Skip to main content
Logo image

APEX Calculus for University of Lethbridge

Section B.7 Summary of Tests for Series

Table B.7.1.
Test Series
Condition(s) of Convergence
Condition(s) of Divergence
Comment
\(n\)th-Term \(\displaystyle{\sum^\infty_{n=1}{a_n}}\)
\(\displaystyle{\lim_{n \to \infty} a_n \neq 0}\)
Cannot be used to show convergence.
Geometric Series \(\displaystyle{\sum^\infty_{n=0}{r^n}}\)
\(\abs{r} \lt 1\)
\(\abs{r} \geq 1\)
\(\displaystyle{\text{ Sum } = \frac{1}{1-r}}\)
Telescoping Series \(\displaystyle{\sum^\infty_{n=1}{(b_n-b_{n+a})}}\)
\(\displaystyle{\lim_{n \to \infty} b_n = L}\)
\(\displaystyle\text{ Sum } = \left(\sum^a_{n=1}b_n\right) -L\)
\(p\)-Series \(\displaystyle{\sum^\infty_{n=1}{\frac{1}{(an+b)^p}}}\)
\(p \gt 1\)
\(p\leq 1\)
Integral Test \(\displaystyle{\sum^\infty_{n=0}{a_n}}\)
\(\displaystyle \int_1^\infty a(n)\, dn\) converges
\(\displaystyle \int_1^\infty a(n)\, dn\) diverges
\(a_n = a(n)\) must be continuous
Direct Comparison \(\displaystyle{\sum^\infty_{n=0}{a_n}}\)
\(\displaystyle \sum_{n=0}^\infty b_n\) converges and \(0\leq a_n\leq b_n\)
\(\displaystyle \sum_{n=0}^\infty b_n\) diverges and \(0\leq b_n\leq a_n\)
Limit Comparison \(\displaystyle{\sum^\infty_{n=0}{a_n}}\)
\(\displaystyle \sum_{n=0}^\infty b_n\) converges and \(\lim\limits_{n\to\infty}\frac{a_n}{b_n} \geq 0\)
\(\displaystyle \sum_{n=0}^\infty b_n\) diverges and \(\lim\limits_{n\to\infty}\frac{a_n}{b_n} \gt 0\)
Also diverges if \(\lim\limits_{n\to\infty}\frac{a_n}{b_n}=\infty\)
Ratio Test \(\displaystyle{\sum^\infty_{n=0}{a_n}}\)
\(\displaystyle \lim_{n\to\infty} \frac{a_{n+1}}{a_n} \lt 1\)
\(\displaystyle \lim_{n\to\infty} \frac{a_{n+1}}{a_n} \gt 1\)
\(\{a_n\}\) must be positive
Also diverges if
\(\lim\limits_{n\to\infty} \frac{a_{n+1}}{a_n}=\infty\)
Root Test \(\displaystyle{\sum^\infty_{n=0}{a_n}}\)
\(\displaystyle \lim_{n\to\infty} \big(a_n\big)^{1/n} \lt 1\)
\(\displaystyle \lim_{n\to\infty} \big(a_n\big)^{1/n} \gt 1\)
\(\{a_n\}\) must be positive
Also diverges if
\(\lim\limits_{n\to\infty} (a_n)^{1/n}=\infty\)