Skip to main content
\(\renewcommand{\qedsymbol}{$\blacksquare$} \newcommand{\Quo}{\textbf{Quote.~}} \newcommand{\Com}{\textbf{Comic.~}} \newcommand{\Def}{\textbf{Definition.~}} \newcommand{\Exm}{\textbf{Example.~}} \newcommand{\Rem}{\textbf{Reminder.~}} \newcommand{\Hmk}{\textbf{Homework.~}} \newcommand{\Nota}{\textbf{Notation.~}} \newcommand{\ds}{\displaystyle} \def\aa{\textbf{a}} \def\bb{\textbf{b}} \def\cc{\textbf{c}} \def\dd{\textbf{d}} \def\xx{\textbf{x}} \def\zv{\textbf{0}} \def\rr{\textbf{r}} \def\vv{\textbf{v}} \def\xx{\textbf{x}} \def\qq{\textbf{q}} \def\rr{\textbf{r}} \def\vv{\textbf{v}} \def\xx{\textbf{x}} \def\yy{\textbf{y}} \def\qq{\textbf{q}} \def\pp{\textbf{p}} \def\eee{\textbf{e}} \def\ii{\textbf{i}} \def\jj{\textbf{j}} \def\kk{\textbf{k}} \def\nn{\textbf{n}} \newcommand{\twovec}[2]{\left[\begin{array}{c} #1\\ #2 \end{array}\right] } \newcommand{\threevec}[3]{\left[\begin{array}{c} #1\\ #2\\ #3 \end{array}\right] } \def\R{\mathbb{ R}} \def\S{\mathbb{ S}} \def\I{\mathbb{ I}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Introduction to Ramsey Theory:
Lecture notes for undergraduate course
Veselin Jungic
Contents
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Colophon
Dedication
Acknowledgements
Preface
1
Introduction: Pioneers and Trailblazers
Complete Chaos is Impossible
Paul Erdős
Frank Plumpton Ramsey
2
Ramsey's Theorem
The Pigeonhole Principle
Ramsey's Theorem: Friends and Strangers
Ramsey's Theorem: Two Colours
Ramsey's Theorem, Infinite Case
Exercises
3
van der Waerden's Theorem
Bartel van der Waerden
van der Waerden's Theorem: \(3\)-term APs
Proof of van der Waerden's Theorem
van der Waerden's Theorem: How Far and Where?
van der Waerden's Theorem: A Few Related Questions
Exercises
4
Schur's Theorem and Rado's Theorem
Issai Schur
Schur's Theorem
Richard Rado
Rado's Theorem
Exercises
5
The Hales-Jewett Theorem
Combinatorial Lines
The Hales-Jewett Theorem
Exercises
6
Colourings of the Plane
Erdős-Szekeres Problem of Convex Polygons
Erdős-Szekeres Problem of Convex Polygons - Part Two
The Chromatic Number of the Plane
The Polychromatic Number of the Plane
Exercises
Back Matter
Bibliography
Authored in PreTeXt
Introduction to Ramsey Theory:
Lecture notes for undergraduate course
Veselin Jungic
Department of Mathematics
Simon Fraser University
Colophon
Dedication
Acknowledgements
Preface