec(z) + tan(z); this means du = (sec(z)tan(x) +
sec?(x)) dx, which is our numerator. Thus:

du

u

=Inju|+C

= In|sec(z) + tan(z)| + C.

We can use similar techniques to those used in Examples 6.1.9 and 6.1.10
to find antiderivatives of cot(z) and csc(x) (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.11 Antiderivatives of Trigonometric Functions.

1. [sin(z)dz = —cos(z) + C,

2. [cos(z)dx = sin(z) + C,

3. [tan(z)dz = —In|cos(z)| + C,

4. [csc(x) dx = — In|csc(z) + cot(x)| + C,
5. [sec(z)dz = In|sec(z) + tan(z)| + C,
6. [cot(x)dx = In|sin(z)| + C,
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We explore one more common trigonometric integral.

Example 6.1.12 Integration by substitution: powers of cos(z) and

sin(z).

Evaluate [ cos?(z) dz.

Solution. We have a composition of functions as cos?(z) = (cos(x))z.
However, setting u = cos(x) means du = — sin(x) dx, which we do not
have in the integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos?(z),

which states
1+ cos(2z)

2
The right hand side of this equation is not difficult to integrate. We have:

/cosQ(x)dx:/H%md

(3o

cos?(z) =

1 1 sm( )

+C,

2"
1 S|n(2 )
2"y

where we used Key Idea 6.1.4 for the antiderivative of cos(2z).
We'll make significant use of this power-reducing technique in future
L sections.

6.1.2 Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at first,
our grasp of integration is tenuous and one may think that working with the inte-
grand will improperly change the results. Integration by substitution works using
a different logic: as long as equality is maintained, the integrand can be manipu-
lated so that its form is easier to deal with. The next two examples demonstrate
common ways in which using algebra first makes the integration easier to per-
form.

Example 6.1.13 Integration by substitution: simplifying first.

3 42
Evaluate/x Rl +8x+5da:
22+ 2x+1

Solution. One may try to start by setting v equal to either the numerator
or denominator; in each instance, the result is not workable.

When dealing with rational functions (i.e., quotients made up of poly-
nomial functions), it is an almost universal rule that everything works
better when the degree of the numerator is less than the degree of the
denominator. Hence we use polynomial division.

We skip the specifics of the steps, but note that when 22 + 2z + 1 is
divided into 23 4+ 422 4+ 8x + 5, it goes in = + 2 times with a remainder

The power reduction identities
can be found in List B.3.5 in Ap-
pendix B.
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of 3z + 3. Thus

23+ 422 +8x 45 +a4 3r+3
=x _
224220 +1 224 2x+1

Integrating x + 2 is simple. The fraction can be integrated by setting
u = 2% + 2z + 1, giving du = (2z + 2) dz. This is very similar to
the numerator. Note that du/2 = (x + 1) dz and then consider the
following:

/x3+4x2+8x+5dx_/ 24 3x+3 e
22+ 22+ 1 N 2242z +1

B 3(z+1)

1, 3 du
Z 2 =27
5% + x+C1+/u 5

1 3
:§x2+2$+01+§|n\u|+02

1 3
= §m2+2x+§|n’m2+2x+1’+c.
In some ways, we “lucked out” in that after dividing, substitution was
able to be done. In later sections we'll develop techniques for handling
rational functions where substitution is not directly feasible.

Example 6.1.14 Integration by alternate methods.

22 +2x+3
vV
Solution. We already know how to integrate this particular example.

Rewrite /T as 2% and simplify the fraction:

Evaluate dx with, and without, substitution.

2?24+ 2x+3 3 1 _1

——5 =2 + 2227 + 327 2.
x1/2

We can now integrate using the Power Rule:

242043 1
/75” iy dx:/(x%+2x%+3x—f) dx
x1/2

2 5 4 3 1

=-x2 4+ -x2 +622 +C

5 3

This is a perfectly fine approach. We demonstrate how this can also be
solved using substitution as its implementation is rather clever.

Let u = \/Z = x7; therefore
d L d = 2 1 d
U= ——ax U = — axr.
2\/x NG
22 +2x+3
NG
to do with the other x terms? Since u = x%, u® = x, etc. We can then
replace 22 and z with appropriate powers of u. We thus have

This gives us dx = /(:Jc2 + 2z + 3) - 2 du. What are we

2

x24+2x+3

——dzr = 242 -2
7z dx /(:c+ac+3) du
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= /2(u4+2u2 +3) du

2 4
= 5u5—|—§u3—0—6u—|—0
2 4

which is obviously the same answer we obtained before. In this situation,
substitution is arguably more work than our other method. The fantastic

| thingis that it works. It demonstrates how flexible integration is.

6.1.3 Substitution and Inverse Trigonometric Functions

When studying derivatives of inverse functions, we learned that

d 1

—(tan™! = —.

dx ( (x)) 1422

Applying the Chain Rule to this is not difficult; for instance,
d 5

—(tan (5 = —.

dx ( an—( z)) 1+ 2522

We now explore how Substitution can be used to “undo” certain derivatives
that are the result of the Chain Rule applied to Inverse Trigonometric functions.
We begin with an example.

Example 6.1.15 Integrating by substitution: inverse trigonometric func-
tions.

1
Evaluate | ——— dx.
25 + 2

Solution. The integrand looks similar to the derivative of the arctangent
function. Note:

1 1
25+a?  25(1+ %)
B 1
25(1 + (2)°)
11
T 25 z)2
1+ ()

Thus ) 1 L
——dr=— | ———d
/25+az2 * 25/1+(:§)2 o

This can be integrated using Substitution. Set v = /5, hence du =
dz /5 or dx = 5 du. Thus

1 1 1
/25+x2d$:?5 1+<%)2da§

1 1
:f/idu
5) 14?2

1
o tan~!(u) + C
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L = %tan‘1 (%) +C

Example 6.1.15 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 6.1.16 Integrals Involving Inverse Trigonometric Functions.

Leta > 0.

1 1
b [ st (2) v
a? + z2 a a

2. /ﬁdm =sin~! (E) +C

Let’s practice using Theorem 6.1.16.

Example 6.1.17 Integrating by substitution: inverse trigonometric func-
tions.

Evaluate the given indefinite integrals:
1 1 1
1. ——dx 2. ——dx 3. ——dx
/9—1—962 /\/57:1:2 /x/x2—1
100

Solution. Each can be answered using a straightforward application of
Theorem 6.1.16.

1 1
1./mdﬂ?zgtanil(g)‘l'cyasazig'

2. /\/ﬁ:sin*1 (\%)—i—C,asa:\/g.

/ 1

3. _—
/ 1

x Z‘Q—W

Most applications of Theorem 6.1.16 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

—1
dz =10sec ' (10z) + C,asa = 1.

Example 6.1.18 Integrating by substitution: completing the square.

Evaluate/ 1 d
———————— ax.
2 — 4 + 13

Solution. Initially, this integral seems to have nothing in common with
the integrals in Theorem 6.1.16. As it lacks a square root, it almost cer-
tainly is not related to arcsine or arcsecant. It is, however, related to the
arctangent function.

We see this by completing the square in the denominator. We give a
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brief reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have the form
of 22 + bz + c. Take 1/2 of b, square it, and add/subtract it back into the
expression. i.e.,

2 2

2 2
o b S b _
z°+oxr+c IC+$+4 4+C

(z+b/2)?
b\ > b2
= (x + 2) +c— T

In our example, we take half of —4 and square it, getting 4. We add/
subtract it into the denominator as follows:

1 1
22 —4x+13 22 —dx+4-4+13
————
(z—2)2
B 1
 (x—2)2+9

We can now integrate this using the arctangent rule. Technically, we
need to substitute first with u = x — 2, but we can employ Key Idea 6.1.4
instead. Thus we have

‘ 1 1
. = —— 4
/m2—4x+13 v /(a:—2)2+9 x

Example 6.1.19 Integrals requiring multiple methods.

Evaluate / 1-z d
———dux.
V16 — z2
Solution. This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral into two terms:
4 —

z dw—/de_/de
V16 — 22 V16 — 22 V16— 22

We handle each separately. The first integral is handled using a straight-
forward application of Theorem 6.1.16:

4 1/
e —asnt (2 4e
/ V16 — 22 4
The second integral is handled by substitution, with v = 16 — z2.
T
———— dx: Setu = 16— 22, s0du = -2z dz and z dz = —du/2.
/ V16 — 2 /
We have
/ x dp — —du/2
V16 — 2 Vu
e
2] Va Y

=—Vu+C
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=—V16—-224+C.

Combining these together, we have

/\/%dxzélsin*l (z) =+ V 16—T2+C

| Aswith all definite integrals, you can check your work by differentiation.

6.1.4 Substitution and Definite Integration

This section has focused on evaluating indefinite integrals as we are learning a
new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

b
1. Start with a definite integral / f(z) dz that requires substitution.
a
2. Ignore the bounds; use substitution to evaluate /f(x) dz and find an
antiderivative F'(x).

b
= F(b) — F(a).

a

3. Evaluate F'(z) at the bounds; that is, evaluate F'(x)

This workflow works fine, but substitution offers an alternative that is pow-
erful and amazing (and a little time saving).

At its heart, (using the notation of Theorem 6.1.1) substitution converts in-
tegrals of the form [ F’(g(z))g’(x) dz into an integral of the form [ F’(u) du
with the substitution of u = g(z). The following theorem states how the bounds
of a definite integral can be changed as the substitution is performed.

Theorem 6.1.20 Substitution with Definite Integrals.

Let F'and g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F and u = g(x). Then

b g(b)
/ F'(g9(x))g (z) dx = F'(u) du.

g(a)

In effect, Theorem 6.1.20 states that once you convert to integrating with
respect to u, you do not need to switch back to evaluating with respect to z. A
few examples will help one understand.

Example 6.1.21 Definite integrals and substitution: changing the
bounds.

2
Evaluate / cos(3xz — 1) dx using Theorem 6.1.20.
0

Solution. Observing the composition of functions, let u = 3x—1, hence
du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dz.

By setting w = 3z — 1, we are implicitly stating that g(z) = 3z — 1.
Theorem 6.1.20 states that the new lower bound is g(0) = —1; the new
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upper bound is g(2) = 5. We now evaluate the definite integral:

2 5
/ cos(3z — 1) dx = / cos(u)d—u
0 —1 3

1 5
=3 sin(u)’

= %(sin(B) —sin(—1))
~ —0.039.

-1

Notice how once we converted the integral to be in terms of u, we never
went back to using x.

11! 11Y
y\= cos(3z —1
0.5 0.5
z / Y= ]§ cos(u) U
1 2 -1

1W5

—0.5

-1

(a) (b)

Figure 6.1.22 Graphing the areas defined by the definite integrals of Ex-
ample 6.1.21

The graphs in Figure 6.1.22 tell more of the story. In Figure 6.1.22(a)
the area defined by the original integrand is shaded, whereas in Fig-
ure 6.1.22(b) the area defined by the new integrand is shaded. In
this particular situation, the areas look very similar; the new region is
“shorter” but “wider,” giving the same area.

Example 6.1.23 Definite integrals and substitution: changing the
bounds.

w/2
Evaluate / sin(x) cos(z) dx using Theorem 6.1.20.
0

Solution. We saw the corresponding indefinite integral in Example 6.1.6.
In that example we set v = sin(z) but stated that we could have let
u = cos(x). For variety, we do the latter here.

Let u = g(x) = cos(x), giving du = — sin(z) dz and hence sin(z) dz =
—du. The new upper bound is g(7/2) = 0; the new lower bound is
g(0) = 1. Note how the lower bound is actually larger than the upper
bound now. We have

/2 0
/ sin(z) cos(z) dz = / —udu (switch bounds and change sign)
0 1

1
:/udu
0

L 2‘1 1/2
—u?| =1/2.
2 lo
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In Figure 6.1.24 we have again graphed the two regions defined by our
definite integrals. Unlike the previous example, they bear no resem-

blance to each other. However, Theorem 6.1.20 guarantees that they
have the same area.

1Y 1Y

y = sin(x) cos(x)
0.5 () cos( 0.5

(NIE]
—_
ME]

—-0.5 -0.5

(a) (b)

Figure 6.1.24 Graphing the areas defined by the definite integrals of Ex-
| ample 6.1.23

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product

Rule. Together, these two techniques provide a strong foundation on which most
other integration techniques are based.
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6.1.5 Exercises

Terms and Concepts

1.  Substitution “undoes” what derivative rule?
2. (D True [OFalse) One can use algebra to rewrite the integrand of an integral to make it easier to evaluate.

Problems

Exercise Group. Evaluate the indefinite integral to develop an understanding of Substitution.

3. /4:173(9:4+3)8d9: 4. /(2x+6) (22 + 62 —5)° dw
5. /x(mQ + 8)9 dx 6. /(9 — 54z) (3z — 92* + 9)5 dx
1 1
7. d 8. —d
/3a:+4 : /\F3:c+*9 !
z 23—
9. —dx 10.
/\/x—?’ 0 / NG de
v 2
e
11. 12. ——dx
f Vab 44
13. / 104 14. /L(x)dx
x? x

Exercise Group. Use Substitution to evaluate the indefinite integral involving trigonometric functions.

15. /sinQ(a:)cos(x)da: 16. /cos3(x)sin(x)dx

17. /cos 7T—Tx)d 18. /sec 4 —6x)dx
19. / 20. / )sec?(x) dx
21. /x sm 22, /

23. / cot(x) dx 24. csc(z) dx

Do not just refer to Theorem 6.1.14 for the
answer; justify it through Substitution.

25. /63‘”+9 dx
27. /er2_6$+9(x —3)dx
eI
29. d
/ e* +6 *

31. / 887 dx

Do not just refer to Theorem 6.1.14 for the
answer; justify it through Substitution.

Exercise Group. Use Substitution to evaluate the indefinite integral involving exponential functions.

26. /e“”gm2 dx
T _1

28. / ¢ dx
e{lj

30. /i d

62{1?

32. / 9°% dx

Exercise Group. Use Substitution to evaluate the indefinite integral involving logarithmic functions.
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/ Inix In(j
In x3 / 1
/ T /xln(x4

Exercise Group. Use Substitution to evaluate the indefinite integral involving rational functions.

2 73
a7, /wdx / +a? +x+1d
X

3 _
39, /x 7dw x? +6x+5
x+1

82 — 2z +1 ¢ — 6xr — 2
41. —d 42. -
/ z+4 v /x3—9x2—6:c+9

Exercise Group. Use Substitution to evaluate the indefinite integral involving inverse trigonometric functions.

3 3
43. —d 44, —d
/x2+3 v /\/9—x2 v
a5 / 2 46 / S
' V6 — 22 ) Va2 — 25
x T
47. ———dzx 48. ——dx
/\/x6—36x4 /,/1_334
1 5
49. —d 50. d
/m2+10m+36 . /\/—x2—14x—33 v
51 /L dx 52 /L dx
: V=22 + 18z ’ z? — 14z + 85
Exercise Group. Evaluate the indefinite integral.
3
53, / x72 dr 54, / (33:5 + 23:) (4366 + 822 + 9)6 dx
(z* —5)
55 /de 56. /x csc? x —6)d
' Vb5 + 22
57. /sm v/ cos(x) dx 58. / s(8x +2)d
59 / L d 60. /
' 27" 8z + 5
423 — 3522 + 4Tz / 2 —5
62.
61. / P — dz R — dx
24(1 — ) —z3 — 622 + 11z + 13
63. ——d
/6x—3x2+4 * 64. / 2 _ 49 dw
65. 66.
/m4+36 /49x2+1
67. dx 68.
/ x\/64:r2 1 / V81 — 412
69. / 9z 4 76 