Graph Colouring
Skip to main content\(\def\xautoref#1{\ref{#1}}
\renewcommand{\thepage}{\roman{page}}
\renewcommand{\thepage}{\arabic{page}}
\def\radius{3}
\def\steps{18}
\renewcommand{\arraystretch}{2.2}
\def\openbox{\undefined}
\def\ellipsea{[rotate=30](0,0) ellipse (3cm and 2cm)}
\def\thm{\undefined}
\def\ellipseb{[rotate=150](3,1.72) ellipse (3cm and 2cm)}
\def\cor{\undefined}
\def\ellipsec{[rotate=270](3,-1.7) ellipse (3cm and 2cm)}
\def\prop{\undefined}
\def\lem{\undefined}
\def\defn{\undefined}
\def\rem{\undefined}
\renewcommand{\indexname}{Index}
\newcommand{\noneed}{(\!\emph{You do not need to show your work.})}
\renewcommand{\indexname}{List of Notation}
\newcommand{\multiset}[2]{\left(\!\binom{#1}{#2}\!\right)}
\newcommand{\tmultiset}[2]{\big(\!\binom{#1}{#2}\!\big)}
\newcommand{\twoonone}{\twocolumn
\setlength{\textwidth}{9.5 in}
\setlength{\textheight}{7.25 in}
\setlength{\columnsep}{0.5in}
\hoffset=-1in
\voffset=-1in
}
\newcommand{\theProbPart}{\Alph{ProbPart}}
\newcommand{\practiceproblems}{
\section*{Practice Exercises}
\addcontentsline{toc}{section}{Practice Exercises}
}
\newcommand{\problempart}{
\textbf{Part \Alph{ProbPart}}\
}
\newcommand{\solutions}{$\star$}
\newcommand{\leftsolutions}{\hspace{-2.2em}\makebox[2em][l]{\solutions}}
\newcommand{\solutionsection}[2]{
\section*{Chapter {\ref{#1}} Exercise {\ref{#2}}}
}
\newcommand{\nextSeq}{\stepcounter{countSeq}\arabic{countSeq}, }
\newcommand{\noSeq}{\stepcounter{countSeq}}
\newcommand{\lastSeq}{and \stepcounter{countSeq}\arabic{countSeq} }
\renewcommand{\thechapter}{\arabic{chapter}}
\def\chapterrunhead{\partrunhead}
\def\sectionrunhead{\partrunhead}
\newcommand{\TTbf}[1]{\textbf{\large #1}}
\newcommand{\whline}{\noalign{\global\savedwidth\arrayrulewidth \global\arrayrulewidth 2pt}\hline
\noalign{\global\arrayrulewidth\savedwidth}}
\newcommand{\leftnone}[1]{\hbox to 0pt{#1\hss}}
\newcommand{\hypend}{\whline}
\newcommand{\nohypotheses}{ \\}
\newcommand{\AndIntro}[2]{$\eand$-intro (lines ${#1}$ and ${#2}$)}
\newcommand{\AndIntroB}[2]{$\eand$-intro \\ (lines ${#1}$ and ${#2}$)}
\newcommand{\AndElim}[1]{$\eand$-elim (line ${#1}$)}
\newcommand{\OrIntro}[1]{$\eor$-intro (line ${#1}$)}
\newcommand{\OrElim}[2]{$\eor$-elim (lines ${#1}$ and ${#2}$)}
\newcommand{\IfIntro}[2]{$\eif$-intro (lines ${#1}$--${#2}$)}
\newcommand{\IfElim}[2]{$\eif$-elim (lines ${#1}$ and ${#2}$)}
\newcommand{\IffIntro}[2]{$\eiff$-intro (lines ${#1}$ and ${#2}$)}
\newcommand{\IffElim}[1]{$\eiff$-elim (line ${#1}$)}
\newcommand{\IffElimB}[2]{$\eiff$-elim \\ (lines ${#1}$ and ${#2}$)}
\newcommand{\NotIntro}[2]{Proof by Contradiction (lines ${#1}$--${#2}$)}
\newcommand{\NotElim}[1]{$\enot$-elim (line ${#1}$)}
\newcommand{\Repeat}[1]{repeat~(line ${#1}$)}
\newcommand{\AllElim}[1]{$\forall$-elim (line ${#1}$)}
\newcommand{\AllElimSet}[2]{$\forall$-elim (lines ${#1}$ and~${#2}$)}
\newcommand{\AllIntro}[1]{$\forall$-intro (line ${#1}$)}
\newcommand{\AllIntroSet}[2]{$\forall$-intro (lines ${#1}$--${#2}$)}
\newcommand{\ExistElim}[3]{$\exists$-elim (lines ${#1}$ and ${#2}$--${#3}$)}
\newcommand{\ExistElimSet}[3]{$\exists$-elim (lines ${#1}$ and ${#2}$--${#3}$)}
\newcommand{\ExistIntro}[1]{$\exists$-intro (line ${#1}$)}
\newcommand{\ExistIntroSet}[2]{$\exists$-intro (lines ${#1}$ and~${#2}$)}
\newcommand{\EqualIntro}{$=$-intro}
\newcommand{\EqualElim}[2]{$=$-elim (lines ${#1}$ and~${#2}$)}
\newcommand{\NotSimplify}[1]{$\enot$-simplify (line $#1$)}
\newcommand{\Cases}[3]{Proof by cases (lines $#1$, $#2$, and $#3$)}
\newcommand{\by}[2]{#1 (#2)}
\newcommand{\var}[1]{\text{#1}}
\newcommand{\bigset}[2]{\left\{\, #1
\mathrel{\left|
\right.} #2 \,\right\} }
\renewcommand{\see}[1]{{(}see~\ref{#1}{)}}
\newcommand{\seeex}[1]{{(}see Exer.~\ref{#1}{)}}
\newcommand{\fullseeex}[2]{{(}see Exer.~\ref{#1}\pref{#1-#2}{)}}
\newcommand{\fullcsee}[2]{(see~\fullcref{#1}{#2})}
\newcommand{\fullsee}[2]{(see~\fullref{#1}{#2})}
\newcommand{\fullcref}[2]{\xautoref{#1}\pref{#1-#2}}
\newcommand{\fullCref}[2]{\xautoref{#1}\pref{#1-#2}}
\newcommand{\fullcf}[2]{(cf.~\ref{#1}\pref{#1-#2})}
\newcommand{\cfSect}[1]{(cf.~\S\ref{#1})}
\newcommand{\power}{\mathcal{P}}
\newcommand{\compose}{\mathbin{\circ}}
\newcommand{\Id}{I}
\newcommand{\sm}{\smallsetminus}
\newcommand{\comp}[1]{\overline{#1}}
\newcommand{\rel}{\mathrel{R}}
\newcommand{\divides}{\mathrel{|}}
\newcommand{\nmids}{\nmid}
\newcommand{\class}[1]{ \overline{#1}}
\newcommand{\edgeG}{\mathrel{\displaystyle\mathop{\edge}\limits^G}}
\newcommand{\edgeH}{\mathrel{\displaystyle\mathop{\edge}\limits^H}}
\newcommand{\edgeK}{\mathrel{\displaystyle\mathop{\edge}\limits^K}}
\newcommand{\edgeGone}{\mathrel{\displaystyle\mathop{\edge}\limits^{G_1}}}
\newcommand{\edgeGtwo}{\mathrel{\displaystyle\mathop{\edge}\limits^{G_2}}}
\newcommand{\edgeGthree}{\mathrel{\displaystyle\mathop{\edge}\limits^{G_3}}}
\newcommand{\arc}{\mathrel{\lower3pt\hbox{\LARGE$\rightarrow$}}}
\newcommand{\arcG}{\mathrel{\displaystyle\mathop{\arc}\limits^G}}
\newcommand{\arcH}{\mathrel{\displaystyle\mathop{\arc}\limits^H}}
\renewcommand{\vec}[1]{\overrightarrow{#1}}
\newcommand{\boxprod}{\mathbin{\square}}
\newcommand{\headrulewidth}{0pt}
\renewcommand{\sectionmark}[1]{}
\newcommand{\optional}{{\upshape(optional)}}
\newcommand{\blue}[1]{{\color{blue}#1}}
\newcommand{\faint}[1]{{\scriptsize\color{blue}#1}}
\newcommand{\SL}{Propositional Logic}
\newcommand{\QL}{First-Order Logic}
\newcommand{\univ}{\script{U}}
\renewcommand{\implies}{\eif}
\newcommand{\?}{\mathrel{\displaystyle\mathop{=}\limits^?}}
\newcommand{\pref}[1]{\eqref{#1}}
\newcommand{\fullref}[2]{\ref{#1}\pref{#1-#2}}
\newcommand{\hint}[1]{{\small{[}\textit{Hint:} #1{]}}}
\renewcommand{\natural}{\mathbb{N}}
\newcommand{\rational}{\mathbb{Q}}
\newcommand{\real}{\mathbb{R}}
\newcommand{\integer}{\mathbb{Z}}
\newcommand{\iso}{\cong}
\newcommand{\bibd}{\mathcal{B}}
\newcommand{\code}{\mathcal{C}}
\newcommand{\ul}{\underline}
\newcommand{\mytheoremheaderfont}[1]{{\bfseries\sffamily\MakeUppercase{#1}}}
\newcommand{\optargfont}[1]{{\bfseries\sffamily #1}}
\newcommand{\theexerthm}{\arabic{exerthm}}
\newcommand{\proofnamestyle}{\bfseries\sffamily}
\renewcommand{\thepart}{\Roman{part}}
\renewcommand{\contentsname}{\Huge\bfseries\sffamily Contents}
\newcommand{\tocsectionlabelwidth}{0.9cm}
\newcommand{\tocsummary}[3]{
\indentlabel{\hbox to \tocsectionlabelwidth{\hss}}\enspace#3}
\renewcommand{\solutions}{}
\newcommand{\notationentry}[2]{\item #1, #2 }
\newcommand{\notationindexname}{List of Notation}
\newcommand{\notationchapter}[2]{
\item \hbox{\hskip-\itemindent \chaptername\ #2. #1} }
\renewcommand{\includeonly}[1]{}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\)
Chapter 14
Graph Colouring
Summary.
Vizing's Theorem
graphs are bipartite if and only if they contain no cycle of odd length
Ramsey's Theorem
graphs are bipartite if and only if they are \(2\)-colourable
Brooks' Theorem
Petersen graph
Strong Perfect Graph Theorem
-
Important definitions:
proper \(k\)-edge-colouring, \(k\)-edge-colourable
edge chromatic number, chromatic index
class one graph, class two graph
bipartite, bipartition
complete bipartite graph
proper \(k\)-colouring, \(k\)-colourable
chromatic number
\(k\)-critical
perfect graph
-
Notation:
\(\displaystyle \chi'(G)\)
\(\displaystyle K_{m,n}\)
\(\displaystyle R(n_1, \ldots, n_c)\)
\(\displaystyle \chi(G)\)