Skip to main content Contents Index
Calc
Prev Up Next \(\require{cancel}\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bbm}{\begin{bmatrix}}
\newcommand{\ebm}{\end{bmatrix}}
\newcommand{\ds}{\displaystyle}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\dotp}[2]{\vec #1 \,\boldsymbol{\cdot}\, \vec #2}
\newcommand{\proj}[2]{\operatorname{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\vec i}
\newcommand{\vecj}{\vec j}
\newcommand{\veck}{\vec k}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\noin}{\noindent}
\newcommand{\vx}[1][]{\vec{x}_{#1}}
\newcommand{\vxp}{\vec{x}_p}
\newcommand{\vu}{\vec{u}}
\newcommand{\vvv}{\vec{v}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vw}{\vec{w}}
\newcommand{\veone}{\vec{e}_1}
\newcommand{\vetwo}{\vec{e}_2}
\newcommand{\vethree}{\vec{e}_3}
\newcommand{\vei}{\vec{e}_i}
\newcommand{\ven}[1]{\vec{e}_{#1}}
\newcommand{\zero}{\vec{0}}
\newcommand{\arref}{\overrightarrow{\text{rref}}}
\newcommand{\tta}{A}
\newcommand{\ttb}{B}
\newcommand{\ttc}{C}
\newcommand{\ttd}{D}
\newcommand{\ttm}{M}
\newcommand{\ttx}{X}
\newcommand{\tti}{I}
\newcommand{\tty}{Y}
\newcommand{\ttp}{P}
\newcommand{\ttat}{A^T}
\newcommand{\ttbt}{B^T}
\newcommand{\ttct}{C^T}
\newcommand{\ttdt}{D^T}
\newcommand{\ttmt}{M^T}
\newcommand{\ttxt}{X^T}
\newcommand{\ttit}{I^T}
\newcommand{\ttyt}{Y^T}
\newcommand{\ttai}{A^{-1}}
\newcommand{\ttbi}{B^{-1}}
\newcommand{\ttxi}{X^{-1}}
\newcommand{\ttpi}{P^{-1}}
\newcommand{\ttaxb}{\tta\vx=\vb}
\newcommand{\ttaxo}{\tta\vx=\zero}
\newcommand{\eyetwo}{\begin{bmatrix}1\amp 0\\0\amp 1\end{bmatrix}}
\newcommand{\eyethree}{\begin{bmatrix}1\amp 0\amp 0\\0\amp 1\amp 0\\0\amp 0\amp 1\end{bmatrix}}
\newcommand{\eyefour}{\begin{bmatrix}1\amp 0\amp 0\amp 0\\0\amp 1\amp 0\amp 0\\0\amp 0\amp 1\amp 0\\0\amp 0\amp 0\amp 1\end{bmatrix}}
\newcommand{\tto}{\textbf{0}}
\newcommand{\lda}{\lambda}
\newcommand{\TT}{[\, T\, ]}
\newcommand{\R}{\mathbb{R}}
\newcommand{\bvm}{\begin{vmatrix}}
\newcommand{\evm}{\end{vmatrix}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section B.3 Algebra
Factors and Zeros of Polynomials.
Let \(p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0\) be a polynomial. If \(p(a)=0\text{,}\) then \(a\) is a \(zero\) of the polynomial and a solution of the equation \(p(x)=0\text{.}\) Furthermore, \((x-a)\) is a \(factor\) of the polynomial.
Fundamental Theorem of Algebra.
An \(n\) th degree polynomial has \(n\) (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.
Quadratic Formula.
If \(p(x) = ax^2 + bx + c\text{,}\) and \(0 \le b^2 - 4ac\text{,}\) then the real zeros of \(p\) are \(x=(-b\pm \sqrt{b^2-4ac})/2a\)
Special Factors.
\begin{align*}
x^2 - a^2 \amp = (x-a)(x+a)\\
x^3 - a^3 \amp= (x-a)(x^2+ax+a^2)\\
x^3 + a^3 \amp= (x+a)(x^2-ax+a^2)\\
x^4 - a^4 \amp= (x^2-a^2)(x^2+a^2)\\
(x+y)^n \amp=x^n + nx^{n-1}y+\frac{n(n-1)}{2!}x^{n-2}y^2+\cdots +nxy^{n-1}+y^n\\
(x-y)^n \amp=x^n - nx^{n-1}y+\frac{n(n-1)}{2!}x^{n-2}y^2-\cdots \pm nxy^{n-1}\mp y^n
\end{align*}
Binomial Theorem.
\begin{align*}
(x+y)^2 \amp= x^2 + 2xy + y^2\\
(x-y)^2 \amp= x^2 -2xy +y^2\\
(x+y)^3 \amp= x^3 + 3x^2y + 3xy^2 + y^3\\
(x-y)^3 \amp= x^3 -3x^2y + 3xy^2 -y^3\\
(x+y)^4 \amp= x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\\
(x-y)^4 \amp= x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4
\end{align*}
Rational Zero Theorem.
If \(p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0\) has integer coefficients, then every \(rational\) \(zero\) of \(p\) is of the form \(x=r/s\text{,}\) where \(r\) is a factor of \(a_0\) and \(s\) is a factor of \(a_n\text{.}\)
Factoring by Grouping.
\(ac x^3 + adx^2 + bcx + bd = ax^2(cx+d)+b(cx+d)=(ax^2+b)(cx+d)\)
Arithmetic Operations.
\begin{align*}
ab+ac\amp=a(b+c) \amp \frac{a}{b}+\frac{c}{d} \amp= \frac{ad+bc}{bd} \amp \frac{a+b}{c} \amp = \frac{a}{c} + \frac{b}{c}\\
\frac{\left(\displaystyle\frac{a}{b}\right)}{\left(\displaystyle\frac{c}{d}\right)}\amp=\left(\frac{a}{b}\right)\left(\frac{d}{c}\right)=\frac{ad}{bc} \amp \frac{\left(\displaystyle\frac{a}{b}\right)}{c} \amp = \frac{a}{bc} \amp \frac{a}{\left(\displaystyle\frac{b}{c}\right)} \amp= \frac{ac}{b}\\
a\left(\frac{b}{c}\right)\amp= \frac{ab}{c}\amp \frac{a-b}{c-d}\amp=\frac{b-a}{d-c}\amp \frac{ab+ac}{a}\amp=b+c
\end{align*}
Exponents and Radicals.
\begin{align*}
a^0\amp =1, \, a \ne 0 \amp (ab)^x\amp=a^xb^x \amp a^xa^y \amp = a^{x+y} \amp \sqrt{a}\amp=a^{1/2}\\
\frac{a^x}{a^y}\amp=a^{x-y} \amp \sqrt[n]{a}\amp =a^{1/n} \amp \left(\frac{a}{b}\right)^x\amp=\frac{a^x}{b^x} \amp \sqrt[n]{a^m}\amp=a^{m/n}\\
a^{-x}\amp=\displaystyle\frac{1}{a^x} \amp \sqrt[n]{ab}\amp=\sqrt[n]{a}\sqrt[n]{b} \amp (a^x)^y\amp=a^{xy} \amp \sqrt[n]{\frac{a}{b}}\amp=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\end{align*}