Skip to main content

Section 5.2 The Hales-Jewett Theorem

The truth is outside of all fixed patterns. — Bruce Lee, a Hong Kong American martial artist and actor, 1940 — 1973.

Definition 5.2.2.

The smallest such \(n\) is denoted by \(HJ(m,k)\text{.}\)

From “The Mathematical Coloring Book” - page 518 [7]:

This result — as is often case in mathematics — was obtained by the young mathematicians: Alfred W. Hales was 23, and Robert I. Jewett 24. Alfred email to me [A. Soifer], on January 3, 2007, and recalled how it all come about: “Bob and I were undergraduates at Caltech together - he was a year ahead of me. We had common interest in both math and volleyball. We also both worked in Sol Golomb's coding theory group at the Jet Propulsion Lab, and we continued doing this when we were in graduate school - he at the University of Oregon and I at Caltech.”

Figure 5.2.3. 50 Years of the Hales-Jewett Theorem Conference, May 6-8, 2016, WWU

(The Hales-Jewett theorem)

  1. Settings: Let \(m,k\in \mathbb{N}\text{.}\) As an alphabet on \(m\) symbols we take \(A=[1,m]\text{.}\) Reminder: A root \(\tau \in [1,m]_\ast^n\) is an \(n\)-word on \(m+1\) symbols, \(1,2,\ldots, m\) and \(\ast\text{,}\) that contains the symbol \(\ast\text{.}\) A combinatorial line in \([1,m]^n\) rooted in \(\tau\) is the set of words

    \begin{equation*} L_\tau=\{ \tau _a:a\in [1,m]\}\text{.} \end{equation*}

    Here, for \(a\in [1,m]\) and \(i\in [1,n]\text{,}\)

    \begin{equation*} \tau_a(i)= \left\{ \begin{array}{rcl} \tau(i)\amp \mbox{ if } \amp \tau(i)\not= \ast ,\\ a\amp \mbox{ if } \amp \tau(i)= \ast . \end{array} \right. \end{equation*}

    Focussed and Colour-Focussed Lines:

    • Let \(r\in \mathbb{N}\) and let and \(\tau^{(1)}, \tau^{(2)},\ldots, \tau^{(r)}\in [1,m]_\ast^n\) be \(r\) roots. We say that the corresponding combinatorial lines are focussed at \(f\in [1,m]^n\) if

      \begin{equation*} \tau^{(1)}_m= \tau^{(2)}_m=\cdots=\tau^{(r)}_m=f\text{.} \end{equation*}

      Example:

      Consider \(\tau^{(1)}, \tau^{(2)},\tau^{(3)}\in [1,4]_\ast^4\) given by

      \begin{equation*} \tau^{(1)}=\ast \ \ast \ 3 \ \ast, \ \tau^{(2)}= \ast \ 4 \ 3 \ \ast, \ \tau^{(3)}=\ast \ 4 \ 3 \ 4\text{.} \end{equation*}

      Then

      \begin{equation*} \tau^{(1)}_4=\Box \ \Box \ 3 \ \Box, \ \tau^{(2)}_4= \Box \ 4 \ 3 \ \Box, \ \tau^{(3)}_4=\Box \ 4 \ 3 \ 4\text{.} \end{equation*}

      See Figures 5.1.14 and Figure 5.2.5.

      Hence the corresponding combinatorial lines are focussed at \(f=4 \ 4 \ 3\ 4\text{:}\)

      \begin{equation*} \begin{array}{|c|c|c|} \hline L_{\tau^{(1)}}\amp L_{\tau^{(2)}}\amp L_{\tau^{(3)}}\\ \hline \color{red}{1}\ \color{red}{1}\ 3\ \color{red}{1}\amp \color{red}{1} \ 4\ 3\ \color{red}{1}\amp \color{red}{1} \ 4\ 3\ 4\\ \color{red}{2}\ \color{red}{2}\ 3\ \color{red}{2}\amp \color{red}{2} \ 4\ 3\ \color{red}{2}\amp \color{red}{2} \ 4\ 3\ 4\\ \color{red}{3}\ \color{red}{3}\ 3\ \color{red}{3}\amp \color{red}{3} \ 4\ 3\ \color{red}{3}\amp \color{red}{3} \ 4\ 3\ 4\\ \color{red}{4}\ \color{red}{4}\ 3\ \color{red}{4}\amp \color{red}{4} \ 4\ 3\ \color{red}{4}\amp \color{red}{4} \ 4\ 3\ 4\\ \hline \end{array} \end{equation*}

      Figure 5.2.4. Three focussed lines in \([1,4]^4\text{.}\)

      Figure 5.2.5. Three lines in \([1,4]^4\) focussed at \(f\text{.}\)

    • Let \(c\) be a \(k\)-colouring of \([1,m]^n\) and let and \(\tau^{(1)}, \tau^{(2)},\ldots, \tau^{(r)}\in [1,m]_\ast^n\) be \(r\) roots. See Figures 5.2.6.

      Figure 5.2.6. \(r\) colour-focussed lines: different colours and \(\tau^{(1)}_m= \tau^{(2)}_m=\cdots= \tau^{(r)}_m\text{.}\)

    Strategy. Induction on \(m\text{.}\)

    Reminder: The Hales-Jewett Theorem. Let \(m,k\in \mathbb{N}\) and let \(A\) be an alphabet on \(m\) symbols. There exists an \(n\in \mathbb{N}\) such that whenever \(A^n\) is \(k\)-coloured there exists a monochromatic line.

    Base Case. If \(m=1\) then \(H(1,k)=1\) for any number of colours \(k\text{.}\) Inductive step. Given \(m>1\text{,}\) we assume that \(HJ(m-1,k)\) exists for all \(k\text{.}\)

    1. Claim. For all \(1\leq r\leq k\text{,}\) there exists \(n\) such that whenever \([1,m]^n\) is \(k\) coloured, there exists either a monochromatic line or \(r\) colour-focussed lines.

    2. Base Case. Let \(k\in \mathbb{N}\) and let \(r=1\text{.}\) We take \(n=HJ(m-1,k)\text{.}\)

      Let \(c\) be a \(k\)-colouring of \([1,m]^n\text{.}\) See Figure 5.2.7.

      Figure 5.2.7. The colouring \(c\) of \([1,m]^n\) induces a \(k\)-colouring of \([1,m-1]^n\text{.}\) Our choice of \(n\) guarantees the existence of a monochromatic line in \([1,m-1]^n\text{.}\)

      Figure 5.2.8. Where are you?

    3. Inductive Step. Let \(r\in[1,k-1]\) and let \(n=n(r)\) be such that whenever \([1,m]^n\) is \(k\) coloured, there exists either a monochromatic line or \(r\) colour-focussed lines. Let \(n'=HJ(m-1,k^{m^n})\) and let \(N=n+n'\text{.}\) Let \(c\) be a \(k\)-colouring of \([1,m]^N=[1,m]^{n+n'}\) without a monochromatic line. See Figure 5.2.9.

      Figure 5.2.9. The \(k\)-colouring \(c\) of \([1,m]^N=[1,m]^{n+n'}\) without a monochromatic line.

      1. A \(c\) induced \(k^{m^n}\)-colouring of \([1,m-1]^{n'}\text{:}\) Step 1. See Figure 5.2.10.

        Figure 5.2.10. Choose \(b=b_1b_2\cdots b_{n'}\in[1,m-1]^{n'}\text{.}\) Consider \(c_b\text{,}\) a \(k\)-colouring of \([1,m]^n\) such that for \(a\in[1,m]^n\text{,}\) \(c_b(a)=c(ab)\text{.}\)

        Step 2. Note that there are \(k^{m^n}\) \(k\)-colourings of \([1,m]^n\text{.}\) See Figur 5.2.11.

        Figure 5.2.11. The mapping \(\chi: b\mapsto c_b\) is a \(k^{m^n}\)-colouring of \([1,m-1]^{n'}\text{.}\)

        Step 3. There is a \(\chi\)-monochromatic line in \([1,m-1]^{n'}\text{.}\) See Figure 5.2.12.

        Figure 5.2.12. There is a \(\chi\)-monochromatic line \(L_\tau\) in \([1,m-1]^{n'}\text{.}\)

      2. Reminder - Inductive Step. Let \(r\in[1,k-1]\) and let \(n=n(r)\) be such that whenever \([1,m]^n\) is \(k\)–coloured, there exists either a monochromatic line or \(r\) colour-focussed lines. Let \(n'=HJ(m-1,k^{m^n})\) and let \(N=n+n'\text{.}\) Let \(c\) be a \(k\)-colouring of \([1,m]^N=[1,m]^{n+n'}\) without a monochromatic line. See Figure 5.2.13.

        Figure 5.2.13. The \(k\)-colouring \(c\) of \([1,m]^N=[1,m]^{n+n'}\) without a monochromatic line.

      3. A \(c\) induced \(k\)-colouring of \([1,m]^{n}\text{:}\) Step 1 There is a \(\chi\)-monochromatic line in \([1,m-1]^{n'}\text{.}\) See Figure 5.2.14.

        Figure 5.2.14. \(L_\tau\) is monochromatic: \(c_{\tau_1}=c_{\tau_2}=\cdots=c_{\tau_{m-1}}\text{.}\)

        Step 2. A \(k\)-colouring \(c_\tau\) of \([1,m]^{n}\) emerges. See Figure 5.2.15.

        Figure 5.2.15. The \(k\)-colouring \(c_\tau\) of \([1,m]^{n}\) is with the property that, for any \(a\in[1,m]^n\) and any \(i\in[1,m-1]\text{,}\) \(c_\tau(a)=c(a\tau_i)\text{.}\)

        Step 3. Back to colour-focussed lines. See Figure 5.2.16.

        Figure 5.2.16. There are \(r\) \(c_\tau\)-coloured-focussed lines \(L_{\sigma^{(1)}}\text{,}\)…, \(L_{\sigma^{(r)}}\) in \([1,m]^{n}\) with the focus \(f\) and one \(\chi\)-monochromatic line \(L_\tau\) in \([1,m]^{n'}\) with the focus \(\tau_{m}\text{.}\) None of the lines \(L_{\sigma^{(1)}}\text{,}\) …, \(L_{\sigma^{(r)}}\) is monochromatic.

      4. Making new roots from old: We define \(r+1\) roots in \([1,m]_\ast^N\) as follows (see Figure 5.2.17):

        \begin{equation*} \tau^{(1)}=\sigma^{(1)}\tau, \ \tau^{(2)}=\sigma^{(2)}\tau, \ldots, \tau^{(r)}=\sigma^{(r)}\tau, \ \tau^{(r+1)}=f\tau\text{.} \end{equation*}

        Figure 5.2.17. There are \(r+1\) \(c\)-coloured-focussed lines \(L_{\tau^{(1)}}\text{,}\) …, \(L_{\tau^{(r+1)}}\) in \([1,m]^{N}\) with the focus \(f\tau_m\text{.}\)

      5. Where Are You?

        Figure 5.2.18. Where are you?

      6. Let \(r=k\text{.}\) See Figure 5.2.19.

        Figure 5.2.19. What is the colour of the focus \(f\text{?}\) There is a monochromatic line!

      7. Done!

        \begin{equation*} HJ(m-1,k) \mbox{ exists } \Rightarrow HJ(m,k) \mbox{ exists } \end{equation*}

-

Resources.

  1. See [7], pp. 517-518.

  2. Wikipedia

  3. Ramsey Theory - by I. Leader - pp 8 -10

  4. The Hales-Jewett Theorem - by Andreas Razen

  5. The Hales-Jewett Theorem - Blog post by Jay Cumings

  6. Blogging, Tic Tac Toe and the Future of Math - by Steve Landsburg