Skip to main content 
 Contents  Index  Calc  Dark Mode  Prev  Up Next   \(\require{cancel}\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bbm}{\begin{bmatrix}}
\newcommand{\ebm}{\end{bmatrix}}
\newcommand{\ds}{\displaystyle}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\dotp}[2]{\vec #1 \,\boldsymbol{\cdot}\, \vec #2}
\newcommand{\proj}[2]{\operatorname{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\vec i}
\newcommand{\vecj}{\vec j}
\newcommand{\veck}{\vec k}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\noin}{\noindent}
\newcommand{\vx}[1][]{\vec{x}_{#1}}
\newcommand{\vxp}{\vec{x}_p}
\newcommand{\vu}{\vec{u}}
\newcommand{\vvv}{\vec{v}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vw}{\vec{w}}
\newcommand{\veone}{\vec{e}_1}
\newcommand{\vetwo}{\vec{e}_2}
\newcommand{\vethree}{\vec{e}_3}
\newcommand{\vei}{\vec{e}_i}
\newcommand{\ven}[1]{\vec{e}_{#1}}
\newcommand{\zero}{\vec{0}}
\newcommand{\arref}{\overrightarrow{\text{rref}}}
\newcommand{\eyetwo}{\begin{bmatrix}1\amp 0\\0\amp 1\end{bmatrix}}
\newcommand{\eyethree}{\begin{bmatrix}1\amp 0\amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\end{bmatrix}}
\newcommand{\eyefour}{\begin{bmatrix}1\amp 0\amp 0\amp 0\\0\amp 1\amp 0\amp 0\\0\amp 0\amp 1\amp 0\\0\amp 0\amp 0\amp 1\end{bmatrix}}
\newcommand{\tto}{\textbf{0}} 
\newcommand{\TT}{[\, T\, ]}
\newcommand{\R}{\mathbb{R}}
\newcommand{\bvm}{\begin{vmatrix}}
\newcommand{\evm}{\end{vmatrix}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Appendix   A   Answers to Selected Exercises 
 
1   The Real and Complex Numbers 1.2   Real Number Arithmetic 
 
Exercises 
1.2.1.  1.2.3.  Answer . 
\(-\dfrac{3\sqrt[5]{3}}{8} = -\dfrac{3^{6/5}}{8}\) 
 
 1.2.5.  1.2.7.  Answer . 
\(\dfrac{-4 + \sqrt{2}}{7}\) 
 
 1.2.9.  1.2.11.  1.2.13.  1.2.15.  1.2.17.  1.2.19.  1.2.21.  1.2.23.  1.2.25.  1.2.27.  1.2.29.  1.2.31.  1.2.33.   
1.3   The Cartesian Coordinate Plane 
 
Exercises 1.3.1.  Answer . 
The required points 
\(A(-3, -7)\text{,}\)  \(B(1.3, -2)\text{,}\)  \(C(\pi, \sqrt{10})\text{,}\)  \(D(0, 8)\text{,}\)  \(E(-5.5, 0)\text{,}\)  \(F(-8, 4)\text{,}\)  \(G(9.2, -7.8)\text{,}\)  and 
\(H(7, 5)\)  are plotted in the Cartesian Coordinate Plane below.
 
1.3.3.  Answer . 
\(d = 4 \sqrt{10}\text{,}\)  \(M = \left(1, -4 \right)\) 
 
 1.3.5.  Answer . 
\(d= \frac{\sqrt{37}}{2}\text{,}\)  \(M = \left(\frac{5}{6}, \frac{7}{4} \right)\) 
 
 1.3.7.  Answer . 
\(d= 3\sqrt{5}\text{,}\)  \(M = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{3}}{2} \right)\) 
 
 1.3.9.  Answer . 
\(d = \sqrt{x^2 + y^2}\text{,}\)  \(M = \left( \frac{x}{2}, \frac{y}{2}\right)\) 
 
  1.3.11.  1.3.13.  Answer . 
\(\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \right)\text{,}\)  \(\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\) 
 
 
1.4   Complex Numbers 
 
Exercises 
1.4.1.  Answer . 
\(\displaystyle z+w = 2+7i\) 
 
 
\(\displaystyle zw = -12+8i\) 
 
 
\(\displaystyle z^2 = -5 + 12i\) 
 
 
\(\displaystyle \frac{1}{z} = \frac{2}{13} - \frac{3}{13} \, i\) 
 
 
\(\displaystyle \frac{z}{w} = \frac{3}{4} - \frac{1}{2} \, i\) 
 
 
\(\displaystyle \frac{w}{z} = \frac{12}{13} + \frac{8}{13} \,i\) 
 
 
\(\displaystyle \overline{z} = 2-3i\) 
 
 
\(\displaystyle z\overline{z} = 13\) 
 
 
\(\displaystyle (\overline{z})^2 = -5-12i\) 
 
 
 
 
 1.4.3.  Answer . 
\(\displaystyle z+w = -1+3i\) 
 
 
\(\displaystyle zw = -2-i\) 
 
 
\(\displaystyle z^2 = -1\) 
 
 
\(\displaystyle \frac{1}{z} = -i\) 
 
 
\(\displaystyle \frac{z}{w} = \frac{2}{5} - \frac{1}{5} \, i\) 
 
 
\(\displaystyle \frac{w}{z} = 2+i\) 
 
 
\(\displaystyle \overline{z} = -i\) 
 
 
\(\displaystyle z\overline{z} = 1\) 
 
 
\(\displaystyle (\overline{z})^2 = -1\) 
 
 
 
 
 1.4.5.  Answer . 
\(\displaystyle z+w = 5+2i\) 
 
 
\(\displaystyle zw = 41+11i\) 
 
 
\(\displaystyle z^2 = -16-30i\) 
 
 
\(\displaystyle \frac{1}{z} = \frac{3}{34} + \frac{5}{34} \,i\) 
 
 
\(\displaystyle \frac{z}{w} = -\frac{29}{53} - \frac{31}{53} \, i\) 
 
 
\(\displaystyle \frac{w}{z} = -\frac{29}{34} + \frac{31}{34} \,i\) 
 
 
\(\displaystyle \overline{z} = 3+5i\) 
 
 
\(\displaystyle z\overline{z} = 34\) 
 
 
\(\displaystyle (\overline{z})^2 = -16+30i\) 
 
 
 
 
 1.4.7.  Answer . 
\(\displaystyle z+w = 2\sqrt{2}\) 
 
 
 
\(\displaystyle z^2 = -4i\) 
 
 
\(\displaystyle \frac{1}{z} = \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} \,i\) 
 
 
\(\displaystyle \frac{z}{w} = -i\) 
 
 
\(\displaystyle \frac{w}{z} = i\) 
 
 
\(\displaystyle \overline{z} = \sqrt{2}+i\sqrt{2}\) 
 
 
\(\displaystyle z\overline{z} = 4\) 
 
 
\(\displaystyle (\overline{z})^2 = 4i\) 
 
 
 
 
 1.4.9.  Answer . 
\(\displaystyle z+w = i\sqrt{3}\) 
 
 
\(\displaystyle zw = -1\) 
 
 
\(\displaystyle z^2 = -\frac{1}{2} + \frac{\sqrt{3}}{2} \,i\) 
 
 
\(\displaystyle \frac{1}{z} = \frac{1}{2} - \frac{\sqrt{3}}{2} \, i\) 
 
 
\(\displaystyle \frac{z}{w} = \frac{1}{2} - \frac{\sqrt{3}}{2} \, i\) 
 
 
\(\displaystyle \frac{w}{z} = \frac{1}{2} + \frac{\sqrt{3}}{2} \, i\) 
 
 
\(\displaystyle \overline{z} = \frac{1}{2} - \frac{\sqrt{3}}{2} \, i\) 
 
 
\(\displaystyle z\overline{z} = 1\) 
 
 
\(\displaystyle (\overline{z})^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} \, i\) 
 
 
 
 
  
1.4.11.  1.4.13.  1.4.15.  1.4.17.   
1.4.19.  Answer . 
\(i^{5} = i^{4} \cdot i = 1 \cdot i = i\) 
 
 1.4.21.  Answer . 
\(i^{7} = i^{4} \cdot i^{3} = 1 \cdot (-i) = -i\) 
 
 1.4.23.  Answer . 
\(i^{15} = \left(i^{4}\right)^{3} \cdot i^{3} = 1 \cdot (-i) = -i\) 
 
 1.4.25.  Answer . 
\(i^{117} = \left(i^{4}\right)^{29} \cdot i = 1 \cdot i = i\) 
 
  
1.4.27.  Answer . 
\(x = \dfrac{2 \pm i\sqrt{14}}{3}\) 
 
 1.4.29.  1.4.31.  Answer . 
\(y = \pm \dfrac{3i \sqrt{2}}{2}\) 
 
 1.4.33.  Answer . 
\(x = \dfrac{\sqrt{5} \pm i\sqrt{3}}{2}\) 
 
 1.4.35.   
2   Vectors 2.1   Introduction to Cartesian Coordinates in Space 2.1.3   Exercises 
 
2.1.3.1.  
Answer   1 . Answer   2 . Answer   3 . Answer   4 .  
2.2   An Introduction to Vectors 
 
Exercises 
2.2.1.  2.2.1.a 2.2.1.b Answer . 
\(\boldsymbol{i}+6\boldsymbol{j}\) 
 
 2.2.3.  2.2.3.a 2.2.3.b Answer . 
\(6\boldsymbol{i}-\boldsymbol{j}+6\boldsymbol{k}\) 
 
  2.2.5.  2.2.5.a Answer . 
\(\vec u+\vec v = \bbm  2\\-1\ebm\text{;}\)  \(\vec u -\vec v = \bbm 0\\-3\ebm\text{;}\)  \(2\vec u-3\vec v = \bbm  -1\\-7\ebm\text{.}\) 
 
 2.2.5.c Answer . 
\(\vec x = \bbm  1/2\\2\ebm\text{.}\) 
 
 
2.2.11.  
Answer   1 . Answer   2 . Answer   3 . Answer   4 .  2.2.13.  
Answer   1 . Answer   2 . Answer   3 . Answer   4 .   
2.2.17.  2.2.19.  Answer . 
\(\left<\frac{1}{\sqrt{3}},\frac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right>\) 
 
  2.2.21.  Answer . 
\(\left<\frac{-1}{2},\frac{\sqrt{3}}{2}\right>\) 
 
 
2.3   The Dot Product 2.3.2   Exercises 
 
2.3.2.1.  2.3.2.3.  2.3.2.5.   2.3.2.7.  
2.3.2.9.  Answer . 
\(\cos^{-1}\mathopen{}\left(\frac{3}{\sqrt{10}}\right)\) 
 
 2.3.2.11.   
2.3.2.17.  Answer . 
\(\left<\frac{-5}{10},\frac{15}{10}\right>\) 
 
 2.3.2.19.  Answer . 
\(\left<\frac{-1}{2},\frac{-1}{2}\right>\) 
 
 2.3.2.21.  Answer . 
\(\left<\frac{14}{14},\frac{28}{14},\frac{42}{14}\right>\) 
 
  
2.3.2.23.  
Answer   1 . 
\(\left<\frac{-5}{10},\frac{15}{10}\right>\) 
 
 Answer   2 . 
\(\left<\frac{15}{10},\frac{5}{10}\right>\) 
 
  2.3.2.25.  
Answer   1 . 
\(\left<\frac{-1}{2},\frac{-1}{2}\right>\) 
 
 Answer   2 . 
\(\left<\frac{-5}{2},\frac{5}{2}\right>\) 
 
  2.3.2.27.  
Answer   1 . 
\(\left<\frac{14}{14},\frac{28}{14},\frac{42}{14}\right>\) 
 
 Answer   2 . 
\(\left<\frac{0}{14},\frac{42}{14},\frac{-28}{14}\right>\) 
 
   2.3.2.29.  2.3.2.31.  2.3.2.33.  2.3.2.35.  
2.4   The Cross Product 2.4.3   Exercises 
 
2.4.3.1.  Answer . 
\(\left<12,-15,3\right>\) 
 
 2.4.3.3.  Answer . 
\(\left<-5,-31,27\right>\) 
 
 2.4.3.5.  2.4.3.7.  Answer . 
\(\vec u\times \vec v = \bbm 0\\0\\ad-bc\ebm\) 
 
 2.4.3.9.   2.4.3.11.  
2.4.3.29.  Answer . 
\(\left<0.408248,0.408248,-0.816497\right>\hbox{ or }\left<-0.408248,-0.408248,0.816497\right>\) 
 
 2.4.3.31.  Answer . 
\(\left<0,1,0\right>\hbox{ or }\left<0,-1,0\right>\) 
 
  2.4.3.33.  2.4.3.35.  Answer . 
\(200/3\approx 66.67\) ftβlb
 
 
2.5   Lines 2.5.4   Exercises 
 
2.5.4.7.  
Answer   1 . 
\(\left(7,2,-1\right)+t\mathopen{}\left<1,-1,2\right>\) 
 
 Answer   2 . 
\(x = 7+t, y = 2-t, z = -1+2t\) 
 
 Answer   3 . 
\(x-7 = 2-y = \frac{z+1}{2}\) 
 
  
2.6   Planes 2.6.2   Exercises 
 
2.6.2.15.  2.6.2.17.  
Answer   1 . 
\(3\mathopen{}\left(x+4\right)+8\mathopen{}\left(y-7\right)-10\mathopen{}\left(z-2\right) = 0\) 
 
 Answer   2 .   
2.7   Span and Linear Independence 2.7.4   Exercises 
 
2.7.4.1.  Answer . 
\(\bbm -9\\-8\\16\\12\ebm\) 
 
 2.7.4.3.  Answer . 
\(\bbm -22\\2\\12\\39\ebm\) 
 
  
2.7.4.9.  Answer . 
True. Suppose 
\(S=\{\vec{v}_1,\vec{v}_2,\ldots, \vec{v}_n\}\)  is linearly independent. Let 
\(T\subseteq S\)  be a subset. By re-ordering the vectors we can assume 
\(T=\{\vec{v}_1,\vec{v}_2,\ldots, \vec{v}_m\}\)  for some 
\(m\leq n\text{.}\)  It 
\(T\)  were linearly dependent, then there would exist scalars 
\(c_1,\ldots, c_m\text{,}\)  not all zero, such that 
\(c_1\vec{v}_1+\cdots +c_m\vec{v}_m=\vec{0}\text{.}\)  But if this is the case, then we would have 
\(c_1\vec{v}_1+\cdots +c_m\vec{v}_m+0\vec{v}_{m+1}+\cdots +0\vec{v}_n=\vec{0}\text{,}\)  which is impossible if 
\(S\)  is independent.
 2.7.4.11.  Answer . 
True, since we can add any scalar multiple of the zero vector to a linear combination without affecting the value of that linear combination.
 2.7.4.13.  Answer . 
False. The set 
\(\left\{\bbm 1\\0\ebm, \bbm 0\\1\ebm, \bbm 0\\0\ebm\right\}\)  is linearly dependent, since 
\(\bbm 0\\0\ebm = 0\bbm 1\\0\ebm+0\bbm 0\\1\ebm\text{,}\)  but 
\(\bbm 1\\0\ebm\)  does not belong to the span of the set 
\(\left\{\bbm 0\\1\ebm, \bbm 0\\0\ebm\right\}\text{.}\) 
  
3   Systems of Linear Equations 3.1   Introduction to Linear Equations 
 
Exercises 
3.1.1.  3.1.3.  3.1.5.  3.1.7.  3.1.9.   3.1.15.  Answer . 
35 blue, 40 green, 20 red, 5 yellow
 3.1.17.  Answer . 
12 $0.30 trinkets, 8 $0.65 trinkets
 
3.2   Using Matrices To Solve Systems of Linear Equations 
 
Exercises 
3.2.1.  Answer . 
\(\left[\begin{array}{ccc|c} 3 \amp 4 \amp 5\amp 7\\-1\amp 1\amp -3\amp 1\\2\amp -2\amp 3\amp 5 \end{array}\right]\) 
 
 3.2.3.  Answer . 
\(\left[\begin{array}{cccc|c} 1 \amp 3 \amp -4\amp 5\amp 17\\-1\amp 0\amp 4\amp 8\amp 1\\ 2\amp 3\amp 4\amp 5\amp 6 \end{array}\right]\) 
 
  
3.2.5.  Answer . 
\(\begin{array}{rl}
x_1+2x_2=\amp 3\\
-x_1+3x_2=\amp 9\\ \end{array}\) 
 
 3.2.7.  Answer . 
\(\begin{array}{rl}
x_1+x_2-x_3-x_4=\amp 2\\
2x_1+x_2+3x_3+5x_4=\amp 7\\ \end{array}\) 
 
 3.2.9.  Answer . 
\(\begin{array}{rl}
x_1=\amp 2\\
x_2=\amp -1\\
x_3=\amp 5\\
x_4=\amp 3\\ \end{array}\) 
 
  
3.2.11.  Answer . 
\(\bbm -2 \amp 1 \amp -7\\0\amp 4\amp -2\\5\amp 0\amp 3\\ \ebm\) 
 
 3.2.13.  Answer . 
\(\bbm 2 \amp -1 \amp 7\\2\amp 3\amp 5\\5\amp 0\amp 3\\ \ebm\) 
 
 3.2.15.  Answer . 
\(\bbm 2\amp -1\amp 7\\0\amp 2\amp -1\\5\amp 0\amp 3\\ \ebm\) 
 
  
3.2.17.  3.2.19.  Answer . 
\(2R_3+R_1\rightarrow R_1\) 
 
 3.2.21.  Answer . 
\(-R_2+R_3\leftrightarrow R_3\) 
 
  
3.3   Elementary Row Operations and Gaussian Elimination 
 
Exercises 
3.3.5.  Answer . 
\(\bbm 1 \amp 0\\0 \amp 1\\ \ebm\) 
 
 3.3.7.  Answer . 
\(\bbm 1 \amp 3\\0 \amp 0\\ \ebm\) 
 
 3.3.9.  Answer . 
\(\bbm 1 \amp 0 \amp 3\\0\amp 1\amp 7\\ \ebm\) 
 
 3.3.11.  Answer . 
\(\bbm 1 \amp -1 \amp 2\\0\amp 0\amp 0\\ \ebm\) 
 
 3.3.13.  Answer . 
\(\bbm 1 \amp 0 \amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\\ \ebm\) 
 
 3.3.15.  Answer . 
\(\bbm 1 \amp 0 \amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\\ \ebm\) 
 
 3.3.17.  Answer . 
\(\bbm 1 \amp 0 \amp 0\amp 1\\0\amp 1\amp 1\amp 1\\0\amp 0\amp 0\amp 0\\ \ebm\) 
 
 3.3.19.  Answer . 
\(\bbm 1 \amp 0 \amp 1\amp 3\\0\amp 1\amp -2\amp 4\\0\amp 0\amp 0\amp 0\\ \ebm\) 
 
 3.3.21.  Answer . 
\(\bbm 1 \amp 1 \amp 0\amp 0\amp 0\amp 0\\0\amp 0\amp 1\amp 3\amp 1\amp 4\\ \ebm\) 
 
  
3.4   Existence and Uniqueness of Solutions 
 
Exercises 
3.4.1.  Answer . 
\(x_1=1-2x_2\text{;}\)  \(x_2\)  is free. Possible solutions: 
\(x_1=1\text{,}\)  \(x_2=0\)  and 
\(x_1=-1\text{,}\)  \(x_2=1\text{.}\)  Geometrically, both equations describe the same line, and every point on this line is a solution to the system.
 
 3.4.3.  Answer . 
No solution; the system is inconsistent. Geometrically, the system describes three planes, any two of which intersect along a line. However, there is no point common to all three.
 3.4.5.  Answer . 
\(x_1=1-x_2-x_4\text{;}\)  \(x_2\)  is free; 
\(x_3=1-2x_4\text{;}\)  \(x_4\)  is free. Possible solutions: 
\(x_1 = 1\text{,}\)  \(x_2 = 0\text{,}\)  \(x_3 = 1\text{,}\)  \(x_4 = 0\)  and 
\(x_1 = -2\text{,}\)  \(x_2 = 1\text{,}\)  \(x_3 = -3\text{,}\)  \(x_4=2\text{.}\)  Since there are four variables, a geometric description is more difficult (but see if you can come up with one!).
 
 3.4.7.  Answer . 
\(x_1=3-x_3-2x_4\text{;}\)  \(x_2=-3-5x_3-7x_4\text{;}\)  \(x_3\)  is free; 
\(x_4\)  is free. Possible solutions: 
\(x_1 =3\text{,}\)  \(x_2 = -3\text{,}\)  \(x_3=0\text{,}\)  \(x_4=0\)  and 
\(x_1 = 0\text{,}\)  \(x_2 = -5\text{,}\)  \(x_3 =-1\text{,}\)  \(x_4=1\text{.}\)  Since there are four variables, a geometric description is more difficult (but see if you can come up with one!).
 
 3.4.9.  Answer . 
\(x_1=1\text{;}\)  \(x_2=2\text{.}\)  Geometrically, the system represents two lines intersecting in a single point.
 
 3.4.11.  Answer . 
\(x_1=0\text{;}\)  \(x_2=-1\text{.}\)  Geometrically, the system represents two lines intersecting in a single point.
 
 3.4.13.  Answer . 
\(x_1=\frac13-\frac43x_3\text{;}\)  \(x_2=\frac13-\frac13x_3\text{;}\)  \(x_3\)  is free. Possible solutions: 
\(x_1 = \frac13\text{,}\)  \(x_2=\frac13\text{,}\)  \(x_3=0\)  and 
\(x_1 = -1\text{,}\)  \(x_2 = 0\text{,}\)  \(x_3=1\text{.}\)  Geometrically, the system represents three planes that all intersect along a common line.
 
  
3.4.15.  Answer . 
Exactly 1 solution if 
\(k\neq 2\text{;}\)  infinitely many solutions if 
\(k=2\text{;}\)  never no solution.
 3.4.17.  Answer . 
Never exactly 1 solution; infinitely many solutions if 
\(k=2\text{;}\)  no solution if 
\(k\neq 2\text{.}\) 
  
3.5   Applications of Linear Systems 
 
Exercises 
3.5.1.  3.5.3.  3.5.5.  3.5.7.  3.5.9.   3.5.11.  Answer . 
Substitution yields the equations 
\(2 = ae^{b}\)  and 
\(4 = ae^{2b}\text{;}\)  these are not linear equations.
 
\(y = ae^{bx}\)  implies that 
\(\ln y = \ln (ae^{bx}) = \ln a + \ln e^{bx} = \ln a + bx\text{.}\) 
 
 
Plugging in the points for \(x\)  and \(y\)  in the equation \(\ln y = \ln a + bx\text{,}\)  we have equations
\begin{equation*}
\begin{array}{ccccc} \ln a \amp  + \amp  b \amp  = \amp  \ln 2 \\ \ln a \amp  + \amp  2b \amp  = \amp  \ln 4\\ \end{array}\text{.}
\end{equation*}
To solve,
\begin{equation*}
\bbm 1 \amp 1\amp \ln 2 \\ 1 \amp  2 \amp \ln 4 \\ \ebm \overrightarrow{\text{rref}} \bbm 1\amp 0\amp 0\\0\amp 1\amp \ln 2\\ \ebm\text{.}
\end{equation*}
Therefore \(\ln a = 0\)  and \(b = \ln 2\text{.}\) 
 
 
Since 
\(\ln a = 0\text{,}\)  we know that 
\(a = e^0 = 1\text{.}\)  Thus our exponential function is 
\(f(x) = e^{x\ln 2}\text{.}\) 
 
 
 
 3.5.13.  Answer . 
The augmented matrix from this system is \(\bbm 1 \amp 1 \amp 1\amp 1\amp 8\\6\amp 1\amp 2\amp 3\amp 29\\0\amp 1\amp -1\amp 0\amp 2\\ \ebm\text{.}\)  From this we find the solution
\begin{align*}
t\amp =4-\frac13f\\
x\amp =3-\frac13f\\
w\amp =1-\frac13f\text{.}
\end{align*}
The only time each of these variables are nonnegative integers is when \(f=0\)  or \(f=3\text{.}\)  If \(f=0\text{,}\)  then we have 4 touchdowns, 3 extra points and 1 two point conversions (no field goals). If \(f=3\text{,}\)  then we have 3 touchdowns, 2 extra points and no two point conversions (and 3 field goals).
 
 3.5.15.  Answer . 
Let \(x_1\text{,}\)  \(x_2\)  and \(x_3\)  represent the number of free throws, 2 point and 3 point shots taken. The augmented matrix from this system is \(\bbm 1\amp 1\amp 1\amp 70\\1\amp 2\amp 3\amp 110 \ebm\text{.}\)  From this we find the solution
\begin{align*}
x_1\amp =30+x_3\\
x_2\amp =40-2x_3\text{.}
\end{align*}
In order for \(x_2\)  to be nonnegative, we need \(x_3\leq 20\text{.}\)  Thus there are 21 different scenarios: the βfirstβ is where 0 three point shots are taken (\(x_3=0\) ), 30 free throws and 40 two point shots; the βlastβ is where 20 three point shots are taken, 50 free throws, and no two point shots.
 
 3.5.17.  Answer . 
Let 
\(y = ax+b\text{;}\)  all linear functions through (2,5) come in the form 
\(y = (2.5-\frac12b)x+b\text{.}\)  Examples: 
\(b=1\)  yields 
\(y = 2x+1\text{;}\)  \(b=-1\)  yields 
\(y=3x-1\text{.}\) 
 3.5.19.  Answer . 
Let 
\(y = ax^2+bx+c\text{;}\)  we find that 
\(a = 2-\frac12 c\)  and 
\(b = -1+\frac12c\text{.}\)  Examples: 
\(c=0\)  yields 
\(y = 2x^2-x\text{;}\)  \(c=-2\)  yields 
\(y=3x^2-2x-2\text{.}\) 
 
3.5.21.  3.5.23.  Answer . 
Yes. 
\(\vec{x} = -2\vec{w}_1+2\vec{w}_2\text{.}\) 
  
3.6   Vector Solutions to Linear Systems 
 
Exercises 
3.6.1.  Answer . 
Multiply 
\(A\vu\)  and 
\(A\vvv\)  to verify.
 3.6.3.  Answer . 
Multiply 
\(A\vu\)  and 
\(A\vvv\)  to verify.
 3.6.5.  Answer . 
Multiply 
\(A\vu\)  and 
\(A\vvv\)  to verify.
  
3.6.7.  Answer . 
Multiply 
\(A\vu\text{,}\)  \(A\vvv\)  and 
\(A(\vu+\vvv)\)  to verify.
 3.6.9.  Answer . 
Multiply 
\(A\vu\text{,}\)  \(A\vvv\)  and 
\(A(\vu+\vvv)\)  to verify.
  
3.6.11.  Answer . 
\(\displaystyle \vx=\bbm 0\\0\ebm\) 
 
\(\displaystyle \vx=\bbm 2/5\\-13/5\ebm\) 
 
 
 
 3.6.13.  Answer . 
\(\displaystyle \vx=\bbm 0\\0\ebm\) 
 
\(\displaystyle \vx=\bbm -2\\  -9/4\ebm\) 
 
 
 
 3.6.15.  Answer . 
\(\displaystyle \vx=x_3\bbm 5/4\\  1\\  1\ebm\) 
 
\(\displaystyle \vx=\bbm 1\\  0\\  0\ebm+x_3\bbm 5/4\\  1\\  1\ebm\) 
 
 
 
 3.6.17.  Answer . 
\(\displaystyle \vx=x_3\bbm 6\\  -4\\  1\ebm\) 
 
\(\displaystyle \vx=\bbm -12\\  8\\0\ebm +x_3\bbm 6\\  -4\\  1\ebm\) 
 
 
 
 3.6.19.  Answer . 
\(\displaystyle \vx=x_3\bbm 2\\2/5\\1\\0\ebm+x_4\bbm-1\\2/5\\0\\1\ebm\) 
 
\(\displaystyle \vx=\bbm-2\\2/5\\0\\0\ebm + x_3\bbm 2\\2/5\\1\\0\ebm +x_4\bbm-1\\2/5\\0\\1\ebm\) 
 
 
 
 3.6.21.  Answer . 
\(\displaystyle \vx=x_2\bbm-1/2\\1\\0\\0\\0\ebm+x_4\bbm 1/2\\0\\-1/2\\1\\0\ebm+x_5\bbm 13/2\\0\\-2\\0\\1\ebm\) 
 
\(\displaystyle \vx=\bbm-5\\0\\ 3/2 \\0\\0\ebm + x_2\bbm-1/2\\1\\0\\0\\0\ebm+x_4\bbm 1/2 \\0\\-1/2\\1\\0\ebm+x_5\bbm 13/2\\0\\-2\\0\\1\ebm\) 
 
 
 
 3.6.23.  Answer . 
\(\displaystyle \vx=x_4\bbm 1\\ 13/9 \\-1/3 \\1\\0\ebm+x_5\bbm 0\\ -1 \\-1\\0\\1 \ebm\) 
 
\(\displaystyle \vx=\bbm 1\\ 1/9 \\ 5/3 \\ 0\\ 0  \ebm + x_4\bbm 1\\ 13/9 \\ -1/3 \\1\\0\ebm+x_5\bbm 0\\ -1 \\-1\\0\\1 \ebm\) 
 
 
 
  
3.6.25.  Answer . 
\(\vx = \bbm 0.5\\0\ebm + x_2\bbm 2.5\\1\ebm = \vec{x}_{p} + x_2\vvv\) 
 
 3.6.27.  Answer . 
\(\vx = x_2\bbm 2.5\\1\ebm = x_2\vvv\) 
 
  
4   Matrix Algebra 4.1   Matrix Addition and Scalar Multiplication 
 
Exercises 
4.1.1.  Answer . 
\(\bbm -2 \amp  -1\\12  \amp  13\ebm\) 
 
 4.1.3.  Answer . 
\(\bbm 2  \amp  -2\\14  \amp  8\ebm\) 
 
 4.1.5.  Answer . 
\(\bbm 9 \amp  -7\\11  \amp  -6\ebm\) 
 
  
4.1.11.  Answer . 
\(X = \bbm -5  \amp  9 \-1  \amp  -14 \ebm\) 
 
 4.1.13.  Answer . 
\(X = \bbm -5  \amp  -2 \-9/2  \amp  -19/2 \ebm\) 
 
  
4.1.15.  Answer . 
\(a = 2\text{,}\)  \(b = 1\) 
 
 4.1.17.  4.1.19.  4.1.21.   
4.2   Matrix Multiplication 
 
Exercises 
4.2.1.  4.2.3.  4.2.5.  4.2.7.  4.2.9.  4.2.11.   
4.2.13.  Answer . 
\(AB=\bbm 8\amp 3\\10\amp -9\ebm\text{,}\)  \(BA=\bbm -3\amp 24\\4\amp 2\ebm\) 
 
 4.2.15.  Answer . 
\(AB=\bbm -1\amp -2\amp 12\\10\amp 4\amp 32\ebm\text{,}\)  \(BA\)  is not possible.
 
 4.2.17.  Answer . 
\(AB\)  is not possible, 
\(BA = \bbm 27\amp -33\amp 39\\-27\amp -3\amp -15\ebm\) 
 
 4.2.19.  Answer . 
\(AB =\bbm-32\amp 34\amp -24\\-32\amp 38\amp -8\\-16\amp 21\amp 4\ebm\text{,}\)  \(BA = \bbm 22\amp -14\\-4\amp -12\ebm\) 
 
 4.2.21.  Answer . 
\(AB = \bbm -56\amp 2\amp -36\\  20\amp 19\amp -30\\ -50\amp -13\amp 0\ebm\text{,}\)  \(BA = \bbm -46\amp 40\\  72\amp 9\ebm  \) 
 
 4.2.23.  Answer . 
\(AB = \bbm -15\amp -22\amp -21\amp -1\\  16\amp -53\amp -59\amp -31\ebm \text{,}\)  \(BA\)  is not possible.
 
 4.2.25.  Answer . 
\(AB = \bbm 0\amp 0\amp 4\\  6\amp 4\amp -2\\  2\amp -4\amp -6\ebm\text{,}\)  \(BA = \bbm 2\amp -2\amp 6\\  2\amp 2\amp 4\\  4\amp 0\amp -6\ebm\) 
 
 4.2.27.  Answer . 
\(AB = \bbm 21\amp -17\amp -5\\  19\amp 5\amp 19\\  5\amp 9\amp 4\ebm\text{,}\)  \(BA = \bbm 19\amp 5\amp 23\\  5\amp -7\amp -1\\  -14\amp 6\amp 18\ebm\) 
 
  
4.2.29.  Answer . 
\(DA= \bbm 2\amp 2\amp 2\\  -6\amp -6\amp -6\\  -15\amp -15\amp -15\ebm\text{,}\)  \(AD =  \bbm 2\amp -3\amp 5\\  4\amp -6\amp 10\\  -6\amp 9\amp -15\ebm\) 
 
 4.2.31.  Answer . 
\(DA= \bbm 4\amp -6\\  4\amp -6\ebm\text{,}\)  \(AD =  \bbm 4\amp 8\\  -3\amp -6\ebm\) 
 
 4.2.33.  Answer . 
\(DA= \bbm d_1a\amp d_1b\amp d_1c\\  d_2d\amp d_2e\amp d_2f\\  d_3g\amp d_3h\amp d_3i\ebm\text{,}\)  \(AD =  \bbm d_1a\amp d_2b\amp d_3c\\  d_1d\amp d_2e\amp d_3f\\  d_1g\amp d_2h\amp d_3i\ebm\) 
 
  
4.2.35.  Answer . 
\(A\vx= \bbm -6\\  11\ebm\) 
 
 4.2.37.  Answer . 
\(A\vx= \bbm -5\\  5\\  21\ebm\) 
 
 4.2.39.  Answer . 
\(A\vx= \bbm2x_1-x_2\\  4x_1+3x_2\ebm\) 
 
  4.2.41.  Answer . 
\(A^2 = \bbm 4 \amp 0\\0 \amp 9\ebm\text{;}\)  \(A^3 = \bbm 8\amp 0\\0\amp 27\ebm\) 
 
 4.2.43.  Answer . 
\(A^2 = \bbm 0 \amp 0 \amp 1\\1\amp 0\amp 0\\0\amp 1\amp 0\ebm\text{;}\)  \(A^3 = \bbm 1\amp 0\amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\ebm\) 
 
 4.2.45.  Answer . 
\(\displaystyle \bbm 0\amp -2\\-5\amp -1\ebm\) 
 
 
\(\displaystyle \bbm 10\amp 2\\  5\amp 11\ebm\) 
 
 
\(\displaystyle \bbm -11 \amp -15\  37 \amp 32\ebm\) 
 
 
 
\((A+B)(A + B) = AA + AB + BA + BB = A^2+AB+BA+B^2\text{.}\) 
 
 
 
 
 
4.3   Solving Matrix Equations \(AX=B\)  
 
Exercises 
4.3.1.  Answer . 
\(X=\bbm 0 \amp -2\    -8 \amp 6  \ebm \) 
 
 4.3.3.  Answer . 
\(X=\bbm -1 \amp 2 \amp -4\    -6\amp -2\amp 3  \ebm \) 
 
 4.3.5.  Answer . 
\(X=\bbm -5 \amp 2 \amp -3\    -4\amp -3\amp -2  \ebm \) 
 
 4.3.7.  Answer . 
\(X=\bbm 1  \amp  -9\    -4  \amp  -5  \ebm \) 
 
 4.3.9.  Answer . 
\(X=\bbm 3 \amp -3 \amp 3\    2\amp -2\amp -3 \\    -3\amp -1\amp -2  \ebm \) 
 
 4.3.11.  Answer . 
\(X=\bbm -1/2  \amp  -1/2  \amp  0\    -1/2 \amp  -1 \amp  1/2 \\    -1/2 \amp  -3/4 \amp  3/4  \ebm \) 
 
  
4.4   The Matrix Inverse 
 
Exercises 4.4.5.  Answer . 
\(A^{-1}\)  does not exist.
 
 4.4.21.  Answer . 
\(A^{-1}\)  does not exist.
 
 4.4.33.  Answer . 
\(\vx = \bbm 2\\  3\ebm \) 
 
 
4.5   Properties of the Matrix Inverse 
 
Exercises 
4.5.1.  Answer . 
\((AB)^{-1} = \bbm     -2  \amp   3 \\1  \amp  -1.4  \ebm\) 
 
 4.5.3.  Answer . 
\((AB)^{-1} = \bbm     29/5  \amp   -18/5 \\-11/5  \amp  7/5  \ebm\) 
 
  
4.5.5.  Answer . 
\(A^{-1} = \bbm     -2  \amp   -5\\-1  \amp  -3  \ebm\text{,}\)  \((A^{-1})^{-1} = \bbm     -3  \amp   5 \\1  \amp  -2    \ebm\) 
 
 4.5.7.  Answer . 
\(A^{-1} = \bbm   -3 \amp  7\\  1 \amp  -2 \ebm\text{,}\)  \((A^{-1})^{-1} = \bbm     2  \amp   7\\1  \amp  3    \ebm\) 
 
  4.5.9.  4.5.11.  Answer . 
Likely some entries that should be 0 will not be exactly 0, but rather very small values.
 
4.6   Elementary Matrices 
 
Exercises 
4.6.5.  Answer . 
\(\bbm 1 \amp -3\\0 \amp 1\ebm\) 
 
 4.6.7.  Answer . 
\(\bbm 1 \amp 0\\0 \amp 7\ebm\) 
 
  
4.6.9.  Answer . 
\(\bbm 1 \amp 3\\0 \amp 1\ebm\)  \(R_1+3R_2\to R_1\) 
 
 4.6.11.  Answer . 
\(\bbm 1 \amp 0 \amp 0\\4\amp 1\amp 0\\0\amp 0\amp 1\ebm\text{,}\)  \(R_2+4R_1\to R_2\) 
 
  
4.6.13.  Answer . 
Answers may vary. One possibility:
\begin{equation*}
A^{-1} = \bbm 1\amp 0\\-3\amp 1\ebm\bbm 0\amp 1\\1\amp 0\ebm
\end{equation*}
\begin{equation*}
A = \bbm 0\amp 1\\1\amp 0\ebm\bbm 1\amp 0\\3\amp 1\ebm
\end{equation*}
 
 4.6.15.  Answer . 
Answers may vary. One possibility:
\begin{equation*}
A^{-1} = \bbm 1\amp 0\amp 0\\0\amp 1\amp 2\\0\amp 0\amp 1\ebm\bbm 1\amp 0\amp -1\\0\amp 1\amp 0\\0\amp 0\amp 1\ebm\bbm 1\amp 0\amp 0\\-3\amp 1\amp 0\\0\amp 0\amp 1\ebm\bbm \frac{1}{2}\amp 0\amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\ebm
\end{equation*}
\begin{equation*}
A = \bbm 2\amp 0\amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\ebm\bbm 1\amp 0\amp 0\\3\amp 1\amp 0\\0\amp 0\amp 1\ebm\bbm 1\amp 0\amp 1\\0\amp 1\amp 0\\0\amp 0\amp 1\ebm\bbm 1\amp 0\amp 0\\0\amp 1\amp -2\\0\amp 0\amp 1\ebm
\end{equation*}
 
  
5   Matrix Transformations 5.1   Matrix Transformations 5.1.4   Exercises 
 
5.1.4.5.  Answer . 
\(A = \bbm 1\amp 2\\3\amp 4\ebm\) 
 
 5.1.4.7.  Answer . 
\(A = \bbm 1\amp 2\\1\amp 2\ebm\) 
 
  
5.1.4.9.  Answer . 
\(A = \bbm 5\amp 2\\2\amp 1\ebm\) 
 
 5.1.4.11.  Answer . 
\(A = \bbm 0\amp 1\\3\amp 0\ebm\) 
 
 5.1.4.13.  Answer . 
\(A = \bbm 0\amp -1\\ -1\amp -1\ebm\) 
 
  
5.1.4.15.  Answer . 
Yes, these are the same; the transformation matrix in each is 
\(\bbm -1 \amp  0 \\0\amp -1\ebm\text{.}\) 
 5.1.4.17.  Answer . 
Yes, these are the same. Each produces the transformation matrix 
\(\bbm 1/2 \amp  0 \\ 0 \amp  3\ebm\text{.}\) 
  
5.2   Properties of Linear Transformations 
 
Exercises 
5.2.1.  5.2.3.  Answer . 
No; cannot add a constant.
 5.2.5.   
5.2.7.  Answer . 
\([\, T\, ] = \bbm 1 \amp 2\amp 3\amp 4\ebm\) 
 
 5.2.9.  Answer . 
\([\, T\, ] = \bbm 1 \amp 1\\1 \amp -1\ebm\) 
 
 5.2.11.  Answer . 
\([\, T\, ] = \bbm 1 \amp 0 \amp 3\\1\amp 0\amp -1\\1\amp 0\amp 1\ebm\) 
 
  
5.3   Subspaces of \(\mathbb{R}^n\)  
 
Exercises 
5.3.1.  Answer . 
Not a subspace. The vector 
\(\vec v = \bbm 2\\0\ebm\)  belongs to 
\(S\text{,}\)  but 
\(2\vec v\)  does not.
 5.3.3.  Answer . 
Subspace. If \(y=2x\text{,}\)  we have
\begin{equation*}
\bbm x\\y\ebm = \bbm x\\2x\ebm = x\bbm 1\\2\ebm,
\end{equation*}
so \(U\)  is equal to the span of the vector \(\bbm 1\\2\ebm\text{,}\)  and therefore a subspace.
 
  
5.4   Null Space and Column Space 5.4.4   Exercises 
 
5.4.4.1.  Answer . 
\(\operatorname{null}(A) = \operatorname{span}\left\{\bbm -2\\1\\0\\0\ebm\right\}\)  has dimension 1; 
\(\operatorname{col}(A) = \operatorname{span}\left\{\bbm 1\\2\\-3\ebm, \bbm 0\\-1\\2\ebm, \bbm 3\\6\\-4\ebm\right\}\)  has dimension 3; 
\(4 = 1+3\text{.}\) 
 
 5.4.4.3.  Answer . 
\(\operatorname{null}(A) = \operatorname{span}\left\{\bbm 1\\1\\1\ebm\right\}\)  has dimension 1; 
\(\operatorname{col}(A) = \operatorname{span}\left\{\bbm 1\\-2\\0\ebm, \bbm -2\\-4\\-8\ebm\right\}\)  has dimension 2; 
\(3 = 1+2\text{.}\) 
 
 5.4.4.5.  Answer . 
\(\operatorname{null}(A) = \operatorname{span}\left\{\bbm -6\\-4\\-1\\3\ebm\right\}\)  has dimension 1; 
\(\operatorname{col}(A) = \operatorname{span}\left\{\bbm 2\\1\\0\ebm, \bbm 0\\-1\\3\ebm, \bbm 3\\4\\-6\ebm\right\}\)  has dimension 3; 
\(4 = 1+3\text{.}\) 
 
 5.4.4.7.  Answer . 
\(\operatorname{null}(A) = \operatorname{span}\left\{\bbm 2\\1\\0\\0\ebm,\bbm -3\\0\\-8\\5\ebm\right\}\)  has dimension 2; 
\(\operatorname{col}(A) = \operatorname{span}\left\{\bbm 1\\2\\-1\ebm, \bbm 4\\3\\1\ebm\right\}\)  has dimension 2; 
\(4 = 2+2\text{.}\) 
 
  
6   Operations on Matrices 6.1   The Matrix Transpose 
 
Exercises 
6.1.1.  Answer . 
\(A\)  is skew symmetric. 
\(\bbm 0\amp -6\amp 1\\  6\amp 0\amp 4\\  -1\amp -4\amp 0\ebm\) 
 
 6.1.3.  Answer . 
\(\bbm -9\amp 6\amp -8\\  4\amp -3\amp 1\\  10\amp -7\amp -1\ebm\) 
 
 6.1.5.  Answer . 
\(A\)  is diagonal, as is 
\(A^T\text{.}\)  \(\bbm 1\amp 0\amp 0\\  0\amp 2\amp 0\\  0\amp 0\amp -1\ebm\) 
 
 6.1.7.  Answer . 
\(A\)  is symmetric. 
\(\bbm 6\amp -4\amp -5\\  -4\amp 0\amp 2\\  -5\amp 2\amp -2\ebm\) 
 
 6.1.9.  Answer . 
\(\bbm -7\\  -8\\2\\  -3\ebm \) 
 
 6.1.11.  Answer . 
\(A\)  is symmetric. 
\(\bbm 13\amp -3\\  -3\amp 1\ebm\) 
 
 6.1.13.  Answer . 
\(\bbm 4\amp -9\\  -7\amp 6\\  -4\amp 3\\  -9\amp -9\ebm\) 
 
 6.1.15.  Answer . 
\(\bbm 2\amp 5\amp 7\\  -5\amp 5\amp -4\\  -3\amp -6\amp -10\ebm\) 
 
 6.1.17.  Answer . 
\(A\)  is upper triangular; 
\(A^T\)  is lower triangular. 
\(\bbm -3\amp 0\amp 0\\  -4\amp -3\amp 0\\  -5\amp 5\amp -3\ebm\) 
 
 6.1.19.  Answer . 
\(A\)  is symmetric. 
\(\bbm 4\amp 0\amp -2\\  0\amp 2\amp 3\\  -2\amp 3\amp 6\ebm\) 
 
 6.1.21.  Answer . 
\(\bbm -5\amp 3\amp -10\\  -9\amp 1\amp -8\ebm\) 
 
 6.1.23.  Answer . 
\(A\)  is skew symmetric. 
\(\bbm 0\amp -1\amp 2\\  1\amp 0\amp -4\\  -2\amp 4\amp 0\ebm\) 
 
  
6.2   The Matrix Trace 
 
Exercises 
6.2.1.  Answer . 
Not defined; the matrix must be square.
 6.2.3.  6.2.5.  6.2.7.  6.2.9.  6.2.11.  Answer . 
Not defined; the matrix must be square.
 6.2.13.  6.2.15.   
6.2.17.  Answer . 
\(\tr(A)=-1\text{;}\)  \(\tr(B)=\text{;}\)  \(\tr(A+B)=5\) 
 
\(\displaystyle \tr(AB) = 201 = \tr(BA)\) 
 
 
 
 6.2.19.  Answer . 
\(\tr(A)=-5\text{;}\)  \(\tr(B)=-4\text{;}\)  \(\tr(A+B)=-9\) 
 
\(\displaystyle \tr(AB) = 23 = \tr(BA)\) 
 
 
 
  
6.3   The Determinant 
 
Exercises 
6.3.1.  6.3.3.  6.3.5.  6.3.7.   
6.3.9.  Answer . 
The submatrices are 
\(\bbm 7 \amp 6\  6 \amp 10\ebm\text{,}\)  \(\bbm 3 \amp 6\  1 \amp 10\ebm\text{,}\)  and 
\(\bbm 3 \amp 7\  1 \amp 6\ebm\text{,}\)  respectively.
 
\(C_{1,2}=34\text{,}\)  \(C_{1,2}=-24\text{,}\)  \(C_{1,3}=11\) 
 
 
 
 
 6.3.11.  Answer . 
The submatrices are 
\(\bbm 3\amp 10\\  3\amp 9\ebm\text{,}\)  \(\bbm -3 \amp 10\  -9 \amp 9\ebm\text{,}\)  and 
\(\bbm -3 \amp 3\  -9 \amp 3\ebm\text{,}\)  respectively.
 
\(C_{1,2}=-3\text{,}\)  \(C_{1,2}=-63\text{,}\)  \(C_{1,3}=18\) 
 
 
 
 
  
6.3.13.  6.3.15.  6.3.17.  6.3.19.  6.3.21.  6.3.23.   6.3.25.  Answer . 
Hint: 
\(C_{1,1}= d\text{.}\) 
 
6.4   Properties of the Determinant 
 
Exercises 
6.4.1.  6.4.3.  6.4.5.  6.4.7.  6.4.9.  6.4.11.  6.4.13.   
6.4.15.  Answer . 
\(\det(A) = 90\text{;}\)  \(2R_1\rightarrow R_1\) 
 
 
\(\det(B) = 45\text{;}\)  \(10R_1+R_3\rightarrow R_3\) 
 
 
\(\det(C) = 45\text{;}\)  \(C = A^T\) 
 
 
 
 
 6.4.17.  Answer . 
\(\det(A) = -16\text{;}\)  \(R_1\leftrightarrow R_2\)  then 
\(R_1\leftrightarrow R_3\) 
 
 
\(\det(B) = -16\text{;}\)  \(-R_1\rightarrow R_1\)  and 
\(-R_2\rightarrow R_2\) 
 
 
\(\det(C) = -432\text{;}\)  \(C = 3*M\) 
 
 
 
 
  
6.4.19.  Answer . 
\(\det(A)=4\text{,}\)  \(\det(B)=4\text{,}\)  \(\det(AB)=16\) 
 
 6.4.21.  Answer . 
\(\det(A)=-12\text{,}\)  \(\det(B)=29\text{,}\)  \(\det(AB)=-348\) 
 
  
6.4.23.  6.4.25.  6.4.27.  6.4.29.   
6.5   Applications of the Determinant 6.5.3   Exercises 
 
6.5.3.1.  Answer . 
\(\det(A) = -123\text{,}\)  \(\det(A_1) = -492\text{,}\)  \(\det(A_2) = 123\text{,}\)  \(\det(A_3) = 492\) 
 
 
\(\displaystyle \vx = \bbm 4\\  -1\\  -4\ebm\) 
 
 
 
 
 6.5.3.3.  Answer . 
\(\det(A) = 96\text{,}\)  \(\det(A_1) = -960\text{,}\)  \(\det(A_2) = 768\text{,}\)  \(\det(A_3) = 288\) 
 
 
\(\displaystyle \vx = \bbm -10\\  8\\  3\ebm\) 
 
 
 
 
 6.5.3.5.  Answer . 
\(\det(A) = -43\text{,}\)  \(\det(A_1) = 215\text{,}\)  \(\det(A_2) = 0\) 
 
 
\(\displaystyle \vx = \bbm -5\\  0\ebm\) 
 
 
 
 
 6.5.3.7.  Answer . 
\(\det(A) = 16\text{,}\)  \(\det(A_1) = -64\text{,}\)  \(\det(A_2) = 80\) 
 
 
\(\displaystyle \vx = \bbm -4\\  5\ebm\) 
 
 
 
 
 6.5.3.9.  Answer . 
\(\det(A) = 0\text{,}\)  \(\det(A_1) = 0\text{,}\)  \(\det(A_2) = 0\) 
 
 
Infinitely many solutions exist.
 
 
 
 6.5.3.11.  Answer . 
\(\det(A) = 0\text{,}\)  \(\det(A_1) = 0\text{,}\)  \(\det(A_2) = 0\text{,}\)  \(\det(A_3) = 0\) 
 
 
Infinitely many solutions exist.
 
 
 
  
6.5.3.13.  Answer . 
\(A^{-1} = \frac{1}{8}\bbm -11 \amp 10 \amp 13\\6\amp -4\amp -2\\9\amp -6\amp -7\ebm\) 
 
 6.5.3.15.  6.5.3.17.  Answer . 
\(A^{-1} = \frac{1}{10}\bbm 9 \amp 5 \amp -12\amp 0\\15\amp 13\amp -26\amp -4\\19\amp 13\amp -28\amp -4\\2\amp 4\amp -4\amp -2\ebm\) 
 
  
7   Eigenvalues and Eigenvectors 7.1   Eigenvalues and Eigenvectors 
 
Exercises 
7.1.7.  Answer . 
\(\vx = \bbm 3\\-7\\7\ebm\) 
 
 7.1.9.  Answer . 
\(\vx = \bbm -1\\1\\1\ebm\) 
 
 7.1.11.   
7.1.13.  Answer . 
\(\lambda _1 = 2\)  with 
\(\vx[1] = \bbm 1\\0\\0\ebm\text{;}\)  \(\lambda _2 = 3\)  with 
\(\vx[2] = \bbm-1\\1\\0\ebm\text{;}\)  \(\lambda _3 = 7\)  with 
\(\vx[3] = \bbm-1\\15\\10\ebm\) 
 
 7.1.15.  Answer . 
\(\lambda _1 = -2\)  with 
\(\vx[1] = \bbm 0\\0\\1\ebm\text{;}\)  \(\lambda _2 = 1\)  with 
\(\vx[2] = \bbm 0\\3\\5\ebm\text{;}\)  \(\lambda _3 = 5\)  with 
\(\vx[3] = \bbm 28\\7\\1\ebm\) 
 
 7.1.17.  Answer . 
\(\lambda _1 = -4\)  with 
\(\vx[1] = \bbm-6\\1\\11\ebm\text{;}\)  \(\lambda _2 = -1\)  with 
\(\vx[2] = \bbm 0\\0\\1\ebm\text{;}\)  \(\lambda _3 = 5\)  with 
\(\vx[3] = \bbm 3\\1\\2\ebm\) 
 
 7.1.19.  Answer . 
\(\lambda _1 = -3\)  with 
\(\vx[1] = \bbm-2\\1\ebm\text{;}\)  \(\lambda _2 = 5\)  with 
\(\vx[2] = \bbm 6\\1\ebm\) 
 
 7.1.21.  Answer . 
\(\lambda _1 = -5\)  with 
\(\vx[1] = \bbm 24\\13\\8\ebm\text{;}\)  \(\lambda _2 = -2\)  with 
\(\vx[2] = \bbm 6\\5\\1\ebm\text{;}\)  \(\lambda _3 = 3\)  with 
\(\vx[3] = \bbm 0\\1\\0\ebm\) 
 
 7.1.23.  Answer . 
\(\lambda _1 = -5\)  with 
\(\vx[1] = \bbm 1\\1\ebm\text{;}\)  \(\lambda _2 = 2\)  with 
\(\vx[2] = \bbm-4\\3\ebm\) 
 
 7.1.25.  Answer . 
\(\lambda _1 = -5\)  with 
\(\vx[1] = \bbm-1\\5\ebm\text{;}\)  \(\lambda _2 = 5\)  with 
\(\vx[2] = \bbm 1\\5\ebm\) 
 
 7.1.27.  Answer . 
\(\lambda _1 = 4\)  with 
\(\vx[1] = \bbm 9\\1\ebm\text{;}\)  \(\lambda _2 = 5\)  with 
\(\vx[2] = \bbm 8\\1\ebm\) 
 
  
7.2   Properties of Eigenvalues and Eigenvectors 
 
Exercises 
7.2.1.  Answer . 
\(\lambda _1 = 1\)  with 
\(\vx[1] = \bbm 4\\1\ebm\text{;}\)  \(\lambda _2 = 4\)  with 
\(\vx[2] = \bbm 1\\1\ebm\) 
 
 
\(\lambda _1 = 1\)  with 
\(\vx[1] = \bbm-1\\1\ebm\text{;}\)  \(\lambda _2 = 4\)  with 
\(\vx[2] = \bbm-1\\4\ebm\) 
 
 
\(\lambda _1 = 1/4\)  with 
\(\vx[1] = \bbm 1\\1\ebm\text{;}\)  \(\lambda _2 = 1\)  with 
\(\vx[2] = \bbm 4\\1\ebm\) 
 
 
 
 
 
 
 7.2.3.  Answer . 
\(\lambda _1 = -1\)  with 
\(\vx[1] = \bbm-5\\1\ebm\text{;}\)  \(\lambda _2 = 0\)  with 
\(\vx[2] = \bbm-6\\1\ebm\) 
 
 
\(\lambda _1 = -1\)  with 
\(\vx[1] = \bbm 1\\6\ebm\text{;}\)  \(\lambda _2 = 0\)  with 
\(\vx[2] = \bbm 1\\5\ebm\) 
 
 
 
 
 
 
 
 7.2.5.  Answer . 
\(\lambda _1 = -4\)  with 
\(\vx[1] = \bbm-7\\-7\\6\ebm\text{;}\)  \(\lambda _2 = 3\)  with 
\(\vx[2] = \bbm 0\\0\\1\ebm\text{;}\)  \(\lambda _3 = 4\)  with 
\(\vx[3] = \bbm 9\\1\\22\ebm\) 
 
 
\(\lambda _1 = -4\)  with 
\(\vx[1] = \bbm-1\\9\\0\ebm\text{;}\)  \(\lambda _2 = 3\)  with 
\(\vx[2] = \bbm-20\\26\\7\ebm\text{;}\)  \(\lambda _3 = 4\)  with 
\(\vx[3] = \bbm-1\\1\\0\ebm\) 
 
 
\(\lambda _1 = -1/4\)  with 
\(\vx[1] = \bbm-7\\-7\\6\ebm\text{;}\)  \(\lambda _2 = 1/3\)  with 
\(\vx[2] = \bbm 0\\0\\1\ebm\text{;}\)  \(\lambda _3 = 1/4\)  with 
\(\vx[3] = \bbm 9\\1\\22\ebm\) 
 
 
 
 
 
 
  
7.3   Eigenvalues and Diagonalization 
 
Exercises 
7.3.1.  Answer . 
\(c_A(x) = (x-7)(x-5)(x+3)\) 
 
Eigenvalue 
\(\lambda_1=7\)  has algebraic and geometric multiplicity 1.
Eigenvalue 
\(\lambda_2=5\)  has algebraic and geometric multiplicity 1.
Eigenvalue 
\(\lambda_3=-3\)  has algebraic and geometric multiplicity 1.
\(P = \bbm 1\amp 0\amp 0\\1\amp 0\amp 1\\1\amp 1\amp 1\ebm\text{.}\) 
 
 7.3.3.  Answer . 
Eigenvalue 
\(\lambda_1=6\)  has algebraic and geometric multiplicity 1.
Eigenvalue 
\(\lambda_2=23\)  has algebraic and geometric multiplicity 1.
\(P=\bbm 7\amp -1\\3\amp 2\ebm\text{.}\) 
 
 7.3.5.  Answer . 
\(c_A(x) = (x+1)^2(x-2)\) 
 
Eigenvalue 
\(\lambda_1=-1\)  has algebraic and geometric multiplicity 2.
Eigenvalue 
\(\lambda_2=2\)  has algebraic and geometric multiplicity 1.
\(P=\bbm -1 \amp -1 \amp 1\\0\amp 1\amp 1\\1\amp 0\amp 1\ebm\text{.}\) 
 
 7.3.7.  Answer . 
\(c_A(x) = (x-1)^2(x-2)\) 
 
Eigenvalue 
\(\lambda_1=1\)  has algebraic multiplicity 2 and geometric multiplicity 1.
Eigenvalue 
\(\lambda_2=2\)  has algebraic and geometric multiplicity 1.
Since the geometric multiplicity of 
\(\lambda_1\)  is less than its algebraic multiplicity, no such 
\(P\)  exists; the matrix cannot be diagonalized.