Skip to main content Contents Index
Calc
Prev Up Next \(\require{cancel}\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bbm}{\begin{bmatrix}}
\newcommand{\ebm}{\end{bmatrix}}
\newcommand{\ds}{\displaystyle}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\dotp}[2]{\vec #1 \,\boldsymbol{\cdot}\, \vec #2}
\newcommand{\proj}[2]{\operatorname{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\vec i}
\newcommand{\vecj}{\vec j}
\newcommand{\veck}{\vec k}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\noin}{\noindent}
\newcommand{\vx}[1][]{\vec{x}_{#1}}
\newcommand{\vxp}{\vec{x}_p}
\newcommand{\vu}{\vec{u}}
\newcommand{\vvv}{\vec{v}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vw}{\vec{w}}
\newcommand{\veone}{\vec{e}_1}
\newcommand{\vetwo}{\vec{e}_2}
\newcommand{\vethree}{\vec{e}_3}
\newcommand{\vei}{\vec{e}_i}
\newcommand{\ven}[1]{\vec{e}_{#1}}
\newcommand{\zero}{\vec{0}}
\newcommand{\arref}{\overrightarrow{\text{rref}}}
\newcommand{\tta}{A}
\newcommand{\ttb}{B}
\newcommand{\ttc}{C}
\newcommand{\ttd}{D}
\newcommand{\ttm}{M}
\newcommand{\ttx}{X}
\newcommand{\tti}{I}
\newcommand{\tty}{Y}
\newcommand{\ttp}{P}
\newcommand{\ttat}{A^T}
\newcommand{\ttbt}{B^T}
\newcommand{\ttct}{C^T}
\newcommand{\ttdt}{D^T}
\newcommand{\ttmt}{M^T}
\newcommand{\ttxt}{X^T}
\newcommand{\ttit}{I^T}
\newcommand{\ttyt}{Y^T}
\newcommand{\ttai}{A^{-1}}
\newcommand{\ttbi}{B^{-1}}
\newcommand{\ttxi}{X^{-1}}
\newcommand{\ttpi}{P^{-1}}
\newcommand{\ttaxb}{\tta\vx=\vb}
\newcommand{\ttaxo}{\tta\vx=\zero}
\newcommand{\eyetwo}{\begin{bmatrix}1\amp 0\\0\amp 1\end{bmatrix}}
\newcommand{\eyethree}{\begin{bmatrix}1\amp 0\amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\end{bmatrix}}
\newcommand{\eyefour}{\begin{bmatrix}1\amp 0\amp 0\amp 0\\0\amp 1\amp 0\amp 0\\0\amp 0\amp 1\amp 0\\0\amp 0\amp 0\amp 1\end{bmatrix}}
\newcommand{\tto}{\textbf{0}}
\newcommand{\lda}{\lambda}
\newcommand{\TT}{[\, T\, ]}
\newcommand{\R}{\mathbb{R}}
\newcommand{\bvm}{\begin{vmatrix}}
\newcommand{\evm}{\end{vmatrix}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 1 The Real and Complex Numbers
We begin with some basic set theory terminology that may pop up from time to time, followed by a reminder on the rules for arithmetic with real numbers, and a tour of the Cartesian coordinate plane. Students who are already comfortable with these topics can feel free to jump ahead to
Section 1.4 , where we introduce the complex numbers.