Skip to main content
Logo image

Elementary Linear Algebra For University of Lethbridge Math 1410

Section B.1 Trigonometry Reference

Subsection B.1.1 Definitions of the Trigonometric Functions

Unit Circle Definition.

\(\sin \theta = y\) \(\cos \theta = x\)
\(\ds\csc \theta = \frac1y\) \(\ds\sec \theta = \frac1x\)
\(\ds\tan \theta = \frac yx\) \(\ds\cot \theta = \frac xy\)

Right Triangle Definition.

\(\ds\sin \theta = \frac{\text{O} }{\text{H} }\) \(\ds\csc \theta = \frac{\text{H} }{\text{O} }\)
\(\ds\cos \theta = \frac{\text{A} }{\text{H} }\) \(\ds\sec \theta = \frac{\text{H} }{\text{A} }\)
\(\ds\tan \theta = \frac{\text{O} }{\text{A} }\) \(\ds\cot \theta = \frac{\text{A} }{\text{O} }\)

Subsection B.1.2 Common Trigonometric Identities

  1. \(\displaystyle \sin ^2x+\cos ^2x= 1\)
  2. \(\displaystyle \tan^2x+ 1 = \sec^2 x\)
  3. \(\displaystyle 1 + \cot^2x=\csc^2 x\)
List B.1.1. Pythagorean Identities
  1. \(\displaystyle \sin 2x = 2\sin x\cos x\)
  2. \begin{align*} \cos 2x \amp = \cos^2x - \sin^2 x \amp \amp \\ \amp = 2\cos^2x-1 \amp \amp \\ \amp = 1-2\sin^2x \amp \amp \end{align*}
  3. \(\displaystyle \tan 2x = \frac{2\tan x}{1-\tan^2 x}\)
List B.1.2. Double Angle Formulas
  1. \(\displaystyle \sin\left(\frac{\pi}{2}-x\right) = \cos x\)
  2. \(\displaystyle \cos\left(\frac{\pi}{2}-x\right) = \sin x\)
  3. \(\displaystyle \tan\left(\frac{\pi}{2}-x\right) = \cot x\)
  4. \(\displaystyle \csc\left(\frac{\pi}{2}-x\right) = \sec x\)
  5. \(\displaystyle \sec\left(\frac{\pi}{2}-x\right) = \csc x\)
  6. \(\displaystyle \cot\left(\frac{\pi}{2}-x\right) = \tan x\)
List B.1.3. Cofunction Identities
  1. \(\displaystyle \sin(-x) = -\sin x\)
  2. \(\displaystyle \cos (-x) = \cos x\)
  3. \(\displaystyle \tan (-x) = -\tan x\)
  4. \(\displaystyle \csc(-x) = -\csc x\)
  5. \(\displaystyle \sec (-x) = \sec x\)
  6. \(\displaystyle \cot (-x) = -\cot x\)
List B.1.4. Even/Odd Identities
  1. \(\displaystyle \sin^2 x = \frac{1-\cos 2x}{2}\)
  2. \(\displaystyle \cos^2 x = \frac{1+\cos 2x}{2}\)
  3. \(\displaystyle \tan^2x = \frac{1-\cos 2x}{1+\cos 2x}\)
List B.1.5. Power-Reducing Formulas
  1. \(\displaystyle \sin x+\sin y = 2\sin \left(\frac{x+y}2\right)\cos\left(\frac{x-y}2\right)\)
  2. \(\displaystyle \sin x-\sin y = 2\sin \left(\frac{x-y}2\right)\cos\left(\frac{x+y}2\right)\)
  3. \(\displaystyle \cos x+\cos y = 2\cos \left(\frac{x+y}2\right)\cos\left(\frac{x-y}2\right)\)
  4. \(\displaystyle \cos x-\cos y = -2\sin \left(\frac{x+y}2\right)\sin\left(\frac{x-y}2\right)\)
List B.1.6. Sum to Product Formulas
List B.1.7. Product to Sum Formulas
  1. \(\displaystyle \sin x\sin y = \frac12 \big(\cos(x-y) - \cos (x+y)\big)\)
  2. \(\displaystyle \cos x\cos y = \frac12\big(\cos (x-y) +\cos (x+y)\big)\)
  3. \(\displaystyle \sin x\cos y = \frac12 \big(\sin(x+y) + \sin (x-y)\big)\)
List B.1.8. Angle Sum/Difference Formulas
  1. \(\displaystyle \sin (x\pm y) = \sin x\cos y \pm \cos x\sin y\)
  2. \(\displaystyle \cos (x\pm y) = \cos x\cos y \mp \sin x\sin y\)
  3. \(\displaystyle \tan (x\pm y) = \frac{\tan x\pm \tan y}{1\mp \tan x\tan y}\)