1.1.1.
1.1.1.a
Solution.
To get a vector space structure on \(V=(0,\infty)\text{,}\) we will define an addition \(\oplus\) on \(V\) by
\begin{equation*}
x\oplus y = xy\text{,}
\end{equation*}
where the right hand side is the usual product of real numbers, and for \(c\in\R\) and \(x\in V\text{,}\) we will define a scalar multiplication \(\odot\) by
\begin{equation*}
c\odot x = x^c\text{.}
\end{equation*}
1.1.1.b
Solution.
For any \(x,y,z\in V\text{,}\) we have:
\begin{align*}
x\oplus y \amp = xy = yx = y\oplus x\\
x\oplus(y\oplus z)\amp = x\oplus yz = x(yz) = (xy)z = xy\oplus z = (x\oplus y)\oplus z\text{.}
\end{align*}
1.1.1.d
Solution.
Let \(x\) be any element of \(V\text{.}\) Since \(x\gt 0\text{,}\) we know in particular that \(x\neq 0\text{,}\) so we can define \(-x = 1/x\text{,}\) where \(1/x\) denotes the usual reciprocal of a real number. We then have
\begin{equation*}
x\oplus (-x) = x(1/x) = 1\text{,}
\end{equation*}
and we saw above that \(1\) is the identity element of \(V\text{.}\)
1.1.1.e
Solution.
We assume some properties of exponents from high school algebra:
\begin{equation*}
c\odot(x\oplus y) = (xy)^c = x^c y^c = c\odot x \oplus c\odot y\text{.}
\end{equation*}
1.1.1.f
Solution.
This again follows from properties of exponents:
\begin{equation*}
(c+d)\odot x = x^{c+d} = x^c x^d = c\odot x\oplus d\odot x\text{.}
\end{equation*}
1.1.1.g
Solution.
We have
\begin{equation*}
c\odot (d\odot x) = c\odot (x^d) = (x^d)^c = x^{dc} = x^{cd} = (cd)\odot x\text{.}
\end{equation*}
1.1.1.h
Solution.
The last one is possibly the easiest: \(1\odot x = x^1 = x\text{.}\)