Skip to main content\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}}
\newcommand{\ds}{\displaystyle}
\newcommand{\fp}{f'}
\newcommand{\fpp}{f''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}}
\newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}}
\newcommand{\infser}[1][1]{\sum_{n=#1}^\infty}
\newcommand{\Fp}{F\primeskip'}
\newcommand{\Fpp}{F\primeskip''}
\newcommand{\yp}{y\primeskip'}
\newcommand{\gp}{g\primeskip'}
\newcommand{\dx}{\Delta x}
\newcommand{\dy}{\Delta y}
\newcommand{\ddz}{\Delta z}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\snorm}[1]{\left|\left|\,#1\,\right|\right|}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\dotp}[2]{\vec #1 \cdot \vec #2}
\newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\vec i}
\newcommand{\vecj}{\vec j}
\newcommand{\veck}{\vec k}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\vrp}{\vec r\hskip0.75pt '}
\newcommand{\vrpp}{\vec r\hskip0.75pt ''}
\newcommand{\vsp}{\vec s\hskip0.75pt '}
\newcommand{\vrt}{\vec r(t)}
\newcommand{\vst}{\vec s(t)}
\newcommand{\vvt}{\vec v(t)}
\newcommand{\vat}{\vec a(t)}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\pz}{\partial z}
\newcommand{\pf}{\partial f}
\newcommand{\unittangent}{\vec{{}T}}
\newcommand{\unitnormal}{\vec{N}}
\newcommand{\unittangentprime}{\vec{{}T}\hskip0.75pt '}
\newcommand{\R}{mathbb{R}}
\newcommand{\mathN}{\mathbb{N}}
\newcommand{\surfaceS}{\mathcal{S}}
\newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}}
\newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2}
\newcommand{\myint}[2]{\myds\int #1\, dx= {\ds #2}}
\newcommand{\primeskip}{\hskip.75pt}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\curl}{\operatorname{curl}}
\newcommand{\divv}{\operatorname{div}}
\newcommand{\Hess}{\operatorname{Hess}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix A Answers to Selected Exercises
I Math 1560: Calculus I
1 Limits
1.1 An Introduction To Limits
1.1.3 Exercises
Terms and Concepts
1.1.3.2.
Answer.
\(\text{an indeterminate form}\)
1.1.3.3.
1.1.3.6.
Problems
1.1.3.7.
1.1.3.8.
1.1.3.9.
1.1.3.10.
1.1.3.11.
1.1.3.12.
Answer.
\(\text{DNE}\hbox{ or }\infty \)
1.1.3.13.
1.1.3.14.
1.1.3.15.
1.1.3.16.
1.1.3.17.
1.1.3.18.
1.1.3.19.
1.1.3.20.
1.1.3.21.
1.1.3.22.
1.1.3.23.
1.1.3.24.
1.1.3.25.
1.1.3.26.
1.1.3.27.
1.1.3.28.
1.2 Epsilon-Delta Definition of a Limit
Exercises
Terms and Concepts
1.2.2.
1.2.3.
1.2.4.
1.3 Finding Limits Analytically
Exercises
Terms and Concepts
1.3.6.
Problems
1.3.7.
1.3.8.
1.3.9.
1.3.10.
1.3.11.
1.3.12.
Answer.
\(\text{not possible to know}\)
1.3.13.
1.3.14.
1.3.15.
1.3.16.
Answer.
\(\cos\mathopen{}\left(3.14159\right)\)
1.3.17.
1.3.18.
1.3.19.
1.3.20.
Answer.
\(\left(\frac{\pi -5}{\pi -8}\right)^{4}\)
1.3.21.
1.3.22.
1.3.23.
1.3.24.
1.3.25.
1.3.26.
Answer.
\(\ln\mathopen{}\left(4\right)\)
1.3.27.
Answer.
\(\frac{\pi ^{2}-4\pi -2}{2\pi ^{2}-2\pi +1}\)
1.3.28.
Answer.
\(\frac{2\pi -4}{5\pi -5}\)
1.3.29.
1.3.30.
1.3.31.
1.3.32.
1.3.33.
1.3.34.
1.3.35.
1.3.36.
1.3.37.
1.3.38.
1.3.39.
1.3.40.
1.3.41.
1.3.42.
1.4 One-Sided Limits
Exercises
Terms and Concepts
1.4.2.
1.4.3.
1.4.4.
Problems
1.4.5.
1.4.5.a1.4.5.b1.4.5.c1.4.5.d1.4.5.e1.4.5.f1.4.6.
1.4.6.a1.4.6.b1.4.6.c1.4.6.d1.4.6.e1.4.6.f1.4.7.
1.4.7.aAnswer.
\(\text{DNE}\hbox{ or }\infty \)
1.4.7.bAnswer.
\(\text{DNE}\hbox{ or }\infty \)
1.4.7.cAnswer.
\(\text{DNE}\hbox{ or }\infty \)
1.4.7.d1.4.7.e1.4.7.f1.4.8.
1.4.8.a1.4.8.b1.4.8.c1.4.8.d1.4.9.
1.4.9.a1.4.9.b1.4.9.c1.4.9.d1.4.10.
1.4.10.a1.4.10.b1.4.10.c1.4.10.d1.4.11.
1.4.11.a1.4.11.b1.4.11.c1.4.11.d1.4.11.e1.4.11.f1.4.11.g1.4.11.h1.4.12.
1.4.12.a1.4.12.b1.4.12.c1.4.12.d
1.4.13.
1.4.13.a1.4.13.b1.4.13.c1.4.13.d1.4.14.
1.4.14.a1.4.14.b1.4.14.c1.4.14.d1.4.15.
1.4.15.a1.4.15.b1.4.15.c1.4.15.d1.4.15.e1.4.15.f1.4.15.g1.4.15.h1.4.16.
1.4.16.a1.4.16.b1.4.16.c1.4.16.d1.4.17.
1.4.17.aAnswer.
\(1-\cos^{2}\mathopen{}\left(a\right)\)
1.4.17.bAnswer.
\(\sin^{2}\mathopen{}\left(a\right)\)
1.4.17.cAnswer.
\(1-\cos^{2}\mathopen{}\left(a\right)\hbox{ or }\sin^{2}\mathopen{}\left(a\right)\)
1.4.17.dAnswer.
\(\sin^{2}\mathopen{}\left(a\right)\)
1.4.18.
1.4.18.a1.4.18.b1.4.18.c1.4.18.d1.4.19.
1.4.19.a1.4.19.b1.4.19.c1.4.19.d1.4.20.
1.4.20.a1.4.20.b1.4.20.c1.4.20.d1.4.21.
1.4.21.a1.4.21.b1.4.21.c1.4.21.d
1.5 Continuity
Exercises
Terms and Concepts
1.5.5.
1.5.6.
1.5.7.
1.5.8.
1.5.9.
1.5.10.
Problems
1.5.11.
1.5.12.
1.5.13.
1.5.14.
1.5.15.
1.5.16.
1.5.17.
Answer 1.
Answer 2.
Answer 3.
1.5.18.
1.5.19.
1.5.19.a1.5.19.b1.5.20.
1.5.20.a1.5.20.b1.5.21.
1.5.21.a1.5.21.b1.5.22.
1.5.22.a1.5.22.b
1.5.23.
Answer.
\(\left(-\infty ,\infty \right)\)
1.5.24.
Answer.
\(\left(-\infty ,-2\right], \left[2,\infty \right)\)
1.5.25.
1.5.26.
1.5.27.
Answer.
\(\left(-\infty ,-1.73205\right], \left[1.73205,\infty \right)\)
1.5.28.
1.5.29.
Answer.
\(\left(-\infty ,\infty \right)\)
1.5.30.
Answer.
\(\left(-\infty ,\infty \right)\)
1.5.31.
Answer.
\(\left(0,\infty \right)\)
1.5.32.
Answer.
\(\left(-\infty ,\infty \right)\)
1.5.33.
Answer.
\(\left(-\infty ,1.09861\right]\)
1.5.34.
Answer.
\(\left(-\infty ,\infty \right)\)
1.5.39.
1.5.40.
1.5.41.
1.5.42.
1.6 Limits Involving Infinity
1.6.4 Exercises
Terms and Concepts
1.6.4.1.
1.6.4.2.
1.6.4.3.
1.6.4.4.
1.6.4.5.
Problems
1.6.4.9.
1.6.4.9.a1.6.4.9.b1.6.4.10.
1.6.4.10.a1.6.4.10.b1.6.4.10.c1.6.4.10.d1.6.4.10.e1.6.4.10.f1.6.4.11.
1.6.4.11.a1.6.4.11.b1.6.4.11.c1.6.4.11.d1.6.4.12.
1.6.4.12.a1.6.4.12.b1.6.4.12.c1.6.4.12.d1.6.4.13.
1.6.4.13.a1.6.4.13.b1.6.4.14.
1.6.4.14.a1.6.4.14.b
1.6.4.15.
1.6.4.15.a1.6.4.15.b1.6.4.15.c1.6.4.16.
1.6.4.16.a1.6.4.16.b1.6.4.16.c1.6.4.17.
1.6.4.17.a1.6.4.17.b1.6.4.17.c1.6.4.18.
1.6.4.18.a1.6.4.18.b1.6.4.18.c
1.6.4.19.
1.6.4.20.
Answer.
\(y = \frac{5}{-2}, x = -9\)
1.6.4.21.
1.6.4.22.
1.6.4.23.
1.6.4.24.
1.6.4.25.
1.6.4.26.
1.6.4.27.
1.6.4.28.
2 Derivatives
2.1 Instantaneous Rates of Change: The Derivative
2.1.3 Exercises
Terms and Concepts
2.1.3.1.
2.1.3.2.
Problems
2.1.3.7.
2.1.3.8.
2.1.3.9.
2.1.3.10.
2.1.3.11.
2.1.3.12.
2.1.3.13.
2.1.3.14.
Answer.
\(\frac{-1}{\left(s-2\right)^{2}}\)
2.1.3.15.
2.1.3.16.
2.1.3.17.
Answer 1.
Answer 2.
\(y-0.333333x = -19.3333\)
2.1.3.18.
2.1.3.19.
Answer 1.
Answer 2.
\(0.0208333x+y = 64.0833\)
2.1.3.20.
Answer 1.
Answer 2.
\(y-0.142857x = 8.14286\)
2.1.3.21.
2.1.3.22.
2.1.3.23.
2.1.3.24.
2.1.3.25.
Answer.
\(y-0.0192627x = 0.0953664\)
2.1.3.26.
2.1.3.27.
2.1.3.27.a2.1.3.27.b2.1.3.27.c2.1.3.28.
2.1.3.28.a2.1.3.28.bAnswer.
\(\frac{-1}{\left(x+1\right)^{2}}\)
2.1.3.28.c
2.1.3.33.
Answer 1.
\(\left(-2,0\right)\cup \left(2,\infty \right)\)
Answer 2.
\(\left(-\infty ,-2\right)\cup \left(0,2\right)\)
Answer 3.
\(\left\{-2,0,2\right\}\)
Answer 4.
Answer 5.
\(\left(-\infty ,-1\right)\cup \left(1,\infty \right)\)
Answer 6.
2.1.3.34.
Answer 1.
Answer 2.
\(\left(-\infty ,-2\right)\cup \left(2,\infty \right)\)
Answer 3.
Answer 4.
\(\left(-1,0\right)\cup \left(1,\infty \right)\)
Answer 5.
\(\left(-\infty ,-1\right)\cup \left(0,1\right)\)
Answer 6.
\(\left\{-1,0,1\right\}\)
2.2 Interpretations of the Derivative
2.2.5 Exercises
Terms and Concepts
2.2.5.1.
2.2.5.3.
Answer.
\(\text{linear functions}\)
Problems
2.2.5.4.
2.2.5.5.
2.2.5.6.
2.2.5.7.
2.2.5.8.
2.2.5.9.
2.2.5.10.
Answer.
\(\text{decibels per customer}\)
2.2.5.11.
Answer.
\(\text{foot per second squared}\)
2.2.5.12.
2.2.5.15.
2.2.5.16.
2.2.5.17.
2.2.5.18.
2.3 Basic Differentiation Rules
2.3.3 Exercises
Terms and Concepts
2.3.3.1.
Answer.
\(\text{the power rule}\)
2.3.3.2.
2.3.3.3.
2.3.3.4.
2.3.3.5.
Answer.
\(\text{Choice 1, Choice 2, Choice 5, Choice 6}\)
2.3.3.7.
2.3.3.9.
Answer 1.
\(\text{a velocity function}\)
Answer 2.
\(\text{an acceleration function}\)
2.3.3.10.
Answer.
\(\text{pound per foot squared}\)
Problems
2.3.3.11.
2.3.3.12.
2.3.3.13.
Answer.
\(9-\left(20t^{4}+{\frac{3}{4}}t^{2}\right)\)
2.3.3.14.
Answer.
\(19\sin\mathopen{}\left(\theta\right)-3\cos\mathopen{}\left(\theta\right)\)
2.3.3.15.
2.3.3.16.
Answer.
\(21t^{2}+5\sin\mathopen{}\left(t\right)-2\cos\mathopen{}\left(t\right)\)
2.3.3.17.
2.3.3.18.
2.3.3.19.
Answer.
\(\sin\mathopen{}\left(t\right)-\left(e^{t}+\cos\mathopen{}\left(t\right)\right)\)
2.3.3.20.
2.3.3.21.
2.3.3.22.
2.3.3.23.
2.3.3.24.
2.3.3.25.
2.3.3.27.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
\(9\cdot 8\cdot 7\cdot 6x^{5}\)
2.3.3.28.
Answer 1.
\(-8\sin\mathopen{}\left(x\right)\)
Answer 2.
\(-\left(8\cos\mathopen{}\left(x\right)\right)\)
Answer 3.
\(8\sin\mathopen{}\left(x\right)\)
Answer 4.
\(8\cos\mathopen{}\left(x\right)\)
2.3.3.29.
Answer 1.
\(-\left(4\cdot 2t+3+e^{t}\right)\)
Answer 2.
\(-\left(8+e^{t}\right)\)
Answer 3.
Answer 4.
2.3.3.30.
Answer 1.
Answer 2.
Answer 3.
\(8\cdot 7\cdot 6\theta^{5}\)
Answer 4.
\(8\cdot 7\cdot 6\cdot 5\theta^{4}\)
2.3.3.31.
Answer 1.
\(-\left(\cos\mathopen{}\left(\theta\right)-\sin\mathopen{}\left(\theta\right)\right)\)
Answer 2.
\(\sin\mathopen{}\left(\theta\right)+\cos\mathopen{}\left(\theta\right)\)
Answer 3.
\(\cos\mathopen{}\left(\theta\right)-\sin\mathopen{}\left(\theta\right)\)
Answer 4.
\(-\left(\sin\mathopen{}\left(\theta\right)+\cos\mathopen{}\left(\theta\right)\right)\)
2.3.3.32.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
2.3.3.33.
Answer 1.
\(y = 20\mathopen{}\left(x-2\right)+24\)
Answer 2.
\(y = -{\frac{1}{20}}\mathopen{}\left(x-2\right)+24\)
2.3.3.34.
Answer 1.
\(y = e^{0}\ln\mathopen{}\left(e\right)\mathopen{}\left(t-0\right)+e^{0}-2\)
Answer 2.
\(y = \frac{-1}{e^{0}\ln\mathopen{}\left(e\right)}\mathopen{}\left(t-0\right)+e^{0}-2\)
2.3.3.35.
Answer 1.
Answer 2.
\(y = -\left(x-1\right)\)
2.3.3.36.
Answer 1.
\(y = \frac{4\sqrt{3}}{2}\mathopen{}\left(x-\frac{\pi }{6}\right)+\frac{4\cdot 1}{2}\)
Answer 2.
\(y = -\left({\frac{1}{4}}\frac{2\sqrt{3}}{3}\right)\mathopen{}\left(x-\frac{\pi }{6}\right)+\frac{4\cdot 1}{2}\)
2.3.3.37.
Answer 1.
\(y = \frac{2\cdot 1}{2}\mathopen{}\left(x-\frac{\pi }{6}\right)+\frac{-2\sqrt{3}}{2}\)
Answer 2.
\(y = -\left({\frac{1}{2}}\cdot 2\right)\mathopen{}\left(x-\frac{\pi }{6}\right)+\frac{-2\sqrt{3}}{2}\)
2.3.3.38.
Answer 1.
Answer 2.
\(y = \frac{-1}{-9}\mathopen{}\left(x-\left(-9\right)\right)+90\)
2.4 The Product and Quotient Rules
Exercises
Terms and Concepts
2.4.1.
2.4.2.
2.4.3.
2.4.4.
Answer.
\(\text{the quotient rule}\)
2.4.5.
Problems
2.4.15.
Answer.
\(\sin\mathopen{}\left(y\right)+y\cos\mathopen{}\left(y\right)\)
2.4.16.
Answer.
\(3t^{2}\cos\mathopen{}\left(t\right)-t^{3}\sin\mathopen{}\left(t\right)\)
2.4.17.
Answer.
\(e^{q}\ln\mathopen{}\left(q\right)+e^{q}\frac{1}{q}\)
2.4.18.
Answer.
\(-\left(\frac{6y^{5}}{\left(y^{6}\right)^{2}}\mathopen{}\left(\csc\mathopen{}\left(y\right)-5\right)+\frac{1}{y^{6}}\csc\mathopen{}\left(y\right)\cot\mathopen{}\left(y\right)\right)\)
2.4.19.
Answer.
\(\frac{t-4-\left(t+8\right)}{\left(t-4\right)^{2}}\)
2.4.20.
Answer.
\(\frac{3q^{2}\mathopen{}\left(\sin\mathopen{}\left(q\right)-8q^{2}\right)-q^{3}\mathopen{}\left(\cos\mathopen{}\left(q\right)-8\cdot 2q\right)}{\left(\sin\mathopen{}\left(q\right)-8q^{2}\right)^{2}}\)
2.4.21.
Answer.
\(-\left(\csc\mathopen{}\left(y\right)\cot\mathopen{}\left(y\right)+e^{y}\right)\)
2.4.22.
Answer.
\(\sec^{2}\mathopen{}\left(t\right)\ln\mathopen{}\left(t\right)+\frac{1}{t}\tan\mathopen{}\left(t\right)\)
2.4.23.
2.4.24.
2.4.25.
Answer.
\(\left(5r^{2}+17r+10\right)e^{r}\)
2.4.26.
Answer.
\(\frac{9z^{8}-z^{9}-z^{5}+5z^{4}}{e^{z}}\)
2.4.27.
2.4.28.
Answer.
\(5r^{4}\mathopen{}\left(\tan\mathopen{}\left(r\right)+e^{r}\right)+r^{5}\mathopen{}\left(\sec^{2}\mathopen{}\left(r\right)+e^{r}\right)\)
2.4.29.
Answer.
\(\frac{\csc\mathopen{}\left(z\right)\sin\mathopen{}\left(z\right)-\csc\mathopen{}\left(z\right)\cot\mathopen{}\left(z\right)\mathopen{}\left(\cos\mathopen{}\left(z\right)+2\right)}{\left(\cos\mathopen{}\left(z\right)+2\right)^{2}}\)
2.4.30.
Answer.
\(4\theta^{3}\sec\mathopen{}\left(\theta\right)+\theta^{4}\sec\mathopen{}\left(\theta\right)\tan\mathopen{}\left(\theta\right)+\frac{\sec\mathopen{}\left(\theta\right)\tan\mathopen{}\left(\theta\right)\theta^{4}-4\theta^{3}\sec\mathopen{}\left(\theta\right)}{\left(\theta^{4}\right)^{2}}\)
2.4.31.
Answer.
\(\frac{\tan\mathopen{}\left(r\right)-r\sec^{2}\mathopen{}\left(r\right)}{\tan^{2}\mathopen{}\left(r\right)}-\frac{\csc^{2}\mathopen{}\left(r\right)r+\cot\mathopen{}\left(r\right)}{r^{2}}\)
2.4.32.
2.4.33.
Answer.
\(7\cdot 5x^{4}e^{x}+7x^{5}e^{x}-\left(\cos\mathopen{}\left(x\right)\cos\mathopen{}\left(x\right)-\sin\mathopen{}\left(x\right)\sin\mathopen{}\left(x\right)\right)\)
2.4.34.
Answer.
\(\frac{\left(2r\sin\mathopen{}\left(r\right)+r^{2}\cos\mathopen{}\left(r\right)\right)\mathopen{}\left(r^{2}\cos\mathopen{}\left(r\right)-9\right)-\left(r^{2}\sin\mathopen{}\left(r\right)-7\right)\mathopen{}\left(2r\cos\mathopen{}\left(r\right)-r^{2}\sin\mathopen{}\left(r\right)\right)}{\left(r^{2}\cos\mathopen{}\left(r\right)-9\right)^{2}}\)
2.4.35.
Answer.
\(\left(4z^{3}\ln\mathopen{}\left(z\right)+z^{4}\frac{1}{z}\right)\cos\mathopen{}\left(z\right)-z^{4}\ln\mathopen{}\left(z\right)\sin\mathopen{}\left(z\right)\)
2.4.36.
Answer.
\(\left(9\cos\mathopen{}\left(x\right)-9x\sin\mathopen{}\left(x\right)\right)\tan\mathopen{}\left(x\right)+9x\cos\mathopen{}\left(x\right)\sec^{2}\mathopen{}\left(x\right)\)
2.4.37.
Answer 1.
\(y = -\left(7x+7\right)\)
Answer 2.
\(y = \left({\frac{1}{7}}\right)x-7\)
2.4.38.
Answer 1.
\(y = 5.0345\mathopen{}\left(x-\frac{5\pi }{3}\right)+\frac{5\pi }{6}\)
Answer 2.
\(y = \frac{5\pi }{6}-\left({\frac{12837432}{64630031}}\right)\mathopen{}\left(x-\frac{5\pi }{3}\right)\)
2.4.39.
Answer 1.
\(y = -\left(15\mathopen{}\left(x+5\right)+25\right)\)
Answer 2.
\(y = \left({\frac{1}{15}}\right)\mathopen{}\left(x+5\right)-25\)
2.4.40.
Answer 1.
\(y = \left({\frac{1}{8}}\right)x\)
Answer 2.
2.4.41.
2.4.42.
2.4.43.
2.4.44.
2.4.45.
Answer.
\(2\cos\mathopen{}\left(x\right)-x\sin\mathopen{}\left(x\right)\)
2.4.46.
Answer.
\(-4\cos\mathopen{}\left(x\right)+x\sin\mathopen{}\left(x\right)\)
2.4.47.
Answer.
\(\csc\mathopen{}\left(x\right)\cot\mathopen{}\left(x\right)\cot\mathopen{}\left(x\right)+\csc^{2}\mathopen{}\left(x\right)\csc\mathopen{}\left(x\right)\)
2.4.48.
2.5 The Chain Rule
Exercises
Terms and Concepts
2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.
2.5.6.
Problems
2.5.7.
Answer.
\(10\mathopen{}\left(4x^{3}-x\right)^{9}\mathopen{}\left(12x^{2}-1\right)\)
2.5.8.
Answer.
\(15\mathopen{}\left(3t-2\right)^{4}\)
2.5.9.
Answer.
\(3\mathopen{}\left(\sin\mathopen{}\left(\theta\right)+\cos\mathopen{}\left(\theta\right)\right)^{2}\mathopen{}\left(\cos\mathopen{}\left(\theta\right)-\sin\mathopen{}\left(\theta\right)\right)\)
2.5.10.
Answer.
\(\left(6t+1\right)e^{3t^{2}+t-1}\)
2.5.11.
Answer.
\(4\mathopen{}\left(\ln\mathopen{}\left(x\right)-x^{4}\right)^{3}\mathopen{}\left(\frac{1}{x}-4x^{3}\right)\)
2.5.12.
Answer.
\(0.693147\cdot 2^{q^{5}+4q}\mathopen{}\left(5q^{4}+4\right)\)
2.5.13.
Answer.
\(5\mathopen{}\left(y+\frac{1}{y}\right)^{4}\mathopen{}\left(1-\frac{1}{y^{2}}\right)\)
2.5.14.
Answer.
\(-5\sin\mathopen{}\left(5t\right)\)
2.5.15.
Answer.
\(2\sec^{2}\mathopen{}\left(2q\right)\)
2.5.16.
Answer.
\(-\csc^{2}\mathopen{}\left(\theta^{2}+3\right)\cdot 2\theta\)
2.5.17.
Answer.
\(\left(6t^{5}-\frac{3t^{2}}{\left(t^{3}\right)^{2}}\right)\cos\mathopen{}\left(t^{6}+\frac{1}{t^{3}}\right)\)
2.5.18.
Answer.
\(-5\cos^{4}\mathopen{}\left(7q\right)\cdot 7\sin\mathopen{}\left(7q\right)\)
2.5.19.
Answer.
\(-3\cos^{2}\mathopen{}\left(y^{2}+3y-3\right)\mathopen{}\left(2y+3\right)\sin\mathopen{}\left(y^{2}+3y-3\right)\)
2.5.20.
Answer.
\(-\frac{1}{\cos\mathopen{}\left(t\right)}\sin\mathopen{}\left(t\right)\)
2.5.21.
Answer.
\(\frac{1}{q^{8}}\cdot 8q^{7}\)
2.5.22.
2.5.23.
2.5.24.
Answer.
\(-0.693147\cdot 2^{\csc\mathopen{}\left(z\right)}\csc\mathopen{}\left(z\right)\cot\mathopen{}\left(z\right)\)
2.5.25.
2.5.26.
Answer.
\(\frac{1.38629\cdot 4^{t}\cdot 9^{t}-4^{t}\cdot 2.19722\cdot 9^{t}}{\left(9^{t}\right)^{2}}\)
2.5.27.
Answer.
\(\frac{1.79176\cdot 6^{w}\mathopen{}\left(5^{w}+6\right)-\left(6^{w}+5\right)\cdot 1.60944\cdot 5^{w}}{\left(5^{w}+6\right)^{2}}\)
2.5.28.
Answer.
\(\frac{1.94591\cdot 7^{y}\cdot 5^{y}-\left(7^{y}+8\right)\cdot 1.60944\cdot 5^{y}}{\left(5^{y}\right)^{2}}\)
2.5.29.
Answer.
\(\frac{\left(1.60944\cdot 5^{r^{2}}\cdot 2r-1\right)\cdot 6^{r^{2}}-\left(5^{r^{2}}-r\right)\cdot 1.79176\cdot 6^{r^{2}}\cdot 2r}{\left(6^{r^{2}}\right)^{2}}\)
2.5.30.
Answer.
\(3w^{2}\cot\mathopen{}\left(5w\right)-w^{3}\cdot 5\csc^{2}\mathopen{}\left(5w\right)\)
2.5.31.
Answer.
\(6\mathopen{}\left(x^{2}+4x\right)^{5}\mathopen{}\left(2x+4\right)\mathopen{}\left(7x^{4}+x\right)^{3}+\left(x^{2}+4x\right)^{6}\cdot 3\mathopen{}\left(7x^{4}+x\right)^{2}\mathopen{}\left(7\cdot 4x^{3}+1\right)\)
2.5.32.
Answer.
\(-\left(4\cos\mathopen{}\left(8-4r\right)\cos\mathopen{}\left(6r+r^{2}\right)+\left(6+2r\right)\sin\mathopen{}\left(6r+r^{2}\right)\sin\mathopen{}\left(8-4r\right)\right)\)
2.5.33.
Answer.
\(7\cos\mathopen{}\left(9+7w\right)\cos\mathopen{}\left(4w-5\right)-4\sin\mathopen{}\left(4w-5\right)\sin\mathopen{}\left(9+7w\right)\)
2.5.34.
Answer.
\(e^{8x^{2}}\cdot 8\cdot 2x\sin\mathopen{}\left(\frac{1}{x}\right)-e^{8x^{2}}\frac{1}{x^{2}}\cos\mathopen{}\left(\frac{1}{x}\right)\)
2.5.35.
Answer.
\(-\frac{6\sin\mathopen{}\left(6r+4\right)\mathopen{}\left(3r+1\right)^{3}+3\cdot 3\mathopen{}\left(3r+1\right)^{2}\cos\mathopen{}\left(6r+4\right)}{\left(\left(3r+1\right)^{3}\right)^{2}}\)
2.5.36.
Answer.
\(\frac{3\cdot 2\mathopen{}\left(3z+5\right)\sin\mathopen{}\left(9z\right)-\left(3z+5\right)^{2}\cdot 9\cos\mathopen{}\left(9z\right)}{\sin^{2}\mathopen{}\left(9z\right)}\)
2.5.37.
2.5.38.
Answer 1.
\(y = 15\mathopen{}\left(x-1\right)+1\)
Answer 2.
\(y = \frac{-1}{15}\mathopen{}\left(x-1\right)+1\)
2.5.39.
Answer 1.
\(y = -3\mathopen{}\left(x-\frac{\pi }{2}\right)+1\)
Answer 2.
\(y = \frac{1}{3}\mathopen{}\left(x-\frac{\pi }{2}\right)+1\)
2.5.40.
Answer 1.
\(y = -5e\mathopen{}\left(x+1\right)+e\)
Answer 2.
\(y = \frac{1}{5e}\mathopen{}\left(x+1\right)+e\)
2.5.41.
2.5.42.
2.6 Implicit Differentiation
2.6.4 Exercises
Terms and Concepts
2.6.4.2.
Answer.
\(\text{the chain rule}\)
2.6.4.3.
2.6.4.4.
Problems
2.6.4.5.
Answer.
\(\frac{1}{2\sqrt{w}}+\frac{\frac{1}{2\sqrt{w}}}{\left(\sqrt{w}\right)^{2}}\)
2.6.4.6.
Answer.
\({\frac{1}{6}}\frac{1}{\left(\sqrt[6]{y}\right)^{5}}+\left({\frac{5}{6}}\right)\frac{1}{y^{0.166667}}\)
2.6.4.7.
Answer.
\(\frac{1}{2\sqrt{9+t^{2}}}\cdot 2t\)
2.6.4.8.
Answer.
\(\frac{1}{2\sqrt{w}}\tan\mathopen{}\left(w\right)+\sec^{2}\mathopen{}\left(w\right)\sqrt{w}\)
2.6.4.9.
2.6.4.10.
Answer.
\(\pi r^{\pi -1}+3.8r^{2.8}\)
2.6.4.11.
Answer.
\(\frac{\sqrt{w}-\left(w-8\right)\frac{1}{2\sqrt{w}}}{\left(\sqrt{w}\right)^{2}}\)
2.6.4.12.
Answer.
\({\frac{1}{6}}\frac{1}{\left(\sqrt[6]{x}\right)^{5}}\mathopen{}\left(\cos\mathopen{}\left(x\right)+e^{x}\right)+\left(e^{x}-\sin\mathopen{}\left(x\right)\right)\sqrt[6]{x}\)
2.6.4.13.
2.6.4.14.
Answer.
\(\frac{-y^{0.6}}{x^{0.6}}\)
2.6.4.15.
Answer.
\(\sin\mathopen{}\left(x\right)\sec\mathopen{}\left(y\right)\)
2.6.4.16.
2.6.4.17.
2.6.4.18.
Answer.
\(\frac{-\left(e^{x}x\mathopen{}\left(x+2\right)\cdot 2^{-y}\right)}{\ln\mathopen{}\left(2\right)}\)
2.6.4.19.
Answer.
\(\frac{-2\sin\mathopen{}\left(y\right)\cos\mathopen{}\left(y\right)}{x}\)
2.6.4.20.
2.6.4.21.
2.6.4.22.
Answer.
\(\frac{y-x^{2}-2xy^{2}}{x-y^{2}-2x^{2}y}\)
2.6.4.23.
Answer.
\(\frac{1-\cos\mathopen{}\left(x\right)}{\sin\mathopen{}\left(y\right)+1}\)
2.6.4.24.
2.6.4.25.
Answer.
\(\frac{-\left(2x+y\right)}{2y+x}\)
2.6.4.27.
2.6.4.27.a2.6.4.27.bAnswer.
\(y = -1.859\mathopen{}\left(x-0.1\right)+0.2811\)
2.6.4.28.
2.6.4.28.a2.6.4.28.bAnswer.
\(y = \frac{-3\sqrt{3}}{8}\mathopen{}\left(x-\sqrt{0.6}\right)+\sqrt{0.8}\)
2.6.4.29.
2.6.4.29.a2.6.4.29.bAnswer.
\(y = \frac{3}{108^{\frac{1}{4}}}\mathopen{}\left(x-2\right)-108^{\frac{1}{4}}\)
2.6.4.30.
2.6.4.30.a2.6.4.30.bAnswer.
\(y = \frac{3\sqrt{3}}{4}\)
2.6.4.31.
2.6.4.31.aAnswer.
\(y = \frac{-1}{\sqrt{3}}\mathopen{}\left(x-\frac{7}{2}\right)+\frac{6+3\sqrt{3}}{2}\)
2.6.4.31.bAnswer.
\(y = \frac{\sqrt{3}\mathopen{}\left(x-\left(4+3\sqrt{3}\right)\right)}{2}+\frac{3}{2}\)
2.6.4.32.
2.6.4.32.a2.6.4.32.bAnswer.
\(y = \frac{-2}{\sqrt{5}}\mathopen{}\left(x+1\right)+\frac{1}{2}\mathopen{}\left(-1+\sqrt{5}\right)\)
2.6.4.32.cAnswer.
\(y = \frac{2}{\sqrt{5}}\mathopen{}\left(x+1\right)+\frac{1}{2}\mathopen{}\left(-1-\sqrt{5}\right)\)
2.6.4.33.
Answer.
\(\frac{-\left(\left(2y+1\right)\cdot 12x^{2}-4x^{3}\frac{2\mathopen{}\left(-\left(4x^{3}\right)\right)}{2y+1}\right)}{\left(2y+1\right)^{2}}\)
2.6.4.34.
Answer.
\(\frac{-\left(\frac{x^{0.6}\cdot 3}{5}y^{-0.4}\frac{-y^{0.6}}{x^{0.6}}-\frac{y^{0.6}\cdot 3}{5}x^{-0.4}\right)}{x^{1.2}}\)
2.6.4.35.
Answer.
\(\sin^{2}\mathopen{}\left(x\right)\sec^{2}\mathopen{}\left(y\right)\tan\mathopen{}\left(y\right)+\cos\mathopen{}\left(x\right)\sec\mathopen{}\left(y\right)\)
2.6.4.36.
2.6.4.37.
Answer 1.
\(\left(1+x\right)^{\frac{1}{x}}\mathopen{}\left(\frac{1}{x\mathopen{}\left(x+1\right)}-\frac{\ln\mathopen{}\left(1+x\right)}{x^{2}}\right)\)
Answer 2.
\(y = \left(1-2\ln\mathopen{}\left(2\right)\right)\mathopen{}\left(x-1\right)+2\)
2.6.4.38.
Answer 1.
\(\left(2x\right)^{x^{2}}\mathopen{}\left(2x\ln\mathopen{}\left(2x\right)+x\right)\)
Answer 2.
\(y = \left(2+4\ln\mathopen{}\left(2\right)\right)\mathopen{}\left(x-1\right)+2\)
2.6.4.39.
Answer 1.
\(\frac{x^{x}}{x+1}\mathopen{}\left(\ln\mathopen{}\left(x\right)+1-\frac{1}{x+1}\right)\)
Answer 2.
\(y = \frac{1}{4}\mathopen{}\left(x-1\right)+\frac{1}{2}\)
2.6.4.40.
Answer 1.
\(x^{\sin\mathopen{}\left(x\right)+2}\mathopen{}\left(\cos\mathopen{}\left(x\right)\ln\mathopen{}\left(x\right)+\frac{\sin\mathopen{}\left(x\right)+2}{x}\right)\)
Answer 2.
\(y = \frac{3\pi ^{2}}{4}\mathopen{}\left(x-\frac{\pi }{2}\right)+\left(\frac{\pi }{2}\right)^{3}\)
2.6.4.41.
Answer 1.
\(\frac{x+1}{x+2}\mathopen{}\left(\frac{1}{x+1}-\frac{1}{x+2}\right)\)
Answer 2.
\(y = \frac{1}{9}\mathopen{}\left(x-1\right)+\frac{2}{3}\)
2.6.4.42.
Answer 1.
\(\frac{\left(x+1\right)\mathopen{}\left(x+2\right)}{\left(x+3\right)\mathopen{}\left(x+4\right)}\mathopen{}\left(\frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}\right)\)
Answer 2.
\(y = \frac{11}{72}x+\frac{1}{6}\)
2.7 Derivatives of Inverse Functions
Exercises
Terms and Concepts
2.7.1.
Problems
2.7.9.
2.7.10.
2.7.11.
2.7.12.
2.7.13.
2.7.14.
2.7.15.
Answer.
\(-\frac{1}{\sqrt{1-\left(4w\right)^{2}}}\cdot 4\)
2.7.16.
Answer.
\(-\frac{1}{\left|7x\right|\sqrt{\left(7x\right)^{2}-1}}\cdot 7\)
2.7.17.
Answer.
\(\frac{1}{1+\left(2r\right)^{2}}\cdot 2\)
2.7.18.
Answer.
\(\cos^{-1}\mathopen{}\left(w\right)-w\frac{1}{\sqrt{1-w^{2}}}\)
2.7.19.
Answer.
\(\left(\sec\mathopen{}\left(x\right)\right)^{2}\cos^{-1}\mathopen{}\left(x\right)-\frac{1}{\sqrt{1-x^{2}}}\tan\mathopen{}\left(x\right)\)
2.7.20.
Answer.
\(\frac{e^{t}}{t}+\ln\mathopen{}\left(t\right)e^{t}\)
2.7.21.
Answer.
\(\frac{\frac{1}{1+z^{2}}\sin^{-1}\mathopen{}\left(z\right)-\frac{1}{\sqrt{1-z^{2}}}\tan^{-1}\mathopen{}\left(z\right)}{\left(\sin^{-1}\mathopen{}\left(z\right)\right)^{2}}\)
2.7.22.
Answer.
\(\left(\sec\mathopen{}\left(\sqrt[4]{x}\right)\right)^{2}{\frac{1}{4}}\frac{1}{\left(\sqrt[4]{x}\right)^{3}}\)
2.7.23.
Answer.
\(\csc\mathopen{}\left(\frac{1}{q^{3}}\right)\cot\mathopen{}\left(\frac{1}{q^{3}}\right)\frac{3q^{2}}{\left(q^{3}\right)^{2}}\)
2.7.24.
2.7.29.
Answer.
\(y = 2\mathopen{}\left(x-\frac{-\sqrt{3}}{2}\right)+\left(-\frac{\pi }{3}\right)\)
2.7.30.
Answer.
\(y = -4\mathopen{}\left(x-\frac{\sqrt{3}}{4}\right)+\frac{\pi }{6}\)
3 The Graphical Behavior of Functions
3.1 Extreme Values
Exercises
Terms and Concepts
3.1.2.
3.1.4.
3.1.5.
3.1.6.
Problems
3.1.7.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
3.1.8.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
3.1.9.
3.1.10.
3.1.11.
3.1.12.
Answer 1.
Answer 2.
Answer 3.
3.1.13.
3.1.14.
3.1.15.
3.1.16.
3.1.17.
3.1.18.
3.1.19.
3.1.20.
3.1.21.
3.1.22.
3.1.23.
Answer 1.
\(\frac{e^{\frac{\pi }{4}}}{\sqrt{2}}\)
Answer 2.
3.1.24.
Answer 1.
\(\frac{e^{\frac{3\pi }{4}}}{\sqrt{2}}\)
Answer 2.
3.1.25.
3.1.26.
3.2 The Mean Value Theorem
Exercises
Problems
3.2.3.
3.2.4.
Answer.
\(\text{does not apply}\)
3.2.5.
3.2.6.
3.2.7.
Answer.
\(\text{does not apply}\)
3.2.8.
3.2.9.
Answer.
\(\text{does not apply}\)
3.2.10.
Answer.
\(\text{does not apply}\)
3.2.11.
3.2.12.
3.2.13.
3.2.14.
3.2.15.
Answer.
\(\text{does not apply}\)
3.2.16.
Answer.
\(\frac{4}{\ln\mathopen{}\left(5\right)}\)
3.2.17.
Answer.
\(-\sec^{-1}\mathopen{}\left(\frac{2}{\sqrt{\pi }}\right), \sec^{-1}\mathopen{}\left(\frac{2}{\sqrt{\pi }}\right)\)
3.2.18.
3.2.19.
Answer.
\(5+7\frac{\sqrt{7}}{6}, 5-7\frac{\sqrt{7}}{6}\)
3.2.20.
Answer.
\(\frac{\sqrt{\pi ^{2}-4}}{\pi }, \frac{-\sqrt{\pi ^{2}-4}}{\pi }\)
3.3 Increasing and Decreasing Functions
Exercises
Terms and Concepts
3.3.3.
Answer.
Answers will vary; graphs should be steeper near \(x=0\) than near \(x=2\text{.}\)
3.3.5.
Problems
3.3.15.
Answer 1.
\(\left(-\infty ,\infty \right)\)
Answer 2.
Answer 3.
\(\left[-2,\infty \right)\)
Answer 4.
\(\left(-\infty ,-2\right]\)
Answer 5.
Answer 6.
3.3.16.
Answer 1.
\(\left(-\infty ,\infty \right)\)
Answer 2.
Answer 3.
\(\left(-\infty ,-1.33333\right], \left[0,\infty \right)\)
Answer 4.
\(\left[-1.33333,0\right]\)
Answer 5.
Answer 6.
3.3.17.
Answer 1.
\(\left(-\infty ,\infty \right)\)
Answer 2.
\(-{\frac{5}{7}}, {\frac{7}{3}}\)
Answer 3.
\(\left(-\infty ,-0.714286\right], \left[2.33333,\infty \right)\)
Answer 4.
\(\left[-0.714286,2.33333\right]\)
Answer 5.
Answer 6.
3.3.18.
Answer 1.
\(\left(-\infty ,\infty \right)\)
Answer 2.
Answer 3.
\(\left(-\infty ,\infty \right)\)
Answer 4.
Answer 5.
Answer 6.
3.3.19.
Answer 1.
\(\left(-\infty ,\infty \right)\)
Answer 2.
Answer 3.
\(\left(-\infty ,5\right]\)
Answer 4.
\(\left[5,\infty \right)\)
Answer 5.
Answer 6.
3.3.20.
Answer 1.
\(\left(-\infty ,-6\right)\cup \left(-6,6\right)\cup \left(6,\infty \right)\)
Answer 2.
Answer 3.
\(\left(-\infty ,-6\right), \left(-6,0\right]\)
Answer 4.
\(\left[0,6\right), \left(6,\infty \right)\)
Answer 5.
Answer 6.
3.3.21.
Answer 1.
\(\left(-\infty ,-7\right)\cup \left(-7,-5\right)\cup \left(-5,\infty \right)\)
Answer 2.
Answer 3.
\(\left[-5.91608,-5\right), \left(-5,5.91608\right]\)
Answer 4.
\(\left(-\infty ,-7\right), \left(-7,-5.91608\right], \left[5.91608,\infty \right)\)
Answer 5.
Answer 6.
3.3.22.
Answer 1.
\(\left(-\infty ,0\right)\cup \left(0,\infty \right)\)
Answer 2.
Answer 3.
Answer 4.
\(\left(-\infty ,-15\right], \left[-5,0\right), \left(0,\infty \right)\)
Answer 5.
Answer 6.
3.3.23.
Answer 1.
\(\left(-\pi ,\pi \right)\)
Answer 2.
\(-2.35619, -0.785398, 0.785398, 2.35619\)
Answer 3.
\(\left(-3.14159,-2.35619\right), \left(-0.785398,0.785398\right), \left(2.35619,3.14159\right)\)
Answer 4.
\(\left(-2.35619,-0.785398\right), \left(0.785398,2.35619\right)\)
Answer 5.
Answer 6.
3.3.24.
Answer 1.
\(\left(-\infty ,\infty \right)\)
Answer 2.
Answer 3.
\(\left[-2,\infty \right)\)
Answer 4.
\(\left(-\infty ,-2\right]\)
Answer 5.
Answer 6.
3.4 Concavity and the Second Derivative
3.4.3 Exercises
Terms and Concepts
3.4.3.1.
3.4.3.2.
3.4.3.3.
3.4.3.4.
Problems
3.4.3.15.
Answer 1.
Answer 2.
\(\left(-\infty ,\infty \right)\)
Answer 3.
3.4.3.16.
Answer 1.
Answer 2.
Answer 3.
\(\left(-\infty ,\infty \right)\)
3.4.3.17.
Answer 1.
Answer 2.
\(\left[0,\infty \right)\)
Answer 3.
\(\left(-\infty ,0\right]\)
3.4.3.18.
Answer 1.
Answer 2.
\(\left[-0.25,\infty \right)\)
Answer 3.
\(\left(-\infty ,-0.25\right]\)
3.4.3.19.
Answer 1.
Answer 2.
\(\left(-\infty ,-10.6667\right], \left[0,\infty \right)\)
Answer 3.
\(\left[-10.6667,0\right]\)
3.4.3.20.
Answer 1.
Answer 2.
\(\left(-\infty ,4.42265\right], \left[5.57735,\infty \right)\)
Answer 3.
\(\left[4.42265,5.57735\right]\)
3.4.3.21.
Answer 1.
Answer 2.
\(\left(-\infty ,\infty \right)\)
Answer 3.
3.4.3.22.
Answer 1.
Answer 2.
\(\left(-1.5708,1.5708\right)\)
Answer 3.
\(\left(-4.71239,-1.5708\right), \left(1.5708,4.71239\right)\)
3.4.3.23.
Answer 1.
Answer 2.
\(\left(-\infty ,-0.57735\right], \left[0.57735,\infty \right)\)
Answer 3.
\(\left[-0.57735,0.57735\right]\)
3.4.3.24.
Answer 1.
Answer 2.
\(\left(-\infty ,2\right), \left(5,\infty \right)\)
Answer 3.
3.4.3.25.
Answer 1.
Answer 2.
\(\left(-3.14159,-0.785398\right], \left[2.35619,3.14159\right)\)
Answer 3.
\(\left[-0.785398,2.35619\right]\)
3.4.3.26.
Answer 1.
Answer 2.
\(\left(-\infty ,-3.41421\right], \left[-0.585786,\infty \right)\)
Answer 3.
\(\left[-3.41421,-0.585786\right]\)
3.4.3.27.
Answer 1.
Answer 2.
\(\left[0.22313,\infty \right)\)
Answer 3.
\(\left(0,0.22313\right]\)
3.4.3.28.
Answer 1.
Answer 2.
\(\left(-\infty ,-0.707107\right], \left[0.707107,\infty \right)\)
Answer 3.
\(\left[-0.707107,0.707107\right]\)
3.4.3.29.
Answer 1.
Answer 2.
Answer 3.
3.4.3.30.
Answer 1.
Answer 2.
Answer 3.
3.4.3.31.
Answer 1.
Answer 2.
Answer 3.
3.4.3.32.
Answer 1.
Answer 2.
Answer 3.
3.4.3.33.
Answer 1.
Answer 2.
Answer 3.
3.4.3.34.
Answer 1.
Answer 2.
Answer 3.
3.4.3.35.
Answer 1.
Answer 2.
Answer 3.
3.4.3.36.
Answer 1.
Answer 2.
Answer 3.
3.4.3.37.
Answer 1.
Answer 2.
Answer 3.
3.4.3.38.
Answer 1.
Answer 2.
Answer 3.
3.4.3.39.
Answer 1.
Answer 2.
Answer 3.
3.4.3.40.
Answer 1.
Answer 2.
Answer 3.
3.4.3.41.
Answer 1.
Answer 2.
Answer 3.
3.4.3.42.
Answer 1.
Answer 2.
Answer 3.
3.4.3.43.
3.4.3.44.
3.4.3.45.
3.4.3.46.
3.4.3.47.
3.4.3.48.
3.4.3.49.
3.4.3.50.
3.4.3.51.
3.4.3.52.
3.4.3.53.
3.4.3.54.
3.4.3.55.
3.4.3.56.
3.5 Curve Sketching
Exercises
Terms and Concepts
3.5.3.
3.5.4.
3.5.5.
4 Applications of the Derivative
4.1 Newton’s Method
Exercises
Terms and Concepts
4.1.1.
4.1.2.
Problems
4.1.3.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
4.1.4.
Answer 1.
Answer 2.
Answer 3.
\(-9.57219\times 10^{-5}\)
Answer 4.
Answer 5.
4.1.5.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
4.1.6.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
4.1.7.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
4.1.8.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
4.1.9.
Answer.
\(\left\{-5.15633,-0.369102,0.525428\right\}\)
4.1.10.
Answer.
\(\left\{-3.71448,-0.856723,1,1.5712\right\}\)
4.1.11.
Answer.
\(\left\{-1.0134,0.988312,1.39341\right\}\)
4.1.12.
Answer.
\(\left\{-2.16477,0,0.524501,1.81328\right\}\)
4.1.13.
Answer.
\(\left\{-0.824132,0.824132\right\}\)
4.1.14.
Answer.
\(\left\{-0.636733,1.40962\right\}\)
4.1.15.
4.1.16.
Answer.
\(\left\{-4.49341,0,4.49341\right\}\)
4.2 Related Rates
Exercises
Terms and Concepts
4.2.1.
4.2.2.
Problems
4.2.3.
4.2.3.aAnswer.
\(0.198944\ {\textstyle\frac{\rm\mathstrut cm}{\rm\mathstrut s}}\)
4.2.3.bAnswer.
\(0.0198944\ {\textstyle\frac{\rm\mathstrut cm}{\rm\mathstrut s}}\)
4.2.3.cAnswer.
\(0.00198944\ {\textstyle\frac{\rm\mathstrut cm}{\rm\mathstrut s}}\)
4.2.4.
4.2.4.aAnswer.
\(0.397887\ {\textstyle\frac{\rm\mathstrut cm}{\rm\mathstrut s}}\)
4.2.4.bAnswer.
\(0.00397887\ {\textstyle\frac{\rm\mathstrut cm}{\rm\mathstrut s}}\)
4.2.4.cAnswer.
\(3.97887\times 10^{-5}\ {\textstyle\frac{\rm\mathstrut cm}{\rm\mathstrut s}}\)
4.2.5.
Answer.
\(51.066\ {\textstyle\frac{\rm\mathstrut mi}{\rm\mathstrut h}}\)
4.2.6.
4.2.6.aAnswer.
\(68.75\ {\textstyle\frac{\rm\mathstrut mi}{\rm\mathstrut h}}\)
4.2.6.bAnswer.
\(75\ {\textstyle\frac{\rm\mathstrut mi}{\rm\mathstrut h}}\)
4.2.7.
4.2.7.aAnswer.
\(258.537\ {\textstyle\frac{\rm\mathstrut rad}{\rm\mathstrut hr}}\)
4.2.7.bAnswer.
\(413.417\ {\textstyle\frac{\rm\mathstrut rad}{\rm\mathstrut hr}}\)
4.2.7.cAnswer.
\(424\ {\textstyle\frac{\rm\mathstrut rad}{\rm\mathstrut hr}}\)
4.2.8.
4.2.8.aAnswer.
\(0.0225641\ {\textstyle\frac{\rm\mathstrut rad}{\rm\mathstrut s}}\)
4.2.8.bAnswer.
\(0.553459\ {\textstyle\frac{\rm\mathstrut rad}{\rm\mathstrut s}}\)
4.2.8.cAnswer.
\(7.33333\ {\textstyle\frac{\rm\mathstrut rad}{\rm\mathstrut s}}\)
4.2.9.
4.2.9.aAnswer.
\(0.0417029\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.9.bAnswer.
\(0.458349\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.9.cAnswer.
\(3.35489\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.9.d4.2.10.
4.2.10.aAnswer.
\(30.5941\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut min}}\)
4.2.10.bAnswer.
\(36.0555\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut min}}\)
4.2.10.cAnswer.
\(301.496\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut min}}\)
4.2.11.
4.2.11.aAnswer.
\(19.1658\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.11.bAnswer.
\(0.191658\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.11.cAnswer.
\(0.0395988\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.11.d4.2.12.
4.2.12.aAnswer.
\(0.632456\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.12.bAnswer.
\(1.6\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.12.c4.2.13.
4.2.13.a4.2.13.bAnswer.
\(1.71499\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.13.cAnswer.
\(1.83829\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.13.d4.2.14.
4.2.14.a4.2.14.bAnswer.
\(9.42478\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.2.15.
Answer.
\(0.00230973\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
4.3 Optimization
Exercises
Terms and Concepts
4.3.1.
4.3.2.
Problems
4.3.3.
4.3.4.
4.3.5.
4.3.6.
4.3.7.
4.3.8.
Answer.
\(150\ {\rm ft};\,\left({\frac{225}{2}}\right)\ {\rm ft}\)
4.3.9.
4.3.10.
4.3.11.
4.3.12.
4.3.13.
Answer.
\(10.3923\ {\rm in};\,14.6969\ {\rm in}\)
4.3.14.
4.3.15.
4.3.16.
4.3.17.
4.3.18.
4.4 Differentials
Exercises
Terms and Concepts
4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.4.6.
Problems
4.4.7.
4.4.8.
4.4.9.
4.4.10.
4.4.11.
4.4.12.
4.4.13.
4.4.14.
4.4.15.
4.4.16.
4.4.17.
4.4.18.
Answer.
\(\left(5x^{4}+9x^{8}\right)dx\)
4.4.19.
Answer.
\(-\frac{24x^{5}}{\left(4x^{6}\right)^{2}}dx\)
4.4.20.
Answer.
\(2\mathopen{}\left(6x+\sin\mathopen{}\left(x\right)\right)\mathopen{}\left(6+\cos\mathopen{}\left(x\right)\right)dx\)
4.4.21.
Answer.
\(\left(7x^{6}+8e^{8x}\right)dx\)
4.4.22.
Answer.
\(-\frac{40x^{4}}{\left(x^{5}\right)^{2}}dx\)
4.4.23.
Answer.
\(\frac{9\mathopen{}\left(\tan\mathopen{}\left(x\right)+2\right)-9x\sec^{2}\mathopen{}\left(x\right)}{\left(\tan\mathopen{}\left(x\right)+2\right)^{2}}dx\)
4.4.24.
4.4.25.
Answer.
\(\left(e^{x}\sin\mathopen{}\left(x\right)+e^{x}\cos\mathopen{}\left(x\right)\right)dx\)
4.4.26.
Answer.
\(-\sin\mathopen{}\left(\sin\mathopen{}\left(x\right)\right)\cos\mathopen{}\left(x\right)dx\)
4.4.27.
Answer.
\(\frac{x+5-\left(x-4\right)}{\left(x+5\right)^{2}}dx\)
4.4.28.
Answer.
\(\left(1.60944\cdot 5^{x}\ln\mathopen{}\left(x\right)+\frac{5^{x}\cdot 1}{x}\right)dx\)
4.4.29.
Answer.
\(\tan^{-1}\mathopen{}\left(x\right)dx\)
4.4.30.
Answer.
\(\cot\mathopen{}\left(x\right)dx\)
4.4.31.
Answer.
\(5.02655\ {\rm cm^{3}}\)
4.4.32.
4.4.32.a4.4.32.b4.4.33.
4.4.34.
4.4.35.
4.4.35.a4.4.35.b4.4.35.c4.4.36.
4.4.36.a4.4.36.b4.4.36.c4.4.37.
4.4.37.a4.4.37.b4.4.37.c4.4.38.
Answer.
\(\text{Isosceles ... feet}\)
4.4.39.
4.5 Taylor Polynomials
Exercises
Terms and Concepts
4.5.2.
4.5.3.
4.5.4.
Problems
4.5.5.
Answer.
\(1-x+0.5x^{2}-0.166667x^{3}\)
4.5.6.
Answer.
\(x-0.166667x^{3}+0.00833333x^{5}-0.000198413x^{7}\)
4.5.7.
Answer.
\(x+x^{2}+0.5x^{3}+0.166667x^{4}+0.0416667x^{5}\)
4.5.8.
Answer.
\(x+0.333333x^{3}+0.133333x^{5}\)
4.5.9.
Answer.
\(1+2x+2x^{2}+1.33333x^{3}+0.666667x^{4}\)
4.5.10.
Answer.
\(1+x+x^{2}+x^{3}+x^{4}\)
4.5.11.
Answer.
\(1-x+x^{2}-x^{3}+x^{4}\)
4.5.12.
Answer.
\(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}\)
4.5.13.
Answer.
\(1+0.5\mathopen{}\left(x-1\right)-0.125\mathopen{}\left(x-1\right)^{2}+0.0625\mathopen{}\left(x-1\right)^{3}-0.0390625\mathopen{}\left(x-1\right)^{4}\)
4.5.14.
Answer.
\(0.693147+0.5\mathopen{}\left(x-1\right)-0.125\mathopen{}\left(x-1\right)^{2}+0.0416667\mathopen{}\left(x-1\right)^{3}-0.015625\mathopen{}\left(x-1\right)^{4}\)
4.5.15.
Answer.
\(0.707107-0.707107\mathopen{}\left(x-\frac{\pi }{4}\right)-0.353553\mathopen{}\left(x-\frac{\pi }{4}\right)^{2}+0.117851\mathopen{}\left(x-\frac{\pi }{4}\right)^{3}+0.0294628\mathopen{}\left(x-\frac{\pi }{4}\right)^{4}-0.00589256\mathopen{}\left(x-\frac{\pi }{4}\right)^{5}-0.000982093\mathopen{}\left(x-\frac{\pi }{4}\right)^{6}\)
4.5.16.
Answer.
\(0.5+0.866025\mathopen{}\left(x-\frac{\pi }{6}\right)-0.25\mathopen{}\left(x-\frac{\pi }{6}\right)^{2}-0.144338\mathopen{}\left(x-\frac{\pi }{6}\right)^{3}+0.0208333\mathopen{}\left(x-\frac{\pi }{6}\right)^{4}+0.00721688\mathopen{}\left(x-\frac{\pi }{6}\right)^{5}\)
4.5.17.
Answer.
\(0.5-0.25\mathopen{}\left(x-2\right)+0.125\mathopen{}\left(x-2\right)^{2}-0.0625\mathopen{}\left(x-2\right)^{3}+0.03125\mathopen{}\left(x-2\right)^{4}+0.015625\mathopen{}\left(x-2\right)^{5}\)
4.5.18.
Answer.
\(1-2\mathopen{}\left(x-1\right)+3\mathopen{}\left(x-1\right)^{2}-4\mathopen{}\left(x-1\right)^{3}+5\mathopen{}\left(x-1\right)^{4}-6\mathopen{}\left(x-1\right)^{5}+7\mathopen{}\left(x-1\right)^{6}-8\mathopen{}\left(x-1\right)^{7}+9\mathopen{}\left(x-1\right)^{8}\)
4.5.19.
Answer.
\(0.5+0.5\mathopen{}\left(x+1\right)+0.25\mathopen{}\left(x+1\right)^{2}\)
4.5.20.
Answer.
\(-\pi ^{2}-2\pi \mathopen{}\left(x-\pi \right)+\frac{\pi ^{2}-2}{2}\mathopen{}\left(x-\pi \right)^{2}\)
4.5.31.
Answer.
The \(n\)th term is: when \(n\) even, 0; when \(n\) is odd, \(\frac{(-1)^{(n-1)/2}}{n!}x^n\text{.}\)
5 Integration
5.1 Antiderivatives and Indefinite Integration
Exercises
Terms and Concepts
5.1.2.
Answer.
\(\text{an antiderivative}\)
5.1.4.
5.1.6.
5.1.7.
5.1.8.
Answer.
\(F\mathopen{}\left(x\right)+G\mathopen{}\left(x\right)\)
Problems
5.1.9.
Answer.
\(\left({\frac{4}{3}}\right)x^{6}+C\)
5.1.10.
Answer.
\({\frac{1}{10}}x^{10}+C\)
5.1.11.
Answer.
\(\left({\frac{5}{9}}\right)x^{9}-6x+C\)
5.1.12.
5.1.13.
5.1.14.
5.1.15.
5.1.16.
5.1.17.
Answer.
\(\sec\mathopen{}\left(\theta\right)+C\)
5.1.18.
Answer.
\(-\cos\mathopen{}\left(\theta\right)+C\)
5.1.19.
Answer.
\(\sec\mathopen{}\left(x\right)+\csc\mathopen{}\left(x\right)+C\)
5.1.20.
5.1.21.
Answer.
\(\frac{3^{t}}{\ln\mathopen{}\left(3\right)}+C\)
5.1.22.
Answer.
\(\frac{4^{t}}{9\ln\mathopen{}\left(4\right)}+C\)
5.1.23.
Answer.
\(\left({\frac{25}{3}}\right)t^{3}+10t^{2}+4t+\left({\frac{8}{15}}\right)+C\)
5.1.24.
Answer.
\(\frac{t^{10}}{10}-\frac{t^{6}}{2}-5t^{2}+C\)
5.1.25.
5.1.26.
5.1.27.
5.1.30.
Answer.
\(8-\cos\mathopen{}\left(x\right)\)
5.1.31.
5.1.32.
Answer.
\(3\frac{x^{4}}{4}-3x^{2}+9\)
5.1.33.
Answer.
\(\sec\mathopen{}\left(x\right)+4\)
5.1.34.
Answer.
\(\frac{5^{x}}{\ln\mathopen{}\left(5\right)}-\frac{25}{\ln\mathopen{}\left(5\right)}+5\)
5.1.35.
5.1.36.
Answer.
\(\left({\frac{2}{3}}\right)x^{3}+7x+\left(-{\frac{5}{3}}\right)\)
5.1.37.
5.1.38.
Answer.
\(6\theta-\cos\mathopen{}\left(\theta\right)+10\)
5.1.39.
Answer.
\(x^{6}+\frac{2^{x}}{0.480453}-\cos\mathopen{}\left(x\right)-1.4427x+0.918631\)
5.1.40.
5.2 The Definite Integral
Exercises
Terms and Concepts
5.2.3.
5.2.4.
Problems
5.2.5.
5.2.5.a5.2.5.b5.2.5.c5.2.5.d5.2.5.e5.2.5.f5.2.6.
5.2.6.a5.2.6.b5.2.6.c5.2.6.d5.2.6.e5.2.6.f5.2.7.
5.2.7.a5.2.7.b5.2.7.c5.2.7.d5.2.7.e5.2.7.f5.2.8.
5.2.8.a5.2.8.b5.2.8.c5.2.8.d5.2.8.e5.2.8.f5.2.9.
5.2.9.a5.2.9.b5.2.9.c5.2.9.d5.2.10.
5.2.10.a5.2.10.b5.2.10.c5.2.10.dAnswer.
\(3\mathopen{}\left(b-a\right)\)
5.2.11.
5.2.11.a5.2.11.b5.2.11.c5.2.11.d5.2.12.
5.2.12.a5.2.12.b5.2.12.c5.2.12.d5.2.13.
5.2.13.a5.2.13.b5.2.13.c5.2.13.d5.2.14.
5.2.14.a5.2.14.b5.2.14.c5.2.14.d
5.2.15.
5.2.15.aAnswer.
\(2\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.2.15.b5.2.15.c5.2.16.
5.2.16.aAnswer.
\(3\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.2.16.b5.2.16.c
5.2.17.
5.2.17.aAnswer.
\(64\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.2.17.b5.2.17.c5.2.17.d5.2.18.
5.2.18.aAnswer.
\(96\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.2.18.b5.2.18.c5.2.18.d
5.2.19.
5.2.20.
5.2.21.
5.2.22.
5.2.23.
5.2.24.
5.2.25.
5.2.26.
Answer.
\(a = -{\frac{18}{11}}b\)
5.3 Riemann Sums
5.3.4 Exercises
Terms and Concepts
5.3.4.1.
5.3.4.2.
5.3.4.3.
5.3.4.4.
Problems
5.3.4.5.
5.3.4.6.
Answer 1.
\(-4+\left(-1\right)+2+5+8\)
Answer 2.
5.3.4.7.
Answer 1.
\(0+\left(-1\right)+0+1\)
Answer 2.
5.3.4.8.
5.3.4.9.
Answer 1.
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
Answer 2.
5.3.4.10.
Answer 1.
\(-1+2+\left(-3\right)+4+\left(-5\right)+6+\left(-7\right)+8\)
Answer 2.
5.3.4.11.
Answer 1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
Answer 2.
5.3.4.12.
5.3.4.13.
5.3.4.14.
5.3.4.15.
Answer.
\(1;\,5;\,\frac{i}{i+3}\)
5.3.4.16.
Answer.
\(1;\,5;\,-\left(-e\right)^{i}\)
5.3.4.17.
5.3.4.18.
5.3.4.19.
5.3.4.20.
5.3.4.21.
5.3.4.22.
5.3.4.23.
5.3.4.24.
5.3.4.25.
5.3.4.26.
5.3.4.27.
5.3.4.28.
5.3.4.35.
Answer 1.
\(\frac{\left(n-1\right)^{2}}{4n^{2}}\)
Answer 2.
Answer 3.
Answer 4.
Answer 5.
5.3.4.36.
Answer 1.
\(6+\frac{9}{1n}+\frac{9}{1n^{2}}\)
Answer 2.
Answer 3.
Answer 4.
Answer 5.
5.3.4.37.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
5.3.4.38.
Answer 1.
\(\left({\frac{212}{3}}\right)+\frac{-48}{1n}+\frac{16}{3n^{2}}\)
Answer 2.
Answer 3.
Answer 4.
Answer 5.
5.3.4.39.
Answer 1.
Answer 2.
Answer 3.
Answer 4.
Answer 5.
5.3.4.40.
Answer 1.
\(-{\frac{1}{12}}+\frac{1}{12n^{2}}\)
Answer 2.
Answer 3.
Answer 4.
Answer 5.
5.4 The Fundamental Theorem of Calculus
5.4.6 Exercises
Terms and Concepts
5.4.6.2.
5.4.6.3.
Problems
5.4.6.5.
5.4.6.6.
5.4.6.7.
5.4.6.8.
5.4.6.9.
5.4.6.10.
5.4.6.11.
Answer.
\(\frac{\left({\frac{32767}{512}}\right)}{\ln\mathopen{}\left(8\right)}\)
5.4.6.12.
5.4.6.13.
5.4.6.14.
5.4.6.15.
5.4.6.16.
5.4.6.17.
5.4.6.18.
Answer.
\(\ln\mathopen{}\left(6\right)\)
5.4.6.19.
5.4.6.20.
Answer.
\({\frac{59048}{295245}}\)
5.4.6.21.
5.4.6.22.
5.4.6.23.
5.4.6.24.
5.4.6.25.
5.4.6.26.
5.4.6.27.
5.4.6.28.
5.4.6.31.
5.4.6.32.
5.4.6.33.
5.4.6.34.
5.4.6.35.
Answer.
\(\frac{\frac{1}{\pi -\frac{\pi }{2}}\cdot 3.14159}{\pi }\)
5.4.6.36.
Answer.
\(\frac{\frac{0}{\pi -0}\cdot 3.14159}{\pi }\)
5.4.6.37.
5.4.6.38.
5.4.6.39.
5.4.6.40.
5.4.6.41.
5.4.6.42.
5.4.6.43.
5.4.6.44.
5.4.6.45.
5.4.6.46.
Answer.
\({\frac{10240}{3}}\ {\rm ft}\)
5.4.6.47.
Answer.
\(-256\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.4.6.48.
Answer.
\(72\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.4.6.49.
Answer.
\({\frac{1}{2}}\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.4.6.50.
Answer.
\(1\ {\textstyle\frac{\rm\mathstrut ft}{\rm\mathstrut s}}\)
5.4.6.55.
Answer.
\(\frac{3x^{2}-7}{x^{3}-7x}\)
5.4.6.56.
5.4.6.57.
Answer.
\(3x^{2}\mathopen{}\left(x^{3}-1\right)-\left(x-1\right)\)
5.4.6.58.
Answer.
\(e^{x}\cos\mathopen{}\left(e^{x}\right)-\cos\mathopen{}\left(x\right)\cos\mathopen{}\left(\sin\mathopen{}\left(x\right)\right)\)
5.4.6.59.
Answer.
\(4x^{3}\sin\mathopen{}\left(4x^{8}\right)\)
5.4.6.60.
Answer.
\(\frac{1}{x}\sqrt{\ln^{4}\mathopen{}\left(x\right)+6\ln^{2}\mathopen{}\left(x\right)}-\cos\mathopen{}\left(x\right)\sqrt{\sin^{4}\mathopen{}\left(x\right)+6\sin^{2}\mathopen{}\left(x\right)}\)
5.5 Numerical Integration
5.5.6 Exercises
Terms and Concepts
5.5.6.1.
5.5.6.4.
Answer.
A quadratic function (i.e., parabola)
Problems
5.5.6.5.
5.5.6.5.a5.5.6.5.b5.5.6.5.c5.5.6.6.
5.5.6.6.a5.5.6.6.b5.5.6.6.c5.5.6.7.
5.5.6.7.a5.5.6.7.b5.5.6.7.c5.5.6.8.
5.5.6.8.a5.5.6.8.b5.5.6.8.c5.5.6.9.
5.5.6.9.a5.5.6.9.b5.5.6.9.c5.5.6.10.
5.5.6.10.a5.5.6.10.b5.5.6.10.c5.5.6.11.
5.5.6.11.a5.5.6.11.b5.5.6.11.c5.5.6.12.
5.5.6.12.a5.5.6.12.b5.5.6.12.c
5.5.6.13.
5.5.6.13.a5.5.6.13.b5.5.6.14.
5.5.6.14.a5.5.6.14.b5.5.6.15.
5.5.6.15.a5.5.6.15.b5.5.6.16.
5.5.6.16.a5.5.6.16.b5.5.6.17.
5.5.6.17.a5.5.6.17.b5.5.6.18.
5.5.6.18.a5.5.6.18.b5.5.6.19.
5.5.6.19.a5.5.6.19.b5.5.6.20.
5.5.6.20.a5.5.6.20.b
5.5.6.21.
5.5.6.21.a5.5.6.21.b5.5.6.22.
5.5.6.22.a5.5.6.22.b5.5.6.23.
5.5.6.23.a5.5.6.23.b5.5.6.24.
5.5.6.24.a5.5.6.24.b
5.5.6.25.
Answer 1.
\(30.8667\ {\rm cm^{2}}\)
Answer 2.
5.5.6.26.
Answer 1.
\(25.0667\ {\rm cm^{2}}\)
Answer 2.
II Math 2560: Calculus II
6 Techniques of Antidifferentiation
6.1 Substitution
6.1.5 Exercises
Terms and Concepts
6.1.5.1.
Answer.
\(\text{the Chain Rule}\)
6.1.5.2.
Problems
6.1.5.3.
Answer.
\({\frac{1}{6}}\mathopen{}\left(x^{4}+3\right)^{6}+C\)
6.1.5.4.
Answer.
\({\frac{1}{7}}\mathopen{}\left(x^{2}-9x-3\right)^{7}+C\)
6.1.5.5.
Answer.
\({\frac{1}{20}}\mathopen{}\left(x^{2}-7\right)^{10}+C\)
6.1.5.6.
Answer.
\(\left({\frac{2}{9}}\right)\mathopen{}\left(3x-5x^{2}-4\right)^{9}+C\)
6.1.5.7.
Answer.
\({\frac{1}{4}}\ln\mathopen{}\left(\left|4x+5\right|\right)+C\)
6.1.5.8.
Answer.
\(\left({\frac{2}{5}}\right)\sqrt{5x+9}+C\)
6.1.5.9.
Answer.
\({\frac{2}{3}}\mathopen{}\left(x-2\right)\sqrt{x+1}+C\)
6.1.5.10.
Answer.
\(x^{\left({\frac{3}{2}}\right)}\mathopen{}\left({\frac{2}{7}}x^{2}+2\right)+C\)
6.1.5.11.
6.1.5.12.
Answer.
\(\left({\frac{1}{3}}\right)\sqrt{x^{6}+8}+C\)
6.1.5.13.
Answer.
\(C-{\frac{1}{2}}\mathopen{}\left(\frac{1}{x}-9\right)^{2}\)
6.1.5.14.
Answer.
\(\frac{\ln^{2}\mathopen{}\left(x\right)}{2}+C\)
6.1.5.15.
Answer.
\(\frac{\left(\sin\mathopen{}\left(x\right)\right)^{4}}{4}+C\)
6.1.5.16.
Answer.
\(C-\frac{\left(\cos\mathopen{}\left(x\right)\right)^{5}}{5}\)
6.1.5.17.
Answer.
\(C-\frac{\sin\mathopen{}\left(8-5x\right)}{5}\)
6.1.5.18.
Answer.
\(C-\frac{\tan\mathopen{}\left(5-4x\right)}{4}\)
6.1.5.19.
Answer.
\({\frac{1}{7}}\ln\mathopen{}\left(\left|\sec\mathopen{}\left(7x\right)+\tan\mathopen{}\left(7x\right)\right|\right)+C\)
6.1.5.20.
Answer.
\({\frac{1}{9}}\mathopen{}\left(\tan\mathopen{}\left(x\right)\right)^{9}+C\)
6.1.5.21.
Answer.
\(C-{\frac{1}{9}}\cos\mathopen{}\left(x^{9}\right)\)
6.1.5.22.
Answer.
\(\tan\mathopen{}\left(x\right)-x+C\)
6.1.5.23.
Answer.
\(\ln\mathopen{}\left(\left|\sin\mathopen{}\left(x\right)\right|\right)+C\)
6.1.5.24.
Answer.
\(-\ln\mathopen{}\left(\left|\csc\mathopen{}\left(x\right)+\cot\mathopen{}\left(x\right)\right|\right)+C\)
6.1.5.25.
Answer.
\({\frac{1}{4}}e^{4x-9}+C\)
6.1.5.26.
Answer.
\({\frac{1}{5}}e^{x^{5}}+C\)
6.1.5.27.
Answer.
\({\frac{1}{2}}e^{\left(x+1\right)^{2}}+C\)
6.1.5.28.
6.1.5.29.
Answer.
\(\ln\mathopen{}\left(e^{x}+8\right)+C\)
6.1.5.30.
Answer.
\(C-\left({\frac{1}{2}}e^{-2x}+{\frac{1}{4}}e^{-4x}\right)\)
6.1.5.31.
Answer.
\(\frac{2^{2x}}{1.38629}+C\)
6.1.5.32.
Answer.
\(\frac{2^{7x}}{4.85203}+C\)
6.1.5.33.
Answer.
\(\frac{\ln^{2}\mathopen{}\left(x\right)}{2}+C\)
6.1.5.34.
Answer.
\(\frac{\left(\ln\mathopen{}\left(x\right)\right)^{5}}{5}+C\)
6.1.5.35.
Answer.
\(\left({\frac{5}{2}}\right)\mathopen{}\left(\ln\mathopen{}\left(x\right)\right)^{2}+C\)
6.1.5.36.
Answer.
\({\frac{1}{6}}\ln\mathopen{}\left(\left|\ln\mathopen{}\left(x^{6}\right)\right|\right)+C\)
6.1.5.37.
Answer.
\(\frac{x^{2}}{2}+4x+7\ln\mathopen{}\left(\left|x\right|\right)+C\)
6.1.5.38.
Answer.
\(\frac{x^{3}}{3}+\frac{x^{2}}{2}+x+\ln\mathopen{}\left(\left|x\right|\right)+C\)
6.1.5.39.
Answer.
\({\frac{1}{3}}\mathopen{}\left(x+1\right)^{3}+\left({\frac{3}{2}}\right)\mathopen{}\left(x+1\right)^{2}+3\mathopen{}\left(x+1\right)-5\ln\mathopen{}\left(\left|x+1\right|\right)+C\)
6.1.5.40.
Answer.
\(\frac{\left(x-3\right)^{2}}{2}+10\mathopen{}\left(x-3\right)+12\ln\mathopen{}\left(\left|x-3\right|\right)+C\)
6.1.5.41.
Answer.
\(C-\left(\left({\frac{7}{2}}\right)\mathopen{}\left(x-6\right)^{2}+85\mathopen{}\left(x-6\right)+250\ln\mathopen{}\left(\left|x-6\right|\right)\right)\)
6.1.5.42.
Answer.
\({\frac{1}{3}}\ln\mathopen{}\left(\left|x^{3}-6x^{2}-9x\right|\right)+C\)
6.1.5.43.
Answer.
\(2.44949\tan^{-1}\mathopen{}\left(\frac{x}{2.44949}\right)+C\)
6.1.5.44.
Answer.
\(5\sin^{-1}\mathopen{}\left(\frac{x}{5}\right)+C\)
6.1.5.45.
Answer.
\(3\sin^{-1}\mathopen{}\left(\frac{x}{3.16228}\right)+C\)
6.1.5.46.
Answer.
\(\left({\frac{8}{7}}\right)\sec^{-1}\mathopen{}\left(\frac{\left|x\right|}{7}\right)+C\)
6.1.5.47.
Answer.
\(\left({\frac{1}{2}}\right)\sec^{-1}\mathopen{}\left(\frac{\left|x\right|}{8}\right)+C\)
6.1.5.48.
Answer.
\(0.5\sin^{-1}\mathopen{}\left(x^{2}\right)+C\)
6.1.5.49.
Answer.
\(0.301511\tan^{-1}\mathopen{}\left(\frac{x+9}{11}\right)+C\)
6.1.5.50.
Answer.
\(7\sin^{-1}\mathopen{}\left(\frac{x-7}{4}\right)+C\)
6.1.5.51.
Answer.
\(2\sin^{-1}\mathopen{}\left(\frac{x-5}{9}\right)+C\)
6.1.5.52.
Answer.
\(\tan^{-1}\mathopen{}\left(\frac{x-3}{7}\right)+C\)
6.1.5.53.
Answer.
\(C-\frac{1}{6\mathopen{}\left(x^{6}-4\right)}\)
6.1.5.54.
Answer.
\({\frac{1}{7}}\mathopen{}\left(5x^{5}+9x^{4}-4\right)^{7}+C\)
6.1.5.55.
Answer.
\(\left({\frac{1}{2}}\right)\sqrt{6+2x^{2}}+C\)
6.1.5.56.
Answer.
\(\tan\mathopen{}\left(x^{8}-5\right)+C\)
6.1.5.57.
Answer.
\(C-{\frac{2}{3}}\mathopen{}\left(\cos\mathopen{}\left(x\right)\right)^{\left({\frac{3}{2}}\right)}\)
6.1.5.58.
Answer.
\({\frac{1}{9}}\sin\mathopen{}\left(9x+1\right)+C\)
6.1.5.59.
Answer.
\(\ln\mathopen{}\left(\left|x-7\right|\right)+C\)
6.1.5.60.
Answer.
\(\left({\frac{1}{4}}\right)\ln\mathopen{}\left(\left|8x+7\right|\right)+C\)
6.1.5.61.
Answer.
\(x^{2}+2x+\ln\mathopen{}\left(\left|x^{2}-4x+1\right|\right)+C\)
6.1.5.62.
Answer.
\(\ln\mathopen{}\left(\left|x^{2}-2x-7\right|\right)+C\)
6.1.5.63.
Answer.
\(2\ln\mathopen{}\left(\left|x^{2}+6x-9\right|\right)+C\)
6.1.5.64.
Answer.
\(-\left({\frac{1}{2}}\right)x^{2}-x+\ln\mathopen{}\left(\left|x^{2}+3x-1\right|\right)+C\)
6.1.5.65.
Answer.
\({\frac{1}{16}}\tan^{-1}\mathopen{}\left(\frac{x^{2}}{8}\right)+C\)
6.1.5.66.
Answer.
\(\tan^{-1}\mathopen{}\left(9x\right)+C\)
6.1.5.67.
Answer.
\(\sec^{-1}\mathopen{}\left(\left|9x\right|\right)+C\)
6.1.5.68.
Answer.
\({\frac{1}{3}}\sin^{-1}\mathopen{}\left(3\frac{x}{2}\right)+C\)
6.1.5.69.
Answer.
\(\left({\frac{5}{2}}\right)\ln\mathopen{}\left(\left|x^{2}-10x+74\right|\right)+\left({\frac{1}{7}}\right)\tan^{-1}\mathopen{}\left(\frac{x-5}{7}\right)+C\)
6.1.5.70.
Answer.
\(\left({\frac{19}{5}}\right)\tan^{-1}\mathopen{}\left(\frac{x-3}{5}\right)+\ln\mathopen{}\left(\left|x^{2}-6x+34\right|\right)+C\)
6.1.5.71.
Answer.
\(x+14.1421\tan^{-1}\mathopen{}\left(\frac{x-1}{1.41421}\right)+\left({\frac{17}{2}}\right)\ln\mathopen{}\left(\left|x^{2}-2x+3\right|\right)+C\)
6.1.5.72.
Answer.
\(\frac{x^{2}}{2}-18\ln\mathopen{}\left(\left|x^{2}+36\right|\right)+C\)
6.1.5.73.
Answer.
\({\frac{1}{2}}x^{2}-6x+\left({\frac{7}{2}}\right)\ln\mathopen{}\left(\left|x^{2}+6x+15\right|\right)+4.49073\tan^{-1}\mathopen{}\left(\frac{x+3}{2.44949}\right)+C\)
6.1.5.74.
Answer.
\(-\tan^{-1}\mathopen{}\left(\cos\mathopen{}\left(x\right)\right)+C\)
6.1.5.75.
Answer.
\(\tan^{-1}\mathopen{}\left(\sin\mathopen{}\left(x\right)\right)+C\)
6.1.5.76.
Answer.
\(C-\ln\mathopen{}\left(\left|\csc\mathopen{}\left(x\right)+\cot\mathopen{}\left(x\right)\right|\right)\)
6.1.5.77.
Answer.
\(9\sqrt{x^{2}+16x+63}+C\)
6.1.5.78.
Answer.
\(\sqrt{x^{2}+12x+32}+C\)
6.1.5.79.
Answer.
\(\ln\mathopen{}\left(\left({\frac{3}{7}}\right)\right)\)
6.1.5.80.
6.1.5.81.
6.1.5.82.
6.1.5.83.
Answer.
\({\frac{1}{2}}\mathopen{}\left(e^{4}-e\right)\)
6.1.5.84.
6.1.5.85.
6.1.5.86.
Answer.
\(\left({\frac{5}{6}}\right)\pi \)
6.2 Integration by Parts
Exercises
Terms and Concepts
6.2.1.
6.2.2.
6.2.4.
Problems
6.2.5.
Answer.
\(\sin\mathopen{}\left(x\right)-x\cos\mathopen{}\left(x\right)+C\)
6.2.6.
Answer.
\(-e^{-x}\mathopen{}\left(x+1\right)+C\)
6.2.7.
Answer.
\(-x^{2}\cos\mathopen{}\left(x\right)+2x\sin\mathopen{}\left(x\right)+2\cos\mathopen{}\left(x\right)+C\)
6.2.8.
Answer.
\(-x^{3}\cos\mathopen{}\left(x\right)+3x^{2}\sin\mathopen{}\left(x\right)+6x\cos\mathopen{}\left(x\right)-6\sin\mathopen{}\left(x\right)+C\)
6.2.9.
Answer.
\({\frac{1}{2}}e^{x^{2}}+C\)
6.2.10.
Answer.
\(e^{x}\mathopen{}\left(x^{3}-3x^{2}+6x-6\right)+C\)
6.2.11.
Answer.
\(-{\frac{1}{2}}xe^{-2x}-\frac{e^{-2x}}{4}+C\)
6.2.12.
Answer.
\({\frac{1}{2}}e^{x}\mathopen{}\left(\sin\mathopen{}\left(x\right)-\cos\mathopen{}\left(x\right)\right)+C\)
6.2.13.
Answer.
\({\frac{1}{5}}e^{2x}\mathopen{}\left(\sin\mathopen{}\left(x\right)+2\cos\mathopen{}\left(x\right)\right)+C\)
6.2.14.
Answer.
\(\left({\frac{1}{130}}\right)e^{7x}\mathopen{}\left(7\sin\mathopen{}\left(9x\right)-9\cos\mathopen{}\left(9x\right)\right)+C\)
6.2.15.
Answer.
\(\left({\frac{1}{16}}\right)e^{8x}\mathopen{}\left(\sin\mathopen{}\left(8x\right)+\cos\mathopen{}\left(8x\right)\right)+C\)
6.2.16.
Answer.
\(0.5\sin^{2}\mathopen{}\left(x\right)+C\)
6.2.17.
Answer.
\(\sqrt{1-x^{2}}+x\sin^{-1}\mathopen{}\left(x\right)+C\)
6.2.18.
Answer.
\(x\tan^{-1}\mathopen{}\left(2x\right)-0.25\ln\mathopen{}\left(4x^{2}+1\right)+C\)
6.2.19.
Answer.
\(0.5x^{2}\tan^{-1}\mathopen{}\left(x\right)-\frac{x}{2}+0.5\tan^{-1}\mathopen{}\left(x\right)+C\)
6.2.20.
Answer.
\(-\sqrt{1-x^{2}}+x\cos^{-1}\mathopen{}\left(x\right)+C\)
6.2.21.
Answer.
\(0.5x^{2}\ln\mathopen{}\left(x\right)-\frac{x^{2}}{4}+C\)
6.2.22.
Answer.
\({\frac{1}{2}}x^{2}\ln\mathopen{}\left(x\right)-\frac{x^{2}}{4}+x\ln\mathopen{}\left(x\right)-x+C\)
6.2.23.
Answer.
\({\frac{1}{2}}x^{2}\ln\mathopen{}\left(x-3\right)-{\frac{1}{4}}\mathopen{}\left(x-3\right)^{2}-3x-\left({\frac{9}{2}}\right)\ln\mathopen{}\left(x-3\right)+C\)
6.2.24.
Answer.
\(0.5x^{2}\ln\mathopen{}\left(x^{2}\right)-\frac{x^{2}}{2}+C\)
6.2.25.
Answer.
\(0.333333x^{3}\ln\mathopen{}\left(x\right)-\frac{x^{3}}{9}+C\)
6.2.26.
Answer.
\(2x+x\ln^{2}\mathopen{}\left(x\right)-2x\ln\mathopen{}\left(x\right)+C\)
6.2.27.
Answer.
\(2\mathopen{}\left(x-8\right)+\left(x-8\right)\mathopen{}\left(\ln\mathopen{}\left(x-8\right)\right)^{2}-2\mathopen{}\left(x-8\right)\ln\mathopen{}\left(x-8\right)+C\)
6.2.28.
Answer.
\(x\tan\mathopen{}\left(x\right)+\ln\mathopen{}\left(\left|\cos\mathopen{}\left(x\right)\right|\right)+C\)
6.2.29.
Answer.
\(\ln\mathopen{}\left(\left|\sin\mathopen{}\left(x\right)\right|\right)-x\cot\mathopen{}\left(x\right)+C\)
6.2.30.
Answer.
\(\left({\frac{2}{5}}\mathopen{}\left(x-2\right)^{2}+\left({\frac{4}{3}}\right)\mathopen{}\left(x-2\right)\right)\sqrt{x-2}+C\)
6.2.31.
Answer.
\({\frac{1}{3}}\mathopen{}\left(x^{2}-6\right)^{\left({\frac{3}{2}}\right)}+C\)
6.2.32.
Answer.
\(\sec\mathopen{}\left(x\right)+C\)
6.2.33.
Answer.
\(x\sec\mathopen{}\left(x\right)-\ln\mathopen{}\left(\left|\sec\mathopen{}\left(x\right)+\tan\mathopen{}\left(x\right)\right|\right)+C\)
6.2.34.
Answer.
\(-x\csc\mathopen{}\left(x\right)-\ln\mathopen{}\left(\left|\csc\mathopen{}\left(x\right)+\cot\mathopen{}\left(x\right)\right|\right)+C\)
6.2.35.
Answer.
\(\frac{x}{2}\mathopen{}\left(\sin\mathopen{}\left(\ln\mathopen{}\left(x\right)\right)+\cos\mathopen{}\left(\ln\mathopen{}\left(x\right)\right)\right)+C\)
6.2.36.
Answer.
\(\sin\mathopen{}\left(e^{x}\right)-e^{x}\cos\mathopen{}\left(e^{x}\right)+C\)
6.2.37.
Answer.
\(2\sin\mathopen{}\left(\sqrt{x}\right)-2\sqrt{x}\cos\mathopen{}\left(\sqrt{x}\right)+C\)
6.2.38.
Answer.
\(x\ln\mathopen{}\left(\sqrt{x}\right)-\frac{x}{2}+C\)
6.2.39.
Answer.
\(2\sqrt{x}e^{\sqrt{x}}-2e^{\sqrt{x}}+C\)
6.2.40.
6.2.41.
6.2.42.
Answer.
\(-\left(2\frac{1}{e}+e^{2}\right)\)
6.2.43.
6.2.44.
Answer.
\(\frac{3\pi ^{2}}{2}-12\)
6.2.45.
6.2.46.
6.2.47.
Answer.
\(\left(-{\frac{7}{4}}\right)e^{-6}-\left(-{\frac{5}{4}}\right)e^{-4}\)
6.2.48.
6.2.49.
Answer.
\(0.2\mathopen{}\left(-e^{3\pi }-e^{-3\pi }\right)\)
6.3 Trigonometric Integrals
6.3.4 Exercises
Terms and Concepts
6.3.4.1.
6.3.4.2.
6.3.4.3.
6.3.4.4.
Problems
6.3.4.5.
Answer.
\(-0.2\cos^{5}\mathopen{}\left(x\right)+C\)
6.3.4.6.
Answer.
\(0.25\sin^{4}\mathopen{}\left(x\right)+C\)
6.3.4.7.
Answer.
\({\frac{1}{7}}\mathopen{}\left(\cos\mathopen{}\left(x\right)\right)^{7}-{\frac{1}{5}}\mathopen{}\left(\cos\mathopen{}\left(x\right)\right)^{5}+C\)
6.3.4.8.
Answer.
\({\frac{1}{8}}\mathopen{}\left(\cos\mathopen{}\left(x\right)\right)^{8}-{\frac{1}{6}}\mathopen{}\left(\cos\mathopen{}\left(x\right)\right)^{6}+C\)
6.3.4.9.
Answer.
\({\frac{1}{11}}\mathopen{}\left(\sin\mathopen{}\left(x\right)\right)^{11}-{\frac{2}{9}}\mathopen{}\left(\sin\mathopen{}\left(x\right)\right)^{9}+{\frac{1}{7}}\mathopen{}\left(\sin\mathopen{}\left(x\right)\right)^{7}+C\)
6.3.4.10.
Answer.
\(-0.111111\sin^{9}\mathopen{}\left(x\right)+0.428571\sin^{7}\mathopen{}\left(x\right)-0.6\sin^{5}\mathopen{}\left(x\right)+0.333333\sin^{3}\mathopen{}\left(x\right)+C\)
6.3.4.11.
Answer.
\(\frac{x}{8}-0.03125\sin\mathopen{}\left(4x\right)+C\)
6.3.4.12.
Answer.
\(0.5\mathopen{}\left(-0.125\cos\mathopen{}\left(8x\right)-0.5\cos\mathopen{}\left(2x\right)\right)+C\)
6.3.4.13.
Answer.
\(C-\left(\left({\frac{1}{4}}\right)\cos\mathopen{}\left(2x\right)+\left({\frac{1}{8}}\right)\cos\mathopen{}\left(4x\right)\right)\)
6.3.4.14.
Answer.
\(\left({\frac{1}{14}}\right)\sin\mathopen{}\left(7x\right)-\left({\frac{1}{22}}\right)\sin\mathopen{}\left(11x\right)+C\)
6.3.4.15.
Answer.
\(\frac{1}{12\pi }\sin\mathopen{}\left(6\pi x\right)-\frac{1}{16\pi }\sin\mathopen{}\left(8\pi x\right)+C\)
6.3.4.16.
Answer.
\(0.5\mathopen{}\left(\sin\mathopen{}\left(x\right)+0.333333\sin\mathopen{}\left(3x\right)\right)+C\)
6.3.4.17.
Answer.
\(\frac{3}{4\pi }\cos\mathopen{}\left(\frac{2\pi }{3}\pi x\right)+\frac{3}{8\pi }\cos\mathopen{}\left(\frac{4\pi }{3}\pi x\right)+C\)
6.3.4.18.
Answer.
\(\frac{\tan^{5}\mathopen{}\left(x\right)}{5}+C\)
6.3.4.19.
Answer.
\(\frac{\tan^{5}\mathopen{}\left(x\right)}{5}+\frac{\tan^{3}\mathopen{}\left(x\right)}{3}+C\)
6.3.4.20.
Answer.
\({\frac{1}{10}}\mathopen{}\left(\tan\mathopen{}\left(x\right)\right)^{10}+{\frac{1}{8}}\mathopen{}\left(\tan\mathopen{}\left(x\right)\right)^{8}+C\)
6.3.4.21.
Answer.
\({\frac{1}{9}}\mathopen{}\left(\tan\mathopen{}\left(x\right)\right)^{9}+C\)
6.3.4.22.
Answer.
\({\frac{1}{11}}\mathopen{}\left(\sec\mathopen{}\left(x\right)\right)^{11}-{\frac{1}{9}}\mathopen{}\left(\sec\mathopen{}\left(x\right)\right)^{9}+C\)
6.3.4.23.
Answer.
\({\frac{1}{6}}\mathopen{}\left(\sec\mathopen{}\left(x\right)\right)^{6}-{\frac{1}{2}}\mathopen{}\left(\sec\mathopen{}\left(x\right)\right)^{4}+{\frac{1}{2}}\mathopen{}\left(\sec\mathopen{}\left(x\right)\right)^{2}+C\)
6.3.4.24.
Answer.
\(\frac{\tan^{3}\mathopen{}\left(x\right)}{3}-\tan\mathopen{}\left(x\right)+x+C\)
6.3.4.25.
Answer.
\(0.25\tan\mathopen{}\left(x\right)\sec^{3}\mathopen{}\left(x\right)+0.375\mathopen{}\left(\sec\mathopen{}\left(x\right)\tan\mathopen{}\left(x\right)+\ln\mathopen{}\left(\left|\sec\mathopen{}\left(x\right)+\tan\mathopen{}\left(x\right)\right|\right)\right)+C\)
6.3.4.26.
Answer.
\(0.5\mathopen{}\left(\sec\mathopen{}\left(x\right)\tan\mathopen{}\left(x\right)-\ln\mathopen{}\left(\left|\sec\mathopen{}\left(x\right)+\tan\mathopen{}\left(x\right)\right|\right)\right)+C\)
6.3.4.27.
Answer.
\(0.25\tan\mathopen{}\left(x\right)\sec^{3}\mathopen{}\left(x\right)-0.125\mathopen{}\left(\sec\mathopen{}\left(x\right)\tan\mathopen{}\left(x\right)+\ln\mathopen{}\left(\left|\sec\mathopen{}\left(x\right)+\tan\mathopen{}\left(x\right)\right|\right)\right)+C\)
6.3.4.28.
6.3.4.29.
6.3.4.30.
6.3.4.31.
6.3.4.32.
6.3.4.33.
6.3.4.34.
6.4 Trigonometric Substitution
Exercises
Terms and Concepts
6.4.1.
6.4.2.
Answer.
\(6\sin\mathopen{}\left(\theta\right)\hbox{ or }6\cos\mathopen{}\left(\theta\right)\)
6.4.3.
Answer 1.
\(\tan^{2}\mathopen{}\left(\theta\right)+1 = \sec^{2}\mathopen{}\left(\theta\right)\)
Answer 2.
\(6\sec^{2}\mathopen{}\left(\theta\right)\)
Problems
6.4.5.
Answer.
\({\frac{1}{2}}\mathopen{}\left(x\sqrt{x^{2}+1}+\ln\mathopen{}\left(\sqrt{x^{2}+1}+x\right)\right)+C\)
6.4.6.
Answer.
\(\frac{x}{2}\sqrt{x^{2}+4}+2\ln\mathopen{}\left(\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right)+C\)
6.4.7.
Answer.
\({\frac{1}{2}}\sin^{-1}\mathopen{}\left(x\right)+\frac{x}{2}\sqrt{1-x^{2}}+C\)
6.4.8.
Answer.
\({\frac{9}{2}}\sin^{-1}\mathopen{}\left(\frac{x}{3}\right)+\frac{x}{2}\sqrt{9-x^{2}}+C\)
6.4.9.
Answer.
\({\frac{1}{2}}x\sqrt{x^{2}-1}-{\frac{1}{2}}\ln\mathopen{}\left(\left|x+\sqrt{x^{2}-1}\right|\right)+C\)
6.4.10.
Answer.
\({\frac{1}{2}}x\sqrt{x^{2}-16}-8\ln\mathopen{}\left(\left|\frac{x}{4}+\frac{\sqrt{x^{2}-16}}{4}\right|\right)+C\)
6.4.11.
Answer.
\(\frac{x}{2}\sqrt{36x^{2}+1}+{\frac{1}{12}}\ln\mathopen{}\left(6x+\sqrt{36x^{2}+1}\right)+C\)
6.4.12.
Answer.
\(\frac{x}{2}\sqrt{1-36x^{2}}+{\frac{1}{12}}\sin^{-1}\mathopen{}\left(6x\right)+C\)
6.4.13.
Answer.
\(\frac{x}{2}\sqrt{49x^{2}-1}-{\frac{1}{14}}\ln\mathopen{}\left(\left|7x+\sqrt{49x^{2}-1}\right|\right)+C\)
6.4.14.
Answer.
\(8\ln\mathopen{}\left(\frac{x}{1.73205}+\sqrt{\frac{x^{2}}{3}+1}\right)+C\)
6.4.15.
Answer.
\(9\sin^{-1}\mathopen{}\left(\frac{x}{3.60555}\right)+C\)
6.4.16.
Answer.
\(2\ln\mathopen{}\left(\left|\frac{x}{2.64575}+\sqrt{\frac{x^{2}}{7}-1}\right|\right)+C\)
6.4.17.
Answer.
\(\sqrt{x^{2}-3}-1.73205\sec^{-1}\mathopen{}\left(\frac{x}{1.73205}\right)+C\)
6.4.18.
Answer.
\({\frac{1}{2}}\tan^{-1}\mathopen{}\left(x\right)+\frac{x}{2\mathopen{}\left(x^{2}+1\right)}+C\)
6.4.19.
6.4.20.
Answer.
\({\frac{1}{8}}\sin^{-1}\mathopen{}\left(x\right)+\frac{x}{8}\sqrt{1-x^{2}}\mathopen{}\left(2x^{2}-1\right)+C\)
6.4.21.
Answer.
\(C-\frac{1}{\sqrt{x^{2}+36}}\)
6.4.22.
Answer.
\(\frac{7x}{2}\sqrt{x^{2}-6}+21\ln\mathopen{}\left(\left|\frac{x}{2.44949}+\sqrt{\frac{x^{2}}{6}-1}\right|\right)+C\)
6.4.23.
Answer.
\(\left({\frac{1}{162}}\right)\frac{x-6}{x^{2}-12x+117}+\left({\frac{1}{1458}}\right)\tan^{-1}\mathopen{}\left(\frac{x-6}{9}\right)+C\)
6.4.24.
Answer.
\(\frac{x}{\sqrt{1-x^{2}}}-\sin^{-1}\mathopen{}\left(x\right)+C\)
6.4.25.
Answer.
\(C-\left(\frac{\sqrt{5-x^{2}}}{2x}+{\frac{1}{2}}\sin^{-1}\mathopen{}\left(\frac{x}{2.23607}\right)\right)\)
6.4.26.
Answer.
\(\frac{x}{2}\sqrt{x^{2}+3}-\left({\frac{3}{2}}\right)\ln\mathopen{}\left(\frac{x}{1.73205}+\sqrt{\frac{x^{2}}{3}+1}\right)+C\)
6.4.27.
6.4.28.
Answer.
\(\left({\frac{7}{2}}\right)\sqrt{33}-8\ln\mathopen{}\left(\left|\left({\frac{7}{4}}\right)+\left({\frac{1}{4}}\right)\sqrt{33}\right|\right)\)
6.4.29.
Answer.
\(\left({\frac{5}{2}}\right)\sqrt{29}+2\ln\mathopen{}\left(\left({\frac{5}{2}}\right)+\left({\frac{1}{2}}\right)\sqrt{29}\right)\)
6.4.30.
Answer.
\(\tan^{-1}\mathopen{}\left(7\right)+\left({\frac{7}{50}}\right)\)
6.4.31.
Answer.
\(9\sin^{-1}\mathopen{}\left(\left({\frac{2}{3}}\right)\right)+2\sqrt{5}\)
6.4.32.
6.5 Partial Fraction Decomposition
Exercises
Terms and Concepts
6.5.1.
6.5.2.
6.5.3.
Answer.
\(\frac{A}{x}+\frac{B}{x-6}\)
6.5.4.
Answer.
\(\frac{A}{x-3}+\frac{B}{x+3}\)
6.5.5.
Answer.
\(\frac{A}{x-\sqrt{6}}+\frac{B}{x+\sqrt{6}}\)
6.5.6.
Answer.
\(\frac{A}{x}+\frac{Bx+C}{x^{2}+5}\)
Problems
6.5.7.
Answer.
\(5\ln\mathopen{}\left(\left|x+3\right|\right)+9\ln\mathopen{}\left(\left|x-2\right|\right)+C\)
6.5.8.
Answer.
\(8\ln\mathopen{}\left(\left|x\right|\right)-8\ln\mathopen{}\left(\left|x-4\right|\right)+C\)
6.5.9.
Answer.
\(\left({\frac{3}{4}}\right)\ln\mathopen{}\left(\left|x-2\right|\right)-\left({\frac{3}{4}}\right)\ln\mathopen{}\left(\left|x+2\right|\right)+C\)
6.5.10.
Answer.
\(\ln\mathopen{}\left(\left|x-8\right|\right)+\ln\mathopen{}\left(\left|1-4x\right|\right)+C\)
6.5.11.
Answer.
\(\ln\mathopen{}\left(\left|x+9\right|\right)-\frac{3}{x+9}+C\)
6.5.12.
Answer.
\(7\ln\mathopen{}\left(\left|x+7\right|\right)-\frac{5}{x+7}+C\)
6.5.13.
Answer.
\(3\ln\mathopen{}\left(\left|x\right|\right)+\ln\mathopen{}\left(\left|x+4\right|\right)+\frac{4}{x+4}+C\)
6.5.14.
Answer.
\(C-\left(2\ln\mathopen{}\left(\left|9-3x\right|\right)+\ln\mathopen{}\left(\left|x+3\right|\right)+5\ln\mathopen{}\left(\left|x-9\right|\right)\right)\)
6.5.15.
Answer.
\(\left({\frac{1}{7}}\right)\ln\mathopen{}\left(\left|7x+1\right|\right)-\left({\frac{2}{5}}\right)\ln\mathopen{}\left(\left|5x+3\right|\right)+\frac{\left({\frac{1}{3}}\right)}{9x-9}+C\)
6.5.16.
Answer.
\(x-2\ln\mathopen{}\left(\left|x-2\right|\right)-\ln\mathopen{}\left(\left|x+5\right|\right)+C\)
6.5.17.
Answer.
\({\frac{1}{2}}x^{2}+12x-16\ln\mathopen{}\left(\left|x-4\right|\right)+128\ln\mathopen{}\left(\left|x-8\right|\right)+C\)
6.5.18.
6.5.19.
Answer.
\(\left({\frac{1}{18}}\right)\ln\mathopen{}\left(\left|x\right|\right)-\left({\frac{1}{36}}\right)\ln\mathopen{}\left(x^{2}-8x+18\right)+0.157135\tan^{-1}\mathopen{}\left(\frac{x-4}{1.41421}\right)+C\)
6.5.20.
Answer.
\(x+4\ln\mathopen{}\left(x^{2}+8x+22\right)-15.1052\tan^{-1}\mathopen{}\left(\frac{x+4}{2.44949}\right)+C\)
6.5.21.
Answer.
\(\ln\mathopen{}\left(\left|3x^{2}+x-4\right|\right)-2\ln\mathopen{}\left(\left|x-9\right|\right)+C\)
6.5.22.
Answer.
\(5\ln\mathopen{}\left(\left|x+6\right|\right)+4\ln\mathopen{}\left(x^{2}+4x+5\right)-2\tan^{-1}\mathopen{}\left(x+2\right)+C\)
6.5.23.
Answer.
\(\left({\frac{129}{58}}\right)\ln\mathopen{}\left(\left|x-7\right|\right)+\left({\frac{45}{116}}\right)\ln\mathopen{}\left(x^{2}+9\right)+\left({\frac{199}{174}}\right)\tan^{-1}\mathopen{}\left(\frac{x}{3}\right)+C\)
6.5.24.
Answer.
\(\ln\mathopen{}\left(x^{2}-2x+5\right)-\ln\mathopen{}\left(\left|x+4\right|\right)-2\tan^{-1}\mathopen{}\left(\frac{x-1}{2}\right)+C\)
6.5.25.
Answer.
\(4\ln\mathopen{}\left(\left|x+9\right|\right)-2\ln\mathopen{}\left(x^{2}-2x+4\right)+2.88675\tan^{-1}\mathopen{}\left(\frac{x-1}{1.73205}\right)+C\)
6.5.26.
Answer.
\(\ln\mathopen{}\left(\left|x+1\right|\right)-\left({\frac{3}{2}}\right)\ln\mathopen{}\left(x^{2}-8x+21\right)-0.894427\tan^{-1}\mathopen{}\left(\frac{x-4}{2.23607}\right)+C\)
6.5.27.
Answer.
\(\ln\mathopen{}\left(\left({\frac{48828125}{14155776}}\right)\right)\)
6.5.28.
6.5.29.
Answer.
\(\ln\mathopen{}\left(\left({\frac{5}{7}}\right)\right)+\tan^{-1}\mathopen{}\left(5\right)-\tan^{-1}\mathopen{}\left(3\right)\)
6.5.30.
6.6 Hyperbolic Functions
6.6.3 Exercises
Problems
6.6.3.11.
Answer.
\(2\cosh\mathopen{}\left(2x\right)\)
6.6.3.12.
Answer.
\(2\cosh\mathopen{}\left(x\right)\sinh\mathopen{}\left(x\right)\)
6.6.3.13.
Answer.
\(\mathop{\rm sech}\nolimits^{2}\mathopen{}\left(x^{2}\right)\cdot 2x\)
6.6.3.14.
Answer.
\(\frac{1}{\sinh\mathopen{}\left(x\right)}\cosh\mathopen{}\left(x\right)\)
6.6.3.15.
Answer.
\(\cosh\mathopen{}\left(x\right)\cosh\mathopen{}\left(x\right)+\sinh\mathopen{}\left(x\right)\sinh\mathopen{}\left(x\right)\)
6.6.3.16.
Answer.
\(\sinh\mathopen{}\left(x\right)+x\cosh\mathopen{}\left(x\right)-\sinh\mathopen{}\left(x\right)\)
6.6.3.17.
Answer.
\(-\frac{1}{x^{2}\sqrt{1-\left(x^{2}\right)^{2}}}\cdot 2x\)
6.6.3.18.
Answer.
\(3\frac{1}{\sqrt{1+\left(3x\right)^{2}}}\)
6.6.3.19.
Answer.
\(\frac{1}{\sqrt{\left(2x^{2}\right)^{2}-1}}\cdot 2\cdot 2x\)
6.6.3.20.
Answer.
\(\frac{1}{1-\left(x+5\right)^{2}}\)
6.6.3.21.
Answer.
\(-\frac{1}{1-\cos^{2}\mathopen{}\left(x\right)}\sin\mathopen{}\left(x\right)\)
6.6.3.22.
Answer.
\(\frac{1}{\sqrt{\sec^{2}\mathopen{}\left(x\right)-1}}\sec\mathopen{}\left(x\right)\tan\mathopen{}\left(x\right)\)
6.6.3.23.
Answer.
\(1\mathopen{}\left(x-0\right)+0\)
6.6.3.24.
Answer.
\(0.75\mathopen{}\left(x-0.693147\right)+1.25\)
6.6.3.25.
Answer.
\(0.36\mathopen{}\left(x-\left(-1.09861\right)\right)+\left(-0.8\right)\)
6.6.3.26.
Answer.
\(-0.576\mathopen{}\left(x-1.09861\right)+0.36\)
6.6.3.27.
Answer.
\(1\mathopen{}\left(x-0\right)+0\)
6.6.3.28.
Answer.
\(1\mathopen{}\left(x-1.41421\right)+0.881374\)
6.6.3.29.
Answer.
\(0.5\ln\mathopen{}\left(\cosh\mathopen{}\left(2x\right)\right)+C\)
6.6.3.30.
Answer.
\(0.333333\sinh\mathopen{}\left(3x-7\right)+C\)
6.6.3.31.
Answer.
\(0.5\sinh^{2}\mathopen{}\left(x\right)+C\)
6.6.3.32.
Answer.
\(x\sinh\mathopen{}\left(x\right)-\cosh\mathopen{}\left(x\right)+C\)
6.6.3.33.
Answer.
\(x\cosh\mathopen{}\left(x\right)-\sinh\mathopen{}\left(x\right)+C\)
6.6.3.34.
Answer.
\(\sinh^{-1} x +C=\ln\big(x+\sqrt{x^2+1}\big)+C\)
6.6.3.35.
Answer.
\(\cosh^{-1} x/3 +C=\ln\big(x+\sqrt{x^2-9}\big)+C\)
6.6.3.36.
Answer.
\(0.5\ln\mathopen{}\left(\left|x+1\right|\right)-0.5\ln\mathopen{}\left(\left|x-1\right|\right)+C\)
6.6.3.37.
Answer.
\(\cosh^{-1}\mathopen{}\left(\frac{x^{2}}{2}\right)+C\)
6.6.3.38.
Answer.
\(0.666667\sinh^{-1}\mathopen{}\left(x^{1.5}\right)+C\)
6.6.3.39.
Answer.
\(-0.0625\tan^{-1}\mathopen{}\left(\frac{x}{2}\right)+0.03125\ln\mathopen{}\left(\left|x-2\right|\right)-0.03125\ln\mathopen{}\left(\left|x+2\right|\right)+C\)
6.6.3.40.
Answer.
\(\ln\mathopen{}\left(x\right)-\ln\mathopen{}\left(\left|x+1\right|\right)+C\)
6.6.3.41.
Answer.
\(\tan^{-1}\mathopen{}\left(e^{x}\right)+C\)
6.6.3.42.
Answer.
\(x\sinh^{-1}\mathopen{}\left(x\right)-\sqrt{x^{2}+1}+C\)
6.6.3.43.
Answer.
\(x\tanh^{-1}\mathopen{}\left(x\right)+0.5\ln\mathopen{}\left(\left|x^{2}-1\right|\right)+C\)
6.6.3.44.
Answer.
\(\tan^{-1}\mathopen{}\left(\sinh\mathopen{}\left(x\right)\right)+C\)
6.6.3.45.
6.6.3.46.
6.6.3.47.
6.6.3.48.
6.7 L’Hospital’s Rule
6.7.4 Exercises
Terms and Concepts
6.7.4.2.
6.7.4.3.
Problems
6.7.4.9.
6.7.4.10.
6.7.4.11.
6.7.4.12.
6.7.4.13.
6.7.4.14.
6.7.4.15.
6.7.4.16.
Answer.
\(\frac{a\cos\mathopen{}\left(a\cdot 0\right)}{b\cos\mathopen{}\left(b\cdot 0\right)}\)
6.7.4.17.
6.7.4.18.
6.7.4.19.
6.7.4.20.
6.7.4.21.
6.7.4.23.
6.7.4.24.
6.7.4.25.
6.7.4.26.
6.7.4.27.
6.7.4.28.
6.7.4.29.
6.7.4.30.
6.7.4.31.
6.7.4.32.
6.7.4.33.
6.7.4.34.
6.7.4.35.
6.7.4.36.
6.7.4.37.
6.7.4.38.
6.7.4.39.
6.7.4.40.
6.7.4.41.
6.7.4.42.
6.7.4.43.
6.7.4.44.
6.7.4.45.
6.7.4.46.
6.7.4.47.
6.7.4.48.
6.7.4.49.
6.7.4.50.
6.7.4.51.
6.7.4.52.
6.7.4.53.
6.7.4.54.
6.8 Improper Integration
6.8.4 Exercises
Terms and Concepts
6.8.4.4.
6.8.4.5.
6.8.4.6.
Problems
6.8.4.7.
6.8.4.8.
6.8.4.9.
6.8.4.10.
6.8.4.11.
Answer.
\(\frac{1}{\ln\mathopen{}\left(2\right)}\)
6.8.4.12.
6.8.4.13.
6.8.4.14.
6.8.4.15.
6.8.4.16.
6.8.4.17.
6.8.4.18.
6.8.4.19.
6.8.4.20.
6.8.4.21.
6.8.4.22.
6.8.4.23.
6.8.4.24.
6.8.4.25.
6.8.4.26.
6.8.4.27.
6.8.4.28.
6.8.4.29.
6.8.4.30.
6.8.4.31.
6.8.4.32.
6.8.4.33.
6.8.4.34.
6.8.4.35.
Answer 1.
\(\text{Limit Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.36.
Answer 1.
\(\text{Limit Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.37.
Answer 1.
\(\text{Limit Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.38.
Answer 1.
\(\text{Direct Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.39.
Answer 1.
\(\text{Direct Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.40.
Answer 1.
\(\text{Direct Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.41.
Answer 1.
\(\text{Direct Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.42.
Answer 1.
\(\text{Direct Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.43.
Answer 1.
\(\text{Direct Comparison Test}\)
Answer 2.
Answer 3.
6.8.4.44.
Answer 1.
\(\text{Limit Comparison Test}\)
Answer 2.
Answer 3.
7 Applications of Integration
7.1 Area Between Curves
Exercises
Terms and Concepts
7.1.1.
7.1.2.
Problems
7.1.5.
7.1.6.
7.1.7.
7.1.8.
7.1.9.
7.1.10.
7.1.11.
7.1.12.
7.1.13.
7.1.14.
7.1.15.
7.1.16.